WO2013018692A1 - 非水電解質二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解質二次電池用正極、及び、当該正極を用いた非水電解質二次電池 - Google Patents
非水電解質二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解質二次電池用正極、及び、当該正極を用いた非水電解質二次電池 Download PDFInfo
- Publication number
- WO2013018692A1 WO2013018692A1 PCT/JP2012/069134 JP2012069134W WO2013018692A1 WO 2013018692 A1 WO2013018692 A1 WO 2013018692A1 JP 2012069134 W JP2012069134 W JP 2012069134W WO 2013018692 A1 WO2013018692 A1 WO 2013018692A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- positive electrode
- electrolyte secondary
- electrode active
- compound
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Complex oxides containing cobalt and at least one other metal element
- C01G51/42—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/54—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (Mn2O4)-, e.g. Li(NixMn2-x)O4 or Li(MyNixMn2-x-y)O4
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
- H01M4/1315—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
- H01M4/13915—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery.
- a non-aqueous electrolyte secondary battery that performs charge / discharge by moving lithium ions between the positive and negative electrodes along with charge / discharge has a high energy density and a high capacity. Widely used as a drive power source.
- the mobile information terminal has a tendency to further increase power consumption with enhancement of functions such as a video playback function and a game function, and further enhancement of capacity and improvement of cycle characteristics are strongly desired.
- laminate type batteries and square type batteries have come to be used more frequently than cylindrical type batteries.
- This battery has a flexible outer casing as compared with the cylindrical battery. For this reason, when a positive electrode active material and electrolyte solution react and gas is generated and the internal pressure of a battery becomes high by this, an exterior body becomes easy to change. As a result, the battery swells, and there is a risk of damaging the components of the equipment in which the battery is used. In particular, in a small device such as the above-described smartphone, such a problem is likely to occur because the space in which the battery is arranged is significantly limited.
- a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention includes a lithium transition metal composite oxide and a compound comprising zirconium and a fluorine element, and the compound includes the lithium transition metal. It exists in the surface of a metal complex oxide.
- FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
- the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention will be described below.
- the positive electrode active material for nonaqueous electrolyte secondary batteries in this invention is not limited to what was shown to the following form, In the range which does not change the summary, it can implement suitably.
- a current collecting tab was attached to each of the positive and negative electrodes, a separator was disposed between the two electrodes and wound in a spiral shape, and then the winding core was pulled out to produce a spiral electrode body. Next, the spiral electrode body was crushed to obtain a flat electrode body. Thereafter, the flat electrode body and the non-aqueous electrolyte solution were inserted into an aluminum laminate outer package to produce a non-aqueous electrolyte secondary battery having the structure shown in FIGS.
- the size of the nonaqueous electrolyte secondary battery is 3.6 mm ⁇ 35 mm ⁇ 62 mm, and the discharge capacity when the nonaqueous electrolyte secondary battery is charged to 4.40V and discharged to 2.75V. Was 750 mAh.
- the specific structure of the non-aqueous electrolyte secondary battery 11 is such that a positive electrode 1 and a negative electrode 2 are disposed to face each other with a separator 3 therebetween. 2 and the separator 3 are impregnated with a non-aqueous electrolyte.
- the positive electrode 1 and the negative electrode 2 are connected to a positive electrode current collector tab 4 and a negative electrode current collector tab 5, respectively, and have a structure capable of charging and discharging as a secondary battery.
- the said electrode body is arrange
- Example 1 A battery was produced in the same manner as in the embodiment for carrying out the invention. The battery thus produced is hereinafter referred to as battery A1.
- Example 2 A battery was fabricated in the same manner as in Example 1 except that 1.05 g of citric acid monohydrate was mixed during the preparation of the coating solution. The battery thus produced is hereinafter referred to as battery A2.
- Example 1 A battery was fabricated in the same manner as in Example 1 above, except that a positive electrode active material that was not sprayed with a coating liquid (a positive electrode active material composed only of lithium cobaltate) was used.
- the battery thus produced is hereinafter referred to as battery R1.
- Example 2 A battery was fabricated in the same manner as in Example 1 except that ammonium fluoride was not added during the preparation of the coating solution. The battery thus produced is hereinafter referred to as battery R2.
- Example 3 A battery was fabricated in the same manner as in Example 1 except that an aqueous solution containing 0.13 g of lithium fluoride was used as the coating solution when the coating solution was prepared.
- the battery thus produced is hereinafter referred to as battery R3.
- Rate of battery swell (%) ([Battery thickness after continuous charge test ⁇ Battery thickness during battery preparation] / Battery thickness during battery preparation) ⁇ 100 (1)
- Capacity remaining rate (%) (first discharge capacity after continuous charge test / discharge capacity before continuous charge test) ⁇ 100 (2)
- the batteries A1 and A2 in which the compound attached to the surface of the lithium cobaltate is a compound composed of zirconium and fluorine are the batteries R1 and cobaltate that are not attached to the lithium cobaltate surface.
- battery R2 in which the compound attached to the surface of lithium is an oxide of zirconium and battery R3 in which the compound attached to the surface of lithium cobaltate is a compound composed of lithium and fluorine at a higher temperature and higher voltage. Even after being held, gas generation due to decomposition of the electrolytic solution is greatly suppressed, so that it is recognized that battery swelling is greatly suppressed.
- the batteries A1 and A2 have a higher capacity remaining rate than the batteries R1 to R3.
- the battery A2 to which citric acid as a chelating agent was added had a higher capacity remaining rate than the battery A1 to which no citric acid was added, but the battery swelling due to gas generation was larger. Is recognized. Therefore, it can be seen that it is preferable to add a chelating agent in order to improve the capacity remaining rate, and it is preferable not to add a chelating agent in order to suppress battery swelling due to gas generation.
- Example 2 Example of the above first example except that a mixed solvent in which fluoroethylene carbonate (FEC) and methyl ethyl carbonate (MEC) were mixed at a volume ratio of 2: 8 was used as the solvent for the non-aqueous electrolyte.
- FEC fluoroethylene carbonate
- MEC methyl ethyl carbonate
- a battery was produced in the same manner as in Example 1. The battery thus produced is hereinafter referred to as battery B.
- Battery S1 A battery was fabricated in the same manner as in the second example, except that a positive electrode active material that was not sprayed with a coating solution (a positive electrode active material composed only of lithium cobaltate) was used.
- the battery thus produced is hereinafter referred to as battery S1.
- Example 2 A battery was fabricated in the same manner as in Example 2 except that ammonium fluoride was not added when preparing the coating solution. The battery thus produced is hereinafter referred to as battery S2.
- the battery swelling amount is an amount expressed by the following equation (3), and in Table 2, it is represented by an index when the battery swelling amount of the battery S1 is 100.
- Battery swell amount Battery thickness after continuous charge test-Battery thickness at the time of battery preparation (3)
- the capacity remaining rate is the ratio shown in the equation (2) in the experiment of the first embodiment. In Table 2, the capacity remaining rate is expressed as an index when the capacity remaining rate of the battery S1 is 100.
- the battery B in which the compound attached to the surface of the lithium cobaltate is a compound composed of zirconium and fluorine is the battery S1 in which the compound is not attached to the surface of the lithium cobaltate. It can be seen that the swelling of the battery is greatly suppressed even after being held at a high temperature and a high voltage as compared with the battery S2 in which the compound attached to the surface is an oxide of zirconium. It is also recognized that the battery B has a higher capacity remaining rate than the batteries S1 and S2. The reason is considered to be the same as the reason shown in the experiment of the first embodiment. From the above experimental results, it can be seen that the effect of the present invention is exhibited even if the type of the electrolytic solution is changed.
- Comparative Example 1 A battery was fabricated in the same manner as Comparative Example 1 of the second example except that 1% by mass of adiponitrile was added when adjusting the non-aqueous electrolyte.
- the battery thus produced is hereinafter referred to as battery T1.
- Comparative Example 2 A battery was fabricated in the same manner as in Comparative Example 2 of the second example except that 1% by mass of adiponitrile was added when adjusting the non-aqueous electrolyte.
- the battery thus produced is hereinafter referred to as battery T2.
- the reduction rate of battery swelling was calculated using the following formula (4), and the result is shown in Table 4.
- the formula (4) when the battery C was used as the adiponitrile-added battery, the battery B was used as the adiponitrile-free battery as a comparison target. Further, when the battery T1 was used as the adiponitrile-added battery, the battery S1 was used as the adiponitrile-unadded battery as a comparison target.
- the battery C in which the compound attached to the surface of the lithium cobaltate is a compound composed of zirconium and fluorine is the battery T1 in which the compound is not attached to the surface of the lithium cobaltate. It can be seen that the swelling of the battery is significantly suppressed even after being held at a high temperature and a high voltage as compared with the battery T2 in which the compound attached to the surface is an oxide of zirconium. It is also recognized that the battery C has a higher capacity remaining rate than the batteries T1 and T2. The reason is considered to be the same as the reason shown in the experiment of the first embodiment. From the above experimental results, it can be seen that the effect of the present invention is exhibited even if the type of the electrolyte solution (including additives) is changed.
- the batteries C, T1, and T2 in which adiponitrile was added as a compound having a nitrile group in the electrolytic solution were significantly swollen compared to the batteries B, S1, and S2 to which adiponitrile was not added. It can be seen that it is suppressed. In particular, it can be seen that in the battery C in which a compound composed of fluorine and zirconium is adhered to the lithium cobaltate surface, the swelling reduction ratio is the largest.
- the nitrile compound forms a film in which nitrile groups are coordinated on the surface of the positive electrode active material, it is considered that the nitrile compound has an effect of suppressing the decomposition of the electrolyte and generation of gas.
- zirconium oxide is deposited on the surface of lithium cobaltate, the effect is not sufficiently exhibited because a part of the zirconium oxide is rather coordinated with zirconium oxide.
- a compound composed of fluorine and zirconium is adhered to the surface of lithium cobaltate, it is considered that a sufficient effect is exhibited because it selectively coordinates to the transition metal surface. Therefore, when adding a compound having a nitrile group such as adiponitrile to the electrolytic solution, it is most preferable that a compound composed of fluorine and zirconium is adhered to the surface of lithium cobalt oxide.
- a battery was fabricated in the same manner as in the fourth example, except that a positive electrode active material that was not sprayed with a coating solution (a positive electrode active material composed only of NCM) was used.
- the battery thus produced is hereinafter referred to as battery U.
- the battery D in which the compound attached to the surface of the NCM is a compound composed of zirconium and fluorine is higher in temperature and voltage than the battery U in which the compound is not attached to the NCM surface. It can be seen that even after being held at, the battery bulge is greatly suppressed. It is also recognized that the battery D has a higher capacity remaining rate than the battery U. The reason is considered to be the same as the reason shown in the experiment of the first embodiment. From the above experimental results, it can be seen that the effects of the present invention are exhibited even when a lithium transition metal composite oxide other than lithium cobaltate is used.
- Example 2 As a lithium transition metal composite oxide, LiNi 0.5 Co 0.2 Mn 0.3 O 2 (hereinafter referred to as Zr solid solution NCM) in which 0.3 mol% of Zr is solid-solved with respect to the total amount of transition metals. Except that a mixed solvent in which EC, MEC and DEC are mixed at a volume ratio of 3: 6: 1 is used as a solvent for the non-aqueous electrolyte. A battery was produced in the same manner as in Example 1. The battery thus produced is hereinafter referred to as battery E.
- Zr solid solution NCM LiNi 0.5 Co 0.2 Mn 0.3 O 2
- Battery V1 A battery was fabricated in the same manner as in the fifth example, except that a positive electrode active material that was not sprayed with a coating solution (a positive electrode active material composed only of Zr solid solution NCM) was used.
- the battery thus produced is hereinafter referred to as battery V1.
- a battery was fabricated in the same manner as in the sixth example, except that a positive electrode active material that was not sprayed with a coating solution (a positive electrode active material composed only of spinel NM) was used.
- the battery thus produced is hereinafter referred to as battery W.
- the battery F in which the compound attached to the surface of the spinel NM is a compound composed of zirconium and fluorine is compared with the battery W in which the compound is not attached to the surface of the spinel NM. It can be seen that even after holding at high temperature and high voltage, the battery bulge is greatly suppressed. It is also recognized that the battery F has a higher capacity remaining rate than the battery W. The reason is considered to be the same as the reason shown in the experiment of the first embodiment. From the above experimental results, it can be seen that even when a lithium transition metal composite oxide other than lithium cobaltate is used, the effect of the present invention is exhibited, and even at an extremely high potential of 4.9 V based on the lithium metal. Similar effects were confirmed.
- Examples of the compound composed of zirconium and fluorine used in the present invention include zirconium difluoride (ZrF 2 ), zirconium trifluoride (ZrF 3 ), zirconium tetrafluoride (ZrF 4 ), and the like. Moreover, O and OH may be contained in a part of these compounds composed of zirconium and a fluorine element.
- the compound comprising zirconium and fluorine adheres to the surface of the lithium transition metal composite oxide.
- the compound adheres to the surface of the lithium transition metal composite oxide, the compound is difficult to peel off from the lithium transition metal composite oxide, so that the effects of the present invention can be further exhibited.
- a method of adhering a compound composed of zirconium and fluorine to the surface of the lithium transition metal composite oxide a solution containing zirconium and fluorine is mixed with the lithium transition metal composite oxide while stirring the lithium transition metal composite oxide. It can be carried out by spraying on objects. Since it can implement by such a simple method, it can suppress that the manufacturing cost of a battery rises.
- the lithium transition metal composite oxide used in the present invention includes lithium cobaltate, nickel-cobalt-lithium manganate, nickel-cobalt-aluminum lithium, nickel-lithium cobaltate, nickel-lithium manganate, nickel acid Known materials such as oxides of lithium and transition metals such as lithium and lithium manganate, and olivic acid compounds such as iron and manganese can be used.
- the amount of the compound consisting of zirconium and fluorine present on the surface of the lithium transition metal composite oxide is 0.0094% by mass or more and 0.47% by mass with respect to the lithium-containing transition metal oxide in terms of zirconium element. The following is preferable.
- the amount is less than 0.0094% by mass, the amount of the compound composed of zirconium and fluorine is so small that the effect of the addition of the compound may not be sufficiently exhibited.
- the surface of the transition metal composite oxide may be excessively covered with a compound that is not directly involved in the charge / discharge reaction, and the discharge performance may be reduced.
- the lithium transition metal composite oxide may be contained in grain boundaries in addition to a solid solution of substances such as Al, Mg, Ti, and Zr.
- a compound such as Al, Mg, Ti, Zr, or the like may be fixed to the surface of the lithium transition metal composite oxide. This is because even if these compounds are fixed, contact between the electrolytic solution and the lithium transition metal composite oxide can be suppressed.
- the solvent of the non-aqueous electrolyte used in the present invention is not limited, and solvents conventionally used for non-aqueous electrolyte secondary batteries can be used.
- cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, propionic acid
- esters such as ethyl and ⁇ -butyrolactone
- compounds containing sulfone groups such as propane sultone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, 1,4
- a compound containing an ether such as dioxane or 2-methyltetrahydrofuran or a compound containing an amide such as dimethyl
- a solvent in which a part of these H is substituted with F is preferably used. Further, these can be used alone or in combination, and a solvent in which a cyclic carbonate and a chain carbonate are combined, and a solvent in which a compound containing a small amount of nitrile or an ether is further combined with these is preferable. .
- the solute conventionally used can also be used as the solute of the nonaqueous electrolytic solution.
- lithium salts having an oxalato complex as an anion are exemplified.
- lithium salt having the oxalato complex as an anion examples include LiBOB [lithium-bisoxalate borate] and a lithium salt having an anion in which C 2 O 4 2 ⁇ is coordinated to the central atom, for example, Li [M (C 2 O 4 ) x R y ] (wherein M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table, R is selected from a halogen, an alkyl group, and a halogen-substituted alkyl group) Group, x is a positive integer, and y is 0 or a positive integer).
- M is a transition metal, an element selected from groups IIIb, IVb, and Vb of the periodic table
- R is selected from a halogen, an alkyl group, and a halogen-substituted alkyl group
- x is a positive integer
- y is 0 or a positive integer
- LiBOB in order to form a stable film on the surface of the negative electrode even in a high temperature environment.
- the said solute may be used not only independently but in mixture of 2 or more types.
- the concentration of the solute is not particularly limited, but is preferably 0.8 to 1.7 mol per liter of the electrolyte.
- a conventionally used negative electrode can be used, and in particular, a carbon material capable of occluding and releasing lithium, a metal capable of forming an alloy with lithium, or an alloy containing the metal Compounds.
- the carbon material natural graphite, non-graphitizable carbon, graphite such as artificial graphite, coke, etc. can be used, and examples of the alloy compound include those containing at least one metal that can be alloyed with lithium. .
- silicon or tin is preferable as an element capable of forming an alloy with lithium, and silicon oxide, tin oxide, or the like in which these are combined with oxygen can also be used.
- what mixed the said carbon material and the compound of silicon or tin can be used.
- a negative electrode material having a higher charge / discharge potential than lithium carbon such as lithium titanate can be used.
- a layer made of an inorganic filler that has been conventionally used can be formed.
- the filler it is possible to use oxides or phosphate compounds using titanium, aluminum, silicon, magnesium, etc., which have been used conventionally, or those whose surface is treated with hydroxide or the like.
- the filler layer may be formed by directly applying a filler-containing slurry to a positive electrode, a negative electrode, or a separator, or by attaching a sheet formed of a filler to the positive electrode, negative electrode, or separator. it can.
- a separator used in the present invention a conventionally used separator can be used. Specifically, not only a separator made of polyethylene, but also a material in which a layer made of polypropylene is formed on the surface of a polyethylene layer, or a material in which a resin such as an aramid resin is applied to the surface of a polyethylene separator is used. Also good.
- the nitrile added to the non-aqueous electrolyte is not limited to adiponitrile, butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimonitrile, 1,2,3-propane Nitrile-containing compounds such as tricarbonitrile and 1,3,5-pentanetricarbonitrile may also be used.
- Nitrile-containing compounds such as tricarbonitrile and 1,3,5-pentanetricarbonitrile may also be used.
- a stable coating can be formed when the number of carbons including the carbon of the nitrile group is 4 or more, and the reaction that decomposes the electrolytic solution into gas can be suppressed.
- nitrile groups there are 2 or 3 nitrile groups, and those having 4 or more carbon atoms are preferred.
- Adiponitrile, succinonitrile, glutaronitrile, pimelonitrile, 1,2,3-propanetricarbonitrile, 1,3,5-pentane Tricarbonitrile is preferred.
- the present invention can be expected to be developed for driving power sources for mobile information terminals such as mobile phones, notebook computers, smartphones, etc., and driving power sources for high outputs such as HEVs and electric tools.
- Positive electrode 2 Negative electrode 3: Separator 4: Positive electrode current collecting tab 5: Negative electrode current collecting tab 6: Aluminum laminate outer package
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
(1)AlF3、ZnF2、或いはLiFを正極活物質表面に被覆することにより、正極活物質近くで生成する酸の影響を減少させ、また、正極活物質と電解質との反応性を抑制することにより、サイクル特性を改善させる提案(下記特許文献1)。
(2)酸化ジルコニウムとLCOとを混合して焼成することにより、酸化ジルコニウムを正極活物質表面に付着させ、これによって、サイクル特性を改善し、DSC測定による発熱を抑制させる提案(下記特許文献2)。
(コバルト酸リチウムの表面に噴霧するためのコート溶液の作製)
炭酸アンモニウムジルコニウム(13%溶液、ZrO2換算)を4.8gと、フッ化アンモニウム0.76gとを混合した後、蒸留水を加えて75mlに希釈しコート溶液を調製した。
AlとMgとがそれぞれ0.1モル%固溶したコバルト酸リチウム500gを、フッ素加工されたバッド上で、ポリプロピレン製ヘラを用いて攪拌しつつ、スプレーを用いて上記コート溶液を上記コバルト酸リチウムに噴霧した。次に、コート溶液が噴霧されたコバルト酸リチウムを、120℃にて2時間乾燥した。これにより、ジルコニウムとフッ素とからなる化合物が、コバルト酸リチウムの表面に付着した正極活物質を得た。
先ず、上記正極活物質に、正極導電剤としてのカーボンブラック(平均粒径40nmのアセチレンブラック)粉末と、正極バインダーとしてのポリフッ化ビニリデン(PVdF)が分散された溶液とを混合して、正極合剤スラリーを調製した。この際、上記正極活物質と、上記正極導電剤と、上記正極バインダーとの割合は、質量比で95:2.5:2.5となるようにした。次に、上記正極合剤スラリーを、アルミニウム箔から成る正極集電体の両面に塗布した後、120℃で乾燥し、更に、圧延ローラによって圧延した。これにより、上記正極集電体の両面に正極合剤層が形成された正極を得た。尚、上記ジルコニウムとフッ素とからなる化合物の含有量は、ジルコニウム元素換算で、上記コバルト酸リチウムに対して0.0934質量%であった。
先ず、負極活物質としての人造黒鉛と、分散剤としてのCMC(カルボキシメチルセルロースナトリウム)と、結着剤としてのSBR(スチレン-ブタジエンゴム)とを、98:1:1の質量比で水溶液中において混合し、負極合剤スラリーを調製した。次に、この負極合剤スラリーを銅箔から成る負極集電体の両面に均一に塗布した後、乾燥させ、更に、圧延ローラにより圧延した。これにより、負極集電体の両面に負極合剤層が形成された負極を得た。尚、この負極における負極活物質の充填密度は1.70g/cm3であった。
エチレンカーボネート(EC)とジメチルカーボネート(DEC)とを、3:7の体積比で混合した混合溶媒に対し、六フッ化リン酸リチウム(LiPF6)を1.0モル/リットルの濃度になるように溶解させて、非水電解液を調製した。
上記正負極それぞれに集電タブを取り付け、これら両極間にセパレータを配置して渦巻き状に巻回した後、巻き芯を引き抜いて渦巻状の電極体を作製した。次に、この渦巻状の電極体を押し潰して、偏平型の電極体を得た。この後、この偏平型の電極体と上記非水電解液とを、アルミニウムラミネート製の外装体内に挿入し、図1及び図2に示される構造を有する非水電解質二次電池を作製した。尚、当該非水電解質二次電池のサイズは、3.6mm×35mm×62mmであり、また、当該非水電解質二次電池を4.40Vまで充電し、2.75Vまで放電したときの放電容量は750mAhであった。
(実施例1)
上記発明を実施するための形態と同様にして電池を作製した。
このようにして作製した電池を、以下、電池A1と称する。
コート溶液調製の際、クエン酸1水和物を1.05g混合したこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池A2と称する。
コート液を噴霧していない正極活物質(コバルト酸リチウムのみから成る正極活物質)を使用したこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池R1と称する。
コート溶液の調製の際、フッ化アンモニウムを加えなかったこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池R2と称する。
コート溶液の調製の際、コート溶液としてフッ化リチウムを0.13g含む水溶液を用いたこと以外は、上記実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池R3と称する。
上記電池A1、A2及び上記電池R1~R3において、下記に示す方法で充放電等を行って、高温連続充電特性(ガス発生による電池膨れの割合、容量残存率)を調べたので、それらの結果を表1に示す。
・連続充電試験前の充放電条件
1.0It(750mA)の電流で電池電圧4.40Vとなるまで定電流充電を行った後、4.40Vの定電圧で電流がIt/20(37.5mA)になるまで充電した。次に、10分間休止した後、1.0It(750mA)の電流で電池電圧2.75Vとなるまで定電流放電を行った。そして、この放電時に放電容量を測定して、これを連続充電試験前の放電容量とした。
上記充放電条件で充放電を1回行った後、60℃の恒温槽に1時間放置した。次に、60℃の環境の下、1.0It(750mA)の定電流で電池電圧4.40Vとなるまで定電流充電を行った後、4.40Vの定電圧で充電した。この際、60℃の環境下におけるトータル充電時間を60時間とした。
・連続充電試験後の測定
60℃の恒温槽から各電池を取り出して電池の厚みを測定して、これを連続充電試験後の電池厚みとした。この値と、電池作製時の電池厚み(3.6mm)とから、下記(1)式を用いて、ガス発生による電池膨れの割合を算出した。
電池膨れの割合(%)=(〔連続充電試験後の電池厚み-電池作製時の電池厚み〕/電池作製時の電池厚み)×100・・・(1)
容量残存率(%)=(連続充電試験後1回目の放電容量/連続充電試験前の放電容量)×100・・・(2)
(実施例)
非水電解液の溶媒として、フルオロエチレンカーボネート(FEC)とメチルエチルカーボネート(MEC)とを、2:8の体積比で混合した混合溶媒を用いたこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Bと称する。
コート液を噴霧していない正極活物質(コバルト酸リチウムのみから成る正極活物質)を使用したこと以外は、上記第2実施例の実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、電池S1と称する。
コート溶液を調製する際、フッ化アンモニウムを加えなかったこと以外は、上記第2実施例の実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、電池S2と称する。
上記電池B及び上記電池S1、S2において、上記第1実施例の実験と同様の条件で充放電等を行って、高温連続充電特性(ガス発生による電池膨れ量〔以下、単に、電池膨れ量と称することがある〕、容量残存率)を調べたので、それらの結果を表2に示す。
ここで、電池膨れ量とは下記(3)式で表される量であって、表2においては、電池S1の電池膨れ量を100としたときの指数で表している。
電池膨れ量=連続充電試験後の電池厚み-電池作製時の電池厚み・・・(3)
また、容量残存率とは、上記第1実施例の実験で(2)式に示した割合であり、表2においては、電池S1の容量残存率を100としたときの指数で表している。
(実施例)
非水電解液を調整する際、アジポニトリルを1質量%添加したこと以外は、上記第2実施例の実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Cと称する。
非水電解液を調整する際、アジポニトリルを1質量%添加したこと以外は、上記第2実施例の比較例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池T1と称する。
非水電解液を調整する際、アジポニトリルを1質量%添加したこと以外は、上記第2実施例の比較例2と同様にして電池を作製した。
このようにして作製した電池を、以下、電池T2と称する。
上記電池C及び上記電池T1、T2において、上記第1実施例の実験と同様の条件で充放電等を行って、高温連続充電特性(電池膨れ量、容量残存率)を調べたので、それらの結果を表3に示す。尚、表3の電池膨れ量では、電池T1の電池膨れ量を100としたときの指数で表し、容量残存率では、電池T1の容量残存率を100としたときの指数で表している。
アジポニトリル添加による膨れ削減率(%)=(1-〔連続充電試験後のアジポニトリル添加電池厚み-電池作製時のアジポニトリル添加電池厚み〕/〔連続充電試験後のアジポニトリル未添加電池厚み-電池作製時のアジポニトリル未添加電池厚み〕)×100・・・(4)
(実施例)
リチウム遷移金属複合酸化物として、LiNi0.33Co0.33Mn0.33O2(以下、NCMと称することがある)を用いたこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Dと称する。
コート液を噴霧していない正極活物質(NCMのみから成る正極活物質)を使用したこと以外は、上記第4実施例の実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Uと称する。
上記電池D及び上記電池Uにおいて、上記第1実施例の実験と同様の条件で充放電等を行って、高温連続充電特性(電池膨れの割合、容量残存率)を調べたので、それらの結果を表5に示す。
(実施例)
リチウム遷移金属複合酸化物として、遷移金属の総量に対してZrが0.3モル%固溶したLiNi0.5Co0.2Mn0.3O2(以下、Zr固溶NCMと称することがある)を用いたこと、及び、非水電解液の溶媒として、ECとMECとDECとを3:6:1の体積比で混合した混合溶媒を用いたこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Eと称する。
コート液を噴霧していない正極活物質(Zr固溶NCMのみから成る正極活物質)を使用したこと以外は、上記第5実施例の実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、電池V1と称する。
コート溶液の調製の際、フッ化アンモニウムを加えなかったこと以外は、上記第5実施例の実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、電池V2と称する。
上記電池E及び上記電池V1、V2において、上記第1実施例の実験と同様の条件で充放電等を行って、高温連続充電特性(電池膨れの割合、容量残存率)を調べたので、それらの結果を表6に示す。
(実施例)
リチウム遷移金属複合酸化物にLiNi0.5Mn1.5O4で表されるスピネル型ニッケルマンガン酸リチウム(以下、スピネル型NMと称することがある)を用いたこと以外は、上記第1実施例の実施例1と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Fと称する。
コート液を噴霧していない正極活物質(スピネル型NMのみから成る正極活物質)を使用したこと以外は、上記第6実施例の実施例と同様にして電池を作製した。
このようにして作製した電池を、以下、電池Wと称する。
上記電池F及び上記電池Wにおいて、放電電流を0.2It(150mA)、充電終止電圧を4.8V、放電終止電圧を3.0Vとした以外は上記第1実施例の実験と同様の条件で充放電等を行って、高温連続充電特性(電池膨れ量、容量残存率)を調べたので、それらの結果を表7に示す。尚、表7の電池膨れ量では、電池Wの電池膨れ量を100としたときの指数で表し、容量残存率では、電池Wの容量残存率を100としたときの指数で表している。
(1)本発明に用いるジルコニウムとフッ素元素とから成る化合物としては、二フッ化ジルコニウム(ZrF2)、三フッ化ジルコニウム(ZrF3)、四フッ化ジルコニウム(ZrF4)等が例示できる。また、これらジルコニウムとフッ素元素からなる化合物の一部には、OやOHが含まれてもよい。
ここで、リチウム遷移金属複合酸化物の表面にジルコニウムとフッ素とからなる化合物を付着させる方法としては、リチウム遷移金属複合酸化物を攪拌しつつ、ジルコニウムとフッ素とを含む溶液をリチウム遷移金属複合酸化物に噴霧することにより実施することができる。このような簡易な方法で実施できるので、電池の製造コストが高騰するのを抑制できる。
尚、上記溶質は、単独で用いるのみならず、2種以上を混合して用いても良い。また、溶質の濃度は特に限定されないが、電解液1リットル当り0.8~1.7モルであることが望ましい。
炭素材料としては、天然黒鉛や難黒鉛化性炭素、人造黒鉛等のグラファイト類、コークス類等を用いることができ、合金化合物としては、リチウムと合金可能な金属を少なくとも1種類含むものが挙げられる。特に、リチウムと合金形成可能な元素としてはケイ素やスズであることが好ましく、これらが酸素と結合した、酸化ケイ素や酸化スズ等を用いることもできる。また、上記炭素材料とケイ素やスズの化合物とを混合したものを用いることができる。
上記の他、エネルギー密度は低下するものの、負極材料としてはチタン酸リチウム等の金属リチウムに対する充放電の電位が、炭素材料等より高いものも用いることができる。
上記フィラー層の形成は、正極、負極、或いはセパレータに、フィラー含有スラリーを直接塗布して形成する方法や、フィラーで形成したシートを、正極、負極、或いはセパレータに貼り付ける方法等を用いることができる。
(10)非水電解液に添加するニトリルとしては、アジポニトリルに限定するものではなく、ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタルニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物等であっても良い。特にニトリル基が複数ある場合、ニトリル基の炭素を含む炭素数が4以上の場合に安定な被膜が形成できて、電解液が分解してガスになる反応を抑制できる。そのため、ニトリル基は2個もしくは3個あり、炭素数4以上のものが好ましく、アジポニトリル、スクシノニトリル、グルタルニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリルなどが好ましい。
2:負極
3:セパレータ
4:正極集電タブ
5:負極集電タブ
6:アルミラミネート外装体
Claims (8)
- リチウム遷移金属複合酸化物と、ジルコニウムとフッ素元素とから成る化合物とを含み、当該化合物は、上記リチウム遷移金属複合酸化物の表面に存在していることを特徴とする非水電解質二次電池用正極活物質。
- 上記ジルコニウムとフッ素元素とからなる化合物が、リチウム遷移金属複合酸化物の表面に付着している、請求項1に記載の非水電解質二次電池用正極活物質。
- 上記リチウム遷移金属複合酸化物にはジルコニウムが固溶されている、請求項1又は2に記載の非水電解質二次電池用正極活物質。
- 正極集電体と、
上記正極集電体の少なくとも一方の面に形成され、且つ、請求項1~3の何れか1項に記載の正極活物質及びバインダーを含む正極合剤層と、
を備えることを特徴とする非水電解質二次電池用正極。 - 請求項4に記載の正極と、
負極活物質を含む負極と、
非水電解液と、
を備えることを特徴とする非水電解質二次電池。 - 上記非水電解液にはニトリル基を含む化合物が添加されている、請求項5に記載の非水電解質二次電池。
- 上記非水電解液には、炭素数が4以上で、ニトリル基が2もしくは3の化合物が添加されている、請求項6に記載の非水電解質二次電池。
- リチウム遷移金属複合酸化物を攪拌しつつ、ジルコニウムとフッ素とを含む溶液をリチウム遷移金属複合酸化物に噴霧することにより、リチウム遷移金属複合酸化物の表面にジルコニウムとフッ素とからなる化合物を付着させることを特徴とする非水電解質二次電池用正極活物質の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/233,339 US20140147740A1 (en) | 2011-07-29 | 2012-07-27 | Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, positive electrode for nonaqueous electrolyte secondary battery using positive electrode active material, and nonaqueous electrolyte secondary battery using positive electrode |
CN201280037628.8A CN103733392A (zh) | 2011-07-29 | 2012-07-27 | 非水电解质二次电池用正极活性物质、其制造方法、使用该正极活性物质的非水电解质二次电池用正极以及使用该正极的非水电解质二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011166909 | 2011-07-29 | ||
JP2011-166909 | 2011-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013018692A1 true WO2013018692A1 (ja) | 2013-02-07 |
Family
ID=47629216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/069134 WO2013018692A1 (ja) | 2011-07-29 | 2012-07-27 | 非水電解質二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解質二次電池用正極、及び、当該正極を用いた非水電解質二次電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140147740A1 (ja) |
JP (1) | JPWO2013018692A1 (ja) |
CN (1) | CN103733392A (ja) |
WO (1) | WO2013018692A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105453313A (zh) * | 2013-08-22 | 2016-03-30 | 株式会社Lg化学 | 正极活性材料和包含其的锂二次电池以及制备正极活性材料的方法 |
JP2016046240A (ja) * | 2014-08-21 | 2016-04-04 | ポスコ | リチウム二次電池用正極活物質、その製造方法、及びそれを含むリチウム二次電池 |
WO2019187538A1 (ja) * | 2018-03-30 | 2019-10-03 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180145317A1 (en) * | 2016-11-18 | 2018-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery |
US11811063B2 (en) * | 2020-01-27 | 2023-11-07 | Apple Inc. | Cathode for solid-state electrochemical cell having elemental dopant in grain boundaries |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005524204A (ja) * | 2002-04-23 | 2005-08-11 | エルジー ケム. エルティーディ. | 寿命特性と安全性に優れたリチウム金属複合酸化物およびその製造方法 |
JP2006331942A (ja) * | 2005-05-27 | 2006-12-07 | Sony Corp | 正極活物質、正極および電池 |
JP2008108586A (ja) * | 2006-10-26 | 2008-05-08 | Hitachi Maxell Ltd | 非水二次電池 |
JP2008536285A (ja) * | 2005-04-15 | 2008-09-04 | エナーセラミック インコーポレイテッド | フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法 |
WO2010053328A2 (ko) * | 2008-11-10 | 2010-05-14 | 주식회사 엘지화학 | 고전압 특성이 향상된 양극 활물질 |
JP2010118312A (ja) * | 2008-11-14 | 2010-05-27 | Tdk Corp | 活物質及び電極の製造方法 |
JP2010519682A (ja) * | 2007-02-16 | 2010-06-03 | エルエス エムトロン リミテッド | リチウム電池用アノード活物質とその製造方法及びこれを用いたリチウム二次電池 |
JP2011077016A (ja) * | 2009-09-04 | 2011-04-14 | Sanyo Electric Co Ltd | 非水電解質二次電池および非水電解質二次電池の製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9172086B2 (en) * | 2008-12-05 | 2015-10-27 | Samsung Sdi Co., Ltd. | Cathode and lithium battery using the same |
JP2011138623A (ja) * | 2009-12-25 | 2011-07-14 | Sanyo Electric Co Ltd | 非水系二次電池 |
-
2012
- 2012-07-27 US US14/233,339 patent/US20140147740A1/en not_active Abandoned
- 2012-07-27 WO PCT/JP2012/069134 patent/WO2013018692A1/ja active Application Filing
- 2012-07-27 CN CN201280037628.8A patent/CN103733392A/zh active Pending
- 2012-07-27 JP JP2013526882A patent/JPWO2013018692A1/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005524204A (ja) * | 2002-04-23 | 2005-08-11 | エルジー ケム. エルティーディ. | 寿命特性と安全性に優れたリチウム金属複合酸化物およびその製造方法 |
JP2008536285A (ja) * | 2005-04-15 | 2008-09-04 | エナーセラミック インコーポレイテッド | フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法 |
JP2006331942A (ja) * | 2005-05-27 | 2006-12-07 | Sony Corp | 正極活物質、正極および電池 |
JP2008108586A (ja) * | 2006-10-26 | 2008-05-08 | Hitachi Maxell Ltd | 非水二次電池 |
JP2010519682A (ja) * | 2007-02-16 | 2010-06-03 | エルエス エムトロン リミテッド | リチウム電池用アノード活物質とその製造方法及びこれを用いたリチウム二次電池 |
WO2010053328A2 (ko) * | 2008-11-10 | 2010-05-14 | 주식회사 엘지화학 | 고전압 특성이 향상된 양극 활물질 |
JP2010118312A (ja) * | 2008-11-14 | 2010-05-27 | Tdk Corp | 活物質及び電極の製造方法 |
JP2011077016A (ja) * | 2009-09-04 | 2011-04-14 | Sanyo Electric Co Ltd | 非水電解質二次電池および非水電解質二次電池の製造方法 |
Non-Patent Citations (1)
Title |
---|
SU HYUN YUN ET AL.: "The electrochemical property of ZrFX-coated Li [Ni1/3Co1/3Mn1/3]O2 cathode material", JOURNAL OF POWER SOURCES, vol. 195, 2010, pages 6108 - 6115 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105453313A (zh) * | 2013-08-22 | 2016-03-30 | 株式会社Lg化学 | 正极活性材料和包含其的锂二次电池以及制备正极活性材料的方法 |
JP2016528686A (ja) * | 2013-08-22 | 2016-09-15 | エルジー・ケム・リミテッド | 正極活物質及びそれを含むリチウム二次電池とその製造方法 |
US9905841B2 (en) | 2013-08-22 | 2018-02-27 | Lg Chem, Ltd. | Cathode active material and lithium secondary battery including the same, and method of manufacturing cathode active material |
JP2016046240A (ja) * | 2014-08-21 | 2016-04-04 | ポスコ | リチウム二次電池用正極活物質、その製造方法、及びそれを含むリチウム二次電池 |
WO2019187538A1 (ja) * | 2018-03-30 | 2019-10-03 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池 |
JPWO2019187538A1 (ja) * | 2018-03-30 | 2021-03-25 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池 |
JP7209303B2 (ja) | 2018-03-30 | 2023-01-20 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池 |
US11742481B2 (en) | 2018-03-30 | 2023-08-29 | Panasonic Intellectual Property Management Co., Ltd. | Nonaqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
US20140147740A1 (en) | 2014-05-29 |
CN103733392A (zh) | 2014-04-16 |
JPWO2013018692A1 (ja) | 2015-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6103034B2 (ja) | 非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池 | |
JP5582587B2 (ja) | リチウムイオン二次電池 | |
JP5931916B2 (ja) | 非水電解質二次電池及びその製造方法 | |
JP6565916B2 (ja) | 非水電解質二次電池 | |
JP2002358999A (ja) | 非水電解質二次電池 | |
US8709665B2 (en) | Nonaqueous secondary battery with nitrile group-containing compound | |
JP2010176996A (ja) | 非水電解質二次電池 | |
JP2007294323A (ja) | 非水電解質電池の製造方法 | |
WO2015079893A1 (ja) | リチウム二次電池 | |
WO2013018692A1 (ja) | 非水電解質二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解質二次電池用正極、及び、当該正極を用いた非水電解質二次電池 | |
JP2014067629A (ja) | 非水電解質二次電池 | |
JP6122014B2 (ja) | 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池 | |
JP2014049287A (ja) | 非水電解質二次電池及び非水電解質二次電池スタック | |
JP6191602B2 (ja) | リチウムイオン二次電池 | |
CN110024198A (zh) | 非水电解质二次电池 | |
JP6158307B2 (ja) | 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法および非水電解質二次電池 | |
CN109119629A (zh) | 非水电解液二次电池 | |
JP5911951B2 (ja) | 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池 | |
JP6042195B2 (ja) | 非水電解質二次電池 | |
US20170062801A1 (en) | Non-aqueous electrolyte secondary battery | |
JP2014049288A (ja) | 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池 | |
EP4468386A1 (en) | Electrochemical device, and electronic device comprising same | |
JP6117553B2 (ja) | 非水電解質二次電池用正極、当該正極の製造方法、及び当該正極を用いた非水電解液二次電池 | |
JP2014049286A (ja) | 非水電解質二次電池 | |
WO2013001919A1 (ja) | 非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12819551 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013526882 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14233339 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12819551 Country of ref document: EP Kind code of ref document: A1 |