WO2012162900A1 - 太阳电池组件及其制造方法 - Google Patents
太阳电池组件及其制造方法 Download PDFInfo
- Publication number
- WO2012162900A1 WO2012162900A1 PCT/CN2011/075414 CN2011075414W WO2012162900A1 WO 2012162900 A1 WO2012162900 A1 WO 2012162900A1 CN 2011075414 W CN2011075414 W CN 2011075414W WO 2012162900 A1 WO2012162900 A1 WO 2012162900A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- electrode
- conductive member
- cell module
- module according
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 230000005684 electric field Effects 0.000 claims abstract description 46
- 239000011810 insulating material Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 4
- 229920002620 polyvinyl fluoride Polymers 0.000 claims description 4
- 229920002725 thermoplastic elastomer Polymers 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- -1 polyethylene Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 239000000741 silica gel Substances 0.000 claims description 3
- 229910002027 silica gel Inorganic materials 0.000 claims description 3
- 239000002210 silicon-based material Substances 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 2
- 238000002955 isolation Methods 0.000 abstract 2
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 5
- 238000005452 bending Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000004831 Hot glue Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/90—Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
- H10F19/902—Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells
- H10F19/908—Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers for series or parallel connection of photovoltaic cells for back-contact photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
- H10F77/219—Arrangements for electrodes of back-contact photovoltaic cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a solar cell module and a method of fabricating the same, and more particularly to a back contact solar cell module and a method of fabricating a back contact solar cell module. Background technique
- a back contact solar cell (also referred to as a back electrode solar cell) refers to a silicon solar cell in which both the positive and negative electrodes of the cell are located on the back of the cell.
- the main gate line is eliminated on the front side of the battery, the shading loss is reduced, thereby increasing the effective lighting area and improving the efficiency of the battery.
- the positive and negative electrodes of the battery are located on the back of the battery, the connection and packaging of the battery are facilitated, and the manufacturing process is completed; and since the main grid line on the front side of the battery is reduced, the battery looks more beautiful from the front. Therefore, back-contact solar cells are getting more and more attention from the industry and gradually starting to use the industry.
- the electrical connection device connecting the negative electrodes is inevitably and positively The electric field contacts, thereby causing a short circuit;
- the back electric field is a negative electric field
- the electrical connection device connected to the positive electrode is also inevitably in contact with the negative electric field.
- An object of the present invention is to provide a solar cell module capable of reliably insulating a first conductive member for connecting a first electrode disposed on a back surface of a solar cell from an electric field opposite to a polarity of the first electrode of the back surface, thereby Ensure that back-contact solar modules can be used in the industry.
- An electric field of opposite polarity of the electrodes is reliably insulated to ensure that the back contact solar cell module can be industrially applied.
- a solar cell module of the present invention includes a solar cell, and the solar cell is provided on one side surface thereof with a first electrode insulated from each other and the first electrode a second electrode opposite in polarity, and the surface is provided with an electric field opposite to the polarity of the first electrode; a first conductive member electrically connected to the first electrode; an insulating layer disposed on the surface of the solar cell And between the first conductive members.
- the insulating layer comprises an insulating strip detachable from the surface of the solar cell.
- the insulating strip contains expandable polyethylene or a thermoplastic elastomer or a polyvinyl fluoride composite film or a silicon-based material.
- the insulating strip is provided with a through hole, and the first conductive member is electrically connected to the first electrode through the through hole.
- one end of the insulating strip extends beyond the edge of the surface of the solar cell.
- the insulating layer includes an insulating material attached to the surface of the solar cell.
- the insulating material comprises an insulating silica gel.
- the first conductive member includes a longitudinally extending base tape and a projection projecting with respect to a plane in which the base tape is located.
- the protruding portion is disposed corresponding to the first electrode, and protrudes into the through hole to be electrically connected to the first electrode.
- the first electrode protrudes out of the surface.
- the assembly further includes a plurality of second conductive members electrically connected to the second electrode.
- the first electrode has a rectangular shape.
- the assembly further includes an interconnecting conductive member to electrically connect the plurality of second conductive members.
- the first electrode is a negative electrode
- the second electrode is a positive electrode
- the electric field is a positive electric field.
- the first electrode is a positive electrode
- the second electrode is a negative electrode
- the electric field is a negative electric field
- a solar cell module of the present invention includes a first solar cell and a second solar cell adjacent to the first solar cell, wherein the first and second solar cells are a front surface for receiving radiation and a back surface opposite to the front surface, and a first electrode, a second electrode opposite in polarity to the first electrode, and an electric field opposite in polarity to the first electrode are disposed on the back surface ;
- An insulating layer disposed between the back surface of the first and second solar cells and the first conductive member
- the interconnecting conductive member electrically connects the second conductive member of the first solar cell and the first conductive member of the second solar cell.
- the insulating strip is provided with a through hole corresponding to the first electrode, and the first conductive member is provided to protrude into the through hole and electrically electrically with the first electrode Connected projections.
- the interconnecting conductive member is located on the back side of the first solar cell and is connected to the second conductive member on the back surface of the first solar cell.
- the interconnecting conductive member is located on the back surface of the second solar cell and is connected to the first conductive member on the back surface of the second solar cell.
- an insulating layer is provided between the interconnecting conductive member and the back surface of the second solar cell.
- the first electrode is a negative electrode
- the second electrode is a positive electrode
- the electric field is a positive electric field
- the first electrode is a positive electrode
- the second electrode is a negative electrode
- the electric field is a negative electric field.
- a method of manufacturing a solar cell module of the present invention comprising the steps of: providing a first solar cell and a second solar cell adjacent to the first solar cell, the first And the second solar cell are respectively provided on the one side surface thereof with a plurality of rows of first electrodes, a plurality of rows of second electrodes having opposite polarities from the first electrodes, and an electric field opposite to the polarity of the first electrodes, wherein each row is
- An electrode includes a plurality of first electrodes; a plurality of second conductive members are provided to respectively connect each of the second electrodes; and an insulating layer is provided around each of the first electrodes on the back surface of the first and second solar cells Providing a plurality of first conductive members to respectively connect each row of the first electrodes, the insulating layer being located between the first conductive
- the providing the first conductive member includes processing the first conductive member to form a plurality of protrusions corresponding to each row of the first electrodes; and protruding the first conductive member The portion is electrically connected to each row of the first electrodes.
- the providing the insulating layer comprises: coating the insulating material at a position of the first conductive member outside the first electrode of each row on the surface of the first and second solar cells .
- the providing the insulating layer includes: providing an insulating strip on the surface of the first and second solar cells at a position of the first conductive member, the insulating strip being pre-opened and Each row of the first electrode corresponds to a through hole.
- the beneficial effects of the present invention are: by providing an insulating layer between the back surface of the solar cell and the first conductive member, the first conductive member connecting the first electrode and the back surface of the battery and the first electrode can be avoided. A short circuit occurs due to the opposite electric field contact, thereby ensuring that the back contact solar cell module can realize industrial applications.
- FIG. 1 is a schematic plan view of a back surface of a solar cell according to an embodiment of the present invention
- FIG. 2 is a plan view showing an insulating strip for insulating between a negative electrode conductive member and a back surface of a solar cell according to an embodiment of the present invention
- Figure 3 is a plan view showing the insulating strip shown in Figure 2 mounted on the back surface of the solar cell shown in Figure 1;
- Figure 4 is a side view of a negative electrode conductive member in an embodiment of the present invention.
- Figure 5 is a plan view showing the negative electrode conductive member shown in Figure 4 mounted on the back surface of the solar cell shown in Figure 3;
- Figure 6 is a plan view showing further mounting of the positive electrode conductive member and the interconnecting conductive member on the back surface of the solar cell shown in Figure 4;
- Figure 7 is a plan view showing the connection of two adjacent battery sheets in an embodiment of the present invention
- Figure 8 is a cross-sectional view showing a solar cell module in an embodiment of the present invention
- Figure 9 is similar to Figure 7,
- An insulating layer is also disposed between the interconnecting conductive member and the back surface of the solar cell.
- MMT metallization Wrap Through
- MWA Metallization Wrap Around
- EWT Emitter Wrap Through
- the solar cell module is configured to absorb light energy and convert the light energy into an electrical energy output, which may be a large-area battery assembly formed by arranging a plurality of solar cells in series and arranging them in a square array.
- Figure 1 shows the back side 11 of a solar cell 10 using metal penetration (MWT) technology.
- a solar cell is generally composed of two or more semiconductor wafers, and the semiconductor material is usually silicon, such as single crystal silicon, polycrystalline silicon, amorphous silicon, or the like.
- the two ends of the battery An electromotive force is generated to convert light energy into electrical energy.
- the front side of the cell (not shown) is typically provided with a plurality of parallel grids of metal grid lines (not shown) to collect the generated photo-generated current after exposure to the received light.
- the back surface 11 of the battery is provided with a positive electrode 111 and a negative electrode 112, since the back side of the battery passes through the printed aluminum
- the slurry forms a positive electric field, so the negative electrode needs to be insulated from the positive electrode and the positive electric field in a certain manner.
- an insulating region (not shown) is formed around the negative electrode 112 as shown in FIG.
- the insulating region may be formed by laser etching or may be formed by other means.
- the negative electrode 112 and the metal gate line on the front side are connected by a through hole (not shown) penetrating through the battery, and the through hole can be obtained by a laser drilling technique, and a metal plating layer is formed on the inner surface of the through hole, so that the metal grid on the front side
- the line is electrically connected to the negative electrode on the back side, thereby transferring the photo-generated current collected by the metal gate line to the negative electrode. Since the MWT technology is well known to those skilled in the art, as described in European Patent No. EP 0 985 233 B1, filed on Feb. 21, 2007, the disclosure of which is hereby incorporated by reference herein.
- a plurality of rows of positive electrodes 111 and a plurality of rows of negative electrodes 112 are arranged on the back surface of the battery, wherein each row of the positive electrode 111 / the negative electrode 112 includes at least two spaced apart from each other.
- the electrode terminal is provided, and the electrode terminal has a rectangular shape and protrudes from the back surface of the battery.
- the shapes, the number, and the arrangement of the positive and negative electrodes 111, 112 may vary depending on different design requirements.
- the solar cell module further includes a plurality of positive electrode conductive members 31 and a plurality of negative electrode conductive members 32 for respectively connecting each row of the positive electrode 111 and the negative electrode 112, and is disposed at the negative electrode.
- the insulating layer is an insulating strip 20 that can be detached from the back surface 11 of the solar cell 10.
- the insulating strip 20 is made of an insulating material such as Expandable Polyethylene (EPE), or Thermoplastic Elastomer (TPE), or a polyvinyl fluoride composite film (TPT) or a silicon-based material.
- EPE Expandable Polyethylene
- TPE Thermoplastic Elastomer
- TPT polyvinyl fluoride composite film
- the insulating strip 20 has a strip shape and has a body 21, and a through hole 22 corresponding to each row of negative electrodes 112 is opened on the body 21, wherein the interval between the adjacent two through holes 22 and the corresponding adjacent two
- the spacing of the negative electrodes 112 is comparable, and the through holes 22 are also rectangular in shape, corresponding to the size of the negative electrode 112.
- the spacing of adjacent through holes 22 may be slightly larger than the corresponding
- the spacing of adjacent negative electrodes 112 only needs to ensure that the negative electrode 112 can be exposed in the through holes; the size of the through holes 22 can be slightly smaller than the size of the negative electrode 112.
- the shape of the through hole 22 can also be inconsistent with the negative electrode 112.
- the through hole 22 can be circular, and the diameter of the circular circle is smaller than or equal to the short side of the rectangular shape of the negative electrode 112. can.
- the insulating layer may be an insulating material attached to the back surface 11 of the solar cell 10, such as insulating silica gel or the like around the negative electrode, which is also effective in the negative electrode conductive member 32 and the sun. An electrical barrier is achieved between the back side 11 of the battery 10.
- both the positive electrode conductive member 31 and the negative electrode conductive member 32 are in the form of a solder ribbon 30.
- the ribbon 30 is a metal strip comprising an elongated strip base 301 and a plurality of projections 302 projecting relative to the plane in which the base strip is located.
- the number of the projections 302 on the solder ribbon for the positive or negative conductive member 31 and the interval between the adjacent projections are respectively different from the number of the positive and negative electrodes 111 and 112 and the adjacent electrode terminals of each row. The interval is equivalent.
- the protrusions 302 are mainly used to pass through the through holes on the insulating layer when the solder ribbon 30 is mounted on the back surface 11 of the solar cell 10, and are fixedly connected to the corresponding electrode terminals to form an electrical contact, as in the embodiment. Welding.
- the projections 302 may be formed integrally with the base tape 301, such as by bending or stamping; or may be provided in an additional form on the base tape, such as by welding a bump on the surface of the base tape.
- the ribbon can be previously cut to a width corresponding to the rectangular width of the electrode terminal, and then the projection can be formed by bending the base tape, thereby facilitating the production of the solar cell module.
- the positive electrode conductive member 31 can be a solder ribbon which does not require bending, that is, the protruding portion is omitted.
- the positive electrode conductor may be omitted, i.e., an elongated positive electrode is formed directly on the back surface 11 of the solar cell.
- the plurality of negative electrodes of each row are elongated, that is, an integral strip-shaped negative electrode is formed, and the through holes 22 of the insulating layer 20 are also correspondingly arranged in a strip.
- the base tape 301 only needs to have an elongated protrusion 302 corresponding to the elongated through hole.
- the interconnecting conductive member 33 is used to realize interconnection between the positive and negative conductive members 31, 32 of adjacent solar cells, which may take the form of a metal strip.
- the insulating strip 20 when assembling, is first mounted to the back surface 11 of the solar cell 10, wherein the through hole 22 on the insulating strip 20 and the corresponding negative electrode 112 are provided. Aligned, one end 25 of the insulating strip 20 extends beyond the edge 115 of the solar cell 10 and can be further attached to the back side of an adjacent solar cell (as shown in Figure 7).
- the negative electrode conductive member 32 is attached to the back surface 11 of the solar cell, wherein the projection on the negative electrode conductive member is welded to the corresponding negative electrode, since the insulating strip 20 is disposed between the negative electrode conductive member 32 and the back surface 11 of the solar cell, Further, the insulating strip 20 blocks the contact between the negative electrode conductive member 32 and the rear surface 11 of the solar cell in the longitudinal direction and the lateral width direction, thereby effectively insulating the negative electrode conductive member 32 from the positive electric field of the back surface 11 of the solar cell. Thereafter, the positive electrode conductive member 31 is attached to the back surface 11 of the solar cell, wherein the projections on the positive electrode conductive member are welded to the corresponding positive electrode 111.
- the order in which the positive electrode conductive member 31 and the negative electrode conductive member 32 are mounted to the back surface 11 of the solar cell may be changed; or the negative electrode conductive member 32 may be assembled with the insulating strip 20 first, and then the two are mounted together to the sun. On the back of the battery 11 .
- the solar cell module usually includes a dozen or dozens of solar cells connected in this way, and only the two adjacent ones are taken as an example.
- the interconnecting conductive member 33 first electrically connects the plurality of positive conductive members 311 on the back surface of the first solar cell 101, and then to the plurality of negative conductive members 322 extending from the back surface of the second solar battery 102. Realize electrical connection. Since the interconnecting conductive member 33 is first connected to the positive electrode conductive member 311, the interconnecting conductive member can be in direct contact with the back surface of the solar cell without insulation.
- the interconnecting conductive member 33 may also be first connected to the negative conductive member 322 of the second solar cell 102, and then to the positive conductive member 311 on the first solar cell 101.
- the connection is only required to provide an insulating layer 29 between the interconnecting conductive member 33 and the back surface of the second solar cell 102, and the insulating layer can be disposed in the same manner as the above-mentioned insulation disposed between the negative conductive member and the back surface of the solar cell.
- the layers are the same and will not be repeated here.
- the interconnecting conductive member may be disposed on the back side of the first solar cell or on the back side of the second solar cell.
- the negative electrode conductive member 322 is blocked by the insulating strip 20 from the front of the solar cell. It was seen to ensure the aesthetics of the solar module.
- FIG. 8 A schematic cross-sectional view of the solar cell module after lamination and packaging shown in FIG. 8 is used.
- a backsheet 40 for protecting the package which may be made of a polyvinyl fluoride composite film (TPT).
- TPT polyvinyl fluoride composite film
- Located at the top of the front of the solar cell module 100 is a permeable glass, typically tempered glass.
- a hot melt adhesive such as ethylene-vinyl acetate copolymer (EVA), which has a certain elasticity, can enclose the solar cell therein, and the upper glass and the lower layer back The plates are bonded together.
- EVA ethylene-vinyl acetate copolymer
- the surface is n-type silicon, and the back surface is p-type silicon.
- the solar cell of this structure forms a negative electric field on the front side and a positive electric field on the back side, so the negative electrode on the back side (the electrode having the opposite polarity to the back surface electric field is defined as the first electrode)
- the electrode having the opposite polarity to the first electrode is the second electrode
- the negative electrode conductive member (the conductive member connecting the first electrode is defined as the first conductive member, and the conductive member connecting the second electrode is defined as the second conductive member) Piece) needs to be effectively insulated from the positive electric field.
- the front surface of the solar cell is p-type silicon and the back side is n-type silicon
- a positive electric field is formed on the front surface of the solar cell
- a negative electric field is formed on the back surface.
- the invention can also be applied to a solar cell of p+/n structure. At this time, it is necessary to effectively insulate the positive electrode (first electrode) and the positive electrode conductive member (first conductive member) located on the back surface from the negative electric field on the back surface, and the insulation method thereof is The same is true in the above embodiments, and the applicant will not repeat them here.
- the first conductive member connected to the first electrode can be prevented from short-circuiting with an electric field opposite to the polarity of the first electrode on the back side of the battery, thereby ensuring a back contact type.
- Solar cell modules enable industrial applications.
Landscapes
- Photovoltaic Devices (AREA)
Abstract
提供了一种太阳电池组件,其包括太阳电池(10)、形成在该太阳电池一表面(11)上的第一电极和第二第二电极(111),其中该第一电极与该第二电极彼此隔离并且该第二电极的极性与该第一电极的极性相反;设置在该表面上的电场,其中该电场的极性与该第一电极的极性相反;第一导电件(32),电性连接该第一电极;以及绝缘层(20),设置在太阳电池的该表面与该第一导电件之间。由于在太阳电池背面和第一导电件之间设置了绝缘层,所以避免了第一导电件与电池背面的电场接触而发生的短路。
Description
太阳电池组件及其制造方法 本申请要求于 2011 年 05 月 27 日提交中国专利局、 申请号为 201110140708.3、 发明名称为"太阳电池组件及其制造方法 "的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种太阳电池组件及其制造方法, 尤其涉及一种背接触太 阳电池组件及一种背接触太阳电池组件的制造方法。 背景技术
背接触太阳电池(或称为背电极太阳电池)是指电池的正极和负极均 位于电池背面的一种硅太阳电池。 相比传统的硅太阳电池, 由于在电池的 正面取消了主栅线, 降低了遮光损失, 从而加大了有效采光面积, 提高了 电池的效率。 此外, 由于电池的正、 负极均位于电池的背面, 从而方便了 电池的连接和封装, 筒化了制作工艺; 并且由于电池正面的主栅线减少, 使电池从正面看起来更为美观。 所以背接触太阳电池越来越受到行业的关 注并逐步开始产业的应用。
若背电场为正电场, 在背接触太阳电池组件的制造过程中, 当采用传 统的电连接方式将相邻电池片电性串接时, 连接负电极的电性连接装置不 可避免的会与正电场接触, 从而造成短路; 若背电场为负电场, 当采用传 统的电连接方式将相邻电池片电性串接时, 连接正电极的电性连接装置同 样不可避免的会与负电场接触, 造成短路。 因此如何解决背接触太阳电池 组件相邻电池片串联时会出现的短路问题, 是本领域技术人员急需解决的 问题。 发明内容
本发明的目的在于提供一种太阳电池组件, 其能够使设置在背接触太 阳电池背面的用于连接第一电极的第一导电件与背面的和第一电极极性相 反的电场可靠绝缘, 从而确保背接触太阳电池组件能够实现产业的应用。
本发明的目的还在于提供一种太阳电池组件的制造方法, 其能够使设 置在背接触太阳电池背面的用于连接第一电极的第一导电件与背面的和第
一电极极性相反的电场可靠绝缘, 从而确保背接触太阳电池组件能够实现 产业的应用。
为实现上述发明目的之一, 本发明的一种太阳电池组件, 该组件包括 太阳电池, 所述太阳电池在其一侧表面上设置有相互绝缘隔离的第一电极 和与所述第一电极极性相反的第二电极, 且所述表面设置有与所述第一电 极极性相反的电场; 第一导电件, 电性连接所述第一电极; 绝缘层, 设置 在太阳电池的所述表面和所述第一导电件之间。
作为本发明的进一步改进, 所述绝缘层包括可脱离太阳电池的所述表 面的绝缘条。
作为本发明的进一步改进, 所述绝缘条含有可发性聚乙烯或热塑性弹 性体或聚氟乙烯复合膜或硅基材料。
作为本发明的进一步改进, 所述绝缘条上开设有通孔, 第一导电件通 过通孔与第一电极电性连接。
作为本发明的进一步改进, 所述绝缘条的一端延伸超出太阳电池所述 表面的边缘。
作为本发明的进一步改进, 所述绝缘层包括附着于太阳电池的所述表 面上的绝缘材料。
作为本发明的进一步改进, 所述绝缘材料包括绝缘硅胶。
作为本发明的进一步改进, 所述第一导电件包括纵长延伸的基带及相 对于基带所处平面凸出的凸出部。
作为本发明的进一步改进, 所述凸出部与所述第一电极对应设置, 且 凸伸入所述通孔而与所述第一电极电性连接。
作为本发明的进一步改进, 所述第一电极凸出所述表面外。
作为本发明的进一步改进, 该组件还包括电性连接所述第二电极的若 干第二导电件。
作为本发明的进一步改进, 所述第一电极呈矩形状。
作为本发明的进一步改进, 该组件还包括互连导电件以电性连接所述 若干第二导电件。
作为本发明的进一步改进, 所述第一电极为负电极, 所述第二电极为 正电极, 所述电场为正电场。
作为本发明的进一步改进, 所述第一电极为正电极, 所述第二电极为 负电极, 所述电场为负电场。
为实现上述发明目的之一, 本发明的一种太阳电池组件, 该组件包括 第一太阳电池及与所述第一太阳电池相邻的第二太阳电池, 所述第一和第 二太阳电池均包括用于接收辐照的正面及与所述正面相对的背面, 且在所 述背面上设置有第一电极、 与第一电极极性相反的第二电极和与第一电极 极性相反的电场;
第一导电件, 电性连接所述第一电极;
第二导电件, 电性连接所述第二电极;
绝缘层, 设置在所述第一、 第二太阳电池的背面和所述第一导电件之 间;
互连导电件, 电性连接第一太阳电池的第二导电件和第二太阳电池的 第一导电件。
作为本发明的进一步改进, 所述绝缘条设有与所述第一电极对应设置 的通孔, 所述第一导电件设有凸伸入所述通孔内并与所述第一电极电性连 接的凸出部。
作为本发明的进一步改进,所述互连导电件位于第一太阳电池的背面, 并与第一太阳电池背面上的第二导电件连接。
作为本发明的进一步改进,所述互连导电件位于第二太阳电池的背面, 并与所述第二太阳电池背面上的第一导电件连接。
作为本发明的进一步改进, 所述互连导电件与所述第二太阳电池的背 面之间设有绝缘层。
作为本发明的进一步改进, 所述第一电极为负电极, 所述第二电极为 正电极, 所述电场为正电场。
作为本发明的进一步改进, 所述第一电极为正电极, 所述第二电极为 负电极, 所述电场为负电场。
为实现上述另一发明目的, 本发明的一种太阳电池组件的制造方法, 该方法包括如下步骤提供第一太阳电池和与所述第一太阳电池相邻的第二 太阳电池, 所述第一和第二太阳电池分别在其一侧表面上设置有若干排第 一电极、 若干排与第一电极极性相反的第二电极、 以及与第一电极极性相 反的电场, 其中每一排第一电极均包括若干个第一电极; 提供若干第二导 电件以分别连接每一排第二电极; 提供绝缘层, 其位于所述第一、 第二太 阳电池背面上的每排第一电极周围; 提供若干第一导电件以分别连接每一 排第一电极,所述绝缘层位于第一导电件及第一、第二太阳电池背面之间; 提供互连导电件以连接第一太阳电池的第二导电件和第二太阳电池的第一 导电件。
作为本发明的进一步改进, 所述提供第一导电件的步骤包括将所述第 一导电件加工形成与每一排第一电极对应的若干凸出部; 将所述第一导电 件的凸出部与每一排第一电极对应电性连接。
作为本发明的进一步改进, 所述提供绝缘层的步骤包括, 在第一和第 二太阳电池的所述表面上, 位于每一排第一电极外的第一导电件所在位置 处涂刷绝缘材料。
作为本发明的进一步改进, 所述提供绝缘层的步骤包括, 在第一和第 二太阳电池的所述表面上位于第一导电件所在位置处提供绝缘条, 所述绝 缘条上预先开设有与每一排第一电极对应的通孔。
与现有技术相比, 本发明的有益效果是: 通过在太阳电池背面和第一 导电件之间设置绝缘层, 可避免连接第一电极的第一导电件与电池背面的 与第一电极极性相反的电场接触而发生短路, 从而确保背接触式太阳电池 组件能够实现产业的应用。 附图说明
图 1是本发明的一具体实施方式中太阳电池背面的平面示意图; 图 2是本发明的一具体实施方式中用于在负极导电件和太阳电池背面 间实现绝缘的绝缘条的平面示意图;
图 3是图 2所示的绝缘条安装到图 1所示的太阳电池背面上后的平面示 意图;
图 4是本发明的一具体实施方式中负极导电件的侧视图;
图 5是图 4所示的负极导电件安装到图 3所示的太阳电池背面上后的平 面示意图;
图 6是在图 4所示的太阳电池背面上进一步安装正极导电件和互连导电 件后的平面示意图;
图 7是本发明的一具体实施方式中两个相邻电池片连接的平面示意图; 图 8是本发明的一具体实施方式中太阳电池组件的截面剖视示意图; 图 9与图 7类似, 其中在互连导电件和太阳电池背面之间还设置有绝缘 层。
具体实施方式
以下将结合附图以金属穿透式( Metallization Wrap Through, MWT )背 用并不仅限于 MWT背接触太阳电池, 其同样可以应用其他类型的背接触 太阳电池, 如金属环绕式 (Metallization Wrap Around, MWA)背接触太阳电 池、 或射极穿透式 (Emitter Wrap Through, EWT)背接触太阳电池。
太阳电池组件用于吸收光能, 并将光能转化为电能输出, 其可以是由 若干太阳电池串联后进行封装并按方阵排列形成的大面积电池组件。 图 1 所示的为采用金属穿透(MWT )技术的一太阳电池 10的背面 11。 太阳电 池一般由两块或多块半导体薄片组成, 半导体材料通常是硅, 如单晶硅、 多晶硅、 非晶硅等。 当太阳电池的正面接收到光的辐照后, 电池两端出现 异号电荷的积累, 即产生 "光生电压", 这就是 "光生伏特效应" , 在光生 伏特效应的作用下, 电池的两端产生电动势, 从而将光能转换成电能。 对 于 MWT太阳电池而言, 电池的正面 (未图示)通常设置有若干平行排列 的金属栅线(未图示), 以在接收光的辐照后, 收集产生的光生电流。 电池 的背面 11设置有正电极 111和负电极 112, 由于电池的背面会通过印刷铝
浆料以形成正电场, 所以负电极需通过一定的方式与正电极和正电场形成 绝缘。 例如, 图 1中所示的在负电极 112的周围还形成有绝缘区域(未标 示), 来防止负电极与周围的正电场电性导通。该绝缘区域可以通过激光刻 蚀而成, 也可以通过其他方式形成。 负电极 112和位于正面的金属栅线通 过贯穿电池的通孔(未图示)连接, 该通孔可以通过激光钻孔技术获得, 并且在通孔内表面形成有金属镀层, 使正面的金属栅线与背面的负电极电 性导通, 从而, 将金属栅线收集到的光生电流转移到负电极。 由于 MWT 技术为本领域技术人员所熟知, 如 2007年 2月 21 日公告的欧洲专利 EP 0 985 233 B1号, 所以申请人在此不再进一步展开叙述。
如图 1所示, 本实施方式中, 电池的背面上设置有交错排列的若干排 正电极 111和若干排负电极 112,其中正电极 111/负电极 112的每一排至少 包括两个相互间隔设置的电极端子, 该电极端子呈矩形状, 且凸出于电池 的背面设置。 当然, 本领域技术人员可轻易想到的是, 在其它实施方式中, 正、 负电极 111、 112的形状、 个数、 及排列方式均可视不同的设计需求而 发生变化。
参照图 2至图 7所示, 除了太阳电池 10外, 太阳电池组件还包括用于 相应连接每排正电极 111和负电极 112的若干正极导电件 31和若干负极导 电件 32、 设置在负极导电件 32和太阳电池的背面 11之间的绝缘层、 以及 用于在相邻的太阳电池 10之间实现电性连接的互连导电件 33。
如图 2所示的绝缘层的一种实施方式, 在本实施方式中, 绝缘层为可 脱离太阳电池 10背面 11的一绝缘条 20。 绝缘条 20由绝缘材料制成, 如 可发性聚乙烯 ( Expandable Polyethylene, EPE )、 或热塑性弹性体 ( Thermoplastic Elastomer, TPE )、 或聚氟乙烯复合膜( TPT )或硅基材料 等。 绝缘条 20呈长条状, 其具有一本体 21 , 在本体 21上开设有与每一排 负电极 112对应的通孔 22, 其中相邻两个通孔 22的间隔与对应的相邻两 个负电极 112的间隔相当, 通孔 22同样呈矩形状, 与负电极 112的尺寸相 当。 需要说明的是, 前文及后文中所提及的 "相当" 包括完全相同, 也包 括在容许范围内的大致相同。例如,相邻通孔 22的间距可以稍大于相应的
相邻负电极 112的间距, 只需确保负电极 112能够在通孔中露出; 通孔 22 的尺寸可以稍小于负电极 112的尺寸。 另外, 本领域技术人员可以轻易想 到的是,通孔 22的形状也可以与负电极 112不一致,如通孔 22可是圆形, 该圆形的直径小于或等于负电极 112的矩形的短边即可。 此外, 在其它实 施方式中, 绝缘层可以是附着在太阳电池 10的背面 11上的绝缘材料, 如 在负电极周围涂刷绝缘硅胶等, 这种方式同样可以有效地在负极导电件 32 和太阳电池 10的背面 11之间实现电性阻隔。
本实施方式中,正极导电件 31和负极导电件 32均采用焊带 30的形式。 如图 4所示,该焊带 30为一金属条,其包括一长条形基带 301和相对于基 带所处平面凸出的若干凸出部 302。其中用于正极或负极导电件 31的焊带 上的凸出部 302的个数及相邻凸出部的间隔分别与每一排正、 负电极 111、 112的个数和相邻电极端子的间隔相当。 凸出部 302主要用于在焊带 30安 装到太阳电池 10的背面 11上时, 穿过绝缘层上的通孔, 与相应的电极端 子固定连接以形成电性接触, 如本实施方式中采用的焊接。 该凸出部 302 可以是与基带 301—体形成, 如通过折弯或冲压来形成; 也可以通过附加 的形式设置在基带上, 如在基带表面焊接一个凸点。 在本实施方式中, 可 将焊带预先裁剪成宽度与电极端子的矩形宽度相当, 然后只要折弯基带就 可以形成凸出部, 从而方便了太阳电池组件的生产制造。 由于正极导电件 31和太阳电池背面 11之间不会设置绝缘层, 所以正极导电件 31可以采用 不需要折弯的焊带, 即省去了凸出部。 此外, 在其它实施方式中, 正极导 电件可以省去,即直接在太阳电池的背面 11上形成长条形的正电极。另外, 在其它实施方式中, 每一排的若干负电极呈长条状, 即形成一整体式的长 条状负电极,此时所述绝缘层 20上的通孔 22也对应设置成一长条形通孔, 所述基带 301上也只需设有一个与长条形通孔相应的长条形凸出部 302即 可。 本实施方式中, 互连导电件 33用于实现相邻太阳电池的正、 负极导电 件 31、 32之间的互连, 其可以采用金属条的形式。
参照图 3、 图 5、 图 6、 和图 7所示, 组装时, 先将绝缘条 20安装到 太阳电池 10的背面 11 , 其中绝缘条 20上的通孔 22与相应的负电极 112
正对, 绝缘条 20的一端 25延伸超出太阳电池 10的边缘 115 , 并可进一步 搭接到相邻太阳电池的背面上 (如图 7所示)。 然后, 将负极导电件 32连 接到太阳电池的背面 11 , 其中负极导电件上的凸出部与相应的负电极焊 接, 由于绝缘条 20设置在负极导电件 32和太阳电池的背面 11之间,且绝 缘条 20在纵长方向和横宽方向上都阻隔了负极导电件 32和太阳电池背面 11的接触, 从而使得负极导电件 32与太阳电池的背面 11的正电场有效绝 缘。 再后, 将正极导电件 31连接到太阳电池的背面 11 , 其中正极导电件 上的凸出部与相应的正电极 111焊接。 当然, 在其它实施方式中, 正极导 电件 31和负极导电件 32安装到太阳电池背面 11的顺序可以变换;或者负 极导电件 32可以先与绝缘条 20组装, 然后再将两者一起安装到太阳电池 的背面 11上。
参照图 6和图 7所示的两个相邻太阳电池的连接, 当然, 太阳电池组 件通常包括十几个或几十个如此连接的太阳电池, 以下仅以其中相邻的两 个为例进行说明。 本实施方式中, 互连导电件 33 先将第一太阳电池 101 背面上的若干正极导电件 311电性连接在一起, 然后再与由第二太阳电池 102背面上延伸过来的若干负极导电件 322实现电性连接。 由于互连导电 件 33先与正极导电件 311连接,从而互连导电件可与太阳电池的背面直接 接触而无需进行绝缘。 当然, 在其它实施方式中, 如图 9所示, 互连导电 件 33也可以先与第二太阳电池 102的负极导电件 322先连接,然后再与第 一太阳电池 101上的正极导电件 311连接, 只不过此时需要在互连导电件 33和第二太阳电池 102背面之间预先设置绝缘层 29,该绝缘层的设置方式 可以和上述设置在负极导电件和太阳电池背面之间的绝缘层相同, 申请人 在此不再予以赘述。 此外, 互连导电件可以设置在第一太阳电池的背面, 也可以设置在第二太阳电池的背面。 由于绝缘条 20的端部 25进一步延伸 超出第二太阳电池 102的边缘 115并与第一太阳电池 101的背面搭接, 从 而从太阳电池的正面看, 负极导电件 322被绝缘条 20遮挡而无法被看到, 确保了太阳电池组件的美观。
配合参照图 8所示的经过层压封装后的太阳电池组件的剖视示意图。
位于太阳电池组件 100背面底部的是用于保护封装的背板 40, 其可以由聚 氟乙烯复合膜(TPT )制成。 位于太阳电池组件 100正面顶部的是可透光 的玻璃, 通常为钢化玻璃。 位于太阳电池组件 100中部的为上述实施方式 中提及的互连在一起的若干太阳电池 10、 设置在太阳电池背面的绝缘条 20、 及用于正、 负极导电件的焊带 30。 位于太阳电池 10的上、 下两侧分 别设有热融胶粘剂, 如乙烯-醋酸乙烯共聚物(EVA ), 其具有一定的弹性, 可将太阳电池包裹在其内, 并和上层玻璃和下层背板粘合为一体。 面为 n型硅, 背面为 p型硅, 这种结构的太阳电池正面形成负电场, 而背 面形成正电场, 所以位于背面的负电极(将与背面电场极性相反的电极定 义为第一电极, 相应地, 与第一电极极性相反的电极为第二电极)和负极 导电件 (将连接第一电极的导电件定义为第一导电件, 连接第二电极的导 电件定义为第二导电件)需要与正电场有效绝缘。 对于 p+/n结构的太阳电 池, 由于太阳电池正面为 p型硅, 背面为 n型硅, 所以在太阳电池正面形 成正电场, 而在背面形成负电场。 本发明同样可应用于 p+/n结构的太阳电 池, 此时, 需要将位于背面的正电极(第一电极)和正极导电件(第一导 电件) 与背面负电场有效绝缘, 其绝缘方式与上述实施方式中相同, 申请 人在此不再予以赘述。
通过在太阳电池背面和第一导电件之间设置绝缘层, 可避免连接第一 电极的第一导电件与电池背面的与第一电极极性相反的电场接触而发生短 路, 从而确保背接触式太阳电池组件能够实现产业的应用。
对于本领域技术人员而言, 显然本发明不限于上述示范性实施例的细 节, 而且在不背离本发明的精神或基本特征的情况下, 能够以其他的具体 形式实现本发明。 因此, 无论从哪一点来看, 均应将实施例看作是示范性 的, 而且是非限制性的, 本发明的范围由所附权利要求而不是上述说明限 定, 因此旨在将落在权利要求的等同要件的含义和范围内的所有变化嚢括 在本发明内。 不应将权利要求中的任何附图标记视为限制所涉及的权利要 求。
此外, 应当理解, 虽然本说明书按照实施方式加以描述, 但并非每个 实施方式仅包含一个独立的技术方案, 说明书的这种叙述方式仅仅是为清 楚起见, 本领域技术人员应当将说明书作为一个整体, 各实施例中的技术 方案也可以经适当组合, 形成本领域技术人员可以理解的其他实施方式。
Claims
1、 一种太阳电池组件( 100 ) , 其特征在于, 该组件包括:
太阳电池( 10 ), 所述太阳电池在其一侧表面( 11 )上设置有相互绝缘 隔离的第一电极 ( 112 )和与所述第一电极极性相反的第二电极 ( 111 ), 且 所述表面设置有与所述第一电极极性相反的电场;
第一导电件(32 ), 电性连接所述第一电极;
绝缘层( 20 ),设置在太阳电池的所述表面( 11 )和所述第一导电件( 32 ) 之间。
2. 根据权利要求 1所述的太阳电池组件, 其特征在于: 所述绝缘层包 括可脱离太阳电池的所述表面的绝缘条(20 )。
3. 根据权利要求 2所述的太阳电池组件, 其特征在于, 所述绝缘条含 有可发性聚乙烯或热塑性弹性体或聚氟乙烯复合膜或硅基材料。
4.根据权利要求 2所述的太阳电池组件,其特征在于:所述绝缘条( 20 ) 上开设有通孔(22 ), 第一导电件(32 )通过通孔与第一电极电性连接。
5. 根据权利要求 2所述的太阳电池组件, 其特征在于: 所述绝缘条的 一端 (25 )延伸超出太阳电池所述表面的边缘。
6. 根据权利要求 1所述的太阳电池组件, 其特征在于: 所述绝缘层包 括附着于太阳电池的所述表面上的绝缘材料。
7. 根据权利要求 6所述的太阳电池组件, 其特征在于: 所述绝缘材料 包括绝缘硅胶。
8. 根据权利要求 4所述的太阳电池组件, 其特征在于: 所述第一导电 件包括纵长延伸的基带( 301 )及相对于基带所处平面凸出的凸出部( 302 )。
9. 根据权利要求 8所述的太阳电池组件, 其特征在于: 所述凸出部与 所述第一电极对应设置, 且凸伸入所述通孔而与所述第一电极电性连接。
10. 根据权利要求 1所述的太阳电池组件, 其特征在于: 所述第一电 极凸出所述表面 (11 )夕卜。
11. 根据权利要求 1所述的太阳电池组件, 其特征在于: 该组件还包 括电性连接所述第二电极的若干第二导电件。
12. 根据权利要求 1至 11中任意一项所述的太阳电池组件, 其特征在 于: 所述第一电极呈矩形状。
13. 根据权利要求 11所述的太阳电池组件, 其特征在于: 该组件还包 括互连导电件以电性连接所述若干第二导电件。
14. 根据权利要求 1所述的太阳电池组件, 其特征在于: 所述第一电 极为负电极, 所述第二电极为正电极, 所述电场为正电场。
15. 根据权利要求 1所述的太阳电池组件, 其特征在于: 所述第一电 极为正电极, 所述第二电极为负电极, 所述电场为负电场。
16. 一种太阳电池组件, 其特征在于, 该组件包括:
第一太阳电池 (101 ) 及与所述第一太阳电池相邻的第二太阳电池 ( 102), 所述第一和第二太阳电池均包括用于接收辐照的正面及与所述正 面相对的背面(11), 且在所述背面上设置有第一电极(112)、 与第一电极 极性相反的第二电极(111 )和与第一电极极性相反的电场;
第一导电件(32), 电性连接所述第一电极;
第二导电件(31), 电性连接所述第二电极;
绝缘层(20), 设置在所述第一、 第二太阳电池的背面(11 )和所述第 一导电件 (32)之间;
互连导电件(33), 电性连接第一太阳电池的第二导电件和第二太阳电 池的第一导电件。
17. 根据权利要求 16所述的太阳电池组件, 其特征在于: 所述绝缘条 (20)设有与所述第一电极对应设置的通孔(22), 所述第一导电件(32) 设有凸伸入所述通孔内并与所述第一电极电性连接的凸出部 ( 302 )。
18. 根据权利要求 16所述的太阳电池组件, 其特征在于: 所述互连导 电件(33)位于第一太阳电池( 101 )的背面, 并与第一太阳电池背面上的 第二导电件(311 )连接。
19. 根据权利要求 16所述的太阳电池组件, 其特征在于: 所述互连导 电件(33)位于第二太阳电池( 102)的背面, 并与所述第二太阳电池背面 上的第一导电件 (322)连接。
20. 根据权利要求 19所述的太阳电池组件, 其特征在于: 所述互连导 电件(33)与所述第二太阳电池(102) 的背面之间设有绝缘层。
21. 根据权利要求 16所述的太阳电池组件, 其特征在于: 所述第一电 极为负电极, 所述第二电极为正电极, 所述电场为正电场。
22. 根据权利要求 16所述的太阳电池组件, 其特征在于: 所述第一电 极为正电极, 所述第二电极为负电极, 所述电场为负电场。
23. 一种太阳电池组件的制造方法, 其特征在于, 该方法包括如下步 骤:
提供第一太阳电池( 101 )和与所述第一太阳电池相邻的第二太阳电池 ( 102 ), 所述第一和第二太阳电池分别在其一侧表面 (11 )上设置有若干 排第一电极(112 )、 若干排与第一电极极性相反的第二电极( 111 )、 以及 与第一电极极性相反的电场,其中每一排第一电极均包括若干个第一电极; 提供若干第二导电件(31 ) 以分别连接每一排第二电极;
提供绝缘层(20 ), 其位于所述第一、 第二太阳电池背面(11 )上的每 排第一电极周围;
提供若干第一导电件 (32 ) 以分别连接每一排第一电极, 所述绝缘层 位于第一导电件及第一、 第二太阳电池背面 (11 )之间;
提供互连导电件 (33 ) 以连接第一太阳电池的第二导电件和第二太阳 电池的第一导电件。
24. 根据权利要求 23所述的太阳电池组件的制造方法, 其特征在于: 所述提供第一导电件的步骤包括:
将所述第一导电件加工形成与每一排第一电极对应的若干凸出部
( 302 );
将所述第一导电件的凸出部与每一排第一电极对应电性连接。
25. 根据权利要求 23所述的太阳电池组件的制造方法, 其特征在于: 所述提供绝缘层(20 )的步骤包括, 在第一和第二太阳电池的所述表面上, 位于每一排第一电极( 112 )外的第一导电件所在位置处涂刷绝缘材料。
26. 根据权利要求 23所述的太阳电池组件的制造方法, 其特征在于: 所述提供绝缘层 (20 ) 的步骤包括, 在第一和第二太阳电池的所述表面上 位于第一导电件所在位置处提供绝缘条( 20 ),所述绝缘条上预先开设有与 每一排第一电极对应的通孔(22 )。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013538039A JP2013542614A (ja) | 2011-05-27 | 2011-06-07 | 太陽電池モジュール及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110140708.3A CN102800723B (zh) | 2011-05-27 | 2011-05-27 | 太阳电池组件及其制造方法 |
CN201110140708.3 | 2011-05-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012162900A1 true WO2012162900A1 (zh) | 2012-12-06 |
Family
ID=47199780
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/075414 WO2012162900A1 (zh) | 2011-05-27 | 2011-06-07 | 太阳电池组件及其制造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2013542614A (zh) |
CN (1) | CN102800723B (zh) |
WO (1) | WO2012162900A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109659376A (zh) * | 2018-10-18 | 2019-04-19 | 珈伟新能源股份有限公司 | 太阳能电池板及其制备方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103296132B (zh) * | 2012-03-05 | 2016-01-20 | 聚日(苏州)科技有限公司 | 电连接太阳能电池片的方法 |
CN103022204B (zh) * | 2012-12-12 | 2016-05-04 | 常州大学 | 一种背接触光伏组件焊带及其制备方法 |
CN103311343A (zh) * | 2013-05-24 | 2013-09-18 | 中利腾晖光伏科技有限公司 | 一种绝缘式太阳能电池组件 |
JP6141223B2 (ja) * | 2013-06-14 | 2017-06-07 | 三菱電機株式会社 | 受光素子モジュールおよびその製造方法 |
CN106816486B (zh) * | 2017-04-01 | 2018-12-25 | 泰州中来光电科技有限公司 | 一种n型ibc太阳能电池拼片连接的电池串及其制备方法、组件和系统 |
CN110783415A (zh) * | 2019-11-07 | 2020-02-11 | 江苏辉伦太阳能科技有限公司 | 一种新型太阳能电池组件及其制备方法 |
CN111245366B (zh) * | 2020-01-09 | 2021-05-18 | 徐州谷阳新能源科技有限公司 | 一种mwt太阳能电池改善稳态的psg调整和测试方法 |
JP7530221B2 (ja) | 2020-06-25 | 2024-08-07 | 株式会社カネカ | 太陽電池ストリング及び太陽電池モジュール |
CN113823704A (zh) * | 2021-11-23 | 2021-12-21 | 陕西众森电能科技有限公司 | 一种p基硅背接触太阳能电池及其制备方法 |
CN113823705A (zh) * | 2021-11-24 | 2021-12-21 | 陕西众森电能科技有限公司 | 一种异质结背接触太阳电池及其制备方法 |
CN113871499A (zh) * | 2021-11-25 | 2021-12-31 | 陕西众森电能科技有限公司 | 一种n基硅背接触太阳能电池及其制备方法 |
CN114235682B (zh) * | 2021-12-27 | 2022-06-21 | 南京日托光伏新能源有限公司 | 一种mwt电池组件用电镀金属箔表面镀层结合力的测试方法 |
CN117525194A (zh) * | 2023-12-07 | 2024-02-06 | 淮安捷泰新能源科技有限公司 | 一种太阳能电池互联结构及互联方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009059921A (ja) * | 2007-08-31 | 2009-03-19 | Sharp Corp | 光電変換素子、光電変換素子接続体および光電変換モジュール |
CN101556975A (zh) * | 2008-04-10 | 2009-10-14 | 通用电气公司 | 晶片级互连和方法 |
US20100139746A1 (en) * | 2007-03-19 | 2010-06-10 | Q-Cells Se | Solar cell device, solar cell module, and connector device |
DE102009047778A1 (de) * | 2009-02-24 | 2010-09-02 | Bosch Solar Energy Ag | MWT-Halbleiter-Solarzelle mit einer Vielzahl von das halbleitende Material kontaktierenden, parallel zueinander verlaufenden schmalen leitfähigen Fingern vorgegebener Länge |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09282986A (ja) * | 1996-04-11 | 1997-10-31 | Mitsubishi Electric Corp | 真空バルブ |
EP2105970A4 (en) * | 2006-12-26 | 2015-08-05 | Kyocera Corp | SOLAR CELL MODULE |
JP4989549B2 (ja) * | 2007-08-24 | 2012-08-01 | 三洋電機株式会社 | 太陽電池及び太陽電池モジュール |
JP2009130117A (ja) * | 2007-11-22 | 2009-06-11 | Sharp Corp | 太陽電池セルおよび半導体装置連結体ならびにその接続配線 |
JP5035845B2 (ja) * | 2008-01-04 | 2012-09-26 | シャープ株式会社 | 太陽電池および太陽電池モジュール |
CN202678319U (zh) * | 2011-05-27 | 2013-01-16 | 苏州阿特斯阳光电力科技有限公司 | 太阳电池组件 |
-
2011
- 2011-05-27 CN CN201110140708.3A patent/CN102800723B/zh active Active
- 2011-06-07 JP JP2013538039A patent/JP2013542614A/ja active Pending
- 2011-06-07 WO PCT/CN2011/075414 patent/WO2012162900A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100139746A1 (en) * | 2007-03-19 | 2010-06-10 | Q-Cells Se | Solar cell device, solar cell module, and connector device |
JP2009059921A (ja) * | 2007-08-31 | 2009-03-19 | Sharp Corp | 光電変換素子、光電変換素子接続体および光電変換モジュール |
CN101556975A (zh) * | 2008-04-10 | 2009-10-14 | 通用电气公司 | 晶片级互连和方法 |
DE102009047778A1 (de) * | 2009-02-24 | 2010-09-02 | Bosch Solar Energy Ag | MWT-Halbleiter-Solarzelle mit einer Vielzahl von das halbleitende Material kontaktierenden, parallel zueinander verlaufenden schmalen leitfähigen Fingern vorgegebener Länge |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109659376A (zh) * | 2018-10-18 | 2019-04-19 | 珈伟新能源股份有限公司 | 太阳能电池板及其制备方法 |
CN109659376B (zh) * | 2018-10-18 | 2024-04-05 | 珈伟新能源股份有限公司 | 太阳能电池板及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102800723A (zh) | 2012-11-28 |
CN102800723B (zh) | 2015-10-21 |
JP2013542614A (ja) | 2013-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012162900A1 (zh) | 太阳电池组件及其制造方法 | |
JP5289625B1 (ja) | 太陽電池モジュール | |
CN106098831B (zh) | 一种背接触太阳能电池串及其制备方法和组件、系统 | |
JP5714080B2 (ja) | 太陽電池モジュール | |
JPWO2012001815A1 (ja) | 太陽電池モジュール | |
CN115832093A (zh) | 一种光伏电池结构及其制造方法、光伏组件 | |
CN102576752A (zh) | 太阳能电池元件及太阳能电池模块 | |
US9153713B2 (en) | Solar cell modules and methods of manufacturing the same | |
WO2018176182A1 (zh) | 一种n型ibc太阳能电池拼片连接的电池串及其制备方法、组件和系统 | |
CN107611183A (zh) | 电池片、电池片矩阵、太阳能电池及电池片的制备方法 | |
TWI631814B (zh) | 太陽光電模組 | |
CN202678319U (zh) | 太阳电池组件 | |
CN205944115U (zh) | 电池片、电池片组件、电池片矩阵及太阳能电池 | |
CN207425874U (zh) | 双面发电太阳能电池片、电池串及双面发电光伏组件 | |
CN207441731U (zh) | 异质结太阳能电池 | |
KR20180079425A (ko) | 후면 전극형 태양전지 기판, 이의 제조방법 및 후면 전극형 태양전지 | |
JP2016063129A (ja) | ヘテロ接合型バックコンタクトセルおよび光電変換装置 | |
CN107564974B (zh) | 电池片、电池片矩阵、太阳能电池及电池片的制备方法 | |
US20130312821A1 (en) | Solar cell | |
US20140261684A1 (en) | Solar cell module | |
CN202796968U (zh) | 一种mwt太阳电池组件 | |
TWI528571B (zh) | 太陽能電池、太陽能電池組、太陽能電池模組及太陽能電池組的組裝方法 | |
KR101866309B1 (ko) | 메탈 웰딩 태양전지 | |
CN222088620U (zh) | 背接触太阳能电池、电池组件和光伏系统 | |
CN217822834U (zh) | 一种叠瓦电池串、光伏组件、光伏电池片和印刷钢板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11866567 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013538039 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11866567 Country of ref document: EP Kind code of ref document: A1 |