WO2012147715A1 - 膜モジュールの洗浄方法 - Google Patents
膜モジュールの洗浄方法 Download PDFInfo
- Publication number
- WO2012147715A1 WO2012147715A1 PCT/JP2012/060909 JP2012060909W WO2012147715A1 WO 2012147715 A1 WO2012147715 A1 WO 2012147715A1 JP 2012060909 W JP2012060909 W JP 2012060909W WO 2012147715 A1 WO2012147715 A1 WO 2012147715A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- membrane module
- membrane
- water
- chemical
- chemical solution
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 333
- 238000004140 cleaning Methods 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims abstract description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 230
- 239000000126 substance Substances 0.000 claims abstract description 226
- 238000009792 diffusion process Methods 0.000 claims abstract description 57
- 238000001471 micro-filtration Methods 0.000 claims abstract description 7
- 238000000108 ultra-filtration Methods 0.000 claims abstract description 7
- 239000000243 solution Substances 0.000 claims description 144
- 238000001914 filtration Methods 0.000 claims description 38
- 239000000706 filtrate Substances 0.000 claims description 25
- 238000005374 membrane filtration Methods 0.000 claims description 22
- 239000007800 oxidant agent Substances 0.000 claims description 18
- 238000005406 washing Methods 0.000 claims description 17
- 239000013505 freshwater Substances 0.000 claims description 15
- 238000011001 backwashing Methods 0.000 claims description 14
- 239000003638 chemical reducing agent Substances 0.000 claims description 11
- 238000000926 separation method Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 239000008155 medical solution Substances 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 abstract description 22
- 238000011084 recovery Methods 0.000 abstract description 6
- 230000014759 maintenance of location Effects 0.000 abstract 1
- 238000003860 storage Methods 0.000 description 13
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 12
- 239000000460 chlorine Substances 0.000 description 12
- 229910052801 chlorine Inorganic materials 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000001590 oxidative effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 230000004907 flux Effects 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 239000005708 Sodium hypochlorite Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- -1 alkalis Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000011109 contamination Methods 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 229920002301 cellulose acetate Polymers 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000012510 hollow fiber Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- QDHHCQZDFGDHMP-UHFFFAOYSA-N Chloramine Chemical compound ClN QDHHCQZDFGDHMP-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000002455 scale inhibitor Substances 0.000 description 3
- 239000008400 supply water Substances 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- OSVXSBDYLRYLIG-UHFFFAOYSA-N dioxidochlorine(.) Chemical compound O=Cl=O OSVXSBDYLRYLIG-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 2
- 235000019345 sodium thiosulphate Nutrition 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000004155 Chlorine dioxide Substances 0.000 description 1
- 229920001780 ECTFE Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 235000019398 chlorine dioxide Nutrition 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009295 crossflow filtration Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
- B01D65/06—Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/10—Accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/20—Accessories; Auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/444—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/10—Use of feed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/167—Use of scale inhibitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/16—Regeneration of sorbents, filters
Definitions
- the present invention relates to a method for washing a membrane module, which is performed on a fresh water producing apparatus that obtains membrane filtrate by membrane filtering raw water with a membrane module having at least one of a microfiltration membrane and an ultrafiltration membrane.
- MF membrane microfiltration membrane
- UF membrane ultrafiltration membrane
- MF / UF membrane ultrafiltration membrane
- examples include suspended substances, bacteria, protozoa, and colloidal substances.
- RO membrane reverse osmosis membrane
- NF membrane nanofiltration membrane
- Patent Document 1 discloses hypochlorous acid in membrane filtered water for the purpose of decomposing and removing organic substances such as humic acid and microorganism-derived proteins adhering to the membrane surface and pores. Back pressure washing is performed by adding an oxidizing agent such as sodium.
- Patent Document 2 discloses that chlorine water is allowed to flow back from the secondary side to the primary side, and then the chlorine water is brought into contact with the membrane for a certain period of time. Describes a cleaning method for discharging chlorine water.
- Patent Document 3 describes a cleaning method in which a chemical solution is supplied to the primary side of the membrane module, and pressure is applied to transfer the chemical solution from the primary side to the secondary side.
- a chemical solution is supplied to the primary side of the membrane module, and pressure is applied to transfer the chemical solution from the primary side to the secondary side.
- a reducing agent such as sodium thiosulfate or sodium bisulfite.
- the water recovery rate is lowered and the chemical cost is increased.
- JP 2001-79366 A Japanese Patent Laid-Open No. 10-15365 Special table 2008-539054 gazette
- the purpose of the present invention is to prevent the chemical solution from leaking and staying to the secondary side of the membrane module after the washing process while suppressing the reduction in water recovery rate and chemical cost in the membrane separation device for membrane filtration of raw water with the membrane module.
- An object of the present invention is to provide a method for preventing and effectively cleaning a membrane module.
- the present invention has one of the following configurations.
- a membrane module cleaning method comprising at least one of a microfiltration membrane and an ultrafiltration membrane that obtains membrane filtration water by subjecting raw water to membrane filtration, and containing chemical solution-containing water on the primary side of the membrane module
- the membrane module cleaning method of controlling the execution time of the chemical solution diffusion step based on the concentration of the chemical solution diffused to the secondary side of the membrane module during the chemical solution diffusion step.
- the membrane module is a membrane module in a membrane separation device that separates at least a part of membrane filtrate water from the membrane module into a permeated water and a concentrated water by membrane filtration with a semipermeable membrane unit.
- the method for cleaning a membrane module according to any one of 1) to (7). (9) The membrane module cleaning method according to any one of (1) to (8), wherein the chemical solution includes an oxidizing agent or a reducing agent. (10) The membrane module according to (1) to (9), wherein an execution time of the chemical solution diffusion step is controlled based on a redox potential value of water on the secondary side of the membrane module during the chemical solution diffusion step. Cleaning method.
- a membrane module including at least one of a microfiltration membrane and an ultrafiltration membrane that obtains membrane filtration water by membrane filtration of raw water, and supply the membrane filtration water from the secondary side to the primary side of the membrane module
- a reverse pressure washing unit that performs the membrane filtration, and a membrane supply unit that supplies the chemical solution to the water supplied to the primary side of the membrane module, and that is open when performing the membrane filtration and closed when performing the reverse pressure washing.
- the fresh water generator comprising a chemical diffusion process execution time control unit for controlling the execution time of the chemical diffusion process, the based on. (12)
- the present invention it is possible to prevent the chemical solution from leaking and staying on the secondary side of the membrane module after the washing step, and to effectively wash the membrane module while suppressing a reduction in water recovery rate and chemical cost.
- One aspect of the desalination apparatus according to the present invention provided with a chemical concentration meter for measuring the chemical concentration of water on the secondary side of the MF / UF membrane module during the chemical diffusion step and provided with a line for circulating the chemical-containing water FIG.
- the membrane filtration water of the MF / UF membrane module is separated into permeated water and concentrated water.
- the fresh water generator is a raw water storage tank 1 that stores raw water, a raw water supply pump 2 that supplies raw water from the raw water storage tank 1, and raw water from the raw water storage tank 1.
- Raw water supply line 3 that supplies the supply pump 2
- raw water supply valve 4 that opens when the raw water is supplied
- MF / UF membrane module 5 that filters raw water, and air vent that opens when back-pressure cleaning or air cleaning is performed
- Valve 6 filtered water valve 7 that opens during filtration, filtered water storage tank 8 that stores MF / UF membrane filtered water, and MF / UF membrane filtered water is supplied to counter pressure the MF / UF membrane module 5
- a drain valve 12 Open when dis
- raw water stored in the raw water storage tank 1 with the air vent valve 6 and the raw water supply valve 4 open is supplied to the MF / UF membrane module 5 by the raw water supply pump 2.
- the MF / UF membrane module 5 is pressure filtered by being supplied to the next side, opening the filtered water valve 7 and closing the air vent valve 6.
- the filtration time is preferably set as appropriate according to the raw water quality and the filtration flux, but the filtration may be continued until a predetermined filtration differential pressure is reached.
- the MF / UF membrane module 5 is periodically subjected to back-pressure washing that causes the membrane filtrate to flow backward from the direction opposite to the filtration direction.
- This back pressure cleaning stops the raw water supply pump 2, closes the raw water supply valve 4 and the filtrate water valve 7, stops (interrupts) the filtration process of the MF / UF membrane module 5, and
- the backwash valve 10 is opened and the backwash pump 9 is operated.
- the drain valve 12 is opened, so that the waste water in the MF / UF membrane module 5 is discharged.
- the drain valve 12 is closed, the raw water is supplied to the primary side of the MF / UF membrane module 5 by the raw water supply pump 2 with the air vent valve 6 and the raw water supply valve 4 open, and the filtered water valve 7 is opened.
- the air vent valve 6 By closing the air vent valve 6, the process returns to the normal filtration step.
- the back-pressure washing of the MF / UF membrane module 5 is periodically performed while the membrane filtration is continued, and the frequency is usually about once every 15 to 120 minutes.
- the time for back pressure cleaning is not particularly limited, but is preferably in the range of 5 seconds to 120 seconds. When the back pressure cleaning time for one time is less than 5 seconds, a sufficient cleaning effect cannot be obtained, and when it exceeds 120 seconds, the operation efficiency of the MF / UF membrane module 5 is lowered.
- the flux for backwashing is not particularly limited, but is preferably 0.5 times or more of the filtration flux. If the back pressure washing flux is less than 0.5 times the filtration flux, it is difficult to sufficiently remove the dirt deposited on the membrane surface and pores. A higher back-pressure cleaning flux is preferable because the membrane cleaning effect is higher, but it is appropriately set within a range in which damage to the container or rupture of the MF / UF membrane module 5 does not occur.
- the following treatment is performed on the MF / UF membrane module 5 before the above-described back pressure cleaning. That is, after the filtration operation for a predetermined time, the air vent valve 6 is opened, the filtered water valve 7 is closed, and the chemical liquid in the chemical liquid storage tank 15 is supplied to the raw water by the chemical liquid supply pump 16, while the water is supplied by the raw water supply pump 2 to the MF / Supplied to the primary side of the UF membrane module 5.
- the raw water supply pump 2 and the chemical solution supply pump 16 are stopped, the raw water supply valve 4 is closed, and the chemical solution is supplied to the MF / UF membrane module 5.
- a chemical solution diffusion process for diffusing from the secondary side to the secondary side is performed.
- the chemical solution diffusion step is terminated.
- Diffusion is a physical phenomenon in which ions, particles, heat, etc. are spontaneously scattered and spread by a gradient, and the chemical ions supplied to the primary side of the MF / UF membrane module 5 by the above treatment are pores of the membrane. And then transferred to the secondary side.
- the backwash valve 10 is opened, the backwash pump 9 is operated, and the backwash process is performed in which backwashing is performed using MF / UF membrane filtrate.
- the drain valve 12 is opened, so that the waste water in the MF / UF membrane module 5 is discharged. Thereafter, the drain valve 12 is closed, the raw water is supplied to the primary side of the MF / UF membrane module 5 by the raw water supply pump 2 with the air vent valve 6 and the raw water supply valve 4 open, and the filtered water valve 7 is opened. By closing the air vent valve 6, the process returns to the normal filtration step and the above-described steps are repeated.
- the chemical solution-containing water supplied to the primary side of the MF / UF membrane module 5 diffuses from the primary side to the secondary side of the MF / UF membrane module 5 if the secondary side of the membrane is filled with water. A small amount may be used. However, from the viewpoint of decomposing the dirt component on the primary side of the MF / UF membrane module 5, it is preferable to fill the primary side of the MF / UF membrane module 5 with chemical solution-containing water.
- the execution time of the chemical solution diffusion step is preferable to adjust the execution time of the chemical solution diffusion step according to the degree of contamination of the MF / UF membrane module 5 from the viewpoint of improving the cleaning recovery property and the operating rate.
- the membrane module cleaning method of the present invention for example, based on the chemical concentration of the MF / UF membrane filtered water measured by the chemical concentration meter 17 installed on the secondary side of the MF / UF membrane module 5, Control the execution time.
- the chemical solution-containing water supplied to the primary side of the MF / UF membrane module 5 diffuses from the primary side of the MF / UF membrane module 5 to the secondary side while decomposing the dirt components.
- the degree of contamination of the MF / UF membrane module 5 When the degree of contamination of the MF / UF membrane module 5 is high, it takes time to decompose the contamination component, and the chemical solution does not quickly diffuse from the primary side to the secondary side of the MF / UF membrane module 5. Therefore, it takes time until the chemical concentration of the water on the secondary side of the MF / UF membrane reaches the set value, and the execution time of the chemical diffusion process becomes long.
- the degree of contamination of the MF / UF membrane module 5 when the degree of contamination of the MF / UF membrane module 5 is low, the contamination component is quickly decomposed and the chemical solution is quickly diffused from the primary side to the secondary side of the MF / UF membrane module 5. Therefore, the chemical concentration of the water on the secondary side of the MF / UF membrane quickly becomes the set value, and the execution time of the chemical solution diffusion step is shortened.
- the chemical concentration meter 17 measures the concentration of the chemical solution diffusing from the primary side to the secondary side of the MF / UF membrane module 5 during the chemical solution diffusing process, so that the secondary side of the MF / UF membrane module 5 is used as shown in FIG. It is installed at a position closer to the MF / UF membrane module 5 than the filtered water valve 7 and the backwash valve 10 of the pipe.
- the chemical solution used in the chemical solution diffusion step may be any of acid, alkali, oxidizing agent, reducing agent, chelating agent, surfactant, etc., but it is more inorganic than organic chemicals from the viewpoint of wastewater treatment.
- a chemical solution is preferred.
- the chemical concentration meter 17 is appropriately selected according to the chemical used.
- the chemical concentration meter 17 is a free chlorine concentration meter or a chloramine concentration meter that is measured using the DPD method, current method, absorptiometry method or the like. It is preferable to use it.
- various chemical solutions are used in the cleaning of the MF / UF membrane module 5.
- the pH and oxidation-reduction potential (ORP) values are adjusted according to the chemical concentration. It may be an indicator.
- the total organic carbon (TOC) concentration may be used as an index of the chemical solution concentration.
- the pH of the membrane filtered water (water on the secondary side of the MF / UF membrane) can be measured using a pH meter, and the execution time of the chemical solution diffusion step can be controlled by the pH.
- the value obtained by subtracting the pH of the chemical solution-containing water from the pH of the MF / UF membrane filtered water during the chemical solution diffusion step is 1 to 3 for the same reason as when the acid is used. It is preferable to carry out the chemical solution diffusion step until it becomes, more preferably until it becomes 1 to 2.
- hydrochloric acid As the acid, hydrochloric acid, sulfuric acid, nitric acid and the like can be used. Moreover, sodium hydroxide, potassium hydroxide, etc. can be used as an alkali.
- concentration of acid and alkali in the chemical solution-containing water is preferably in the range of several tens mg / L to several thousand mg / L.
- the redox potential (ORP) value in the membrane filtrate is measured using an oxidation-reduction potential (ORP) meter, and the chemical solution is diffused with the obtained redox potential (ORP) value. Control the execution time of the process.
- ORP oxidation-reduction potential
- the redox potential (ORP) value of the MF / UF membrane filtered water is too small, the oxidant is insufficient to oxidatively decompose the membrane surface and the internal dirt components, and the oxidant is MF / UF membrane module 5 It is preferable that the chemical solution diffusion process is continued without diffusing from the primary side to the secondary side. If the redox potential (ORP) value of MF / UF membrane filtered water is too large, the MF / UF membrane filtered water will contain a large amount of residual oxidant, especially if there is a semipermeable membrane unit in the subsequent stage. The residual oxidant may cause the semipermeable membrane to undergo oxidative degradation.
- the oxidizing agent sodium hypochlorite, chlorine dioxide, hydrogen peroxide, chloramine and the like can be used, but sodium hypochlorite is preferable from the viewpoint of ease of use, cost and cleaning effect.
- the oxidant concentration in the chemical solution-containing water is preferably 50 mg / L or more and 1000 mg / L or less. If the oxidant concentration is too low, all of the oxidant is consumed while being held in the MF / UF membrane module, and a sufficient cleaning effect cannot be obtained. If the oxidant concentration is too high, the cost of treating wastewater is high. This is because it becomes higher.
- the reducing agent sodium bisulfite, sodium thiosulfate, sodium sulfite and the like can be used.
- concentration of the reducing agent in the chemical solution-containing water is preferably 50 mg / L or more and 1000 mg / L or less. If the reducing agent concentration is too low, all the reducing agent is consumed while being held in the MF / UF membrane module, so that a sufficient cleaning effect cannot be obtained. If the reducing agent concentration is too high, the cost of treating waste water is high. This is because it becomes higher.
- the liquid temperature of the chemical solution-containing water is preferably adjusted to 20 ° C. or higher and 40 ° C. or lower, and more preferably adjusted to 30 ° C. or higher and 40 ° C. or lower.
- the liquid temperature is too low, the decomposition of the dirt component and the diffusion from the primary side to the secondary side of the MF / UF membrane module 5 do not proceed promptly.
- the liquid temperature is too high, shrinkage deformation of the film may occur or the oxidizing agent may vaporize.
- the liquid temperature may change during the chemical liquid diffusion process due to the influence of the outside air temperature or the like, it is preferable to adjust the temperature of the chemical liquid in the MF / UF membrane module 5 during the chemical liquid diffusion process.
- Air cleaning is particularly suitable when dirt components adhere and accumulate on the membrane surface.
- the air valve 13 is opened and the compressor 14 is compressed on the primary side of the MF / UF membrane module 5. This is done by feeding air and vibrating the membrane.
- the pressure of the compressed air is preferably higher because the cleaning effect of the membrane is higher, but it is necessary to set it appropriately within a range where the membrane is not damaged.
- the air cleaning may be performed during the back pressure cleaning or after the back pressure cleaning.
- the desalinator is provided with a chemical solution-containing water circulation line 19 for circulating the chemical solution-containing water that has overflowed from the MF / UF membrane module 5, and the MF / UF membrane module 5 includes one of the membrane modules. It is also preferable to introduce a larger amount of chemical solution-containing water than the capacity on the secondary side, and again introduce and circulate the overflowed chemical solution-containing water to the primary side of the MF / UF membrane module 5 via the chemical solution-containing water circulation line 19.
- the circulation cleaning with the chemical solution-containing water may be performed without discharging the raw water on the primary side of the MF / UF membrane module 5, but the primary of the MF / UF membrane module 5 so that the chemical solution-containing water is not diluted. It is preferable to carry out after discharging the raw water on the side. Moreover, you may use together with air washing
- the chemical solution-containing water By circulating the chemical solution-containing water, it becomes easy to adjust the water temperature of the chemical solution-containing water to a constant temperature using the heating device 18, and it is easy to replenish the consumed chemical solution to a constant concentration. It is suitable. For example, when sodium hypochlorite is used, the free chlorine concentration of the chemical liquid water circulated by the free chlorine meter 21 installed in the chemical liquid water circulation line 19 is measured, and the chemical liquid is stored so that the set free chlorine concentration is obtained.
- the chemical solution in the tank 15 can be appropriately supplied by the chemical solution supply pump 16.
- the cleaning method of the present invention it is preferable to discharge the raw water on the primary side of the MF / UF membrane module 5 before performing the chemical solution diffusion step from the viewpoint that the chemical solution-containing water is not diluted.
- the chemical solution-containing water can be discharged on the primary side of the MF / UF membrane module 5 so that the chemical solution does not easily remain in the MF / UF membrane module 5.
- the collected chemical solution-containing water can be temporarily stored in a tank and reused for cleaning the MF / UF membrane module 5 again. If there are a plurality of MF / UF membrane modules, the collected chemical solution-containing water is used. It is also possible to transport and reuse it for cleaning of other series of MF / UF membrane modules.
- an immersion membrane module that is immersed in a membrane soaking tank containing raw water and suction filtered with a pump, siphon, or the like may be used. Absent.
- an external pressure type or an internal pressure type may be used, but an external pressure type is preferred from the viewpoint of simplicity of pretreatment.
- the MF / UF membrane module 5 may be placed horizontally or vertically, but is preferably placed vertically from the viewpoint of ease of air cleaning.
- the material of the MF / UF membrane constituting the MF / UF membrane module 5 is not particularly limited as long as it is a porous MF / UF membrane, but it is not limited to inorganic materials such as ceramics, polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoro.
- Ethylene copolymer polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, chlorotrifluoroethylene-ethylene copolymer
- it contains at least one selected from the group consisting of a polymer, polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol, polyethersulfone and polyvinyl chloride, More preferably polyvinylidene fluoride (PVDF) in terms of strength and chemical resistance, polyacrylonitrile is more preferable from the viewpoint that a strong high stain resistance hydrophilic.
- PVDF polyvinylidene fluoride
- the pore diameter on the surface of the MF / UF membrane is not particularly limited, and may be an MF membrane or a UF membrane
- the shape of the MF / UF membrane is not particularly limited. There are hollow fiber membranes, flat membranes, tubular membranes, monolith membranes, etc., but any of them may be used.
- the filtration method may be either a full-volume filtration method or a cross-flow filtration method, but a full-volume filtration is preferred from the viewpoint of low energy consumption.
- the filtration flow rate control method of the fresh water generator can be either constant flow filtration or constant pressure filtration, but it is constant flow filtration from the viewpoint of ease of control of the production water quantity of filtrate water. Is preferred.
- the cleaning method of the present invention has a semipermeable membrane unit 22 on the downstream side of the MF / UF membrane module 5 as shown in FIG. 3, and supplies the MF / UF membrane filtered water to the semipermeable membrane unit 22. It can also be suitably implemented in a fresh water generator that separates permeated water and concentrated water.
- the MF / UF membrane filtrate is supplied to the booster pump 23 via the intermediate tank (filtrated water storage tank 8), but the MF / UF membrane filtrate is not supplied via the intermediate tank.
- the MF / UF membrane filtered water may be supplied to the semipermeable membrane unit 22 and separated into permeated water and concentrated water.
- a semipermeable membrane is a semipermeable membrane that does not allow some components in the liquid mixture to be separated, for example, a solvent to pass through and does not allow other components to pass through.
- NF membrane NF membrane
- RO membrane reverse osmosis membrane
- the membrane structure has a dense layer on at least one side of the membrane, an asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, and another layer on the dense layer of the asymmetric membrane.
- a composite membrane having a very thin separation functional layer formed of a material can be used as appropriate.
- the membrane form includes a hollow fiber membrane and a flat membrane.
- the present invention can be carried out regardless of the film material, film structure and film form, and any of them is effective, but as typical films, for example, cellulose acetate-based or polyamide-based asymmetric membranes and polyamide-based, There are composite membranes having a urea-based separation functional layer, and it is preferable to use a cellulose acetate-based asymmetric membrane and a polyamide-based composite membrane from the viewpoint of water production, durability, and salt rejection.
- the semipermeable membrane unit 22 since the filtrate of the MF / UF membrane module 5 is concentrated, it is preferable to prevent scale precipitation due to concentration, and a scale inhibitor is added to the filtrate of the MF / UF membrane module 5. It is effective to add and supply to the semipermeable membrane unit 22.
- a scale inhibitor is added to the filtrate of the MF / UF membrane module 5. It is effective to add and supply to the semipermeable membrane unit 22.
- pH adjustment is performed on the downstream side of the MF / UF membrane module 5 and the upstream side of the semipermeable membrane unit 22 for removing boron or the like, the addition of the scale inhibitor can exert the effect of the addition. It is preferable to carry out on the upstream side of pH adjustment.
- an in-line mixer is installed, or the chemical addition port is brought into direct contact with the flow of supply water. It is also preferable to prevent this.
- the operating pressure of the semipermeable membrane unit 22 is usually 0.1 MPa to 15 MPa, and can be properly used depending on the type of supply water, the operation method, and the like.
- water with low osmotic pressure such as brine or ultrapure water is used as supply water, it is used at a relatively low pressure.
- seawater desalination, wastewater treatment, recovery of useful materials, etc. it is used at a relatively high pressure.
- the semipermeable membrane unit 22 having a nanofiltration membrane or a reverse osmosis membrane is not particularly limited, but a hollow fiber membrane-like or flat membrane-like semipermeable membrane is used for easy handling. It is preferable to use a fluid pressure separating container filled with a fluid separation element (element) that is placed in the body.
- a fluid separation element element
- the fluid separation element is formed of a flat membrane, for example, generally a semipermeable membrane is wound in a cylindrical shape together with a flow path material (net) around a cylindrical central pipe having a large number of holes.
- Toray Industries, Inc. reverse osmosis membrane element TM700 series and TM800 series can be mentioned. It is also preferable to configure a semipermeable membrane unit by connecting one or more fluid separation elements in series or in parallel.
- the MF / UF membrane module 5 is a hollow fiber UF membrane made of polyvinylidene fluoride having a molecular weight cut off of 150,000 Da made by Toray Industries, Inc., and using one pressurized module (HFU-2020) having a membrane area of 72 m 2.
- a fresh water generator shown in FIG. 1 was prepared. In this apparatus, the raw water supply valve 4 and the filtered water valve 7 are opened, the raw water supply pump 2 is operated, and raw water having a turbidity of 5 degrees and a TOC (Total Organic Carbon) concentration of 2 to 10 mg / L is supplied. The whole amount was filtered with a filtration flux of 3.0 m / d.
- the raw water supply valve 4 and the filtrate water valve 7 are closed, the raw water supply pump 2 is stopped, the backwash valve 10, the air valve 13, and the air The vent valve 6 was opened, the backwash pump 9 was operated, and backpressure cleaning and air cleaning were simultaneously performed for 1 minute.
- backwashing MF / UF membrane filtrate was used, the backwash flux was 3.3 m / d, and air was supplied from below the membrane module at 100 L / min. Thereafter, the backwash valve 10 and the air valve 13 were closed and the backwash pump 9 was stopped.
- the drain valve 12 was opened, and the entire amount of water in the MF / UF membrane module 5 was discharged out of the system. Thereafter, the raw water supply valve 4 was opened, the raw water supply pump 2 was operated, and after supplying raw water into the MF / UF membrane module 5, the filtrate water valve 7 was opened, the air vent valve 6 was closed, and the flow returned to the filtration step. And the washing
- the chemical solution containing the sodium hypochlorite solution in the chemical solution storage tank 15 added to the raw water is supplied to the primary side of the MF / UF membrane module to supply the chemical solution. After diffusing, washing with back pressure washing was performed.
- the raw water supply pump 2 is temporarily stopped, the filtrate water valve 7 and the raw water supply valve 4 are closed, the filtration process of the MF / UF membrane module 5 is interrupted, and then the air vent valve 6 and the drain valve 12 are turned on. By opening, the water in the MF / UF membrane module 5 was discharged. Thereafter, the drain valve 12 is closed, and the sodium hypochlorite solution in the chemical liquid storage tank 15 is supplied to the raw water with the chemical liquid supply pump 16 while the air vent valve 6 and the raw water supply valve 4 are open.
- the raw water supply pump 2 supplied the primary side of the MF / UF membrane module 5.
- medical solution supply pump 16 was suitably adjusted so that the free chlorine concentration in chemical
- the raw water supply pump 2 and the chemical solution supply pump 16 are stopped, the raw water supply valve 4 is closed, and the chemical solution is supplied to the primary of the MF / UF membrane module 5.
- a chemical solution diffusing step for diffusing from the side to the secondary side was performed.
- the chemical solution diffusion step was performed, and the chemical solution diffusion step was completed when the free chlorine concentration measured by the free chlorine concentration meter 17 provided in the secondary side pipe of the MF / UF membrane module 5 reached 5 mg / L.
- the air vent valve 6 and the drain valve 12 were opened, and the chemical solution in the MF / UF membrane module 5 was discharged. Thereafter, the drain valve 12 was closed, the back washing valve 10 was opened, the back washing pump 9 was operated, and back pressure washing was performed for back pressure washing using MF / UF membrane filtrate. After completion of the backwash process, the drain valve 12 was opened, and the water in the MF / UF membrane module 5 was discharged out of the system. Thereafter, the drain valve 12 is closed, the raw water is supplied to the primary side of the MF / UF membrane module 5 by the raw water supply pump 2 with the air vent valve 6 and the raw water supply valve 4 open, and the filtered water valve 7 is opened. The air vent valve 6 was closed to return to the normal filtration step.
- the TOC concentration of raw water fluctuated as 2 to 10 mg / L
- the execution time of the chemical solution diffusion process fluctuated from 5 to 60 minutes depending on the TOC concentration fluctuation.
- the filtration differential pressure of the MF / UF membrane module 5 was 70 kPa immediately after the start of operation, while it was between 90 and 100 kPa during the period, and stable operation was possible.
- the filtration differential pressure of the MF / UF membrane module 5 was 70 kPa immediately after the start of operation. Further, during the period when the TOC concentration of the raw water was 2 to 5 mg / L, it was 90 to 100 kPa as in Example 1, and stable operation was possible. However, when the TOC concentration of the raw water was 5 to 10 mg / L, the filtration differential pressure increased to 180 kPa in a short period of 10 days, and the operation had to be stopped.
- Raw water storage tank 2 Raw water supply pump 3: Raw water supply line 4: Raw water supply valve 5: MF / UF membrane module 6: Air vent valve 7: Filtration water valve 8: Filtration water storage tank 9: Backwash pump 10: Backwash valve 11: Backwash pipe 12: Drain valve 13: Air valve 14: Compressor 15: Chemical liquid storage tank 16: Chemical liquid supply pump 17: Chemical liquid concentration meter 18: Heating device 19: Chemical liquid containing water circulation line 20: Chemical liquid containing water circulation Line switching valve 21: Free chlorine meter 22: Semipermeable membrane unit 23: Booster pump
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
(1)原水を膜ろ過して膜ろ過水を得る、精密ろ過膜および限外ろ過膜の少なくとも一方を備えた膜モジュールの洗浄方法であって、薬液含有水を前記膜モジュールの1次側に供給し、薬液を前記膜モジュールの1次側から2次側へ拡散させる薬液拡散工程を行った後、前記膜モジュールの2次側から1次側へ膜ろ過水を逆圧洗浄させる逆洗工程を行い、かつ、前記薬液拡散工程時には、前記膜モジュールの2次側へ拡散した薬液の濃度に基づき、該薬液拡散工程の実施時間を制御する膜モジュールの洗浄方法。
(2)前記薬液含有水を前記膜モジュールの1次側に供給する際の少なくとも一部、前記薬液拡散工程の際の少なくとも一部、または、前記薬液含有水を前記膜モジュールの1次側に供給する際および前記薬液拡散工程の際それぞれの少なくとも一部において、空気洗浄を実施する、前記(1)に記載の膜モジュールの洗浄方法。
(3)前記薬液拡散工程を行う前に、前記膜モジュールの1次側の原水を排出する、前記(1)または(2)に記載の膜モジュールの洗浄方法。
(4)前記逆洗工程を行う前に、前記膜モジュールの1次側の薬液含有水を排出する、前記(1)~(3)のいずれかに記載の膜モジュールの洗浄方法。
(5)前記膜モジュールの1次側から排出された薬液含有水を回収し、再利用する、前記(1)~(4)のいずれかに記載の膜モジュールの洗浄方法。
(6)前記膜モジュールの1次側の容量よりも多い薬液含有水を前記膜モジュールに導入してオーバーフローさせ、オーバーフローした薬液含有水を再び前記膜モジュールの1次側に導入する、前記(1)~(5)のいずれかに記載の膜モジュールの洗浄方法。
(7)前記薬液含有水を加温する、前記(1)~(6)のいずれかに記載の膜モジュールの洗浄方法。
(8)前記膜モジュールが、該膜モジュールによる膜ろ過水の少なくとも一部を次いで半透膜ユニットで膜ろ過して透過水と濃縮水とに分離する膜分離装置における膜モジュールである、前記(1)~(7)のいずれかに記載の膜モジュールの洗浄方法。
(9)前記薬液が、酸化剤または還元剤を含む、前記(1)~(8)のいずれかに記載の膜モジュール洗浄方法。
(10)前記薬液拡散工程時に、前記膜モジュールの2次側の水の酸化還元電位値を基に該薬液拡散工程の実施時間を制御する、前記(1)~(9)に記載の膜モジュールの洗浄方法。
(11)原水を膜ろ過して膜ろ過水を得る精密ろ過膜および限外ろ過膜の少なくとも一方を備えた膜モジュールと、前記膜ろ過水を前記膜モジュールの2次側から1次側に供給する逆圧洗浄ユニットと、前記膜モジュールの1次側に供給される水に薬液を供給する薬液供給ユニットと、膜ろ過を行う際に開となり逆圧洗浄を行う際に閉となる、前記膜モジュールの2次側配管に設けられたろ過水弁およびろ過水配管と、膜ろ過を行う際に閉となり、逆圧洗浄を行う際に開となる、前記膜モジュールの2次側に設けられた逆洗弁および逆洗水配管と、前記ろ過水弁および前記逆洗弁よりも前記膜モジュールに近い2次側配管に設置された、前記膜モジュールの2次側における薬液濃度を測定する薬液濃度測定ユニットと、前記薬液濃度の測定結果に基づいて薬液拡散工程の実施時間を制御する薬液拡散工程実施時間制御ユニットと、を含む造水装置。
(12)前記膜モジュールの1次側に気体を供給する空気供給ユニットを含む、前記(11)に記載の造水装置。
(13)前記薬液供給ユニットによって薬液が供給されて前記膜モジュールの1次側に供給される水を加温する薬液含有水加温ユニットを含む、前記(11)または(12)に記載の造水装置。
(14)前記膜モジュールの1次側に薬液含有水循環ラインを含む、前記(11)~(13)のいずれかに記載の造水装置。
(15)前記膜モジュールにより得られた膜ろ過水の少なくとも一部を処理する半透膜ユニットを含む、前記(11)~(14)のいずれかに記載の造水装置。
酸化剤や還元剤を用いる場合は、酸化還元電位(ORP)計を用いて膜ろ過水中の酸化還元電位(ORP)値を測定し、得られた酸化還元電位(ORP)値で薬液拡散工程の実施時間を制御する。薬液として酸化剤を用いる場合、薬液拡散工程中のMF/UF膜ろ過水(MF/UF膜の2次側の水)の酸化還元電位(ORP)値が300mV~600mVになるまで、薬液拡散工程を実施することが好ましく、300mV~400mVになるまで実施することがより好ましい。MF/UF膜ろ過水の酸化還元電位(ORP)値が小さすぎると、酸化剤が膜表面及び内部の汚れ成分を酸化分解するのが不十分であり、酸化剤がMF/UF膜モジュール5の1次側から2次側に拡散するに至っておらず、薬液拡散工程を継続することが好ましい。MF/UF膜ろ過水の酸化還元電位(ORP)値が大きすぎると、MF/UF膜ろ過水に残留酸化剤が多く含まれることとなり、特に後段に半透膜ユニットがある場合、膜ろ過水中の残留酸化剤によって、半透膜が酸化劣化してしまうおそれがある。
MF/UF膜モジュール5には、東レ(株)製の分画分子量15万Daのポリフッ化ビニリデン製中空糸UF膜で、膜面積72m2の加圧型モジュール(HFU-2020)1本を用いて、図1に示す造水装置を用意した。この装置において、原水供給弁4とろ過水弁7を開き、原水供給ポンプ2を稼働させ、濁度が5度、TOC(Total Organic Carbon:全有機炭素)濃度が2~10mg/Lの原水を、ろ過流束3.0m/dで全量ろ過した。
薬液浸漬時間(実施例1の薬液拡散工程の時間に相当)を10分に固定して運転したこと以外は、実施例1と全く同じとするよう試みた。
2:原水供給ポンプ
3:原水供給ライン
4:原水供給弁
5:MF/UF膜モジュール
6:エア抜き弁
7:ろ過水弁
8:ろ過水貯留槽
9:逆洗ポンプ
10:逆洗弁
11:逆洗配管
12:排水弁
13:空気弁
14:コンプレッサー
15:薬液貯留槽
16:薬液供給ポンプ
17:薬液濃度計
18:加温装置
19:薬液含有水循環ライン
20:薬液含有水循環ライン切替弁
21:遊離塩素計
22:半透膜ユニット
23:昇圧ポンプ
Claims (15)
- 原水を膜ろ過して膜ろ過水を得る、精密ろ過膜および限外ろ過膜の少なくとも一方を備えた膜モジュールの洗浄方法であって、薬液含有水を前記膜モジュールの1次側に供給し、薬液を前記膜モジュールの1次側から2次側へ拡散させる薬液拡散工程を行った後、前記膜モジュールの2次側から1次側へ膜ろ過水を逆圧洗浄させる逆洗工程を行い、かつ、前記薬液拡散工程時には、前記膜モジュールの2次側へ拡散した薬液の濃度に基づき、該薬液拡散工程の実施時間を制御する膜モジュールの洗浄方法。
- 前記薬液含有水を前記膜モジュールの1次側に供給する際の少なくとも一部、前記薬液拡散工程の際の少なくとも一部、または、前記薬液含有水を前記膜モジュールの1次側に供給する際および前記薬液拡散工程の際それぞれの少なくとも一部において、空気洗浄を実施する、請求項1に記載の膜モジュールの洗浄方法。
- 前記薬液拡散工程を行う前に、前記膜モジュールの1次側の原水を排出する、請求項1または2に記載の膜モジュールの洗浄方法。
- 前記逆洗工程を行う前に、前記膜モジュールの1次側の薬液含有水を排出する、請求項1~3のいずれかに記載の膜モジュールの洗浄方法。
- 前記膜モジュールの1次側から排出された薬液含有水を回収し、再利用する、請求項1~4のいずれかに記載の膜モジュールの洗浄方法。
- 前記膜モジュールの1次側の容量よりも多い薬液含有水を前記膜モジュールに導入してオーバーフローさせ、オーバーフローした薬液含有水を再び前記膜モジュールの1次側に導入する、請求項1~5のいずれかに記載の膜モジュールの洗浄方法。
- 前記薬液含有水を加温する、請求項1~6のいずれかに記載の膜モジュールの洗浄方法。
- 前記膜モジュールが、該膜モジュールによる膜ろ過水の少なくとも一部を次いで半透膜ユニットで膜ろ過して透過水と濃縮水とに分離する膜分離装置における膜モジュールである、請求項1~7のいずれかに記載の膜モジュールの洗浄方法。
- 前記薬液が、酸化剤または還元剤を含む、請求項1~8のいずれかに記載の膜モジュール洗浄方法。
- 前記薬液拡散工程時に、前記膜モジュールの2次側の水の酸化還元電位値を基に該薬液拡散工程の実施時間を制御する、請求項1~9に記載の膜モジュールの洗浄方法。
- 原水を膜ろ過して膜ろ過水を得る精密ろ過膜および限外ろ過膜の少なくとも一方を備えた膜モジュールと、前記膜ろ過水を前記膜モジュールの2次側から1次側に供給する逆圧洗浄ユニットと、前記膜モジュールの1次側に供給される水に薬液を供給する薬液供給ユニットと、膜ろ過を行う際に開となり逆圧洗浄を行う際に閉となる、前記膜モジュールの2次側配管に設けられたろ過水弁およびろ過水配管と、膜ろ過を行う際に閉となり、逆圧洗浄を行う際に開となる、前記膜モジュールの2次側に設けられた逆洗弁および逆洗水配管と、前記ろ過水弁および前記逆洗弁よりも前記膜モジュールに近い2次側配管に設置された、前記膜モジュールの2次側における薬液濃度を測定する薬液濃度測定ユニットと、前記薬液濃度の測定結果に基づいて薬液拡散工程の実施時間を制御する薬液拡散工程実施時間制御ユニットと、を含む造水装置。
- 前記膜モジュールの1次側に気体を供給する空気供給ユニットを含む、請求項11に記載の造水装置。
- 前記薬液供給ユニットによって薬液が供給されて前記膜モジュールの1次側に供給される水を加温する薬液含有水加温ユニットを含む、請求項11または12に記載の造水装置。
- 前記膜モジュールの1次側に薬液含有水循環ラインを含む、請求項11~13のいずれかに記載の造水装置。
- 前記膜モジュールにより得られた膜ろ過水の少なくとも一部を処理する半透膜ユニットを含む、請求項11~14のいずれかに記載の造水装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2013012404A MX2013012404A (es) | 2011-04-25 | 2012-04-24 | Procedimiento para limpiar un modulo de membrana. |
EP12776393.6A EP2703066A4 (en) | 2011-04-25 | 2012-04-24 | PROCESS FOR CLEANING A MEMBRANE MODULE |
CN201280019634.0A CN103492054B (zh) | 2011-04-25 | 2012-04-24 | 膜组件的洗涤方法 |
JP2012525795A JP6003646B2 (ja) | 2011-04-25 | 2012-04-24 | 膜モジュールの洗浄方法 |
AU2012248472A AU2012248472A1 (en) | 2011-04-25 | 2012-04-24 | Method for cleaning membrane module |
KR1020137028062A KR20140031874A (ko) | 2011-04-25 | 2012-04-24 | 막 모듈의 세정 방법 |
US14/113,608 US20140048483A1 (en) | 2011-04-25 | 2012-04-24 | Method for cleaning membrane module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-096746 | 2011-04-25 | ||
JP2011096746 | 2011-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147715A1 true WO2012147715A1 (ja) | 2012-11-01 |
Family
ID=47072234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/060909 WO2012147715A1 (ja) | 2011-04-25 | 2012-04-24 | 膜モジュールの洗浄方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20140048483A1 (ja) |
EP (1) | EP2703066A4 (ja) |
JP (1) | JP6003646B2 (ja) |
KR (1) | KR20140031874A (ja) |
CN (1) | CN103492054B (ja) |
AU (1) | AU2012248472A1 (ja) |
CL (1) | CL2013003081A1 (ja) |
MX (1) | MX2013012404A (ja) |
WO (1) | WO2012147715A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014171922A (ja) * | 2013-03-06 | 2014-09-22 | Suido Kiko Kaisha Ltd | 膜の洗浄方法 |
CN104418472A (zh) * | 2013-09-11 | 2015-03-18 | 三菱丽阳株式会社 | 含有机物污水的处理装置以及处理方法 |
CN106103349A (zh) * | 2013-12-02 | 2016-11-09 | 东丽株式会社 | 水处理方法 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4144434B1 (en) * | 2014-06-16 | 2024-04-17 | EMD Millipore Corporation | Single-pass filtration systems and processes |
EP2957335B1 (en) * | 2014-06-16 | 2020-05-27 | EMD Millipore Corporation | Single-pass filtration systems and processes |
US10207225B2 (en) | 2014-06-16 | 2019-02-19 | Emd Millipore Corporation | Single-pass filtration systems and processes |
WO2015195453A2 (en) | 2014-06-16 | 2015-12-23 | Emd Millipore Corporation | Methods for increasing the capacity of flow-through processes |
CN110756051B (zh) | 2014-06-25 | 2022-11-04 | Emd 密理博公司 | 过滤器元件、切向流过滤系统、产生进料筛网的方法 |
ES2935333T3 (es) | 2014-08-29 | 2023-03-06 | Emd Millipore Corp | Procesos para filtrar líquidos utilizando sistemas de filtración de flujo tangencial de paso único y sistemas de filtración de flujo tangencial con recirculación de retenido |
SG11201508664VA (en) | 2014-08-29 | 2016-03-30 | Emd Millipore Corp | Single Pass Tangential Flow Filtration Systems and Tangential Flow Filtration Systems withRecirculation of Retentate |
EP3225595B1 (en) * | 2014-11-27 | 2019-05-01 | Toray Industries, Inc. | Water production method |
WO2016132511A1 (ja) * | 2015-02-19 | 2016-08-25 | 三菱重工業株式会社 | 水処理システム及び方法 |
KR101633314B1 (ko) * | 2015-02-27 | 2016-06-24 | 국민대학교산학협력단 | 역삼투 담수화 장치 및 방법 |
KR101730402B1 (ko) | 2015-03-26 | 2017-05-11 | 울산과학기술원 | 폴리아마이드 분리막을 재활용한 한외여과막의 제조방법 |
ES2925059T3 (es) | 2016-06-09 | 2022-10-13 | Emd Millipore Corp | Elementos de filtro de trayectoria radial, sistemas y métodos de uso de los mismos |
US10836656B2 (en) | 2016-09-15 | 2020-11-17 | Fluence Water Israel Ltd. | Containerized desalination system |
JP6940962B2 (ja) * | 2017-03-09 | 2021-09-29 | オルガノ株式会社 | 中空糸膜装置の洗浄方法、限外ろ過膜装置、超純水製造装置及び中空糸膜装置の洗浄装置 |
CN111056657A (zh) * | 2019-12-26 | 2020-04-24 | 中冶南方工程技术有限公司 | 悬浮型外压式膜澄清池水处理系统及方法 |
CN111646545A (zh) * | 2020-06-10 | 2020-09-11 | 金科环境股份有限公司 | 可反洗滤芯-纳滤饮用水深度净化系统 |
GB2629140A (en) * | 2023-04-14 | 2024-10-23 | Salinity Solutions Ltd | Membrane filtration system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09122460A (ja) * | 1995-10-30 | 1997-05-13 | Japan Organo Co Ltd | 膜モジュールの洗浄方法 |
JP2008539054A (ja) * | 2005-04-29 | 2008-11-13 | シーメンス・ウォーター・テクノロジーズ・コーポレイション | 膜フィルターのための化学洗浄 |
JP2009112929A (ja) * | 2007-11-05 | 2009-05-28 | Metawater Co Ltd | 膜ろ過装置の移動式洗浄装置 |
JP2010234238A (ja) * | 2009-03-31 | 2010-10-21 | Daicen Membrane Systems Ltd | 魚介類の養殖用水の製造方法 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5924842B2 (ja) * | 1977-03-14 | 1984-06-12 | 株式会社トクヤマ | イオン交換膜電気透析装置の洗浄方法 |
JPH06320159A (ja) * | 1993-05-07 | 1994-11-22 | Brother Ind Ltd | 電解水生成器 |
US5403479A (en) * | 1993-12-20 | 1995-04-04 | Zenon Environmental Inc. | In situ cleaning system for fouled membranes |
JPH07313850A (ja) * | 1994-05-30 | 1995-12-05 | Kubota Corp | 浸漬型セラミック膜分離装置の逆洗方法 |
JP3194679B2 (ja) * | 1994-11-22 | 2001-07-30 | ダイセル化学工業株式会社 | 濾過膜モジュールの洗浄方法 |
EP0768112A1 (de) * | 1995-10-16 | 1997-04-16 | Christ AG | Verfahren und Vorrichtung zur Reinwasserherstellung |
JP3198923B2 (ja) * | 1996-07-04 | 2001-08-13 | 栗田工業株式会社 | 膜の洗浄方法 |
JP2000254459A (ja) * | 1999-03-05 | 2000-09-19 | Sumitomo Heavy Ind Ltd | 固液分離エレメントの洗浄方法及び固液分離装置 |
JP2001079366A (ja) * | 1999-09-10 | 2001-03-27 | Asahi Kasei Corp | 膜を洗浄する方法 |
JP3897591B2 (ja) * | 2001-12-19 | 2007-03-28 | 三菱レイヨン株式会社 | 分離膜モジュール及びモジュールアセンブリ |
US7060136B1 (en) * | 2002-03-28 | 2006-06-13 | Nalco Company | Method of monitoring membrane cleaning processes |
US7220358B2 (en) * | 2004-02-23 | 2007-05-22 | Ecolab Inc. | Methods for treating membranes and separation facilities and membrane treatment composition |
WO2005092799A1 (en) * | 2004-03-26 | 2005-10-06 | U.S. Filter Wastewater Group, Inc. | Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis |
JP4548081B2 (ja) * | 2004-10-05 | 2010-09-22 | 株式会社日立プラントテクノロジー | 中空糸膜の洗浄方法 |
JP2006281121A (ja) * | 2005-04-01 | 2006-10-19 | Ngk Insulators Ltd | 清澄水の膜ろ過運転方法 |
DE102005035044A1 (de) * | 2005-07-27 | 2007-02-01 | Koch Membrane Systems Gmbh | Verfahren zum Rückspülen von Kapillarmembranen einer Membrananlage |
US20080314807A1 (en) * | 2005-09-23 | 2008-12-25 | Max Rudolf Junghanns | Systems and Methods For Treating Water |
JP2007130523A (ja) * | 2005-11-08 | 2007-05-31 | Kobelco Eco-Solutions Co Ltd | 水処理システムにおける膜洗浄方法 |
CN101116797A (zh) * | 2006-08-03 | 2008-02-06 | 东丽纤维研究所(中国)有限公司 | 一种平板膜的化学清洗方法 |
JP5049623B2 (ja) * | 2007-03-26 | 2012-10-17 | 株式会社神鋼環境ソリューション | 飲料水製造用膜分離装置及びその運転方法 |
JP5512978B2 (ja) * | 2008-03-14 | 2014-06-04 | 東洋エンジニアリング株式会社 | 排水の処理方法および排水処理装置 |
JP2010104919A (ja) * | 2008-10-30 | 2010-05-13 | Kurita Water Ind Ltd | 透過膜の阻止率向上方法、阻止率向上透過膜、透過膜処理方法および装置 |
WO2010096047A2 (en) * | 2008-11-20 | 2010-08-26 | Alion Science And Technology | Filter cleaning method |
JP5343655B2 (ja) * | 2009-03-27 | 2013-11-13 | 東レ株式会社 | 膜モジュールの運転方法 |
JP5691519B2 (ja) * | 2009-08-21 | 2015-04-01 | 東レ株式会社 | 造水方法 |
-
2012
- 2012-04-24 US US14/113,608 patent/US20140048483A1/en not_active Abandoned
- 2012-04-24 EP EP12776393.6A patent/EP2703066A4/en not_active Withdrawn
- 2012-04-24 JP JP2012525795A patent/JP6003646B2/ja not_active Expired - Fee Related
- 2012-04-24 WO PCT/JP2012/060909 patent/WO2012147715A1/ja active Application Filing
- 2012-04-24 MX MX2013012404A patent/MX2013012404A/es unknown
- 2012-04-24 CN CN201280019634.0A patent/CN103492054B/zh not_active Expired - Fee Related
- 2012-04-24 AU AU2012248472A patent/AU2012248472A1/en not_active Abandoned
- 2012-04-24 KR KR1020137028062A patent/KR20140031874A/ko not_active Withdrawn
-
2013
- 2013-10-24 CL CL2013003081A patent/CL2013003081A1/es unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09122460A (ja) * | 1995-10-30 | 1997-05-13 | Japan Organo Co Ltd | 膜モジュールの洗浄方法 |
JP2008539054A (ja) * | 2005-04-29 | 2008-11-13 | シーメンス・ウォーター・テクノロジーズ・コーポレイション | 膜フィルターのための化学洗浄 |
JP2009112929A (ja) * | 2007-11-05 | 2009-05-28 | Metawater Co Ltd | 膜ろ過装置の移動式洗浄装置 |
JP2010234238A (ja) * | 2009-03-31 | 2010-10-21 | Daicen Membrane Systems Ltd | 魚介類の養殖用水の製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014171922A (ja) * | 2013-03-06 | 2014-09-22 | Suido Kiko Kaisha Ltd | 膜の洗浄方法 |
CN104418472A (zh) * | 2013-09-11 | 2015-03-18 | 三菱丽阳株式会社 | 含有机物污水的处理装置以及处理方法 |
CN106103349A (zh) * | 2013-12-02 | 2016-11-09 | 东丽株式会社 | 水处理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6003646B2 (ja) | 2016-10-05 |
EP2703066A4 (en) | 2014-12-03 |
CN103492054B (zh) | 2015-06-03 |
JPWO2012147715A1 (ja) | 2014-07-28 |
CL2013003081A1 (es) | 2014-02-28 |
AU2012248472A1 (en) | 2013-11-14 |
EP2703066A1 (en) | 2014-03-05 |
CN103492054A (zh) | 2014-01-01 |
US20140048483A1 (en) | 2014-02-20 |
KR20140031874A (ko) | 2014-03-13 |
MX2013012404A (es) | 2014-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6003646B2 (ja) | 膜モジュールの洗浄方法 | |
JP5804228B1 (ja) | 水処理方法 | |
WO2012057188A1 (ja) | 造水方法および造水装置 | |
JP2012239948A (ja) | ろ過材の洗浄方法および水処理装置 | |
JP2011125822A (ja) | 膜モジュールの洗浄方法および造水装置 | |
CN115121124A (zh) | 过滤膜的清洗方法及清洗装置、以及水处理系统 | |
WO2012098969A1 (ja) | 膜モジュールの洗浄方法、造水方法および造水装置 | |
WO2013111826A1 (ja) | 造水方法および造水装置 | |
JP2015155076A (ja) | 分離膜モジュールの洗浄方法 | |
KR20130137004A (ko) | 침지막 엘리먼트의 약품 세정 방법 | |
JP6458302B2 (ja) | 逆浸透膜洗浄方法及び逆浸透膜洗浄装置 | |
JP2012086182A (ja) | 水処理方法および水処理装置 | |
WO2013047466A1 (ja) | 膜モジュールの洗浄方法 | |
WO2011108589A1 (ja) | 多孔質膜モジュールの洗浄方法および造水装置 | |
JP2009240903A (ja) | 膜ろ過方法 | |
WO2019025242A1 (en) | PROCESS FOR CLEANING A MEMBRANE COMPRISING THE DRYING OF THE MEMBRANE | |
JP5251472B2 (ja) | 膜モジュールの洗浄方法 | |
JP2015020081A (ja) | 膜モジュールの洗浄方法および膜モジュールの洗浄装置 | |
JP2009274021A (ja) | 中空糸膜モジュールの洗浄方法および中空糸膜ろ過装置 | |
JP7325694B1 (ja) | 濾過膜洗浄装置 | |
JP2002028453A (ja) | スパイラル型膜エレメントおよびスパイラル型膜モジュールの運転方法および洗浄方法 | |
JP2011083656A (ja) | 膜モジュールの洗浄方法および膜ろ過装置 | |
JP2003135936A (ja) | 水処理方法および水処理装置 | |
JP2007098321A (ja) | 膜ろ過装置ならびにその運転方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012525795 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12776393 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/012404 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20137028062 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013003081 Country of ref document: CL Ref document number: 14113608 Country of ref document: US Ref document number: 2012776393 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2012248472 Country of ref document: AU Date of ref document: 20120424 Kind code of ref document: A |