WO2012169192A1 - Carbon dioxide eliminating device - Google Patents
Carbon dioxide eliminating device Download PDFInfo
- Publication number
- WO2012169192A1 WO2012169192A1 PCT/JP2012/003722 JP2012003722W WO2012169192A1 WO 2012169192 A1 WO2012169192 A1 WO 2012169192A1 JP 2012003722 W JP2012003722 W JP 2012003722W WO 2012169192 A1 WO2012169192 A1 WO 2012169192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- washing
- water
- amine compound
- section
- Prior art date
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 25
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 181
- 238000005406 washing Methods 0.000 claims abstract description 158
- -1 amino compound Chemical class 0.000 claims abstract description 93
- 239000007788 liquid Substances 0.000 claims abstract description 52
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 239000007864 aqueous solution Substances 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 238000010521 absorption reaction Methods 0.000 claims description 95
- 238000004140 cleaning Methods 0.000 claims description 74
- 239000000243 solution Substances 0.000 claims description 39
- 230000008929 regeneration Effects 0.000 claims description 25
- 238000011069 regeneration method Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 24
- 230000002745 absorbent Effects 0.000 claims description 19
- 239000002250 absorbent Substances 0.000 claims description 19
- 239000006096 absorbing agent Substances 0.000 claims description 4
- 230000001172 regenerating effect Effects 0.000 abstract 2
- 239000007789 gas Substances 0.000 description 109
- 150000001412 amines Chemical class 0.000 description 22
- 238000010992 reflux Methods 0.000 description 17
- 238000005259 measurement Methods 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 6
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000001476 alcoholic effect Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000003546 flue gas Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- OPKOKAMJFNKNAS-UHFFFAOYSA-N N-methylethanolamine Chemical compound CNCCO OPKOKAMJFNKNAS-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000003595 mist Substances 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- 229940058020 2-amino-2-methyl-1-propanol Drugs 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N [2-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC=C1CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical group OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- UFEJKYYYVXYMMS-UHFFFAOYSA-N methylcarbamic acid Chemical compound CNC(O)=O UFEJKYYYVXYMMS-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000010742 number 1 fuel oil Substances 0.000 description 1
- 150000004885 piperazines Chemical class 0.000 description 1
- 150000003053 piperidines Chemical class 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 150000003235 pyrrolidines Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1425—Regeneration of liquid absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1412—Controlling the absorption process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Definitions
- the present invention relates to a carbon dioxide removal device. More specifically, the present invention is low-cost in that the amine compound is released into the atmosphere accompanying the exhaust gas from which carbon dioxide (CO 2 ) has been removed (hereinafter sometimes referred to as de-CO 2 exhaust gas). It is related with the carbon dioxide removal apparatus which can be suppressed as much as possible.
- CO 2 carbon dioxide
- Patent Document 1 Since the release of a large amount of amine compound is concerned about the influence on the environment, it is desired to suppress the concentration of the amine compound contained in the de-CO 2 exhaust gas to about several ppm.
- a water washing section is provided at the upper part of the CO 2 absorption tower, and the reflux water of the regeneration tower is supplied to the water washing section to remove the CO 2 exhaust gas.
- Patent Document 2 proposes to install a plurality of stages of the water washing section.
- the reflux water in the regeneration tower is weakly acidic water containing CO 2 up to a saturation concentration, the amine compound absorbability is high.
- the washing with refluxing water is useful in terms of suppressing the atmospheric release of the amine compound.
- the concentration of the amine compound contained in the de-CO 2 exhaust gas may increase due to load fluctuation.
- this requires large pump power and leads to an increase in utilities.
- One possible measure is to add a strong acid such as sulfuric acid to the wash water.
- An object of the present invention is that the amine compound entrained in the exhaust gas from which CO 2 has been removed to provide a carbon dioxide removal device can be suppressed as much as possible at low cost from being released into the atmosphere.
- [2] of CO 2 is brought into contact with absorption liquid consisting of exhaust gas and the amine compound aqueous solution in the exhaust gas containing CO 2 is absorbed into the absorbing liquid to obtain a de-CO 2 exhaust gas step (1), A step (2a) of removing the amine compound accompanying the de-CO 2 exhaust gas by contacting the de-CO 2 exhaust gas obtained in the step (1) with washing water; A step (3) of heating the absorbing solution that has absorbed CO 2 obtained in step (1) to drive CO 2 out of the absorbing solution; A step of cooling the CO 2 expelled in the step (3) and condensing water accompanying the CO 2 ; Supplying the condensed water obtained in step (4) to step (2a) as washing water (5), The step of measuring the temperature of the wash water in step (2a) and the concentration of the amine compound contained in the wash water passed through step (2a), and estimating the concentration of the amine compound contained in the de-CO 2 exhaust gas passed through step (2a) (6b) and carbon dioxide having a step (7b) of adjusting the amount
- the method further comprises a step (8a) of returning a part of the washing water having undergone the step (2a) to the step (2a) and joining the remaining portion to the absorbent having undergone the step (1).
- the method of description [4]
- the method further comprises the step (8b) of returning a part of the washing water that has passed through the step (2a) to the step (2a) and joining the remaining part to the absorbent used in the step (1).
- step (2)a the de-CO 2 exhaust gas obtained in step (1) is brought into contact with the wash water that has passed through step (2a) to be entrained in the de-CO 2 exhaust gas. Further comprising at least one step (2b) of removing compounds, The method according to [1] or [2], wherein the de-CO 2 exhaust gas obtained through step (2b) is supplied to step (2a) instead of the de-CO 2 exhaust gas obtained in step (1).
- a CO 2 absorber having a function of obtaining a de-CO 2 exhaust gas by countercurrently contacting an exhaust gas containing CO 2 and an absorption liquid composed of an aqueous amine compound solution to absorb CO 2 in the exhaust gas into the absorption liquid;
- a cleaning unit having a function of removing an amine compound of de CO 2 exhaust gas obtained in the CO 2 absorbing section by the washing water and the flow contact entrained in de CO 2 gas,
- An absorption liquid regeneration unit having a function of heating the absorption liquid that has absorbed CO 2 obtained in the CO 2 absorption part to drive CO 2 out of the absorption liquid;
- a condenser having a function of condensing the water entrained in the CO 2 cooled the CO 2 expelled in the absorbent solution regeneration section,
- a pipe for supplying the condensed water obtained in the condenser to the washing section as washing water;
- a CO 2 absorber having a function of obtaining a de-CO 2 exhaust gas by countercurrently contacting an exhaust gas containing CO 2 and an absorbing solution composed of an amine compound aqueous solution to absorb CO 2 in the exhaust gas into the absorbing solution;
- a cleaning unit having a function of removing an amine compound of de CO 2 exhaust gas obtained in the CO 2 absorbing section by the washing water and the flow contact entrained in de CO 2 gas,
- An absorption liquid regeneration unit having a function of heating the absorption liquid that has absorbed CO 2 obtained in the CO 2 absorption part to drive CO 2 out of the absorption liquid;
- a condenser having a function of condensing the water entrained in the CO 2 cooled the CO 2 expelled in the absorbent solution regeneration section,
- a pipe for supplying the condensed water obtained in the condenser to the washing section as washing water;
- the amine compound accompanying the de-CO 2 exhaust gas obtained in the CO 2 absorbing section by washing water countercurrent contact through the cleaning section to the de-CO 2 gas At least one additional cleaning section having the function of removing,
- a pipe for returning a part of the washing water that has passed through the washing part to the washing part and supplying the remaining part to the additional washing part The apparatus according to [12], further including a pipe that returns a part of the washing water that has passed through the additional washing section to the additional washing section and joins the remaining portion to the absorbing solution that has passed through the CO 2 absorption section.
- the apparatus according to [12] further including a pipe that returns a part of the washing water that has passed through the additional washing unit to the additional washing unit, and joins the remaining part to the absorbent used in the CO 2 absorption unit.
- the carbon dioxide removal method and the carbon dioxide removal apparatus of the present invention it is possible to suppress the amine compound from being released into the atmosphere accompanying the exhaust gas from which CO 2 has been removed as much as possible at a low cost.
- exhaust gas (for example, combustion exhaust gas) 11 containing CO 2 is supplied to the absorption tower 1 through a line 3.
- the pressure of the exhaust gas containing CO 2 may be normal pressure or pressurized, and is preferably normal pressure.
- the temperature of the exhaust gas containing CO 2 is not particularly limited, and may be low or high.
- Exhaust gas containing CO 2 is brought into counter-current contact with an aqueous amine compound solution (hereinafter also referred to as absorption liquid) having a constant concentration supplied from the nozzle 6 in the CO 2 absorption section 2.
- absorption liquid aqueous amine compound solution having a constant concentration supplied from the nozzle 6 in the CO 2 absorption section 2.
- the CO 2 in the exhaust gas 11 is absorbed and removed by the absorbing solution, and the obtained de-CO 2 exhaust gas goes to the cleaning unit 24b.
- amine compounds contained in the absorption liquid include monoethanolamine, alcoholic hydroxyl group-containing primary amines such as 2-amino-2-methyl-1-propanol, and alcoholic hydroxyl groups such as diethanolamine and 2-methylaminoethanol. Containing secondary amines, alcoholic hydroxyl group-containing tertiary amines such as triethanolamine and N-methyldiethanolamine, polyethylene polyamines such as ethylenediamine, triethylenediamine and diethylenetriamine, piperazines, piperidines and pyrrolidines Examples include cyclic amines, polyamines such as xylylenediamine, amino acids such as methylaminocarboxylic acid, and the like, and mixtures thereof. Further, the absorbing liquid may contain a CO 2 absorption accelerator, a corrosion inhibitor, and methanol, polyethylene glycol, sulfolane and the like as other media.
- the absorbing liquid that has absorbed CO 2 has a higher temperature than the temperature in the nozzle 6 due to the heat of absorption.
- the absorbing solution that has absorbed CO 2 is extracted from the line 10, heated by the heat exchanger 22, and then supplied to the regeneration tower 13.
- the absorption liquid evaporates due to heating by the reboiler 23, the vapor and the absorption liquid supplied from the nozzle 14 come into countercurrent contact in the lower absorption liquid regeneration section 15, and CO 2 is expelled from the absorption liquid.
- the absorption liquid from which CO 2 has been purged (regenerated) is extracted from the bottom of the regeneration tower, cooled by the heat exchanger 22, and returned to the absorption tower 1.
- the CO 2 was expelled from the absorbing solution is brought into contact with reflux water supplied from the nozzle 20, to remove the absorbing solution accompanying the CO 2 from the CO 2.
- CO 2 is cooled by the cooler 19 to condense the water accompanying the CO 2 .
- the CO 2 separator 17 separates condensed water (hereinafter sometimes referred to as reflux water) and CO 2, and the CO 2 is supplied to the CO 2 recovery step through the line 18.
- a part of the reflux water is refluxed to the regeneration tower 13 by the pump 16.
- the remainder of the reflux water is supplied to the absorption tower 1 through the line 21.
- the de-CO 2 exhaust gas obtained in the CO 2 absorption unit 2 and the reflux water (hereinafter sometimes referred to as “washing water”) are brought into counter-current contact with the washing unit 24a and the washing unit 24b. This makes it possible to remove the amine compound accompanying the de-CO 2 gas from the de-CO 2 gas.
- the cleaning units 24a and 24b may be a packed bed or a shelf type. In FIG. 1, the cleaning unit is provided in two stages, but it may be one stage or three or more stages.
- Demisters may be installed in the CO 2 absorption unit 2 and the cleaning units 24a and 24b. By installing the demister, a part of the absorption liquid mist supplied to the CO 2 absorption unit 2 and a part of the washing water mist supplied to the cleaning units 24a and 24b are discharged to the outside of the tower together with the de-CO 2 exhaust gas. And the loss of the amine compound can be prevented.
- cooler 19 In the apparatus shown in FIG. 1, only one cooler 19 is provided above the regeneration tower 13, but two or more coolers 19 may be provided in series.
- the cooler 19 is composed of two units, the reflux water from the first cooler is supplied from the regeneration tower side to the first-stage washing unit 24b, and the reflux water from the second cooler is two-stage. Supplying to the eye washing part 24a is preferable from the viewpoint of the removal efficiency of the amine compound.
- a part of that is part of the upstream side of that stage (that is, the side closer to the absorbing part) May be supplied to the stage).
- a part of the cleaning water that has passed through the cleaning unit 24a can be returned to the cleaning unit 24a through the cooler 8a, and the remaining cleaning water that has passed through the cleaning unit 24a can be supplied to the cleaning unit 24b.
- the amount supplied to the washing unit 24b can be adjusted based on the concentration of the amine compound contained in the washing water that has passed through the washing unit 24a. For example, when the concentration of the amine compound contained in the washing water exceeds a predetermined value In addition, the remainder can be supplied to the cleaning unit 24b.
- a part of the concentration may be supplied to the absorption liquid supplied from the regeneration tower. . Specifically, a part of the washing water that has passed through the washing unit 24b is returned to the washing unit 24b through the cooler 8b, and the remaining part is merged with the absorption solution that has passed through the CO 2 absorption unit 2 or the absorption solution that is supplied from the nozzle 6. Can do.
- the amount to be merged with the absorption liquid that has passed through the CO 2 absorption section 2 or the absorption liquid supplied from the nozzle 6 can be adjusted based on the concentration of the amine compound contained in the cleaning water that has passed through the cleaning section 24b. When the concentration of the amine compound contained in the water exceeds a predetermined value, the remaining part can be merged with the absorption liquid supplied from the nozzle 6.
- the concentration of the carbonate ion contained in the washing water that has passed through the washing section 24a and / or the concentration of the amine compound contained in the de-CO 2 exhaust gas that has passed through the washing section 24a is measured.
- the measuring means is not particularly limited. Examples thereof include gas chromatography, liquid chromatography, ion chromatography, ICP emission spectroscopic analysis / mass spectrometry, and the like.
- the carbonate ion concentration may be measured on-line with the measuring device 28a by extracting the washing water almost continuously from the line 26a, or it may be measured off-line with the measuring device by extracting the washing water from the line 26a at a predetermined time interval. May be.
- the amine compound concentration may be measured on-line with the measuring device 28b by extracting the de-CO 2 exhaust gas almost continuously from the line 4, or with the measuring device by extracting the de-CO 2 exhaust gas from the line 4 at a predetermined time interval. You may measure offline.
- the measured carbonate ion concentration and / or amine compound concentration data is sent to the control device 30 through the signal lines 29a and / or 31.
- the degree of deviation is estimated by comparing the measured carbonate ion concentration and / or amine compound concentration with the control target concentration set to a predetermined value.
- the adjustment range of the flow rate of the cleaning water is calculated by a known control algorithm such as PID control, and the value is transmitted as a control signal to the flow rate adjusting means.
- the flow rate adjusting means 27 that has received the control signal adjusts the valve opening and the like in accordance with the signal to change the flow rate of the cleaning water supplied to the cleaning unit 24a.
- from the concentration measurement to the flow rate change is performed by online automatic control, but from the concentration measurement to the flow rate change may be performed by offline manual control.
- the reflux water from the cooler 19 contains CO 2 to a concentration close to saturation at that temperature. For example, when the temperature of the reflux water is 40 ° C., about 400 ppm of CO 2 is contained.
- Reflux water washing section of the absorption tower 1 is supplied, the de-CO 2 to the exhaust gas and the countercurrent contact, the amine contained in the de-CO 2 exhaust gas generates the amine carbonate reacts with CO 2 contained in the wash water.
- amine carbonate has a higher boiling point than amine.
- the amine absorption rate from the de-CO 2 exhaust gas into the wash water decreases, and the amine concentration in the de-CO 2 exhaust gas does not decrease sufficiently.
- the flow rate of the washing water in countercurrent contact with the de-CO 2 exhaust gas it is possible to promote gas-liquid contact and increase the amine absorption rate.
- the amine absorption rate from the de-CO 2 exhaust gas to the wash water is optimized, and the amine concentration in the de-CO 2 exhaust gas is determined by the economical use of the wash water and power consumption. Can be less than or equal to the value.
- the temperature of the absorption liquid supplied to the absorption tower 1 is adjusted by the heat exchanger 22, but a cooler may be further provided between the heat exchanger 22 and the absorbent supply port 6 as necessary.
- the temperature of the absorption liquid supplied to the absorption tower 1 is usually constant, so that the temperature of the de-CO 2 exhaust gas hardly rises due to the absorbed heat, and the combustion exhaust gas supply port Therefore, the absorption tower 1 is raised and discharged at substantially the same temperature as that in FIG.
- the same is not a strict meaning, and it is included in the same range in a state where the water balance of the absorption tower 1 is maintained even if a slight temperature difference occurs.
- the amine compound can be released out of the system by the apparatus and method of the present invention using the reflux water from the regeneration tower 13 for the absorption tower 1. To be prevented.
- the apparatus shown in FIG. 2 is the same as the apparatus shown in FIG. 1 except that the measurement value that is the basis of the flow rate adjustment is different.
- the temperature of the cleaning water in the cleaning unit 24a and the concentration of carbonate ions contained in the cleaning water that has passed through the cleaning unit 24a are measured.
- the concentration measuring means is the same as that in the apparatus shown in FIG.
- the temperature can be measured with a known temperature sensor such as a thermocouple.
- the measured temperature and carbonate ion concentration data is sent to the controller 30 through signal lines 29d and 34.
- the concentration of the amine compound contained in the de-CO 2 exhaust gas that has passed through the cleaning layer 24a is estimated from the measured temperature and carbonate ion concentration.
- the method of estimation is not particularly limited. For example, since the vapor pressure of the amine compound is determined by the temperature of the washing water, the concentration of the amine compound contained in the gas phase can be estimated from the concentration of the amine compound contained in the washing water and the vapor pressure. The degree of deviation is estimated by comparing the estimated value with the control target value set to a predetermined value. From the estimation result, the adjustment range of the flow rate of the cleaning water is calculated by a known control algorithm such as PID control, and the value is transmitted as a control signal to the flow rate adjusting means.
- PID control a known control algorithm
- the flow rate adjusting means 27 that has received the control signal adjusts the valve opening and the like in accordance with the signal to change the flow rate of the cleaning water supplied to the cleaning unit 24a.
- from the concentration measurement to the flow rate change is performed by online automatic control, but from the concentration measurement to the flow rate change may be performed by offline manual control.
- the amine absorption rate from the de-CO 2 exhaust gas to the wash water is optimized, and the amine concentration in the de-CO 2 exhaust gas is determined by the economical use of the wash water and power consumption. Can be less than or equal to the value.
- CO 2 was supplied to the flue gas 30 Nm 3 / h containing 10% CO 2 absorbing section 2 of the absorption tower 1 was monoethanolamine 30% by weight aqueous solution (absorption solution) by countercurrent contact to absorb CO 2.
- the de-CO 2 exhaust gas obtained in the CO 2 absorption unit 2 was brought into countercurrent contact with the cleaning water at a liquid / gas ratio (hereinafter referred to as L / G) of 2 L / Nm 3 in the cleaning unit 24b.
- L / G liquid / gas ratio
- the de-CO 2 exhaust gas was brought into counter-current contact with the cleaning water at a liquid / gas (L / G) ratio of 2 L / Nm 3 in the cleaning section 24a.
- the de-CO 2 exhaust gas was discharged out of the system through a demister provided in the upper part of the cleaning unit 24a.
- a two-stage cooler was provided at the top of the regeneration tower 13.
- the inlet gas temperatures in the first stage cooler (not shown) and the second stage cooler were 100 ° C. and 70 ° C., respectively.
- Condensed water from the first stage cooler is supplied at 0.5 L / h as cleaning water to the first stage cleaning section 24b of the absorption tower 1, and condensed water from the second stage cooler is absorbed at 0.6 L / h. This was supplied as cleaning water to the first second-stage cleaning unit 24a.
- the gas temperature at the outlet of the second stage cooler was 30 ° C.
- the combustion exhaust gas flow rate is decreased from 30 Nm 3 / h to 15 Nm 3 / h, since the carbonate ion concentration in the wash water in the cleaning section 24a is increased to 0.1 mol / L, and the washing water of the washing unit 24a de the flow rate ratio L / G of CO 2 exhaust gas by adjusting the opening of the valve 27 has been changed from 2L / Nm 3 in 1L / Nm 3.
- the concentration of the amine compound contained in the de-CO 2 exhaust gas in the line 4 did not increase, and the pump power for washing water circulation could be reduced to about 1 ⁇ 2.
- the flow rate ratio L / G of the cleaning water and de-CO 2 exhaust gas in the cleaning unit 24 a is set to the opening degree of the valve 27. It was adjusted and changed from 2 L / Nm 3 to 4.0 L / Nm 3 . As a result, the amine compound concentration contained in the de-CO 2 exhaust gas in line 4 was reduced to 2 ppm.
- CO 2 was fed to the CO 2 absorbing section of the absorption tower flue gas 30 Nm 3 / h containing 10 percent aqueous solution containing monoethanolamine 30% by weight (absorbing liquid) by countercurrent contact to absorb CO 2.
- the de-CO 2 exhaust gas obtained in the CO 2 absorption part was brought into counter-current contact with the cleaning water at a cleaning part having a one-stage configuration at a liquid / gas ratio (hereinafter referred to as L / G) of 2 L / Nm 3 .
- L / G liquid / gas ratio
- the de-CO 2 exhaust gas was discharged out of the system through a demister provided at the outlet of the cleaning section.
- a single-stage cooler was provided at the top of the regeneration tower. The inlet gas temperature of the cooler was 100 ° C.
- Condensed water from the cooler was supplied at 1.1 L / h to the washing section of the absorption tower as washing water. After reaching a steady state, 10 ml of washing water from the washing section was extracted and the carbonate ion concentration was measured by ion chromatography to be 0.03 mol / L. The amine compound concentration measured by gas chromatography was 0.2 mol / L. The temperature of the washing water in the washing part was 40 ° C. The amine concentration in the gas corresponding to the saturated vapor pressure of monoethanolamine was estimated to be 10 ppm from the vapor-liquid equilibrium.
- the combustion exhaust gas flow rate is reduced to 15 Nm 3 / h, since the carbonate ion concentration in the washing water of the washing unit is increased to 0.1 mol / L, the washing water of the washing unit and the de-CO 2 gas
- the flow rate ratio L / G was adjusted to 1 L / Nm 3 by adjusting the opening of the valve.
- the amine concentration in the de-CO 2 exhaust gas that passed through the washing section did not increase, and the pump power for washing water circulation could be reduced to about 1 ⁇ 2.
- the flow rate ratio L / G of the washing water of the washing section and the de-CO 2 exhaust gas is adjusted to the valve opening degree. To 4.0 L / Nm 3 . As a result, it was possible to suppress an increase in amine concentration in the de-CO 2 exhaust gas that passed through the cleaning section.
- the flow rate ratio L / G of the wash water and de-CO 2 exhaust gas in the wash unit 24a is set to the valve opening degree. It was changed to 3.5 L / Nm 3 by adjustment. As a result, an increase in the amine concentration of the de-CO 2 exhaust gas in the line 4 could be suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
This carbon dioxide eliminating device has: a CO2 absorbing section having the function of contacting exhaust gas containing CO2 to an aqueous solution of an amino compound, causing the CO2 to be absorbed by the absorbing liquid to obtain CO2-eliminated exhaust gas; a washing section having the function of contacting the CO2-eliminated exhaust gas obtained at the CO2 absorbing section to washing water, eliminating the amino compound; an absorbing liquid regenerating section having the function of heating the absorbing liquid that has absorbed CO2 and that is obtained at the CO2 absorbing section, driving out CO2 from the absorbing liquid; a condenser having the function of cooling the CO2 driven out in the absorbing liquid regenerating section, condensing water entrained in the CO2; a tube that supplies the condensed water obtained at the condenser to the washing section as washing water; a means for measuring the concentration of carbonate ions contained in the washing water that has passed through the washing section and/or a means for measuring the concentration of the amino compound contained in the CO2-eliminated exhaust gas that has passed through the washing section; and a means for adjusting the amount of washing water supplied to the washing section on the basis of the measured value of the concentration of the amino compound and/or the concentration of carbonate ions.
Description
本発明は、二酸化炭素除去装置に関する。より詳細に、本発明は、二酸化炭素(CO2)が除去された排ガス(以下、脱CO2排ガスと表記することがある。)に同伴してアミン化合物が大気に放出されるのを低コストで極力抑制することができる二酸化炭素除去装置に関する。
The present invention relates to a carbon dioxide removal device. More specifically, the present invention is low-cost in that the amine compound is released into the atmosphere accompanying the exhaust gas from which carbon dioxide (CO 2 ) has been removed (hereinafter sometimes referred to as de-CO 2 exhaust gas). It is related with the carbon dioxide removal apparatus which can be suppressed as much as possible.
火力発電設備やボイラ設備では、多量の石炭及び重油等の燃料を燃やすのでCO2が多量に生成する。近年、大気汚染および地球温暖化の見地から、CO2の大気への排出抑制策が世界的に検討されている。CO2の分離回収技術の一つとして、CO2をアルカノールアミンなどのアミン化合物の水溶液に吸収させる方法、すなわち化学吸収法が知られている(特許文献1)。CO2がアミン化合物水溶液に吸収されると熱が発生する。この吸収熱によってアミン化合物水溶液の温度が上がり、アミン化合物の蒸気圧が高くなる。このために、脱CO2排ガスに同伴してアミン化合物が大気に放出されることがある。
多量のアミン化合物の放出は環境への影響が懸念されるので、脱CO2排ガスに含まれるアミン化合物濃度を数ppm程度まで抑制することが望まれている。
特許文献1は、アミン化合物の大気への放出を抑制するために、CO2吸収塔の上部に水洗浄部を設け、この水洗浄部に再生塔の還流水を供給して、脱CO2排ガスに同伴するアミン化合物を還流水に吸収させることができるようにした脱CO2装置を提案している。また、特許文献2は前記の水洗浄部を複数段設置することを提案している。 In thermal power generation facilities and boiler facilities, a large amount of CO 2 is generated because a large amount of fuel such as coal and heavy oil is burned. In recent years, from the viewpoint of air pollution and global warming, CO 2 emission control measures to the atmosphere have been studied worldwide. As one of CO 2 separation and recovery techniques, a method of absorbing CO 2 in an aqueous solution of an amine compound such as alkanolamine, that is, a chemical absorption method is known (Patent Document 1). Heat is generated when CO 2 is absorbed by the aqueous amine compound solution. This absorption heat raises the temperature of the aqueous amine compound solution and increases the vapor pressure of the amine compound. For this reason, the amine compound may be released to the atmosphere accompanying the de-CO 2 exhaust gas.
Since the release of a large amount of amine compound is concerned about the influence on the environment, it is desired to suppress the concentration of the amine compound contained in the de-CO 2 exhaust gas to about several ppm.
InPatent Document 1, in order to suppress the release of an amine compound to the atmosphere, a water washing section is provided at the upper part of the CO 2 absorption tower, and the reflux water of the regeneration tower is supplied to the water washing section to remove the CO 2 exhaust gas. Has proposed a de-CO 2 apparatus in which the amine compound accompanying the water can be absorbed in the reflux water. Patent Document 2 proposes to install a plurality of stages of the water washing section.
多量のアミン化合物の放出は環境への影響が懸念されるので、脱CO2排ガスに含まれるアミン化合物濃度を数ppm程度まで抑制することが望まれている。
特許文献1は、アミン化合物の大気への放出を抑制するために、CO2吸収塔の上部に水洗浄部を設け、この水洗浄部に再生塔の還流水を供給して、脱CO2排ガスに同伴するアミン化合物を還流水に吸収させることができるようにした脱CO2装置を提案している。また、特許文献2は前記の水洗浄部を複数段設置することを提案している。 In thermal power generation facilities and boiler facilities, a large amount of CO 2 is generated because a large amount of fuel such as coal and heavy oil is burned. In recent years, from the viewpoint of air pollution and global warming, CO 2 emission control measures to the atmosphere have been studied worldwide. As one of CO 2 separation and recovery techniques, a method of absorbing CO 2 in an aqueous solution of an amine compound such as alkanolamine, that is, a chemical absorption method is known (Patent Document 1). Heat is generated when CO 2 is absorbed by the aqueous amine compound solution. This absorption heat raises the temperature of the aqueous amine compound solution and increases the vapor pressure of the amine compound. For this reason, the amine compound may be released to the atmosphere accompanying the de-CO 2 exhaust gas.
Since the release of a large amount of amine compound is concerned about the influence on the environment, it is desired to suppress the concentration of the amine compound contained in the de-CO 2 exhaust gas to about several ppm.
In
再生塔の還流水はCO2を飽和濃度近くまで含んだ弱酸性の水であるので、アミン化合物の吸収能が高い。該還流水による洗浄は、アミン化合物の大気放出を抑える点において有用なものである。ところで、負荷変動によって脱CO2排ガスに含まれるアミン化合物の濃度が増加することがある。それに対応するために、水洗浄部に供給する還流水の量を常時多めに設定することが考えられる。しかし、これは大きなポンプ動力を要し、ユーティリティの増加につながる。また、将来の環境規制の強化に対応するべく、脱CO2排ガスに同伴して放出されるアミン化合物の濃度を今まで以上に減らすことが求められる。それに対応する一つの策として、洗浄水に硫酸などの強酸を添加することが考えられる。しかし、これはアミン硫酸塩の処理が必要になりコスト増加となる可能性がある。
本発明の課題は、CO2が除去された排ガスに同伴してアミン化合物が大気に放出されるのを低コストで極力抑制することができる二酸化炭素除去装置を提供することである。 Since the reflux water in the regeneration tower is weakly acidic water containing CO 2 up to a saturation concentration, the amine compound absorbability is high. The washing with refluxing water is useful in terms of suppressing the atmospheric release of the amine compound. By the way, the concentration of the amine compound contained in the de-CO 2 exhaust gas may increase due to load fluctuation. In order to cope with this, it is conceivable to always set a large amount of reflux water supplied to the water washing section. However, this requires large pump power and leads to an increase in utilities. In addition, in order to respond to strengthening of environmental regulations in the future, it is required to reduce the concentration of amine compounds released along with de-CO 2 exhaust gas more than ever. One possible measure is to add a strong acid such as sulfuric acid to the wash water. However, this may require an amine sulfate treatment, which may increase costs.
An object of the present invention is that the amine compound entrained in the exhaust gas from which CO 2 has been removed to provide a carbon dioxide removal device can be suppressed as much as possible at low cost from being released into the atmosphere.
本発明の課題は、CO2が除去された排ガスに同伴してアミン化合物が大気に放出されるのを低コストで極力抑制することができる二酸化炭素除去装置を提供することである。 Since the reflux water in the regeneration tower is weakly acidic water containing CO 2 up to a saturation concentration, the amine compound absorbability is high. The washing with refluxing water is useful in terms of suppressing the atmospheric release of the amine compound. By the way, the concentration of the amine compound contained in the de-CO 2 exhaust gas may increase due to load fluctuation. In order to cope with this, it is conceivable to always set a large amount of reflux water supplied to the water washing section. However, this requires large pump power and leads to an increase in utilities. In addition, in order to respond to strengthening of environmental regulations in the future, it is required to reduce the concentration of amine compounds released along with de-CO 2 exhaust gas more than ever. One possible measure is to add a strong acid such as sulfuric acid to the wash water. However, this may require an amine sulfate treatment, which may increase costs.
An object of the present invention is that the amine compound entrained in the exhaust gas from which CO 2 has been removed to provide a carbon dioxide removal device can be suppressed as much as possible at low cost from being released into the atmosphere.
本発明者らは上記の課題を解決するために検討した結果、本発明を完成するに至った。すなわち、本発明は以下の態様を包含する。
〔1〕 CO2を含有する排ガスとアミン化合物水溶液からなる吸収液とを接触させ排ガス中のCO2を吸収液に吸収させて脱CO2排ガスを得る工程(1)、
工程(1)で得られた脱CO2排ガスを洗浄水と接触させて脱CO2排ガスに同伴するアミン化合物を取り除く工程(2a)、
工程(1)で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す工程(3)、
工程(3)で追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる工程(4)、
工程(4)で得られた凝縮水を洗浄水として工程(2a)に供給する工程(5)、
工程(2a)を経た脱CO2排ガスに含まれるアミン化合物の濃度および/または工程(2a)を経た洗浄水に含まれる炭酸イオンの濃度を測定する工程(6a)、および
工程(6a)で測定したアミン化合物の濃度および/または炭酸イオンの濃度の値に基づいて、工程(2a)において脱CO2排ガスに接触させる洗浄水の量を調整する工程(7a)を有する、二酸化炭素の除去方法。 As a result of investigations to solve the above problems, the present inventors have completed the present invention. That is, the present invention includes the following aspects.
[1] A step (1) of obtaining a de-CO 2 exhaust gas by contacting an exhaust gas containing CO 2 with an absorbing solution comprising an amine compound aqueous solution to absorb CO 2 in the exhaust gas into the absorbing solution.
A step (2a) of removing the amine compound accompanying the de-CO 2 exhaust gas by contacting the de-CO 2 exhaust gas obtained in the step (1) with washing water;
A step (3) of heating the absorbing solution that has absorbed CO 2 obtained in step (1) to drive CO 2 out of the absorbing solution;
A step of cooling the CO 2 expelled in the step (3) and condensing water accompanying the CO 2 ;
Supplying the condensed water obtained in step (4) to step (2a) as washing water (5),
Measure in step (6a) and step (6a) to measure the concentration of amine compound contained in the de-CO 2 exhaust gas after step (2a) and / or the concentration of carbonate ion contained in the wash water after step (2a) A method for removing carbon dioxide, comprising a step (7a) of adjusting the amount of cleaning water brought into contact with the de-CO 2 exhaust gas in step (2a) based on the concentration of the amine compound and / or the concentration of carbonate ions.
〔1〕 CO2を含有する排ガスとアミン化合物水溶液からなる吸収液とを接触させ排ガス中のCO2を吸収液に吸収させて脱CO2排ガスを得る工程(1)、
工程(1)で得られた脱CO2排ガスを洗浄水と接触させて脱CO2排ガスに同伴するアミン化合物を取り除く工程(2a)、
工程(1)で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す工程(3)、
工程(3)で追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる工程(4)、
工程(4)で得られた凝縮水を洗浄水として工程(2a)に供給する工程(5)、
工程(2a)を経た脱CO2排ガスに含まれるアミン化合物の濃度および/または工程(2a)を経た洗浄水に含まれる炭酸イオンの濃度を測定する工程(6a)、および
工程(6a)で測定したアミン化合物の濃度および/または炭酸イオンの濃度の値に基づいて、工程(2a)において脱CO2排ガスに接触させる洗浄水の量を調整する工程(7a)を有する、二酸化炭素の除去方法。 As a result of investigations to solve the above problems, the present inventors have completed the present invention. That is, the present invention includes the following aspects.
[1] A step (1) of obtaining a de-CO 2 exhaust gas by contacting an exhaust gas containing CO 2 with an absorbing solution comprising an amine compound aqueous solution to absorb CO 2 in the exhaust gas into the absorbing solution.
A step (2a) of removing the amine compound accompanying the de-CO 2 exhaust gas by contacting the de-CO 2 exhaust gas obtained in the step (1) with washing water;
A step (3) of heating the absorbing solution that has absorbed CO 2 obtained in step (1) to drive CO 2 out of the absorbing solution;
A step of cooling the CO 2 expelled in the step (3) and condensing water accompanying the CO 2 ;
Supplying the condensed water obtained in step (4) to step (2a) as washing water (5),
Measure in step (6a) and step (6a) to measure the concentration of amine compound contained in the de-CO 2 exhaust gas after step (2a) and / or the concentration of carbonate ion contained in the wash water after step (2a) A method for removing carbon dioxide, comprising a step (7a) of adjusting the amount of cleaning water brought into contact with the de-CO 2 exhaust gas in step (2a) based on the concentration of the amine compound and / or the concentration of carbonate ions.
〔2〕 CO2を含有する排ガスとアミン化合物水溶液からなる吸収液とを接触させ排ガス中のCO2を吸収液に吸収させて脱CO2排ガスを得る工程(1)、
工程(1)で得られた脱CO2排ガスを洗浄水と接触させて脱CO2排ガスに同伴するアミン化合物を取り除く工程(2a)、
工程(1)で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す工程(3)、
工程(3)で追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる工程(4)、
工程(4)で得られた凝縮水を洗浄水として工程(2a)に供給する工程(5)、
工程(2a)における洗浄水の温度および工程(2a)を経た洗浄水に含まれるアミン化合物の濃度を測定し、工程(2a)を経た脱CO2排ガスに含まれるアミン化合物の濃度を推算する工程(6b)、および
工程(6b)で推算したアミン化合物の濃度の値に基づいて、工程(2a)において脱CO2排ガスに接触させる洗浄水の量を調整する工程(7b)を有する、二酸化炭素の除去方法。 [2] of CO 2 is brought into contact with absorption liquid consisting of exhaust gas and the amine compound aqueous solution in the exhaust gas containing CO 2 is absorbed into the absorbing liquid to obtain a de-CO 2 exhaust gas step (1),
A step (2a) of removing the amine compound accompanying the de-CO 2 exhaust gas by contacting the de-CO 2 exhaust gas obtained in the step (1) with washing water;
A step (3) of heating the absorbing solution that has absorbed CO 2 obtained in step (1) to drive CO 2 out of the absorbing solution;
A step of cooling the CO 2 expelled in the step (3) and condensing water accompanying the CO 2 ;
Supplying the condensed water obtained in step (4) to step (2a) as washing water (5),
The step of measuring the temperature of the wash water in step (2a) and the concentration of the amine compound contained in the wash water passed through step (2a), and estimating the concentration of the amine compound contained in the de-CO 2 exhaust gas passed through step (2a) (6b) and carbon dioxide having a step (7b) of adjusting the amount of cleaning water brought into contact with the de-CO 2 exhaust gas in step (2a) based on the concentration value of the amine compound estimated in step (6b) Removal method.
工程(1)で得られた脱CO2排ガスを洗浄水と接触させて脱CO2排ガスに同伴するアミン化合物を取り除く工程(2a)、
工程(1)で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す工程(3)、
工程(3)で追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる工程(4)、
工程(4)で得られた凝縮水を洗浄水として工程(2a)に供給する工程(5)、
工程(2a)における洗浄水の温度および工程(2a)を経た洗浄水に含まれるアミン化合物の濃度を測定し、工程(2a)を経た脱CO2排ガスに含まれるアミン化合物の濃度を推算する工程(6b)、および
工程(6b)で推算したアミン化合物の濃度の値に基づいて、工程(2a)において脱CO2排ガスに接触させる洗浄水の量を調整する工程(7b)を有する、二酸化炭素の除去方法。 [2] of CO 2 is brought into contact with absorption liquid consisting of exhaust gas and the amine compound aqueous solution in the exhaust gas containing CO 2 is absorbed into the absorbing liquid to obtain a de-CO 2 exhaust gas step (1),
A step (2a) of removing the amine compound accompanying the de-CO 2 exhaust gas by contacting the de-CO 2 exhaust gas obtained in the step (1) with washing water;
A step (3) of heating the absorbing solution that has absorbed CO 2 obtained in step (1) to drive CO 2 out of the absorbing solution;
A step of cooling the CO 2 expelled in the step (3) and condensing water accompanying the CO 2 ;
Supplying the condensed water obtained in step (4) to step (2a) as washing water (5),
The step of measuring the temperature of the wash water in step (2a) and the concentration of the amine compound contained in the wash water passed through step (2a), and estimating the concentration of the amine compound contained in the de-CO 2 exhaust gas passed through step (2a) (6b) and carbon dioxide having a step (7b) of adjusting the amount of cleaning water brought into contact with the de-CO 2 exhaust gas in step (2a) based on the concentration value of the amine compound estimated in step (6b) Removal method.
〔3〕 工程(2a)を経た洗浄水の一部を工程(2a)に戻し、その残部を工程(1)を経た吸収液に合流させる工程(8a)をさらに有する、〔1〕または〔2〕に記載の方法。
〔4〕 工程(2a)を経た洗浄水の一部を工程(2a)に戻し、その残部を工程(1)で使用される吸収液に合流させる工程(8b)をさらに有する、〔1〕または〔2〕に記載の方法。 [3] The method further comprises a step (8a) of returning a part of the washing water having undergone the step (2a) to the step (2a) and joining the remaining portion to the absorbent having undergone the step (1). ] The method of description.
[4] The method further comprises the step (8b) of returning a part of the washing water that has passed through the step (2a) to the step (2a) and joining the remaining part to the absorbent used in the step (1). The method according to [2].
〔4〕 工程(2a)を経た洗浄水の一部を工程(2a)に戻し、その残部を工程(1)で使用される吸収液に合流させる工程(8b)をさらに有する、〔1〕または〔2〕に記載の方法。 [3] The method further comprises a step (8a) of returning a part of the washing water having undergone the step (2a) to the step (2a) and joining the remaining portion to the absorbent having undergone the step (1). ] The method of description.
[4] The method further comprises the step (8b) of returning a part of the washing water that has passed through the step (2a) to the step (2a) and joining the remaining part to the absorbent used in the step (1). The method according to [2].
〔5〕 工程(1)と工程(2a)との間に、 工程(1)で得られた脱CO2排ガスを工程(2a)を経た洗浄水と接触させて脱CO2排ガスに同伴するアミン化合物を取り除く工程(2b)を少なくともひとつさらに有し、
工程(1)で得られた脱CO2排ガスの代わりに工程(2b)を経た脱CO2排ガスを工程(2a)に供給する、〔1〕または〔2〕に記載の方法。
〔6〕 工程(2a)を経た洗浄水の一部を工程(2a)に戻し、その残部を工程(2b)に供給する工程(8c)と、
工程(2b)を経た洗浄水の一部を工程(2b)に戻し、その残部を工程(1)を経た吸収液に合流させる工程(8d)をさらに有する、〔5〕に記載の方法。
〔7〕 工程(2a)を経た洗浄水の一部を工程(2a)に戻し、その残部を工程(2b)に供給する工程(8c)と、
工程(2b)を経た洗浄水の一部を工程(2b)に戻し、その残部を工程(1)で使用される吸収液に合流させる工程(8e)をさらに有する、〔5〕に記載の方法。 [5] Between step (1) and step (2a), the de-CO 2 exhaust gas obtained in step (1) is brought into contact with the wash water that has passed through step (2a) to be entrained in the de-CO 2 exhaust gas. Further comprising at least one step (2b) of removing compounds,
The method according to [1] or [2], wherein the de-CO 2 exhaust gas obtained through step (2b) is supplied to step (2a) instead of the de-CO 2 exhaust gas obtained in step (1).
[6] A step (8c) of returning a part of the washing water that has undergone the step (2a) to the step (2a) and supplying the remainder to the step (2b);
The method according to [5], further comprising a step (8d) of returning a part of the washing water that has undergone the step (2b) to the step (2b) and merging the remaining portion with the absorbent that has undergone the step (1).
[7] A step (8c) of returning a part of the washing water that has undergone step (2a) to step (2a) and supplying the remainder to step (2b);
The method according to [5], further comprising a step (8e) of returning a part of the washing water that has undergone the step (2b) to the step (2b) and joining the remainder to the absorbent used in the step (1). .
工程(1)で得られた脱CO2排ガスの代わりに工程(2b)を経た脱CO2排ガスを工程(2a)に供給する、〔1〕または〔2〕に記載の方法。
〔6〕 工程(2a)を経た洗浄水の一部を工程(2a)に戻し、その残部を工程(2b)に供給する工程(8c)と、
工程(2b)を経た洗浄水の一部を工程(2b)に戻し、その残部を工程(1)を経た吸収液に合流させる工程(8d)をさらに有する、〔5〕に記載の方法。
〔7〕 工程(2a)を経た洗浄水の一部を工程(2a)に戻し、その残部を工程(2b)に供給する工程(8c)と、
工程(2b)を経た洗浄水の一部を工程(2b)に戻し、その残部を工程(1)で使用される吸収液に合流させる工程(8e)をさらに有する、〔5〕に記載の方法。 [5] Between step (1) and step (2a), the de-CO 2 exhaust gas obtained in step (1) is brought into contact with the wash water that has passed through step (2a) to be entrained in the de-CO 2 exhaust gas. Further comprising at least one step (2b) of removing compounds,
The method according to [1] or [2], wherein the de-CO 2 exhaust gas obtained through step (2b) is supplied to step (2a) instead of the de-CO 2 exhaust gas obtained in step (1).
[6] A step (8c) of returning a part of the washing water that has undergone the step (2a) to the step (2a) and supplying the remainder to the step (2b);
The method according to [5], further comprising a step (8d) of returning a part of the washing water that has undergone the step (2b) to the step (2b) and merging the remaining portion with the absorbent that has undergone the step (1).
[7] A step (8c) of returning a part of the washing water that has undergone step (2a) to step (2a) and supplying the remainder to step (2b);
The method according to [5], further comprising a step (8e) of returning a part of the washing water that has undergone the step (2b) to the step (2b) and joining the remainder to the absorbent used in the step (1). .
〔8〕 CO2を含有する排ガスとアミン化合物水溶液からなる吸収液とを向流接触させ排ガス中のCO2を吸収液に吸収させて脱CO2排ガスを得る機能を有するCO2吸収部と、
CO2吸収部で得られた脱CO2排ガスを洗浄水と向流接触させて脱CO2排ガスに同伴するアミン化合物を取り除く機能を有する洗浄部と、
CO2吸収部で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す機能を有する吸収液再生部と、
吸収液再生部において追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる機能を有する凝縮器と、
凝縮器で得られた凝縮水を洗浄水として洗浄部に供給する管と、
洗浄部を経た洗浄水に含まれる炭酸イオン濃度を測定する手段および/または洗浄部を経た脱CO2排ガスに含まれるアミン化合物濃度を測定する手段と、
測定したアミン化合物の濃度および/または炭酸イオンの濃度の値に基づいて、洗浄部に供給する洗浄水の量を調整する手段とを有する、二酸化炭素除去装置。 [8] A CO 2 absorber having a function of obtaining a de-CO 2 exhaust gas by countercurrently contacting an exhaust gas containing CO 2 and an absorption liquid composed of an aqueous amine compound solution to absorb CO 2 in the exhaust gas into the absorption liquid;
A cleaning unit having a function of removing an amine compound of de CO 2 exhaust gas obtained in the CO 2 absorbing section by the washing water and the flow contact entrained in de CO 2 gas,
An absorption liquid regeneration unit having a function of heating the absorption liquid that has absorbed CO 2 obtained in the CO 2 absorption part to drive CO 2 out of the absorption liquid;
A condenser having a function of condensing the water entrained in the CO 2 cooled the CO 2 expelled in the absorbent solution regeneration section,
A pipe for supplying the condensed water obtained in the condenser to the washing section as washing water;
Means for measuring the carbonate ion concentration contained in the wash water passed through the washing section and / or means for measuring the amine compound concentration contained in the de-CO 2 exhaust gas passed through the washing section;
And a means for adjusting the amount of cleaning water supplied to the cleaning unit based on the measured concentration of amine compound and / or carbonate ion concentration.
CO2吸収部で得られた脱CO2排ガスを洗浄水と向流接触させて脱CO2排ガスに同伴するアミン化合物を取り除く機能を有する洗浄部と、
CO2吸収部で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す機能を有する吸収液再生部と、
吸収液再生部において追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる機能を有する凝縮器と、
凝縮器で得られた凝縮水を洗浄水として洗浄部に供給する管と、
洗浄部を経た洗浄水に含まれる炭酸イオン濃度を測定する手段および/または洗浄部を経た脱CO2排ガスに含まれるアミン化合物濃度を測定する手段と、
測定したアミン化合物の濃度および/または炭酸イオンの濃度の値に基づいて、洗浄部に供給する洗浄水の量を調整する手段とを有する、二酸化炭素除去装置。 [8] A CO 2 absorber having a function of obtaining a de-CO 2 exhaust gas by countercurrently contacting an exhaust gas containing CO 2 and an absorption liquid composed of an aqueous amine compound solution to absorb CO 2 in the exhaust gas into the absorption liquid;
A cleaning unit having a function of removing an amine compound of de CO 2 exhaust gas obtained in the CO 2 absorbing section by the washing water and the flow contact entrained in de CO 2 gas,
An absorption liquid regeneration unit having a function of heating the absorption liquid that has absorbed CO 2 obtained in the CO 2 absorption part to drive CO 2 out of the absorption liquid;
A condenser having a function of condensing the water entrained in the CO 2 cooled the CO 2 expelled in the absorbent solution regeneration section,
A pipe for supplying the condensed water obtained in the condenser to the washing section as washing water;
Means for measuring the carbonate ion concentration contained in the wash water passed through the washing section and / or means for measuring the amine compound concentration contained in the de-CO 2 exhaust gas passed through the washing section;
And a means for adjusting the amount of cleaning water supplied to the cleaning unit based on the measured concentration of amine compound and / or carbonate ion concentration.
〔9〕 CO2を含有する排ガスとアミン化合物水溶液からなる吸収液とを向流接触させ排ガス中のCO2を吸収液に吸収させて脱CO2排ガスを得る機能を有するCO2吸収部と、
CO2吸収部で得られた脱CO2排ガスを洗浄水と向流接触させて脱CO2排ガスに同伴するアミン化合物を取り除く機能を有する洗浄部と、
CO2吸収部で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す機能を有する吸収液再生部と、
吸収液再生部において追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる機能を有する凝縮器と、
凝縮器で得られた凝縮水を洗浄水として洗浄部に供給する管と、
洗浄部における洗浄水の温度および洗浄部を経た洗浄水に含まれるアミン化合物の濃度を測定し、洗浄部を経た脱CO2排ガスに含まれるアミン化合物濃度を推算する手段と、
推算したアミン化合物の濃度の値に基づいて、洗浄部に供給する洗浄水の量を調整する手段とを有する、二酸化炭素除去装置。 [9] A CO 2 absorber having a function of obtaining a de-CO 2 exhaust gas by countercurrently contacting an exhaust gas containing CO 2 and an absorbing solution composed of an amine compound aqueous solution to absorb CO 2 in the exhaust gas into the absorbing solution;
A cleaning unit having a function of removing an amine compound of de CO 2 exhaust gas obtained in the CO 2 absorbing section by the washing water and the flow contact entrained in de CO 2 gas,
An absorption liquid regeneration unit having a function of heating the absorption liquid that has absorbed CO 2 obtained in the CO 2 absorption part to drive CO 2 out of the absorption liquid;
A condenser having a function of condensing the water entrained in the CO 2 cooled the CO 2 expelled in the absorbent solution regeneration section,
A pipe for supplying the condensed water obtained in the condenser to the washing section as washing water;
Means for measuring the temperature of the washing water in the washing section and the concentration of the amine compound contained in the washing water that has passed through the washing section, and estimating the concentration of the amine compound contained in the de-CO 2 exhaust gas that has passed through the washing section;
And a means for adjusting the amount of cleaning water supplied to the cleaning unit based on the estimated value of the concentration of the amine compound.
CO2吸収部で得られた脱CO2排ガスを洗浄水と向流接触させて脱CO2排ガスに同伴するアミン化合物を取り除く機能を有する洗浄部と、
CO2吸収部で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す機能を有する吸収液再生部と、
吸収液再生部において追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる機能を有する凝縮器と、
凝縮器で得られた凝縮水を洗浄水として洗浄部に供給する管と、
洗浄部における洗浄水の温度および洗浄部を経た洗浄水に含まれるアミン化合物の濃度を測定し、洗浄部を経た脱CO2排ガスに含まれるアミン化合物濃度を推算する手段と、
推算したアミン化合物の濃度の値に基づいて、洗浄部に供給する洗浄水の量を調整する手段とを有する、二酸化炭素除去装置。 [9] A CO 2 absorber having a function of obtaining a de-CO 2 exhaust gas by countercurrently contacting an exhaust gas containing CO 2 and an absorbing solution composed of an amine compound aqueous solution to absorb CO 2 in the exhaust gas into the absorbing solution;
A cleaning unit having a function of removing an amine compound of de CO 2 exhaust gas obtained in the CO 2 absorbing section by the washing water and the flow contact entrained in de CO 2 gas,
An absorption liquid regeneration unit having a function of heating the absorption liquid that has absorbed CO 2 obtained in the CO 2 absorption part to drive CO 2 out of the absorption liquid;
A condenser having a function of condensing the water entrained in the CO 2 cooled the CO 2 expelled in the absorbent solution regeneration section,
A pipe for supplying the condensed water obtained in the condenser to the washing section as washing water;
Means for measuring the temperature of the washing water in the washing section and the concentration of the amine compound contained in the washing water that has passed through the washing section, and estimating the concentration of the amine compound contained in the de-CO 2 exhaust gas that has passed through the washing section;
And a means for adjusting the amount of cleaning water supplied to the cleaning unit based on the estimated value of the concentration of the amine compound.
〔10〕 洗浄部を経た洗浄水の一部を洗浄部に戻し、その残部をCO2吸収部を経た吸収液に合流させる管をさらに有する、〔8〕または〔9〕に記載の装置。
〔11〕 洗浄部を経た洗浄水の一部を洗浄部に戻し、その残部をCO2吸収部で使用される吸収液に合流させる管をさらに有する、〔8〕または〔9〕に記載の装置。 [10] The apparatus according to [8] or [9], further comprising a pipe for returning a part of the washing water that has passed through the washing part to the washing part and merging the remaining part with the absorbing solution that has passed through the CO 2 absorption part.
[11] The apparatus according to [8] or [9], further including a pipe for returning a part of the washing water that has passed through the washing part to the washing part, and joining the remaining part to the absorbent used in the CO 2 absorption part .
〔11〕 洗浄部を経た洗浄水の一部を洗浄部に戻し、その残部をCO2吸収部で使用される吸収液に合流させる管をさらに有する、〔8〕または〔9〕に記載の装置。 [10] The apparatus according to [8] or [9], further comprising a pipe for returning a part of the washing water that has passed through the washing part to the washing part and merging the remaining part with the absorbing solution that has passed through the CO 2 absorption part.
[11] The apparatus according to [8] or [9], further including a pipe for returning a part of the washing water that has passed through the washing part to the washing part, and joining the remaining part to the absorbent used in the CO 2 absorption part .
〔12〕 CO2吸収部と洗浄部との間に、CO2吸収部で得られた脱CO2排ガスを洗浄部を経た洗浄水と向流接触させて脱CO2排ガスに同伴するアミン化合物を取り除く機能を有する追加洗浄部を少なくとも一つと、
CO2吸収部で得られた脱CO2排ガスの代わりに追加洗浄部を経た脱CO2排ガスを洗浄部に供給する管をさらに有する、〔8〕または〔9〕に記載の装置。
〔13〕 洗浄部を経た洗浄水の一部を洗浄部に戻し、その残部を追加洗浄部に供給する管と、
追加洗浄部を経た洗浄水の一部を追加洗浄部に戻し、その残部をCO2吸収部を経た吸収液に合流させる管をさらに有する、〔12〕に記載の装置。
〔14〕 洗浄部を経た洗浄水の一部を洗浄部に戻し、その残部を追加洗浄部に供給する管と、
追加洗浄部を経た洗浄水の一部を追加洗浄部に戻し、その残部をCO2吸収部で使用される吸収液に合流させる管をさらに有する、〔12〕に記載の装置。 Between the [12] CO 2 absorbing section and the cleaning section, the amine compound accompanying the de-CO 2 exhaust gas obtained in the CO 2 absorbing section by washing water countercurrent contact through the cleaning section to the de-CO 2 gas At least one additional cleaning section having the function of removing,
The apparatus according to [8] or [9], further comprising a pipe for supplying de-CO 2 exhaust gas that has passed through an additional cleaning unit to the cleaning unit in place of the de-CO 2 exhaust gas obtained in the CO 2 absorption unit.
[13] A pipe for returning a part of the washing water that has passed through the washing part to the washing part and supplying the remaining part to the additional washing part,
The apparatus according to [12], further including a pipe that returns a part of the washing water that has passed through the additional washing section to the additional washing section and joins the remaining portion to the absorbing solution that has passed through the CO 2 absorption section.
[14] A pipe for returning a part of the washing water that has passed through the washing part to the washing part and supplying the remaining part to the additional washing part;
[12] The apparatus according to [12], further including a pipe that returns a part of the washing water that has passed through the additional washing unit to the additional washing unit, and joins the remaining part to the absorbent used in the CO 2 absorption unit.
CO2吸収部で得られた脱CO2排ガスの代わりに追加洗浄部を経た脱CO2排ガスを洗浄部に供給する管をさらに有する、〔8〕または〔9〕に記載の装置。
〔13〕 洗浄部を経た洗浄水の一部を洗浄部に戻し、その残部を追加洗浄部に供給する管と、
追加洗浄部を経た洗浄水の一部を追加洗浄部に戻し、その残部をCO2吸収部を経た吸収液に合流させる管をさらに有する、〔12〕に記載の装置。
〔14〕 洗浄部を経た洗浄水の一部を洗浄部に戻し、その残部を追加洗浄部に供給する管と、
追加洗浄部を経た洗浄水の一部を追加洗浄部に戻し、その残部をCO2吸収部で使用される吸収液に合流させる管をさらに有する、〔12〕に記載の装置。 Between the [12] CO 2 absorbing section and the cleaning section, the amine compound accompanying the de-CO 2 exhaust gas obtained in the CO 2 absorbing section by washing water countercurrent contact through the cleaning section to the de-CO 2 gas At least one additional cleaning section having the function of removing,
The apparatus according to [8] or [9], further comprising a pipe for supplying de-CO 2 exhaust gas that has passed through an additional cleaning unit to the cleaning unit in place of the de-CO 2 exhaust gas obtained in the CO 2 absorption unit.
[13] A pipe for returning a part of the washing water that has passed through the washing part to the washing part and supplying the remaining part to the additional washing part,
The apparatus according to [12], further including a pipe that returns a part of the washing water that has passed through the additional washing section to the additional washing section and joins the remaining portion to the absorbing solution that has passed through the CO 2 absorption section.
[14] A pipe for returning a part of the washing water that has passed through the washing part to the washing part and supplying the remaining part to the additional washing part;
[12] The apparatus according to [12], further including a pipe that returns a part of the washing water that has passed through the additional washing unit to the additional washing unit, and joins the remaining part to the absorbent used in the CO 2 absorption unit.
本発明の二酸化炭素の除去方法および二酸化炭素除去装置によれば、CO2が除去された排ガスに同伴してアミン化合物が大気に放出されるのを低コストで極力抑制することができる。
According to the carbon dioxide removal method and the carbon dioxide removal apparatus of the present invention, it is possible to suppress the amine compound from being released into the atmosphere accompanying the exhaust gas from which CO 2 has been removed as much as possible at a low cost.
以下、本発明の二酸化炭素除去装置および二酸化炭素の除去方法を図面を参照して詳細に説明する。
〔第一実施形態〕
図1に示す装置では、CO2を含有する排ガス(例えば、燃焼排ガスなど)11がライン3を通って吸収塔1に供給される。CO2を含有する排ガスの圧力は、常圧でも加圧であってもよく、好ましくは常圧である。また、CO2を含有する排ガスの温度は特に制限はなく、低温であっても、高温であってもよい。CO2を含有する排ガスはCO2吸収部2でノズル6から供給される一定濃度のアミン化合物水溶液(以下、吸収液ということがある。)と向流接触させられる。排ガス11中のCO2は吸収液により吸収除去され、得られた脱CO2排ガスは洗浄部24bへと向う。 Hereinafter, the carbon dioxide removing apparatus and the carbon dioxide removing method of the present invention will be described in detail with reference to the drawings.
[First embodiment]
In the apparatus shown in FIG. 1, exhaust gas (for example, combustion exhaust gas) 11 containing CO 2 is supplied to theabsorption tower 1 through a line 3. The pressure of the exhaust gas containing CO 2 may be normal pressure or pressurized, and is preferably normal pressure. The temperature of the exhaust gas containing CO 2 is not particularly limited, and may be low or high. Exhaust gas containing CO 2 is brought into counter-current contact with an aqueous amine compound solution (hereinafter also referred to as absorption liquid) having a constant concentration supplied from the nozzle 6 in the CO 2 absorption section 2. The CO 2 in the exhaust gas 11 is absorbed and removed by the absorbing solution, and the obtained de-CO 2 exhaust gas goes to the cleaning unit 24b.
〔第一実施形態〕
図1に示す装置では、CO2を含有する排ガス(例えば、燃焼排ガスなど)11がライン3を通って吸収塔1に供給される。CO2を含有する排ガスの圧力は、常圧でも加圧であってもよく、好ましくは常圧である。また、CO2を含有する排ガスの温度は特に制限はなく、低温であっても、高温であってもよい。CO2を含有する排ガスはCO2吸収部2でノズル6から供給される一定濃度のアミン化合物水溶液(以下、吸収液ということがある。)と向流接触させられる。排ガス11中のCO2は吸収液により吸収除去され、得られた脱CO2排ガスは洗浄部24bへと向う。 Hereinafter, the carbon dioxide removing apparatus and the carbon dioxide removing method of the present invention will be described in detail with reference to the drawings.
[First embodiment]
In the apparatus shown in FIG. 1, exhaust gas (for example, combustion exhaust gas) 11 containing CO 2 is supplied to the
吸収液に含まれるアミン化合物としては、モノエタノールアミン、2-アミノ-2-メチル-1-プロパノールのようなアルコール性水酸基含有1級アミン類、ジエタノールアミン、2-メチルアミノエタノールのようなアルコール性水酸基含有2級アミン類、トリエタノールアミン、N-メチルジエタノールアミンのようなアルコール性水酸基含有3級アミン類、エチレンジアミン、トリエチレンジアミン、ジエチレントリアミンのようなポリエチレンポリアミン類、ピペラジン類、ピペリジン類、ピロリジン類のような環状アミン類、キシリレンジアミンのようなポリアミン類、メチルアミノカルボン酸のようなアミノ酸類等及びこれらの混合物が挙げられる。また、吸収液にはCO2吸収促進剤、腐食防止剤、さらには、その他の媒体としてメタノール、ポリエチレングリコール、スルフォラン等が含まれていてもよい。
Examples of amine compounds contained in the absorption liquid include monoethanolamine, alcoholic hydroxyl group-containing primary amines such as 2-amino-2-methyl-1-propanol, and alcoholic hydroxyl groups such as diethanolamine and 2-methylaminoethanol. Containing secondary amines, alcoholic hydroxyl group-containing tertiary amines such as triethanolamine and N-methyldiethanolamine, polyethylene polyamines such as ethylenediamine, triethylenediamine and diethylenetriamine, piperazines, piperidines and pyrrolidines Examples include cyclic amines, polyamines such as xylylenediamine, amino acids such as methylaminocarboxylic acid, and the like, and mixtures thereof. Further, the absorbing liquid may contain a CO 2 absorption accelerator, a corrosion inhibitor, and methanol, polyethylene glycol, sulfolane and the like as other media.
CO2を吸収した吸収液は、その吸収熱によりノズル6における温度よりも高温となっている。CO2を吸収した吸収液は、ライン10から抜き出され、熱交換器22で加熱され、その後、再生塔13へ供給される。再生塔13では、リボイラ23による加熱で吸収液が蒸発し、該蒸気とノズル14から供給される吸収液とが下部吸収液再生部15で向流接触し、吸収液からCO2が追い出される。CO2が追い出された(再生された)吸収液は再生塔の底部から抜き出され、熱交換器22により冷却され、吸収塔1へ戻される。上部再生部25において、吸収液から追い出されたCO2を、ノズル20より供給される還流水と接触させ、CO2に同伴する吸収液をCO2から除去する。次いでCO2を冷却器19により冷却し、CO2に同伴する水を凝縮させる。CO2分離器17にて凝縮水(以下、還流水ということがある。)とCO2とを分離し、CO2はライン18を通してCO2回収工程へ供給する。
The absorbing liquid that has absorbed CO 2 has a higher temperature than the temperature in the nozzle 6 due to the heat of absorption. The absorbing solution that has absorbed CO 2 is extracted from the line 10, heated by the heat exchanger 22, and then supplied to the regeneration tower 13. In the regeneration tower 13, the absorption liquid evaporates due to heating by the reboiler 23, the vapor and the absorption liquid supplied from the nozzle 14 come into countercurrent contact in the lower absorption liquid regeneration section 15, and CO 2 is expelled from the absorption liquid. The absorption liquid from which CO 2 has been purged (regenerated) is extracted from the bottom of the regeneration tower, cooled by the heat exchanger 22, and returned to the absorption tower 1. In the upper regeneration section 25, the CO 2 was expelled from the absorbing solution is brought into contact with reflux water supplied from the nozzle 20, to remove the absorbing solution accompanying the CO 2 from the CO 2. Next, CO 2 is cooled by the cooler 19 to condense the water accompanying the CO 2 . The CO 2 separator 17 separates condensed water (hereinafter sometimes referred to as reflux water) and CO 2, and the CO 2 is supplied to the CO 2 recovery step through the line 18.
還流水の一部はポンプ16で再生塔13へ還流される。還流水の残部は、ライン21を通して吸収塔1へ供給される。CO2吸収部2で得られた脱CO2排ガスと還流水(以下、洗浄水ということがある。)とを洗浄部24aおよび洗浄部24bで向流接触させる。これにより、脱CO2排ガスに同伴するアミン化合物を脱CO2排ガスから除去することができる。
A part of the reflux water is refluxed to the regeneration tower 13 by the pump 16. The remainder of the reflux water is supplied to the absorption tower 1 through the line 21. The de-CO 2 exhaust gas obtained in the CO 2 absorption unit 2 and the reflux water (hereinafter sometimes referred to as “washing water”) are brought into counter-current contact with the washing unit 24a and the washing unit 24b. This makes it possible to remove the amine compound accompanying the de-CO 2 gas from the de-CO 2 gas.
洗浄部24aおよび24bは、充填床であっても、棚段式であってもよい。図1では洗浄部が2段設けられているが、1段であってもよいし、3段以上であってもよい。
CO2吸収部2ならびに洗浄部24aおよび24bにデミスタを設置してもよい。デミスタの設置によって、CO2吸収部2に供給される吸収液ミストの一部や洗浄部24aおよび24bに供給される洗浄水ミストの一部が脱CO2排ガスとともに塔外に放出されて、水やアミン化合物が損失するのを防止することができる。 The cleaning units 24a and 24b may be a packed bed or a shelf type. In FIG. 1, the cleaning unit is provided in two stages, but it may be one stage or three or more stages.
Demisters may be installed in the CO 2 absorption unit 2 and the cleaning units 24a and 24b. By installing the demister, a part of the absorption liquid mist supplied to the CO 2 absorption unit 2 and a part of the washing water mist supplied to the cleaning units 24a and 24b are discharged to the outside of the tower together with the de-CO 2 exhaust gas. And the loss of the amine compound can be prevented.
CO2吸収部2ならびに洗浄部24aおよび24bにデミスタを設置してもよい。デミスタの設置によって、CO2吸収部2に供給される吸収液ミストの一部や洗浄部24aおよび24bに供給される洗浄水ミストの一部が脱CO2排ガスとともに塔外に放出されて、水やアミン化合物が損失するのを防止することができる。 The
Demisters may be installed in the CO 2 absorption unit 2 and the
図1に示す装置では、再生塔13の上部に冷却器19が1基だけ設けられているが、2基以上を直列に設けてもよい。冷却器19を2基で構成する場合は、再生塔側から一基目の冷却器からの還流水は一段目の洗浄部24bに供給し、二基目の冷却器からの還流水は二段目の洗浄部24aに供給することが、アミン化合物の除去効率の観点から好ましい。
In the apparatus shown in FIG. 1, only one cooler 19 is provided above the regeneration tower 13, but two or more coolers 19 may be provided in series. When the cooler 19 is composed of two units, the reflux water from the first cooler is supplied from the regeneration tower side to the first-stage washing unit 24b, and the reflux water from the second cooler is two-stage. Supplying to the eye washing part 24a is preferable from the viewpoint of the removal efficiency of the amine compound.
洗浄部が複数段の場合、ある段の洗浄水に含まれるアミン化合物の濃度が所定の値を超えた場合は、その一部をその段の前流側の段(すなわち、吸収部に近い側の段)に供給してもよい。具体的に、洗浄部24aを経た洗浄水の一部を冷却器8aを経て洗浄部24aに戻し、洗浄部24aを経た洗浄水の残部を洗浄部24bに供給することができる。洗浄部24bに供給する量は、洗浄部24aを経た洗浄水に含まれるアミン化合物の濃度に基づいて調整することができ、例えば、洗浄水に含まれるアミン化合物濃度が所定の値を超えた場合に、残部を洗浄部24bに供給することができる。
When there are multiple stages of washing units, if the concentration of amine compound contained in the washing water of a certain stage exceeds a predetermined value, a part of that is part of the upstream side of that stage (that is, the side closer to the absorbing part) May be supplied to the stage). Specifically, a part of the cleaning water that has passed through the cleaning unit 24a can be returned to the cleaning unit 24a through the cooler 8a, and the remaining cleaning water that has passed through the cleaning unit 24a can be supplied to the cleaning unit 24b. The amount supplied to the washing unit 24b can be adjusted based on the concentration of the amine compound contained in the washing water that has passed through the washing unit 24a. For example, when the concentration of the amine compound contained in the washing water exceeds a predetermined value In addition, the remainder can be supplied to the cleaning unit 24b.
さらに、吸収部に最も近い側の洗浄部を経た洗浄水に含まれるアミン化合物の濃度が所定の値を超えた場合は、その一部を再生塔から供給される吸収液に供給してもよい。具体的に、洗浄部24bを経た洗浄水の一部を冷却器8bを経て洗浄部24bに戻し、残部をCO2吸収部2を経た吸収液またはノズル6から供給される吸収液に合流させることができる。CO2吸収部2を経た吸収液またはノズル6から供給される吸収液に合流させる量は、洗浄部24bを経た洗浄水に含まれるアミン化合物の濃度に基づいて調整することができ、例えば、洗浄水に含まれるアミン化合物濃度が所定の値を超えた場合に、残部をノズル6から供給される吸収液に合流させることができる。
Furthermore, when the concentration of the amine compound contained in the washing water that has passed through the washing section closest to the absorption section exceeds a predetermined value, a part of the concentration may be supplied to the absorption liquid supplied from the regeneration tower. . Specifically, a part of the washing water that has passed through the washing unit 24b is returned to the washing unit 24b through the cooler 8b, and the remaining part is merged with the absorption solution that has passed through the CO 2 absorption unit 2 or the absorption solution that is supplied from the nozzle 6. Can do. The amount to be merged with the absorption liquid that has passed through the CO 2 absorption section 2 or the absorption liquid supplied from the nozzle 6 can be adjusted based on the concentration of the amine compound contained in the cleaning water that has passed through the cleaning section 24b. When the concentration of the amine compound contained in the water exceeds a predetermined value, the remaining part can be merged with the absorption liquid supplied from the nozzle 6.
図1に示す装置においては、洗浄部24aを経た洗浄水に含まれる炭酸イオンおよび/または洗浄部24aを経た脱CO2排ガスに含まれるアミン化合物の濃度を測定する。測定手段は特に制限されない。例えば、ガスクロマトグラフィー、液クロマトグラフィー、イオンクロマトグラフィー、ICP発光分光分析/質量分析などが挙げられる。炭酸イオン濃度は洗浄水をライン26aからほぼ連続的に抜き出し測定器28aにてオンラインで測定してもよいし、洗浄水をライン26aから所定の時間間隔で抜き出し、測定器にてオフラインで測定してもよい。アミン化合物濃度は脱CO2排ガスをライン4からほぼ連続的に抜き出し測定器28bにてオンラインで測定してもよいし、脱CO2排ガスをライン4から所定の時間間隔で抜き出し、測定器にてオフラインで測定してもよい。
In the apparatus shown in FIG. 1, the concentration of the carbonate ion contained in the washing water that has passed through the washing section 24a and / or the concentration of the amine compound contained in the de-CO 2 exhaust gas that has passed through the washing section 24a is measured. The measuring means is not particularly limited. Examples thereof include gas chromatography, liquid chromatography, ion chromatography, ICP emission spectroscopic analysis / mass spectrometry, and the like. The carbonate ion concentration may be measured on-line with the measuring device 28a by extracting the washing water almost continuously from the line 26a, or it may be measured off-line with the measuring device by extracting the washing water from the line 26a at a predetermined time interval. May be. The amine compound concentration may be measured on-line with the measuring device 28b by extracting the de-CO 2 exhaust gas almost continuously from the line 4, or with the measuring device by extracting the de-CO 2 exhaust gas from the line 4 at a predetermined time interval. You may measure offline.
測定された炭酸イオン濃度および/またはアミン化合物濃度のデータは信号ライン29aおよび/または31を通して制御装置30に送られる。制御装置では、測定された炭酸イオン濃度および/またはアミン化合物濃度と、所定の値に設定された制御目標濃度とを対比し、乖離度合いが見積もられる。その見積り結果から、洗浄水の流量の調整幅がPID制御などの公知の制御アルゴリズムによって計算され、その値を制御信号として流量調整手段に送信する。制御信号を受信した流量調整手段27は、その信号に従って、バルブ開度などを調整して、洗浄部24aに供給される洗浄水の流量を変更する。図1に示す装置では、濃度測定から流量変更までをオンラインによる自動制御で行っているが、濃度測定から流量変更までをオフラインによる手動制御で行ってもよい。
The measured carbonate ion concentration and / or amine compound concentration data is sent to the control device 30 through the signal lines 29a and / or 31. In the control device, the degree of deviation is estimated by comparing the measured carbonate ion concentration and / or amine compound concentration with the control target concentration set to a predetermined value. From the estimated result, the adjustment range of the flow rate of the cleaning water is calculated by a known control algorithm such as PID control, and the value is transmitted as a control signal to the flow rate adjusting means. The flow rate adjusting means 27 that has received the control signal adjusts the valve opening and the like in accordance with the signal to change the flow rate of the cleaning water supplied to the cleaning unit 24a. In the apparatus shown in FIG. 1, from the concentration measurement to the flow rate change is performed by online automatic control, but from the concentration measurement to the flow rate change may be performed by offline manual control.
洗浄部24aを経た洗浄水に含まれる炭酸イオンおよび/または洗浄部24aを経た脱CO2排ガスに含まれるアミン化合物の濃度と、洗浄層24aに供給する洗浄水の流量との間には次のような関連性がある。
冷却器19からの還流水には、CO2がその温度における飽和状態に近い濃度まで含まれている。例えば、還流水の温度が40℃の場合、約400ppmのCO2が含まれる。吸収塔1の洗浄部に還流水が供給され、脱CO2排ガスと向流接触すると、脱CO2排ガスに含まれるアミンは洗浄水に含まれるCO2と反応してアミン炭酸塩を生成する。一般にアミン炭酸塩はアミンよりも高沸点である。アミン炭酸塩が洗浄水中に存在しても脱CO2排ガスから洗浄水へのアミン吸収速度に及ぼす影響は極めて小さい。このため、脱CO2排ガスに同伴するアミンに比べて過剰なCO2が洗浄水に存在する場合は、洗浄水に取り込まれたアミンの量には関係なくアミンの吸収が進み、ライン4における脱CO2排ガス中のアミン濃度が低く抑えられる。
逆に、脱CO2排ガスに同伴するアミンに比べて洗浄水に含まれるCO2が少ない場合は、洗浄水に取り込まれたアミンは塩の状態にはならない。洗浄水のアミン濃度が増加するにつれて脱CO2排ガスから洗浄水へのアミン吸収速度が低下し、脱CO2排ガス中のアミン濃度が十分に下がらない。この場合、脱CO2排ガスと向流接触する洗浄水の流量を増加することにより、気液の接触を促進させ、アミンの吸収速度を増加させることができる。
第一実施形態では、このようにして、脱CO2排ガスから洗浄水へのアミン吸収速度を最適化し、経済的な洗浄水使用量および電力消費量にて脱CO2排ガス中のアミン濃度を所定値以下にすることができる。 Between the concentration of carbonate ions contained in the washing water passed through thewashing section 24a and / or the amine compound contained in the de-CO 2 exhaust gas passed through the washing section 24a and the flow rate of washing water supplied to the washing layer 24a, There is such a relationship.
The reflux water from the cooler 19 contains CO 2 to a concentration close to saturation at that temperature. For example, when the temperature of the reflux water is 40 ° C., about 400 ppm of CO 2 is contained. Reflux water washing section of theabsorption tower 1 is supplied, the de-CO 2 to the exhaust gas and the countercurrent contact, the amine contained in the de-CO 2 exhaust gas generates the amine carbonate reacts with CO 2 contained in the wash water. In general, amine carbonate has a higher boiling point than amine. Even if the amine carbonate is present in the wash water, the influence on the amine absorption rate from the de-CO 2 exhaust gas to the wash water is extremely small. Therefore, when excess CO 2 is present in the wash water compared to the amine accompanying the de-CO 2 exhaust gas, the absorption of the amine proceeds regardless of the amount of amine taken into the wash water, and the desorption in the line 4 The amine concentration in the CO 2 exhaust gas can be kept low.
On the contrary, when the amount of CO 2 contained in the washing water is smaller than that of the amine accompanying the de-CO 2 exhaust gas, the amine taken into the washing water is not in a salt state. As the amine concentration in the wash water increases, the amine absorption rate from the de-CO 2 exhaust gas into the wash water decreases, and the amine concentration in the de-CO 2 exhaust gas does not decrease sufficiently. In this case, by increasing the flow rate of the washing water in countercurrent contact with the de-CO 2 exhaust gas, it is possible to promote gas-liquid contact and increase the amine absorption rate.
In the first embodiment, in this way, the amine absorption rate from the de-CO 2 exhaust gas to the wash water is optimized, and the amine concentration in the de-CO 2 exhaust gas is determined by the economical use of the wash water and power consumption. Can be less than or equal to the value.
冷却器19からの還流水には、CO2がその温度における飽和状態に近い濃度まで含まれている。例えば、還流水の温度が40℃の場合、約400ppmのCO2が含まれる。吸収塔1の洗浄部に還流水が供給され、脱CO2排ガスと向流接触すると、脱CO2排ガスに含まれるアミンは洗浄水に含まれるCO2と反応してアミン炭酸塩を生成する。一般にアミン炭酸塩はアミンよりも高沸点である。アミン炭酸塩が洗浄水中に存在しても脱CO2排ガスから洗浄水へのアミン吸収速度に及ぼす影響は極めて小さい。このため、脱CO2排ガスに同伴するアミンに比べて過剰なCO2が洗浄水に存在する場合は、洗浄水に取り込まれたアミンの量には関係なくアミンの吸収が進み、ライン4における脱CO2排ガス中のアミン濃度が低く抑えられる。
逆に、脱CO2排ガスに同伴するアミンに比べて洗浄水に含まれるCO2が少ない場合は、洗浄水に取り込まれたアミンは塩の状態にはならない。洗浄水のアミン濃度が増加するにつれて脱CO2排ガスから洗浄水へのアミン吸収速度が低下し、脱CO2排ガス中のアミン濃度が十分に下がらない。この場合、脱CO2排ガスと向流接触する洗浄水の流量を増加することにより、気液の接触を促進させ、アミンの吸収速度を増加させることができる。
第一実施形態では、このようにして、脱CO2排ガスから洗浄水へのアミン吸収速度を最適化し、経済的な洗浄水使用量および電力消費量にて脱CO2排ガス中のアミン濃度を所定値以下にすることができる。 Between the concentration of carbonate ions contained in the washing water passed through the
The reflux water from the cooler 19 contains CO 2 to a concentration close to saturation at that temperature. For example, when the temperature of the reflux water is 40 ° C., about 400 ppm of CO 2 is contained. Reflux water washing section of the
On the contrary, when the amount of CO 2 contained in the washing water is smaller than that of the amine accompanying the de-CO 2 exhaust gas, the amine taken into the washing water is not in a salt state. As the amine concentration in the wash water increases, the amine absorption rate from the de-CO 2 exhaust gas into the wash water decreases, and the amine concentration in the de-CO 2 exhaust gas does not decrease sufficiently. In this case, by increasing the flow rate of the washing water in countercurrent contact with the de-CO 2 exhaust gas, it is possible to promote gas-liquid contact and increase the amine absorption rate.
In the first embodiment, in this way, the amine absorption rate from the de-CO 2 exhaust gas to the wash water is optimized, and the amine concentration in the de-CO 2 exhaust gas is determined by the economical use of the wash water and power consumption. Can be less than or equal to the value.
さらに、本発明においては、吸収塔1に供給される吸収液の温度を調節することによって、CO2の吸収熱のほとんどを再生塔13に戻る吸収液によって可及的に吸収塔1の外に運び去るようにする。
吸収液の温度調節は、熱交換器22により行なわれるが、必要に応じて該熱交換器22と吸収液供給口6の間にさらに冷却器を設けてもよい。系内が定常状態になった後は、通常、吸収塔1に供給される吸収液の温度も一定となり、これにより脱CO2排ガスの温度は吸収熱によっても殆ど上昇せず、燃焼排ガス供給口3における温度とほぼ同一温度で吸収塔1を上昇して排出されることとなる。なお、ここで同一とは厳密な意味ではなく、多少の温度差が生じても吸収塔1の水バランスが保たれる状態においては同一の範囲に含まれる。 Furthermore, in the present invention, by adjusting the temperature of the absorption liquid supplied to theabsorption tower 1, most of the absorption heat of CO 2 is made as much as possible outside the absorption tower 1 by the absorption liquid returning to the regeneration tower 13. Try to carry it away.
The temperature of the absorbent is adjusted by theheat exchanger 22, but a cooler may be further provided between the heat exchanger 22 and the absorbent supply port 6 as necessary. After the inside of the system is in a steady state, the temperature of the absorption liquid supplied to the absorption tower 1 is usually constant, so that the temperature of the de-CO 2 exhaust gas hardly rises due to the absorbed heat, and the combustion exhaust gas supply port Therefore, the absorption tower 1 is raised and discharged at substantially the same temperature as that in FIG. In addition, here, the same is not a strict meaning, and it is included in the same range in a state where the water balance of the absorption tower 1 is maintained even if a slight temperature difference occurs.
吸収液の温度調節は、熱交換器22により行なわれるが、必要に応じて該熱交換器22と吸収液供給口6の間にさらに冷却器を設けてもよい。系内が定常状態になった後は、通常、吸収塔1に供給される吸収液の温度も一定となり、これにより脱CO2排ガスの温度は吸収熱によっても殆ど上昇せず、燃焼排ガス供給口3における温度とほぼ同一温度で吸収塔1を上昇して排出されることとなる。なお、ここで同一とは厳密な意味ではなく、多少の温度差が生じても吸収塔1の水バランスが保たれる状態においては同一の範囲に含まれる。 Furthermore, in the present invention, by adjusting the temperature of the absorption liquid supplied to the
The temperature of the absorbent is adjusted by the
排ガス温度が吸収塔1の入口と出口で同一となるように吸収液供給口6より供給される吸収液の温度を調節することにより、吸収塔1、さらには系全体の水バランスが保たれることとなる。また吸収塔1から排出される脱CO2排ガスの温度が高くても、再生塔13からの還流水を吸収塔1に用いる本発明の装置および方法により、アミン化合物の系外への放出は有効に防止される。
By adjusting the temperature of the absorption liquid supplied from the absorption liquid supply port 6 so that the exhaust gas temperature is the same at the inlet and the outlet of the absorption tower 1, the water balance of the absorption tower 1 and the entire system is maintained. It will be. Moreover, even if the temperature of the de-CO 2 exhaust gas discharged from the absorption tower 1 is high, the amine compound can be released out of the system by the apparatus and method of the present invention using the reflux water from the regeneration tower 13 for the absorption tower 1. To be prevented.
〔第二実施形態〕
図2に示す装置は、流量調整の基礎となる測定値が異なる以外は図1に示す装置と同じである。図2に示す装置においては、洗浄部24aにおける洗浄水の温度と、洗浄部24aを経た洗浄水に含まれる炭酸イオンの濃度を測定する。濃度測定手段は図1に示す装置におけるものと同様である。温度は熱電対などの公知の温度センサにて測定することができる。
測定された温度および炭酸イオン濃度のデータは信号ライン29dおよび34を通して制御装置30に送られる。制御装置では、測定された温度および炭酸イオン濃度とから洗浄層24aを経た脱CO2排ガスに含まれるアミン化合物の濃度を推算する。推算の仕方は特に限定されない。たとえば、洗浄水の温度によってアミン化合物の蒸気圧が定まるので、洗浄水に含まれるアミン化合物の濃度と当該蒸気圧とから、気相中に含まれるアミン化合物濃度を推算することができる。
その推算値と所定の値に設定された制御目標値とを対比し、乖離度合いが見積もられる。その見積り結果から、洗浄水の流量の調整幅がPID制御などの公知の制御アルゴリズムによって計算され、その値を制御信号として流量調整手段に送信する。制御信号を受信した流量調整手段27は、その信号に従って、バルブ開度などを調整して、洗浄部24aに供給される洗浄水の流量を変更する。図2に示す装置では、濃度測定から流量変更までをオンラインによる自動制御で行っているが、濃度測定から流量変更までをオフラインによる手動制御で行ってもよい。 [Second Embodiment]
The apparatus shown in FIG. 2 is the same as the apparatus shown in FIG. 1 except that the measurement value that is the basis of the flow rate adjustment is different. In the apparatus shown in FIG. 2, the temperature of the cleaning water in thecleaning unit 24a and the concentration of carbonate ions contained in the cleaning water that has passed through the cleaning unit 24a are measured. The concentration measuring means is the same as that in the apparatus shown in FIG. The temperature can be measured with a known temperature sensor such as a thermocouple.
The measured temperature and carbonate ion concentration data is sent to thecontroller 30 through signal lines 29d and 34. In the control device, the concentration of the amine compound contained in the de-CO 2 exhaust gas that has passed through the cleaning layer 24a is estimated from the measured temperature and carbonate ion concentration. The method of estimation is not particularly limited. For example, since the vapor pressure of the amine compound is determined by the temperature of the washing water, the concentration of the amine compound contained in the gas phase can be estimated from the concentration of the amine compound contained in the washing water and the vapor pressure.
The degree of deviation is estimated by comparing the estimated value with the control target value set to a predetermined value. From the estimation result, the adjustment range of the flow rate of the cleaning water is calculated by a known control algorithm such as PID control, and the value is transmitted as a control signal to the flow rate adjusting means. The flow rate adjusting means 27 that has received the control signal adjusts the valve opening and the like in accordance with the signal to change the flow rate of the cleaning water supplied to thecleaning unit 24a. In the apparatus shown in FIG. 2, from the concentration measurement to the flow rate change is performed by online automatic control, but from the concentration measurement to the flow rate change may be performed by offline manual control.
図2に示す装置は、流量調整の基礎となる測定値が異なる以外は図1に示す装置と同じである。図2に示す装置においては、洗浄部24aにおける洗浄水の温度と、洗浄部24aを経た洗浄水に含まれる炭酸イオンの濃度を測定する。濃度測定手段は図1に示す装置におけるものと同様である。温度は熱電対などの公知の温度センサにて測定することができる。
測定された温度および炭酸イオン濃度のデータは信号ライン29dおよび34を通して制御装置30に送られる。制御装置では、測定された温度および炭酸イオン濃度とから洗浄層24aを経た脱CO2排ガスに含まれるアミン化合物の濃度を推算する。推算の仕方は特に限定されない。たとえば、洗浄水の温度によってアミン化合物の蒸気圧が定まるので、洗浄水に含まれるアミン化合物の濃度と当該蒸気圧とから、気相中に含まれるアミン化合物濃度を推算することができる。
その推算値と所定の値に設定された制御目標値とを対比し、乖離度合いが見積もられる。その見積り結果から、洗浄水の流量の調整幅がPID制御などの公知の制御アルゴリズムによって計算され、その値を制御信号として流量調整手段に送信する。制御信号を受信した流量調整手段27は、その信号に従って、バルブ開度などを調整して、洗浄部24aに供給される洗浄水の流量を変更する。図2に示す装置では、濃度測定から流量変更までをオンラインによる自動制御で行っているが、濃度測定から流量変更までをオフラインによる手動制御で行ってもよい。 [Second Embodiment]
The apparatus shown in FIG. 2 is the same as the apparatus shown in FIG. 1 except that the measurement value that is the basis of the flow rate adjustment is different. In the apparatus shown in FIG. 2, the temperature of the cleaning water in the
The measured temperature and carbonate ion concentration data is sent to the
The degree of deviation is estimated by comparing the estimated value with the control target value set to a predetermined value. From the estimation result, the adjustment range of the flow rate of the cleaning water is calculated by a known control algorithm such as PID control, and the value is transmitted as a control signal to the flow rate adjusting means. The flow rate adjusting means 27 that has received the control signal adjusts the valve opening and the like in accordance with the signal to change the flow rate of the cleaning water supplied to the
第二実施形態では、このようにして、脱CO2排ガスから洗浄水へのアミン吸収速度を最適化し、経済的な洗浄水使用量および電力消費量にて脱CO2排ガス中のアミン濃度を所定値以下にすることができる。
In the second embodiment, in this way, the amine absorption rate from the de-CO 2 exhaust gas to the wash water is optimized, and the amine concentration in the de-CO 2 exhaust gas is determined by the economical use of the wash water and power consumption. Can be less than or equal to the value.
以下、本発明の実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited to these examples.
CO2を10%含む燃焼排ガス30Nm3/hを吸収塔1のCO2吸収部2に供給し、モノエタノールアミン30重量%水溶液(吸収液)と向流接触させてCO2を吸収させた。CO2吸収部2で得られた脱CO2排ガスを洗浄部24bにて液/ガス比(以下、L/Gと記載)2L/Nm3で洗浄水と向流接触させた。次いで脱CO2排ガスを洗浄部24aにて液/ガス(L/G)比2L/Nm3で洗浄水と向流接触させた。さらに脱CO2排ガスを洗浄部24a上部に設けたデミスタを通過させて系外へ放出した。再生塔13頂部に二段構成の冷却器を設けた。一段目冷却器(図示せず)および二段目冷却器における入口ガス温度はそれぞれ100℃および70℃であった。一段目冷却器からの凝縮水を0.5L/hで吸収塔1の一段目の洗浄部24bに洗浄水として供給し、二段目冷却器からの凝縮水を0.6L/hで吸収塔1の二段目の洗浄部24aに洗浄水として供給した。二段目の冷却器出口ガス温度は30℃であった。定常状態に達した後、上記吸収塔の洗浄部24aの洗浄水をライン26aから10ml抜き出し、イオンクロマトグラフで炭酸イオン濃度を測定したところ0.05mol/Lであった。また、洗浄部24aを経た脱CO2排ガス中のアミン化合物濃度測定値は2ppmであった。
CO 2 was supplied to the flue gas 30 Nm 3 / h containing 10% CO 2 absorbing section 2 of the absorption tower 1 was monoethanolamine 30% by weight aqueous solution (absorption solution) by countercurrent contact to absorb CO 2. The de-CO 2 exhaust gas obtained in the CO 2 absorption unit 2 was brought into countercurrent contact with the cleaning water at a liquid / gas ratio (hereinafter referred to as L / G) of 2 L / Nm 3 in the cleaning unit 24b. Next, the de-CO 2 exhaust gas was brought into counter-current contact with the cleaning water at a liquid / gas (L / G) ratio of 2 L / Nm 3 in the cleaning section 24a. Further, the de-CO 2 exhaust gas was discharged out of the system through a demister provided in the upper part of the cleaning unit 24a. A two-stage cooler was provided at the top of the regeneration tower 13. The inlet gas temperatures in the first stage cooler (not shown) and the second stage cooler were 100 ° C. and 70 ° C., respectively. Condensed water from the first stage cooler is supplied at 0.5 L / h as cleaning water to the first stage cleaning section 24b of the absorption tower 1, and condensed water from the second stage cooler is absorbed at 0.6 L / h. This was supplied as cleaning water to the first second-stage cleaning unit 24a. The gas temperature at the outlet of the second stage cooler was 30 ° C. After reaching a steady state, 10 ml of washing water for the washing section 24a of the absorption tower was extracted from the line 26a, and the carbonate ion concentration was measured by ion chromatography to be 0.05 mol / L. Moreover, the measured value of the amine compound concentration in the de-CO 2 exhaust gas that passed through the cleaning section 24a was 2 ppm.
この状態から、燃焼排ガス流量が30Nm3/hから15Nm3/hに低下し、洗浄部24aの洗浄水中の炭酸イオン濃度が0.1mol/Lに増加したため、該洗浄部24aの洗浄水と脱CO2排ガスの流量比率L/Gをバルブ27の開度を調整して2L/Nm3から1L/Nm3に変更した。その結果、ライン4中の脱CO2排出ガスに含まれるアミン化合物濃度は上昇せず、洗浄水循環のためのポンプ動力を約1/2に低減することができた。
In this state, the combustion exhaust gas flow rate is decreased from 30 Nm 3 / h to 15 Nm 3 / h, since the carbonate ion concentration in the wash water in the cleaning section 24a is increased to 0.1 mol / L, and the washing water of the washing unit 24a de the flow rate ratio L / G of CO 2 exhaust gas by adjusting the opening of the valve 27 has been changed from 2L / Nm 3 in 1L / Nm 3. As a result, the concentration of the amine compound contained in the de-CO 2 exhaust gas in the line 4 did not increase, and the pump power for washing water circulation could be reduced to about ½.
実施例1の定常状態から、洗浄部24aの洗浄水中の炭酸イオン濃度が0.03mol/Lに低下したため、洗浄部24aの洗浄水と脱CO2排ガスの流量比率L/Gをバルブ27の開度を調整して2L/Nm3から3.5L/Nm3に変更した。その結果、ライン4中の脱CO2排ガスに含まれるアミン化合物濃度の上昇を抑えることができた。
Since the carbonate ion concentration in the cleaning water of the cleaning unit 24a has decreased to 0.03 mol / L from the steady state of Example 1, the flow rate ratio L / G between the cleaning water of the cleaning unit 24a and the de-CO 2 exhaust gas is opened. The degree was adjusted and changed from 2 L / Nm 3 to 3.5 L / Nm 3 . As a result, an increase in the concentration of the amine compound contained in the de-CO 2 exhaust gas in the line 4 could be suppressed.
実施例1の定常状態から、脱CO2排ガス中のアミン濃度測定値が2ppmから4ppmに上昇したため、洗浄部24aの洗浄水と脱CO2排ガスの流量比率L/Gをバルブ27の開度を調整して2L/Nm3から4.0L/Nm3に変更した。その結果、ライン4中の脱CO2排ガスに含まれるアミン化合物濃度が2ppmに低下した。
Since the measured amine concentration in the de-CO 2 exhaust gas increased from 2 ppm to 4 ppm from the steady state of Example 1, the flow rate ratio L / G of the cleaning water and de-CO 2 exhaust gas in the cleaning unit 24 a is set to the opening degree of the valve 27. It was adjusted and changed from 2 L / Nm 3 to 4.0 L / Nm 3 . As a result, the amine compound concentration contained in the de-CO 2 exhaust gas in line 4 was reduced to 2 ppm.
CO2を10%含む燃焼排ガス30Nm3/hを吸収塔のCO2吸収部に供給し、モノエタノールアミンを30重量%含む水溶液(吸収液)と向流接触させてCO2を吸収させた。CO2吸収部で得られた脱CO2排ガスを一段構成の洗浄部にて洗浄水と液/ガス比(以下、L/Gと記載)2L/Nm3で洗浄水と向流接触させた。次いで脱CO2排ガスを洗浄部出口に設けたデミスタを通過させて系外へ放出した。再生塔頂部に一段構成の冷却器を設けた。冷却器の入口ガス温度は100℃であった。冷却器からの凝縮水を1.1L/hで吸収塔の洗浄部に洗浄水として供給した。定常状態に達した後、上記洗浄部の洗浄水を10ml抜き出し、イオンクロマトグラフで炭酸イオン濃度を測定したところ0.03mol/Lであった。また、ガスクロマトグラフでアミン化合物濃度を測定したところ0.2mol/Lであった。また、洗浄部の洗浄水の温度は40℃であった。モノエタノールアミンの飽和蒸気圧に相当するガス中アミン濃度は気液平衡から10ppmと推算された。
CO 2 was fed to the CO 2 absorbing section of the absorption tower flue gas 30 Nm 3 / h containing 10 percent aqueous solution containing monoethanolamine 30% by weight (absorbing liquid) by countercurrent contact to absorb CO 2. The de-CO 2 exhaust gas obtained in the CO 2 absorption part was brought into counter-current contact with the cleaning water at a cleaning part having a one-stage configuration at a liquid / gas ratio (hereinafter referred to as L / G) of 2 L / Nm 3 . Next, the de-CO 2 exhaust gas was discharged out of the system through a demister provided at the outlet of the cleaning section. A single-stage cooler was provided at the top of the regeneration tower. The inlet gas temperature of the cooler was 100 ° C. Condensed water from the cooler was supplied at 1.1 L / h to the washing section of the absorption tower as washing water. After reaching a steady state, 10 ml of washing water from the washing section was extracted and the carbonate ion concentration was measured by ion chromatography to be 0.03 mol / L. The amine compound concentration measured by gas chromatography was 0.2 mol / L. The temperature of the washing water in the washing part was 40 ° C. The amine concentration in the gas corresponding to the saturated vapor pressure of monoethanolamine was estimated to be 10 ppm from the vapor-liquid equilibrium.
この状態から、燃焼排ガス流量が15Nm3/hに低下し、上記の洗浄部の洗浄水に含まれる炭酸イオン濃度が0.1mol/Lに増加したため、該洗浄部の洗浄水と脱CO2排ガスの流量比率L/Gをバルブの開度を調整して1L/Nm3に変更した。その結果、洗浄部を経た脱CO2排ガス中のアミン濃度は上昇せず、洗浄水循環のためのポンプ動力を約1/2に低減することができた。
In this state, the combustion exhaust gas flow rate is reduced to 15 Nm 3 / h, since the carbonate ion concentration in the washing water of the washing unit is increased to 0.1 mol / L, the washing water of the washing unit and the de-CO 2 gas The flow rate ratio L / G was adjusted to 1 L / Nm 3 by adjusting the opening of the valve. As a result, the amine concentration in the de-CO 2 exhaust gas that passed through the washing section did not increase, and the pump power for washing water circulation could be reduced to about ½.
実施例4の定常状態から、洗浄部の洗浄水中の炭酸イオン濃度が0.015mol/Lに低下したため、該洗浄部の洗浄水と脱CO2排ガスの流量比率L/Gをバルブ開度の調整によって4.0L/Nm3に変更した。その結果、洗浄部を経た脱CO2排ガス中のアミン濃度の上昇を抑えることができた。
Since the carbonate ion concentration in the washing water of the washing section has decreased to 0.015 mol / L from the steady state of Example 4, the flow rate ratio L / G of the washing water of the washing section and the de-CO 2 exhaust gas is adjusted to the valve opening degree. To 4.0 L / Nm 3 . As a result, it was possible to suppress an increase in amine concentration in the de-CO 2 exhaust gas that passed through the cleaning section.
実施例1の定常状態から、洗浄物の洗浄水中のアミン化合物濃度が0.3mol/Lに上昇したため、該洗浄部24aの洗浄水と脱CO2排ガスの流量比率L/Gをバルブ開度の調整によって3.5L/Nm3に変更した。その結果、ライン4中の脱CO2排ガスのアミン濃度の上昇を抑えることができた。
Since the concentration of the amine compound in the wash water of the washed product increased to 0.3 mol / L from the steady state of Example 1, the flow rate ratio L / G of the wash water and de-CO 2 exhaust gas in the wash unit 24a is set to the valve opening degree. It was changed to 3.5 L / Nm 3 by adjustment. As a result, an increase in the amine concentration of the de-CO 2 exhaust gas in the line 4 could be suppressed.
1 吸収塔; 2 CO2吸収部; 3 吸収塔燃焼排ガス供給ライン; 4 脱CO2排ガス排出ライン; 5 吸収液供給口; 6 ノズル; 7a、7b 水循環ポンプ; 8a、8b 冷却器; 9a、9b ノズル; 10 吸収液抜出ライン; 11 被処理ガス(燃焼排ガス); 12 ブロワ; 13 再生塔; 14 ノズル; 15 下部吸収液再生部; 16 ポンプ; 17 CO2分離器; 18 排出CO2; 19 冷却器(凝縮器); 20 ノズル; 21 還流水供給ライン ; 22 熱交換器; 23 リボイラ; 24a 洗浄部; 24b 追加洗浄部; 25 上部吸収液再生部; 26a 洗浄水の抜出しライン; 26d 洗浄水の抜出しライン; 27 流量調整弁; 28a 洗浄水中の炭酸イオン濃度の測定器; 28b 脱CO2排ガス中のアミン化合物濃度の測定器; 28c 温度測定器; 28d 洗浄水中のアミン化合物濃度の測定器; 29a 測定値信号ライン; 29d 測定値信号ライン; 30 制御装置; 31 測定値信号ライン; 33 制御信号ライン; 34 測定値信号ライン。
1 absorption tower; 2 CO 2 absorbing section; 3 absorption tower combustion exhaust gas feed line; 4 de CO 2 exhaust gas discharge line; 5 absorbing solution supply port; 6 nozzles; 7a, 7b water circulating pump; 8a, 8b condenser; 9a, 9b nozzle; 10 absorption liquid draw-out line; 11 treated gas (combustion exhaust gas); 12 blower; 13 regenerator; 14 nozzle; 15 lower absorbent solution regeneration section; 16 pump; 17 CO 2 separator; 18 discharged CO 2; 19 20 nozzles; 21 reflux water supply line; 22 heat exchanger; 23 reboiler; 24a washing section; 24b additional washing section; 25 upper absorbent regeneration section; 26a washing water extraction line; 26d washing water the withdrawal line; 27 flow control valve; 28a instrument of carbonate ion concentration in the wash water; 28b amination of de CO 2 in the flue gas 28c Temperature measuring device; 28d Measuring device of amine compound concentration in wash water; 29a Measurement signal line; 29d Measurement signal line; 30 Controller; 31 Measurement signal line; 33 Control signal line; Measurement signal line.
Claims (14)
- CO2を含有する排ガスとアミン化合物水溶液からなる吸収液とを接触させ排ガス中のCO2を吸収液に吸収させて脱CO2排ガスを得る工程(1)、
工程(1)で得られた脱CO2排ガスを洗浄水と接触させて脱CO2排ガスに同伴するアミン化合物を取り除く工程(2a)、
工程(1)で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す工程(3)、
工程(3)で追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる工程(4)、
工程(4)で得られた凝縮水を洗浄水として工程(2a)に供給する工程(5)、
工程(2a)を経た脱CO2排ガスに含まれるアミン化合物の濃度および/または工程(2a)を経た洗浄水に含まれる炭酸イオンの濃度を測定する工程(6a)、および
工程(6a)で測定したアミン化合物の濃度および/または炭酸イオンの濃度の値に基づいて、工程(2a)において脱CO2排ガスに接触させる洗浄水の量を調整する工程(7a)を有する、二酸化炭素の除去方法。 A step (1) of obtaining a de-CO 2 exhaust gas by contacting an exhaust gas containing CO 2 with an absorbing solution comprising an amine compound aqueous solution to absorb CO 2 in the exhaust gas into the absorbing solution;
A step (2a) of removing the amine compound accompanying the de-CO 2 exhaust gas by contacting the de-CO 2 exhaust gas obtained in the step (1) with washing water;
A step (3) of heating the absorbing solution that has absorbed CO 2 obtained in step (1) to drive CO 2 out of the absorbing solution;
A step of cooling the CO 2 expelled in the step (3) and condensing water accompanying the CO 2 ;
Supplying the condensed water obtained in step (4) to step (2a) as washing water (5),
Measure in step (6a) and step (6a) to measure the concentration of amine compound contained in the de-CO 2 exhaust gas after step (2a) and / or the concentration of carbonate ion contained in the wash water after step (2a) A method for removing carbon dioxide, comprising a step (7a) of adjusting the amount of cleaning water brought into contact with the de-CO 2 exhaust gas in step (2a) based on the concentration of the amine compound and / or the concentration of carbonate ions. - CO2を含有する排ガスとアミン化合物水溶液からなる吸収液とを接触させ排ガス中のCO2を吸収液に吸収させて脱CO2排ガスを得る工程(1)、
工程(1)で得られた脱CO2排ガスを洗浄水と接触させて脱CO2排ガスに同伴するアミン化合物を取り除く工程(2a)、
工程(1)で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す工程(3)、
工程(3)で追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる工程(4)、
工程(4)で得られた凝縮水を洗浄水として工程(2a)に供給する工程(5)、
工程(2a)における洗浄水の温度および工程(2a)を経た洗浄水に含まれるアミン化合物の濃度を測定し、工程(2a)を経た脱CO2排ガスに含まれるアミン化合物の濃度を推算する工程(6b)、および
工程(6b)で推算したアミン化合物の濃度の値に基づいて、工程(2a)において脱CO2排ガスに接触させる洗浄水の量を調整する工程(7b)を有する、二酸化炭素の除去方法。 A step (1) of obtaining a de-CO 2 exhaust gas by contacting an exhaust gas containing CO 2 with an absorbing solution comprising an amine compound aqueous solution to absorb CO 2 in the exhaust gas into the absorbing solution;
A step (2a) of removing the amine compound accompanying the de-CO 2 exhaust gas by contacting the de-CO 2 exhaust gas obtained in the step (1) with washing water;
A step (3) of heating the absorbing solution that has absorbed CO 2 obtained in step (1) to drive CO 2 out of the absorbing solution;
A step of cooling the CO 2 expelled in the step (3) and condensing water accompanying the CO 2 ;
Supplying the condensed water obtained in step (4) to step (2a) as washing water (5),
The step of measuring the temperature of the wash water in step (2a) and the concentration of the amine compound contained in the wash water passed through step (2a), and estimating the concentration of the amine compound contained in the de-CO 2 exhaust gas passed through step (2a) (6b) and carbon dioxide having a step (7b) of adjusting the amount of cleaning water brought into contact with the de-CO 2 exhaust gas in step (2a) based on the concentration value of the amine compound estimated in step (6b) Removal method. - 工程(2a)を経た洗浄水の一部を工程(2a)に戻し、その残部を工程(1)を経た吸収液に合流させる工程(8a)をさらに有する、請求項1または2に記載の方法。 The method according to claim 1 or 2, further comprising a step (8a) of returning a part of the washing water having undergone the step (2a) to the step (2a) and joining the remaining portion to the absorbent having undergone the step (1). .
- 工程(2a)を経た洗浄水の一部を工程(2a)に戻し、その残部を工程(1)で使用される吸収液に合流させる工程(8b)をさらに有する、請求項1または2に記載の方法。 3. The method according to claim 1, further comprising a step (8b) of returning a part of the washing water that has undergone the step (2a) to the step (2a) and merging the remaining portion with the absorbent used in the step (1). the method of.
- 工程(1)と工程(2a)との間に、 工程(1)で得られた脱CO2排ガスを工程(2a)を経た洗浄水と接触させて脱CO2排ガスに同伴するアミン化合物を取り除く工程(2b)を少なくともひとつさらに有し、
工程(1)で得られた脱CO2排ガスの代わりに工程(2b)を経た脱CO2排ガスを工程(2a)に供給する、請求項1または2に記載の方法。 Between step (1) and step (2a), the de-CO 2 exhaust gas obtained in step (1) is brought into contact with the wash water passed through step (2a) to remove amine compounds accompanying the de-CO 2 exhaust gas. Further comprising at least one step (2b),
Feeding step of de-CO 2 gas through the steps (2b) instead of de-CO 2 exhaust gas obtained in (1) to step (2a), A method according to claim 1 or 2. - 工程(2a)を経た洗浄水の一部を工程(2a)に戻し、その残部を工程(2b)に供給する工程(8c)と、
工程(2b)を経た洗浄水の一部を工程(2b)に戻し、その残部を工程(1)を経た吸収液に合流させる工程(8d)をさらに有する、請求項5に記載の方法。 A step (8c) of returning a part of the washing water that has undergone step (2a) to step (2a) and supplying the remainder to step (2b);
The method according to claim 5, further comprising a step (8d) of returning a part of the washing water that has undergone the step (2b) to the step (2b) and merging the remaining portion with the absorbent that has undergone the step (1). - 工程(2a)を経た洗浄水の一部を工程(2a)に戻し、その残部を工程(2b)に供給する工程(8c)と、
工程(2b)を経た洗浄水の一部を工程(2b)に戻し、その残部を工程(1)で使用される吸収液に合流させる工程(8e)をさらに有する、請求項5に記載の方法。 A step (8c) of returning a part of the washing water that has undergone step (2a) to step (2a) and supplying the remainder to step (2b);
The method according to claim 5, further comprising a step (8e) of returning a part of the washing water that has undergone step (2b) to step (2b) and merging the remaining portion with the absorbent used in step (1). . - CO2を含有する排ガスとアミン化合物水溶液からなる吸収液とを向流接触させ排ガス中のCO2を吸収液に吸収させて脱CO2排ガスを得る機能を有するCO2吸収部と、
CO2吸収部で得られた脱CO2排ガスを洗浄水と向流接触させて脱CO2排ガスに同伴するアミン化合物を取り除く機能を有する洗浄部と、
CO2吸収部で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す機能を有する吸収液再生部と、
吸収液再生部において追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる機能を有する凝縮器と、
凝縮器で得られた凝縮水を洗浄水として洗浄部に供給する管と、
洗浄部を経た洗浄水に含まれる炭酸イオン濃度を測定する手段および/または洗浄部を経た脱CO2排ガスに含まれるアミン化合物濃度を測定する手段と、
測定したアミン化合物の濃度および/または炭酸イオンの濃度の値に基づいて、洗浄部に供給する洗浄水の量を調整する手段とを有する、二酸化炭素除去装置。 A CO 2 absorber having a function of obtaining a de-CO 2 exhaust gas by countercurrently contacting an exhaust gas containing CO 2 and an absorption liquid comprising an aqueous amine compound solution to absorb CO 2 in the exhaust gas into the absorption liquid;
A cleaning unit having a function of removing an amine compound of de CO 2 exhaust gas obtained in the CO 2 absorbing section by the washing water and the flow contact entrained in de CO 2 gas,
An absorption liquid regeneration unit having a function of heating the absorption liquid that has absorbed CO 2 obtained in the CO 2 absorption part to drive CO 2 out of the absorption liquid;
A condenser having a function of condensing the water entrained in the CO 2 cooled the CO 2 expelled in the absorbent solution regeneration section,
A pipe for supplying the condensed water obtained in the condenser to the washing section as washing water;
Means for measuring the carbonate ion concentration contained in the wash water passed through the washing section and / or means for measuring the amine compound concentration contained in the de-CO 2 exhaust gas passed through the washing section;
And a means for adjusting the amount of cleaning water supplied to the cleaning unit based on the measured concentration of amine compound and / or carbonate ion concentration. - CO2を含有する排ガスとアミン化合物水溶液からなる吸収液とを向流接触させ排ガス中のCO2を吸収液に吸収させて脱CO2排ガスを得る機能を有するCO2吸収部と、
CO2吸収部で得られた脱CO2排ガスを洗浄水と向流接触させて脱CO2排ガスに同伴するアミン化合物を取り除く機能を有する洗浄部と、
CO2吸収部で得られたCO2を吸収した吸収液を加熱して該吸収液からCO2を追い出す機能を有する吸収液再生部と、
吸収液再生部において追い出されたCO2を冷やして該CO2に同伴する水を凝縮させる機能を有する凝縮器と、
凝縮器で得られた凝縮水を洗浄水として洗浄部に供給する管と、
洗浄部における洗浄水の温度および洗浄部を経た洗浄水に含まれるアミン化合物の濃度を測定し、洗浄部を経た脱CO2排ガスに含まれるアミン化合物濃度を推算する手段と、
推算したアミン化合物の濃度の値に基づいて、洗浄部に供給する洗浄水の量を調整する手段とを有する、二酸化炭素除去装置。 A CO 2 absorber having a function of obtaining a de-CO 2 exhaust gas by countercurrently contacting an exhaust gas containing CO 2 and an absorption liquid comprising an aqueous amine compound solution to absorb CO 2 in the exhaust gas into the absorption liquid;
A cleaning unit having a function of removing an amine compound of de CO 2 exhaust gas obtained in the CO 2 absorbing section by the washing water and the flow contact entrained in de CO 2 gas,
An absorption liquid regeneration unit having a function of heating the absorption liquid that has absorbed CO 2 obtained in the CO 2 absorption part to drive CO 2 out of the absorption liquid;
A condenser having a function of condensing the water entrained in the CO 2 cooled the CO 2 expelled in the absorbent solution regeneration section,
A pipe for supplying the condensed water obtained in the condenser to the washing section as washing water;
Means for measuring the temperature of the washing water in the washing section and the concentration of the amine compound contained in the washing water that has passed through the washing section, and estimating the concentration of the amine compound contained in the de-CO 2 exhaust gas that has passed through the washing section;
And a means for adjusting the amount of cleaning water supplied to the cleaning unit based on the estimated value of the concentration of the amine compound. - 洗浄部を経た洗浄水の一部を洗浄部に戻し、その残部をCO2吸収部を経た吸収液に合流させる管をさらに有する、請求項8または9に記載の装置。 The apparatus according to claim 8 or 9, further comprising a pipe that returns a part of the washing water that has passed through the washing part to the washing part and joins the remaining part to the absorbing solution that has passed through the CO 2 absorption part.
- 洗浄部を経た洗浄水の一部を洗浄部に戻し、その残部をCO2吸収部で使用される吸収液に合流させる管をさらに有する、請求項8または9に記載の装置。 The apparatus according to claim 8 or 9, further comprising a pipe for returning a part of the washing water that has passed through the washing part to the washing part and merging the remaining part with the absorbent used in the CO 2 absorption part.
- CO2吸収部と洗浄部との間に、CO2吸収部で得られた脱CO2排ガスを洗浄部を経た洗浄水と向流接触させて脱CO2排ガスに同伴するアミン化合物を取り除く機能を有する追加洗浄部を少なくとも一つと、
CO2吸収部で得られた脱CO2排ガスの代わりに追加洗浄部を経た脱CO2排ガスを洗浄部に供給する管をさらに有する、請求項8または9に記載の装置。 Between the CO 2 absorbing section and the cleaning section, the function of removing the amine compound accompanying the de-CO 2 exhaust gas obtained in the CO 2 absorbing section by washing water countercurrent contact through the cleaning section to the de-CO 2 gas Having at least one additional cleaning section,
The apparatus according to claim 8 or 9, further comprising a pipe for supplying de-CO 2 exhaust gas that has passed through an additional cleaning unit to the cleaning unit in place of the de-CO 2 exhaust gas obtained in the CO 2 absorption unit. - 洗浄部を経た洗浄水の一部を洗浄部に戻し、その残部を追加洗浄部に供給する管と、
追加洗浄部を経た洗浄水の一部を追加洗浄部に戻し、その残部をCO2吸収部を経た吸収液に合流させる管をさらに有する、請求項12に記載の装置。 A pipe that supplies a part of the washing water that has passed through the washing part to the washing part and supplies the remaining part to the additional washing part,
The apparatus according to claim 12, further comprising a pipe that returns a part of the washing water that has passed through the additional cleaning unit to the additional cleaning unit and joins the remaining part to the absorbing solution that has passed through the CO 2 absorption unit. - 洗浄部を経た洗浄水の一部を洗浄部に戻し、その残部を追加洗浄部に供給する管と、
追加洗浄部を経た洗浄水の一部を追加洗浄部に戻し、その残部をCO2吸収部で使用される吸収液に合流させる管をさらに有する、請求項12に記載の装置。 A pipe that supplies a part of the washing water that has passed through the washing part to the washing part and supplies the remaining part to the additional washing part,
The apparatus according to claim 12, further comprising a pipe that returns a part of the washing water that has passed through the additional washing unit to the additional washing unit, and joins the remaining part to the absorption liquid used in the CO 2 absorption unit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-127265 | 2011-06-07 | ||
JP2011127265A JP5697250B2 (en) | 2011-06-07 | 2011-06-07 | Control method and control device for carbon dioxide removal device in combustion exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012169192A1 true WO2012169192A1 (en) | 2012-12-13 |
Family
ID=47295775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/003722 WO2012169192A1 (en) | 2011-06-07 | 2012-06-07 | Carbon dioxide eliminating device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5697250B2 (en) |
WO (1) | WO2012169192A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016066553A1 (en) * | 2014-10-27 | 2016-05-06 | Thyssenkrupp Industrial Solutions Ag | Column with absorption, scrubbing and cooling region and method for purifying a gas |
JP2020082017A (en) * | 2018-11-29 | 2020-06-04 | 株式会社東芝 | Carbon dioxide recovery system and its operating method |
JP2020179379A (en) * | 2019-04-26 | 2020-11-05 | 株式会社東芝 | Acid gas removal device and removal method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6347359B2 (en) * | 2014-01-31 | 2018-06-27 | 三菱重工エンジニアリング株式会社 | Gas absorption / regeneration device and operation method thereof |
JP6581768B2 (en) | 2014-11-04 | 2019-09-25 | 三菱重工エンジニアリング株式会社 | CO2 recovery apparatus and CO2 recovery method |
JP6811759B2 (en) * | 2018-11-09 | 2021-01-13 | 三菱重工エンジニアリング株式会社 | CO2 capture device and CO2 capture method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09875A (en) * | 1995-06-23 | 1997-01-07 | Babcock Hitachi Kk | Absorption liquid of carbon dioxide and method for absorbing carbon dioxide in gas to be treated using the absorption liquid |
JP2001252524A (en) * | 2000-03-10 | 2001-09-18 | Mitsubishi Heavy Ind Ltd | Method and apparatus for controlling absorbing liquid of decarbonation equipment |
JP2002126439A (en) * | 2000-10-25 | 2002-05-08 | Kansai Electric Power Co Inc:The | Method and apparatus for recovering amine and decarbonator provided with the apparatus |
CA2719640A1 (en) * | 2009-12-03 | 2011-06-03 | Mitsubishi Heavy Industries, Ltd. | Co2 recovery system and co2 recovery method |
-
2011
- 2011-06-07 JP JP2011127265A patent/JP5697250B2/en active Active
-
2012
- 2012-06-07 WO PCT/JP2012/003722 patent/WO2012169192A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09875A (en) * | 1995-06-23 | 1997-01-07 | Babcock Hitachi Kk | Absorption liquid of carbon dioxide and method for absorbing carbon dioxide in gas to be treated using the absorption liquid |
JP2001252524A (en) * | 2000-03-10 | 2001-09-18 | Mitsubishi Heavy Ind Ltd | Method and apparatus for controlling absorbing liquid of decarbonation equipment |
JP2002126439A (en) * | 2000-10-25 | 2002-05-08 | Kansai Electric Power Co Inc:The | Method and apparatus for recovering amine and decarbonator provided with the apparatus |
CA2719640A1 (en) * | 2009-12-03 | 2011-06-03 | Mitsubishi Heavy Industries, Ltd. | Co2 recovery system and co2 recovery method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016066553A1 (en) * | 2014-10-27 | 2016-05-06 | Thyssenkrupp Industrial Solutions Ag | Column with absorption, scrubbing and cooling region and method for purifying a gas |
JP2020082017A (en) * | 2018-11-29 | 2020-06-04 | 株式会社東芝 | Carbon dioxide recovery system and its operating method |
JP7189747B2 (en) | 2018-11-29 | 2022-12-14 | 株式会社東芝 | CO2 RECOVERY SYSTEM AND METHOD OF OPERATION THEREOF |
JP2020179379A (en) * | 2019-04-26 | 2020-11-05 | 株式会社東芝 | Acid gas removal device and removal method |
Also Published As
Publication number | Publication date |
---|---|
JP5697250B2 (en) | 2015-04-08 |
JP2012254390A (en) | 2012-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2786997C (en) | Water wash method and system for a carbon dioxide capture process | |
KR101661406B1 (en) | Degradation product-concentration measurement device, and acidic gas removal device | |
CA2774478C (en) | Amine capturing system and carbon dioxide capturing system | |
WO2012169192A1 (en) | Carbon dioxide eliminating device | |
US9901871B2 (en) | System for chemically absorbing carbon dioxide in combustion exhaust gas | |
AU2012280345B2 (en) | Method for mist control | |
CN103189126B (en) | From amino CO 2absorbent solution removes non-volatile matter | |
US9084959B2 (en) | CO2 recovering apparatus and operation control method of CO2 recovering apparatus | |
JP5741690B2 (en) | Carbon dioxide recovery method and recovery apparatus | |
JP5762253B2 (en) | Control method for CO2 chemical absorption system | |
CA3179020A1 (en) | Co2 recovery unit and co2 recovery method | |
JP2015097982A (en) | Reclaiming method | |
KR20160016144A (en) | System for collecting acid gas and method for collecting the same | |
JP2022047388A (en) | Acid gas removal control device, acid gas removal control method and acid gas removing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12797411 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12797411 Country of ref document: EP Kind code of ref document: A1 |