WO2012121199A1 - 電気自動車 - Google Patents
電気自動車 Download PDFInfo
- Publication number
- WO2012121199A1 WO2012121199A1 PCT/JP2012/055533 JP2012055533W WO2012121199A1 WO 2012121199 A1 WO2012121199 A1 WO 2012121199A1 JP 2012055533 W JP2012055533 W JP 2012055533W WO 2012121199 A1 WO2012121199 A1 WO 2012121199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- abnormality
- wheel
- detected
- ecu
- Prior art date
Links
- 230000005856 abnormality Effects 0.000 claims abstract description 156
- 238000001514 detection method Methods 0.000 claims abstract description 57
- 230000001172 regenerating effect Effects 0.000 claims abstract description 12
- 238000013459 approach Methods 0.000 claims abstract description 8
- 230000004044 response Effects 0.000 claims description 31
- 239000003638 chemical reducing agent Substances 0.000 claims description 19
- 230000009467 reduction Effects 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 description 15
- 230000033001 locomotion Effects 0.000 description 11
- 230000001133 acceleration Effects 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 230000008439 repair process Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000005773 Enders reaction Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/188—Controlling power parameters of the driveline, e.g. determining the required power
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/04—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location or kind of gearing
- B60K17/043—Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
- B60K17/046—Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/34—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
- B60K17/356—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K7/0007—Disposition of motor in, or adjacent to, traction wheel the motor being electric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/02—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
- B60L15/025—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2036—Electric differentials, e.g. for supporting steering vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2054—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0007—Measures or means for preventing or attenuating collisions
- B60L3/0015—Prevention of collisions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0061—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by AC motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/24—Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
- B60L7/26—Controlling the braking effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
- B60W10/184—Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
- B60W10/196—Conjoint control of vehicle sub-units of different type or different function including control of braking systems acting within the driveline, e.g. retarders
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/20—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
- H02K11/33—Drive circuits, e.g. power electronics
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K2007/0038—Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K7/00—Disposition of motor in, or adjacent to, traction wheel
- B60K2007/0092—Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/14—Synchronous machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/46—Wheel motors, i.e. motor connected to only one wheel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/50—Structural details of electrical machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/46—Drive Train control parameters related to wheels
- B60L2240/463—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/46—Drive Train control parameters related to wheels
- B60L2240/465—Slip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/48—Drive Train control parameters related to transmissions
- B60L2240/486—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/26—Driver interactions by pedal actuation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/06—Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Definitions
- the present invention relates to an electric vehicle serving as an in-wheel motor vehicle such as a battery drive or a fuel cell drive equipped with a motor for individually driving wheels.
- an in-wheel motor drive device In an electric vehicle, an in-wheel motor drive device has been developed that can improve the running stability of the vehicle and secure the effective space of the vehicle. For example, there are vehicles in which all four wheels are driven by an in-wheel motor drive device, and vehicles in which two wheels are driven by an in-wheel motor drive device and the remaining two wheels are driven wheels. Further, even in an electric vehicle of a type that does not use an in-wheel motor driving device, there is an electric vehicle including a motor that individually drives wheels.
- both the left and right motors are conventionally stopped.
- a sudden stop of both wheels may cause a problem due to a sudden stop of the vehicle.
- the motor failure or abnormality is minor, it is desirable to stabilize the vehicle posture and to enable traveling to a repair shop or a retreat location on the road.
- An object of the present invention is to stabilize the vehicle posture without stopping both the left and right motors when an abnormality occurs in a motor for one wheel in an electric vehicle having a plurality of motors that individually drive the left and right wheels. To make it possible to travel.
- the outline of the present invention will be described using reference numerals in the drawings showing embodiments.
- the electric vehicle of the present invention is an electric vehicle including a plurality of motors 6 that individually drive the left and right wheels 2 and 3 of the vehicle, and a motor control device 20 that controls these motors 6.
- the motor abnormality detecting means 37 for detecting the abnormality 6 and the motor abnormality detecting means 37 detect an abnormality other than the motor stop in the motor 6 of the left or right wheel 2 or 3 at the same longitudinal position of the vehicle.
- a one-side abnormality response control means 38 for controlling the motors 6 of the other wheels 2 and 3 at the same front-rear direction position so as to approach the same operation state as the operation state of the motor 6 in which an abnormality is detected.
- the “motor abnormality” here refers to the case where the motor 6 is malfunctioning or the motor 6 is not malfunctioning even if the motor 6 itself is not malfunctioning due to some reason such as failure of the control system. Including.
- this configuration when an abnormality such as a failure occurs in the one-wheel motor 6 on the left and right sides of the vehicle, it is in the same longitudinal position as the motor abnormal wheels 2 and 3 by the control of the one-side abnormality response control means 38.
- the motors 6 of the other wheels 2 and 3 are controlled so as to approach the same operating state as the operating state of the motor 6 in which an abnormality has been detected.
- this control is preferably a control for decelerating the rotation of the wheels 2 and 3, but may be a control for accelerating if the abnormality is slight to a certain extent.
- the rotation of the left and right wheels 2 and 3 due to the motor abnormality is controlled. Unevenness is reduced and the running posture of the vehicle can be kept stable. For this reason, when a motor abnormality for one wheel occurs, the vehicle posture can be stabilized without stopping both the left and right motors.
- a safe place such as a retreat place on the road
- the one-side abnormality response control means 38 is the other motor in the same front-rear direction position.
- a control for forcibly reducing the torque 6 a control for acting as a regenerative brake, and a control for operating the brakes 9 and 10 for the wheels 2 and 3 driven by the other motor 6. Is good.
- the one-side abnormality response control means 38 controls the torque of the motor 6 of the other wheels 2 and 3 at the same longitudinal position. Is forcibly reduced, acts as a regenerative brake, or activates the brakes of the wheels 2 and 3 driven by the other motor 6. If the abnormality in which the braking force is generated in the motor 6 is a slight generation of braking force, the control to act as a regenerative brake and the control to actuate the brake do not need to be performed until the vehicle stops and may be decelerated. In this way, by controlling to reduce the rotation of the other wheels 2 and 3 and obtaining the balance of driving of the left and right wheels 2 and 3, the vehicle posture can be traveled stably.
- the motor abnormality detecting means 37 is a motor current for the motor 6 that drives the wheels 2 and 3 adjacent to the front and rear and the left and right of the wheels 2 and 3 driven by the motor 6 to be detected.
- a motor rotation speed, a torque command value to the inverter device 22 for driving the motor, and a load detection value of the load sensor 41 for detecting an applied load between the tire and the road surface attached to the wheel bearing 4 is detected.
- the abnormality may be detected by comparing the motor current, the motor rotation speed, the torque command value to the motor drive inverter device 22, and the load detection value in the target motor 6, respectively.
- the front and rear adjacent wheels 2 and 3 usually have substantially the same rotational speed.
- the wheels 2 and 3 adjacent to the left and right have the same rotational speed when traveling in a straight line, and have a rotational speed relationship according to the rotational radius and the like even when traveling on a curved road.
- the driving force of the wheels 2 and 3 appears in the load detection value of the load sensor 4. Therefore, any one of the motor current, the motor rotation speed, the torque command value, and the load detection value of the load sensor is detected with respect to the motor current, the motor rotation speed, the torque command value, the load detection value, etc. in the motor 6 to be detected.
- the motor abnormality can be detected by comparing the value of the motor 6 with the value of the motor driving the adjacent wheels 2 and 3.
- the motor abnormality detection means 37 determines that an abnormality has occurred when the detected motor current is equal to or greater than a set multiple of the motor current value corresponding to the torque command value to the inverter device 22 for driving the motor. It may be a thing. If the motor 6 is normal, the motor current and the motor current value corresponding to the torque command value maintain a certain range. Therefore, the motor abnormality can be determined also by detecting that the motor current value has exceeded the set multiple.
- the “set multiple” described above may be 1 or more or less than 1, and may be determined appropriately according to the control purpose. In the case of less than 1, in this specification, the closer to zero, the higher the magnification.
- the motor abnormality detection means 37 is a motor that is subject to abnormality detection when the motor current value substantially matches the motor current value corresponding to the torque command value to the inverter device 22 for driving the motor. 6 is determined to be abnormal when the rotational speed of the motor 6 is equal to or greater than a set multiple of the rotational speeds of the motors of the wheels 2 and 3 adjacent to the front and rear or left and right of the wheel driven by the motor 6. Also good.
- the above “in case of substantially coincidence” means that it is within the range of the difference between the torque command value and the motor current value that are normally generated. If there is a difference in current value within the range, it can be determined that they are approximately the same.
- the rotational speed of the motor 6 may vary greatly within a certain range or the like. In the meantime, if it is normal, the motor speed is within a certain fixed range. Therefore, when the number of rotations of the motors of the wheels 2 and 3 adjacent to the front and rear or the left and right is equal to or larger than the set multiple, it is possible to determine an appropriate motor abnormality by determining the abnormality.
- the motor abnormality detection means 37 detects the abnormality of the motor 6 to be detected when the motor current value substantially matches the motor current value corresponding to the torque command value to the inverter device 22 for driving the motor.
- the detected load Fx in the vehicle traveling direction in the load sensor 41 that detects the applied load between the tire and the road surface attached to the wheel bearing 4 connected to the wheel bearing 4 is applied to the wheels 2 and 3 that are driven by the motor 6 to be detected for abnormality.
- it is a set multiple of the detected load Fx in the vehicle traveling direction in the load sensor 41 that detects the applied load between the tire and the road surface attached to the wheel bearings of the wheels 2 and 3 adjacent to the front and rear or the left and right. Sometimes, it may be determined as abnormal.
- the detected load Fx in the vehicle traveling direction in the load sensor 41 that detects the applied load between the tire and the road surface attached to the wheel bearing 4 is a value corresponding to the motor torque. Therefore, the abnormality of the motor 6 can also be detected by comparing the detected load Fx in the vehicle traveling direction by the load sensor 41 between the front and rear wheels 2 and 3.
- the ECU 21 which is an electric control unit for controlling the entire vehicle, the power circuit unit 28 including the inverter 31 for converting DC power into AC power, and the power circuit unit are controlled in accordance with a torque command given from the ECU.
- an inverter device 22 having a motor control unit 29.
- the inverter device 22 is provided for each motor, and the ECU 21 and the inverter device 22 constitute the motor control device 20, and the motor of the inverter device 22 is provided.
- the controller 29 may be provided with the motor abnormality detection means 37 and the one-side abnormality response control means 38.
- each inverter device 22 may be provided with the motor abnormality detection means 37 and the one-side abnormality response control means 38.
- the motor abnormality detection means 37 may be provided in the motor control unit 29 of the inverter device 22, and the one-side abnormality response control means 38 may be provided in the ECU 21.
- a control system in an electric vehicle is generally composed of a main ECU 21 and an inverter device 22 for each motor 6.
- the present invention when the present invention is applied, providing the motor abnormality detection means 37 and the one-side abnormality response control means 38 in the inverter device 22 as described above is complicated due to high functionality.
- the burden on the ECU 21 can be reduced, and the design of the ECU 21 and the design of the inverter device 22 can be easily separated.
- a company that manufactures and sells the in-wheel motor drive device motor 6 and the inverter device 22 can be independently developed. Since the one-side abnormality response control means 38 affects the motor 6 different from the motor 6 controlled by the inverter device 22, the control system can be simplified by providing the ECU 21 rather than the inverter device 22. There is also.
- the motor 6 may constitute an in-wheel motor drive device 8 having a wheel bearing 4 and a speed reducer 7 interposed between the wheel bearing 4 and the motor 6.
- the in-wheel motor drive device 8 is excellent in that it can perform fine-grained vehicle control because each wheel can be independently torque controlled.
- the left and right wheels 2, 3 are individually driven, 3 causes a problem due to motor abnormality on only one side. This problem can be effectively solved by the present invention.
- the speed reducer 7 in the in-wheel motor drive device 8 may be a cycloid speed reducer.
- the cycloid reducer can achieve a high reduction ratio with smooth operation.
- torque is transmitted to the wheels 2 and 3 via the speed reducer 7 having a high reduction ratio, the torque caused by the motor abnormality is expanded and transmitted to the wheels 2 and 3. Therefore, the control for aligning the driving of the left and right wheels 2 and 3 according to the present invention becomes even more effective.
- FIG. 1 is a block diagram of a conceptual configuration showing an electric vehicle according to a first embodiment of the present invention in a plan view. It is a block diagram which shows the conceptual structure of the in-wheel motor unit of the same electric vehicle. It is a block diagram which shows the conceptual structure of ECU, each inverter apparatus, and its motor malfunction check / control means in the same electric vehicle.
- This electric vehicle is a four-wheel drive vehicle in which the left and right rear wheels 2 and the left and right front wheels 3 of the vehicle body 1 shown in FIG. 1 are drive wheels.
- the front wheel 3 is a steering wheel.
- Each of the wheels 2 and 3 has a tire and is supported by the vehicle body 1 via a wheel bearing 4.
- the wheel bearing 4 is abbreviated as “H / B” in FIG.
- the wheels 2 and 3 are driven by independent driving motors 6.
- the rotation of the motor 6 is transmitted to the drive wheel 2 via the speed reducer 7 and the wheel bearing 4.
- the motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor drive device 8 that is one assembly part.
- the in-wheel motor drive device 8 is partially or entirely disposed in the wheel 2.
- the motor 6 may directly rotate and drive the wheel 2 without using the speed reducer 7.
- Each in-wheel motor drive device 8 constitutes an in-wheel motor unit 30 together with an inverter device 22 described later in FIG.
- the wheels 2 and 3 are respectively provided with mechanical brakes 9 and 10 which are electric friction brakes.
- the “mechanical” is a term for distinguishing from the regenerative brake, and includes a hydraulic brake.
- Wheels 3 and 3 which are steering wheels serving as left and right front wheels can be steered via a steering mechanism 11 and are steered by a steering mechanism 12.
- the steering mechanism 11 is a mechanism that changes the angles of the left and right knuckle arms 11b that hold the wheel bearings 4 by moving the tie rods 11a to the left and right.
- An EPS (electric power steering) motor 13 is driven by a command from the steering mechanism 12. It is driven and moved left and right via a rotation / linear motion conversion mechanism (not shown).
- the steering angle is detected by the steering angle sensor 15, and the sensor output is output to the ECU 21, and the information is used for acceleration / deceleration commands for the left and right wheels.
- a main ECU 21 that is an electric control unit that controls the entire vehicle, a plurality (four in the illustrated example) of inverter devices 22 that respectively control the respective driving motors 6 in accordance with commands from the ECU 21, and a brake controller 23 are mounted on the vehicle body 1.
- the ECU 21 and the inverter device 22 constitute a motor control device 20.
- the ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like. Note that the ECU 21 and other computers are, for example, microcomputers.
- the ECU 21 is roughly divided into a drive control unit 21a that performs control related to driving and a general control unit 21b that performs other controls, when roughly classified by function.
- the drive control unit 21a includes a torque distribution unit 48.
- the torque distribution unit 48 outputs an acceleration command output from the accelerator operation unit 16, a deceleration command output from the brake operation unit 17, and an output from the steering angle sensor 15. From the turning command to be generated, an acceleration / deceleration command to be given to the left and right wheel driving motors 6, 6 is generated as a torque command value and output to the inverter device 22.
- the torque distribution means 48 includes a braking torque command value for causing the motor 6 to function as a regenerative brake and a braking torque command value for operating the mechanical brakes 9 and 10 when a deceleration command output from the brake operation unit 17 is received. It has a function to allocate to.
- the braking torque command value that functions as a regenerative brake is reflected in the torque command value of the acceleration / deceleration command that is given to each traveling motor 6, 6.
- a braking torque command value for operating the mechanical brakes 9 and 10 is output to the brake controller 23.
- the torque distribution means 48 outputs the acceleration / deceleration commands to be output, the information on the tire rotation speed obtained from the rotation sensor 24 provided on the wheel bearings 4 of the wheels 2 and 3, and the on-vehicle sensors. It may have a function of correcting using the information.
- the accelerator operation unit 16 includes an accelerator pedal and a sensor 16a that detects the amount of depression and outputs the acceleration command.
- the brake operation unit 17 includes a brake pedal and a sensor 17a that detects the amount of depression and outputs the deceleration command.
- the general control unit 21b of the ECU 21 has a function of controlling various auxiliary machine systems 25, a function of processing input commands from the console operation panel 26, a function of displaying on the display means 27, and the like.
- the auxiliary machine system 25 is, for example, an air conditioner, a light, a wiper, a GPS, an airbag or the like, and is shown here as a representative block.
- the brake controller 23 is a means for giving a braking command to the mechanical brakes 9 and 10 of the wheels 2 and 3 in accordance with a braking command output from the ECU 21, and is constituted by an electronic circuit, a microcomputer, or the like serving as an ECU dedicated to braking.
- the braking command output from the main ECU 21 includes a command generated by means for improving the safety of the ECU 21 in addition to a command generated by a deceleration command output from the brake operation unit 17.
- the brake controller 23 includes an antilock brake system.
- the inverter device 22 includes a power circuit unit 28 provided for each motor 6 and a motor control unit 29 that controls the power circuit unit 28.
- the motor control unit 29 has a function of outputting information (referred to as “IWM system information”) such as detection values and control values related to the in-wheel motor drive device 8 of the motor control unit 29 to the ECU 21.
- FIG. 2 is a block diagram showing a conceptual configuration of the in-wheel motor unit 30.
- the power circuit unit 28 of the inverter device 22 includes an inverter 31 that converts the DC power of the battery 19 (FIG. 1) into three-phase AC power used to drive the motor 6, and a PWM driver 32 that controls the inverter 31. Is done.
- the motor 6 is a three-phase synchronous motor, for example, an IPM type (embedded magnet type) synchronous motor or the like.
- the inverter 31 is composed of a plurality of semiconductor switching elements (not shown), and the PWM driver 32 performs pulse width modulation on the input current command and gives an on / off command to each of the semiconductor switching elements.
- the motor control unit 29 includes a computer, a program executed on the computer, and an electronic circuit.
- the motor control unit 29 converts it into a current command in accordance with an acceleration / deceleration command by a torque command or the like given from the ECU 21 that is the host control means, and gives a current command to the PWM driver 32 of the power circuit unit 28. Further, the motor control unit 29 obtains a motor current value flowing from the inverter 31 to the motor 6 from the current sensor 35 and performs current feedback control. In this current control, the rotation angle of the rotor of the motor 6 is obtained from the angle sensor 36, and control according to the rotation angle such as vector control is performed.
- the motor control unit 29 is provided with a motor malfunction check / control means 34 and an abnormality report means 47 comprising the following motor abnormality detection means 37 and one-side abnormality response control means 38.
- the motor abnormality detection unit 37 detects an abnormality of the motor 6 driven by the inverter device 22 provided with the motor abnormality detection unit 37.
- the "motor abnormality” here refers to the case where the motor 6 is operating normally for some reason, such as the failure of the motor 6 or the failure of the control system, even if the motor 6 itself is not broken. Including no case.
- the one-side abnormality response control means 38 detects the abnormality of the motor 6 other than the motor stop by the motor abnormality detection means 37, that is, the motor of either the left or right wheel 2 or 3 at the same longitudinal position of the vehicle. 6, when an abnormality other than the motor stop is detected, control is performed so that the motors 6 of the other wheels 2 and 3 in the same front-rear direction position approach the same operation state as the operation state of the motor 6 in which the abnormality is detected. It is means to do. For example, when an abnormality of the motor 6 of the right wheel 2R among the rear wheels shown in FIG. 4 is detected, the one-side abnormality response control means 38 similarly controls the motor 6 of the left wheel 2L of the rear wheels. Control is performed so as to approach the same operation state as the operation state of the motor 6 in which the abnormality is detected.
- the control approaching the same operation state as described above is preferably a control for decelerating the rotation of the wheels 2 and 3, but may be a control for accelerating if the abnormality is slight to a certain extent. Whether or not the above-mentioned “minor abnormality to some extent” is determined is a value appropriately set in the one-side abnormality response control means 38.
- the one-side abnormality response control unit 38 forces the torque of the other motor 6 at the same position in the front-rear direction. It is preferable to perform at least one of control to reduce the speed of the vehicle, control to act as a regenerative brake, and control to operate the brakes 9 and 10 for the wheels 2 and 3 driven by the other motor 6.
- control for forcibly reducing the torque of the other motor 6 or the control for acting as a regenerative brake is performed, the control may be performed via the torque distribution means 48 of the ECU 21 or directly between the inverter devices 22. A control command may be given.
- the control for operating the brakes 9 and 10 is performed, the control is performed via the brake controller 23.
- the control to act as a regenerative brake and the control to actuate the brake do not need to be performed until the vehicle stops and may be decelerated. In this way, by controlling to reduce the rotation of the other wheels 2 and 3 and obtaining the balance of driving of the left and right wheels 2 and 3, the vehicle posture can be traveled stably. Whether or not the brake force is “somewhat mild” may be determined by appropriately setting.
- the motor control unit 29 of each inverter device 22 is used.
- the motor control function corresponding to the command output from the one-side abnormality response control means 38 provided in the other inverter device 22 is provided.
- the motor abnormality detection means 37 includes a motor current, a motor rotation speed, and a motor rotation speed for the motor 6 for driving the wheels 2 and 3 adjacent to the front and rear and the left and right of the wheels 2 and 3 driven by the detection target motor 6.
- Either the torque command value Tr to the motor drive inverter device 22 or the load detection value of the load sensor 41 that detects the applied load between the tire and the road surface attached to the wheel bearing 4 is used as the detection target motor 6.
- the motor abnormality may be detected by comparing the motor current, the motor rotation number, the torque command value to the motor drive inverter device 22 and the load detection value.
- the detection value of the current sensor 35 is used as the detection value of the motor current of the motor 6.
- the motor speed is obtained from the angle sensor 36.
- the torque command value Tr to the motor drive inverter device 22 is a command value distributed and given by the torque distribution means 48. A specific example of the load sensor 41 will be described later with reference to FIGS.
- the wheels 2 and 3 adjacent to each other at the front and rear usually have the same rotational speed.
- the wheels 2 and 3 adjacent to the left and right (that is, the rear wheels and the front wheels) have the same rotational speed when traveling in a straight line, and have a rotational speed relationship corresponding to the rotational radius even when traveling on a curved road.
- the driving force of the wheels 2 and 3 appears in the load detection value of the load sensor 4. Therefore, if any of the motor current, the motor rotation speed, the torque command value, and the load detection value of the load sensor is compared with the value of the motor 6 to be detected and the motor 6 that drives the adjacent wheels 2 and 3, Motor abnormality can be detected.
- the motor abnormality detection means 37 may determine that the motor current is abnormal when the motor current value corresponding to the torque command value Tr to the inverter device 22 for driving the motor becomes a set multiple or more. If the motor 6 is normal, the motor current and the motor current value corresponding to the torque command value maintain a certain range. Therefore, the motor abnormality can be determined also by detecting that the motor current value has exceeded the set multiple.
- the “set multiple” described above may be 1 or more or less than 1, and may be determined appropriately according to the control purpose.
- the motor abnormality detection means 37 is a motor to be detected when the motor current value substantially matches the motor current value corresponding to the torque command value Tr to the inverter device 22 for driving the motor. Even when the rotational speed of 6 is equal to or greater than the set multiple of the rotational speed of the motors of the wheels 2 and 3 adjacent to the front and rear or left and right of the wheel driven by the motor 6, Good.
- the “substantially coincidence” mentioned above is within the range of the difference between the torque command value and the motor current value that are normally generated. If there is a difference in current value within the range, it can be determined that they are approximately the same.
- the rotational speed of the motor 6 may vary greatly within a certain range or the like. In the meantime, if it is normal, the motor speed is within a certain fixed range. Therefore, when the number of rotations of the motors of the wheels 2 and 3 adjacent to the front and rear or the left and right is equal to or larger than the set multiple, it is possible to determine an appropriate motor abnormality by determining the abnormality.
- the motor abnormality detection means 37 is connected to the motor 6 to be detected when the motor current value substantially matches the motor current value corresponding to the torque command value to the inverter device 22 for driving the motor.
- the detected load Fx in the vehicle traveling direction in the load sensor 41 for detecting the applied load between the tire and the road surface attached to the wheel bearing 4 is forward and backward with respect to the wheels 2 and 3 driven by the motor 6 to be detected for abnormality.
- an abnormality occurs when a set multiple of the detected load Fx in the vehicle traveling direction in the load sensor 41 that detects the applied load between the tire and the road surface attached to the wheel bearings of the wheels 2 and 3 adjacent to the left and right is set. It may be determined.
- the detected load Fx in the vehicle traveling direction in the load sensor 41 that detects the applied load between the tire and the road surface attached to the wheel bearing 4 is a value corresponding to the motor torque. Therefore, the abnormality of the motor 6 can also be detected by comparing the detected load Fx in the vehicle traveling direction by the load sensor 41 between the front and rear wheels 2 and 3.
- the one-side abnormality response control means 38 When the motor abnormality detection means 37 detects a motor abnormality, the one-side abnormality response control means 38 performs a process for the motor abnormality, or both cases, the reporting means 47 notifies the ECU 21 of the abnormality detection or Send a signal to report the handling of the abnormality.
- the ECU 21 receives the report of the abnormality report means 47, and performs means for corresponding control and means for displaying on the console display means 27 for notifying the driver (both these means are collectively shown in FIG. (Shown as an internal correspondence control unit 49).
- the one-side abnormality response control means 38 performs control corresponding to the motor abnormality
- the reporting means 47 reports the control content corresponding to the abnormality to the ECU 21
- the ECU 21 receives this report, and the vehicle Appropriately determined control is performed so that the entire cooperative control can be performed, and a display notifying the driver of the occurrence of abnormality of the motor 6 and the control corresponding thereto is displayed on the console display means 27.
- the display of the occurrence of abnormality may be performed in response to a signal in which abnormality is detected by the motor abnormality detection means 37.
- the in-wheel motor drive device 8 since the in-wheel motor drive device 8 is adopted for the motor 6, it is excellent in terms of compactness. However, since the wheels 2 and 3 are individually driven, the motor only on one side of the left and right wheels. Problems due to abnormalities occur. This problem is effectively solved as described above. Since the speed reducer 7 in the in-wheel motor drive device 8 is a cycloid speed reducer, a high speed reduction ratio can be obtained with a smooth operation. However, when torque is transmitted to the wheels 2 and 3 via the speed reducer 7 having a high reduction ratio, the torque caused by the motor abnormality is expanded and transmitted to the wheels 2 and 3. Therefore, the control for aligning the left and right driving according to this embodiment becomes even more effective.
- the motor abnormality detection means 37 and the one-side abnormality response control means 38 are provided in the inverter device 22, it is possible to reduce the burden on the ECU 21 that is becoming more complicated due to higher functions, and the design of the ECU 21 and the inverter device 22 can be reduced. It becomes easy to separate the design. For example, a company that manufactures and sells the in-wheel motor drive device motor 6 and the inverter device 22 can be independently developed.
- the one-side abnormality response control means 38 may be provided in the ECU 21 as in the second embodiment shown in FIG. Since the control by the one-side abnormality response control means 38 affects the motor 6 different from the motor 6 controlled by the inverter device 22 provided with the one-side abnormality response control means 38, the control by the one-side abnormality response control means 38 is more than the provision in the inverter device 22. In some cases, the control system can be simplified by providing the ECU 21. In addition to this, both the motor abnormality detection means 37 and the one-side abnormality response control means 38 may be provided in the ECU 21.
- the in-wheel motor drive device 8 includes a reduction gear 7 interposed between a wheel bearing 4 and a motor 6, and a hub of the drive wheel 2 supported by the wheel bearing 4 and a rotation output shaft 74 of the motor 6. They are connected on the same axis.
- the speed reducer 7 is a cycloid speed reducer, in which eccentric portions 82a and 82b are formed on a rotational input shaft 82 that is coaxially connected to a rotational output shaft 74 of the motor 6, and bearings 85 are respectively provided on the eccentric portions 82a and 82b.
- the curved plates 84a and 84b are mounted, and the eccentric motion of the curved plates 84a and 84b is transmitted to the wheel bearing 4 as rotational motion.
- the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
- the wheel bearing 4 includes an outer member 51 in which a double row rolling surface 53 is formed on the inner periphery, an inner member 52 in which a rolling surface 54 facing each of the rolling surfaces 53 is formed on the outer periphery, and these
- the outer member 51 and the inner member 52 are composed of double-row rolling elements 55 interposed between the rolling surfaces 53 and 54 of the inner member 52.
- the inner member 52 also serves as a hub for attaching the drive wheels.
- the wheel bearing 4 is a double-row angular ball bearing, and the rolling elements 55 are made of balls and are held by a cage 56 for each row.
- the rolling surfaces 53 and 54 have a circular arc cross section, and the rolling surfaces 53 and 54 are formed so that the contact angles are aligned with the back surface.
- An end on the outboard side of the bearing space between the outer member 51 and the inner member 52 is sealed with a seal member 57.
- the outer member 51 is a stationary raceway, has a flange 51a attached to the housing 83b on the outboard side of the speed reducer 7, and is formed as an integral part as a whole.
- the flange 51a is provided with bolt insertion holes 64 at a plurality of locations in the circumferential direction.
- the housing 83b is provided with a bolt screw hole 94 whose inner periphery is threaded at a position corresponding to the bolt insertion hole 64.
- the outer member 51 is attached to the housing 83b by screwing the mounting bolt 65 inserted into the bolt insertion hole 94 into the bolt screwing hole 94.
- the inner member 52 is a rotating raceway, and the outboard side member 59 having a hub flange 59a for wheel mounting and the outboard side member 59 are fitted to the inner periphery of the outboard side member 59.
- the inboard side material 60 is integrated with the outboard side material 59 by fastening.
- the rolling surface 54 of each row is formed in each of the outboard side material 59 and the inboard side material 60.
- a through hole 61 is provided in the center of the inboard side member 60.
- the hub flange 59a is provided with press-fit holes 67 for hub bolts 66 at a plurality of locations in the circumferential direction.
- a cylindrical pilot portion 63 that guides driving wheels and braking components (not shown) protrudes toward the outboard side.
- a cap 68 that closes the outboard side end of the through hole 61 is attached to the inner periphery of the pilot portion 63.
- the speed reducer 7 is a cycloid speed reducer, and two curved plates 84a and 84b formed with wavy trochoid curves having a gentle outer shape as shown in FIG.
- the shaft 82 is attached to each eccentric part 82a, 82b.
- a plurality of outer pins 86 for guiding the eccentric movements of the curved plates 84a and 84b on the outer peripheral side are provided across the housing 83b, and a plurality of inner pins 88 attached to the inboard side member 60 of the inner member 2 are provided.
- the curved plates 84a and 84b are engaged with a plurality of circular through holes 89 provided in the inserted state.
- the rotation input shaft 82 is spline-coupled with the rotation output shaft 74 of the motor 6 and rotates integrally.
- the rotary input shaft 82 is supported at both ends by two bearings 90 on the inboard side housing 83a and the inner diameter surface of the inboard side member 60 of the inner member 52.
- the curved plates 84a and 84b attached to the rotation input shaft 82 that rotates together with the motor 6 perform an eccentric motion.
- the eccentric motions of the curved plates 84 a and 84 b are transmitted to the inner member 52 as rotational motion by the engagement of the inner pins 88 and the through holes 89.
- the rotation of the inner member 52 is decelerated with respect to the rotation of the rotation output shaft 74. For example, a reduction ratio of 1/10 or more can be obtained with a single-stage cycloid reducer.
- the two curved plates 84a and 84b are attached to the eccentric portions 82a and 82b of the rotary input shaft 82 so as to cancel out the eccentric motion with each other, and are mounted on both sides of the eccentric portions 82a and 82b.
- a counterweight 91 that is eccentric in the direction opposite to the eccentric direction of the eccentric portions 82a and 82b is mounted so as to cancel the vibration caused by the eccentric movement of the curved plates 84a and 84b.
- bearings 92 and 93 are mounted on the outer pins 86 and the inner pins 88, and outer rings 92a and 93a of the bearings 92 and 93 are respectively connected to the curved plates 84a and 84b. It comes into rolling contact with the outer periphery and the inner periphery of each through-hole 89. Therefore, the contact resistance between the outer pin 86 and the outer periphery of each curved plate 84a, 84b and the contact resistance between the inner pin 88 and the inner periphery of each through hole 89 are reduced, and the eccentric motion of each curved plate 84a, 84b is smooth. Can be transmitted to the inner member 52 as a rotational motion.
- the motor 6 is a radial gap type IPM motor in which a radial gap is provided between a motor stator 73 fixed to a cylindrical motor housing 72 and a motor rotor 75 attached to the rotation output shaft 74.
- the rotation output shaft 74 is cantilevered by two bearings 76 on the cylindrical portion of the housing 83 a on the inboard side of the speed reducer 7.
- the motor stator 73 includes a stator core portion 77 and a coil 78 made of a soft magnetic material.
- the stator core portion 77 is held by the motor housing 72 with its outer peripheral surface fitted into the inner peripheral surface of the motor housing 72.
- the motor rotor 75 includes a rotor core portion 79 that is fitted on the rotation output shaft 74 concentrically with the motor stator 73, and a plurality of permanent magnets 80 that are built in the rotor core portion 79.
- the motor 6 is provided with an angle sensor 36 that detects a relative rotation angle between the motor stator 73 and the motor rotor 75.
- the angle sensor 36 detects and outputs a signal representing a relative rotation angle between the motor stator 73 and the motor rotor 75, and an angle calculation circuit 71 that calculates an angle from the signal output from the angle sensor body 70.
- the angle sensor main body 70 includes a detected portion 70a provided on the outer peripheral surface of the rotation output shaft 74, and a detecting portion 70b provided in the motor housing 72 and disposed in close proximity to the detected portion 70a, for example, in the radial direction. Become.
- the detected portion 70a and the detecting portion 70b may be arranged close to each other in the axial direction.
- each angle sensor 36 a magnetic encoder or a resolver is used as each angle sensor 36.
- the rotation control of the motor 6 is performed by the motor control unit 29 (FIGS. 1 and 2).
- each phase of each wave of alternating current flowing through the coil 78 of the motor stator 73 based on the relative rotation angle between the motor stator 73 and the motor rotor 75 detected by the angle sensor 36. Is controlled by the motor drive control unit 33 of the motor control unit 29.
- the wiring of the motor current of the in-wheel motor drive device 8 and the wiring of various sensor systems and command systems are collectively performed by a connector 99 provided in the motor housing 72 and the like.
- the load sensor 24 shown in FIG. 2 includes, for example, a plurality of sensor units 120 shown in FIG. 9 and a signal processing unit 130 that processes output signals of these sensor units 120.
- the sensor unit 120 is provided at four locations on the outer diameter surface of the outer member 51 that is a stationary raceway in the wheel bearing 4.
- FIG. 8 shows a front view of the outer member 1 viewed from the outboard side.
- these sensor units 120 are provided on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the outer member 51 that is in the vertical position and the horizontal position with respect to the tire ground contact surface.
- the signal processing unit 130 may be provided on the outer member 51, or may be provided on the motor control unit 29 of the inverter device 22.
- the signal processing unit 130 compares the outputs of the four sensor units 120 described above, and acts on each load acting on the wheel bearing 4, specifically, between the road surface of the wheel 2 and the tire according to a predetermined arithmetic expression.
- a straight direction load Fz serving as a load, a vehicle traveling direction load Fx serving as a driving force or a braking force, and an axial load Fy are calculated and output.
- Four sensor units 120 are provided. Since they are equally arranged with a phase difference of 90 degrees in the circumferential direction, the vertical load Fz, the vehicle traveling direction load Fx, and the axial load Fy acting on the wheel bearing 4 can be accurately estimated.
- the vertical load Fz is obtained by comparing the outputs of the two upper and lower sensor units 120
- the vehicle traveling direction load Fx is obtained by comparing the outputs of the two front and rear sensor units 120
- the axial load Fy is obtained by comparing the outputs of the four sensor units 120.
- the calculation of the loads Fx, Fy, and Fz by the signal processing unit 130 can be performed with high accuracy by setting arithmetic expressions and parameters based on values obtained by tests and simulations.
- Each sensor unit 120 is, for example, as shown in an enlarged plan view and an enlarged longitudinal sectional view in FIGS. 10 and 11, a strain generating member 121 and a strain generating member 121 attached to the strain generating member 121. It consists of the strain sensor 122 to detect.
- the strain generating member 121 is made of an elastically deformable metal plate having a thickness of 3 mm or less, such as a steel material, and has a planar shape of a strip having a uniform width over the entire length, and has notches 121b on both sides of the center. Further, the strain generating member 121 has two contact fixing portions 121 a that are fixed to the outer diameter surface of the outer ring 1 through spacers 123 at both ends.
- the strain sensor 122 is affixed to the strain generating member 121 at a location where the strain increases with respect to the load in each direction.
- the location the central portion sandwiched between the notch portions 121b on both sides on the outer surface side of the strain generating member 121 is selected, and the strain sensor 122 measures the circumferential strain around the notch portion 121b. To detect.
- the two contact fixing portions 121a of the strain generating member 121 are positioned at the same size in the axial direction of the outer ring 1, and the two contact fixing portions 121a are located at positions separated from each other in the circumferential direction.
- These contact fixing portions 121a are fixed to the outer diameter surface of the outer ring 1 by bolts 124 through spacers 123, respectively.
- Each of the bolts 124 is inserted into a bolt insertion hole 126 of the spacer 123 from a bolt insertion hole 125 provided in the contact fixing portion 121a in the radial direction, and a screw hole 127 provided in an outer peripheral portion of the outer member 51. Screwed on.
- the central portion having the notch portion 121b in the thin plate-shaped strain generating member 121 is located outside the outer ring 1. It becomes a state away from the radial surface, and distortion deformation around the notch 121b becomes easy.
- an axial position that is the periphery of the rolling surface 53 of the outboard side row of the outer member 51 is selected here.
- the periphery of the rolling surface 53 of the outboard side row is a range from the intermediate position of the rolling surface 53 of the inboard side row and the outboard side row to the formation portion of the rolling surface 53 of the outboard side row. It is.
- a flat portion 1b is formed at a location where the spacer 123 is contacted and fixed on the outer diameter surface of the outer member 51.
- strain sensors 122 can be used.
- the strain sensor 122 can be composed of a metal foil strain gauge.
- the distortion generating member 121 is usually fixed by adhesion.
- the strain sensor 122 can be formed on the strain generating member 121 with a thick film resistor.
- FIG. 12 shows an example of the rotation sensor 24 shown in FIGS.
- the rotation sensor 24 includes a magnetic encoder 24a provided on the outer periphery of the inner member 52 in the wheel bearing 4, and a magnetic sensor 24b provided on the outer member 51 so as to face the magnetic encoder 24a.
- the magnetic ender 24a is a ring-shaped member in which magnetic poles N and S are alternately magnetized in the circumferential direction.
- the rotation sensor 24 is disposed between both rows of rolling elements 55, 55, but may be installed at the end of the wheel bearing 4.
- the ECU 21 and the inverter device 22 are provided apart from each other, but the ECU 21 and the inverter device 22 may be configured by the same computer.
- this invention demonstrated the electric vehicle of a motor drive for all four wheels, this invention can be applied also to the four-wheel electric vehicle which used any one of the front and rear two wheels as a driven wheel, for example.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Automation & Control Theory (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Arrangement And Driving Of Transmission Devices (AREA)
- Regulating Braking Force (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
左右の駆動輪(2,2)を個別に駆動する複数のモータ(6,6)を備えた電気自動車であって、各モータ(6)の異常を検出するモータ異常検出手段(37)と、片側異常時対応制御手段(38)とを設ける。片側異常時対応制御手段(38)は、モータ異常検出手段(37)により、車両の同じ前後方向位置にある左右のいずれか一方の車輪(2,3)のモータ(6)にモータ停止以外の異常が検出された場合に、同じ前後方向位置にある他方の車輪(2,3)のモータ(6)を、異常の検出されたモータ(6)の動作状態と同じ動作状態に近づくように制御する。この制御は、他方のモータ(6)のトルクを強制的に減じる制御、回生ブレーキとして作用させる制御、他方の車輪(2,3)のブレーキ作動の制御等とする。
Description
本出願は、2011年3月7日出願の特願2011-048632の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
この発明は、車輪を個別に駆動するモータを備えたバッテリ駆動、燃料電池駆動等のインホイールモータ車両等となる電気自動車に関する。
電気自動車において、車両の走行安定性の向上や、車両有効スペース確保が図れるインホイールモータ駆動装置が開発されている。例えば、4輪ともインホイールモータ駆動装置で駆動する車両や、2輪をインホイールモータ駆動装置で駆動し、残り2輪を従動輪とする車両がある。また、インホイールモータ駆動装置を用いない形式の電気自動車においても、車輪を個別に駆動するモータを備えた電気自動車がある。
このような4輪または左右2輪を、インホイールモータ駆動装置等のモータで個別に駆動する車両において、1輪分のモータが故障した場合、故障のモータにブレーキ力が作用すると、車両のスピン等に繋がる。その際の車両の姿勢安定を保つために、従来は左右両方のモータを停止させている。
上記のように、左右の1輪分のモータが故障した場合、従来は左右両方のモータを停止させている。しかし、急激な両輪停止は、車両の急停止による問題が生じる場合がある。また、モータの故障,異常が軽度であれば、車両姿勢の安定化を図り、修理工場や、路上の退避場所への走行等を可能とすることが望まれる。
この発明の目的は、左右の車輪を個別に駆動する複数のモータを備えた電気自動車において、1輪分のモータ異常が発生した場合に、左右両方のモータを停止させることなく、車両姿勢の安定化を図って走行を可能とすることである。以下、この発明の概要について、実施形態を示す図面中の符号を用いて説明する。
この発明の電気自動車は、車両の左右の車輪2,3を個別に駆動する複数のモータ6と、これらのモータ6を制御するモータ制御装置20とを備えた電気自動車であって、前記各モータ6の異常を検出するモータ異常検出手段37と、このモータ異常検出手段37により、車両の同じ前後方向位置にある左右のいずれか一方の車輪2,3のモータ6にモータ停止以外の異常が検出された場合に、同じ前後方向位置にある他方の車輪2,3のモータ6を、異常の検出されたモータ6の動作状態と同じ動作状態に近づくように制御する片側異常時対応制御手段38とを設けたものである。ここで言う「モータの異常」は、モータ6の故障の場合と、モータ6自体は故障していなくても、制御系の失陥など、何らかの要因でモータ6が正常な動作をしていない場合とを含む。
この構成によると、車両左右のうちの1輪のモータ6に故障等の異常が発生した場合、片側異常時対応制御手段38の制御により、モータ異常の車輪2,3と同じ前後方向位置にある他方の車輪2,3のモータ6を、異常の検出されたモータ6の動作状態と同じ動作状態に近づくように制御する。この制御は、一般的には、車輪2,3の回転を減速させる制御とするのが良いが、ある程度までの軽度の異常であれば、加速させる制御であっても良い。このように、他方の車輪2,3のモータ6を、異常の検出されたモータ6の動作状態と同じ動作状態に近づくように制御することで、モータ異常による左右の車輪2,3の回転の不均等が軽減され、車両の走行姿勢の安定を保つことができる。このため、1輪分のモータ異常が発生した場合に、左右両方のモータを停止させることなく、車両姿勢の安定化を図って走行を可能とでき、例えば、路上の退避場所等の安全な場所まで走行して停止させたり、修理工場へ走行するなど、故障への対応が容易な場所まで安全に走行してモータ異常への対処を図ることができる。
この発明において、前記片側異常時対応制御手段38は、前記モータ異常検出手段37で検出された異常が、モータ6にブレーキ力が発生した異常である場合に、同じ前後方向位置にある他方のモータ6のトルクを強制的に減じる制御、回生ブレーキとして作用させる制御、および前記他方のモータ6で駆動される車輪2,3に対するブレーキ9,10を作動させる制御のいずれか一つ以上を行わせるのが良い。
1輪のモータ6にブレーキ力が発生した場合、車両のスピン等につながる恐れがあるが、片側異常時対応制御手段38は、同じ前後方向位置にある他方の車輪2,3のモータ6のトルクを強制的に減じるか、回生ブレーキとして作用させるか、または他方のモータ6で駆動される車輪2,3のブレーキを作動させる。モータ6にブレーキ力が発生した異常が、ある程度軽度のブレーキ力の発生であれば、回生ブレーキとして作用させる制御やブレーキを作動させる制御は、車両停止まで行う必要はなく、減速させれば良い。このように他方の車輪2,3の回転を落とす制御を行い、左右の車輪2,3の駆動のバランスを得ることで、車両姿勢を安定して走行させることができる。
この発明において、前記モータ異常検出手段37は、検出対象のモータ6で駆動される車輪2,3に対して前後および左右のいずれかに隣接する車輪2,3を駆動するモータ6についてのモータ電流、モータ回転数、モータ駆動用のインバータ装置22へのトルク指令値、および車輪用軸受4に取付けられたタイヤ・路面間の作用荷重を検出する荷重センサ41の荷重検出値のいずれかを、検出対象のモータ6における、モータ電流、モータ回転数、モータ駆動用インバータ装置22へのトルク指令値、および荷重検出値とそれぞれ比較することで、異常の検出を行うようにしても良い。
前後に隣接する車輪2,3は、通常であればほぼ同じ回転速度となる。左右に隣接する車輪2,3は、直線走行時は同じ回転速度となり、曲線路の走行時でも、回転半径等に応じた回転速度の関係になる。また、車輪2,3の駆動力は、前記荷重センサ4の荷重検出値に現れる。そのため、モータ電流、モータ回転数、トルク指令値、荷重センサの荷重検出値のいずれかを、検出対象のモータ6における、モータ電流、モータ回転数、トルク指令値、荷重検出値等につき、検出対象のモータ6の値と隣接する車輪2,3を駆動するモータについての値とを比較すれば、モータ異常が検出できる。
この発明において、前記モータ異常検出手段37は、検出されたモータ電流が、モータ駆動用のインバータ装置22へのトルク指令値に相当するモータ電流値の設定倍数以上になった場合に異常と判断するものであっても良い。モータ6が正常で有れば、モータ電流と、トルク指令値に相当するモータ電流値はある範囲を保つ。そのため、モータ電流値が設定倍数以上になったことを検出することによっても、モータ異常が判断できる。なお、上記の「設定倍数」は、1以上であっても、1未満であっても良く、制御目的などに応じて適宜に定めれば良い。また、1未満の場合は、この明細書においては零に近い値であるほど、倍率が高いと言う。
この発明において、前記モータ異常検出手段37は、モータ電流値が、モータ駆動用のインバータ装置22へのトルク指令値に相当するモータ電流値に略一致している場合に、異常検出対象とするモータ6の回転数が、このモータ6で駆動される車輪に対して前後または左右に隣接する車輪2,3のモータの回転数の設定倍数以上となったときに、異常と判断するものであってもよい。上記の「略一致している場合」とは、通常に生じるトルク指令値とモータ電流値の差の範囲内であることであり、略一致しているか否かの判断は、適宜の範囲を設定して、その範囲内に電流値の差があれば、略一致していると判断すれば良い。トルク指令値に対してモータ電流値が一致している場合であっても、モータ6の回転数はある範囲等で大きく変わることがあるが、前後または左右に隣接する車輪2,3のモータの間では、正常であれば、モータ回転数は、ある程度の定まった範囲内となる。したがって、前後または左右に隣接する車輪2,3のモータの回転数の設定倍数以上となったときに、異常と判断することで、適切なモータ異常の判断が行える。
この発明において、前記モータ異常検出手段37は、モータ電流値が、モータ駆動用のインバータ装置22へのトルク指令値に相当するモータ電流値に略一致している場合に、異常検出対象のモータ6に連結される車輪用軸受4に取付けられたタイヤ・路面間の作用荷重を検出する荷重センサ41における車両進行方向の検出荷重Fxが、異常検出対象のモータ6で駆動される車輪2,3に対して前後または左右に隣接する車輪2,3の車輪用軸受に取付けられたタイヤ・路面間の作用荷重を検出する荷重センサ41における車両進行方向の検出荷重Fxに対して、設定倍数となったときに異常と判断するものであっても良い。車輪用軸受4に取付けられたタイヤ・路面間の作用荷重を検出する荷重センサ41における車両進行方向の検出荷重Fxは、モータトルクに対応した値となる。このため、前後または左右の車輪2,3の間で、荷重センサ41による車両進行方向の検出荷重Fxを比較することによっても、モータ6の異常が検出できる。
この発明において、さらに、車両全般を制御する電気制御ユニットであるECU21と、直流電力を交流電力に変換するインバータ31を含むパワー回路部28および前記ECUから与えられるトルク指令に従って前記パワー回路部を制御するモータコントロール部29を有するインバータ装置22とを備え、前記インバータ装置22は各モータ毎に設けられ、これらECU21とインバータ装置22とで前記モータ制御装置20が構成され、前記インバータ装置22の前記モータコントロール部29に前記モータ異常検出手段37および片側異常時対応制御手段38を設けても良い。この場合に、個々のインバータ装置22に、前記モータ異常検出手段37および前記片側異常時対応制御手段38を設けても良い。また、前記インバータ装置22の前記モータコントロール部29に前記モータ異常検出手段37を設け、前記ECU21に前記片側異常時対応制御手段38を設けても良い。
電気自動車における制御系は、一般的にはメインのECU21とモータ6毎のインバータ装置22で構成される。この一般的な形式の制御系において、この発明を適用する場合、前記のようにインバータ装置22にモータ異常検出手段37や片側異常時対応制御手段38を設けることが、高機能化により煩雑化が進むECU21の負担を軽減することができ、またECU21の設計とインバータ装置22の設計とを分離し易くなる。例えば、インホイールモータ駆動装置のモータ6とインバータ装置22をセットして製造販売する業者において、独自に開発をすることができる。片側異常時対応制御手段38については、インバータ装置22で制御するモータ6とは別のモータ6に影響を与えるため、インバータ装置22に設けるよりもECU21に設ける方が、制御系が簡素化できる場合もある。
この発明において、前記モータ6は、車輪用軸受4と、この車輪用軸受4とモータ6の間に介在した減速機7とを有するインホイールモータ駆動装置8を構成するものであっても良い。インホイールモータ駆動装置8は、各車輪を独立でトルクコントロールできるため、木目細かい車両制御ができる点で優れているが、左右の車輪2,3の個別の駆動となるため、左右の車輪2,3の片側のみのモータ異常による問題が発生する。この問題が、この発明によって効果的に解消できる。
前記インホイールモータ駆動装置8における減速機7は、サイクロイド減速機であっても良い。サイクロイド減速機は円滑な動作で高減速比が得られる。高減速比を有する減速機7を介して車輪2,3にトルク伝達する場合、モータ異常を原因としたトルクは拡大されて車輪2,3に伝達される。そのため、この発明による左右の車輪2,3の駆動を揃える制御が、より一層効果的となる。
請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態に係る電気自動車を平面図で示す概念構成のブロック図である。
同電気自動車のインホイールモータユニットの概念構成を示すブロック図である。
同電気自動車におけるECU、各インバータ装置、およびそのモータ誤動作チェック・コントロール手段の概念構成を示すブロック図である。
同電気自動車におけるモータ故障の車輪と他の車輪との関係を示す説明図である。
この発明の第2実施形態に係る電気自動車の制御系の概念構成を示すブロック図である。
前記各実施形態に係る電気自動車におけるインホイールモータ駆動装置の破断正面図である。
図6のVII-VII線断面図である。
図7の部分拡大断面図である。
前記電気自動車における車輪用軸受と外方部材の側面図と荷重検出用の信号処理ユニットとを組み合わせた図である。
同電気自動車におけるセンサユニットの拡大平面図である。
同センサユニットの縦断面図である。
同電気自動車における回転センサの一例の縦断面図である。
この発明の第1実施形態を図1ないし図4と共に説明する。この電気自動車は、図1に示す車体1の左右の後輪となる車輪2および左右の前輪となる車輪3が共に駆動輪とされた4輪駆動の自動車である。前輪となる車輪3は操舵輪とされている。各車輪2,3は、いずれもタイヤを有し、それぞれ車輪用軸受4を介して車体1に支持されている。車輪用軸受4は、図1ではハブベアリングの略称「H/B」を付してある。各車輪2,3は、それぞれ独立の走行用のモータ6により駆動される。モータ6の回転は、減速機7および車輪用軸受4を介して駆動輪2に伝達される。これらモータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ駆動装置8を構成している。
図2に示すように、インホイールモータ駆動装置8は、一部または全体が車輪2内に配置される。モータ6は、減速機7を介さずに直接に車輪2を回転駆動するものであってもよい。各インホイールモータ駆動装置8は、図1の後述するインバータ装置22と共に、インホイールモータユニット30を構成する。各車輪2,3には、電動式等の摩擦ブレーキである機械式のブレーキ9,10がそれぞれ設けられている。なお、「機械式」とは、回生ブレーキと区別のための用語であり、油圧ブレーキも含まれる。
左右の前輪となる操舵輪である車輪3,3は、転舵機構11を介して転舵可能であり、操舵機構12により操舵される。転舵機構11は、タイロッド11aを左右移動させることで、車輪用軸受4を保持した左右のナックルアーム11bの角度を変える機構であり、操舵機構12の指令によりEPS(電動パワーステアリング)モータ13を駆動させ、回転・直線運動変換機構(図示せず)を介して左右移動させられる。操舵角は操舵角センサ15で検出し、このセンサ出力はECU21に出力され、その情報は左右輪の加速・減速指令等に使用される。
制御系を説明する。自動車全般の制御を行う電気制御ユニットであるメインのECU21と、このECU21の指令に従って各走行用のモータ6の制御をそれぞれ行う複数(図示の例では4つ)のインバータ装置22と、ブレーキコントローラ23とが、車体1に搭載されている。前記ECU21とインバータ装置22とで、モータ制御装置20が構成される。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。なお、ECU21や他の各コンピュータは、例えばマイクロコンピュータである。
ECU21は、機能別に大別すると駆動に関する制御を行う駆動制御部21aと、その他の制御を行う一般制御部21bとに分けられる。駆動制御部21aは、トルク配分手段48を有していて、トルク配分手段48は、アクセル操作部16の出力する加速指令と、ブレーキ操作部17の出力する減速指令と、操舵角センサ15の出力する旋回指令とから、左右輪の走行用モータ6,6に与える加速・減速指令をトルク指令値として生成し、インバータ装置22へ出力する。トルク配分手段48は、ブレーキ操作部17の出力する減速指令があったときに、モータ6を回生ブレーキとして機能させる制動トルク指令値と、機械式のブレーキ9,10を動作させる制動トルク指令値とに配分する機能を持つ。回生ブレーキとして機能させる制動トルク指令値は、各走行用のモータ6,6に与える加速・減速指令のトルク指令値に反映させる。機械式のブレーキ9,10を動作させる制動トルク指令値は、ブレーキコントローラ23へ出力する。
トルク配分手段48は、上記の他に、出力する加速・減速指令を、各車輪2,3の車輪用軸受4に設けられた回転センサ24から得られるタイヤ回転数の情報や、車載の各センサの情報を用いて補正する機能を有していても良い。アクセル操作部16は、アクセルペダルとその踏み込み量を検出して前記加速指令を出力するセンサ16aとでなる。ブレーキ操作部17は、ブレーキペダルとその踏み込み量を検出して前記減速指令を出力するセンサ17aとでなる。
ECU21の一般制御部21bは、各種の補機システム25を制御する機能、コンソールの操作パネル26からの入力指令を処理する機能、表示手段27に表示を行う機能などを有する。前記補機システム25は、例えば、エアコン、ライト、ワイパー、GPS、エアバッグ等であり、ここでは代表して一つのブロックとして示す。
ブレーキコントローラ23は、ECU21から出力される制動指令に従って、各車輪2,3の機械式のブレーキ9,10に制動指令を与える手段であり、制動専用のECUとなる電子回路やマイコン等により構成される。メインのECU21から出力される制動指令には、ブレーキ操作部17の出力する減速指令によって生成される指令の他に、ECU21の持つ安全性向上のための手段によって生成される指令がある。ブレーキコントローラ23は、この他にアンチロックブレーキシステムを備える。
インバータ装置22は、各モータ6に対して設けられたパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とで構成される。モータコントロール部29は、このモータコントロール部29が持つインホイールモータ駆動装置8に関する各検出値や制御値等の各情報(「IWMシステム情報」と称す)をECU21に出力する機能を有する。
図2は、インホイールモータユニット30の概念構成を示すブロック図である。インバータ装置22のパワー回路部28は、バッテリ19(図1)の直流電力をモータ6の駆動に用いる3相の交流電力に変換するインバータ31と、このインバータ31を制御するPWMドライバ32とで構成される。モータ6は3相の同期モータ、例えばIPM型(埋込磁石型)同期モータ等からなる。インバータ31は、複数の半導体スイッチング素子(図示せず)で構成され、PWMドライバ32は、入力された電流指令をパルス幅変調し、前記各半導体スイッチング素子にオンオフ指令を与える。
モータコントロール部29は、コンピュータとこれに実行されるプログラム、および電子回路により構成される。モータコントロール部29は、上位制御手段であるECU21から与えられるトルク指令等による加速・減速指令に従い、電流指令に変換して、パワー回路部28のPWMドライバ32に電流指令を与える。また、モータコントロール部29は、インバータ31からモータ6に流すモータ電流値を電流センサ35から得て、電流フィードバック制御を行う。この電流制御では、モータ6のロータの回転角を角度センサ36から得て、ベクトル制御等の回転角に応じた制御を行う。
この実施形態は、モータコントロール部29に、次のモータ異常検出手段37および片側異常時対応制御手段38からなるモータ誤動作チェック・コントロール手段34および異常報告手段47を設けたものである。モータ異常検出手段37は、このモータ異常検出手段37が設けられたインバータ装置22で駆動されるモータ6の異常を検出する。なお、ここで言う「モータの異常」は、モータ6の故障の場合と、モータ6自体は故障していなくても、制御系の失陥など、何らかの要因でモータ6が正常な動作をしていない場合とを含む。
片側異常時対応制御手段38は、モータ異常検出手段37によりモータ停止以外のモータ6の異常が検出された場合、つまり車両の同じ前後方向位置にある左右のいずれか一方の車輪2,3のモータ6にモータ停止以外の異常が検出された場合に、同じ前後方向位置にある他方の車輪2,3のモータ6を、異常の検出されたモータ6の動作状態と同じ動作状態に近づくように制御する手段である。片側異常時対応制御手段38は、例えば、図4に示す後輪のうちの右側の車輪2Rのモータ6の異常が検出された場合、同じく後輪のうちの左側の車輪2Lのモータ6を、異常の検出されたモータ6の動作状態と同じ動作状態に近づくように制御する。
このように、左右における他方の車輪2,3のモータ6を、異常の検出されたモータ6の動作状態と同じ動作状態に近づくように制御することで、モータ異常による左右の車輪2,3の回転の不均等が軽減され、車両の走行姿勢の安定を保つことができる。このため、1輪分のモータ6の異常が発生した場合に、左右両方のモータ6を停止させることなく、車両姿勢の安定化を図って走行を可能とでき、例えば、路上の退避場所等の安全な場所まで走行して停止させたり、修理工場へ走行するなど、故障への対応が容易な場所まで安全に走行してモータ異常への対処を図ることができる。上記の同じ動作状態に近づける制御は、車輪2,3の回転を減速させる制御とするのが良いが、ある程度までの軽度の異常であれば、加速させる制御であっても良い。上記の「ある程度までの軽度の異常」であるか否かの判断は、片側異常時対応制御手段38に適宜設定した値で行う。
片側異常時対応制御手段38は、モータ異常検出手段37で検出された異常が、モータ6にブレーキ力が発生した異常である場合に、同じ前後方向位置にある他方のモータ6のトルクを強制的に減じる制御、回生ブレーキとして作用させる制御、および前記他方のモータ6で駆動される車輪2,3に対するブレーキ9,10を作動させる制御のいずれか一つ以上を行わせるのが良い。他方のモータ6のトルクを強制的に減じる制御、または回生ブレーキとして作用させる制御を行う場合は、ECU21のトルク配分手段48を介して制御しても良く、またインバータ装置22同士の間で直接に制御指令を与えるようにしても良い。ブレーキ9,10を作動させる制御を行う場合、ブレーキコントローラ23を介して行う。
左右の片側となる1輪のモータ6にブレーキ力が発生した場合、車両のスピン等につながる恐れがあるが、片側異常時対応制御手段38により、同じ前後方向位置にある他方の車輪2,3のモータ6のトルクを強制的に減じるか、回生ブレーキとして作用させるか、または他方のモータ6で駆動される車輪2,3のブレーキを作動させ、左右の車輪2,3の駆動のバランスを得ることで、車両姿勢を安定して走行させることができる。モータ6にブレーキ力が発生した異常が、ある程度軽度のブレーキ力の発生であれば、回生ブレーキとして作用させる制御やブレーキを作動させる制御は、車両停止まで行う必要はなく、減速させれば良い。このように他方の車輪2,3の回転を落とす制御を行い、左右の車輪2,3の駆動のバランスを得ることで、車両姿勢を安定して走行させることができる。「ある程度軽度のブレーキ力」であるか否かは、適宜設定して判断すれば良い。
なお、片側異常時対応制御手段38を各インバータ装置22に設け、ECU21を介することなく、各インバータ装置22の間で直接に異常対応の制御を行う場合は、各インバータ装置22のモータコントロール部29に、他のインバータ装置22に設けられた片側異常時対応制御手段38の出力する指令に対応してモータ制御する機能を持たせる。
モータ異常の検出について説明する。モータ異常検出手段37は、検出対象のモータ6で駆動される車輪2,3に対して前後および左右のいずれかに隣接する車輪2,3を駆動するモータ6についてのモータ電流、モータ回転数、モータ駆動用のインバータ装置22へのトルク指令値Tr、および車輪用軸受4に取付けられたタイヤ・路面間の作用荷重を検出する荷重センサ41の荷重検出値のいずれかを、検出対象のモータ6における、モータ電流、モータ回転数、モータ駆動用インバータ装置22へのトルク指令値、および荷重検出値とそれぞれ比較することで、モータ異常の検出を行うようにしても良い。
モータ異常検出手段37において、モータ6のモータ電流の検出値は前記電流センサ35の検出値を用いる。モータ回転数は角度センサ36から得る。モータ駆動用のインバータ装置22へのトルク指令値Trは、トルク配分手段48で配分して与えられる指令値である。荷重センサ41については、後に図9~図11と共に具体例を説明する。
前後に隣接する車輪2,3は、通常であれば同じ回転速度となる。左右に隣接する車輪2,3(つまり後輪同士、前輪同士)は、直線走行時は同じ回転速度となり、カーブ路の走行時でも、回転半径等に応じた回転速度の関係になる。また、車輪2,3の駆動力は、前記荷重センサ4の荷重検出値に現れる。そのため、モータ電流、モータ回転数、トルク指令値、荷重センサの荷重検出値のいずれかにつき、検出対象のモータ6と、隣接する車輪2,3を駆動するモータ6についての値を比較すれば、モータ異常が検出できる。
モータ異常検出手段37は、モータ電流が、モータ駆動用のインバータ装置22へのトルク指令値Trに相当するモータ電流値が設定倍数以上になった場合に異常と判断するものであっても良い。モータ6が正常で有れば、モータ電流と、トルク指令値に相当するモータ電流値とはある範囲を保つ。そのため、モータ電流値が設定倍数以上になったことを検出することによっても、モータ異常が判断できる。なお、上記の「設定倍数」は、1以上であっても、1未満であっても良く、制御目的などに応じて適宜に定めれば良い。
この他に、モータ異常検出手段37は、モータ電流値が、モータ駆動用のインバータ装置22へのトルク指令値Trに相当するモータ電流値に略一致している場合に、異常検出対象とするモータ6の回転数が、このモータ6駆動される車輪に対して前後または左右に隣接する車輪2,3のモータの回転数の設定倍数以上となったときに、異常と判断するものであってもよい。上記の「略一致している場合」とは、通常に生じるトルク指令値とモータ電流値の差の範囲内であることであり、略一致しているか否かの判断は、適宜の判定を設定して、その範囲内に電流値の差があれば、略一致していると判断すれば良い。
トルク指令値に対してモータ電流値が一致している場合であっても、モータ6の回転数はある範囲等で大きく変わることがあるが、前後または左右に隣接する車輪2,3のモータの間では、正常であれば、モータ回転数は、ある程度の定まった範囲内となる。したがって、前後または左右に隣接する車輪2,3のモータの回転数の設定倍数以上となったときに、異常と判断することで、適切なモータ異常の判断が行える。
また、モータ異常検出手段37は、モータ電流値が、モータ駆動用のインバータ装置22へのトルク指令値に相当するモータ電流値に略一致している場合に、異常検出対象のモータ6に連結される車輪用軸受4に取付けられたタイヤ・路面間の作用荷重を検出する荷重センサ41における車両進行方向の検出荷重Fxが、異常検出対象のモータ6で駆動される車輪2,3に対して前後または左右に隣接する車輪2,3の車輪用軸受に取付けられたタイヤ・路面間の作用荷重を検出する荷重センサ41における車両進行方向の検出荷重Fxに対して、設定倍数となったときに異常と判断するものであっても良い。車輪用軸受4に取付けられたタイヤ・路面間の作用荷重を検出する荷重センサ41における車両進行方向の検出荷重Fxは、モータトルクに対応した値となる。このため、前後または左右の車輪2,3の間で、荷重センサ41による車両進行方向の検出荷重Fxを比較することによっても、モータ6の異常が検出できる。
報告手段47は、モータ異常検出手段37でモータ異常を検出した場合、または片側異常時対応制御手段38でモータ異常に対する処理を行った場合、またはその両方の場合に、ECU21に、その異常検出や異常対応の処理の報告となる信号を送信する。ECU21は、この異常報告手段47の報告を受けて、対応する制御を行う手段や、コンソールの表示手段27に、運転者に知らせるための表示を行う手段(これら両手段を纏めて図2にECU内対応制御部49として示す)が設けられる。
例えば、片側異常時対応制御手段38がモータ異常に対応する制御を行った場合に、報告手段47がその異常に対応した制御内容をECU21に報告した場合、ECU21は、この報告を受けて、車両全体の協調制御が行えるように、適宜の定められた制御を行うと共に、コンソールの表示手段27に、運転者にモータ6の異常発生やそれに対応した制御を行った旨を知らせる表示を行う。異常発生の表示は、モータ異常検出手段37により異常を検出した信号に応答して行うようにしても良い。
この電気自動車によると、このように、片側のモータ6に異常が発生した場合に、他方の車輪2,3のモータ6を、異常の検出されたモータ6の動作状態と同じ動作状態に近づくように制御するため、モータ異常による左右の車輪2,3の回転の不均等が軽減され、車両の走行姿勢の安定を保つことができる。
この実施形態では、モータ6にインホイールモータ駆動装置8を採用しているため、コンパクト化の面で優れているが、車輪2,3の個別の駆動となるため、左右輪の片側のみのモータ異常による問題が発生する。この問題が、上記のように効果的に解消される。インホイールモータ駆動装置8における減速機7は、サイクロイド減速機としたため、円滑な動作で高減速比が得られる。しかし、高減速比を有する減速機7を介して車輪2,3にトルク伝達する場合、モータ異常を原因としたトルクは拡大されて車輪2,3に伝達される。そのため、この実施形態による左右の駆動を揃える制御が、より一層効果的となる。
また、モータ異常検出手段37および片側異常時対応制御手段38はインバータ装置22に設けたため、高機能化により煩雑化が進むECU21の負担を軽減することができ、またECU21の設計とインバータ装置22の設計とを分離し易くなる。例えば、インホイールモータ駆動装置のモータ6とインバータ装置22をセットして製造販売する業者において、独自に開発をすることができる。
なお、片側異常時対応制御手段38は、図5に示す第2実施形態のようにECU21に設けても良い。片側異常時対応制御手段38による制御は、その片側異常時対応制御手段38が設けられたインバータ装置22で制御するモータ6とは別のモータ6に影響を与えるため、インバータ装置22に設けるよりもECU21に設ける方が、制御系が素化できる場合もある。この他に、モータ異常検出手段37および片側異常時対応制御手段38を、共にECU21に設けても良い。
次に、図6~図8と共に、前記インホイールモータ駆動装置8の具体例を示す。このインホイールモータ駆動装置8は、車輪用軸受4とモータ6との間に減速機7を介在させ、車輪用軸受4で支持される駆動輪2のハブとモータ6の回転出力軸74とを同軸心上で連結してある。減速機7は、サイクロイド減速機であって、モータ6の回転出力軸74に同軸に連結される回転入力軸82に偏心部82a,82bを形成し、偏心部82a,82bにそれぞれ軸受85を介して曲線板84a,84bを装着し、曲線板84a,84bの偏心運動を車輪用軸受4へ回転運動として伝達する構成である。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
車輪用軸受4は、内周に複列の転走面53を形成した外方部材51と、これら各転走面53に対向する転走面54を外周に形成した内方部材52と、これら外方部材51および内方部材52の転走面53,54間に介在した複列の転動体55とで構成される。内方部材52は、駆動輪を取り付けるハブを兼用する。この車輪用軸受4は、複列のアンギュラ玉軸受とされていて、転動体55はボールからなり、各列毎に保持器56で保持されている。上記転走面53,54は断面円弧状であり、各転走面53,54は接触角が背面合わせとなるように形成されている。外方部材51と内方部材52との間の軸受空間のアウトボード側端は、シール部材57でシールされている。
外方部材51は静止側軌道輪となるものであって、減速機7のアウトボード側のハウジング83bに取り付けるフランジ51aを有し、全体が一体の部品とされている。フランジ51aには、周方向の複数箇所にボルト挿通孔64が設けられている。また、ハウジング83bには,ボルト挿通孔64に対応する位置に、内周にねじが切られたボルト螺着孔94が設けられている。ボルト挿通孔94に挿通した取付ボルト65をボルト螺着孔94に螺着させることにより、外方部材51がハウジング83bに取り付けられる。
内方部材52は回転側軌道輪となるものであって、車輪取付用のハブフランジ59aを有するアウトボード側材59と、このアウトボード側材59の内周にアウトボード側が嵌合して加締めによってアウトボード側材59に一体化されたインボード側材60とでなる。これらアウトボード側材59およびインボード側材60に、前記各列の転走面54が形成されている。インボード側材60の中心には貫通孔61が設けられている。ハブフランジ59aには、周方向複数箇所にハブボルト66の圧入孔67が設けられている。アウトボード側材59のハブフランジ59aの根元部付近には、駆動輪および制動部品(図示せず)を案内する円筒状のパイロット部63がアウトボード側に突出している。このパイロット部63の内周には、前記貫通孔61のアウトボード側端を塞ぐキャップ68が取り付けられている。
減速機7は、上記したようにサイクロイド減速機であり、図8のように外形がなだらかな波状のトロコイド曲線で形成された2枚の曲線板84a,84bが、それぞれ軸受85を介して回転入力軸82の各偏心部82a,82bに装着してある。これら各曲線板84a,84bの偏心運動を外周側で案内する複数の外ピン86を、それぞれハウジング83bに差し渡して設け、内方部材2のインボード側材60に取り付けた複数の内ピン88を、各曲線板84a,84bの内部に設けられた複数の円形の貫通孔89に挿入状態に係合させてある。回転入力軸82は、モータ6の回転出力軸74とスプライン結合されて一体に回転する。なお、回転入力軸82はインボード側のハウジング83aと内方部材52のインボード側材60の内径面とに2つの軸受90で両持ち支持されている。
モータ6の回転出力軸74が回転すると、これと一体回転する回転入力軸82に取り付けられた各曲線板84a,84bが偏心運動を行う。この各曲線板84a,84bの偏心運動が、内ピン88と貫通孔89との係合によって、内方部材52に回転運動として伝達される。回転出力軸74の回転に対して内方部材52の回転は減速されたものとなる。例えば、1段のサイクロイド減速機で1/10以上の減速比を得ることができる。
前記2枚の曲線板84a,84bは、互いに偏心運動が打ち消されるように180°位相をずらして回転入力軸82の各偏心部82a,82bに装着され、各偏心部82a,82bの両側には、各曲線板84a,84bの偏心運動による振動を打ち消すように、各偏心部82a,82bの偏心方向と逆方向へ偏心させたカウンターウエイト91が装着されている。
図8に拡大して示すように、前記各外ピン86と内ピン88には軸受92,93が装着され、これらの軸受92,93の外輪92a,93aが、それぞれ各曲線板84a,84bの外周と各貫通孔89の内周とに転接するようになっている。したがって、外ピン86と各曲線板84a,84bの外周との接触抵抗、および内ピン88と各貫通孔89の内周との接触抵抗を低減し、各曲線板84a,84bの偏心運動をスムーズに内方部材52に回転運動として伝達することができる。
図6において、モータ6は、円筒状のモータハウジング72に固定したモータステータ73と、回転出力軸74に取り付けたモータロータ75との間にラジアルギャップを設けたラジアルギャップ型のIPMモータである。回転出力軸74は、減速機7のインボード側のハウジング83aの筒部に2つの軸受76で片持ち支持されている。
モータステータ73は、軟質磁性体からなるステータコア部77とコイル78とでなる。ステータコア部77は、その外周面がモータハウジング72の内周面に嵌合して、モータハウジング72に保持されている。モータロータ75は、モータステータ73と同心に回転出力軸74に外嵌するロータコア部79と、このロータコア部79に内蔵される複数の永久磁石80とでなる。
モータ6には、モータステータ73とモータロータ75の間の相対回転角度を検出する角度センサ36が設けられる。角度センサ36は、モータステータ73とモータロータ75の間の相対回転角度を表す信号を検出して出力する角度センサ本体70と、この角度センサ本体70の出力する信号から角度を演算する角度演算回路71とを有する。角度センサ本体70は、回転出力軸74の外周面に設けられる被検出部70aと、モータハウジング72に設けられ前記被検出部70aに例えば径方向に対向して近接配置される検出部70bとでなる。被検出部70aと検出部70bは軸方向に対向して近接配置されるものであっても良い。ここでは、各角度センサ36として、磁気エンコーダまたはレゾルバが用いられる。モータ6の回転制御は上記モータコントロール部29(図1,2)により行われる。このモータ6では、その効率を最大にするため、角度センサ36の検出するモータステータ73とモータロータ75の間の相対回転角度に基づき、モータステータ73のコイル78へ流す交流電流の各波の各相の印加タイミングを、モータコントロール部29のモータ駆動制御部33によってコントロールするようにされている。
なお、インホイールモータ駆動装置8のモータ電流の配線や各種センサ系,指令系の配線は、モータハウジング72等に設けられたコネクタ99により纏めて行われる。
図2に示す前記荷重センサ24は、例えば図9に示す複数のセンサユニット120と、これらセンサユニット120の出力信号を処理する信号処理ユニット130とで構成される。センサユニット120は、車輪用軸受4における静止側軌道輪である外方部材51の外径面の4か所に設けられる。図8は、外方部材1をアウトボード側から見た正面図を示す。ここでは、これらのセンサユニット120が、タイヤ接地面に対して上下位置および左右位置となる外方部材51における外径面の上面部、下面部、右面部、および左面部に設けられている。信号処理ユニット130は、外方部材51に設けられていても良く、まインバータ装置22のモータコントロール部29に設けられていても良い。
信号処理ユニット130は、上記4箇所のセンサユニット120の出力を比較し、定められた演算式に従って、車輪用軸受4に作用する各荷重、具体的には、車輪2の路面・タイヤ間で作用荷重となる直方向荷重Fz、駆動力や制動力となる車両進行方向荷重Fx、および軸方向荷重Fyを演算し、出力する。前記センサユニット120を4つ設け、各センサユニット120を、タイヤ接地面に対して上下位置および左右位置となる外方部材51の外径面の上面部、下面部、右面部、および左面部に円周方向90度の位相差で等配しているので、車輪用軸受4に作用する垂直方向荷重Fz、車両進行方向荷重Fx、軸方向荷重Fyを精度良く推定することができる。垂直方向荷重Fzは、上下2つのセンサユニット120の出力を比較することで得られ、車両進行方向荷重Fxは、前後2つのセンサユニット120の出力を比較することで得られる。軸方向荷重Fyは、4つのセンサユニット120の出力を比較することで得られる。信号処理ユニット130による上記各荷重Fx,Fy,Fzの演算は、試験やシミュレーションで求められた値を基に、演算式やパラメータを設定しておくことで、精度良く行うことができる。
なお、より具体的には、上記の演算には各種の補正を行うが、補正については説明を省略する。
上記各センサユニット120は、例えば、図10および図11に拡大平面図および拡大縦断面図で示すように、歪み発生部材121と、この歪み発生部材121に取り付けられて歪み発生部材121の歪みを検出する歪みセンサ122とでなる。歪み発生部材121は、鋼材等の弾性変形可能な金属製の厚さ3mm以下の薄板材からなり、平面概形が全長にわたり均一幅の帯状で中央の両側辺部に切欠き部121bを有する。また、歪み発生部材121は、外輪1の外径面にスペーサ123を介して接触固定される2つの接触固定部121aを両端部に有する。歪みセンサ122は、歪み発生部材121における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。ここでは、その箇所として、歪み発生部材121の外面側で両側辺部の切欠き部121bで挟まれる中央部位が選ばれており、歪みセンサ122は切欠き部121bの周辺の周方向の歪みを検出する。
前記センサユニット120は、その歪み発生部材121の2つの接触固定部121aが、外輪1の軸方向に同寸法の位置で、かつ両接触固定部121aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部121aがそれぞれスペーサ123を介してボルト124により外輪1の外径面に固定される。前記各ボルト124は、それぞれ接触固定部121aに設けられた径方向に貫通するボルト挿通孔125からスペーサ123のボルト挿通孔126に挿通し、外方部材51の外周部に設けられたねじ孔127に螺合させる。
このように、スペーサ123を介して外方部材51の外径面に接触固定部121aを固定することにより、薄板状である歪み発生部材121における切欠き部121bを有する中央部位が外輪1の外径面から離れた状態となり、切欠き部121bの周辺の歪み変形が容易となる。接触固定部121aが配置される軸方向位置として、ここでは外方部材51のアウトボード側列の転走面53の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面53の周辺とは、インボード側列およびアウトボード側列の転走面53の中間位置からアウトボード側列の転走面53の形成部までの範囲である。外方部材51の外径面における前記スペーサ123が接触固定される箇所には平坦部1bが形成される。
歪みセンサ122としては、種々のものを使用することができる。例えば、歪みセンサ122を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材121に対しては接着による固定が行われる。また、歪みセンサ122を歪み発生部材121上に厚膜抵抗体にて形成することができる。
図12は、図1,図2の回転センサ24の一例を示す。この回転センサ24は、車輪用軸受4における内方部材52の外周に設けられた磁気エンコーダ24aと、この磁気エンコーダ24aに対向して外方部材51に設けられた磁気センサ24bとでなる。磁気エンーダ24aは、円周方向に磁極N,Sを交互に着磁したリング状の部材である。この例では、回転センサ24は両列の転動体55,55間に配置しているが、車輪用軸受4の端部に設置しても良い。
なお、上記実施形態では、図1,2に示すように、ECU21とインバータ装置22とを離して設けたが、ECU21とインバータ装置22とは同じコンピュータで構成されていても良い。また、上記実施形態は、4輪ともモータ駆動の電気自動車について説明したが、この発明は、例えば前後いずれか2輪を従動輪とした4輪の電気自動車にも適用することができる。
以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…車体
2,3…車輪
4…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ駆動装置
9,10…機械式のブレーキ
20…モータ駆動装置
21…ECU
22…インバータ装置
24…回転センサ
28…パワー回路部
29…モータコントロール部
30…インホイールモータユニット
31…インバータ
32…PWMドライバ
33…モータ駆動制御部
34…モータ誤動作チェック・コントロール手段
35…電流センサ
36…角度センサ
37…モータ異常検出手段
38…片側異常時対応制御手段
47…異常報告手段
2,3…車輪
4…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ駆動装置
9,10…機械式のブレーキ
20…モータ駆動装置
21…ECU
22…インバータ装置
24…回転センサ
28…パワー回路部
29…モータコントロール部
30…インホイールモータユニット
31…インバータ
32…PWMドライバ
33…モータ駆動制御部
34…モータ誤動作チェック・コントロール手段
35…電流センサ
36…角度センサ
37…モータ異常検出手段
38…片側異常時対応制御手段
47…異常報告手段
Claims (11)
- 車両の左右の車輪を個別に駆動する複数のモータと、これらのモータを制御するモータ制御装置とを備えた電気自動車であって、
前記各モータの異常を検出するモータ異常検出手段と、このモータ異常検出手段により、車両の同じ前後方向位置にある左右のいずれか一方の車輪のモータにモータ停止以外の異常が検出された場合に、同じ前後方向位置にある他方の車輪のモータを、異常の検出されたモータの動作状態と同じ動作状態に近づくように制御する片側異常時対応制御手段とを設けた電気自動車。 - 請求項1において、前記片側異常時対応制御手段は、前記モータ異常検出手段で検出された異常が、モータにブレーキ力が発生した異常である場合に、同じ前後方向位置にある他方のモータのトルクを強制的に減じる制御、回生ブレーキとして作用させる制御、および前記他方のモータで駆動される車輪に対するブレーキを作動させる制御のいずれか一つ以上を行わせる電気自動車。
- 請求項1において、前記モータ異常検出手段は、検出対象のモータで駆動される車輪に対して前後および左右のいずれかに隣接する車輪を駆動するモータについてのモータ電流、モータ回転数、モータ駆動用のインバータ装置へのトルク指令値、および車輪用軸受に取付けられたタイヤ・路面間の作用荷重を検出する荷重センサの荷重検出値のいずれかを、検出対象のモータにおける、モータ電流、モータ回転数、モータ駆動用インバータへのトルク指令値、および荷重検出値とそれぞれ比較することで、異常の検出を行う電気自動車。
- 請求項1において、前記モータ異常検出手段は、検出されたモータ電流が、モータ駆動用のインバータ装置へのトルク指令値に相当するモータ電流値の設定倍数以上になった場合に異常と判断する電気自動車。
- 請求項1において、前記モータ異常検出手段は、モータ電流値が、モータ駆動用のインバータ装置へのトルク指令値に相当するモータ電流値に略一致している場合に、異常検出対象とするモータの回転数が、このモータで駆動される車輪に対して前後または左右に隣接する車輪のモータの回転数の設定倍数以上となったときに、異常と判断する電気自動車。
- 請求項1において、前記モータ異常検出手段は、モータ電流値が、モータ駆動用のインバータ装置へのトルク指令値に相当するモータ電流値に略一致している場合に、異常検出対象のモータに連結される車輪用軸受に取付けられたタイヤ・路面間の作用荷重を検出する荷重センサにおける車両進行方向の検出荷重Fxが、異常検出対象のモータで駆動される車輪に対して前後または左右に隣接する車輪の車輪用軸受に取付けられたタイヤ・路面間の作用荷重を検出する荷重センサにおける車両進行方向の検出荷重Fxに対して、設定倍数となったときに異常と判断する電気自動車。
- 請求項1において、さらに、車両全般を制御する電気制御ユニットであるECUと、直流電力を交流電力に変換するインバータを含むパワー回路部および前記ECUから与えられるトルク指令に従って前記パワー回路部を制御するモータコントロール部を有するインバータ装置とを備え、
前記インバータ装置は各モータ毎に設けられ、これらECUとインバータ装置とで前記モータ制御装置が構成され、前記インバータ装置の前記モータコントロール部に前記モータ異常検出手段および片側異常時対応制御手段を設けた電気自動車。 - 請求項7において、個々のインバータ装置に、前記モータ異常検出手段および前記片側異常時対応制御手段を設けた電気自動車。
- 請求項1において、さらに、車両全般を制御する電気制御ユニットであるECUと、直流電力を交流電力に変換するインバータを含むパワー回路部および前記ECUから与えられるトルク指令に従って前記パワー回路部を制御するモータコントロール部を有するインバータ装置とを備え、
前記インバータ装置は各モータ毎に設けられ、これらECUとインバータ装置とで前記モータ制御装置が構成され、前記インバータ装置の前記モータコントロール部に前記モータ異常検出手段を設け、前記ECUに前記片側異常時対応制御手段を設けた電気自動車。 - 請求項1において、前記モータは、車輪用軸受と、この車輪用軸受とモータの間に介在した減速機とを有するインホイールモータ駆動装置を構成する電気自動車。
- 請求項10において、前記減速機はサイクロイド減速機である電気自動車。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280012030.3A CN103442930B (zh) | 2011-03-07 | 2012-03-05 | 电动汽车 |
EP12754330.4A EP2684730B1 (en) | 2011-03-07 | 2012-03-05 | Electric vehicle |
US14/003,413 US9126599B2 (en) | 2011-03-07 | 2012-03-05 | Electric vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-048632 | 2011-03-07 | ||
JP2011048632A JP5784930B2 (ja) | 2011-03-07 | 2011-03-07 | 電気自動車 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012121199A1 true WO2012121199A1 (ja) | 2012-09-13 |
Family
ID=46798161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/055533 WO2012121199A1 (ja) | 2011-03-07 | 2012-03-05 | 電気自動車 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9126599B2 (ja) |
EP (1) | EP2684730B1 (ja) |
JP (1) | JP5784930B2 (ja) |
CN (1) | CN103442930B (ja) |
WO (1) | WO2012121199A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017002453A1 (ja) * | 2015-07-02 | 2017-01-05 | 三菱自動車工業株式会社 | 電動ブレーキ装置 |
WO2022154036A1 (ja) * | 2021-01-18 | 2022-07-21 | 株式会社デンソー | 車両用制御装置 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6050089B2 (ja) * | 2012-11-02 | 2016-12-21 | Ntn株式会社 | 電気自動車の制御装置およびその電気自動車 |
US9027682B2 (en) * | 2013-02-01 | 2015-05-12 | Daniel James LAMBERT | Self charging electric vehicle |
US9452681B2 (en) * | 2013-04-12 | 2016-09-27 | Mitsubishi Electric Corporation | Propulsion control device and propulsion control method |
JP6130730B2 (ja) * | 2013-05-21 | 2017-05-17 | Ntn株式会社 | モータ制御装置 |
KR101912796B1 (ko) * | 2013-07-26 | 2018-10-29 | 한화지상방산 주식회사 | 전기 자동차의 차륜 제어시스템 |
JP6534509B2 (ja) * | 2014-08-29 | 2019-06-26 | Ntn株式会社 | 車輪独立駆動式車両の駆動制御装置 |
JP6422752B2 (ja) * | 2014-12-03 | 2018-11-14 | Ntn株式会社 | 車両の制動力制御装置 |
JP6537832B2 (ja) * | 2015-01-19 | 2019-07-03 | Ntn株式会社 | 電気自動車の異常対応制御装置 |
CN106608250B (zh) * | 2015-10-26 | 2019-03-29 | 比亚迪股份有限公司 | 车辆的主动安全控制系统和方法 |
US10023073B2 (en) * | 2015-10-27 | 2018-07-17 | Thunder Power New Energy Vehicle Development Company Limited | Four motor direct driving system |
US9809129B2 (en) | 2015-10-27 | 2017-11-07 | Thunder Power New Energy Vehicle Development Company Limited | Four motor direct driving system |
GB2564645B (en) * | 2017-07-17 | 2019-09-25 | Protean Electric Ltd | A control system for a vehicle |
JP6380628B1 (ja) * | 2017-07-31 | 2018-08-29 | 株式会社安川電機 | 電力変換装置、サーバ、及びデータ生成方法 |
CN109435938B (zh) * | 2017-08-28 | 2020-09-15 | 比亚迪股份有限公司 | 制动控制方法和装置 |
KR102284412B1 (ko) * | 2017-09-25 | 2021-08-02 | 주식회사 엘지화학 | 전기 자동차 |
WO2019111560A1 (ja) * | 2017-12-05 | 2019-06-13 | 日本電産株式会社 | 移動ロボットの制御装置および移動ロボットシステム |
JP6814184B2 (ja) * | 2018-09-19 | 2021-01-13 | 株式会社Subaru | 電気自動車 |
CN109591608B (zh) * | 2018-12-03 | 2020-12-22 | 潍柴动力股份有限公司 | 一种电动汽车制动控制方法、整车控制装置及系统 |
CN113261181A (zh) * | 2018-12-26 | 2021-08-13 | 本田技研工业株式会社 | 电动驱动单元及电动车辆 |
KR102676240B1 (ko) * | 2019-03-27 | 2024-06-20 | 현대자동차주식회사 | 하이브리드 자동차 및 그를 위한 제동 제어 방법 |
WO2021145270A1 (ja) | 2020-01-14 | 2021-07-22 | 株式会社デンソー | 車両の駆動制御装置 |
US20220190754A1 (en) * | 2020-12-16 | 2022-06-16 | Feng-Tien Chen | Motor arrangement system of endurable and energy-saving electric vehicle |
JP7320048B2 (ja) * | 2021-12-27 | 2023-08-02 | 本田技研工業株式会社 | 電動移動機 |
JP2025094479A (ja) * | 2023-12-13 | 2025-06-25 | トヨタ自動車株式会社 | 車両用制御装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005204436A (ja) * | 2004-01-16 | 2005-07-28 | Nissan Motor Co Ltd | 車輪独立駆動式電気自動車の駆動力制御装置 |
JP2006256454A (ja) * | 2005-03-16 | 2006-09-28 | Nissan Motor Co Ltd | 車両のトルク配分制御装置 |
JP2006258289A (ja) * | 2005-02-16 | 2006-09-28 | Ntn Corp | インホイールモータ駆動装置 |
JP2006333603A (ja) * | 2005-05-25 | 2006-12-07 | Hiroshi Shimizu | 電気自動車の駆動制御装置 |
JP2008061326A (ja) * | 2006-08-30 | 2008-03-13 | Equos Research Co Ltd | 車両用駆動制御装置 |
JP2008172935A (ja) | 2007-01-12 | 2008-07-24 | Ntn Corp | インホイールモータ駆動装置 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992005974A1 (fr) * | 1990-10-03 | 1992-04-16 | Hitachi, Ltd. | Systeme de commande pour vehicule a moteur electrique |
JP3280392B2 (ja) * | 1991-04-01 | 2002-05-13 | アイシン・エィ・ダブリュ株式会社 | 電動車両の駆動力制御装置 |
JP3852400B2 (ja) * | 2002-11-29 | 2006-11-29 | トヨタ自動車株式会社 | 車両制御装置 |
JP2004187388A (ja) * | 2002-12-02 | 2004-07-02 | Toyota Motor Corp | 車両の駆動制御装置 |
JP2004215350A (ja) * | 2002-12-27 | 2004-07-29 | Sony Corp | 駆動制御装置およびその方法と2輪車 |
US6880654B2 (en) | 2003-03-28 | 2005-04-19 | Paul J. Plishner | Vehicle with a distributed motor |
CN1767965A (zh) * | 2003-03-28 | 2006-05-03 | 保罗·J·普利斯纳 | 具有分布马达的车辆 |
WO2005024750A1 (ja) * | 2003-08-29 | 2005-03-17 | Ntn Corporation | ワイヤレスセンサシステムおよびワイヤレスセンサ付軸受装置 |
CN100337864C (zh) * | 2004-09-20 | 2007-09-19 | 丰田自动车株式会社 | 车辆的制动力控制装置的控制方法 |
KR100670735B1 (ko) * | 2005-07-13 | 2007-01-19 | 씨멘스브이디오한라 주식회사 | 자동차용 듀얼 모터의 과전류 검출장치 |
JP5052084B2 (ja) * | 2006-09-19 | 2012-10-17 | Ntn株式会社 | インホイール型モータ内蔵センサ付きアクスルユニット |
CN101767535B (zh) | 2008-12-30 | 2013-08-21 | 比亚迪股份有限公司 | 独立四驱电动汽车的驱动/制动系统及方法 |
GB2463130B (en) * | 2009-07-29 | 2011-06-22 | Protean Holdings Corp | Torque control system |
-
2011
- 2011-03-07 JP JP2011048632A patent/JP5784930B2/ja not_active Expired - Fee Related
-
2012
- 2012-03-05 US US14/003,413 patent/US9126599B2/en not_active Expired - Fee Related
- 2012-03-05 EP EP12754330.4A patent/EP2684730B1/en active Active
- 2012-03-05 CN CN201280012030.3A patent/CN103442930B/zh not_active Expired - Fee Related
- 2012-03-05 WO PCT/JP2012/055533 patent/WO2012121199A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005204436A (ja) * | 2004-01-16 | 2005-07-28 | Nissan Motor Co Ltd | 車輪独立駆動式電気自動車の駆動力制御装置 |
JP2006258289A (ja) * | 2005-02-16 | 2006-09-28 | Ntn Corp | インホイールモータ駆動装置 |
JP2006256454A (ja) * | 2005-03-16 | 2006-09-28 | Nissan Motor Co Ltd | 車両のトルク配分制御装置 |
JP2006333603A (ja) * | 2005-05-25 | 2006-12-07 | Hiroshi Shimizu | 電気自動車の駆動制御装置 |
JP2008061326A (ja) * | 2006-08-30 | 2008-03-13 | Equos Research Co Ltd | 車両用駆動制御装置 |
JP2008172935A (ja) | 2007-01-12 | 2008-07-24 | Ntn Corp | インホイールモータ駆動装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2684730A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017002453A1 (ja) * | 2015-07-02 | 2017-01-05 | 三菱自動車工業株式会社 | 電動ブレーキ装置 |
JP2017013669A (ja) * | 2015-07-02 | 2017-01-19 | 三菱自動車工業株式会社 | 電動ブレーキ装置 |
US10407033B2 (en) | 2015-07-02 | 2019-09-10 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Electric brake device |
WO2022154036A1 (ja) * | 2021-01-18 | 2022-07-21 | 株式会社デンソー | 車両用制御装置 |
JP2022110333A (ja) * | 2021-01-18 | 2022-07-29 | 株式会社デンソー | 車両用制御装置 |
JP7447831B2 (ja) | 2021-01-18 | 2024-03-12 | 株式会社デンソー | 車両用制御装置、プログラム、制御方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2684730A1 (en) | 2014-01-15 |
EP2684730B1 (en) | 2021-02-17 |
CN103442930A (zh) | 2013-12-11 |
JP2012186929A (ja) | 2012-09-27 |
EP2684730A4 (en) | 2016-04-27 |
US20130345918A1 (en) | 2013-12-26 |
JP5784930B2 (ja) | 2015-09-24 |
CN103442930B (zh) | 2016-03-30 |
US9126599B2 (en) | 2015-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5784930B2 (ja) | 電気自動車 | |
JP5657426B2 (ja) | 電気自動車 | |
JP5832868B2 (ja) | 電気自動車 | |
JP5562277B2 (ja) | 電気自動車 | |
JP5657425B2 (ja) | 電気自動車 | |
JP5705585B2 (ja) | 電気自動車 | |
JP5936306B2 (ja) | 電気自動車 | |
WO2013077409A1 (ja) | 電動車両制御装置 | |
WO2012121197A1 (ja) | 電気自動車 | |
JP5886008B2 (ja) | 電気自動車のモータ制御装置 | |
JP5735305B2 (ja) | 電気自動車 | |
JP5851812B2 (ja) | 電動車両制御装置および電動車両 | |
JP5985724B2 (ja) | 電気自動車 | |
JP5829497B2 (ja) | 電気自動車のモータ制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280012030.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12754330 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14003413 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012754330 Country of ref document: EP |