[go: up one dir, main page]

WO2012165457A1 - カルボキシル基含有ポリイミド、熱硬化性樹脂組成物及びフレキシブル金属張積層体 - Google Patents

カルボキシル基含有ポリイミド、熱硬化性樹脂組成物及びフレキシブル金属張積層体 Download PDF

Info

Publication number
WO2012165457A1
WO2012165457A1 PCT/JP2012/063870 JP2012063870W WO2012165457A1 WO 2012165457 A1 WO2012165457 A1 WO 2012165457A1 JP 2012063870 W JP2012063870 W JP 2012063870W WO 2012165457 A1 WO2012165457 A1 WO 2012165457A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
carboxyl group
weight
resin
Prior art date
Application number
PCT/JP2012/063870
Other languages
English (en)
French (fr)
Inventor
哲生 川楠
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2012535502A priority Critical patent/JP5304954B2/ja
Priority to EP12793349.7A priority patent/EP2716674B1/en
Priority to KR1020137022991A priority patent/KR101800061B1/ko
Priority to US13/979,750 priority patent/US9365717B2/en
Priority to CN201280012563.1A priority patent/CN103443158B/zh
Publication of WO2012165457A1 publication Critical patent/WO2012165457A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/343Polycarboxylic acids having at least three carboxylic acid groups
    • C08G18/346Polycarboxylic acids having at least three carboxylic acid groups having four carboxylic acid groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1035Preparatory processes from tetracarboxylic acids or derivatives and diisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a carboxyl group-containing polyimide as a raw material for a thermosetting polyimide resin that gives a cured product excellent in thermosetting, PCT resistance, solvent resistance, and peel strength as an adhesive or coating agent around an electronic material. And its prepolymer.
  • the present invention also relates to a thermosetting resin composition that can be suitably used as a resist layer of a printed circuit board, which simultaneously satisfies flame retardancy, solder heat resistance, heat deterioration resistance, and flexibility.
  • the present invention relates to a flexible metal-clad laminate having a resin layer and a metal foil layer obtained by thermosetting the carboxyl group-containing polyimide, and in particular, thermosetting, peel strength, PCT resistance, and solvent resistance.
  • the present invention relates to a flexible metal-clad laminate that can simultaneously satisfy the properties.
  • Polyimide is widely used around electronic materials and OA equipment because of its excellent heat resistance, electrical insulation reliability, chemical resistance, and mechanical properties. For example, it is used to form insulating films and protective coatings on semiconductor devices, base materials such as flexible circuit boards and integrated circuits, surface protective materials, and further, interlayer insulating films and protective films for fine circuits. .
  • polyimides are insoluble in the solution and have poor workability. For this reason, it is common to polymerize a precursor polyamic acid (also referred to as polyamic acid) in a solution and process it into a film or other molded article, followed by imidization. Usually, the conversion from polyamic acid to imide requires heating at 250 ° C. or higher.
  • polyamic acid has a characteristic that molecular weight lowering and resin structure branching are likely to occur due to hydrolysis by water generated by imidization or water present in the liquid.
  • the solution viscosity tends to decrease with time (see Non-Patent Document 1).
  • Such instability of the solution viscosity is particularly remarkable when stored at room temperature, and a homogeneous product cannot be obtained, which is not preferable from the viewpoint of practical use.
  • Patent Document 1 proposes an organic solvent-soluble modified polyimide having a polybutadiene skeleton, and thermosetting using blocked isocyanate as a curing agent for a terminal acid anhydride group-containing polyimide produced by an isocyanate method.
  • An example in which the composition is used as an overcoat agent for a flexible circuit board is disclosed.
  • this thermosetting composition has the following problems. (1) Sufficient thermosetting cannot be obtained because the acid anhydride group is only at the resin end. (2) Heat resistance is low by including a urethane bond in the resin skeleton. (3) Intramolecular cross-linking is caused by oxidation unique to the polybutadiene skeleton, and the resin gels during the reaction or the storage stability as the composition is remarkably lowered.
  • FPCs flexible printed wiring boards
  • characteristics such as flexibility, low warpage, solder heat resistance, migration resistance, and plating resistance.
  • a polyimide film called a coverlay film is punched with a mold that matches the pattern, and then pasted using an adhesive, or thermosetting
  • a mold or ultraviolet curable liquid or film solder resist agent is useful in terms of workability.
  • a polymer material (resin material) is ignited due to abnormal heating due to malfunction of a part, it may cause a fire. Is required.
  • a solder resist agent used for a flexible printed circuit board, there has been a recent trend of reducing environmental load, and non-halogen (halogen-free) reduction in harm, reduction in smoke generation, and reduction in flame resistance are desired.
  • the curing type solder resist agent is required to satisfy various physical properties depending on the application.
  • flame retardance is required as an important physical property in addition to solder heat resistance and flexibility, and the use is limited when flame retardance is low.
  • Patent Document 2 discloses a thermosetting composition using an epoxy compound as a curing agent in soluble polyimide having a carboxyl group in a side chain.
  • an epoxy compound as a curing agent
  • soluble polyimide having a carboxyl group in a side chain.
  • water is generated during the ring-closing reaction of the polyamic acid during the polymerization of the resin, the resin structure is branched, and the molecular weight of the resin is difficult to increase. For this reason, the cured product has low strength and poor durability.
  • it is difficult to have a high acid value and sufficiently increase the molecular weight of the resin.
  • excellent heat resistance and flexibility can be obtained by copolymerizing a silicone compound, there is a problem that adhesion to a substrate is low and flexibility is weak.
  • Patent Document 3 proposes to use a thermosetting resin composition containing a thermosetting polyurethane having a high acid value and an organic filler containing a phosphorus atom as a solder resist agent for a circuit substrate.
  • the thermosetting polyurethane used here has a low polymerizability of the carboxyl group-containing dihydroxy compound as a raw material, so that the molecular weight distribution tends to be widened, and the crosslinking point is locally biased in the resin main chain. As a result, much remains as an unreacted substance. Therefore, there has been a problem that sufficient thermosetting and flexibility cannot be obtained and heat resistance is low due to unreacted substances remaining.
  • Patent Document 4 discloses an example in which a thermosetting resin composition in which an epoxy compound is blended with polyamideimide as a curing agent is used as an overcoat agent for a flexible circuit board.
  • This thermosetting resin composition has a problem that sufficient thermosetting cannot be obtained because the crosslinking point is only at the resin terminal, and heat resistance is low because the resin skeleton contains a urethane bond. .
  • Patent Document 5 discloses an example in which a curable urethane resin is blended as an adhesive and a coating agent around an electronic material. Since the curable urethane resin used here is polymerized by a polymerization method via a urethane prepolymer, it is excellent in thermosetting and flexibility, but has low heat resistance by including a urethane bond in the resin skeleton. There was a problem.
  • the flexible printed circuit board may be subjected to a high temperature condition due to heat generation, and is required to maintain high reliability even in such an environment.
  • the resin dimensional change at high temperature is large, there is a problem that peeling occurs from a metal wiring such as copper forming a circuit, causing short circuit or disconnection.
  • the thermal dimensional change between the adhesive layer that bonds single-layer flexible substrates to each other, the polyimide film that forms the flexible substrate, and the metal wiring such as copper that forms the circuit If the difference is large, the same problem occurs.
  • Patent Document 6 discloses a technique for improving high-temperature physical properties by using an epoxy resin having excellent heat resistance and an inorganic compound in combination, but the effect of improving solvent resistance cannot be expected.
  • the present invention was devised in view of the current state of the prior art described above, and its first object is to provide a carboxyl which provides a cured product that can simultaneously satisfy thermosetting, PCT resistance, solvent resistance, and peel strength.
  • the object is to provide a group-containing polyimide and a terminal acid anhydride group-containing imide prepolymer as a raw material thereof.
  • the second object is to provide a thermosetting resin composition that simultaneously satisfies flame retardancy, solder heat resistance, heat deterioration resistance and flexibility.
  • the third object is to provide a flexible metal-clad laminate that can simultaneously satisfy thermosetting, peel strength, PCT resistance, and solvent resistance.
  • the present inventors have devised a method that does not require an imidization reaction that requires high temperature so as not to pass through a polyamic acid. That is, it discovered that the carboxyl group-containing polyimide which gives the hardened
  • the carboxyl group-containing polyimide of the present invention has the characteristics that there are few branches in the resin structure and the molecular weight of the resin is high.
  • thermosetting property comprising a carboxyl group-containing polyimide having a structure in which the above-mentioned terminal acid anhydride group-containing imide prepolymer is chain-extended through a polyol compound, and a compound containing an oxirane ring. It has been found that by providing a resin composition, the above properties can be highly satisfied at the same time.
  • the present inventors use a layer obtained by thermosetting the above-mentioned carboxyl group-containing polyimide as a resin layer of a flexible metal-clad laminate, so that thermosetting, peel strength, PCT resistance, and It has been found that a flexible metal-clad laminate that can simultaneously satisfy the solvent resistance can be provided.
  • a terminal acid anhydride group-containing imide prepolymer obtained by reacting an acid anhydride group in tetracarboxylic dianhydride with an isocyanate group in a diisocyanate compound.
  • Tetracarboxylic dianhydride is ethylene glycol bis (trimellitic anhydride) (TMEG), 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride (BPDA), pyromellitic dianhydride At least one selected from the group consisting of anhydride (PMDA), 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), and 4,4′-oxydiphthalic dianhydride (ODPA)
  • the diisocyanate compound is at least one compound selected from the group consisting of aromatic diisocyanates, aliphatic diisocyanates, and alicyclic diisocyanates, and any one of (1) to (3)
  • the terminal acid anhydride group containing imide prepolymer of description is represented by the following general formula [I]:
  • R 1 is an organic group excluding the carboxyl group of the acid dianhydride compound represented by the following general formula [II], and may contain a substituent having 1 carbon atom.
  • R 2 is an organic group excluding an isocyanate group of a diisocyanate compound represented by the following general formula [III].
  • a carboxyl group-containing polyimide wherein the terminal acid anhydride group-containing imide prepolymer according to any one of (1) to (5) has a structure in which a chain is extended via a polyol compound.
  • R 2 is an aromatic group having 1 to 30 carbon atoms, an alicyclic group, an aliphatic group, or a group having a heterocyclic ring, and R 2 represents an isocyanate group of a diisocyanate compound represented by the following general formula [III].
  • R 3 is an organic group, an aromatic group having 1 to 30 carbon atoms, an alicyclic group, or an aliphatic group which may contain a substituent, and R 3 is an alkylene group having 1 to 20 carbon atoms, Or a residue obtained by removing the hydroxyl group of a diol compound having at least one bond selected from an ester bond, a carbonate bond, and an ether bond, n and m are each an independent integer, and n is an integer of 1 to 30 , M is an integer from 1 to 200 There.
  • thermosetting resin composition used as a resist layer of a printed circuit board comprising the carboxyl group-containing polyimide according to any one of (6) to (10) and a compound containing an oxirane ring.
  • the weight ratio of the carboxyl group-containing polyimide, the compound containing an oxirane ring, and the organic filler containing a phosphorus atom is 30 to 95/1 to 50/2 to 55 (13) The thermosetting resin composition described in 1.
  • the total weight of the carboxyl group-containing polyimide, the compound containing an oxirane ring, and the organic filler containing a phosphorus atom is 20% by weight or more in the thermosetting resin composition (13). ) Or the thermosetting resin composition according to (14).
  • An electronic apparatus comprising the flexible printed circuit board according to (18).
  • the carboxyl group-containing polyimide of the present invention By polymerizing the terminal acid anhydride group-containing imide prepolymer of the present invention, it is possible to provide a carboxyl group-containing polyimide that gives a cured product having high thermosetting, PCT resistance, solvent resistance, and peel strength at the same time. . Furthermore, if the carboxyl group-containing polyimide of the present invention is used in combination with a thermosetting agent, a highly crosslinked structure can be formed, and a tough cured coating film can be obtained. Moreover, since the carboxyl group-containing polyimide of the present invention gives a cured product that satisfies the above characteristics to a high degree, it is suitably used for resist inks and adhesives, automobile parts using these, printed circuit boards such as electrical appliances, and the like.
  • thermosetting resin composition of the present invention can satisfy the characteristics such as flame retardancy, solder heat resistance, heat deterioration resistance, and flexibility at the same time, it can be used for printed circuit boards such as automobile parts and electrical appliances. It can be suitably used as a resist layer.
  • the flexible metal-clad laminate of the present invention has a resin layer obtained by thermosetting a novel carboxyl group-containing polyimide having the characteristics that the resin structure has few branches and the resin has a high molecular weight. , Peel strength, PCT resistance, and solvent resistance can be satisfied simultaneously.
  • FIG. 1 shows 1 H of the carboxyl group-containing thermosetting polyimides (1-1, 1′-1 and 1 ′′ -1) obtained in Synthesis Examples 1-1, 1′-1 and 1 ′′ -1. -NMR spectrum.
  • FIG. 2 shows 1 H of the carboxyl group-containing thermosetting polyimides (1-2, 1′-2 and 1 ′′ -2) obtained in Synthesis Examples 1-2, 1′-2 and 1 ′′ -2. -NMR spectrum.
  • terminal acid anhydride group-containing imide prepolymer is an imide prepolymer containing an acid anhydride group at the terminal.
  • the “imide prepolymer” refers to a structural unit of a polymer having an imide bond in the structure and obtained based on the imide prepolymer.
  • Terminal acid anhydride group-containing means having an acid anhydride at the molecular end.
  • the “terminal acid anhydride group-containing imide prepolymer” of the present invention is obtained by reacting an acid anhydride group in tetracarboxylic dianhydride with an isocyanate group in a diisocyanate compound.
  • an imide bond can be generated without requiring an imidation reaction from a polyamic acid that requires a high temperature, and high heat resistance derived from the imide bond can be imparted.
  • a polymer can be obtained by polymerization with a compound having two or more functional groups capable of reacting with the acid anhydride group, or a compound containing an oxirane ring. By combining with such a thermosetting agent, a composition that forms a crosslinked structure can also be obtained.
  • the terminal acid anhydride group-containing imide prepolymer of the present invention generates an imide bond by reacting with a tetracarboxylic dianhydride by an isocyanate method using a diisocyanate compound. For this reason, since there is no production
  • the “carboxyl group-containing polyimide” of the present invention is a carboxyl group-containing polyimide obtained by reacting a terminal acid anhydride group-containing imide prepolymer with a polyol compound.
  • the carboxyl group-containing polyimide of the present invention is not limited to the above reaction order as long as it has a structure obtained by the above reaction.
  • the following reaction steps (1) to (2) are also included in the category.
  • (1) A tetracarboxylic dianhydride and a diisocyanate compound are reacted to form a terminal acid anhydride group-containing imide prepolymer.
  • a carboxyl group-containing polyimide having little branched structure and unreacted substances and high molecular weight can be obtained.
  • the carboxyl group-containing polyimide which has many carboxyl groups derived from tetracarboxylic dianhydride in a principal chain is obtained.
  • a thermosetting agent such as a compound containing a carboxyl group-containing polyimide and an oxirane ring, a highly crosslinked structure can be formed at a low temperature.
  • the carboxyl group-containing polyimide of the present invention and a crosslinked product thereof can be suitably used around an electronic material that requires thermosetting, PCT resistance, solvent resistance, and peel strength.
  • terminal acid anhydride group-containing imide prepolymer of the present invention will be described.
  • the terminal acid anhydride group-containing imide prepolymer of the present invention is preferably one represented by the following general formula [I].
  • R 1 is an organic group excluding the carboxyl group of the acid dianhydride compound represented by the following general formula [II], and may contain a substituent having 1 carbon atom.
  • R 2 is an organic group excluding an isocyanate group of a diisocyanate compound represented by the following general formula [III].
  • the tetracarboxylic dianhydride used in the terminal acid anhydride group-containing imide prepolymer is not particularly limited.
  • the tetracarboxylic dianhydride is ethylene glycol bis (trimellitic anhydride) (TMEG), 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride (BPDA), pyromellitic dianhydride.
  • TMEG ethylene glycol bis (trimellitic anhydride)
  • BPDA 4,4′-diphenyltetracarboxylic dianhydride
  • PMDA 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride
  • ODPA 4,4′-oxydiphthalic dianhydride
  • tetracarboxylic dianhydrides may be used alone or in combination of two or more.
  • diisocyanate compound used for a terminal acid anhydride group containing imide prepolymer For example, at least 1 type of compound chosen from the group which consists of aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate Is exemplified.
  • an aromatic diisocyanate is preferable when the heat resistance of the resin composition is particularly improved, and an aliphatic diisocyanate or an alicyclic diisocyanate is preferable when the flexibility of the resin composition is particularly improved.
  • Aromatic diisocyanates include 2,4-toluene diisocyanate (“TDI”), 2,6-toluene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate (“ MDI "), 1,5-naphthalene diisocyanate, p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate and the like.
  • TDI 2,4-toluene diisocyanate
  • MDI 4,4′-diphenylmethane diisocyanate
  • aliphatic diisocyanate examples include ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • alicyclic diisocyanate examples include 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate, and the like.
  • the diisocyanate compound is particularly preferably 4,4'-diphenylmethane diisocyanate or 2,4-toluene diisocyanate.
  • the diisocyanate compound can be appropriately selected and used according to the purpose and application, and may be used alone or in combination of two or more.
  • the terminal acid anhydride group-containing imide prepolymer can be produced by reacting an acid anhydride group in tetracarboxylic dianhydride with an isocyanate group in a diisocyanate compound.
  • the acid anhydride group and the isocyanate group react to generate an imide bond.
  • the raw material charge molar ratio is adjusted according to the molecular weight and acid value of the target carboxyl group-containing polyimide.
  • the terminal acid anhydride group-containing imide prepolymer can be obtained by a conventionally known method. For example, it is preferable to make it react at 60 degreeC or more and 200 degrees C or less in presence of a solvent in the reaction tank equipped with the stirrer and the thermometer. More preferably, the reaction is performed at 100 ° C. or higher and 180 ° C. or lower. When the temperature is 60 ° C. or higher and 200 ° C. or lower, the reaction time is short, the monomer components are not easily decomposed, and gelation due to the three-dimensional reaction hardly occurs.
  • the reaction temperature may be performed in multiple stages. The reaction time can be appropriately selected depending on the scale of the batch, the reaction conditions employed, particularly the reaction concentration.
  • any organic solvent having low reactivity with isocyanate can be used.
  • a solvent containing no basic compound such as amine is preferable.
  • solvents include toluene, xylene, ethylbenzene, nitrobenzene, cyclohexane, isophorone, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, dipropylene glycol methyl ether acetate, diethylene glycol ethyl.
  • the solvent is N, N-dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone or ⁇ -butyrolactone having good solubility. More preferred are N, N-dimethylacetamide and ⁇ -butyrolactone. Particularly preferred is ⁇ -butyrolactone.
  • a catalyst in order to accelerate the reaction.
  • amines such as triethylamine, lutidine, picoline, undecene, triethylenediamine (1,4-diazabicyclo [2.2.2] octane), DBU (1,8-diazabicyclo [5.4.0] -7-undecene)
  • Alkali metals such as lithium methylate, sodium methylate, sodium ethylate, potassium butoxide, potassium fluoride, sodium fluoride, etc., metals such as alkaline earth metal compounds or titanium, cobalt, tin, zinc, aluminum,
  • the reaction may be performed in the presence of a catalyst such as a metalloid compound.
  • the number average molecular weight of the terminal acid anhydride group-containing imide prepolymer is preferably 500 or more and 5000 or less, more preferably 500 or more and 4500 or less, and further preferably 500 or more and 4000 or less. If the number average molecular weight is 500 or more and 5000 or less, the solubility in a solvent is good and it is optimal for increasing the molecular weight of a carboxyl group-containing polyimide. Moreover, since sufficient carboxyl groups for thermosetting can be introduced into the resin, thermosetting is improved. Moreover, a hard cured coating film can be formed.
  • polyimide has low solubility in organic solvents, and polymer components may precipitate over time.
  • the terminal acid anhydride group-containing imide prepolymer of the present invention has a low number average molecular weight of 500 or more and 5000 or less. Shows solubility.
  • “showing good solubility in organic solvents” means toluene, xylene, ethylbenzene, nitrobenzene, cyclohexane, isophorone, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate , Dipropylene glycol methyl ether acetate, diethylene glycol ethyl ether acetate, methyl methoxypropionate, ethyl methoxypropionate, methyl ethoxypropionate, ethyl ethoxypropionate, ethyl acetate, n-butyl acetate, isoamyl acetate, ethyl lactate, acetone, methyl ethyl ketone , Cyclohexanone, N, N-dimethylformamide, N, N-dimethylacet
  • the resin is in a solid state, whether or not it has been dissolved is determined by adding a specified weight of resin powder passing through 80 mesh into a 200 ml beaker and gently stirring at 25 ° C. for 24 hours. The solution was allowed to stand at 25 ° C. for 24 hours, and it was determined that the solution that was not gelled, non-uniformized, clouded, or precipitated was dissolved.
  • the terminal acid anhydride group-containing imide prepolymer of the present invention can be obtained by prepolymerizing a tetracarboxylic dianhydride and a diisocyanate compound by an isocyanate method. Since the terminal acid anhydride group-containing imide prepolymer of the present invention does not go through a polyamic acid, it can suppress the production of water due to the ring closure reaction. Therefore, the terminal acid anhydride group-containing imide prepolymer of the present invention has the following characteristics. (1) No branched structure, straight chain (2) Reactive acid anhydride groups at both molecular ends
  • the carboxyl group-containing polyimide of the present invention obtained by chain extension of the terminal acid anhydride group-containing imide prepolymer of the present invention with a polyol compound has the following characteristics. (1) Sufficiently high molecular weight without gelation (2) Having many carboxyl groups in the side chain Heat having functional groups capable of reacting with carboxyl groups in this high molecular weight carboxyl group-containing polyimide
  • a composition containing a curing agent exhibits good thermosetting properties. Since it has a tough and high cohesive force as a cured coating film, it exhibits good peel strength with respect to substrates such as films and metal foils. Moreover, the high PCT resistance and solvent resistance derived from an imide bond can be provided.
  • the carboxyl group-containing polyimide of the present invention can be obtained by reacting a terminal acid anhydride group-containing imide prepolymer with a polyol compound.
  • a polyol compound a branched or linear diol compound having two hydroxyl groups and optionally a branched or linear triol compound having three hydroxyl groups can be used.
  • Examples of the branched or linear diol compound having two hydroxyl groups that can be used as the polyol compound, and optionally the branched or linear triol compound having three hydroxyl groups include an alkylene polyol compound, a carboxyl group-containing polyol compound, Examples thereof include polyoxyalkylene polyol compounds, polycarbonate polyol compounds, polycaprolactone polyol compounds, and the like, and these can be used alone or in combination of two or more.
  • branched or linear diol compound having two hydroxyl groups that can be used as the polyol compound include the following.
  • Alkylene diols Dimethylolpropionic acid (2,2-bis (hydroxymethyl) propionic acid), dimethylolbutanoic acid (2,2-bis (hydroxymethyl) butanoic acid), 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid Carboxyl group-containing diol compounds such as acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, Polyoxyalkylenediol compounds such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, random copolymers of tetramethylene glycol and neopentyl glycol, A polyester diol compound obtained by reacting a polyhydric alcohol and a polybasic acid, A polycarbonate diol compound having a carbonate skeleton, polycaprolactone diol compounds obtained by ring-opening addition reaction of lactones such as
  • triol compound having optionally three hydroxyl groups that can be used as the polyol compound include the following.
  • Polyether polyols such as copolymers, polyhydric alcohols or polyether polyols and maleic anhydride, maleic acid, fumaric acid Polyester polyols that
  • a branched or linear triol compound having these three hydroxyl groups When a branched or linear triol compound having these three hydroxyl groups is used, a part of the resulting carboxyl group-containing polyimide can be branched. For this reason, the crosslinking density of a carboxyl group-containing polyimide increases, and the resistance of a cured coating film can be improved. Thus, in order to further improve the resistance of the cured coating film, a branched or linear triol compound having three hydroxyl groups may be used as necessary.
  • a polycarbonate polyol compound can be used as the polyol compound.
  • a polycarbonate polyol compound is used, it is preferably a polycarbonate diol compound.
  • the carboxyl group-containing polyimide of the present invention is used for electronic materials and the like, it can exhibit high electrical insulation and hydrolysis resistance.
  • the polycarbonate diol compound is, for example, (I) reaction of glycol or bisphenol with carbonate ester; (Ii) a reaction in which phosgene is allowed to act on glycol or bisphenol in the presence of an alkali; Etc.
  • Specific examples of the carbonic acid ester used in the production method (i) include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, ethylene carbonate, and propylene carbonate.
  • glycol or bisphenol used in the production methods (i) and (ii) examples include ethylene glycol, propylene glycol, dipropylene glycol, diethylene glycol, triethylene glycol, butylene glycol, 3-methyl-1,5-pentanediol, -Methyl-1,8-octanediol, 3,3'-dimethylolheptane, polyoxyethylene glycol, polyoxypropylene glycol propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane Diol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, octanediol, butylethylpentanediol, 2-ethyl-1,3-hexanediol, cyclohexanediol, 1, - cyclohexane
  • the polycarbonate diol compound is preferably Kuraray Kuraray Polyol C series manufactured by Kuraray Co., Ltd., and Asahi Kasei Chemicals Co., Ltd. Duranol series. Among them, C-2090 (Kuraray Co., Ltd. carbonate diol: 3-methyl-1) is preferable.
  • T5650E Asahi Kasei Chemicals Corporation polycarbonate diol: 1,5-pentanediol / 1,6-hexanediol, number average molecular weight About 500
  • T5651 polycarbonate diol: 1,5-pentanediol / 1,6-hexanediol manufactured by Asahi Kasei Chemicals Corporation, number average molecular weight of about 1,000
  • a polyester polyol compound can be used as the polyol compound.
  • a polyester diol compound is particularly preferable.
  • OD-X-688 aliphatic polyester diol manufactured by DIC Corporation: adipic acid / neopentyl glycol / 1,6-hexanediol, number average molecular weight of about 2,000
  • Vylon 220 Toyobo Co., Ltd.
  • the number average molecular weight of the polyol compound is preferably 100 or more and 30000 or less, more preferably 200 or more and 20000 or less, and further preferably 200 or more and 10,000 or less.
  • the carboxyl group-containing polyimide is particularly likely to have a high molecular weight.
  • sufficient carboxyl groups to be thermally cured can be introduced into the carboxyl group-containing polyimide.
  • a hard cured coating film can be formed.
  • a carboxyl group-containing polyimide can be produced by chain-extending a terminal acid anhydride group-containing imide prepolymer with a polyol compound.
  • the ring opening reaction of the terminal acid anhydride group-containing imide prepolymer proceeds by reacting the acid anhydride group in the terminal acid anhydride group-containing imide prepolymer with the hydroxyl group of the polyol compound.
  • an ester bond can be formed, and on the other hand, two carboxyl groups (residual carboxyl groups) can be formed in the main chain of the carboxyl group-containing polyimide. Due to the presence of this carboxyl group, an excellent thermosetting property can be exhibited by using an appropriate amount of a compound containing an oxirane ring as a thermosetting agent.
  • the charged molar ratio of the terminal acid anhydride group-containing imide prepolymer and the polyol compound can be adjusted according to the molecular weight and acid value of the target carboxyl group-containing polyimide.
  • the combined amount of the diisocyanate compound and the polyol compound is important for controlling the molecular weight of the carboxyl group-containing polyimide.
  • the number average molecular weight of the carboxyl group-containing polyimide of the present invention is preferably 3000 or more and 100,000 or less, more preferably 7000 or more and 100,000 or less, and further preferably 10,000 or more and 100,000 or less.
  • a carboxyl group-containing thermosetting polyimide having a particularly good balance between heat resistance and solvent solubility can be obtained. Accordingly, it is possible to obtain a carboxyl group-containing polyimide having excellent thermosetting property and easy handling. Moreover, a hard cured coating film can be formed.
  • the carboxyl group-containing polyimide of the present invention is preferably one represented by the following general formula [IV] or [V].
  • R 1 is an organic group excluding the carboxyl group of the acid dianhydride compound represented by the following general formula [II], and may contain a substituent.
  • R 2 is an aromatic group having 1 to 30 carbon atoms, an alicyclic group, an aliphatic group, or a group having a heterocyclic ring, and R 2 represents an isocyanate group of a diisocyanate compound represented by the following general formula [III].
  • R 1 and R 2 in the general formula [II] and [III] have the same meanings as in formula [IV] and [V] R 1 and R 2 in.)
  • the reaction for chain extension of the terminal acid anhydride group-containing imide prepolymer with a polyol compound may be performed using a reaction can equipped with a stirrer and a thermometer.
  • the reaction can is carried out by dissolving the terminal acid anhydride group-containing imide prepolymer and the catalyst with a solvent, adding a polyol compound thereto, and polymerizing.
  • the polymerization temperature is preferably 60 to 150 ° C., and the polymerization time can be appropriately selected depending on the scale of the batch, the reaction conditions employed, particularly the reaction concentration.
  • the organic solvent used when producing the carboxyl group-containing polyimide the same solvent as that used when producing the terminal acid anhydride group-containing imide prepolymer mentioned above can be used.
  • N, N-dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, and ⁇ -butyrolactone having good solubility. More preferred are N, N-dimethylacetamide and ⁇ -butyrolactone. Particularly preferred is ⁇ -butyrolactone.
  • reaction catalyst used for producing the carboxyl group-containing polyimide examples include amines, quaternary ammonium salts, imidazoles, amides, pyridines, phosphines, and organometallic salts. More preferred are amine, pyridine and phosphine. More specifically, amines such as triethylamine and benzyldimethylamine; pyridines such as 4-dimethylaminopyridine; phosphines such as triphenylphosphine; Particularly preferred is 4-dimethylaminopyridine.
  • the acid value of the carboxyl group-containing polyimide of the present invention, 250-2500 is preferably equivalent / 10 6 g, more preferably from 350 to 2,200 equivalents / 10 6 g, more preferably 400 to 1,900 equivalents / 10 6 g.
  • the acid value is derived from a carboxyl group (corresponding to a carboxyl group equivalent). If the acid value of the carboxyl group-containing polyimide is 250 to 2500 equivalents / 10 6 g, a sufficient cross-linked structure can be obtained, and thermosetting, heat resistance, solvent resistance, flame resistance, heat deterioration resistance, flexibility, etc. can be obtained. Especially good. Also, curing shrinkage is less likely to occur.
  • thermosetting resin composition of the present invention contains the above-mentioned carboxyl group-containing polyimide and a compound containing an oxirane ring as essential components, and further contains an inorganic filler and / or a curing accelerator containing phosphorus atoms as optional components. Can do.
  • thermosetting agent that can be used in the present invention is a compound having a functional group capable of reacting with a carboxyl group of a carboxyl group-containing polyimide.
  • a compound containing an oxirane ring can be used as the thermosetting agent.
  • the compound containing an oxirane ring is not particularly limited as long as the oxirane ring is contained in the molecule.
  • an epoxy group-containing compound such as a novolac-type epoxy resin, an oxetane group-containing compound such as a novolac-type oxetane resin, and the like can be given.
  • Examples of the epoxy group-containing compound include bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, brominated bisphenol A type epoxy resin, phenol novolac type epoxy resin, o-cresol novolak type epoxy resin, Flexible epoxy resin, amine type epoxy resin, heterocyclic ring containing epoxy resin, alicyclic epoxy resin, bisphenol S type epoxy resin, dicyclopentadiene type epoxy resin, triglycidyl isocyanurate, bixylenol type epoxy resin, glycidyl group Compound etc. are mentioned.
  • the oxetane group-containing compound is not particularly limited as long as it has an oxetane ring in the molecule and can be cured.
  • 3-ethyl-3-hydroxymethyloxetane, 1,4-bis- ⁇ [(3 -Ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene 3-ethyl 3- (phenoxymethyl) oxetane, di [1-ethyl (3-oxetanyl)] methyl ether, 3-ethyl-3- (2-ethylhexyloxy) Methyl) oxetane, 3-ethyl-3- ⁇ [3- (triethoxyl) propoxy] methyl ⁇ oxetane, 3,3-bis (hydroxymethyl) oxetane, di [1-hydroxymethyl (3-oxetanyl)] methyl ether, 3,3-bis (hydroxymethyl) oxetane,
  • oxirane ring-containing compounds may be used alone or in combination of two or more.
  • These compounds containing an oxirane ring may further contain an epoxy compound having only one epoxy group in one molecule as a diluent.
  • the compound containing the oxirane ring to be added in advance may be added after dissolving in the same solvent as the solvent contained in the carboxyl group-containing polyimide, or the carboxyl group You may add directly to the containing polyimide.
  • a crosslinking aid can be used in combination as necessary.
  • Such crosslinking aids include glycidyl ether groups, glycidyl ester groups, glycidylamino groups, benzyloxymethyl groups, dimethylaminomethyl groups, diethylaminomethyl groups, dimethylolaminomethyl groups, diethylolaminomethyl groups, morpholinomethyl groups.
  • thermosetting property can be set in a desired range by adjusting the ratio of the oxirane ring and the carboxyl group involved in thermosetting.
  • the amount of the compound containing the oxirane ring may be determined in consideration of the application of the carboxyl group-containing polyimide of the present invention, and is not particularly limited, but the amount of the carboxyl group-containing polyimide of the present invention is 100 parts by weight. On the other hand, it is preferably in the range of 2 to 100 parts by weight, and more preferably in the range of 3 to 80 parts by weight.
  • the crosslink density of the cured product obtained from the carboxyl group-containing polyimide of the present invention can be adjusted to an appropriate value. This can be further improved.
  • the amount of the compound containing the oxirane ring is less than 2 parts by weight, the crosslinkability is deteriorated, and if it is more than 100 parts by weight, the crosslinkability is lowered, so that heat resistance, chemical resistance, solvent resistance And plating resistance may deteriorate.
  • thermosetting agent there is no particular limitation as long as it is a compound having a functional group capable of reacting with a hydroxyl group, a carboxyl group or the like as a thermosetting agent other than the compound containing the oxirane ring.
  • isocyanate compounds blocked isocyanate compounds, cyanate ester compounds, aziridine compounds, acid anhydride group-containing compounds, carboxyl group-containing compounds, carbodiimide group-containing compounds, benzoxazine compounds, maleimide compounds, citraconic imide compounds, nadiimides Compound, allyl nadiimide compound, vinyl ether compound, vinyl benzyl ether resin, thiol compound, melamine compound, guanamine compound, amino resin, phenol resin, alkyd resin, acrylic resin, unsaturated polyester resin, diallyl phthalate resin, silicone resin, xylene resin , Furan resin, ketone resin, triallyl cyanurate resin, resin containing tris (2-hydroxyethyl) isocyanurate, triallyl trimelli Resin containing over preparative, dicyclopentadiene resins, such as thermosetting resin by trimerization of aromatic dicyanamide and the like.
  • These compounds may be used alone or
  • the organic filler containing phosphorus atoms is for improving flame retardancy.
  • This organic filler has a high phosphorus content, a high flame retardancy efficiency, hardly undergoes hydrolysis, is hydrophobic, and has properties that do not deteriorate electrical properties. Therefore, by using this, a thermosetting resin composition excellent in flame retardancy and electrical insulation can be obtained.
  • the organic filler is an organic compound in the form of a fine powder, and refers to an insoluble or insoluble one in an organic solvent or water.
  • the organic filler containing a phosphorus atom is preferably composed of a phosphinic acid salt represented by the following general formula [VI].
  • R 1 and R 2 are each independently a linear or branched alkyl group or aryl group having 1 to 6 carbon atoms, and M is Mg, Ca, Al, Sb, (Sn, Ge, Ti, Fe, Zr, Zn, Ce, Bi, Sr, Mn, Li, Na, K or protonated nitrogen base, m is an integer of 1 to 4)
  • Examples of the organic filler containing phosphorus atoms include aluminum trisdiethylphosphinate, aluminum trismethylethylphosphinate, aluminum trisdiphenylphosphinate, zinc bisdiethylphosphinate, zinc bismethylethylphosphinate, zinc bisdiphenylphosphinate. Selected from the group consisting of titanyl bisdiethylphosphinate, titanium tetrakisdiethylphosphinate, titanyl bismethylethylphosphinate, titanium tetrakismethylethylphosphinate, titanyl bisdiphenylphosphinate, titanium tetrakisdiphenylphosphinate, and any mixture thereof What is done. Of these, aluminum trisdiethylphosphinate is preferred.
  • examples of the organic filler containing phosphorus atoms include organic phosphorus compounds.
  • organic filler containing a phosphorus atom for example, a compound having a triazine skeleton can also be used.
  • a compound having a triazine skeleton can also be used.
  • Specific examples include melamine polyphosphate, melam polyphosphate, melem polyphosphate, and the like.
  • the compound having a triazine skeleton is used as a flame retardant aid together with other organic fillers containing phosphorus atoms. By using both in combination, not only can excellent flame retardancy be achieved, but the total amount of organic filler containing phosphorus atoms can be reduced, resulting in a significant contribution to low warpage and flexibility.
  • the amount of the compound having a triazine skeleton is preferably 0 to 80 parts by weight, more preferably 10 to 70 parts by weight with respect to 100 parts by weight of the total amount of the organic filler containing phosphorus atoms.
  • the organic filler containing phosphorus atoms is not particularly limited as long as it is hardly soluble or insoluble in the organic solvent used in the present invention.
  • the average particle diameter of the organic filler containing phosphorus atoms is preferably 50 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the average particle diameter is larger than the above range, the surface area is reduced with respect to the amount used, and sufficient flame retardancy is not exhibited due to poor dispersion.
  • the performance required as a resist such as flexibility, adhesion, and long-term reliability, may be significantly reduced. Accordingly, it can be said that the average particle size should be as small as possible.
  • it may be previously pulverized by a bead mill or the like, or may be pulverized by a three roll or the like when blended with a resin.
  • the amount of the organic filler containing phosphorus atoms is preferably 5 to 125 parts by weight, more preferably 10 to 100 parts by weight, based on 100 parts by weight of the carboxyl group-containing polyimide (A). If the amount of the organic filler containing phosphorus atoms is too small, the flame retardant effect is insufficient. On the other hand, if the amount used is too large, adhesion to the substrate, low warpage, flexibility, etc. are reduced. There is a tendency.
  • the phosphorus content in the thermosetting resin composition of the present invention is preferably 0.3 to 10% by weight, more preferably 0.5 to 8.5% by weight, still more preferably 1 to 8% by weight. %. Therefore, the addition amount of the compound having an oxirane ring is adjusted so that the phosphorus content falls within this range. If the phosphorus content is less than the above range, good flame retardancy cannot be obtained, and if it exceeds the above range, the mechanical properties, heat resistance, adhesion and insulation properties of the coating film may be lowered.
  • the weight ratio of the carboxyl group-containing polyimide, the compound containing an oxirane ring, and the organic filler containing a phosphorus atom in the thermosetting resin composition of the present invention is preferably 30 to 95/1 to 50/2 to 55. More preferably, it is 35 to 90/2 to 45/5 to 50, and more preferably 45 to 85/3 to 25/10 to 35.
  • the compound containing an oxirane ring exceeds the above range, the crosslinkability tends to deteriorate.
  • the amount of the organic filler containing phosphorus atoms is less than the above range, the flame retardant effect is insufficient.
  • the amount is large, adhesion to the substrate, low warpage, flexibility, and the like tend to decrease.
  • the total weight of the carboxyl group-containing polyimide, the compound containing an oxirane ring, and the organic filler containing a phosphorus atom is preferably 20% by weight or more in the thermosetting resin composition. If it is less than the above range, the crosslinkability may be lowered, resulting in poor heat resistance or insufficient flame retardancy.
  • a curing accelerator can be used in order to further improve properties such as thermosetting, heat resistance, adhesion, chemical resistance, and solvent resistance.
  • the curing accelerator is not particularly limited as long as it can accelerate the curing reaction between the carboxyl group-containing polyimide and the compound containing an oxirane ring.
  • curing accelerators examples include imidazole derivatives, guanamines such as acetoguanamine and benzoguanamine, diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, melamine, Polyamines such as basic hydrazides, their organic acid salts and / or epoxy adducts, amine complexes of boron trifluoride, ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4-diamino-6 -Triazine derivatives such as xylyl-S-triazine, trimethylamine, triethanolamine, N, N-dimethyloctylamine, N-benzyldimethylamine, pyridine, N-methylmorpholine, hex
  • Examples include a molar reaction product, an equimolar reaction product of organic polyisocyanate such as tolylene diisocyanate and isophorone diisocyanate, and dimethylamine. You may use these individually or in combination of 2 or more types.
  • a curing accelerator having latent curability is preferable, and examples thereof include organic acid salts of DBU and DBN and / or tetraphenylboroate, and a photocationic polymerization catalyst.
  • the amount of the curing accelerator used is preferably 0 to 30 parts by weight with respect to 100 parts by weight of the compound containing an oxirane ring. If it exceeds 30 parts by weight, the storage stability of the carboxyl group-containing polyimide and the heat resistance and solvent resistance of the coating film may be lowered.
  • the amount of the inorganic or organic filler used is preferably 1 to 25% by weight when the entire nonvolatile content of the thermosetting resin composition is 100% by weight. More preferably, it is 2 to 15% by weight, particularly preferably 3 to 12% by weight. When the amount of the inorganic or organic filler used is less than 1% by weight, the printability tends to be lowered, and when it exceeds 25% by weight, the mechanical properties such as the flexibility of the coating film and the transparency tend to be lowered.
  • the resist ink is composed of a compound containing the above-mentioned carboxyl group-containing polyimide and oxirane ring, an organic filler and a curing accelerator containing a phosphorus atom as required, a solvent, and other ingredients as necessary. Is blended at a suitable ratio and mixed uniformly with a roll mill, a mixer or the like. The mixing method is not particularly limited as long as sufficient dispersion is obtained, but kneading a plurality of times with three rolls is preferable.
  • the same type of solvent as that used when producing the carboxyl group-containing polyimide can be used.
  • the viscosity of the resist ink with a B-type viscometer is preferably in the range of 50 dPa ⁇ s to 1000 dPa ⁇ s at 25 ° C., and more preferably in the range of 100 dPa ⁇ s to 800 dPa ⁇ s.
  • the viscosity is less than 50 dPa ⁇ s, the flow of the resist ink after printing tends to increase and the film thickness tends to be reduced.
  • the viscosity exceeds 1000 Pa ⁇ s, the transfer property of the resist ink to the base material is lowered during printing, causing blurring, and increasing voids and pinholes in the printed film.
  • an organic filler that does not contain inorganic or phosphorus atoms may be added to the resist ink.
  • These fillers are not particularly limited as long as they can be dispersed in a solution of a carboxyl group-containing polyimide (A) to form a resist ink and impart thixotropic properties to the resist ink.
  • the inorganic filler include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), and silicon nitride (Si 3 N 4 ).
  • the inorganic filler those having an average particle size of 50 ⁇ m or less and a maximum particle size of 100 ⁇ m or less are preferable, an average particle size of 20 ⁇ m or less is more preferable, and an average particle size of 10 ⁇ m or less is most preferable.
  • the average particle diameter (median diameter) here is determined on a volume basis using a laser diffraction / scattering particle size distribution measuring apparatus. When the average particle diameter exceeds 50 ⁇ m, it becomes difficult to obtain a resist ink having sufficient thixotropy, and the flexibility of the coating film is lowered. When the maximum particle diameter exceeds 100 ⁇ m, the appearance and adhesion of the coating film tend to be insufficient.
  • organic filler examples include polyimide resin particles, benzoguanamine resin particles, and epoxy resin particles.
  • known and commonly used colorants such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, crystal violet, titanium oxide, carbon black, naphthalene black, hydroquinone, hydroquinone monomethyl
  • known and conventional polymerization inhibitors such as ether, tert-butylcatechol, pyrogallol and phenothiazine
  • known and conventional thickeners such as olben, benton and montmorillonite
  • defoamers and leveling agents such as silicones, fluorines and polymers , Imidazole, thiazole, triazole, organoaluminum compounds, organotitanium compounds, organosilane compounds, etc.
  • resist ink When resist ink is used as, for example, a solder resist, the resist ink is applied to a flexible printed wiring board with a film thickness of 5 to 80 ⁇ m by a method such as screen printing, spraying, roll coating, electrostatic coating, or curtain coating. After the coating film is pre-dried at 60 to 100 ° C., it is dried at 100 to 200 ° C. and cured. Drying may be in air or in an inert atmosphere.
  • Resist ink is useful as a film-forming material in addition to solder resists for semiconductor elements, overcoats for various electronic components, and interlayer insulating films, and can also be suitably used as a paint, coating agent, adhesive, and the like.
  • the thermosetting resin composition of the present invention can be suitably used as a resist layer for printed circuit boards.
  • the “flexible metal-clad laminate” is a laminate formed from a metal foil and a resin layer, and is a laminate useful for manufacturing a flexible printed circuit board, for example.
  • the “flexible printed circuit board” can be manufactured, for example, by processing a circuit by a conventionally known method such as a subtractive method using a flexible metal-clad laminate, and if necessary, a conductor circuit Partially or entirely covered with a coverlay film or screen printing ink, so-called flexible substrate (FPC), flat cable, substrate for tape automated bonding (TAB), or TCP (tape carrier) Package) A generic name for substrates for mounting (chip-on-flexible substrates, etc.).
  • FPC flexible substrate
  • TAB substrate for tape automated bonding
  • TCP tape carrier
  • the present invention is a flexible metal-clad laminate having at least a metal foil layer and a resin layer, wherein the resin layer is obtained by thermosetting a carboxyl group-containing polyimide having a specific structure.
  • the metal foil layer and the resin layer may be laminated directly or indirectly.
  • the metal foil of the flexible metal-clad laminate of the present invention copper foil, aluminum foil, steel foil, nickel foil, and the like can be used. Composite metal foils obtained by combining these and other metals such as zinc and chromium compounds It can also be used for the metal foil treated with 1. Of these, copper foil is generally used.
  • the thickness of the metal foil is not particularly limited, but for example, a metal foil of 3 to 50 ⁇ m can be preferably used. In particular, for finer circuit pitches, the thickness is preferably 3 to 12 ⁇ m, and the surface roughness Rz of the coated surface is preferably in the range of 0.5 to 2.0 ⁇ m.
  • the metal foil is usually in the form of a ribbon, and its length is not particularly limited. Also, the width of the ribbon-like metal foil is not particularly limited, but generally it is preferably about 25 to 300 cm, particularly about 50 to 150 cm. As the copper foil, a commercially available electrolytic foil or a rolled foil can be used as it is.
  • HLS manufactured by Nippon Electrolytic Co., Ltd.
  • F0-WS Fluorescence-to-VLP
  • DFF Mitsui Mining & Smelting Co., Ltd.
  • the resin layer of the flexible metal-clad laminate of the present invention is a polyol compound containing a terminal acid anhydride group-containing imide prepolymer obtained by reacting an acid anhydride group in tetracarboxylic dianhydride with an isocyanate group in a diisocyanate compound. It is obtained by thermally curing a carboxyl group-containing polyimide having a structure extended through a chain.
  • the carboxyl group-containing polyimide When the carboxyl group-containing polyimide is thermally cured to obtain a resin layer, the carboxyl group-containing polyimide may be used after being dissolved in a solvent not containing a basic compound such as an amine.
  • solvents include toluene, xylene, ethylbenzene, nitrobenzene, cyclohexane, isophorone, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, dipropylene glycol methyl ether acetate, diethylene glycol ethyl.
  • N, N-dimethylacetamide, N-methylpyrrolidone, N-ethylpyrrolidone, and ⁇ -butyrolactone having good solubility. More preferred are N, N-dimethylacetamide and ⁇ -butyrolactone. Particularly preferred is ⁇ -butyrolactone.
  • the above carboxyl group-containing polyimide solution for the purpose of improving various properties of the flexible metal-clad laminate or flexible printed circuit board, for example, mechanical properties, electrical properties, slipperiness, flame retardancy, etc., the above carboxyl group-containing polyimide solution, Other resins, organic compounds, and inorganic compounds may be mixed or reacted to be used in combination.
  • lubricant silicon, talc, silicone, etc.
  • adhesion promoter flame retardant (phosphorus, triazine, aluminum hydroxide, etc.), stabilizer (antioxidant, UV absorber, polymerization inhibitor, etc.), plating activity Agents, organic and inorganic fillers (talc, titanium oxide, silica, fluorine polymer fine particles, pigments, dyes, calcium carbide, etc.), silicone compounds, fluorine compounds, isocyanate compounds, blocked isocyanate compounds, acrylic resins, urethanes Resin, polyester resin, polyamide resin, epoxy resin, phenolic resin and organic compounds, or these curing agents, inorganic compounds such as silicon oxide, titanium oxide, calcium carbonate, iron oxide and the like do not hinder the purpose of the present invention Can be used together in a range.
  • a catalyst for polyimide formation such as aliphatic tertiary amine, aromatic tertiary amine, heterocyclic tertiary amine, aliphatic acid anhydride, aromatic acid anhydride, hydroxy compound, etc. It may be added.
  • triethylamine, triethylenediamine, dimethylaniline, pyridine, picoline, isoquinoline, imidazole, undecene, hydroxyacetophenone and the like are preferable, and pyridine compound, imidazole compound and undecene compound are particularly preferable.
  • benzimidazole, triazole, 4 -Pyridinemethanol, 2-hydroxypyridine and diazabicyclo [5.4.0] undecene-7 are preferred, and 2-hydroxypyridine and diazabicyclo [5.4.0] undecene-7 are more preferred.
  • the production method of the flexible metal-clad laminate of the present invention is not particularly limited.
  • a carboxyl group-containing polyimide solution is applied directly to a metal foil or via an adhesive layer, and the coating film is dried (initial drying).
  • a method of heat treatment and solvent removal can be mentioned.
  • the coating method is not particularly limited, and a conventionally well-known method can be applied. For example, after adjusting the viscosity of the carboxyl group-containing polyimide solution with a roll coater, knife coater, doctor, blade coater, gravure coater, die coater, reverse coater, etc., it is applied directly to the metal foil or via an adhesive layer. be able to.
  • the adhesive composition in the case of laminating through the adhesive layer is not particularly limited, and acrylonitrile butadiene rubber (NBR) adhesive, polyamide adhesive, polyester adhesive, polyester urethane adhesive, epoxy resin Type, acrylic resin type, polyimide resin type, polyamideimide resin type, polyesterimide resin type and other adhesives can be used, but in terms of heat resistance, adhesiveness, bending resistance, etc., polyimide resin type, polyamideimide resin type, or A resin composition in which an epoxy resin is blended with these resins is preferable, and the thickness of the adhesive layer is preferably about 5 to 30 ⁇ m.
  • NBR acrylonitrile butadiene rubber
  • the above adhesive is further applied for the purpose of improving various properties of the flexible printed circuit board. You can also.
  • the adhesive composition and thickness are the same as described above from the viewpoints of heat resistance, adhesiveness, bending resistance, curling properties of the flexible printed wiring board, and the conditions for application and drying are the same as those for the carboxyl group-containing polyimide solution. Can be applied.
  • the initial boiling point is 70 to 130 ° C lower than the boiling point (Tb (° C)) of the solvent used in the carboxyl group-containing polyimide solution, and then the boiling point of the solvent. Further drying (secondary drying) at a temperature close to or above the boiling point is preferred.
  • the initial drying temperature varies depending on the type of solvent, but is generally about 60 to 150 ° C., preferably about 80 to 120 ° C.
  • the time required for the initial drying is generally an effective time for the solvent remaining rate in the coating film to be about 5 to 40% under the above-mentioned temperature conditions, but is generally about 1 to 30 minutes, particularly 2 About 15 minutes is preferable.
  • the secondary drying conditions are not particularly limited, and may be dried at a temperature close to the boiling point of the solvent or at a temperature equal to or higher than the boiling point. . If it is less than 120 degreeC, drying time will become long and productivity will fall, and when it exceeds 400 degreeC, a degradation reaction may advance depending on resin composition, and a resin film may become fragile.
  • the time required for the secondary drying is generally an effective time at which the solvent residual ratio in the coating film is eliminated under the above temperature conditions, but is generally several minutes to several tens of hours.
  • Drying may be performed under an inert gas atmosphere or under reduced pressure.
  • the inert gas include nitrogen, carbon dioxide, helium, and argon, but it is preferable to use easily available nitrogen.
  • the reaction is preferably performed at a pressure of about 10 ⁇ 5 to 10 3 Pa, preferably about 10 ⁇ 1 to 200 Pa.
  • Both initial drying and secondary drying are not particularly limited to drying methods, but can be performed by a conventionally known method such as a roll support method or a floating method. Further, continuous heat treatment in a heating furnace such as a tenter type, winding in a wound state, and heat treatment in a batch type oven may be performed. In the case of a batch type, it is preferable to wind up so that a coating surface and a non-coating surface do not contact.
  • a heating method a conventionally known electric furnace, IR heater, far-infrared heater, or the like can be applied.
  • the adhesive composition in the case of bonding through an adhesive layer is not particularly limited, and acrylonitrile butadiene rubber (NBR) adhesive, polyamide adhesive, polyester adhesive, polyester urethane adhesive, epoxy resin system Adhesives such as acrylic resin, polyimide resin, polyamideimide resin, and polyesterimide resin can be used. From the viewpoint of heat resistance, adhesiveness, and bending resistance, polyimide resin, polyamideimide resin, or these A resin composition in which an epoxy resin is blended with the above resin is preferable, and the thickness of the adhesive layer is preferably about 5 to 30 ⁇ m.
  • polyester or polyester urethane resin or a resin composition in which an epoxy resin is blended with these resins is preferable, and the thickness of the adhesive layer is preferably about 5 to 30 ⁇ m.
  • the thickness of the adhesive is not particularly limited as long as it does not hinder the performance of the flexible printed circuit board, but if the thickness is too thin, sufficient adhesiveness may not be obtained. When the thickness is too thick, processability (drying property, coating property) and the like may be deteriorated.
  • a flexible printed circuit board can be produced by circuit processing by a method such as a subtractive method.
  • a heat-resistant film such as polyimide is bonded to the wiring board (the conductor circuit is formed by an adhesive) by a conventionally known method.
  • a method of bonding to a formed base substrate) or a method of applying a liquid coating agent to a wiring board by a screen printing method can be applied.
  • the liquid coating agent conventionally known epoxy-based and polyimide-based inks can be used, but polyimide-based inks are preferable. It is also possible to directly bond an epoxy or polyimide adhesive sheet to the wiring board.
  • the flexible metal-clad laminate of the present invention can simultaneously satisfy thermosetting, peel strength, PCT resistance, and solvent resistance. Therefore, the flexible printed circuit board (FPC) using the flexible metal-clad laminate of the present invention can be suitably used for electronic devices, electronic parts, automobile parts, electrical appliances, and the like. Further, it can be suitably used for a flat cable, a substrate for tape automated bonding (TAB), a substrate for mounting a TCP (tape carrier package) (chip-on flexible substrate, etc.), and the like.
  • TAB tape automated bonding
  • TCP tape carrier package
  • ⁇ Resin composition 15 mg of a sample such as a terminal acid anhydride group-containing imide prepolymer and a carboxyl group-containing polyimide is dissolved in 0.6 ml of heavy dimethyl sulfoxide, and a Fourier transform nuclear magnetic resonance spectrometer (Biospin AVANCE 500 manufactured by Bruker) is used. Then, 1 H-NMR analysis was performed, and the molar ratio was determined from the integral ratio.
  • ⁇ Number average molecular weight> A sample such as a terminal acid anhydride group-containing imide prepolymer and a carboxyl group-containing polyimide is dissolved and / or diluted with tetrahydrofuran so that the resin concentration is about 0.5% by weight, and a polytetrafluoroethylene having a pore size of 0.5 ⁇ m is obtained.
  • the molecular weight was measured by gel permeation chromatography (GPC) using tetrahydrofuran as a mobile phase and a differential refractometer as a detector, with the sample filtered through an ethylene fluoride membrane filter. The flow rate was 1 mL / min and the column temperature was 30 ° C. KF-802, 804L and 806L manufactured by Showa Denko were used for the column. Monodisperse polystyrene was used as the molecular weight standard.
  • a 0.2 g sample of a carboxyl group-containing polyimide or the like is dissolved in 20 ml of N-methylpyrrolidone, titrated with a 0.1 N potassium hydroxide ethanol solution, and the equivalent per 10 6 g of the carboxyl group-containing resin (equivalent / equivalent) 10 6 g) was determined.
  • thermosetting A composition comprising a carboxyl group-containing polyimide, a thermosetting agent, and a curing accelerator was applied to a glossy surface of an electrolytic copper foil having a thickness of 18 ⁇ m so that the thickness after drying was 20 ⁇ m, and dried at 80 ° C. for 10 minutes. Then, heat treatment was performed at 120 ° C. for 1 hour to obtain a laminate having a cured film (hereinafter referred to as a laminate). What cut this laminated body into the magnitude
  • ⁇ Peel strength> A composition comprising a carboxyl group-containing polyimide, a thermosetting agent, and a curing accelerator was applied to a 25 ⁇ m-thick polyimide film (manufactured by Kaneka Corporation, Apical) so that the thickness after drying was 20 ⁇ m, and 80 ° C. ⁇ Dried for 10 minutes. Then, it was dried at 120 ° C. for 3 minutes.
  • the adhesive film thus obtained was bonded to an electrolytic copper foil having a thickness of 18 ⁇ m, the glossy surface of the electrolytic copper foil was in contact with the adhesive, and the pressure was 30 kg at 160 ° C. under a pressure of 35 kgf / cm 2. Pressed for 2 seconds and adhered.
  • this decomposition solution is transferred to a 50 ml volumetric flask, 5 ml of 2% ammonium molybdate solution and 0.2% hydrazine sulfate solution 2 ml was added, and the volume was made up with pure water, and the contents were mixed well.
  • the volumetric flask is heated and colored, then cooled to room temperature, degassed with ultrasonic waves, the solution is taken into an absorption cell 10 mm, and a blank test is performed with a spectrophotometer (wavelength 830 nm). Absorbance was measured using the solution as a control.
  • the phosphorus content (% by weight) was determined from the calibration curve prepared previously, and the phosphorus atom concentration (phosphorus content) in the sample was calculated.
  • ⁇ Flame retardance> A resist ink was applied to a polyimide film having a thickness of 25 ⁇ m (Apical NPI manufactured by Kaneka Corporation), and then dried at 80 ° C. for 5 minutes to prepare a dry coating film (thickness 15 ⁇ m). Next, heat treatment was performed at 120 ° C. for 1 hour. About the obtained laminated
  • the flame retardancy is preferably VTM-1 or higher, most preferably VTM-0 in the UL94 standard.
  • ⁇ Solder heat resistance> After applying resist ink to the electrolytic copper foil, it was dried at 80 ° C. for 5 minutes to prepare a dry coating film (thickness: 15 ⁇ m). Next, a heat treatment was performed at 120 ° C. for 1 hour to obtain a resist film laminate (hereinafter, a similarly produced product is referred to as a resist film laminate). After applying rosin-based flux EC-19S-10 (Tamura Kaken Co., Ltd.) to this resist film laminate, it was immersed in a solder bath at 280 ° C. for 30 seconds in accordance with JIS-C6481, and peeling, swelling, etc. The presence or absence of abnormal appearance was evaluated according to the following criteria. ⁇ : No appearance abnormality ⁇ : Slight appearance abnormality ⁇ : Overall appearance abnormality
  • the resist film laminate was evaluated according to JIS-K5400.
  • the diameter of the mandrel was 2 mm and the presence or absence of cracks was evaluated according to the following criteria. ⁇ : No crack occurred ⁇ : Crack occurred
  • DMAP 4-dimethylaminopyridine
  • TMEG Ethylene glycol bis (trimellitic anhydride)
  • PMDA pyromellitic dianhydride
  • BPDA 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride
  • BTDA 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride
  • ODPA 4, 4'-oxydiphthalic dianhydride (ODPA)
  • MDI 4,4′-diphenylmethane diisocyanate
  • TDI 2,4-toluene diisocyanate
  • C-2090 polycarbonate diol (3-methyl-1,5-pentanediol / 1,6-hexanediol) manufactured by Kuraray Co., Ltd., number average About 2,000 molecular weight
  • T5650E polycarbonate diol (1,5-pentanediol / 1,6-hexanediol) manufactured by Kura
  • TDI 2,4-toluene diisocyanate
  • MDI 4,4′-diphenylmethane diisocyanate
  • TMEG ethylene glycol bis (trimellitic anhydride)
  • G-3000 OH group-terminated polybutadiene manufactured by Nippon Soda Co., Ltd., number average molecular weight of about 3,000
  • PLACEL CD-220 polycarbonate diol manufactured by Daicel Chemical Industries, Ltd., number average molecular weight of about 2,000
  • KF-8010 Silicon diamine manufactured by Shin-Etsu Silicone Co., Ltd., number average molecular weight of about 830
  • TDI 2,4-toluene diisocyanate
  • MDI 4,4′-diphenylmethane diisocyanate
  • BTDA 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride
  • TMEG ethylene glycol bis (trimellitic anhydride)
  • TMA trimellitic anhydride
  • Example 1 39 parts by weight of HP-7200 (trade name of dicyclopentadiene type epoxy resin manufactured by DIC Corporation) was added to 100 parts by weight of the resin content of the carboxyl group-containing polyimide (1-1) obtained in Synthesis Example 1. , Diluted with ⁇ -butyrolactone. Further, 1.4 parts by weight of UCAT-5002 (manufactured by Sun Apro Co., Ltd.) was added as a curing accelerator, and the mixture was sufficiently stirred using a paint shaker to obtain a composition comprising the carboxyl group-containing polyimide of the present invention.
  • HP-7200 trade name of dicyclopentadiene type epoxy resin manufactured by DIC Corporation
  • the obtained blend was applied to a glossy surface of an electrolytic copper foil having a thickness of 18 ⁇ m and a polyimide film (manufactured by Kaneka Corporation, Apical) so that the thickness after drying was 20 ⁇ m. After drying at 80 ° C. for 10 minutes with hot air, the laminate was heated in an air atmosphere at 120 ° C. for 60 minutes to form a cured film. Table 3 shows the composition and physical properties of the coating obtained.
  • Examples 2 to 9 Comparative Examples 1 to 3> Except for changing to the composition shown in Table 3, a composition was prepared in the same manner as in Example 1 to obtain a laminate having a cured film formed thereon. Table 3 shows the composition and physical properties of the coating obtained.
  • HP-7200 manufactured by DIC Corporation
  • dicyclopentadiene type epoxy resin Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.
  • bisphenol A type epoxy resin BPA-328 manufactured by Nippon Shokubai Co., Ltd.
  • bisphenol A type epoxy resin XD- 1000-L Nippon Kayaku Co., Ltd.
  • dicyclopentadiene type epoxy resin EXA-4816 DIC Corporation
  • aliphatic modified epoxy resin jER-152 Japan Epoxy Resin Co., Ltd.
  • phenol novolac type epoxy resin UCAT-5002 A curing accelerator manufactured by San Apro Co., Ltd., DBU tetraphenylborate salt
  • thermosetting properties were all 90% by mass or more, and the peel strengths were all 5 N / cm or more.
  • the PCT resistance was all “no appearance abnormality”, and the solvent resistance was all “no peeling even after 100 times and no change was observed in the cured coating film”. That is, the carboxyl group-containing polyimide of the present invention showed good evaluation results in all of thermosetting, peel strength, PCT resistance, and solvent resistance.
  • thermosetting property was as good as 95% by mass.
  • the silanol compound was copolymerized, the adhesion to the substrate was low.
  • the molecular weight of the resin is difficult to increase and many unreacted low molecular weight substances remain, resulting in poor durability when used as a cured film.
  • the solvent resistance was poor.
  • DMAP 4-dimethylaminopyridine
  • TMEG Ethylene glycol bis (trimellitic anhydride) BPDA: 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • BTDA 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride
  • ODPA 4, 4'-oxydiphthalic dianhydride (ODPA)
  • MDI 4,4′-diphenylmethane diisocyanate
  • TDI 2,4-toluene diisocyanate
  • C-2090 polycarbonate diol (3-methyl-1,5-pentanediol / 1,6-hexanediol) manufactured by Kuraray Co., Ltd., number average About 2,000 molecular weight
  • T5650E polycarbonate diol (1,5-pentanediol / 1,6-hexanediol) manufactured by Kuraray
  • the temperature of the reaction solution was lowered to 70 ° C., and 172 parts by weight of 4,4′-diphenylmethane diisocyanate (MDI) was added and stirred as a diisocyanate compound, and 0.2 part by weight of dibutyltin dilaurate was added thereto as a catalyst.
  • MDI 4,4′-diphenylmethane diisocyanate
  • the reaction was performed at 100 ° C. for 4 hours, and it was confirmed that the isocyanate had almost disappeared. Thereafter, 175 parts by weight of ⁇ -butyrolactone was added for dilution, followed by cooling to room temperature to obtain a carboxyl group-containing resin (2′-2) having a solid content concentration of 45% by weight.
  • Table 5 shows the composition and physical properties of the obtained resin.
  • MDI 4,4′-diphenylmethane diisocyanate
  • C-2050 OH group-terminated polycarbonate diol manufactured by Kuraray Co., Ltd., number average molecular weight of about 2,000 DMBA: 2,2-dimethylolbutanoic acid PLACEL CD-220: Daicel Chemical Co., Ltd.
  • polycarbonate diol number average molecular weight of about 2,000 C-2090: OH group-terminated polycarbonate diol manufactured by Kuraray Co., Ltd., number average molecular weight of about 2,000 KF-8010: Silicon diamine manufactured by Shin-Etsu Silicone Co., Ltd., number average molecular weight of about 830
  • MDI 4,4′-diphenylmethane diisocyanate
  • IPDI isophorone diisocyanate
  • TMEG ethylene glycol bis (trimellitic anhydride)
  • TMA trimellitic anhydride
  • PMDA pyromellitic dianhydride
  • EX-731 glycidyl compound manufactured by Nagase ChemteX Corporation
  • Example 1 With respect to 100 parts by weight of the resin content of the carboxyl group-containing polyimide (1′-1) obtained in Synthesis Example 1′-1, as an oxirane ring-containing compound, Epicron HP-7200 (manufactured by DIC Corporation, dicyclo) A product name of pentadiene type epoxy resin (39 parts by weight) was added and diluted with ⁇ -butyrolactone.
  • Exolit OP-935 (made by Clariant Japan Co., Ltd., trade name of aluminum trisdiethylphosphinate), which is a flame retardant as an organic filler containing phosphorus atoms, is 35 parts by weight, and UCAT-5002 (SunAppro (Sanpro) 1.4 parts by weight), 3.1 parts by weight of BYK-054 (BIC Chemie) as the defoaming agent, and 3.2 parts by weight of BYK-358 (Bic Chemie) as the leveling agent.
  • UCAT-5002 UnAppro (Sanpro) 1.4 parts by weight
  • BYK-054 BIC Chemie
  • BIC Chemie BYK-358
  • Aerogel 300 manufactured by Nippon Aerosil Co., Ltd., hydrophilic silica fine particles
  • the filler is uniformly dispersed and has a thixotropic property. It was obtained Sutoinki.
  • the viscosity was adjusted with ⁇ -butyrolactone, the solution viscosity was 250 poise and the throttling was 2.7.
  • a comb-shaped pattern with a line spacing of 50 ⁇ m is formed on a glossy surface of an electrolytic copper foil having a thickness of 18 ⁇ m, or a polyimide film having a thickness of 25 ⁇ m (manufactured by Kaneka, Apical NPI) or a two-layer CCL (manufactured by Toyobo, trade name: Viroflex).
  • the resulting resist ink was applied to the prepared circuit so as to have a thickness of 15 ⁇ m after drying. After drying with hot air at 80 ° C. for 10 minutes, the laminate film was obtained by heating at 120 ° C. for 60 minutes in an air atmosphere. Table 6 shows the composition of the obtained resist ink and the physical properties of the coating film.
  • HP-7200 manufactured by DIC Corporation
  • dicyclopentadiene type epoxy resin Epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.
  • bisphenol A type epoxy resin XD-1000-L manufactured by Nippon Kayaku Co., Ltd.
  • dicyclopentadiene type Epoxy resin BPA-328 manufactured by Nippon Shokubai Co., Ltd.
  • bisphenol A type epoxy resin EXA-4816 manufactured by DIC Corporation
  • aliphatic modified epoxy resin jER-152 manufactured by Japan Epoxy Resin Co., Ltd.
  • phenol novolac type epoxy resin OP-935 Clariant Japan Co., Ltd.
  • aluminum trisdiethylphosphinate OP-930 Clariant Japan Co., Ltd., aluminum trisdiethylphosphinate HCA-HQ: Sanko Co., Ltd.
  • Comparative Example 1 ′ had poor heat resistance and flexibility.
  • the resin used here is water generated during the ring-closing reaction of the polyamic acid during the polymerization of the resin, so that the molecular weight of the resin is difficult to increase, a tough cured coating film cannot be obtained, and the heat deterioration resistance is poor. Furthermore, in addition to the copolymerization of the silicone compound with the resin, a large amount of flame retardant was added to impart flame retardancy, resulting in poor flexibility.
  • Comparative Example 2 ′ was confirmed to be inferior in solder heat resistance, heat deterioration resistance, and flexibility.
  • the resin used here introduces a carboxyl group into the resin by copolymerizing a large amount of 2,2-dimethylolbutanoic acid.
  • 2,2-dimethylolbutanoic acid is poorly polymerizable and is the main resin. It is localized in the chain and has a low molecular weight.
  • the curability since it remains as an unreacted substance, the curability is poor, the peeling of the coating film is remarkable in the solder heat resistance test, and the coating film was cracked immediately in the bending test. Moreover, discoloration of the coating film was remarkable in the heat deterioration resistance.
  • Comparative Example 3 ′ was confirmed to have poor heat resistance and flexibility. Since the resin used here contains an amide / imide bond in the skeleton, it has a rigid skeleton compared to the examples and has a high elastic modulus. A large amount of flame retardant filler is added to impart flame retardancy, but the coating film becomes brittle and the coating film is cracked in the flexibility test. In addition, since the crosslinking point in the resin skeleton is only at the end of the resin, a tough cured coating film was not obtained and the heat deterioration resistance was insufficient.
  • Comparative Example 4 ′ was confirmed to have poor heat resistance. Since the resin used here contains a urethane bond in the skeleton, the urethane bond decomposes when exposed to a high temperature for a long time, so that the coating film is significantly discolored in terms of heat deterioration resistance.
  • DMAP 4-dimethylaminopyridine
  • TMEG Ethylene glycol bis (trimellitic anhydride) BPDA: 3,3 ′, 4,4′-diphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • BTDA 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride
  • ODPA 4, 4'-oxydiphthalic dianhydride (ODPA)
  • MDI 4,4′-diphenylmethane diisocyanate
  • TDI 2,4-toluene diisocyanate
  • C-2090 polycarbonate diol (3-methyl-1,5-pentanediol / 1,6-hexanediol) manufactured by Kuraray Co., Ltd., number average About 2,000 molecular weight
  • T5650E polycarbonate diol (1,5-pentanediol / 1,6-hexanediol) manufactured by Kuraray
  • TDI 2,4-toluene diisocyanate
  • dibutyltin dilaurate 0.007 part by weight of dibutyltin dilaurate was added thereto as a catalyst and reacted for 5 hours.
  • BTDA 4,4′-benzophenone tetracarboxylic dianhydride
  • MDI 4,4′-diphenylmethane diisocyanate
  • G-3000 OH group-terminated polybutadiene manufactured by Nippon Soda Co., Ltd., number average molecular weight of about 3,000
  • PLACEL CD-220 polycarbonate diol manufactured by Daicel Chemical Industries, Ltd., number average molecular weight of about 2,000
  • KF-8010 Silicone diamine manufactured by Shin-Etsu Silicone Co., Ltd., number average molecular weight of about 830
  • TDI 2,4-toluene diisocyanate
  • MDI 4,4′-diphenylmethane diisocyanate
  • BTDA 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride
  • TMEG ethylene glycol bis (trimellitic anhydride)
  • TMA trimellitic anhydride
  • Example 1 ⁇ Example 1 '' Product name of HP-7200 (a dicyclopentadiene type epoxy resin manufactured by DIC Corporation) with respect to 100 parts by weight of the resin content of the carboxyl group-containing polyimide (1 ′′ -1) obtained in Synthesis Example 1 ′′ -1. ) 39 parts by weight was added and diluted with ⁇ -butyrolactone. Further, 1.4 parts by weight of UCAT-5002 (manufactured by Sun Apro Co., Ltd.) was added as a curing accelerator, and the mixture was sufficiently stirred using a paint shaker to obtain a composition comprising the carboxyl group-containing polyimide of the present invention.
  • HP-7200 a dicyclopentadiene type epoxy resin manufactured by DIC Corporation
  • the obtained blend was applied to the glossy surface of an electrolytic copper foil having a thickness of 18 ⁇ m so that the thickness after drying was 20 ⁇ m. After drying with hot air at 80 ° C. for 10 minutes, the flexible metal-clad laminate was obtained by heating at 120 ° C. for 60 minutes in an air atmosphere. Table 9 shows the composition of the blend and the evaluation results of the obtained laminate.
  • HP-7200 manufactured by DIC Corporation
  • dicyclopentadiene type epoxy resin epicoat 828 manufactured by Japan Epoxy Resin Co., Ltd.
  • bisphenol A type epoxy resin XD-1000-L manufactured by Nippon Kayaku Co., Ltd.
  • dicyclopentadiene type Epoxy resin BPA-328 manufactured by Nippon Shokubai Co., Ltd.
  • bisphenol A type epoxy resin EXA-4816 manufactured by DIC Corporation
  • aliphatic modified epoxy resin jER-152 manufactured by Japan Epoxy Resins Co., Ltd.
  • phenol novolac type epoxy resin UCAT-5002 A curing accelerator manufactured by San Apro Co., Ltd., DBU tetraphenylborate salt
  • thermosetting, peel strength, PCT resistance, and solvent resistance As is clear from Table 9, in Examples 1 "to 9", good evaluation results can be obtained in all evaluation items of thermosetting, peel strength, PCT resistance, and solvent resistance. did it. Specifically, in Examples 1 ′′ to 9 ′′, the thermosetting properties were all 90% by mass or more, and the peel strengths were all 5 N / cm or more. The PCT resistance was all “no abnormality in appearance” and the solvent resistance was all “no peeling even after 100 times or change”. That is, the flexible metal-clad laminate of the present invention showed good evaluation results in all of thermosetting, peel strength, PCT resistance, and solvent resistance.
  • Comparative Example 1 since the crosslinking point was only at the end of the resin and the acid value was low, the crosslinking property due to heat was low and the thermosetting property was 75% by mass, which was poor.
  • the resin skeleton also includes a urethane bond, swelling and peeling occurred in the PCT resistance, resulting in failure.
  • thermosetting property was as good as 95% by mass.
  • the silanol compound was copolymerized, the adhesion to the substrate was low.
  • the molecular weight of the resin is difficult to increase, and many unreacted low molecular weight substances remain, resulting in poor durability when used as a laminate.
  • the solvent resistance was poor.
  • the carboxyl group-containing polyimide which gives the hardened
  • thermosetting resin composition of the present invention is excellent in curability and can produce a thermosetting layer having good flame retardancy, solder heat resistance, heat deterioration resistance, flexibility, etc., particularly at high temperatures for a long time. It can be suitably used as a resist layer for printed circuit boards that require durability as used. Furthermore, since the flexible metal-clad laminate of the present invention satisfies the above characteristics to a high degree, it can be suitably used for flexible printed boards used in electronic parts, automobile parts, electrical appliances, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Laminated Bodies (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

 熱硬化性、耐PCT性、耐溶剤性、及び剥離強度を同時に満足できる硬化物を与えるカルボキシル基含有ポリイミド、及びそのプレポリマーを提供する。本発明は、テトラカルボン酸二無水物中の酸無水物基とジイソシアネート化合物中のイソシアネート基を反応させて得られることを特徴とする末端酸無水物基含有イミドプレポリマー。前記末端酸無水物基含有イミドプレポリマーが、ポリオール化合物を介して鎖延長された構造を有することを特徴とするカルボキシル基含有ポリイミドに関する。また、本発明は、かかるカルボキシル基含有ポリイミドを利用した熱硬化性樹脂組成物及びフレキシブル金属張積層体に関する。

Description

カルボキシル基含有ポリイミド、熱硬化性樹脂組成物及びフレキシブル金属張積層体
 本発明は、電子材料周辺の接着剤やコーティング剤として、熱硬化性、耐PCT性、耐溶剤性、及び剥離強度に優れた硬化物を与える熱硬化性ポリイミド樹脂の原料となるカルボキシル基含有ポリイミド及びそのプレポリマーに関する。
 また、本発明は、難燃性、半田耐熱性、耐熱劣化性、屈曲性を同時に満足する、プリント回路基板のレジスト層として好適に使用できる熱硬化性樹脂組成物に関する。
 さらに、本発明は、上記カルボキシル基含有ポリイミドを熱硬化して得られた樹脂層と金属箔層を有するフレキシブル金属張積層体に関し、特に、熱硬化性、剥離強度、耐PCT性、及び耐溶剤性を同時に満足できるフレキシシブル金属張積層体に関する。
 ポリイミドは、耐熱性、電気絶縁信頼性、耐薬品性、及び機械特性に優れることから電子材料周辺やOA機器周辺に広く使用されている。例えば、半導体デバイス上への絶縁フィルムや保護コーティング剤、フレキシブル回路基板や集積回路等の基材材料や表面保護材料、更には、微細な回路の層間絶縁膜や保護膜を形成させる場合に用いられる。
 一般的にポリイミドは、溶液に不溶なものが多く、加工性に乏しい。そのため、前駆体であるポリアミック酸(ポリアミド酸ともいう)を溶液中で重合し、フィルムやその他の成形体に加工した後で、イミド化することが一般的である。通常、ポリアミック酸からイミドへの転化には250℃以上の加熱を必要とする。
 しかし、かかる方法により加工した場合には、その加熱温度が高温であるために電子材料が高温に耐えることができない、基材との密着性が不十分である等の問題があった。また、ポリアミック酸が閉環してポリイミドに転化する際に水が発生するため、硬化収縮が生じて基材がカールしたりする問題もあった。
 また、ポリアミック酸は、イミド化により生成した水や、液中に存在する水による加水分解によって、分子量低下や樹脂構造の分岐が発生しやすいという特性がある。その結果、その溶液粘度が経時的に低下しやすいという傾向がある(非特許文献1参照)。このような溶液粘度の不安定さは、室温下での保存時には特に顕著であり、均質な製品が得られないので実用化の面からは好ましくない。
 そのため、有機溶剤中でイミド化を完結させたタイプの有機溶剤可溶型ポリイミドが検討されている。例えば、特許文献1には、ポリブタジエン骨格を有する有機溶剤可溶型の変性ポリイミドが提案がされ、イソシアネート法により生成される末端酸無水物基含有ポリイミドにブロックイソシアネートを硬化剤として用いた熱硬化性組成物をフレキシブル回路基板のオーバーコート剤として使用した例が開示されている。
 しかし、この熱硬化性組成物には、以下のような問題点があった。
(1)酸無水物基が樹脂末端のみにしかないことで十分な熱硬化性が得られない。
(2)樹脂骨格中にウレタン結合を含むことで耐熱性が低い。
(3)ポリブタジエン骨格特有の酸化により分子内架橋を引き起こし、樹脂が反応中にゲル化したり、組成物としての保存安定性が著しく低下する。
 近年、OA機器や家電製品等の電子機器は、高密度化、高機能化や環境面等から、材料面の要求特性が厳しくなってきている。例えば、フレキシブルプリント配線板(FPC)については、屈曲性、低反り性、半田耐熱性、耐マイグレーション性、耐めっき性等の特性が要求されている。
 従来、フレキシブルプリント配線板の表面保護や実装時の半田付着防止には、カバーレイフィルムと呼ばれるポリイミドフィルムをパターンに合わせた金型で打ち抜いた後、接着剤を用いて張り付ける方法や、熱硬化型または紫外線硬化型の液状あるいはフィルム状ソルダーレジスト剤を使用する方法がある。特に後者は作業性の点で有用である。
 また、近年の電子機器の軽量小型化に伴いフレキシブルプリント配線板も軽薄化が進み、ソルダーレジスト剤の屈曲性や硬化収縮の影響がより顕著に現れるようになってきている。そのため、硬化タイプのソルダーレジスト剤では、屈曲性や硬化収縮による反りの点で、要求性能を満足できなくなっているのが現状である。
 さらに、部品の誤作動による異常加熱で、万一高分子材料(樹脂材料)に着火すると、火災の原因となる恐れがあるため、高分子材料自体に自己消火性(不燃性・難燃性)が要求されている。例えば、フレキシブルプリント配線基板に使用されるソルダーレジスト剤としては、近年環境負荷低減の動きが見受けられ、ノンハロゲン(ハロゲンフリー)での低有害化、低発煙化、難燃化が要望されている。
 難燃化を実現する技術としては、リン酸エステル等のリン系難燃剤を添加する方法が挙げられるが、高度の難燃性を発現するためには、難燃剤を多量に添加する必要があり、接着性や機械的特性、耐熱性などの特性が低下する恐れがあり、また、難燃剤自体がブリードアウトして接着性が経時的に低下するなどの問題が生じることもある。
 このように、硬化タイプのソルダーレジスト剤は、用途に応じて様々な物性を満たすことが求められる。特に電子部品などに用いられるときは、半田耐熱性や屈曲性等に加え、難燃性が重要な物性として求められており、難燃性が低いと用途が限られることになる。
 こういった電子材料周辺部材への高い要求に応えるため、様々な検討が行われているが、全ての特性を十分に満足させるものは得られていない。例えば、特許文献2には、側鎖にカルボキシル基を有する可溶性ポリイミドに、エポキシ化合物を硬化剤として用いた熱硬化性組成物が開示されている。しかし、樹脂の重合中にポリアミック酸の閉環反応の際に水が発生するため、樹脂構造の分岐が生じたり、樹脂の分子量が上がりにくかったりする。そのため、硬化物としても強度が低く、耐久性が悪い。この方法により重合した場合、高い酸価を有し、かつ樹脂の分子量を十分上げることは困難である。また、シリコーン化合物を共重合することにより、優れた耐熱性や柔軟性が得られるが、基材に対する密着性が低く、屈曲性が弱いという問題があった。
 特許文献3には、高い酸価を有する熱硬化性ポリウレタンと、リン原子を含む有機フィラーを含有する熱硬化性樹脂組成物を、回路基材のソルダーレジスト剤等として使用することが提案されている。ここで使用されている熱硬化性ポリウレタンは、原料であるカルボキシル基含有ジヒドロキシ化合物の重合性が低いため、分子量分布が広がりやすく、樹脂主鎖中に局所的に架橋点が偏った構造となってしまい、未反応物として多くが残存する。そのため、十分な熱硬化性や屈曲性を得られず、未反応物の残存により耐熱性が低いという問題があった。
 特許文献4には、ポリアミドイミドにエポキシ化合物を硬化剤として配合した熱硬化性樹脂組成物をフレキシブル回路基板のオーバーコート剤として使用した例が開示されている。この熱硬化性樹脂組成物は、架橋点が樹脂末端のみにしかないことで十分な熱硬化性が得られず、また、樹脂骨格中にウレタン結合を含むことで耐熱性が低いという問題があった。
 特許文献5には、硬化性ウレタン樹脂を電子材料周辺の接着剤およびコーティング剤として配合した例が開示されている。ここで使用されている硬化性ウレタン樹脂は、ウレタンプレポリマーを経由した重合方法により重合されるため、熱硬化性や屈曲性に優れるが、樹脂骨格中にウレタン結合を含むことで耐熱性が低いという問題があった。
 また、フレキシブルプリント基板は、発熱により高温条件下になることがあり、このような環境下でも高い信頼性を維持できることが求められる。しかし、高温時の樹脂寸法変化が大きいと、回路を形成する銅等の金属配線と剥離が発生し、ショートや断線を起こすという問題があった。また、最近、薄厚基板として注目されているフレキシブル多層基板でも、単層のフレキシブル基板同士を接着する接着層とフレキシブル基板を形成するポリイミドフィルム及び回路を形成する銅等の金属配線との熱寸法変化の差が大きいと、同様な問題が発生する。
 特許文献6には、優れた耐熱性を有するエポキシ樹脂と、無機化合物とを併用することで高温物性を改善する技術が開示されているが、耐溶剤性の改善効果については期待できない。
特許第4016226号公報 特開2005-298568号公報 特開2007-270137号公報 特開2009-185200号公報 特開2010-070757号公報 特開2000-183539号公報
最新ポリイミド-基礎と応用-6~7頁(株)TNS発行(2010年8月25日)
 本発明は、上記の従来技術の現状に鑑み創案されたものであり、その第一の目的は、熱硬化性、耐PCT性、耐溶剤性、及び剥離強度を同時に満足できる硬化物を与えるカルボキシル基含有ポリイミド、及びその原料となる末端酸無水物基含有イミドプレポリマーを提供することにある。その第二の目的は、難燃性、半田耐熱性、耐熱劣化性、屈曲性を同時に満足する熱硬化性樹脂組成物を提供することにある。その第三の目的は熱硬化性、剥離強度、耐PCT性、及び耐溶剤性を同時に満足できるフレキシブル金属張積層体を提供することにある。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、ポリアミック酸を経由しないために、高温を要するイミド化反応を必要としない方法を考案した。すなわち、ポリイミドの前駆体となる末端酸無水物基含有イミドプレポリマーを重合することにより、上記特性を同時に高度に満足する硬化物を与えるカルボキシル基含有ポリイミドを提供できることを見出した。本発明のカルボキシル基含有ポリイミドは、樹脂構造中に分岐が少なく、樹脂の分子量が高いという特性を有する。この特性により、熱硬化剤と組み合わせて、熱硬化性、耐PCT性、耐溶剤性、及び剥離強度を同時に満足できる硬化物を与えることができる。
 また、本発明者らは、上述の末端酸無水物基含有イミドプレポリマーがポリオール化合物を介して鎖延長された構造を有するカルボキシル基含有ポリイミドと、オキシラン環を含有する化合物とからなる熱硬化性樹脂組成物を提供することにより、上記特性を同時に高度に満足できることを見出した。
 さらに、本発明者らは、上述のカルボキシル基含有ポリイミドを熱硬化して得られた層をフレキシブル金属張積層体の樹脂層として使用することにより、熱硬化性、剥離強度、耐PCT性、及び耐溶剤性を同時に満足できるフレキシブル金属張積層体を提供できることを見出した。
 即ち、本発明は、上述の知見に基づいて完成されたものであり、以下の(1)~(19)の構成を有するものである。
(1)テトラカルボン酸二無水物中の酸無水物基とジイソシアネート化合物中のイソシアネート基を反応させて得られることを特徴とする末端酸無水物基含有イミドプレポリマー。
(2)数平均分子量が500以上5000以下であることを特徴とする(1)に記載の末端酸無水物基含有イミドプレポリマー。
(3)テトラカルボン酸二無水物が、エチレングリコールビス(トリメリット酸無水物)(TMEG)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、及び4,4’-オキシジフタル酸二無水物(ODPA)からなる群より選ばれた少なくとも1種の化合物であることを特徴とする(1)または(2)に記載の末端酸無水物基含有イミドプレポリマー。
(4)ジイソシアネート化合物が、芳香族ジイソシアネート、脂肪族ジイソシアネート、及び脂環族ジイソシアネートからなる群より選ばれた少なくとも1種の化合物であることを特徴とする(1)~(3)のいずれかに記載の末端酸無水物基含有イミドプレポリマー。
(5)以下の一般式[I]で表わされることを特徴とする(1)~(4)のいずれかに記載の末端酸無水物基含有イミドプレポリマー。
Figure JPOXMLDOC01-appb-I000007
(一般式[I]中、Rは、以下の一般式[II]で表される酸二無水物化合物のカルボキシル基を除いた有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、脂肪族基、または複素環を有する基である。Rは、以下の一般式[III]で表されるジイソシアネート化合物のイソシアネート基を除いた有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、または脂肪族基である。nは1~30の整数である。ただし、一般式[II]及び[III]中のR及びRは、一般式[I]中のR及びRと同義である。)
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
(6)(1)~(5)のいずれかに記載の末端酸無水物基含有イミドプレポリマーが、ポリオール化合物を介して鎖延長された構造を有することを特徴とするカルボキシル基含有ポリイミド。
(7)数平均分子量が3000以上100000以下であることを特徴とする(6)に記載のカルボキシル基含有ポリイミド。
(8)酸価が250~2500当量/10gであることを特徴とする(6)または(7)に記載のカルボキシル基含有ポリイミド。
(9)ポリオール化合物がポリカーボネートポリオール化合物又はポリエステルポリオール化合物であることを特徴とする(6)~(8)のいずれかに記載のカルボキシル基含有ポリイミド。
(10)以下の一般式[IV]又は[V]によって表わされることを特徴とする(6)~(9)のいずれかに記載のカルボキシル基含有ポリイミド。
Figure JPOXMLDOC01-appb-I000010
(一般式[IV]及び[V]中、Rは、以下の一般式[II]で表される酸二無水物化合物のカルボキシル基を除いた有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、脂肪族基、または複素環を有する基である。Rは、以下の一般式[III]で表されるジイソシアネート化合物のイソシアネート基を除いた有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、または脂肪族基である。Rは、炭素数1~20のアルキレン基、またはエステル結合、カーボネート結合、及びエーテル結合より選ばれる少なくとも1つの結合を有するジオール化合物のヒドロキシル基を除いた残基である。n及びmはそれぞれ独立の整数であり、nは1~30の整数、mは1~200の整数である。ただし、一般式[II]及び[III]中のR及びRは、一般式[IV]及び[V]中のR及びRと同義である。)
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
(11)プリント回路基板のレジスト層として使用する熱硬化性樹脂組成物であって、(6)~(10)のいずれかに記載のカルボキシル基含有ポリイミド、及びオキシラン環を含有する化合物を含むことを特徴とする熱硬化性樹脂組成物。
(12)オキシラン環を含有する化合物の使用量が、カルボキシル基含有ポリイミド100重量部に対して2~100重量部であることを特徴とする(11)に記載の熱硬化性樹脂組成物。
(13)リン原子を含有する有機フィラーをさらに含むことを特徴とする(11)または(12)に記載の熱硬化性樹脂組成物。
(14)カルボキシル基含有ポリイミドと、オキシラン環を含有する化合物と、リン原子を含有する有機フィラーの重量比率が、30~95/1~50/2~55であることを特徴とする(13)に記載の熱硬化性樹脂組成物。
(15)カルボキシル基含有ポリイミドと、オキシラン環を含有する化合物と、リン原子を含有する有機フィラーの合計重量が、熱硬化性樹脂組成物中の20重量%以上であることを特徴とする(13)または(14)に記載の熱硬化性樹脂組成物。
(16)硬化促進剤をさらに含むことを特徴とする(11)~(15)のいずれかに記載の熱硬化性樹脂組成物。
(17)少なくとも金属箔層および樹脂層を有するフレキシブル金属張積層体であって、前記樹脂層が、(6)~(10)のいずれかに記載のカルボキシル基含有ポリイミドを熱硬化して得られたものであることを特徴とするフレキシブル金属張積層体。
(18)(17)に記載のフレキシブル金属張積層体を用いて回路加工されたことを特徴とするフレキシブルプリント基板。
(19)(18)に記載のフレキシブルプリント基板を用いてなることを特徴とする電子機器。
 本発明の末端酸無水物基含有イミドプレポリマーを重合することにより、熱硬化性、耐PCT性、耐溶剤性、及び剥離強度を同時に高度に満足する硬化物を与えるカルボキシル基含有ポリイミドを提供できる。さらに、本発明のカルボキシル基含有ポリイミドを熱硬化剤と組み合わせて使用すれば高度な架橋構造を形成することができ、強靭な硬化塗膜を得ることができる。また、本発明のカルボキシル基含有ポリイミドは、上記特性を高度に満足する硬化物を与えるので、レジストインキや接着剤、これらを用いた自動車部品、電化製品等のプリント回路基板等に好適に使用することができる。
 本発明の熱硬化性樹脂組成物は、難燃性、半田耐熱性、耐熱劣化性、屈曲性等の特性を同時に高度に満足することができるので、自動車部品や電化製品等のプリント回路基板のレジスト層として好適に使用できる。
 本発明のフレキシブル金属張積層体は、樹脂構造中に分岐が少なくかつ樹脂の分子量が高いという特性を有する新規のカルボキシル基含有ポリイミドを熱硬化して得られた樹脂層を有するので、熱硬化性、剥離強度、耐PCT性、及び耐溶剤性を同時に満足できる。
図1は、合成例1-1,1′-1及び1′′-1で得られたカルボキシル基含有熱硬化性ポリイミド(1-1,1′-1及び1′′-1)のH-NMRスペクトルである。 図2は、合成例1-2,1′-2及び1′′-2で得られたカルボキシル基含有熱硬化性ポリイミド(1-2,1′-2及び1′′-2)のH-NMRスペクトルである。
 以下、本発明の実施の形態について詳細に説明する。
 「末端酸無水物基含有イミドプレポリマー」とは、末端に酸無水物基を含有するイミドプレポリマーである。「イミドプレポリマー」とは、構造中にイミド結合を有し、このイミドプレポリマーを元に得られるポリマーの構成単位のことを言う。「末端酸無水物基含有」とは、分子末端に酸無水物を有することを言う。末端酸無水物基含有であると、末端酸無水物基含有イミドプレポリマーをさらに重合してポリマーを得たり、熱硬化剤を組み合わせて架橋構造を形成する組成物を得たりする場合に有用である。
 本発明の「末端酸無水物基含有イミドプレポリマー」は、テトラカルボン酸二無水物中の酸無水物基とジイソシアネート化合物中のイソシアネート基を反応させて得られるものである。前記酸無水物基と前記イソシアネート基が反応することにより、高温を要するポリアミック酸からのイミド化反応を必要とせずにイミド結合を生成し、イミド結合由来の高い耐熱性を付与することができる。また、分子末端に酸無水物基を有することで、酸無水物基と反応し得る官能基を2つ以上有した化合物と重合してポリマーを得ることもできるし、オキシラン環を含有する化合物のような熱硬化剤とを組み合わせることで、架橋構造を形成する組成物を得ることもできる。
 本発明の末端酸無水物基含有イミドプレポリマーは、ジイソシアネート化合物を用い、イソシアネート法によりテトラカルボン酸二無水物と反応することでイミド結合を生成する。このため、ポリアミック酸の閉環反応に起因する水の生成も無いため、分岐構造が生じず、末端が酸無水物であるイミドプレポリマーとして得ることが可能である。
 本発明の「カルボキシル基含有ポリイミド」は、末端酸無水物基含有イミドプレポリマーと、さらにポリオール化合物とを反応させて得られるカルボキシル基含有ポリイミドである。本発明のカルボキシル基含有ポリイミドは、上記反応で得られるような構造を有する限り、上記反応順序に限定されない。例えば、以下の(1)~(2)の反応工程もその範ちゅうに含まれる。
(1)テトラカルボン酸二無水物とジイソシアネート化合物を反応させて末端酸無水物基含有イミドプレポリマーを生成する。
(2)テトラカルボン酸二無水物の両末端がエステル結合を介してポリオール化合物と結合した末端ヒドロキシル基含有化合物と、末端酸無水物基含有イミドプレポリマー成分とを反応させる。
 本発明の末端酸無水物基含有イミドプレポリマーをポリオール化合物で鎖延長することにより、分岐構造や未反応物が少なく、分子量が高いカルボキシル基含有ポリイミドが得られる。また、主鎖中にテトラカルボン酸二無水物に由来する多数のカルボキシル基を有するカルボキシル基含有ポリイミドが得られる。また、カルボキシル基含有ポリイミドとオキシラン環を含有する化合物のような熱硬化剤と組み合わせることで、低温で高度な架橋構造を形成することができる。これにより、本発明のカルボキシル基含有ポリイミドおよびその架橋体は、熱硬化性、耐PCT性、耐溶剤性、及び剥離強度が要求される電子材料周辺等に好適に用いることができる。
 以下に、本発明の末端酸無水物基含有イミドプレポリマーを説明する。
 本発明の末端酸無水物基含有イミドプレポリマーは、具体的には、以下の一般式[I]で示されるものであることが好ましい。
Figure JPOXMLDOC01-appb-I000013
(一般式[I]中、Rは、以下の一般式[II]で表される酸二無水物化合物のカルボキシル基を除いた有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、脂肪族基、または複素環を有する基である。Rは、以下の一般式[III]で表されるジイソシアネート化合物のイソシアネート基を除いた有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、または脂肪族基である。nは1~30の整数である。ただし、一般式[II]及び[III]中のR及びRは、一般式[I]中のR及びRと同義である。)
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
 末端酸無水物基含有イミドプレポリマーに使用されるテトラカルボン酸二無水物としては、特に限定されないが、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物、2,2’,3,3’-ジフェニルテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,4,5-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、フェナンスレン-1,8,9,10-テトラカルボン酸二無水物、ピラジン-2,3,5,6-テトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)ジメチルシラン二無水物、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン二無水物、1,4-ビス(3,4-ジカルボキシフェニルジメチルシリル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェニル)-1,1,3,3-テトラメチルジシクロヘキサン二無水物、p-フェニルビス(トリメリット酸モノエステル酸無水物)、エチレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、デカホドロナフタレン-1,4,5,8-テトラカルボン酸二無水物、4,8-ジメチル-1,2,3,5,6,7-ヘキサヒドロナフタレン-1,2,5,6-テトラカルボン酸二無水物、シクロペンタン-1,2,3,4-テトラカルボン酸二無水物、ピロリジン-2,3,4,5-テトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、ビス(エキソ-ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物)スルホン、ビシクロ-(2,2,2)-オクト(7)-エン-2,3,5,6-テトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]ヘキサフルオロプロパン二無水物、4,4’ -ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、1,4-ビス(2-ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、1,3-ビス(2-ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、テトラヒドロフラン-2,3,4,5-テトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン、エチレングリコールビス(トリメリット酸無水物)(「エチレングリコールビスアンヒドロトリメリテート」または「TMEG」とも称する)などが挙げられる。
 好ましくは、テトラカルボン酸二無水物は、エチレングリコールビス(トリメリット酸無水物)(TMEG)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、4,4’-オキシジフタル酸二無水物(ODPA)である。
 これらのテトラカルボン酸二無水物は、単独で使用してもよく、または2種以上を混合して使用してもよい。
 末端酸無水物基含有イミドプレポリマーに使用されるジイソシアネート化合物としては、特に限定されないが、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、および脂環族ジイソシアネートからなる群より選ばれた少なくとも1種の化合物が例示される。
 ジイソシアネート化合物としては、樹脂組成物の耐熱性を特に向上する場合には芳香族ジイソシアネートが好ましく、樹脂組成物の柔軟性を特に向上する場合には脂肪族ジイソシアネートや脂環族ジイソシアネートが好ましい。
 芳香族ジイソシアネートとしては、2,4-トルエンジイソシアネート(「TDI」)、2,6-トルエンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(「MDI」)、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート等が例示される。
 脂肪族ジイソシアネートとしては、エチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等が例示される。
 脂環族ジイソシアネートとしては、1,4-シクロヘキサンジイソシアネート、4,4’-ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート等が例示される。
 反応性、溶解性、コスト面などを考慮すれば、ジイソシアネート化合物は、4,4’-ジフェニルメタンジイソシアネート、2,4-トルエンジイソシアネートが特に好ましい。
 ジイソシアネート化合物は、目的や用途に応じて適宜選択して用いることができ、単独で使用してもよく、または2種以上を混合して使用してもよい。
 以下に、本発明の末端酸無水物基含有イミドプレポリマーの製造方法を説明する。
 末端酸無水物基含有イミドプレポリマーは、テトラカルボン酸二無水物中の酸無水物基とジイソシアネート化合物中のイソシアネート基を反応させて製造することができる。前記酸無水物基と前記イソシアネート基が反応することにより、イミド結合を生成する。なお、原料の仕込みモル比は、目的とするカルボキシル基含有ポリイミドの分子量および酸価に応じて調節する。ただし、ジイソシアネート化合物よりもテトラカルボン酸二無水物を過剰に(イソシアネート基よりも酸無水物基が過剰になるように)用いるのが好ましい。
 末端酸無水物基含有イミドプレポリマーは、従来公知の方法によって得ることができる。例えば、撹拌器及び温度計を装備した反応缶中で溶剤の存在下、60℃以上200℃以下で反応させることが好ましい。より好ましくは、100℃以上180℃以下で反応させるのがよい。60℃以上200℃以下であれば、反応時間も短く、モノマー成分の分解も生じにくく、三次元化反応によるゲル化も発生しにくい。反応温度は多段階で行ってもよい。反応時間は、バッチの規模、採用される反応条件、特に反応濃度により適宜選択することができる。
 末端酸無水物基含有イミドプレポリマーを製造する際に使用する有機溶剤としては、例えば、イソシアネートと反応性が低いものであれば使用できる。例えば、アミン等の塩基性化合物を含まない溶剤が好ましい。このような溶剤としては、例えば、トルエン、キシレン、エチルベンゼン、ニトロベンゼン、シクロヘキサン、イソホロン、ジエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、酢酸エチル、酢酸n-ブチル、酢酸イソアミル、乳酸エチル、アセトン、メチルエチルケトン、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、γ-ブチロラクトン、ジメチルスルホキシド、クロロホルム及び塩化メチレン等を挙げることができる。
 好ましくは、溶剤は、溶解性の良いN,N-ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、γ-ブチロラクトンである。より好ましくは、N,N-ジメチルアセトアミド、γ-ブチロラクトンである。特に好ましいものは、γ-ブチロラクトンである。
 末端酸無水物基含有イミドプレポリマーを製造する際には、反応を促進するために、触媒の存在下に行ってもよい。例えば、トリエチルアミン、ルチジン、ピコリン、ウンデセン、トリエチレンジアミン(1,4-ジアザビシクロ[2.2.2]オクタン)、DBU(1,8-ジアザビシクロ[5.4.0]-7-ウンデセン)等のアミン類、リチウムメチラート、ナトリウムメチラート、ナトリウムエチラート、カリウムブトキサイド、フッ化カリウム、フッ化ナトリウム等のアルカリ金属、アルカリ土類金属化合物あるいはチタン、コバルト、スズ、亜鉛、アルミニウムなどの金属、半金属化合物などの触媒の存在下に行ってもよい。
 末端酸無水物基含有イミドプレポリマーの数平均分子量は、500以上5000以下であることが好ましく、より好ましくは500以上4500以下であり、さらに好ましくは500以上4000以下である。数平均分子量が500以上5000以下であれば、溶剤への溶解性がよく、カルボキシル基含有ポリイミドを高分子量化するのに最適である。また、熱硬化するのに十分なカルボキシル基を樹脂中へ導入できるため熱硬化性が良くなる。また、堅い硬化塗膜が形成できる。
 一般的に、ポリイミドは有機溶剤に対する溶解性が低かったり、経時でポリマー成分が析出したりすることがある。ポリマー構造の溶解性への影響も大きいが、本発明の末端酸無水物基含有イミドプレポリマーは数平均分子量が500以上5000以下と低いため、種々原料の組み合わせによっても有機溶剤に対して良好な溶解性を示す。
 ここで、「有機溶剤に対して良好な溶解性を示す」とは、トルエン、キシレン、エチルベンゼン、ニトロベンゼン、シクロヘキサン、イソホロン、ジエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、酢酸エチル、酢酸n-ブチル、酢酸イソアミル、乳酸エチル、アセトン、メチルエチルケトン、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、γ-ブチロラクトン、ジメチルスルホキシド、クロロホルム及び塩化メチレン等の単独溶剤、もしくは2種以上を混合した溶剤のいずれかに対して、10重量%以上溶解できることをいう。好ましくは、15重量%以上、より好ましくは、20重量%以上である。尚、溶解したか否かの判定は、樹脂が固形状である場合には、200mlのビーカーに80メッシュを通過する樹脂粉末を規定重量添加し、25℃で24時間静かに攪拌した後の溶液を25℃で24時間静置し、ゲル化、不均一化、白濁、析出のいずれかもなかったものを溶解していると判定する。
 本発明の末端酸無水物基含有イミドプレポリマーは、テトラカルボン酸二無水物とジイソシアネート化合物とをイソシアネート法によりプレポリマー化することで得られる。本発明の末端酸無水物基含有イミドプレポリマーは、ポリアミック酸を経由しないため、その閉環反応に起因する水の生成を抑制できる。従って、本発明の末端酸無水物基含有イミドプレポリマーには以下に示す特徴がある。
 (1)分岐構造が無く、直鎖上である
 (2)分子両末端に反応性の酸無水物基を有する
 本発明の末端酸無水物基含有イミドプレポリマーをポリオール化合物で鎖延長して得られる本発明のカルボキシル基含有ポリイミドには以下に示す特徴がある。
 (1)ゲル化すること無く十分に高分子量化できる
 (2)側鎖に多数のカルボキシル基を有している
 この高分子量のカルボキシル基含有ポリイミドに、カルボキシル基と反応し得る官能基を有する熱硬化剤を配合した組成物は、良好な熱硬化性を示す。硬化塗膜としても強靭かつ高い凝集力を有することから、フィルムや金属箔等の基材に対して良好な剥離強度を示す。またイミド結合由来の高い耐PCT性や耐溶剤性を付与することができる。
 以下に、本発明のカルボキシル基含有ポリイミドを説明する。
 本発明のカルボキシル基含有ポリイミドは、末端酸無水物基含有イミドプレポリマーとポリオール化合物とを反応させることにより得られる。ポリオール化合物としては、2つの水酸基を有する分岐状又は直鎖状のジオール化合物や、任意で3つの水酸基を有する分岐状又は直鎖状のトリオール化合物を用いることができる。
 ポリオール化合物として使用できる2つの水酸基を有する分岐状又は直鎖状のジオール化合物や、任意で3つの水酸基を有する分岐状又は直鎖状のトリオール化合物としては、アルキレンポリオール化合物、カルボキシル基含有ポリオール化合物、ポリオキシアルキレンポリオール化合物、ポリカーボネートポリオール化合物、ポリカプロラクトンポリオール化合物等が挙げられ、これらを単独、又は2種類以上を組み合わせて使用することができる。
 ポリオール化合物として使用できる2つの水酸基を有する分岐状又は直鎖状のジオール化合物は、具体的には以下が例示できる。
 例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2-メチル1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等のアルキレンジオール、
ジメチロールプロピオン酸(2,2-ビス(ヒドロキシメチル)プロピオン酸)、ジメチロールブタン酸(2,2-ビス(ヒドロキシメチル)ブタン酸)、2,3-ジヒドロキシ安息香酸、2,4-ジヒドロキシ安息香酸、2,5-ジヒドロキシ安息香酸、2,6-ジヒドロキシ安息香酸、3,4-ジヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸等のカルボキシル基含有ジオール化合物、
ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、テトラメチレングリコールとネオペンチルグリコールとのランダム共重合体等のポリオキシアルキレンジオール化合物、
多価アルコールと多塩基酸とを反応させて得られるポリエステルジオール化合物、
カーボネート骨格を有するポリカーボネートジオール化合物、
γ-ブチルラクトン、ε-カプロラクトン、δ-バレロラクトン等のラクトン類を開環付加反応させて得られるポリカプロラクトンジオール化合物、
ビスフェノールA、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、水添ビスフェノールA、水添ビスフェノールAのエチレンオキサイド付加物、水添ビスフェノールAのプロピレンオキサイド付加物等が挙げられ、これらを単独、又は2種類以上を組み合わせて使用することができる。
 ポリオール化合物として使用できる任意で3つの水酸基を有する分岐状又は直鎖状のトリオール化合物は、具体的には以下が例示できる。
 例えば、トリメチロールエタン、ポリトリメチロールエタン、トリメチロールプロパン、ポリトリメチロールプロパン、ペンタエリスリトール、ポリペンタエリスリトール、ソルビトール、マンニトール、アラビトール、キシリトール、ガラクチトール、グリセリン、または、これらの多価アルコールを原料の一部として用いて合成されたポリエチレンオキサイド、ポリプロピレンオキサイド、エチレンオキサイド/プロピレンオキサイドのブロック共重合体またはランダム共重合体、ポリテトラメチレングリコール、テトラメチレングリコールとネオペンチルグリコールとのブロック共重合体またはランダム共重合体等のポリエーテルポリオール類、多価アルコールまたはポリエーテルポリオールと無水マレイン酸、マレイン酸、フマル酸、無水イタコン酸、イタコン酸、アジピン酸、イソフタル酸等の多塩基酸との縮合物であるポリエステルポリオール類;カプロラクトン変性ポリテトラメチレンポリオール等のカプロラクトン変性ポリオール、ポリオレフィン系ポリオール、水添ポリブタジエンポリオール等のポリブタジエン系ポリオール、シリコーン系ポリオール等のポリオール類等の多価アルコール化合物が挙げられる。
 これら3つの水酸基を有する分岐状又は直鎖状のトリオール化合物を用いる場合、得られるカルボキシル基含有ポリイミドの一部を分岐させることができる。このため、カルボキシル基含有ポリイミドの架橋密度が上昇し、硬化塗膜の耐性を向上することができる。このように硬化塗膜の耐性をさらに向上するためには、必要に応じ、3つの水酸基を有する分岐状又は直鎖状のトリオール化合物を使用すればよい。
 ポリオール化合物としては、ポリカーボネートポリオール化合物を使用できる。ポリカーボネートポリオール化合物を使用する場合には、ポリカーボネートジオール化合物であることが好ましい。本発明のカルボキシル基含有ポリイミドを電子材料用途等に用いる場合、高い電気絶縁性や耐加水分解性等を発揮することができる。
 以下に、ポリカーボネートジオール化合物の製造方法を例示するが、本発明はこれに限定されるものではない。
 ポリカーボネートジオール化合物は、例えば、
 (i)グリコールまたはビスフェノールと炭酸エステルとの反応、
 (ii)グリコールまたはビスフェノールにアルカリの存在下でホスゲンを作用させる反応、
などで得られる。
 上記(i)の製法で用いられる炭酸エステルとしては、具体的には、ジメチルカーボネート、ジエチルカーボネート、ジフェニルカーボネート、エチレンカーボネート、プロピレンカーボネートなどが挙げられる。
 上記(i)および(ii)の製法で用いられるグリコールまたはビスフェノールとしては、エチレングリコール、プロピレングリコール、ジプロピレングリコール、ジエチレングリコール、トリエチレングリコール、ブチレングリコール、3-メチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオール、3,3’ -ジメチロールヘプタン、ポリオキシエチレングリコール、ポリオキシプロピレングリコールプロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコール、オクタンジオール、ブチルエチルペンタンジオール、2-エチル-1,3-ヘキサンジオール、シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、あるいはビスフェノールAやビスフェノールF等のビスフェノール類、前記ビスフェノール類にエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドを付加させたビスフェノール類などが挙げられる。これらの化合物は1種または2種以上の混合物として使用することができる。
 ポリカーボネートジオール化合物は、具体的には、(株)クラレ製クラレポリオールCシリーズ、旭化成ケミカルズ(株)デュラノールシリーズが好ましく、その中でもC-2090((株)クラレ製カーボネートジオール:3-メチル-1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約2,000)、T5650E(旭化成ケミカルズ(株)製ポリカーボネートジオール:1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約500)、T5651(旭化成ケミカルズ(株)製ポリカーボネートジオール:1,5-ペンタンジオール/1,6-ヘキサンジオール、数平均分子量約1,000)が好ましい。
 ポリオール化合物としては、ポリエステルポリオール化合物を使用できる。ポリエステルポリオール化合物を使用する場合には、特にポリエステルジオール化合物であることが好ましい。具体的には、OD-X-688(DIC(株)製脂肪族ポリエステルジオール:アジピン酸/ネオペンチルグリコール/1,6-ヘキサンジオール、数平均分子量約2,000)、Vylon220(東洋紡績(株)製ポリエステルジオール、数平均分子量約2,000)等が好ましい。
 ポリオール化合物の数平均分子量は、100以上30000以下であることが好ましく、より好ましくは200以上20000以下であり、さらに好ましくは200以上10000以下である。ポリオール化合物の数平均分子量が、100以上30000以下であれば、カルボキシル基含有ポリイミドを特に高分子量化しやすくなる。また、熱硬化するのに十分なカルボキシル基を、カルボキシル基含有ポリイミドに導入することができる。また、堅い硬化塗膜が形成できる。
 末端酸無水物基含有イミドプレポリマーをポリオール化合物で鎖延長することにより、カルボキシル基含有ポリイミドを製造することができる。前記末端酸無水物基含有イミドプレポリマー中の酸無水物基とポリオール化合物のヒドロキシル基を反応させることにより、末端酸無水物基含有イミドプレポリマーの開環反応が進行する。一方でエステル結合を形成し、もう一方で2個のカルボキシル基(残存カルボキシル基)をカルボキシル基含有ポリイミドの主鎖中に形成することができる。このカルボキシル基が存在することにより、オキシラン環を含有する化合物等を熱硬化剤として適量配合して使用することで、優れた熱硬化性を発現することができる。
 末端酸無水物基含有イミドプレポリマーと、ポリオール化合物の仕込みモル比は、目的とするカルボキシル基含有ポリイミドの分子量および酸価に応じて調節できる。
 ジイソシアネート化合物とポリオール化合物を併せた配合量は、カルボキシル基含有ポリイミドの分子量を制御する上で重要である。
 テトラカルボン酸二無水物(A)と、(ジイソシアネート化合物+ポリオール化合物)(B+C)とのモル比率{A/(B+C)}は、
A/(B+C)=60/100~99/100または140/100~101/100の比率がよく、
好ましくは、A/(B+C)=75/100~99/100または125/100~101/100、
より好ましくは、A/(B+C)=85/100~99/100または115/100~101/100、
特に好ましくは、A/(B+C)=90/100~99/100または110/100~101/100、
の比率がよい。
 モル比率が、A/(B+C)=60/100~99/100または140/100~101/100であれば、特に耐熱性と溶媒溶解性のバランスのとれた高分子量のカルボキシル基含有ポリイミドを得ることができる。従って、熱硬化性に優れ、ハンドリングがしやすい粘度のカルボキシル基含有ポリイミドを得ることができる。また、堅い硬化塗膜が形成できる。
 本発明のカルボキシル基含有ポリイミドの数平均分子量は、3000以上100000以下であることが好ましく、より好ましくは7000以上100000以下であり、さらに好ましくは10000以上100000以下である。カルボキシル基含有ポリイミドの数平均分子量が、3000以上100000以下であれば、特に耐熱性と溶媒溶解性のバランスのとれたカルボキシル基含有熱硬化性ポリイミドを得ることができる。従って、熱硬化性に優れ、ハンドリングがしやすい粘度のカルボキシル基含有ポリイミドを得ることができる。また、堅い硬化塗膜が形成できる。
 本発明のカルボキシル基含有ポリイミドは、具体的には以下の一般式[IV]又は[V]で示されるものであることが好ましい。
Figure JPOXMLDOC01-appb-I000016
(一般式[IV]及び[V]中、Rは、以下の一般式[II]で表される酸二無水物化合物のカルボキシル基を除いた有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、脂肪族基、または複素環を有する基である。Rは、以下の一般式[III]で表されるジイソシアネート化合物のイソシアネート基を除いた2価の有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、または脂肪族基である。Rは、炭素数1~20のアルキレン基、またはエステル結合、カーボネート結合、及びエーテル結合より選ばれる少なくとも1つの結合を有するジオール化合物のヒドロキシル基を除いた残基である。n及びmはそれぞれ独立の整数であり、nは1~30の整数、mは1~200の整数である。ただし、一般式[II]及び[III]中のR及びRは、一般式[IV]及び[V]中のR及びRと同義である。)
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
 以下に、カルボキシル基含有ポリイミドの製造方法を説明する。
 末端酸無水物基含有イミドプレポリマーをポリオール化合物で鎖延長する反応は、撹拌器及び温度計を装備した反応缶を用いて行っても良い。反応缶に、溶剤で末端酸無水物基含有イミドプレポリマーと触媒を溶解し、ここにポリオール化合物を添加して、重合することにより行われる。重合温度は60以上150℃以下とすることが好ましく、重合時間は、バッチの規模、採用される反応条件、特に反応濃度により適宜選択することができる。
 カルボキシル基含有ポリイミドを製造する際に使用する有機溶剤としては、先に挙げた末端酸無水物基含有イミドプレポリマーを製造する際に使用する溶剤と同種の溶剤を使用することができる。具体的には、トルエン、キシレン、エチルベンゼン、ニトロベンゼン、シクロヘキサン、イソホロン、ジエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、酢酸エチル、酢酸n-ブチル、酢酸イソアミル、乳酸エチル、アセトン、メチルエチルケトン、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、γ-ブチロラクトン、ジメチルスルホキシド、クロロホルム及び塩化メチレン等を挙げることができる。好ましくは、溶解性の良いN,N-ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、γ-ブチロラクトンである。より好ましくは、N,N-ジメチルアセトアミド、γ-ブチロラクトンである。特に好ましいものは、γ-ブチロラクトンである。
 カルボキシル基含有ポリイミドを製造する際に用いる反応触媒としては、アミン、四級アンモニウム塩、イミダゾール、アミド、ピリジン、ホスフィン、有機金属塩等が挙げられる。より好ましくは、アミン、ピリジン、ホスフィンである。より具体的には、トリエチルアミン、ベンジルジメチルアミン等のアミン;4-ジメチルアミノピリジン等のピリジン;トリフェニルホスフィン等のホスフィン;が挙げられる。特に好ましくは、4-ジメチルアミノピリジンである。
 本発明のカルボキシル基含有ポリイミドの酸価は、250~2500当量/10gであることが好ましく、より好ましくは350~2200当量/10gであり、さらに好ましくは400~1900当量/10gである。なお、酸価は、カルボキシル基に由来するものである(カルボキシル基当量に相当)。カルボキシル基含有ポリイミドの酸価が250~2500当量/10gであれば十分な架橋構造が得られ、熱硬化性、耐熱性、耐溶剤性、難燃性、耐熱劣化性、屈曲性等が特に良好となる。また、硬化収縮も発生しにくくなる。
 本発明の熱硬化性樹脂組成物は、上述のカルボキシル基含有ポリイミド及びオキシラン環を含有する化合物を必須成分として含み、さらにリン原子を含有する無機フィラー及び/又は硬化促進剤を任意成分として含むことができる。
 本発明において使用することができる熱硬化剤は、カルボキシル基含有ポリイミドのカルボキシル基と反応し得る官能基を有する化合物である。例えば、熱硬化剤としては、オキシラン環を含有する化合物を用いることができる。オキシラン環を含有する化合物は、オキシラン環が分子内に含有されていれば特に限定されない。例えば、ノボラック型エポキシ樹脂などのエポキシ基含有化合物や、ノボラック型オキセタン樹脂などのオキセタン基含有化合物などが挙げられる。
 エポキシ基含有化合物としては、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂、可撓性エポキシ樹脂、アミン型エポキシ樹脂、複素環含有エポキシ樹脂、脂環式エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリグリシジルイソシアヌレート、ビキシレノール型エポキシ樹脂、グリシジル基を有する化合物などが挙げられる。
 オキセタン基含有化合物としては、分子内にオキセタン環を有し、硬化可能なものであれば特に限定されず、例えば、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス-{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、3-エチル3-(フェノキシメチル)オキセタン、ジ[1-エチル(3-オキセタニル)]メチルエーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、3-エチル-3-{[3-(トリエトキシル)プロポキシ]メチル}オキセタン、3,3-ビス(ヒドロキシメチル)オキセタン、ジ[1-ヒドロキシメチル(3-オキセタニル)]メチルエーテル、3,3-ビス(ヒドロキシメチル)オキセタン、およびオキセタニル-シルセスキオキサンなどが挙げられる。
 これらのオキシラン環を含有する化合物は、単独又は2種類以上を組み合わせて使用しても構わない。特に、反応性が早く、熱硬化性が良好なエポキシ化合物を用いることが好ましい。
 これらのオキシラン環を含有する化合物には、希釈剤としてさらに、1分子中にエポキシ基を1個だけ有するエポキシ化合物を含んでいても構わない。
 これらのオキシラン環を含有する化合物の添加方法としては、あらかじめ添加するオキシラン環を含有する化合物をカルボキシル基含有ポリイミドに含まれる溶媒と同一の溶媒に溶解してから添加してもよく、またはカルボキシル基含有ポリイミドに直接添加してもよい。
 本発明の熱硬化性樹脂組成物においては、必要に応じて、架橋助剤を併用することができる。このような架橋助剤としては、グリシジルエーテル基、グリシジルエステル基、グリシジルアミノ基、ベンジルオキシメチル基、ジメチルアミノメチル基、ジエチルアミノメチル基、ジメチロールアミノメチル基、ジエチロールアミノメチル基、モルホリノメチル基、アセトキシメチル基、ベンゾイロキシメチル基、アセチル基、ビニル基、イソプロペニル基などを有する化合物を挙げることができる。
 また、熱硬化に関わるオキシラン環とカルボキシル基の比率を調整することにより、熱硬化性を所望の範囲に設定することができる。具体的には、オキシラン環とカルボキシル基の比率は、オキシラン環/カルボキシル基(モル比)=5/1~1/5が好ましく、より好ましくは、3/1~1/3である。前記範囲を超えると、硬化性、架橋性が悪くなる傾向にある。
 オキシラン環を含有する化合物の使用量は、本発明のカルボキシル基含有ポリイミドの用途等を考慮して決定すればよく、特に限定されるものではないが、本発明のカルボキシル基含有ポリイミド100重量部に対して、2重量部以上100重量部以下の範囲内が好ましく、3重量部以上80重量部以下の範囲内がさらに好ましい。オキシラン環を含有する化合物を使用することにより、本発明のカルボキシル基含有ポリイミドから得られた硬化物の架橋密度を適度な値に調節することができるので、硬化後の塗膜の各種物性をより一層向上させることができる。オキシラン環を含有する化合物の使用量が2重量部よりも少ないと、架橋性は悪くなり、また、100重量部よりも多い場合も架橋性が低下するため、耐熱性、耐薬品性、耐溶剤性、耐めっき性等が悪くなる場合がある。
 本発明においては、前記オキシラン環を含有する化合物以外にも熱硬化剤として、水酸基、カルボキシル基などと反応し得る官能基を有する化合物であれば特に制限されるものではない。具体的には、例えば、イソシアネート化合物、ブロックイソシアネート化合物、シアネートエステル化合物、アジリジン化合物、酸無水物基含有化合物、カルボキシル基含有化合物、カルボジイミド基含有化合物、ベンゾオキサジン化合物、マレイミド化合物、シトラコンイミド化合物、ナジイミド化合物、アリルナジイミド化合物、ビニルエーテル化合物、ビニルベンジルエーテル樹脂、チオール化合物、メラミン化合物、グアナミン化合物、アミノ樹脂、フェノール樹脂、アルキド樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、キシレン樹脂、フラン樹脂、ケトン樹脂、トリアリルシアヌレート樹脂、トリス(2-ヒドロキシエチル)イソシアヌラートを含有する樹脂、トリアリルトリメリタートを含有する樹脂、ジシクロペンタジエン樹脂、芳香族ジシアナミドの三量化による熱硬化性樹脂などが挙げられる。これらの化合物は単独、又は2種類以上を組み合わせて使用してもかまわない。
 リン原子を含有する有機フィラーは、難燃性を向上させるためのものである。この有機フィラーは、リン含有率が大きく、難燃化効率が大きく、また加水分解を起こしにくく、疎水性であり、電気特性を低下させない性質を有する。従って、これを用いることにより、難燃性および電気絶縁性に優れた熱硬化性樹脂組成物を得ることができる。本発明において、有機フィラーとは、微粉末状の有機化合物であり、有機溶剤や水等に難溶または不溶なものを指す。
 リン原子を含有する有機フィラーは、好ましくは、下記一般式[VI]で表されるホスフィン酸塩からなることが望ましい。
Figure JPOXMLDOC01-appb-I000019
(一般式[VI]中、RおよびRは、それぞれ独立に直鎖状のまたは枝分かれした炭素数1~6のアルキル基またはアリール基であり、Mは、Mg、Ca、Al、Sb、Sn、Ge、Ti、Fe、Zr、Zn、Ce、Bi、Sr、Mn、Li、Na、Kまたはプロトン化した窒素塩基であり、mは1~4の整数である。)
 上記リン原子を含有する有機フィラーとしては、例えば、トリスジエチルホスフィン酸アルミニウム、トリスメチルエチルホスフィン酸アルミニウム、トリスジフェニルホスフィン酸アルミニウム、ビスジエチルホスフィン酸亜鉛、ビスメチルエチルホスフィン酸亜鉛、ビスジフェニルホスフィン酸亜鉛、ビスジエチルホスフィン酸チタニル、テトラキスジエチルホスフィン酸チタン、ビスメチルエチルホスフィン酸チタニル、テトラキスメチルエチルホスフィン酸チタン、ビスジフェニルホスフィン酸チタニル、テトラキスジフェニルホスフィン酸チタン等およびそれらの任意の混合物よりなる群から選択されるものが挙げられる。これらのうちでは、トリスジエチルホスフィン酸アルミニウムが好ましい。
 また、リン原子を含有する有機フィラーとしては、例えば有機リン系化合物を挙げることができる。具体的には、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサー10-ホスファフェナントレン=10-オキシド、10-(2,5―ジヒドロオキシフェニル)―10H-9-オキサ-10-ホスファフェナントレン=10-オキシド、10―(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。これらのうちでは、10-(2,5―ジヒドロオキシフェニル)―10H-9-オキサ-10-ホスファフェナントレン=10-オキシドが好ましい。
 さらに、リン原子を含有する有機フィラーとしては、例えばトリアジン骨格を有する化合物も使用することができる。具体的には、ポリリン酸メラミン、ポリリン酸メラム、ポリリン酸メレム等が挙げられる。
 トリアジン骨格を有する化合物は、他のリン原子を含有する有機フィラーと共に難燃助剤として用いられる。両者の併用により、優れた難燃性を達成することができるだけでなく、リン原子を含有する有機フィラーの使用量全体を減らすことができ、結果として低反り性や屈曲性に大きく寄与する。トリアジン骨格を有する化合物の使用量は、リン原子を含有する有機フィラーの全体量100重量部に対して好ましくは0~80重量部、より好ましくは10~70重量部である。
 リン原子を含有する有機フィラーは、本発明に使用する有機溶剤に対して難溶または不溶であればよく、特に限定されるものではない。
 リン原子を含有する有機フィラーの平均粒子径は、好ましくは50μm以下、より好ましくは20μm以下である。平均粒子径が前記範囲よりも大きいと、使用量に対して表面積が低下し、分散不良により、十分な難燃性が発現しない。また、屈曲性、密着性および長期信頼性など、従来よりレジストとして求められる性能を著しく落とす原因ともなりうる。従って、可能な限り平均粒子径は小さい方が良いといえる。このような粒子径を与える方法としては、予めビーズミル等により粉砕しても良いし、樹脂との配合時に3本ロール等により粉砕を行っても良い。
 リン原子を含有する有機フィラーの使用量は、カルボキシル基含有ポリイミド(A)100重量部に対して、好ましくは5~125重量部、より好ましくは10~100重量部である。リン原子を含有する有機フィラーの使用量が少なすぎると、難燃効果が不十分であり、一方、使用量が多すぎると、基材との密着性、低反り性、屈曲性等が低下する傾向にある。
 本発明の熱硬化性樹脂組成物中のリン含有率は0.3~10重量%であることが好ましく、より好ましくは0.5~8.5重量%であり、更に好ましくは1~8重量%である。従って、リン含有量がこの範囲になるようにオキシラン環を有する化合物の添加量を調節する。リン含有率が上記範囲未満では、良好な難燃性が得られず、また、上記範囲を越えると、塗膜の機械特性、耐熱性、密着性や絶縁特性が低下する可能性がある。
 本発明の熱硬化性樹脂組成物における、カルボキシル基含有ポリイミドと、オキシラン環を含有する化合物と、リン原子を含有する有機フィラーの重量比率は、好ましくは30~95/1~50/2~55、より好ましくは35~90/2~45/5~50、さらに好ましくは45~85/3~25/10~35である。オキシラン環を含有する化合物が前記範囲を超えると架橋性が悪くなる傾向にある。リン原子を含有する有機フィラーが前記範囲より少ない場合は難燃効果が不十分であり、一方、多い場合は基材との密着性、低反り性、屈曲性等が低下する傾向にある。
 カルボキシル基含有ポリイミドと、オキシラン環を含有する化合物と、リン原子を含有する有機フィラーを合わせた重量は、熱硬化性樹脂組成物中の20重量%以上であることが好ましい。前記範囲以下であると、架橋性が低下するため耐熱性等が悪くなったり、難燃効果が不十分であったりする場合がある。
 本発明のカルボキシル基含有ポリイミドには、熱硬化性、耐熱性、密着性、耐薬品性、及び耐溶剤性等の特性をより一層向上するために、硬化促進剤を用いることができる。硬化促進剤としては、上記のカルボキシル基含有ポリイミド、オキシラン環を含有する化合物の間の硬化反応を促進できるものであればよく、特に制限はない。
 このような硬化促進剤としては、例えば、イミダゾール誘導体、アセトグアナミン、ベンゾグアナミン等のグアナミン類、ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルホン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類、これらの有機酸塩および/またはエポキシアダクト、三フッ化ホウ素のアミン錯体、エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン,2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類、トリメチルアミン、トリエタノールアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン(「DBU」と称することがある)、1,5-ジアザビシクロ[4,3,0]-5-ノネン(「DBN」と称することがある)等の三級アミン類、これらの有機酸塩及び/又はテトラフェニルボロエート、ポリビニルフェノール、ポリビニルフェノール臭素化物、トリブチルホスフィン、トリフェニルホスフィン、トリス-2-シアノエチルホスフィン等の有機ホスフィン類、トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスホニウムクロライド、テトラフェニルホスホニウムテトラフェニルボロエート等の四級ホスホニウム塩類、ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の四級アンモニウム塩類、前記ポリカルボン酸無水物、ジフェニルヨードニウムテトラフルオロボロエート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェート、イルガキュアー261(チバ・スペシャルティ・ケミカルズ(株)製)、オプトマ-SP-170(ADEKA(株)製)等の光カチオン重合触媒、スチレン-無水マレイン酸樹脂、フェニルイソシアネートとジメチルアミンの等モル反応物や、トリレンジイソシアネート、イソホロンジイソシアネート等の有機ポリイソシアネートとジメチルアミンの等モル反応物等が挙げられる。これらを単独で又は2種類以上組み合わせて用いても構わない。これらのうちでは、潜在硬化性を有する硬化促進剤が好ましく、例えばDBU、DBNの有機酸塩及び/又はテトラフェニルボロエートや、光カチオン重合触媒等が挙げられる。
 硬化促進剤の使用量は、オキシラン環を含有する化合物100重量部に対して、0以上30重量部以下が好ましい。30重量部を超えると、カルボキシル基含有ポリイミドの保存安定性や塗膜の耐熱性や耐溶剤性が低下する可能性がある。
 無機あるいは有機フィラーの使用量は、熱硬化性樹脂組成物の不揮発分全体を100重量%とした場合、好ましくは1~25重量%である。更に好ましくは2~15重量%、特に好ましくは3~12重量%である。無機あるいは有機フィラーの使用量が1重量%未満では、印刷性が低下する傾向にあり、25重量%を超えると、塗膜の屈曲性などの機械特性、透明性が低下する傾向にある。
 本発明の熱硬化性樹脂組成物からプリント回路基板のレジスト層を形成させるにあたって、まず本発明の熱硬化性樹脂組成物からレジストインキを調製することが望ましい。具体的には、レジストインキは、前述のカルボキシル基含有ポリイミド及びオキシラン環を含有する化合物と、所望によりリン原子を含有する有機フィラーや硬化促進剤と、溶剤と、さらに必要に応じその他の配合成分を好適な割合で配合し、ロールミル、ミキサー等で均一に混合することにより得られる。混合方法は、十分な分散が得られれば特に制限はないが、3本ロールによる複数回の混練が好ましい。
 レジストインキを調製する際に使用する溶剤としては、カルボキシル基含有ポリイミドを製造する際に使用する溶剤と同種の溶剤を使用することができる。
 レジストインキのB型粘度計での粘度は、25℃で50dPa・s~1000dPa・sの範囲が好ましく、100dPa・s~800dPa・sの範囲が更に好ましい。粘度が50dPa・s未満であると、印刷後のレジストインキの流れ出しが大きくなるとともに膜厚が薄膜化する傾向がある。粘度が1000Pa・sを超えると、印刷の際、レジストインキの基材への転写性が低下しカスレが発生するとともに、印刷膜中のボイド及びピンホールが増加する傾向がある。
 レジストインキには、塗工や印刷時の作業性及び被膜形成前後の膜特性を向上させるため、無機あるいはリン原子を含有しない有機フィラーを添加してもよい。これらのフィラーとしては、例えば、カルボキシル基含有ポリイミド(A)の溶液中に分散してレジストインキを形成し、そのレジストインキにチキソトロピー性を付与できるものであればよく、特に制限はない。無機フィラーとしては、例えば、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)、酸化タンタル(Ta)、ジルコニア(ZrO)、窒化硅素(Si)、チタン酸バリウム(BaO・TiO)、炭酸バリウム(BaCO)、チタン酸鉛(PbO・TiO)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛(PLZT)、酸化ガリウム(Ga)、スピネル(MgO・Al)、ムライト(3Al・2SiO)、コーディエライト(2MgO・2Al・5SiO)、タルク(3MgO・4SiO・HO)、チタン酸アルミニウム(TiO-Al)、イットリア含有ジルコニア(Y-ZrO)、硅酸バリウム(BaO・8SiO)、窒化ホウ素(BN)、炭酸カルシウム(CaCO)、硫酸カルシウム(CaSO)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO)、硫酸バリウム(BaSO)、有機ベントナイト、カーボン(C)などを使用することができ、これらは単独でも二種以上を組み合わせて用いても構わない。得られるレジストインキの色調、透明性、機械特性、チキソトロピー性付与の点から、シリカ微粒子(例えば日本アエロジル(株)製の商品名アエロジェル)が好ましい。
 無機フィラーとしては、平均粒子径50μm以下、最大粒子径100μm以下のものが好ましく、平均粒子径20μm以下が更に好ましく、平均粒子径10μm以下が最も好ましい。ここでいう平均粒子径(メジアン径)は、レ-ザ回析・散乱式粒度分布測定装置を用いて、体積基準で求められる。平均粒子径が50μmを超えると、十分なチキソトロピー性を有するレジストインキが得られにくくなり、塗膜の屈曲性が低下する。最大粒子径が100μmを超えると、塗膜の外観、密着性が不十分となる傾向にある。
 有機フィラーとしては、例えば、ポリイミド樹脂粒子、ベンゾグアナミン樹脂粒子、エポキシ樹脂粒子等が挙げられる。
 さらに、レジストインキには、必要に応じて、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラックなどの公知慣用の着色剤、ハイドロキノン、ハイドロキノンモノメチルエーテル、tert-ブチルカテコール、ピロガロール、フェノチアジン等の公知慣用の重合禁止剤、オルベン、ベントン、モンモリロナイト等の公知慣用の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤、レベリング剤、イミダゾール系、チアゾール系、トリアゾール系、有機アルミニウム化合物、有機チタン化合物、有機シラン化合物などのカップリング剤/密着性付与剤、トリフェニルフォスフェート、トリクレジルフォスフェート、トリキシレニルフォスフェート、トリエチルフォスフェート、クレジルジフェニルフォスフェート、キシレニルジフェニルフォスフェート、クレジルビス(2,6-キシレニル)フォスフェート、2-エチルヘキシルフォスフェート、ジメチルメチルフォスフェート、レゾルシノールビス(ジフェノールAビス(ジクレジル)フォスフェート、ジエチル-N,N―ビス(2-ヒドロキシエチル)アミノメチルフォスフェート、リン酸アミド、有機ホスフィンオキサイド、赤燐等のリン系難燃剤、ポリリン酸アンモニウム、トリアジン、メラミンシアヌレート、サクシノグアナミン、エチレンジメラミン、トリグアナミン、シアヌル酸トリアジニル塩、メレム、メラム、トリス(β-シアノエチル)イソシアヌレート、アセトグアナミン、硫酸グアニルメラミン、硫酸メレム、硫酸メラム等の窒素系難燃剤、ジフェニルスルホン-3-スルホン酸カリウム、芳香族スルフォンイミド金属塩、ポリスチレンスルフォン酸アルカリ金属塩等の金属塩系難燃剤、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化バリウム、塩基性炭酸マグネシウム、水酸化ジルコニウム、酸化スズ等の水和金属系難燃剤、シリカ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化スズ、酸化アンチモン、酸化ニッケル、酸化銅、酸化タングステン、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、スズ酸亜鉛等無機系難燃剤、シリコーンパウダー等の等の難燃剤/難燃助剤、熱安定剤、酸化防止剤、滑剤のような公知慣用の添加剤を用いることができる。
 レジストインキを例えばソルダーレジストとして使用する場合は、フレキシブルプリント配線板に、スクリーン印刷法、スプレー法、ロールコート法、静電塗装法、カーテンコート法等の方法により5~80μmの膜厚でレジストインキを塗布し、塗膜を60~100℃で予備乾燥させた後、100~200℃で本乾燥させて硬化させる。乾燥は空気中でも不活性雰囲気中でもよい。
 レジストインキは、皮膜形成材料として、ソルダーレジスト以外に半導体素子や各種電子部品用オーバーコート、層間絶縁膜に有用である他、塗料、コーティング剤、接着剤等としても好適に使用できる。特に本発明の熱硬化性樹脂組成物は、プリント回路基板のレジスト層として好適に使用できる。
 以下に、本発明のフレキシブル金属張積層体を説明する。
 本発明において、「フレキシブル金属張積層体」とは、金属箔と樹脂層とから形成された積層体であって、例えば、フレキシブルプリント基板等の製造に有用な積層体である。また、本発明において、「フレキシブルプリント基板」とは、例えば、フレキシブル金属張積層体を用いて、サブトラクティブ法等の従来公知の方法で回路加工することにより製造でき、必要に応じて、導体回路を部分的、或いは全面的にカバーレイフィルムやスクリーン印刷インキ等を用いて被覆した、いわゆるフレキシブル基板(FPC)、フラットケーブル、テープオートメーティツドボンディング(TAB)用の基板、又は、TCP(テープキャリアパッケージ)実装用の基板(チップオンフレキシブル基板など)などを総称している。
 本発明は、少なくとも金属箔層および樹脂層を有するフレキシブル金属張積層体であって、前記樹脂層が、特定の構造を有するカルボキシル基含有ポリイミドを熱硬化して得られたものであることを特徴とするフレキシブル金属張積層体である。
 なお、金属箔層と樹脂層は、直接または間接的に積層されていてもよい。
 本発明のフレキシブル金属張積層体の金属箔としては、銅箔、アルミニウム箔、スチール箔、及びニッケル箔などを使用することができ、これらを複合した複合金属箔や亜鉛やクロム化合物など他の金属で処理した金属箔についても使用することができる。なかでも銅箔が一般によく使用される。金属箔の厚みについては特に限定はないが、たとえば、3~50μmの金属箔を好適に使用することができる。特に、回路のファインピッチ化の為には、3~12μmの厚みで、更に、塗布面の表面粗度Rzが、0.5~2.0μmの範囲が好ましい。各々の銅箔特性が下限値以下では、ピール強度(接着強度)が低くなり、また、上限以上では、ファインピッチ化が困難になる傾向にある。金属箔は、通常、リボン状であり、その長さは特に限定されない。また、リボン状の金属箔の幅も特に限定されないが、一般には25~300cm程度、特に50~150cm程度であるのが好ましい。銅箔は市販の電解箔、或いは、圧延箔をそのまま使用することができる。例えば、日本電解株式会社製の「HLS」、古河サーキットホイル株式会社製の「F0-WS」、「U-WZ」、或いは、三井金属鉱業株式会社の「NA-VLP」、「DFF」などが挙げられる。
 本発明のフレキシブル金属張積層体の樹脂層は、テトラカルボン酸二無水物中の酸無水物基とジイソシアネート化合物中のイソシアネート基を反応させて得られる末端酸無水物基含有イミドプレポリマーがポリオール化合物を介して鎖延長された構造を有するカルボキシル基含有ポリイミドを熱硬化して得られる。
 カルボキシル基含有ポリイミドを熱硬化して樹脂層を得る際、カルボキシル基含有ポリイミドは、例えば、アミン等の塩基性化合物を含まない溶剤に溶解して使用してもよい。このような溶剤としては、例えば、トルエン、キシレン、エチルベンゼン、ニトロベンゼン、シクロヘキサン、イソホロン、ジエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、酢酸エチル、酢酸n-ブチル、酢酸イソアミル、乳酸エチル、アセトン、メチルエチルケトン、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、γ-ブチロラクトン、ジメチルスルホキシド、クロロホルム及び塩化メチレン等を挙げることができる。好ましくは、溶解性の良いN,N-ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、γ-ブチロラクトンである。より好ましくは、N,N-ジメチルアセトアミド、γ-ブチロラクトンである。特に好ましいものは、γ-ブチロラクトンである。
 必要ならば、フレキシブル金属張積層体、或いは、フレキシブルプリント基板の諸特性、たとえば、機械的特性、電気的特性、滑り性、難燃性などを改良する目的で、上記カルボキシル基含有ポリイミド溶液に、他の樹脂や有機化合物、及び無機化合物を混合させたり、あるいは、反応させたりして併用してもよい。たとえば、滑剤(シリカ、タルク、シリコーン等)、接着促進剤、難燃剤(リン系やトリアジン系、水酸化アルミ等)、安定剤(酸化防止剤、紫外線吸収剤、重合禁止剤等)、メッキ活性化剤、有機や無機の充填剤(タルク、酸化チタン、シリカ、フッ素系ポリマー微粒子、顔料、染料、炭化カルシウム等)、その他、シリコーン化合物、フッ素化合物、イソシアネート化合物、ブロックイソシアネート化合物、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、フェノール樹脂のような樹脂や有機化合物、或いはこれらの硬化剤、酸化珪素、酸化チタン、炭酸カルシウム、酸化鉄などの無機化合物を本発明の目的を阻害しない範囲で併用することができる。また、必要に応じて、脂肪族第3級アミン、芳香族第3級アミン、複素環式第3級アミン、脂肪族酸無水物、芳香族酸無水物、ヒドロキシ化合物などのポリイミド化の触媒を添加してもよい。例えば、トリエチルアミン、トリエチレンジアミン、ジメチルアニリン、ピリジン、ピコリン、イソキノリン、イミダゾール、ウンデセン、ヒドロキシアセトフェノンなどが好ましく、特に好ましくは、ピリジン化合物、イミダゾール化合物、ウンデセン化合物であり、その中でも、ベンズイミダゾール、トリアゾール、4-ピリジンメタノール、2-ヒドロキシピリジン、ジアザビシクロ[5.4.0]ウンデセン-7が好ましく、より好ましくは、2-ヒドロキシピリジン、ジアザビシクロ[5.4.0]ウンデセン-7である。
 本発明のフレキシブル金属張積層体の製造方法は、特に限定されないが、例えば、金属箔に直接、或いは接着剤層を介してカルボキシル基含有ポリイミド溶液を塗布し、塗膜を乾燥(初期乾燥)し、場合により熱処理・脱溶剤(二次乾燥)する方法を挙げることができる。
 塗布方法としては、特に限定されるものではなく、従来からよく知られている方法を適用することができる。例えば、ロールコーター、ナイフコーター、ドクタ、ブレードコーター、グラビアコーター、ダイコーター、リバースコーターなどにより、カルボキシル基含有ポリイミド溶液の粘度を調整後、金属箔に直接、或いは、接着剤層を介して塗布することができる。接着剤層を介して積層する場合の接着剤組成としては、特に限定はされず、アクリロニトリルブタジエンゴム(NBR)系接着剤、ポリアミド系接着剤、ポリエステル系接着剤、ポリエステルウレタン系接着剤、エポキシ樹脂系、アクリル樹脂系、ポリイミド樹脂系、ポリアミドイミド樹脂系、ポリエステルイミド樹脂系などの接着剤が使用できるが、耐熱性、接着性、耐屈曲特性等からポリイミド樹脂系、ポリアミドイミド樹脂系、或いは、これらの樹脂にエポキシ樹脂を配合した樹脂組成物が好ましく、接着剤層の厚みは、5~30μm程度が好ましい。また、カルボキシル基含有ポリイミド溶液を金属箔に直接、或いは接着剤層を介して塗布、或いは、塗布・乾燥した後、フレキシブルプリント基板の諸特性を改良する目的で、上記の接着剤を更に塗布することもできる。接着剤組成、厚みとしては、耐熱性、接着性、耐屈曲特性、フレキシブルプリント配線板のカール性等の観点から上記と同様であり、塗布、乾燥の条件もカルボキシル基含有ポリイミド溶液と同じ条件を適用することができる。
 塗布後の乾燥条件に特に限定はないが、一般的には、カルボキシル基含有ポリイミド溶液に使用する溶媒の沸点(Tb(℃))より70℃~130℃低い温度で初期乾燥後、溶媒の沸点近傍、或いは沸点以上の温度で更に乾燥(二次乾燥)するのが好ましい。
 初期乾燥温度が(Tb-70)℃より高いと、塗布面に発泡が生じたり、樹脂層の厚み方向での残溶剤のムラが大きくなる為、フレキシブル金属張積層体に反り(カール)が発生する場合があり、これを回路加工したフレキシブルプリント基板の反りも大きくなる場合がある。
 また、乾燥温度が(Tb-130)℃より低いと、乾燥時間が長くなり、生産性が低下する。初期乾燥温度は、溶媒の種類によっても異なるが、一般には60~150℃程度、好ましくは80~120℃程度である。初期乾燥に要する時間は、一般には上記温度条件下で、塗膜中の溶媒残存率が5~40%程度になる有効な時間とすればよいが、一般には1~30分間程度、特に、2~15分間程度が好ましい。
 また、二次乾燥条件も特に限定はなく、溶媒の沸点近傍、或いは、沸点以上の温度で乾燥すればよいが、一般には120℃~400℃が好ましく、より好ましくは200℃~300℃である。120℃未満では乾燥時間が長くなり、生産性が低下し、400℃を超えると樹脂組成によっては劣化反応が進行し、樹脂フィルムがもろくなる場合がある。二次乾燥に要する時間は、一般には上記温度条件下で、塗膜中の溶媒残存率が無くなる程度になる有効な時間とすればよいが、一般には数分間~数十時間程度である。
 乾燥は、不活性ガス雰囲気下、或いは、減圧下で行ってもよい。不活性ガスとしては、窒素、二酸化炭素、へリウム、アルゴン等が例示できるが、入手容易な窒素を用いるのが好ましい。また、減圧下で行う場合は、10-5~10Pa程度、好ましくは10-1~200Pa程度の圧力下で行うのが好ましい。
 初期乾燥、二次乾燥ともに乾燥方式に特に限定されないが、ロールサポート方式やフローティング方式など、従来公知の方法で行うことができる。また、テンター式などの加熱炉での連続熱処理や、巻き物状態で巻き取り、バッチ式のオーブンで熱処理しても良い。バッチ式の場合、塗布面と非塗布面が接触しない様に巻き取ることが好ましい。また、加熱の方式は、従来公知の電気炉、IRヒーター、遠赤外ヒーターなどを適用できる。
 接着剤層を介して貼り合わせる場合の接着剤組成としては、特に限定されず、アクリロニトリルブタジエンゴム(NBR)系接着剤、ポリアミド系接着剤、ポリエステル系接着剤、ポリエステルウレタン系接着剤、エポキシ樹脂系、アクリル樹脂系、ポリイミド樹脂系、ポリアミドイミド樹脂系、ポリエステルイミド樹脂系などの接着剤が使用できるが、耐熱性、接着性、耐屈曲特性等からポリイミド樹脂系、ポリアミドイミド樹脂系、或いは、これらの樹脂にエポキシ樹脂を配合した樹脂組成物が好ましく、接着剤層の厚みは、5~30μm程度が好ましい。また、絶縁性能等からは、ポリエステルやポリエステルウレタン樹脂系、或いは、これらの樹脂にエポキシ樹脂を配合した樹脂組成物が好ましく、接着剤層の厚みは、5~30μm程度が好ましい。接着剤の厚さは、フレキシブルプリント配線基板の性能を発揮するのに支障がない限り、特に限定されないが、厚さが薄すぎる場合には、充分な接着性が得られにくい場合があり、一方、厚さが厚すぎる場合には、加工性(乾燥性、塗布性)等が低下する場合がある。
 上記本発明のフレキシブル金属張積層体を用いて、例えばサブトラクティブ法等の方法で回路加工することにより、フレキシブルプリント基板を製造できる。導体回路のソルダーレジスト、或いは、汚れやキズなどから保護する目的で回路表面を被覆する場合は、従来公知の方法で、ポリイミド等の耐熱性フィルムを接着剤を介して、配線板(導体回路が形成されたベース基板)に貼り合わせる方法や、或いは、液状の被覆剤をスクリーン印刷法で配線板に塗布する方法などが適用できる。液状の被覆剤としては、従来公知のエポキシ系やポリイミド系のインキが使用できるが、好ましくはポリイミド系である。また、エポキシ系やポリイミド系等の接着シートを配線板に直接貼りあわせることも可能である。
 本発明のフレキシブル金属張積層体は、熱硬化性、剥離強度、耐PCT性、及び耐溶剤性を同時に満足できる。従って、本発明のフレキシブル金属張積層体を用いたフレキシブルプリント基板(FPC)は、電子機器、電子部品、自動車部品や電化製品等に好適に使用することができる。また、フラットケーブル、テープオートメーティツドボンディング(TAB)用の基板、又は、TCP(テープキャリアパッケージ)実装用の基板(チップオンフレキシブル基板など)などに好適に用いることが出来る。
 以下に、本発明を実施例により説明するが、本発明は、これらの実施例に限定されるものではない。なお、各実施例における特性値の評価は、以下の方法によって行った。
<樹脂組成>
 末端酸無水物基含有イミドプレポリマー、及びカルボキシル基含有ポリイミドなどの試料15mgを、0.6mlの重ジメチルスルホキシドに溶解し、フーリエ変換核磁気共鳴スペクトロメーター(ブルーカー社製バイオスピン AVANCE500)を用いて、H-NMR分析を行ってその積分比より、モル比を求めた。
<数平均分子量>
 末端酸無水物基含有イミドプレポリマー、及びカルボキシル基含有ポリイミドなどの試料を、樹脂濃度が0.5重量%程度となるようにテトラヒドロフランで溶解および/または希釈し、孔径0.5μmのポリ四フッ化エチレン製メンブレンフィルターで濾過したものを測定用試料として、テトラヒドロフランを移動相とし、示差屈折計を検出器とするゲル浸透クロマトグラフィー(GPC)により分子量を測定した。流速は1mL/分、カラム温度は30℃とした。カラムには昭和電工製KF-802、804L、806Lを用いた。分子量標準には単分散ポリスチレンを使用した。
<酸価>
 カルボキシル基含有ポリイミドなどの試料0.2gを20mlのN-メチルピロリドンに溶解し、0.1Nの水酸化カリウムエタノール溶液で滴定し、カルボキシル基含有樹脂などの試料10gあたりの当量(当量/10g)を求めた。
<熱硬化性>
 カルボキシル基含有ポリイミドと熱硬化剤、硬化促進剤からなる配合物を、厚さ18μmの電解銅箔の光沢面に乾燥後の厚みが20μmとなるように塗布し、80℃×10分間乾燥した。ついで、120℃で1時間の熱処理を行い、硬化膜を形成した積層体を得た(以下、積層体という)。この積層体を2.5cm×10cmの大きさにカットしたものを試験片とした。
 試験片を60分間N-メチルピロリドン(NMP)中に浸漬し、浸漬前後の試験片の質量を測定し、質量の残存率をゲル分率とした。
ゲル分率(質量%)=[(NMP浸漬後の質量-電解銅箔の質量)/(NMP浸漬前の質量-電解銅箔の質量)]×100
<耐PCT性>
 得られた積層体を2.5cm×10cmの大きさにカットした試験片について、121℃×100%Rh×1.2atmの条件下で24時間耐熱処理を実施し、硬化膜の剥がれや膨れ等の外観異常の有無を観察した。
(判定)
 ○:外観異常なし
 △:わずかに外観異常あり
 ×:全面外観異常あり
<耐溶剤性>
 得られた積層体を2.5cm×10cmの大きさにカットした試験片について、ガーゼフェルトにメチルエチルケトンを浸し、500gの荷重をかけてラビング試験を行った。硬化膜が剥がれるまでの回数(一往復で一回とし、上限は100回とする)を、以下の基準で評価した。
(判定)
 ○:100回以上でも剥がれず、硬化塗膜に変化がみられない
 △:100回以上でも剥がれないが、硬化塗膜に傷などが発生する
 ×:100回以下で、硬化塗膜が剥がれる
<剥離強度>
 カルボキシル基含有ポリイミドと熱硬化剤、硬化促進剤からなる配合物を、厚さ25μmのポリイミドフィルム((株)カネカ製、アピカル)に乾燥後の厚みが20μmとなるように塗布し、80℃×10分間乾燥した。ついで、120℃×3分間乾燥した。このようにして得られた接着性フィルムを厚さ18μmの電解銅箔と張り合わせる際、電解銅箔の光沢面が接着剤と接するようにして、160℃で35kgf/cmの加圧下で30秒間プレスし、接着した。ついで、120℃で1時間の熱処理を行い、剥離強度評価用サンプルを作製した。得られたサンプルを、25℃において、引張速度50mm/minで90°剥離試験を行い、剥離強度(N/cm)を測定した。
<リン原子濃度(リン含有率)>
 試料中のリン濃度にあわせて試料を三角フラスコに量りとり、硫酸3ml、過塩素酸0.5mlおよび硝酸3.5mlを加え、電熱器で半日かけて徐々に加熱分解した。溶液が透明になった後、さらに加熱して硫酸白煙を生じさせ、室温まで放冷し、この分解液を50mlメスフラスコに移し、2%モリブデン酸アンモニウム溶液5mlおよび0.2%硫酸ヒドラジン溶液2mlを加え、純水にてメスアップし、内容物をよく混合した。沸騰水浴中に10分間、前記メスフラスコをつけて加熱発色した後、室温まで水冷し、超音波にて脱気し、溶液を吸収セル10mmに採り、分光光度計(波長830nm)にて空試験液を対照にして吸光度を測定した。先に作成しておいた検量線からリン含有量(重量%)を求め、試料中のリン原子濃度(リン含有率)を算出した。
<難燃性>
 厚さ25μmのポリイミドフィルム(カネカ(株)製アピカルNPI)に、レジストインキを塗布した後、80℃×5分間乾燥して乾燥塗膜(厚み15μm)を調製した。次いで、120℃で1時間の熱処理を行なった。得られた積層フィルムについて、UL94規格に従い、難燃性を評価した。難燃性は,UL94規格において、VTM-1以上が好ましく、VTM-0が最も好ましい。
<半田耐熱性>
 電解銅箔にレジストインキを塗布した後、80℃×5分間乾燥して乾燥塗膜(厚み15μm)を調製した。次いで、120℃で1時間の熱処理を行い、レジスト膜積層体を得た(以下、同様に作製したものをレジスト膜積層体と称する)。このレジスト膜積層体に、ロジン系フラックスEC-19S-10(タムラ科研(株)製)を塗布した後、JIS-C6481に準じて280℃の半田浴に30秒間浸漬し、剥がれや膨れ等の外観異常の有無を以下の基準で評価した。
  ○:外観異常なし
  △:わずかに外観異常あり
  ×:全面外観異常あり
<耐熱劣化性>
 上記のレジスト膜積層体を、レジスト面が表側になるように250℃の半田浴に1時間浮かべ、剥がれや膨れ等の外観異常の有無を以下の基準で評価した。
  ○:外観異常なし
  △:わずかに外観異常あり
  ×:全面外観異常あり
<屈曲性>
 上記のレジスト膜積層体に対して、JIS-K5400に準拠して評価を行った。心棒の直径は2mmとし、クラック発生の有無を以下の基準で評価した。
  ○:クラックの発生なし
  ×:クラックの発生あり
<合成例1-1>
 撹拌器及び温度計を装備した四つ口フラスコに、テトラカルボン酸二無水物として、エチレングリコールビス(トリメリット酸無水物)(TMEG)389.8重量部と、溶剤としてγ-ブチロラクトン1230.6重量部を加え、120℃にて撹拌、溶解した。そこへ、ジイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(MDI)137.6重量部を添加・撹拌し、ここに触媒として1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)0.1重量部を添加し、窒素気流下、120℃×3時間反応させた。その後、室温まで冷却することで固形分濃度30重量%の末端酸無水物基含有イミドプレポリマーを得た。このプレポリマーの組成と数平均分子量を表1に示す。
 ついで、得られた固形分濃度30重量%の末端酸無水物基含有イミドプレポリマーを100℃まで加熱、撹拌し、ポリオール化合物としてポリカーボネートジオール化合物(デュラノール T5650E:旭化成ケミカルズ(株)製、Mn=500)225.0重量部と、γ-ブチロラクトン50.5重量部を添加・撹拌した。ここに触媒として4-ジメチルアミノピリジン(DMAP)2.4重量部を添加し、100℃×8時間反応させた。その後、室温まで冷却することで固形分濃度37重量%のカルボキシル基含有ポリイミド(1-1)を得た。この樹脂の組成と物性を表1に示す。なお、合成例1-1で得られたカルボキシル基含有熱硬化性ポリイミド(1-1)のH-NMRスペクトルを図1に示す。
<合成例1-2、1-7>
 原料の組成を表1のように変更し、テトラカルボン酸二無水物を180°にて溶剤に溶解し、ジイソシアネート化合物との反応条件を180℃×3時間としたこと以外は合成例1-1と同様にして、種々のカルボキシル基含有ポリイミドを得た。これらの樹脂の組成と物性を表1に示す。なお、合成例1-2で得られたカルボキシル基含有熱硬化性ポリイミド(1-2)のH-NMRスペクトルを図2に示す。
<合成例1-3、1-4、1-5、1-6>
 原料の組成を表1のように変更したこと以外は合成例1-1と同様にして、種々のカルボキシル基含有ポリイミドを得た。これらの樹脂の組成と物性を表1に示す。
Figure JPOXMLDOC01-appb-T000020
 表1中の略号の意味を以下に記載する。
TMEG      :エチレングリコールビス(トリメリット酸無水物)
PMDA      :ピロメリット酸二無水物
BPDA      :3,3’,4,4’-ジフェニルテトラカルボン酸二無水物
BTDA      :3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物
ODPA      :4,4’-オキシジフタル酸二無水物(ODPA)
MDI       :4,4’-ジフェニルメタンジイソシアネート
TDI       :2,4-トルエンジイソシアネート
C-2090    :(株)クラレ製ポリカーボネートジオール(3-メチル-1,5-ペンタンジオール/1,6-ヘキサンジオール)、数平均分子量約2,000
T5650E    :旭化成ケミカルズ(株)製ポリカーボネートジオール(1,5-ペンタンジオール/1,6-ヘキサンジオール)、数平均分子量約500
T5651     :旭化成ケミカルズ(株)製ポリカーボネートジオール(1,5-ペンタンジオール/1,6-ヘキサンジオール)、数平均分子量約1,000
OD-X-688  :DIC(株)製脂肪族ポリエステルジオール(アジピン酸/ネオペンチルグリコール/1,6-ヘキサンジオール)、数平均分子量約2,000
Vylon220  :東洋紡績(株)製ポリエステルジオール、数平均分子量約2,000
<比較合成例2-1>
 撹拌器及び温度計を装備した四つ口フラスコに、ポリオール化合物としてOH基末端ポリブタジエン(G-3000:日本曹達(株)製、Mn=3000)50重量部を、溶剤としてのγ-ブチロラクトン23.5重量部に溶解し、50℃にて撹拌・溶解した。そこへ、ジイソシアネート化合物として2,4-トルエンジイソシアネート(TDI)4.8重量部を添加・撹拌し、ここに触媒としてジブチルスズジラウレート0.007重量部を添加し、5時間反応させた。ついで、室温まで冷却後、テトラカルボン酸二無水物として3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)8.83g、触媒であるトリエチレンジアミン0.07g、溶剤としてγ-ブチロラクトン74.09重量部を添加・撹拌し、130℃×6時間反応させた。さらに、2,4-トルエンジイソシアネート(TDI)1.43重量部を添加・撹拌し、130℃×6時間反応させた後、室温まで冷却することで固形分濃度40重量%の樹脂(2-1)を得た。得られた樹脂の組成と物性を表2に示す。
<比較合成例2-2>
 撹拌器及び温度計を装備した四つ口フラスコに、ポリオール化合物としてポリカーボネートジオール化合物(PLACCEL CD-220:ダイセル化学(株)製、Mn=2000)1000重量部を、溶剤としてのγ-ブチロラクトン833.5重量部に溶解し、65℃にて撹拌・溶解した。そこへ、ジイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(MDI)250.3重量部を添加・撹拌し、140℃×5時間反応させた。ついで、カルボン酸無水物としてトリメリット酸無水物288.2重量部、ジイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(MDI)125.1重量部、及び溶剤としてγ-ブチロラクトン1361重量部を添加・撹拌し、160℃×6時間反応させた。その後、室温まで冷却することで固形分濃度54重量%の樹脂(2-2)を得た。得られた樹脂の組成と物性を表2に示す。
<比較合成例2-3>
 撹拌器及び温度計を装備した四つ口フラスコに、ポリオール化合物としてエチレングリコール1.86重量部、ジアミン化合物としてシリコンジアミン(KF-8010:信越シリコーン(株)製、Mn=830)49.8重量部、及びテトラカルボン酸二無水物としてエチレングリコールビス(トリメリット酸無水物)(TMEG)41.0重量部を加え、180℃まで昇温し、窒素気流下、1.5時間反応させた。ついで、溶剤としてγ-ブチロラクトン139.0重量部を添加して溶解し、室温まで冷却することで固形分濃度40重量%の樹脂(2-3)を得た。得られた樹脂の組成と物性を表2に示す。
Figure JPOXMLDOC01-appb-T000021
 表2中の略号の意味を以下に記載する。
G-3000    :日本曹達(株)製OH基末端ポリブタジエン、数平均分子量約3,000
PLACCEL CD-220:ダイセル化学(株)製ポリカーボネートジオール、数平均分子量約2,000
KF-8010   :信越シリコーン(株)製シリコンジアミン、数平均分子量約830
TDI       :2,4-トルエンジイソシアネート
MDI       :4,4’-ジフェニルメタンジイソシアネート
BTDA      :3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物
TMEG      :エチレングリコールビス(トリメリット酸無水物)
TMA       :トリメリット酸無水物
<実施例1>
 合成例1で得られたカルボキシル基含有ポリイミド(1-1)の樹脂分100重量部に対して、HP-7200(DIC(株)製ジシクロペンタジエン型エポキシ樹脂の商品名)39重量部を加え、γ-ブチロラクトンで希釈した。さらに硬化促進剤としてUCAT-5002(サンアプロ(株)製)を1.4重量部を加え、ペイントシェーカーを用いて十分撹拌することで本発明のカルボキシル基含有ポリイミドからなる配合物を得た。得られた配合物を乾燥後の厚さ20μmになるように、厚さ18μmの電解銅箔の光沢面、およびポリイミドフィルム((株)カネカ製、アピカル)に塗布した。80℃×10分熱風乾燥した後、空気雰囲気下、120℃で60分加熱して硬化膜を形成した積層体を得た。得られた配合物の組成と塗膜物性を表3に示す。
<実施例2~9、比較例1~3>
 表3記載の組成に変更する以外は実施例1と同様にして配合物を作製し、硬化膜を形成した積層体を得た。得られた配合物の組成と塗膜物性を表3に示す。
Figure JPOXMLDOC01-appb-T000022
 表3中の略号の意味を以下に記載する。
HP-7200  :DIC(株)製、ジシクロペンタジエン型エポキシ樹脂
エピコート828 :ジャパンエポキシレジン(株)製、ビスフェノールA型エポキシ樹脂
BPA-328  :日本触媒(株)製、ビスフェノールA型エポキシ樹脂
XD-1000-L:日本化薬(株)製、ジシクロペンタジエン型エポキシ樹脂
EXA-4816 :DIC(株)製、脂肪族変性エポキシ樹脂
jER-152  :ジャパンエポキシレジン(株)製、フェノールノボラック型エポキシ樹脂
UCAT-5002:サンアプロ(株)製硬化促進剤、DBU系テトラフェニルボレート塩
 表3から明らかなように、実施例1~9では、熱硬化性が全て90質量%以上を示し、剥離強度も全て5N/cm以上であった。また、耐PCT性も全て「外観異常なし」、耐溶剤性も全て「100回以上でも剥がれず、硬化塗膜に変化がみられない」となった。すなわち、本発明のカルボキシル基含有ポリイミドは、熱硬化性、剥離強度、耐PCT性、及び耐溶剤性の全てにおいて良好な評価結果を示した。
 比較例1においては、架橋点が樹脂の末端にしかなく酸価も低いため、熱による架橋性が低く熱硬化性が75質量%となり不良となった。また、樹脂骨格中にウレタン結合も含むため、耐PCT性においても膨れや剥がれが発生し、不良となった。
 比較例2においては、架橋点が樹脂の末端にしかないため熱硬化性が85質量%となり不良となった。また、樹脂骨格中にウレタン結合も含むため、耐PCT性において膨れや剥がれが発生し、不良となった。
 比較例3においては、熱硬化性は95質量%と良好であった。しかし、シラノール化合物を共重合しているため、基材に対する接着性が低い結果となった。また、重合時のポリアミック酸の閉環反応により発生する水のために、樹脂の分子量が上がりにくく、かつ低分子量の未反応物も多く残存してしまうため、硬化膜としたときの耐久性が弱く、耐溶剤性が不良となった。
<合成例1′-1>
 撹拌器及び温度計を装備した四つ口フラスコに、テトラカルボン酸二無水物として、エチレングリコールビス(トリメリット酸無水物)(TMEG)389.8重量部と、溶剤としてγ-ブチロラクトン1230.6重量部を加え、120℃にて撹拌、溶解した。そこへ、ジイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(MDI)137.6重量部を添加・撹拌し、ここに触媒として1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)0.1重量部を添加し、窒素気流下、120℃×3時間反応させた。その後、室温まで冷却することで固形分濃度30重量%の末端酸無水物基含有イミドプレポリマーを得た。このプレポリマーの組成と数平均分子量を表4に示す。
 ついで、得られた固形分濃度30重量%の末端酸無水物基含有イミドプレポリマーを100℃まで加熱、撹拌し、ポリオール化合物としてポリカーボネートジオール化合物(デュラノール T5650E:旭化成ケミカルズ(株)製、Mn=500)225.0重量部と、γ-ブチロラクトン50.5重量部を添加・撹拌した。ここに触媒として4-ジメチルアミノピリジン(DMAP)2.4重量部を添加し、100℃×8時間反応させた。その後、室温まで冷却することで固形分濃度37重量%のカルボキシル基含有ポリイミド(1′-1)を得た。この樹脂の組成と物性を表4に示す。なお、合成例1′-1で得られたカルボキシル基含有熱硬化性ポリイミド(1′-1)のH-NMRスペクトルを図1に示す。
<合成例1′-2、1′-7>
 原料の組成を表4のように変更し、テトラカルボン酸二無水物を180°にて溶剤に溶解し、ジイソシアネート化合物との反応条件を180℃×3時間としたこと以外は合成例1′-1と同様にして、種々のカルボキシル基含有ポリイミドを得た。これらの樹脂の組成と物性を表4に示す。なお、合成例1′-2で得られたカルボキシル基含有熱硬化性ポリイミド(1′-2)のH-NMRスペクトルを図2に示す。
<合成例1′-3、1′-4、1′-5、1′-6>
 原料の組成を表4のように変更したこと以外は合成例1′-1と同様にして、種々のカルボキシル基含有ポリイミドを得た。これらの樹脂の組成と物性を表4に示す。
Figure JPOXMLDOC01-appb-T000023
 表4中の略号の意味を以下に記載する。
TMEG      :エチレングリコールビス(トリメリット酸無水物)
BPDA      :3,3’,4,4’-ジフェニルテトラカルボン酸二無水物
PMDA      :ピロメリット酸二無水物
BTDA      :3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物
ODPA      :4,4’-オキシジフタル酸二無水物(ODPA)
MDI       :4,4’-ジフェニルメタンジイソシアネート
TDI       :2,4-トルエンジイソシアネート
C-2090    :(株)クラレ製ポリカーボネートジオール(3-メチル-1,5-ペンタンジオール/1,6-ヘキサンジオール)、数平均分子量約2,000
T5650E    :旭化成ケミカルズ(株)製ポリカーボネートジオール(1,5-ペンタンジオール/1,6-ヘキサンジオール)、数平均分子量約500
T5651     :旭化成ケミカルズ(株)製ポリカーボネートジオール(1,5-ペンタンジオール/1,6-ヘキサンジオール)、数平均分子量約1,000
OD-X-688  :DIC(株)製脂肪族ポリエステルジオール(アジピン酸/ネオペンチルグリコール/1,6-ヘキサンジオール)、数平均分子量約2,000
Vylon220  :東洋紡績(株)製ポリエステルジオール、数平均分子量約2,000
<比較合成例2′-1>
 撹拌器及び温度計を装備した四つ口フラスコに、ポリオール化合物としてエチレングリコール1.86重量部、ジアミン化合物としてシリコンジアミン(KF-8010:信越シリコーン(株)製、Mn=830)49.8重量部、及びテトラカルボン酸二無水物としてエチレングリコールビス(トリメリット酸無水物)(TMEG)41.0重量部を加え、180℃まで昇温し、窒素気流下、1.5時間反応させた。ついで、溶剤としてγ-ブチロラクトン139.0重量部を添加して溶解し、室温まで冷却することで固形分濃度40重量%の樹脂(2′-1)を得た。得られた樹脂の組成と物性を表5に示す。
<比較合成例2′-2>
 撹拌器及び温度計を装備した四つ口フラスコにおいて、ポリカーボネートポリオール化合物としてポリカーボネートジオール(クラレポリオール C-2050:(株)クラレ製、Mw=2000)553重量部、カルボキシル基含有ジヒドロキシ化合物として2,2-ジメチロールブタン酸(DMBA)62.2重量部を、溶剤としてのγ-ブチロラクトン787重量部に溶解し、90℃にて撹拌・溶解した。反応液の温度を70℃まで下げ、そこへ、ジイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(MDI)172重量部を添加・撹拌し、ここに触媒としてジブチルスズジラウレート0.2重量部を添加し、100℃×4時間反応を行い、ほぼイソシアネートが消失したことを確認した。その後、γ-ブチロラクトン175重量部を加えて希釈し、室温まで冷却することで固形分濃度45重量%のカルボキシル基含有樹脂(2′-2)を得た。得られた樹脂の組成と物性を表5に示す。
<比較合成例2′-3>
 撹拌器及び温度計を装備した四つ口フラスコに、ポリオール化合物としてポリカーボネートジオール化合物(PLACCEL CD-220:ダイセル化学(株)製、Mn=2000)1000重量部を、溶剤としてのγ-ブチロラクトン833.5重量部に溶解し、65℃にて撹拌・溶解した。そこへ、ジイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(MDI)250.3重量部を添加・撹拌し、140℃×5時間反応させた。ついで、カルボン酸無水物としてトリメリット酸無水物288.2重量部、ジイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(MDI)125.1重量部、及び溶剤としてγ-ブチロラクトン1361重量部を添加・撹拌し、160℃×6時間反応させた。その後、室温まで冷却することで固形分濃度54重量%の樹脂(2′-3)を得た。得られた樹脂の組成と物性を表5に示す。
<比較合成例2′-4>
 撹拌器及び温度計を装備した四つ口フラスコに、ポリオール化合物としてポリカーボネートジオール化合物(C-2090:(株)クラレ製、Mn=2000)270重量部、イソホロンジイソシアネート(IPDI)51部を、溶剤としてのトルエン220重量部に仕込み、窒素気流下、撹拌しながら60℃まで昇温し、均一に溶解させた。ここに触媒としてジブチルスズジラウレート0.16重量部を添加し、100℃×3時間反応を行い、ウレタン化を行った。次に、シクロヘキサノン380部、ピロメリット酸二無水物(PMDA)29部を添加し、90℃で1時間撹拌後、ジメチルベンジルアミン3.5部を添加して135℃に昇温し、4時間反応させた。その後120℃に降温してEX-731(ナガセケムテックス株式会社製)3.5部を添加し、120℃のまま6時間撹拌した。室温まで冷却後、シクロヘキサノンで固形分が35%になるよう調整し、樹脂(2′-4)を得た。得られた樹脂の組成と物性を表5に示す。
Figure JPOXMLDOC01-appb-T000024
 表5中の略号の意味を以下に記載する。
C-2050    :(株)クラレ製OH基末端ポリカーボネートジオール、数平均分子量約2,000
DMBA      :2,2-ジメチロールブタン酸
PLACCEL CD-220:ダイセル化学(株)製ポリカーボネートジオール、数平均分子量約2,000
C-2090    :(株)クラレ製OH基末端ポリカーボネートジオール、数平均分子量約2,000
KF-8010   :信越シリコーン(株)製シリコンジアミン、数平均分子量約830
MDI       :4,4’-ジフェニルメタンジイソシアネート
IPDI      :イソホロンジイソシアネート
TMEG      :エチレングリコールビス(トリメリット酸無水物)
TMA       :トリメリット酸無水物
PMDA      :ピロメリット酸二無水物
EX-731    :ナガセケムテックス(株)製グリシジル化合物
<実施例1′>
 合成例1′-1で得られたカルボキシル基含有ポリイミド(1′-1)の樹脂分100重量部に対して、オキシラン環を含有する化合物としてエピクロンHP-7200(DIC(株)製、ジシクロペンタジエン型エポキシ樹脂の商品名)39重量部を加え、γ-ブチロラクトンで希釈した。さらに、リン原子を含有する有機フィラーとして難燃剤であるエクソリットOP-935(クラリアントジャパン(株)製、トリスジエチルホスフィン酸アルミニウムの商品名)を35重量部、硬化促進剤としてUCAT-5002(サンアプロ(株)製)を1.4重量部、消泡剤としてBYK-054(ビックケミー(株)製)を3.1重量部、レベリング剤としてBYK-358(ビックケミー(株)製)を3.2重量部、無機あるいはリン原子を含有しない有機フィラーとしてアエロジェル300(日本アエロジル(株)製、親水性シリカ微粒子)を4.7重量部加え、まず粗混練りし、次いで高速3本ロールを用いて3回混練りを繰り返すことで、均一にフィラーが分散しチキソトロピー性を有する、熱硬化性樹脂組成物からなるレジストインキを得た。γ-ブチロラクトンで粘度を調整したところ、溶液粘度が250ポイズ、揺変度は2.7であった。厚さ18μmの電解銅箔の光沢面、または厚さ25μmのポリイミドフィルム(カネカ製、アピカルNPI)、または2層CCL(東洋紡製、商品名:バイロフレックス)上に線間50μmの櫛型パターンを作成した回路に、得られたレジストインキを乾燥後の厚さ15μmになるよう塗布した。80℃で10分熱風乾燥した後、空気雰囲気下、120℃で60分加熱して積層フィルムを得た。得られたレジストインキの配合と塗膜物性を表6に示す。
<実施例2′~9′、比較例1′~4′>
 表6に記載の組成に変更する以外は実施例1′と同様にして実施例2′~9′、比較例1′~4′のレジストインキを得た。得られたレジストインキの配合と塗膜物性を表6に示す。
Figure JPOXMLDOC01-appb-T000025
 表6中の記号の意味を以下に記載する。
HP-7200  :DIC(株)製、ジシクロペンタジエン型エポキシ樹脂
エピコート828 :ジャパンエポキシレジン(株)製、ビスフェノールA型エポキシ樹脂
XD-1000-L:日本化薬(株)製、ジシクロペンタジエン型エポキシ樹脂
BPA-328  :日本触媒(株)製、ビスフェノールA型エポキシ樹脂
EXA-4816 :DIC(株)製、脂肪族変性エポキシ樹脂
jER-152  :ジャパンエポキシレジン(株)製、フェノールノボラック型エポキシ樹脂
OP-935   :クラリアントジャパン(株)製、トリスジエチルホスフィン酸アルミニウム
OP-930   :クラリアントジャパン(株)製、トリスジエチルホスフィン酸アルミニウム
HCA-HQ   :(株)三光製、10-(2,5―ジヒドロオキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド
PHOSMEL-200:日産化学工業(株)製、ポリリン酸メラミン・メラム・メレム
UCAT-5002:サンアプロ(株)製、硬化促進剤、DBU系テトラフェニルボレート塩
BYK-054  :ビックケミー(株)製、消泡剤
BYK-354  :ビックケミー(株)製、レベリング剤
アエロジェル300:日本アエロジル(株)製、親水性シリカ微粒子
 表6から明らかなように、実施例1′~9′においては、ソルダーレジストとしてのすべての評価項目において、良好な評価結果を得ることができた。
 一方、比較例1′は、耐熱劣化性、屈曲性が劣ることが確認された。ここで使用している樹脂は、樹脂の重合中にポリアミック酸の閉環反応の際に発生する水のため、樹脂の分子量が上がりにくく、強靭な硬化塗膜が得られず耐熱劣化性が悪い。さらに、シリコーン化合物を樹脂に共重合することに加え、難燃性付与のために多量の難燃剤を添加しているために、屈曲性が不良となった。
 比較例2′は、半田耐熱性、耐熱劣化性、屈曲性が劣ることが確認された。ここで使用している樹脂は、2,2-ジメチロールブタン酸を多く共重合することでカルボキシル基を樹脂に導入しているが、2,2-ジメチロールブタン酸は重合性が悪く樹脂主鎖中に局在化してしまい、分子量も低い。さらに未反応物としても残るため、硬化性が悪く、半田耐熱性試験でも塗膜の剥離が顕著であり、屈曲性試験では塗膜がすぐに割れてしまった。また耐熱劣化性では塗膜の変色が顕著であった。
 比較例3′は、耐熱劣化性、屈曲性が劣ることが確認された。ここで使用している樹脂は、骨格中にアミド・イミド結合を含んでいるため実施例に比べ剛直な骨格を有しており、弾性率が高い。難燃性付与のために多量の難燃性フィラーを添加しているが、塗膜が脆くなってしまい、屈曲性試験では塗膜が割れてしまう。また、樹脂骨格中の架橋点が樹脂末端にしかないこともあり強靭な硬化塗膜が得られず耐熱劣化性が不十分であった。
 比較例4′は、耐熱劣化性が劣ることが確認された。ここで使用している樹脂は、骨格中にウレタン結合を含んでいるため、長時間高温にさらされた場合にウレタン結合が分解するため、耐熱劣化性では塗膜の変色が顕著であった。
<合成例1′′-1>
 撹拌器及び温度計を装備した四つ口フラスコに、テトラカルボン酸二無水物として、エチレングリコールビス(トリメリット酸無水物)(TMEG)389.8重量部と、溶剤としてγ-ブチロラクトン1230.6重量部を加え、120℃にて撹拌、溶解した。そこへ、ジイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(MDI)137.6重量部を添加・撹拌し、ここに触媒として1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)0.1重量部を添加し、窒素気流下、120℃×3時間反応させた。その後、室温まで冷却することで固形分濃度30重量%の末端酸無水物基含有イミドプレポリマーを得た。このプレポリマーの組成と数平均分子量を表7に示す。
 次いで、得られた固形分濃度30重量%の末端酸無水物基含有イミドプレポリマーを100℃まで加熱、撹拌し、ポリオール化合物としてポリカーボネートジオール化合物(デュラノール T5650E:旭化成ケミカルズ(株)製、Mn=500)225.0重量部と、γ-ブチロラクトン50.5重量部を添加・撹拌した。ここに触媒として4-ジメチルアミノピリジン(DMAP)2.4重量部を添加し、100℃×8時間反応させた。その後、室温まで冷却することで固形分濃度37重量%のカルボキシル基含有ポリイミド(1′′-1)を得た。この樹脂の組成と物性を表7に示す。なお、合成例1′′-1で得られたカルボキシル基含有熱硬化性ポリイミド(1′′-1)のH-NMRスペクトルを図1に示す。
<合成例1′′-2、1′′-7>
 原料の組成を表7のように変更し、テトラカルボン酸二無水物を180°にて溶剤に溶解し、ジイソシアネート化合物との反応条件を180℃×3時間としたこと以外は合成例1-1と同様にして、種々のカルボキシル基含有ポリイミドを得た。これらの樹脂の組成と物性を表7に示す。なお、合成例1′′-2で得られたカルボキシル基含有熱硬化性ポリイミド(1′′-2)のH-NMRスペクトルを図2に示す。
<合成例1′′-3、1′′-4、1′′-5、1′′-6>
 原料の組成を表7のように変更したこと以外は合成例1′′-1と同様にして、種々のカルボキシル基含有ポリイミドを得た。これらの樹脂の組成と物性を表7に示す。
Figure JPOXMLDOC01-appb-T000026
 表7中の略号の意味を以下に記載する。
TMEG:エチレングリコールビス(トリメリット酸無水物)
BPDA:3,3’,4,4’-ジフェニルテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
BTDA:3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物
ODPA:4,4’-オキシジフタル酸二無水物(ODPA)
MDI:4,4’-ジフェニルメタンジイソシアネート
TDI:2,4-トルエンジイソシアネート
C-2090:(株)クラレ製ポリカーボネートジオール(3-メチル-1,5-ペンタンジオール/1,6-ヘキサンジオール)、数平均分子量約2,000
T5650E:旭化成ケミカルズ(株)製ポリカーボネートジオール(1,5-ペンタンジオール/1,6-ヘキサンジオール)、数平均分子量約500
T5651:旭化成ケミカルズ(株)製ポリカーボネートジオール(1,5-ペンタンジオール/1,6-ヘキサンジオール)、数平均分子量約1,000
OD-X-688:DIC(株)製脂肪族ポリエステルジオール(アジピン酸/ネオペンチルグリコール/1,6-ヘキサンジオール)、数平均分子量約2,000
Vylon220:東洋紡績(株)製ポリエステルジオール、数平均分子量約2,000
<比較合成例2′′-1>
 撹拌器及び温度計を装備した四つ口フラスコに、ポリオール化合物としてOH基末端ポリブタジエン(G-3000:日本曹達(株)製、Mn=3000)50重量部を、溶媒としてのγ-ブチロラクトン23.5重量部に溶解し、50℃にて撹拌・溶解した。そこへ、ジイソシアネート化合物として2,4-トルエンジイソシアネート(TDI)4.8重量部を添加・撹拌し、ここに触媒としてジブチルスズジラウレート0.007重量部を添加し、5時間反応させた。ついで、室温まで冷却後、テトラカルボン酸二無水物として3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)8.83g、触媒としてトリエチレンジアミン0.07g、溶媒としてγ-ブチロラクトン74.09重量部を添加・撹拌し、130℃×6時間反応させた。さらに、2,4-トルエンジイソシアネート(TDI)1.43重量部を添加・撹拌し、130℃×6時間反応させた後、室温まで冷却することで固形分濃度40重量%の樹脂(2′′-1)を得た。得られた樹脂の組成と物性を表8に示す。
<比較合成例2′′-2>
 撹拌器及び温度計を装備した四つ口フラスコに、ポリオール化合物としてポリカーボネートジオール化合物(PLACCEL CD-220:ダイセル化学(株)製、Mn=2000)1000重量部を、溶剤としてのγ-ブチロラクトン833.5重量部に溶解し、65℃にて撹拌・溶解した。そこへ、ジイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(MDI)250.3重量部を添加・撹拌し、140℃×5時間反応させた。ついで、カルボン酸無水物としてトリメリット酸無水物288.2重量部、ジイソシアネート化合物として4,4’-ジフェニルメタンジイソシアネート(MDI)125.1重量部、及び溶剤としてγ-ブチロラクトン1361重量部を添加・撹拌し、160℃×6時間反応させた。その後、室温まで冷却することで固形分濃度54重量%の樹脂(2′′-2)を得た。得られた樹脂の組成と物性を表8に示す。
<比較合成例2′′-3>
 撹拌器及び温度計を装備した四つ口フラスコに、ポリオール化合物としてエチレングリコール1.86重量部、ジアミン化合物としてシリコンジアミン(KF-8010:信越シリコーン(株)製、Mn=830)49.8重量部、及びテトラカルボン酸二無水物としてエチレングリコールビス(トリメリット酸無水物)(TMEG)41.0重量部を加え、180℃まで昇温し、窒素気流下、1.5時間反応させた。ついで、溶剤としてγ-ブチロラクトン139.0重量部を添加して溶解し、室温まで冷却することで固形分濃度40重量%の樹脂(2′′-3)を得た。得られた樹脂の組成と物性を表8に示す。
Figure JPOXMLDOC01-appb-T000027
 表8中の略号の意味を以下に記載する。
G-3000:日本曹達(株)製OH基末端ポリブタジエン、数平均分子量約3,000
PLACCEL CD-220:ダイセル化学(株)製ポリカーボネートジオール、数平均分子量約2,000
KF-8010:信越シリコーン(株)製シリコンジアミン、数平均分子量約830
TDI:2,4-トルエンジイソシアネート
MDI:4,4’-ジフェニルメタンジイソシアネート
BTDA:3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物
TMEG:エチレングリコールビス(トリメリット酸無水物)
TMA:トリメリット酸無水物
<実施例1′′>
 合成例1′′-1で得られたカルボキシル基含有ポリイミド(1′′-1)の樹脂分100重量部に対して、HP-7200(DIC(株)製ジシクロペンタジエン型エポキシ樹脂の商品名)39重量部を加え、γ-ブチロラクトンで希釈した。さらに硬化促進剤としてUCAT-5002(サンアプロ(株)製)を1.4重量部加え、ペイントシェーカーを用いて十分撹拌することで本発明のカルボキシル基含有ポリイミドからなる配合物を得た。得られた配合物を、乾燥後の厚さが20μmになるように、厚さ18μmの電解銅箔の光沢面に塗布した。80℃×10分熱風乾燥した後、空気雰囲気下、120℃で60分加熱してフレキシブル金属張積層体を得た。配合物の組成、及び得られた積層体の評価結果を表9に示す。
<実施例2′′~9′′、比較例1′′~3′′>
 表9に記載のように配合成分を変更する以外は実施例1′′と同様にして実施例2′′~9′′、比較例1′′~3′′の積層体を得た。配合物の組成、及び得られた積層体の評価結果を表9に示す。
Figure JPOXMLDOC01-appb-T000028
 表9中の略号の意味を以下に記載する。
HP-7200:DIC(株)製、ジシクロペンタジエン型エポキシ樹脂
エピコート828:ジャパンエポキシレジン(株)製、ビスフェノールA型エポキシ樹脂
XD-1000-L:日本化薬(株)製、ジシクロペンタジエン型エポキシ樹脂
BPA-328:日本触媒(株)製、ビスフェノールA型エポキシ樹脂
EXA-4816:DIC(株)製、脂肪族変性エポキシ樹脂
jER-152:ジャパンエポキシレジン(株)製、フェノールノボラック型エポキシ樹脂
UCAT-5002:サンアプロ(株)製硬化促進剤、DBU系テトラフェニルボレート塩
 表9から明らかなように、実施例1′′~9′′においては、熱硬化性、剥離強度、耐PCT性、及び耐溶剤性のすべての評価項目において、良好な評価結果を得ることができた。具体的に説明すると、実施例1′′~9′′では、熱硬化性が全て90質量%以上を示し、剥離強度も全て5N/cm以上であった。また、耐PCT性も全て「外観異常なし」、耐溶剤性も全て「100回以上でも剥がれず、変化がみられない」となった。すなわち、本発明のフレキシブル金属張積層体は、熱硬化性、剥離強度、耐PCT性、及び耐溶剤性の全てにおいて良好な評価結果を示した。
 一方、比較例1′′においては、架橋点が樹脂の末端にしかなく酸価も低いため、熱による架橋性が低く熱硬化性が75質量%となり不良となった。また、樹脂骨格中にウレタン結合も含むため、耐PCT性において膨れや剥がれが発生し、不良となった。
 比較例2′′においては、架橋点が樹脂の末端にしかないため熱硬化性が85質量%となり不良となった。また、樹脂骨格中にウレタン結合も含むため、耐PCT性において膨れや剥がれが発生し、不良となった。
 比較例3′′においては、熱硬化性は95質量%と良好であった。しかし、シラノール化合物を共重合しているため、基材に対する接着性が低い結果となった。また、重合時のポリアミック酸の閉環反応により発生する水のために、樹脂の分子量が上がりにくく、かつ低分子量の未反応物も多く残存してしまうため、積層体としたときの耐久性が弱く、耐溶剤性が不良となった。
 本発明によれば、熱硬化性、耐PCT性、耐溶剤性、及び剥離強度を同時に高度に満足する硬化物を与えるカルボキシル基含有ポリイミドを提供することができる。さらに、本発明のカルボキシル基含有ポリイミドを熱硬化剤と組み合わせて使用すれば高度な架橋構造を形成することができ、強靭な硬化塗膜を得ることができる。従って、本発明のカルボキシル基含有ポリイミドは、上記特性を高度に満足するので、レジストインキや接着剤、これらを用いた自動車部品や、電化製品等に使用されるプリント回路基板等に好適に使用することができ、産業界に大きく寄与することが期待される。
 また、本発明の熱硬化性樹脂組成物は、硬化性に優れ、良好な難燃性、半田耐熱性、耐熱劣化性、屈曲性などを有する熱硬化性層を製造でき、特に高温で長時間使用されるような耐久性が要求されるプリント回路基板のレジスト層として好適に使用できる。
 さらに、本発明のフレキシブル金属張積層体は、上記特性を高度に満足するので、電子部品、自動車部品や電化製品等に使用されるフレキシブルプリント基板等に好適に使用することができる。

Claims (19)

  1.  テトラカルボン酸二無水物中の酸無水物基とジイソシアネート化合物中のイソシアネート基を反応させて得られることを特徴とする末端酸無水物基含有イミドプレポリマー。
  2.  数平均分子量が500以上5000以下であることを特徴とする請求項1に記載の末端酸無水物基含有イミドプレポリマー。
  3.  テトラカルボン酸二無水物が、エチレングリコールビス(トリメリット酸無水物)(TMEG)、3,3’,4,4’-ジフェニルテトラカルボン酸二無水物(BPDA)、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、及び4,4’-オキシジフタル酸二無水物(ODPA)からなる群より選ばれた少なくとも1種の化合物であることを特徴とする請求項1または2に記載の末端酸無水物基含有イミドプレポリマー。
  4.  ジイソシアネート化合物が、芳香族ジイソシアネート、脂肪族ジイソシアネート、及び脂環族ジイソシアネートからなる群より選ばれた少なくとも1種の化合物であることを特徴とする請求項1~3のいずれかに記載の末端酸無水物基含有イミドプレポリマー。
  5.  以下の一般式[I]で表わされることを特徴とする請求項1~4のいずれかに記載の末端酸無水物基含有イミドプレポリマー。
    Figure JPOXMLDOC01-appb-I000001
    (一般式[I]中、Rは、以下の一般式[II]で表される酸二無水物化合物のカルボキシル基を除いた有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、脂肪族基、または複素環を有する基である。Rは、以下の一般式[III]で表されるジイソシアネート化合物のイソシアネート基を除いた有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、または脂肪族基である。nは1~30の整数である。ただし、一般式[II]及び[III]中のR及びRは、一般式[I]中のR及びRと同義である。)
    Figure JPOXMLDOC01-appb-I000002
    Figure JPOXMLDOC01-appb-I000003
  6.  請求項1~5のいずれかに記載の末端酸無水物基含有イミドプレポリマーが、ポリオール化合物を介して鎖延長された構造を有することを特徴とするカルボキシル基含有ポリイミド。
  7.  数平均分子量が3000以上100000以下であることを特徴とする請求項6に記載のカルボキシル基含有ポリイミド。
  8.  酸価が250~2500当量/10gであることを特徴とする請求項6または7に記載のカルボキシル基含有ポリイミド。
  9.  ポリオール化合物がポリカーボネートポリオール化合物又はポリエステルポリオール化合物であることを特徴とする請求項6~8のいずれかに記載のカルボキシル基含有ポリイミド。
  10.  以下の一般式[IV]又は[V]によって表わされることを特徴とする請求項6~9のいずれかに記載のカルボキシル基含有ポリイミド。
    Figure JPOXMLDOC01-appb-I000004
    (一般式[IV]及び[V]中、Rは、以下の一般式[II]で表される酸二無水物化合物のカルボキシル基を除いた有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、脂肪族基、または複素環を有する基である。Rは、以下の一般式[III]で表されるジイソシアネート化合物のイソシアネート基を除いた有機基であり、置換基を含んでいてもよい炭素数1~30の芳香族基、脂環族基、または脂肪族基である。Rは、炭素数1~20のアルキレン基、またはエステル結合、カーボネート結合、及びエーテル結合より選ばれる少なくとも1つの結合を有するジオール化合物のヒドロキシル基を除いた残基である。n及びmはそれぞれ独立の整数であり、nは1~30の整数、mは1~200の整数である。ただし、一般式[II]及び[III]中のR及びRは、一般式[IV]及び[V]中のR及びRと同義である。)
    Figure JPOXMLDOC01-appb-I000005
    Figure JPOXMLDOC01-appb-I000006
  11.  プリント回路基板のレジスト層として使用する熱硬化性樹脂組成物であって、請求項6~10のいずれかに記載のカルボキシル基含有ポリイミド、及びオキシラン環を含有する化合物を含むことを特徴とする熱硬化性樹脂組成物。
  12.  オキシラン環を含有する化合物の使用量が、カルボキシル基含有ポリイミド100重量部に対して2~100重量部であることを特徴とする請求項11に記載の熱硬化性樹脂組成物。
  13.  リン原子を含有する有機フィラーをさらに含むことを特徴とする請求項11または12に記載の熱硬化性樹脂組成物。
  14.  カルボキシル基含有ポリイミドと、オキシラン環を含有する化合物と、リン原子を含有する有機フィラーの重量比率が、30~95/1~50/2~55であることを特徴とする請求項13に記載の熱硬化性樹脂組成物。
  15.  カルボキシル基含有ポリイミドと、オキシラン環を含有する化合物と、リン原子を含有する有機フィラーの合計重量が、熱硬化性樹脂組成物中の20重量%以上であることを特徴とする請求項13または14に記載の熱硬化性樹脂組成物。
  16.  硬化促進剤をさらに含むことを特徴とする請求項11~15のいずれかに記載の熱硬化性樹脂組成物。
  17.  少なくとも金属箔層および樹脂層を有するフレキシブル金属張積層体であって、前記樹脂層が、請求項6~10のいずれかに記載のカルボキシル基含有ポリイミドを熱硬化して得られたものであることを特徴とするフレキシブル金属張積層体。
  18.  請求項17に記載のフレキシブル金属張積層体を用いて回路加工されたことを特徴とするフレキシブルプリント基板。
  19.  請求項18に記載のフレキシブルプリント基板を用いてなることを特徴とする電子機器。
PCT/JP2012/063870 2011-05-31 2012-05-30 カルボキシル基含有ポリイミド、熱硬化性樹脂組成物及びフレキシブル金属張積層体 WO2012165457A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012535502A JP5304954B2 (ja) 2011-05-31 2012-05-30 カルボキシル基含有ポリイミド
EP12793349.7A EP2716674B1 (en) 2011-05-31 2012-05-30 Carboxyl group-containing polyimide, heat-curable resin composition, and flexible metal-clad laminate
KR1020137022991A KR101800061B1 (ko) 2011-05-31 2012-05-30 카르복실기 함유 폴리이미드, 열경화성 수지 조성물 및 플렉시블 금속 클래드 적층체
US13/979,750 US9365717B2 (en) 2011-05-31 2012-05-30 Carboxyl group-containing polyimide, thermosetting resin composition and flexible metal-clad laminate
CN201280012563.1A CN103443158B (zh) 2011-05-31 2012-05-30 含羧基聚酰亚胺、热固性树脂组合物及柔性覆金属层叠体

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2011121740 2011-05-31
JP2011-121740 2011-05-31
JP2011-210610 2011-09-27
JP2011210610 2011-09-27
JP2011236919 2011-10-28
JP2011-236919 2011-10-28
JP2012-016121 2012-01-30
JP2012016121 2012-01-30
JP2012016120 2012-01-30
JP2012016119 2012-01-30
JP2012-016120 2012-01-30
JP2012-016119 2012-01-30

Publications (1)

Publication Number Publication Date
WO2012165457A1 true WO2012165457A1 (ja) 2012-12-06

Family

ID=47259310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063870 WO2012165457A1 (ja) 2011-05-31 2012-05-30 カルボキシル基含有ポリイミド、熱硬化性樹脂組成物及びフレキシブル金属張積層体

Country Status (6)

Country Link
US (1) US9365717B2 (ja)
EP (1) EP2716674B1 (ja)
JP (3) JP5304954B2 (ja)
KR (1) KR101800061B1 (ja)
CN (1) CN103443158B (ja)
WO (1) WO2012165457A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488887B (zh) * 2013-02-08 2015-06-21 長興材料工業股份有限公司 聚醯亞胺,由此形成之塗料組合物及其用途
CN104861641A (zh) * 2015-05-19 2015-08-26 兄弟科技股份有限公司 一种改性阴离子水性聚氨酯及其制备方法
JP2016018652A (ja) * 2014-07-08 2016-02-01 株式会社豊田自動織機 結着剤、これを用いた電極及び蓄電装置、並びに架橋ポリアミドイミド樹脂
JP2016199749A (ja) * 2015-04-10 2016-12-01 東洋紡株式会社 ポリイミド樹脂含有水性分散体組成物
WO2020017219A1 (ja) * 2018-07-19 2020-01-23 日本ゼオン株式会社 成形材料および成形体
CN114685766A (zh) * 2020-12-31 2022-07-01 中国石油化工股份有限公司 一种改性生物降解聚酯及其制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013072224A1 (de) * 2011-11-16 2013-05-23 Basf Se Polymeres material, seine herstellung und verwendung
JP6462983B2 (ja) * 2014-01-28 2019-01-30 太陽インキ製造株式会社 感光性熱硬化性樹脂組成物およびフレキシブルプリント配線板
MY180785A (en) * 2015-07-23 2020-12-09 Mitsui Mining & Smelting Co Ltd Resin-clad copper foil, copper-clad laminated plate, and printed wiring board
KR102233604B1 (ko) * 2015-10-19 2021-03-30 도요보 가부시키가이샤 폴리카보네이트이미드 수지 및 이것을 이용한 페이스트
KR102425174B1 (ko) * 2017-06-14 2022-07-26 디아이씨 가부시끼가이샤 산기 함유 (메타)아크릴레이트 수지 및 솔더 레지스트용 수지 재료
CN107674388B (zh) * 2017-09-12 2019-10-08 广东生益科技股份有限公司 无卤树脂组合物以及由其制备的胶膜、覆盖膜和覆铜板
JP7178654B2 (ja) * 2018-06-26 2022-11-28 協立化学産業株式会社 複合体の製造・解体方法並びにゲル状樹脂組成物
US20220177670A1 (en) * 2019-03-27 2022-06-09 Showa Denko Materials Co., Ltd. Resin composition, film and cured prduct
CN111849123B (zh) * 2019-04-25 2022-12-09 常熟生益科技有限公司 一种环氧树脂组合物及其应用
US11753517B2 (en) * 2019-12-12 2023-09-12 Raytheon Company Dispensable polyimide aerogel prepolymer, method of making the same, method of using the same, and substrate comprising patterned polyimide aerogel
US20230331915A1 (en) * 2020-06-29 2023-10-19 Nippon Kayaku Kabushiki Kaisha Isocyanate-Modified Polyimide Resin, Resin Composition and Cured Product of Same
KR102463618B1 (ko) * 2020-07-22 2022-11-04 가부시키가이샤 아리사와 세이사쿠쇼 열경화성 수지 조성물, 커버레이 필름, 접착 시트 및 플렉시블 프린트 배선판
JP7436352B2 (ja) 2020-12-17 2024-02-21 大日精化工業株式会社 カルボキシル基含有エステルイミド樹脂及びエステルイミド樹脂組成物
TW202304706A (zh) * 2021-07-20 2023-02-01 日商東洋紡股份有限公司 積層體
CN117836134A (zh) * 2021-09-02 2024-04-05 东洋纺株式会社 层叠体
JPWO2023067662A1 (ja) * 2021-10-18 2023-04-27
CN115010925B (zh) * 2022-07-12 2023-07-14 西安工程大学 一种互锁双网络结构聚酰亚胺泡沫材料及制备方法和应用
CN115536816B (zh) * 2022-10-28 2024-02-20 中国科学院兰州化学物理研究所 一种热固性环氧树脂形状记忆聚合物及其制备方法
CN116284631B (zh) * 2023-03-20 2024-09-17 国科广化韶关新材料研究院 一种含笼形倍半硅氧烷的三维共价有机框架锂盐及其制备方法与应用
CN116515294A (zh) * 2023-04-14 2023-08-01 哈尔滨理工大学 一种高耐热聚酰亚胺电缆料及其制备方法和应用
WO2025018341A1 (ja) * 2023-07-20 2025-01-23 東洋紡エムシー株式会社 接着剤組成物、並びにこれを含有する接着シート、積層体およびプリント配線板

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208835A (ja) * 1995-01-31 1996-08-13 Japan Synthetic Rubber Co Ltd ポリイミド系共重合体の製造方法、薄膜形成剤、並びに液晶配向膜およびその製造方法
JP2000183539A (ja) 1998-12-18 2000-06-30 Hitachi Chem Co Ltd 多層プリント配線板の製造方法
US6211326B1 (en) * 1996-11-26 2001-04-03 Schenectady International, Inc. Method for the production of polyester imides containing carboxyl- and hydroxyl groups and their usage in wire enamels
JP2005298568A (ja) 2004-04-07 2005-10-27 Kaneka Corp ポリイミド組成物及びそれを用いた耐熱性樹脂組成物
JP2007270137A (ja) 2006-03-09 2007-10-18 Showa Denko Kk 熱硬化性樹脂組成物及びその用途
JP4016226B2 (ja) 1998-01-14 2007-12-05 味の素株式会社 変成ポリイミド樹脂及びこれを含有する熱硬化性樹脂組成物
JP2009185200A (ja) 2008-02-07 2009-08-20 Hitachi Chem Co Ltd 樹脂組成物及びこれらを用いたフレキシブル配線板
WO2010010831A1 (ja) * 2008-07-22 2010-01-28 株式会社カネカ 新規なポリイミド前駆体組成物及びその利用
JP2010070757A (ja) 2008-08-22 2010-04-02 Toyo Ink Mfg Co Ltd 硬化性ウレタン樹脂、該樹脂を含む硬化性樹脂組成物、および硬化性ウレタン樹脂の製造方法
JP2011059340A (ja) * 2009-09-09 2011-03-24 Kaneka Corp 新規な感光性樹脂組成物及びその利用
JP2011084653A (ja) * 2009-10-15 2011-04-28 Kaneka Corp 新規なポリイミド前駆体組成物及びその利用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188209B2 (en) * 2005-03-28 2012-05-29 Ube Industries, Ltd. Polyimide resin and curable resin composition
CN101395223A (zh) * 2006-03-09 2009-03-25 昭和电工株式会社 热固性树脂组合物及其用途
WO2008132960A1 (ja) * 2007-04-19 2008-11-06 Kaneka Corporation 新規なポリイミド前駆体組成物及びその利用
JP5515394B2 (ja) * 2009-04-30 2014-06-11 株式会社ピーアイ技術研究所 感光性変性ポリイミド樹脂組成物及びその用途
KR101810435B1 (ko) * 2010-09-29 2017-12-20 가부시키가이샤 가네카 신규한 감광성 수지 조성물 제작 키트 및 그 이용
KR101568917B1 (ko) * 2011-02-02 2015-11-12 쇼와 덴코 가부시키가이샤 방전 갭 충전용 조성물 및 정전 방전 보호체
CN103975274B (zh) * 2011-12-06 2016-10-26 株式会社钟化 黑色感光性树脂组合物及其利用
WO2013111481A1 (ja) * 2012-01-25 2013-08-01 株式会社カネカ 新規な顔料含有絶縁膜用樹脂組成物及びその利用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208835A (ja) * 1995-01-31 1996-08-13 Japan Synthetic Rubber Co Ltd ポリイミド系共重合体の製造方法、薄膜形成剤、並びに液晶配向膜およびその製造方法
US6211326B1 (en) * 1996-11-26 2001-04-03 Schenectady International, Inc. Method for the production of polyester imides containing carboxyl- and hydroxyl groups and their usage in wire enamels
JP4016226B2 (ja) 1998-01-14 2007-12-05 味の素株式会社 変成ポリイミド樹脂及びこれを含有する熱硬化性樹脂組成物
JP2000183539A (ja) 1998-12-18 2000-06-30 Hitachi Chem Co Ltd 多層プリント配線板の製造方法
JP2005298568A (ja) 2004-04-07 2005-10-27 Kaneka Corp ポリイミド組成物及びそれを用いた耐熱性樹脂組成物
JP2007270137A (ja) 2006-03-09 2007-10-18 Showa Denko Kk 熱硬化性樹脂組成物及びその用途
JP2009185200A (ja) 2008-02-07 2009-08-20 Hitachi Chem Co Ltd 樹脂組成物及びこれらを用いたフレキシブル配線板
WO2010010831A1 (ja) * 2008-07-22 2010-01-28 株式会社カネカ 新規なポリイミド前駆体組成物及びその利用
JP2010070757A (ja) 2008-08-22 2010-04-02 Toyo Ink Mfg Co Ltd 硬化性ウレタン樹脂、該樹脂を含む硬化性樹脂組成物、および硬化性ウレタン樹脂の製造方法
JP2011059340A (ja) * 2009-09-09 2011-03-24 Kaneka Corp 新規な感光性樹脂組成物及びその利用
JP2011084653A (ja) * 2009-10-15 2011-04-28 Kaneka Corp 新規なポリイミド前駆体組成物及びその利用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Recent Polyimides - Fundamentals and Applications", 25 August 2010, KABUSHIKI KAISHA TNS, pages: 6 - 7
See also references of EP2716674A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488887B (zh) * 2013-02-08 2015-06-21 長興材料工業股份有限公司 聚醯亞胺,由此形成之塗料組合物及其用途
JP2016018652A (ja) * 2014-07-08 2016-02-01 株式会社豊田自動織機 結着剤、これを用いた電極及び蓄電装置、並びに架橋ポリアミドイミド樹脂
JP2016199749A (ja) * 2015-04-10 2016-12-01 東洋紡株式会社 ポリイミド樹脂含有水性分散体組成物
CN104861641A (zh) * 2015-05-19 2015-08-26 兄弟科技股份有限公司 一种改性阴离子水性聚氨酯及其制备方法
WO2020017219A1 (ja) * 2018-07-19 2020-01-23 日本ゼオン株式会社 成形材料および成形体
JPWO2020017219A1 (ja) * 2018-07-19 2021-07-15 日本ゼオン株式会社 成形材料および成形体
CN114685766A (zh) * 2020-12-31 2022-07-01 中国石油化工股份有限公司 一种改性生物降解聚酯及其制备方法
CN114685766B (zh) * 2020-12-31 2024-02-02 中国石油化工股份有限公司 一种改性生物降解聚酯及其制备方法

Also Published As

Publication number Publication date
JP2013177548A (ja) 2013-09-09
US9365717B2 (en) 2016-06-14
JP2013176965A (ja) 2013-09-09
JPWO2012165457A1 (ja) 2015-02-23
EP2716674A1 (en) 2014-04-09
US20130310486A1 (en) 2013-11-21
JP5224204B1 (ja) 2013-07-03
EP2716674A4 (en) 2015-06-03
KR101800061B1 (ko) 2017-11-21
JP5224205B1 (ja) 2013-07-03
KR20140015351A (ko) 2014-02-06
JP5304954B2 (ja) 2013-10-02
EP2716674B1 (en) 2016-04-27
CN103443158B (zh) 2015-03-25
CN103443158A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
JP5224204B1 (ja) 熱硬化性樹脂組成物
KR102237222B1 (ko) 폴리우레탄 수지 조성물 및 이것을 이용한 접착제 조성물, 적층체, 프린트 배선판
JP5672701B2 (ja) ポリアミドイミド樹脂、該樹脂組成物、難燃性接着剤組成物並びに該組成物からなる接着剤シート、カバーレイフィルム及びプリント配線板
KR102171631B1 (ko) 폴리아미드이미드 수지를 이용한 접착제 조성물
KR102285047B1 (ko) 폴리카보네이트이미드계 수지 페이스트 및 상기 페이스트를 경화하여 얻어지는 솔더 레지스트층, 표면 보호층, 층간 절연층 또는 접착층을 갖는 전자 부품
JP2012144653A (ja) ウレタン変性ポリイミド系難燃樹脂組成物
JP5610301B2 (ja) 熱硬化性樹脂組成物
JP5552749B2 (ja) 硬化性樹脂組成物
JP5692476B1 (ja) カルボキシル基含有ポリエステル及びそれを含む熱硬化性樹脂組成物
JP5223458B2 (ja) ウレタン変性ポリイミド系樹脂組成物、該組成物からなるペースト及び該ペーストから得られる電子部品
KR102587386B1 (ko) 아크릴로니트릴 부타디엔 고무 공중합 폴리아미드 이미드 수지를 포함하는 접착제 조성물
JP5720088B2 (ja) 変性ウレタン樹脂硬化性組成物、及びその硬化物
JP7028182B2 (ja) ポリカーボネートイミド樹脂及びそれを含む樹脂組成物
WO2020071363A1 (ja) イミド結合を有する樹脂およびリン化合物を用いた接着剤組成物
JP5119754B2 (ja) 熱硬化性ポリイミド樹脂組成物
TW202022006A (zh) 使用了具有醯亞胺鍵之樹脂及磷化合物之黏接劑組成物
WO2019244600A1 (ja) ポリカーボネートイミド樹脂、およびこれを用いたペースト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012535502

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793349

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13979750

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012793349

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137022991

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE