WO2012115380A2 - Sample plate for a maldi-tof mass spectrometer, and mass spectrometry method using the maldi-tof mass spectrometer implementing the sample plate - Google Patents
Sample plate for a maldi-tof mass spectrometer, and mass spectrometry method using the maldi-tof mass spectrometer implementing the sample plate Download PDFInfo
- Publication number
- WO2012115380A2 WO2012115380A2 PCT/KR2012/001048 KR2012001048W WO2012115380A2 WO 2012115380 A2 WO2012115380 A2 WO 2012115380A2 KR 2012001048 W KR2012001048 W KR 2012001048W WO 2012115380 A2 WO2012115380 A2 WO 2012115380A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate
- metal
- sample
- mass spectrometer
- metal oxide
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000004949 mass spectrometry Methods 0.000 title claims abstract description 24
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 title claims 3
- 239000002070 nanowire Substances 0.000 claims abstract description 82
- 239000002184 metal Substances 0.000 claims abstract description 56
- 229910052751 metal Inorganic materials 0.000 claims abstract description 56
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 53
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 53
- 239000011159 matrix material Substances 0.000 claims abstract description 21
- 239000011941 photocatalyst Substances 0.000 claims abstract description 5
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 23
- 230000001699 photocatalysis Effects 0.000 claims description 14
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 8
- 238000001698 laser desorption ionisation Methods 0.000 claims description 6
- 239000012670 alkaline solution Substances 0.000 claims description 5
- 238000001039 wet etching Methods 0.000 claims description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 5
- 238000000059 patterning Methods 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 claims description 3
- 230000007797 corrosion Effects 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 abstract description 19
- 238000003795 desorption Methods 0.000 abstract description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 238000004445 quantitative analysis Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- URLZCHNOLZSCCA-VABKMULXSA-N Leu-enkephalin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 URLZCHNOLZSCCA-VABKMULXSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 2
- CZGUSIXMZVURDU-JZXHSEFVSA-N Ile(5)-angiotensin II Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC=1C=CC=CC=1)C([O-])=O)NC(=O)[C@@H](NC(=O)[C@H](CCCNC(N)=[NH2+])NC(=O)[C@@H]([NH3+])CC([O-])=O)C(C)C)C1=CC=C(O)C=C1 CZGUSIXMZVURDU-JZXHSEFVSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229960000907 methylthioninium chloride Drugs 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QXZGBUJJYSLZLT-FDISYFBBSA-N bradykinin Chemical group NC(=N)NCCC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CO)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)CCC1 QXZGBUJJYSLZLT-FDISYFBBSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- -1 compound nitrate Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/04—Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
- H01J49/0409—Sample holders or containers
- H01J49/0418—Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/622—Ion mobility spectrometry
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/26—Mass spectrometers or separator tubes
- H01J49/34—Dynamic spectrometers
- H01J49/40—Time-of-flight spectrometers
Definitions
- the present invention relates to a device for mass spectrometry of a compound, and more particularly to a sample plate for a MALDI ⁇ Tof (Matrix Assissted Laser Desorption Ionization Time of Flight) mass spectrometer and a malditop comprising the metal nanowires. It relates to a mass spectrometry method using a mass spectrometer.
- MALDI ⁇ Tof Microx Assissted Laser Desorption Ionization Time of Flight
- a mass spectrometer is an analyzer that measures the mass of a compound to determine the molecular weight of the compound by measuring the mass-to-charge amount after charging and ionizing the compound.
- a method of ionizing a compound an electron ionization method using an electron beam, a method of colliding high-speed atoms, a method using a laser, and the like are known.
- the method using a laser is characterized in that the matrix which helps the compound nitrate is mixed with the compound (sample) to be analyzed and placed on the target of the analytical device, and then irradiated to the sample to easily sample the sample with the aid of the matrix. It is a method of ionizing a sample using.
- the method is capable of measuring the molecular weight of the polymer material of 300 Da or more, high sensitivity can be analyzed even in the sample of the peptomol level, there is an advantage that can significantly reduce the phenomena of the compound to be analyzed during ionization. Therefore, the mass spectrometry using laser is effective for mass spectrometry of high molecular weight biochemicals such as proteins and nucleic acids, and the malditop mass spectrometer, a device for this, has recently been commercialized.
- a typical matrix material has a molecular weight of several hundred Da. If the molecular weight of the compound to be analyzed is similar to the molecular weight of the matrix material, matrix decomposition products appear in the mass spectrometry. To use The disadvantage is that it is difficult.
- Malditop mass spectrometry is very effective for qualitative analysis of the composition of the sample.
- the spatial distribution of the sample crystal obtained through the preparation of the sample is not uniform, the sample excited by the laser is irradiated according to the position where the laser is irradiated. Since the amount of is different, there is a disadvantage that the quantitative analysis of the sample is difficult.
- Malditop mass spectrometry using the metal nanowires forms a nanowire spot by growing a plurality of nanowires in a specific region on a conductor or a semiconductor substrate, and then a compound (sample) to be subjected to mass spectrometry to the nanowire spot. After being placed in and dried, the laser beam is irradiated to the non-wiring spot to transfer energy to the sample through the nanowire, thereby desorbing and ionizing the sample.
- the present invention aims to solve the shortcomings of the conventional Malditop mass spectrometer.
- an object of the present invention to provide a sample plate for a maltope mass spectrometer, a mass plate capable of mass production and having a highly reproducible metal nanowire.
- an object of the present invention is to provide a Malditop mass spectrometer to which the sample plate is applied and a mass spectrometry method using the mass spectrometer.
- a sample plate for a MALDI—Tof (Matrix Assissed Laser Desorption Ionization Time of Flight) mass spectrometer includes: a metal plate for forming a metal oxide having a photocatalytic function; And a metal oxide nanowire spot having a plurality of metal oxide nanowires formed on at least a portion of the metal plate surface, wherein the metal oxide nanowires are grown in a top-down manner on the metal substrate surface.
- the metal oxide nanowires are formed by a wet corrosion method.
- the metal plate is preferably at least one selected from Ti, Zn, Sn and Sr-Ti alloy.
- the metal oxide nanowire having the photocatalytic function is preferably at least one selected from Ti0 2 , ZnO, Sn0 2 , SrTi0 3 , V2O5.
- the metal oxide nanowire is preferably in the anatase phase.
- sample plate for the mass spectrometer preferably further comprises a metal or semiconductor substrate formed on the opposite surface on which the TiO 2 nanowire spot is formed.
- the metal or semiconductor substrate may be stainless steel.
- the forming of the metal oxide nanowire spot may include: the metal plate table Applying and patterning a photo mask on the surface; Wet etching the metal plate coated with the patterned photomas to form metal oxide nanowires; And removing the photo mask.
- the forming of the metal oxide nanowire spot may include: applying a photomask patterned in a predetermined pattern on the surface of the metal plate; Wet etching the metal plate coated with the patterned photo mast to form metal oxide nanowires; And removing the photo mask.
- the method of wet etching the metal plate comprises: immersing the metal plate coated with the patterned photo mask in an alkaline solution; And reacting the metal plate with pure H 2 O.
- the alkaline solution may be KOH.
- the heat treated metal oxide nanowires preferably have an anatase phase.
- the metal oxide nanowires by a wet corrosion method ; Characterized in that formed.
- the metal plate is preferably at least one selected from Ti, Zn, Sn and V.
- the metal oxide nanowires having a photocatalyst function is TiO 2, ZnO, Sn0 2, and V 2 O 5 is, preferably at least one selected from the.
- the metal oxide nanowire having the photocatalytic function is more preferably TiO 2 .
- the metal plate may be formed on another metal or semiconductor substrate.
- the other metal or semiconductor substrate may be stainless steel.
- MALDI-Tof Matrix Assissted Laser Desorption Ionization Time of Flight mass spectrometer It characterized in that it comprises a sample plate formed by the configuration described above and / or the method described above.
- a mass spectrometry method using a mass analyzer (MALDI-Tof; Matrix Assissted Laser Desorption Ionization Time of Flight) mass spectrometer according to the present invention for achieving the above object is: Positioning the metal oxide nanowire spot on the sample plate formed by the described method; Drying and crystallizing the sample; Desorption and ionization of the sample by irradiating a laser to the metal oxide nanowire spot on which the sample is mounted; And analyzing the mass of the silvered sample.
- MALDI-Tof Matrix Assissted Laser Desorption Ionization Time of Flight
- the compound is to be mass analyzed using a metal oxide having a photocatalytic function.
- the ionization may solve the disadvantage of having to determine different matrix materials according to the type of sample or difficult to use for mass spectrometry of hundreds of Da levels.
- the metal oxide of the sample plate is formed by a top-down method rather than a conventional bottom-up method, mass production is easy, and a sample plate for a maltope mass spectrometer including a highly reproducible metal nanowire Can be provided.
- the metal oxide nanowires according to the present invention show effective decomposition properties such as 4-chlorophenol, benzene, and organic contaminants, methylene blue, oxylene, alkyl amrimatics, and the like, they may be particularly useful for mass analysis of such materials.
- FIG. 1 is a view schematically showing a step of forming a sample plate for Maldilop mass spectrometer according to a preferred embodiment of the present invention.
- FIG. 2 is a photograph of a TiO 2 nanowire structure formed according to a preferred embodiment of the present invention.
- FIG. 3 (a) is a view showing the structure of the rutile Ti0 2 according to a preferred embodiment of the present invention.
- Figure 3 (b) is a view showing the structure of the anatase phase TiO 2 according to a preferred embodiment of the present invention.
- FIG. 4 is a diagram showing an example of a structure of a malditop mass spectrometer including a sample plate according to a preferred embodiment of the present invention.
- FIG. 5 is a view showing the results of analyzing the Enkephalin using a Malditop mass spectrometer according to a preferred embodiment of the present invention.
- FIG. 6 is a diagram showing the results of analyzing the Bradikynin fragment using a Malditop mass spectrometer according to a preferred embodiment of the present invention.
- FIG. 7 is a view showing the results of analyzing Angiotensin II (human) using a Malditop mass spectrometer according to a preferred embodiment of the present invention.
- FIG. 8 is a diagram showing the results of analyzing Pi4R (Synthetic peptide) using a Malditop mass spectrometer according to a preferred embodiment of the present invention.
- 9 (a) to 9 (c) are diagrams showing the results of quantitative analysis on the compounds shown in FIGS. 6 to 8, respectively.
- FIG. 1 is a view schematically showing a step of forming a sample plate for a malditop mass spectrometer according to a preferred embodiment of the present invention.
- a metal plate on which a metal oxide film is formed is prepared, and then a photo mask patterned in a predetermined pattern is applied. Or, applying a photo mask Afterwards, the photomask may be patterned into a desired shape at a position where the Ti0 2 nanowire spot is to be formed.
- the patterning method is not limited as long as it is a technique that can be commonly used for patterning a photo mask, such as plasma etching.
- a Ti plate was prepared as a metal plate, and thus a case of forming a TiO 2 nanowire is described by way of example, but the metal oxide nanowires usable in the present invention are not limited to Ti0 2 .
- the portion of the Ti plate from which the photomask is removed causes the following reaction with the KOH aqueous solution.
- the TiO 2 natural oxide film formed on the Ti flat surface is reacted as follows.
- Ti0 2 nanowires having a desired structure from which impurities such as K + ions are removed may be obtained.
- 2 is a view of the structure of the TiO 2 nanowires formed by the above method. As shown in FIG. 2, according to the present embodiment, it can be seen that TiO 2 nanowires in the form of a thorn bush having a width of several tens of nm are formed while growing in a top-down manner from the surface of the Ti plate.
- TiO 2 formed by the above method may have a rutile (crystal) phase crystal structure, it is preferable to further perform the appropriate treatment during the heat treatment to have a crystal structure of the anatase (anatase) phase.
- 3 (a) and 3 (b) are diagrams comparing the case where the TiO 2 nanowires according to the present embodiment have a rudil structure and a case of anatase structure, respectively. As shown in FIG. 3 (b), the TiO 2 nanowires according to the present example have an anatase structure through proper heat treatment, thereby showing more excellent properties during mass analysis of the sample.
- Figure 3 (c) is a diagram showing the crystal structure peak of the Ti0 2 nanowires formed in accordance with the method presented in the above embodiment. Is shown in the FIG. 3 (c), performing the heat-treated Ti0 2 nm line may determine that the cause of methylene blue decomposition banung when photocatalyst banung, this one, Ti0 2 or route performing the heat treatment has a crystal structure on the anatase It is shown that it can be effectively used for mass spectrometry of compounds.
- FIG. 4 is a view showing an example of a structure of a malditop mass spectrometer including a sample plate according to a preferred embodiment of the present invention.
- the Malditop mass spectrometer includes a main chamber in which a sample plate is disposed, a sample loading chamber in which a sample plate is positioned before inserting the sample plate into the main chamber. loading chamber, a laser irradiation device that irradiates a laser with a specific difference of a sample plate, a fly tube through which an ionized sample passes when at least a portion of the sample is ionized by laser irradiation, and an ionized sample collides A detector and a reflector that reflects the ionized sample.
- a compound (sample) to be subjected to mass spectrometry is mixed with a predetermined solution to form a mixed solution, and then placed on a nanowire spot of a sample plate.
- the mixed solution on the nanowire spot is then dried to crystallize the sample.
- the sample plate is placed at a designated position in the main chamber, and the laser generator irradiates a laser.
- the irradiated laser reaches the sample formed on the nanowire spot and then ionizes at least a portion of the sample, and the ionized sample passes through the flying stream to stratify the detector, and the mass spectrometer detects that the ionized sample is silvered and deductor.
- the component of the compound which comprises a sample can be grasped
- Figure 5 shows the results of analyzing the sample "Enkephalin (molecular weight: 554)" using a Malditop mass spectrometer equipped with a sample plate formed according to a preferred embodiment of the present invention. As shown in Figure 5, when measured without the sample mass spectrometry peaks Although not occurring, it can be confirmed that the Enkephalin component is detected when the sample is included and the mass is measured.
- FIG. 6-8 is a figure which shows the result of having measured the mass of the compound (sample) which has a various molecular weight. That is, FIG. 6 shows Bradykinin fragment (molecular weight: 757), FIG. 7 shows Angiotensin II (human) (molecular weight 1047), and FIG. 8 shows P 14 R (Synthetic peptide) (molecular weight 1534), respectively, using a conventional matrix.
- FIG. 2 is a diagram illustrating a case of using a Ti02 nanowire formed according to a preferred embodiment of the present invention and a case of not using a matrix and a Ti0 2 nanowire, respectively. 6 to 8, it can be seen that the mass spectrometry is not performed at all when the matrix and the Ti0 2 nanowire are not used, and the effect is superior to that of the conventional matrix when TiO 2 or the route is used. You can check it.
- FIGS. 9 (a) to 9 (c) show the results of quantitative analysis of the compounds according to FIGS. 6 to 8, respectively.
- FIG. 9 shows TiO 2 nanowires according to the present embodiment. If used, it can be confirmed that quantitative analysis is possible.
- the embodiment has been described for the case of forming a Ti0 2 nanowire spot using a Ti plate, for example, in addition to TiO 2 other metal oxides having a photocatalytic function such as Zn, Sn0 2 , V 2 O 5
- the nanowire spots formed by the PSA are also available as components of the sample plate for the Malditop mass spectrometer.
- ZnO, SnO 2 , V 2 O 5 metal plate for forming a metal oxide nanowire spot is preferably a Zn plate, Sn plate and V plate, respectively It will be understood that the detailed description is omitted.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Optics & Photonics (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
Description
【명세세 [Specifications
【발명의 명칭】 [Name of invention]
말디톱 질량분석기용 시료 플레이트 및 상기 시료 플레이트를 이용한 말디톱 질량분석기를 이용한 질량분석 방법 Mass spectrometry using a sample plate for a malditop mass spectrometer and a malditop mass spectrometer using the sample plate
【기술분야】 Technical Field
본 발명은 화합물의 질량측정용 장치, 더욱 구체적으로 금속 나노선을 포함 하는 말디톱 (MALDI一 Tof; Matrix Assissted Laser Desorption Ionization Time of Flight) 질량분석기용 시료 플레이트 및 상기 금속 나노선을 포함하는 말디톱 질량 분석기를 이용한 질량분석 방법에 관한 것이다. The present invention relates to a device for mass spectrometry of a compound, and more particularly to a sample plate for a MALDI 一 Tof (Matrix Assissted Laser Desorption Ionization Time of Flight) mass spectrometer and a malditop comprising the metal nanowires. It relates to a mass spectrometry method using a mass spectrometer.
【배경기술】 Background Art
일반적으로 질량분석기는 화합물의 질량을 측정하는 분석기기로서 화합물을 하전시켜 이온화한 후 질량 대 전하량을 측정하여 화합물의 분자량을 결정하게 된 다. 화합물을 이온화하는 방법으로는 전자빔을 이용하는 전자이온화법, 고속의 원 자를 충돌시키는 방법, 레이저를 이용하는 방법 등이 알려져 있다. In general, a mass spectrometer is an analyzer that measures the mass of a compound to determine the molecular weight of the compound by measuring the mass-to-charge amount after charging and ionizing the compound. As a method of ionizing a compound, an electron ionization method using an electron beam, a method of colliding high-speed atoms, a method using a laser, and the like are known.
이 중 레이저를 이용하는 방법은 화합물의 이은화를 돕는 매트릭스를 분석하 고자 하는 화합물 (시료)과 혼합하여 분석장치의 타겟에 배치한 후 레이저를 시료에 조사하면 시료가 매트릭스의 도움을 받아 쉽게 이온화되는 특징을 이용하여 시료를 이온화시키는 방법이다. 상기 방법은 300Da 이상의 고분자 물질의 분자량 측정이 가능하고, 감도가 높아 펩토몰 수준의 시료도 분석이 가능하며, 이온화 시 분석하고 자 하는 화합물이 조각나는 현상을 크게 줄일 수 있다는 둥의 장점이 있다. 따라 서, 단백질, 핵산과 같은 분자량이 큰 생화학 물질의 질량분석에는 레이저를 이용하 는 말디톱 질량분석법이 효과적이며, 이를 위한 장치인 말디톱 질량분석기가 최근 상용화되는 추세에 있다. Among them, the method using a laser is characterized in that the matrix which helps the compound nitrate is mixed with the compound (sample) to be analyzed and placed on the target of the analytical device, and then irradiated to the sample to easily sample the sample with the aid of the matrix. It is a method of ionizing a sample using. The method is capable of measuring the molecular weight of the polymer material of 300 Da or more, high sensitivity can be analyzed even in the sample of the peptomol level, there is an advantage that can significantly reduce the phenomena of the compound to be analyzed during ionization. Therefore, the mass spectrometry using laser is effective for mass spectrometry of high molecular weight biochemicals such as proteins and nucleic acids, and the malditop mass spectrometer, a device for this, has recently been commercialized.
하지만, 상기 방법은 매트릭스를 사용하여 시료를 이온화시키므로 시료의 종 류에 따라서 각각 다른 매트릭스 물질올 결정해야 한다는 불편함이 있다. 또한, 통 상적인 매트릭스 물질은 수백 Da 정도의 분자량을 가지는데, 분석하고자 하는 화합 물의 분자량이 매트릭스 물질의 분자량과 유사한 경우 매트릭스 분해물이 질량분석 스펙트럼에 나타나게 되므로, 수백 Da 수준의 화합물의 질량분석에는 사용하기 어 렵다는 단점이 있다. However, since the method ionizes the sample using the matrix, it is inconvenient to determine different matrix materials according to the type of the sample. In addition, a typical matrix material has a molecular weight of several hundred Da. If the molecular weight of the compound to be analyzed is similar to the molecular weight of the matrix material, matrix decomposition products appear in the mass spectrometry. To use The disadvantage is that it is difficult.
또한, 말디톱 질량분석법은 시료의 구성성분을 파악하는 정성분석에는 매우 효과적이지만, 시료를 준비 과정을 통하여 얻어지는 시료 결정의 공간적 분포가 고 르지 않으므로 레이저가 조사되는 위치에 따라서 레이저에 의하여 여기되는 시료의 양이 상이하게 되므로 시료의 정량분석은 어렵다는 단점이 있다. In addition, Malditop mass spectrometry is very effective for qualitative analysis of the composition of the sample. However, since the spatial distribution of the sample crystal obtained through the preparation of the sample is not uniform, the sample excited by the laser is irradiated according to the position where the laser is irradiated. Since the amount of is different, there is a disadvantage that the quantitative analysis of the sample is difficult.
상기 단점을 해결하기 위하여 최근 매트릭스 대신 금속 나노선을 이용한 말 디톱 질량분석법이 대한민국 특허공개 10-2005— 92809호에서 제시된 바 있다. 상기 금속 나노선을 이용한 말디톱 질량분석법은 전도체 또는 반도체 기판 상의 특정 영 역에 나노선을 복수로 성장치켜 나노선 스폿을 형성한 후, 질량분석의 대상이 되는 화합물 (시료)을 상기 나노선 스폿에 배치한 후 건조시킨 후, 상기 난노선 스폿에 레 이저를 조사하여 나노선을 통해 에너지를 시료에 전달하여 시료를 탈착 및 이온화 시키는 원리를 이용한 방법이다. In order to solve the above shortcomings, mal dtop mass spectrometry using metal nanowires instead of matrices has been proposed in Korean Patent Publication No. 10-2005—92809. Malditop mass spectrometry using the metal nanowires forms a nanowire spot by growing a plurality of nanowires in a specific region on a conductor or a semiconductor substrate, and then a compound (sample) to be subjected to mass spectrometry to the nanowire spot. After being placed in and dried, the laser beam is irradiated to the non-wiring spot to transfer energy to the sample through the nanowire, thereby desorbing and ionizing the sample.
하지만, 상기 방법을 이용할 경우 나노선의 성장을 위하여, 통상적으로 VLS (vapor liquid solid) 합성법으로 통칭되는, 기판 위의 금속 촉매 위에 나노선으 로 성장시키고자 하는 물질을 증기 전구체 (vapor precursor)의 형태로 고은 고압의 캐리어 (carrier) 가스와 함께 흘려 보내 성장시키는 방법이 이용된다. 그런데, 상기 VLS 방법으로 나노선 어레이를 형성하기 위해서는 먼저 금속 촉매를 어레이 형태 로 기판에 올려야하는데, 그 어레이 기술을 적용하는 것은 난이도가 높아 대량 생산 에 곤란하고, 동일한 수준의 나노선을 계속하여 형성하는 것이 곤란하다. 또한, VLS 방법은 공정이 고온 고압의 석영관 (quartz tube)에서 이루어지기 때문에 생산 단가가 증가하며, 대량 생산이 어렵다는 단점이 있다. However, in the case of using the above method, a material for growing nanowires on a metal catalyst on a substrate, commonly referred to as a vapor liquid solid (VLS) synthesis method, is used to form nanowires in the form of a vapor precursor. The logo is used to grow by flowing with high pressure carrier gas. However, in order to form a nanowire array by the VLS method, a metal catalyst must first be placed on a substrate in the form of an array. The application of the array technology is difficult due to the difficulty in mass production, and continuous formation of the same level of nanowires. It is difficult to do In addition, the VLS method has a disadvantage in that the production cost increases because the process is performed in a quartz tube of a high temperature and high pressure, and mass production is difficult.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】 [Technical problem]
본 발명은 상기 종래의 말디톱 질량분석기의 단점을 해결하는 것을 목적으로 한다. The present invention aims to solve the shortcomings of the conventional Malditop mass spectrometer.
특히 본 발명은 말디톱 질량분석기용 시료 플레이트로서, 대량 생산이 가능 하고, 재현가능성이 높은 금속 나노선을 갖는 말디톱 질량분석기용 시료 플레이트를 제공하는 것을 목적으로 한다. 또한, 본 발명은 상기 시료 플레이트가 적용된 말디톱 질량분석기 및 상기 질량분석기를 이용한 질량분석 방법을 제공하는 것을 목적으로 한다. In particular, it is an object of the present invention to provide a sample plate for a maltope mass spectrometer, a mass plate capable of mass production and having a highly reproducible metal nanowire. In addition, an object of the present invention is to provide a Malditop mass spectrometer to which the sample plate is applied and a mass spectrometry method using the mass spectrometer.
【기술적 해결방법】 Technical Solution
상기 목적을 달성하기 위한 본 발명에 따른 말디톱 (MALDI— Tof; Matrix Assissted Laser Desorption Ionization Time of Flight) 질량분석기용 시료 플레이 트는: 광촉매 기능을 갖는 금속 산화물 형성용 금속 평판; 및 상기 금속 평판 표면 의 적어도 일부에 금속 산화물 나노선이 복수로 형성된 금속 산화물 나노선 스폿을 포함하고, 상기 금속 산화물 나노선은 상기 금속 기판 표면에서 Top-down 방식으 로 성장한 것이 바람직하다. According to an embodiment of the present invention, a sample plate for a MALDI—Tof (Matrix Assissed Laser Desorption Ionization Time of Flight) mass spectrometer includes: a metal plate for forming a metal oxide having a photocatalytic function; And a metal oxide nanowire spot having a plurality of metal oxide nanowires formed on at least a portion of the metal plate surface, wherein the metal oxide nanowires are grown in a top-down manner on the metal substrate surface.
또한 상기 금속 산화물 나노선은 습부식 방법에 의하여 형성된 것을 특징으 로 한다. In addition, the metal oxide nanowires are formed by a wet corrosion method.
또한, 상기 금속 평판은 Ti, Zn, Sn 및 Sr-Ti 합금 중에서 선택된 적어도 하 나인 것이 바람직하다. In addition, the metal plate is preferably at least one selected from Ti, Zn, Sn and Sr-Ti alloy.
또한, 상기 광촉매 기능을 갖는 금속 산화물 나노선은 Ti02, ZnO, Sn02, SrTi03, V2O5 중에서 선택된 적어도 하나인 것이 바람직하다. In addition, the metal oxide nanowire having the photocatalytic function is preferably at least one selected from Ti0 2 , ZnO, Sn0 2 , SrTi0 3 , V2O5.
또한, 상기 광촉매 기능을 갖는 금속 산화물 나노선은 TiO2인 것이 더욱 바 람직하다. In addition, the metal oxide nanowire having the photocatalytic function is more preferably TiO 2 .
또한, 상기 금속 산화물 나노선은 아나타제 상인 것이 바람직하다. In addition, the metal oxide nanowire is preferably in the anatase phase.
또한, 상기 질량분석기용 시료 플레이트는 TiO2 나노선 스폿이 형성된 반대 측 표면에 형성되는 금속 또는 반도체 기판을 더 포함하는 것이 바람직하다. In addition, the sample plate for the mass spectrometer preferably further comprises a metal or semiconductor substrate formed on the opposite surface on which the TiO 2 nanowire spot is formed.
이 경우, 상기 금속 또는 반도체 기판은 스테인리스 스틸일 수 있디-. In this case, the metal or semiconductor substrate may be stainless steel.
상기 목적을 달성하기 위한 본 발명에 따른 말디톱 (MALDI-Tof; Matrix Assissted Laser Desorption Ionization Time of Flight) 질량분석기용 시료 플레이 트의 제조방법은: 광촉매 기능을 갖는 금속 산화물 형성용 금속 평판을 준비하는 단 계; 상기 금속 평판의 적어도 일부에 광촉매 기능을 갖는 금속 산화물 나노선을 Top-down 방식으로 복수로 성장시켜 금속 산화물 나노선 스폿을 형성하는 단계; 를 포함하는 것을 특징으로 한다. According to an aspect of the present invention, there is provided a method for preparing a sample plate for a mass spectrometer (MALDI-Tof; Matrix Assissted Laser Desorption Ionization Time of Flight) for preparing a metal plate for forming a metal oxide having a photocatalytic function. step; Forming a metal oxide nanowire spot by growing a plurality of metal oxide nanowires having a photocatalytic function on at least a portion of the metal plate in a top-down manner; Characterized in that it comprises a.
또한, 상기 금속 산화물 나노선 스폿을 형성하는 단계는: 상기 금속 평판 표 면에 포토 마스크를 도포하고 패터닝하는 단계; 상기 패터닝된 포토마스트가 도포된 금속 평판을 습부식 처리하여 금속 산화물 나노선을 형성하는 단계 ; 및 상기 포토 마스크를 제거하는 단계를 포함하는 것을 특징으로 한다. In addition, the forming of the metal oxide nanowire spot may include: the metal plate table Applying and patterning a photo mask on the surface; Wet etching the metal plate coated with the patterned photomas to form metal oxide nanowires; And removing the photo mask.
또는 상기 금속 산화물 나노선 스폿을 형성하는 단계는: 상기 금속 평판 표 면에 소정의 패턴으로 패터닝된 포토 마스크를 도포하는 단계 ; 상기 패터닝된 포토 마스트가 도포된 금속 평판을 습부식 처리하여 금속 산화물 나노선을 형성하는 단 계; 및 상기 포토 마스크를 제거하는 단계를 포함하는 것을 특징으로 한다. Alternatively, the forming of the metal oxide nanowire spot may include: applying a photomask patterned in a predetermined pattern on the surface of the metal plate; Wet etching the metal plate coated with the patterned photo mast to form metal oxide nanowires; And removing the photo mask.
또한, 상기 금속 평판을 습부식 처리하는 방법은: 상기 패터닝된 포토 마스크 가 도포된 금속 평판을 알칼리 용액에 침지하는 단계; 및 상기 금속 평판을 pure H2O에 반웅시키는 단계를 포함하는 것을 특징으로 한다. In addition, the method of wet etching the metal plate comprises: immersing the metal plate coated with the patterned photo mask in an alkaline solution; And reacting the metal plate with pure H 2 O.
이 경우 상기 알칼리 용액은 KOH일 수 있다. In this case, the alkaline solution may be KOH.
또한, 상기 방법은 상기 금속 산화물 나노선 스폿이 형성된 금속 평판을 열 처리하는 단계를 더 포함하는 것이 바람직하다. In addition, the method may further include heat treating the metal plate on which the metal oxide nanowire spots are formed.
이 경우, 상기 열처리된 금속 산화물 나노선은 아나타제 상을 갖는 것이 바 람직하다. In this case, the heat treated metal oxide nanowires preferably have an anatase phase.
또한, 상기 금속 산화물 나노선은 습부식 방법에 의하여 ;형성된 것을 특징으 로 한다. In addition, the metal oxide nanowires by a wet corrosion method ; Characterized in that formed.
또한, 상기 금속 평판은 Ti, Zn, Sn 및 V중에서 선택된 적어도 하나인 것이 바람직하다. In addition, the metal plate is preferably at least one selected from Ti, Zn, Sn and V.
또한, 상기 광촉매 기능을 갖는 금속 산화물 나노선은 TiO2, ZnO, Sn02 및 V2O5 중에서 선택된 적어도 하나인'것이 바람직하다. In addition, the metal oxide nanowires having a photocatalyst function is TiO 2, ZnO, Sn0 2, and V 2 O 5 is, preferably at least one selected from the.
또한, 상기 광촉매 기능을 갖는 금속 산화물 나노선은 TiO2인 것이 더욱 바 람직하다. In addition, the metal oxide nanowire having the photocatalytic function is more preferably TiO 2 .
또한, 상기 금속 평판을 준비하는 단계에서 상기 금속 평판은 다른 금속 또 는 반도체 기판 위에 형성되는 것이 바람직하다. In addition, in the preparing of the metal plate, the metal plate may be formed on another metal or semiconductor substrate.
이 경우 상기 다른 금속 또는 반도체 기판은 스테인리스 스틸일 수 있다. 또한, 상기 목적을 달성하기 위한 본 발명에 따른 말디톱 (MALDI-Tof; Matrix Assissted Laser Desorption Ionization Time of Flight) 질량분석기는 앞에 서 설명한 구성 및 /또는 앞에서 설명한 방법에 의하여 형성된 시료 플레이트를 포함 하는 것을 특징으로 한다. In this case, the other metal or semiconductor substrate may be stainless steel. In addition, according to the present invention for achieving the above object (MALDI-Tof; Matrix Assissted Laser Desorption Ionization Time of Flight) mass spectrometer It characterized in that it comprises a sample plate formed by the configuration described above and / or the method described above.
상기 목적을 달성하기 위한 본 발명에 따른 말디톱 (MALDI-Tof; Matrix Assissted Laser Desorption Ionization Time of Flight) 질량분석기를 이용한 질량 분석 방법은: 질량분석의 대상이 되는 시료를 앞에서 설명한 구성 및 /또는 앞에서 설명한 방법에 의하여 형성된 시료 플레이트의 금속 산화물 나노선 스폿에 위치시 키는 단계; 상기 시료를 건조시켜 결정화하는 단계; 상기 시료가 장착된 금속 산화 물 나노선 스폿에 레이저를 조사하여 시료를 탈착 및 이온화시키는 단계; 및 상기 이은화된 시료의 질량을 분석하는 단계를 포함하는 것을 특징으로 한다. A mass spectrometry method using a mass analyzer (MALDI-Tof; Matrix Assissted Laser Desorption Ionization Time of Flight) mass spectrometer according to the present invention for achieving the above object is: Positioning the metal oxide nanowire spot on the sample plate formed by the described method; Drying and crystallizing the sample; Desorption and ionization of the sample by irradiating a laser to the metal oxide nanowire spot on which the sample is mounted; And analyzing the mass of the silvered sample.
【유리한 효과】 Advantageous Effects
본 발명은 종래의 화합물의 이온화를 돕는 매트릭스를 분석하고자 하는 화합 물 (시료)과 혼합함으로써 시료가 매트릭스의 도움을 받아 이온화되는 대신, 광촉매 기능을 갖는 금속 산화물을 이용하여 질량을 분석하고자 하는 화합물을 이온화시키 므로 시료의 종류에 따라서 각각 다른 매트릭스 물질올 결정해야 한다거나 수백 Da 수준의 화합물의 질량분석에는 사용하기 어렵다는 단점을 해결할 수 있다. According to the present invention, instead of a sample being ionized with the aid of a matrix by mixing a matrix to aid in ionization of a conventional compound, the compound is to be mass analyzed using a metal oxide having a photocatalytic function. The ionization may solve the disadvantage of having to determine different matrix materials according to the type of sample or difficult to use for mass spectrometry of hundreds of Da levels.
또한, 본 발명에 따르면 종래의 Bottom-up방식이 아닌 Top— down 방식으로 시료 플레이트의 금속 산화물을 형성하므로 대량생산이 용이하고, 재현성이 높은 금 속 나노선을 포함하는 말디톱 질량분석기용 시료 플레이트를 제공할 수 있다. In addition, according to the present invention, since the metal oxide of the sample plate is formed by a top-down method rather than a conventional bottom-up method, mass production is easy, and a sample plate for a maltope mass spectrometer including a highly reproducible metal nanowire Can be provided.
또한, 본 발명에 따르면 상기 대량생산이 용이하고, 재현성이 높은 금속 나노 선이 형성된 시료 플레이트를 포함하는 말디톱 질량분석기를 제작할 수 있다. In addition, according to the present invention, it is possible to manufacture a malditop mass spectrometer including a sample plate in which the mass production is easy and the metal nanowires having high reproducibility are formed.
특히, 본 발명에 따른 금속 산화물 나노선은 4-chlorophenol, 벤젠 둥 유기 오염물질과 메틸렌 블루, oxylene, alkyl amrimatics 등에 효과적인 분해 특성을 보 이므로 이러한 재료의 질량 분석에 특히 유용하게 사용가능하다. In particular, since the metal oxide nanowires according to the present invention show effective decomposition properties such as 4-chlorophenol, benzene, and organic contaminants, methylene blue, oxylene, alkyl amrimatics, and the like, they may be particularly useful for mass analysis of such materials.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 본 발명의 바람직한 실시예에 따른 말디롭 질량분석기용 시료 플레이 트를 형성하는 단계를 개략적으로 도시하는 도면이다. 1 is a view schematically showing a step of forming a sample plate for Maldilop mass spectrometer according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따라 형성된 TiO2 나노선 구조를 촬영 한 도면이다. 도 3(a)는 본 발명의 바람직한 실시예에 따른 루틸상 Ti02의 구조를 도시하 는 도면이다. FIG. 2 is a photograph of a TiO 2 nanowire structure formed according to a preferred embodiment of the present invention. FIG. 3 (a) is a view showing the structure of the rutile Ti0 2 according to a preferred embodiment of the present invention.
도 3(b)는 본 발명의 바람직한 실시예에 따른 아나타제상 TiO2의 구조를 도 시하는 도면이다. Figure 3 (b) is a view showing the structure of the anatase phase TiO 2 according to a preferred embodiment of the present invention.
도 3(c)는 도 3(a) 및 도 3(b)에 도시된 TiO2의 결정구조 피크를 도시하는 도 면이다. FIG. 3 (c) is a diagram showing the crystal structure peak of TiO 2 shown in FIGS. 3 (a) and 3 (b).
도 4는 본 발명의 바람직한 실시예에 따른 시료 플레이트를 포함하는 말디톱 질량분석기 구조의 일례를 도시하는 도면이다. 4 is a diagram showing an example of a structure of a malditop mass spectrometer including a sample plate according to a preferred embodiment of the present invention.
도 5는 본 발명의 바람직한 실시예에 따른 말디톱 질량 분석기를 이용하여 Enkephalin을 분석한 결과를 도시하는 도면이다. 5 is a view showing the results of analyzing the Enkephalin using a Malditop mass spectrometer according to a preferred embodiment of the present invention.
도 6은 본 발명의 바람직한 실시예에 따른 말디톱 질량 분석기를 이용하여 Bradikynin fragment를 분석한 결과를 도시하는 도면이다. 6 is a diagram showing the results of analyzing the Bradikynin fragment using a Malditop mass spectrometer according to a preferred embodiment of the present invention.
도 7는 본 발명의 바람직한 실시예에 따른 말디톱 질량 분석기를 이용하여 Angiotensin II (human)을 분석한 결과를 도시하는 도면이다. 7 is a view showing the results of analyzing Angiotensin II (human) using a Malditop mass spectrometer according to a preferred embodiment of the present invention.
도 8은 본 발명의 바람직한 실시예에 따른 말디톱 질량 분석기를 이용하여 Pi4R(Synthetic peptide)을 분석한 결과를 도시하는 도면이다. 8 is a diagram showing the results of analyzing Pi4R (Synthetic peptide) using a Malditop mass spectrometer according to a preferred embodiment of the present invention.
도 9(a) 내지 도 9(c)는 각각 도 6 내지 도 8에 도시된 화합물에 대한 정량분 석을 실시한 결과를 도시하는 도면이다. 9 (a) to 9 (c) are diagrams showing the results of quantitative analysis on the compounds shown in FIGS. 6 to 8, respectively.
【발명을 실시를 위한 최선의 형태】 [The best form for carrying out invention]
본 발명의 바람직한 실시예에 따른 말디톱 질량분석기용 시료 플레이트 및 상기 시료 플레이트가 장착된 말디톱 질량분석기의 구체적인 구성 및 실험결과를 첨부한 도면을 참고로 이하에서 설명한다. 한편 이하에서는 본 발명의 특징을 명료 하게 하기 위하여 본 발명이 속하는 기술분야에서 공지된 구성으로서 본 발명의 특 징과 직접 관련이 없는 구성은 상세한 설명을 생략한다. Reference to the accompanying drawings, the specific configuration and experimental results of the sample plate for the malditop mass spectrometer according to a preferred embodiment of the present invention and the malditop mass spectrometer equipped with the sample plate will be described below. On the other hand, in the following to clarify the features of the present invention as a configuration known in the art to which the configuration is not directly related to the features of the present invention will be omitted a detailed description.
도 1은 본 발명의 바람직한 실시예에 따른 말디톱 질량분석기용 시료 플레이 트를 형성하는 단계를 개략적으로 도시하는 도면이다. 1 is a view schematically showing a step of forming a sample plate for a malditop mass spectrometer according to a preferred embodiment of the present invention.
먼저, 도 1에서 보듯이 표면에 금속 산화막이 형성된 금속 평판을 준비한 후 소정의 패턴으로 패터닝된 포토 마스크를 도포한다. 또는, 포토 마스크를 도포한 후 Ti02 나노선 스폿이 형성될 위치에 원하는 형상으로 포토 마스크를 패터닝할 수 도 있다. 이 때 패터닝 방법은 플라즈마 에칭 등 통상적으로 포토 마스크를 패터닝 하는데 이용가능한 기술이면 그 종류를 한정하지 않는다. 한편, 본 실시예는 금속 평판으로 Ti 평판을 준비하였고, 따라서 TiO2 나노선을 형성하는 경우를 예를 들어 설명하지만, 본 발명에서 이용가능한 금속 산화물 나노선은 Ti02로 한정되지 않는 다ᅳ First, as shown in FIG. 1, a metal plate on which a metal oxide film is formed is prepared, and then a photo mask patterned in a predetermined pattern is applied. Or, applying a photo mask Afterwards, the photomask may be patterned into a desired shape at a position where the Ti0 2 nanowire spot is to be formed. At this time, the patterning method is not limited as long as it is a technique that can be commonly used for patterning a photo mask, such as plasma etching. On the other hand, in the present embodiment, a Ti plate was prepared as a metal plate, and thus a case of forming a TiO 2 nanowire is described by way of example, but the metal oxide nanowires usable in the present invention are not limited to Ti0 2 .
다음으로, 원하는 위치 및 형상으로 패터닝된 포토 마스크가 도포된 Ti 평판 을 KOH 수용액에 침지시키면, Ti 평판 중 포토 마스크가 제거된 부분은 KOH 수용 액과 다음의 반웅을 일으킨다. Next, when the Ti plate coated with the photomask patterned to the desired position and shape is immersed in the KOH aqueous solution, the portion of the Ti plate from which the photomask is removed causes the following reaction with the KOH aqueous solution.
먼저, Ti 평판 표면에 형성된 TiO2 자연 산화막은 다음과 같이 반웅한다.First, the TiO 2 natural oxide film formed on the Ti flat surface is reacted as follows.
Ti0 + OH— = HTi03— Ti0 + OH— = HTi0 3 —
이후 KOH 용액은 Ti 금속과 다음과 같은 반웅을 순차적으로 일으킨다ᅳ The KOH solution then produces a reaction of Ti metal with the following reactions:
Ti + 30H" = Ti(OH)3+ + 4e~ Ti + 30H " = Ti (OH) 3 + + 4e to
Ti(OH)3 + + 4e" = TiO2 · H2O + 1/2H2 Ti (OH) 3 + + 4e "= TiO 2 · H2O + 1 / 2H 2
Ti(OH)3+ + HO" = Ti(OH)4 Ti (OH) 3 + + HO " = Ti (OH) 4
TiO2, nH2O + OH— = ΗΤίθΓ · nH2O TiO 2 , nH 2 O + OH— = ΗΤίθΓ · nH 2 O
이어서, 상기 ΗΉ0Γ · ηΗ20이 형성된 Ti 평판을 pure ¾0에 층분히 반웅 시키면 K+ 이온 등 불순물이 제거된 원하는 구조의 Ti02 나노선을 얻을 수 있다. 도 2는 상기 방법에 의하여 형성된 TiO2 나노선의 구조를 촬영한 도면이다. 도 2에서 보듯이, 본 실시예에 따르면 Ti 평판의 표면에서 아래로 Top-down 방식 으로 성장하며 수십 nm의 폭올 갖는 가시덤풀 형태의 TiO2 나노선이 형성되는 것 을 볼 수 있다. Subsequently, if the Ti flat plate on which ΗΉ0Γ · ηΗ 2 0 is formed is thoroughly reacted with pure ¾0, Ti0 2 nanowires having a desired structure from which impurities such as K + ions are removed may be obtained. 2 is a view of the structure of the TiO 2 nanowires formed by the above method. As shown in FIG. 2, according to the present embodiment, it can be seen that TiO 2 nanowires in the form of a thorn bush having a width of several tens of nm are formed while growing in a top-down manner from the surface of the Ti plate.
한편, 상기 방법으로 형성된 TiO2는 루틸 (rutile) 상의 결정 구조를 가질 수 있는데, 아나타제 (anatase) 상의 결정구조를 갖도록 열처리 둥 적절한 처리를 더 수 행하는 것이 바람직하다. 또한, 도 3(a) 및 도 3(b)는 본 실시예에 따른 TiO2 나노 선이 각각 루딜 구조를 갖는 경우와 아나타제 구조를 갖는 경우를 비교한 도면이다. 도 3(b)에서 보듯이 본 실시예에 따른 TiO2 나노선은 적절한 열처리를 통하여 아나 타제 구조를 가짐으로써 이 후 시료의 질량분석 시 더욱 우수한 특성을 보여준다. 또한, 도 3(c)는 상기 실시예에 제시된 방법에 따라 형성된 Ti02 나노선의 결 정구조 피크를 도시하는 도면이다. 도 3(c)에서 보듯이, 열처리를 수행한 Ti02 나노 선은 메틸렌블루 분해 반웅 시 광촉매 반웅을 일으키는 것을 확인할 수 있는데, 이 것은, 열처리를 수행한 Ti02 나노선은 아나타제 상의 결정구조를 가짐으로서 화합물 의 질량분석에 효과적으로 이용가능함을 보여준다. On the other hand, TiO 2 formed by the above method may have a rutile (crystal) phase crystal structure, it is preferable to further perform the appropriate treatment during the heat treatment to have a crystal structure of the anatase (anatase) phase. 3 (a) and 3 (b) are diagrams comparing the case where the TiO 2 nanowires according to the present embodiment have a rudil structure and a case of anatase structure, respectively. As shown in FIG. 3 (b), the TiO 2 nanowires according to the present example have an anatase structure through proper heat treatment, thereby showing more excellent properties during mass analysis of the sample. In addition, Figure 3 (c) is a diagram showing the crystal structure peak of the Ti0 2 nanowires formed in accordance with the method presented in the above embodiment. Is shown in the FIG. 3 (c), performing the heat-treated Ti0 2 nm line may determine that the cause of methylene blue decomposition banung when photocatalyst banung, this one, Ti0 2 or route performing the heat treatment has a crystal structure on the anatase It is shown that it can be effectively used for mass spectrometry of compounds.
다음으로, 도 4는 본 발명의 바람직한 실시예에 따른 시료 플레이트를 포함 하는 말디톱 질량분석기 구조의 일례를 도시하는 도면이다. Next, FIG. 4 is a view showing an example of a structure of a malditop mass spectrometer including a sample plate according to a preferred embodiment of the present invention.
도 4에서 보듯이, 본 발명의 바람직한 실시예에 따른 말디톱 질량분석기는 시료 플레이트가 배치되는 매인 챔버 (main chamber), 매인 챔버에 시료 플레이트를 삽입하기 전에 시료 플레이트가 위치하는 시료 적재 챔버 (sample loading chamber), 시료 플레이트의 특정 위차로 레이저를 조사하는 레이저 조사 장치 (Laser), 레이저 조사에 의하여 시료 중 적어도 일부가 이온화되면 이온화된 시료가 통로하는 바행 류브 (flight Tube), 이온화된 시료가 충돌하는 디텍터 (detector) 및 이온화된 시료를 반사시키는 반사 장치 (reflector)를 포함한다. As shown in FIG. 4, the Malditop mass spectrometer according to a preferred embodiment of the present invention includes a main chamber in which a sample plate is disposed, a sample loading chamber in which a sample plate is positioned before inserting the sample plate into the main chamber. loading chamber, a laser irradiation device that irradiates a laser with a specific difference of a sample plate, a fly tube through which an ionized sample passes when at least a portion of the sample is ionized by laser irradiation, and an ionized sample collides A detector and a reflector that reflects the ionized sample.
다음으로, 본 발명의 바람직한 실시예에 따라서 형성된 시료 플레이트가 장 착된 말디톱 질량분석기를 이용하여 소정의 시료에 대한 질량분석을 수행하는 방법 을 이하에서 설명한다. Next, a method of performing mass spectrometry on a predetermined sample using a Malditop mass spectrometer equipped with a sample plate formed according to a preferred embodiment of the present invention will be described below.
먼저, 질량분석의 대상이 되는 화합물 (시료)을 소정의 용액과 흔합하여 혼합 용액을 형성한 후 시료 플레이트의 나노선 스폿 위에 위치시킨다. 이어서, 나노선 스폿 위의 혼합 용액을 건조시켜 시료를 결정화시킨다. 이어서, 상기 시료 플레이 트를 메인 챔버 내의 지정된 위치에 배치하고, 레이저 발생장치에서 레이저를 조사 한디-. 그러면, 조사된 레이저는 나노선 스폿 위에 형성된 시료에 도달한 후 적어도 일부의 시료를 이온화시키고, 이온화된 시료는 비행 류브를 통과하여 디텍터에 층돌 하게 되고, 질량분석기는 이온화된 시료가 이은화되어 디턱터에 층돌하는 시간을 계 산함으로써 시료를 구성하는 화합물의 성분을 파악할 수 있다. First, a compound (sample) to be subjected to mass spectrometry is mixed with a predetermined solution to form a mixed solution, and then placed on a nanowire spot of a sample plate. The mixed solution on the nanowire spot is then dried to crystallize the sample. Subsequently, the sample plate is placed at a designated position in the main chamber, and the laser generator irradiates a laser. Then, the irradiated laser reaches the sample formed on the nanowire spot and then ionizes at least a portion of the sample, and the ionized sample passes through the flying stream to stratify the detector, and the mass spectrometer detects that the ionized sample is silvered and deductor. The component of the compound which comprises a sample can be grasped | ascertained by calculating the time to stratify into the sample.
도 5는 본 발명의 바람작한 실시예에 따라 형성된 시료 플레이트가 장착된 말디톱 질량분석기를 이용하여 시료 "Enkephalin (분자량: 554)"을 분석한 결과를 도 시한다. 도 5에서 보듯이, 시료를 포함하지 않고 측정한 경우 질량 분석 피크가 발 생하지 않으나, 시료를 포함하고 질량을 측정한 경우 Enkephalin 성분이 검출되는 것을 확인할 수 있다. Figure 5 shows the results of analyzing the sample "Enkephalin (molecular weight: 554)" using a Malditop mass spectrometer equipped with a sample plate formed according to a preferred embodiment of the present invention. As shown in Figure 5, when measured without the sample mass spectrometry peaks Although not occurring, it can be confirmed that the Enkephalin component is detected when the sample is included and the mass is measured.
또한, 도 6 내지 도 8은 다양한 분자량을 갖는 화합물 (시료)의 질량을 측정한 결과를 도시하는 도면이다. 즉, 도 6은 Bradykinin fragment (분자량: 757), 도 7은 Angiotensin II (human) (분자량 1047), 및 도 8은 P14R(Synthetic peptide) (분자량 1534)를 각각 종래의 매트릭스를 이용한 경우, 본 발명의 바람직한 실시예에 따라서 형성된 Ti02 나노선을 이용한 경우 및 매트릭스 및 Ti02 나노선을 이용하지 않은 경우를 각각 비교하는 도면이다. 도 6 내지 도 8에서 매트릭스 및 Ti02 나노선을 이용하지 않은 경우에는 질량분석이 전혀 되지 않는 것을 확인할 수 있고, TiO2 나 노선을 이용한 경우 종래의 매트릭스를 이용한 경우에 비하여 그 효과가 우수한 것 을 확인할 수 있다. 6-8 is a figure which shows the result of having measured the mass of the compound (sample) which has a various molecular weight. That is, FIG. 6 shows Bradykinin fragment (molecular weight: 757), FIG. 7 shows Angiotensin II (human) (molecular weight 1047), and FIG. 8 shows P 14 R (Synthetic peptide) (molecular weight 1534), respectively, using a conventional matrix. FIG. 2 is a diagram illustrating a case of using a Ti02 nanowire formed according to a preferred embodiment of the present invention and a case of not using a matrix and a Ti0 2 nanowire, respectively. 6 to 8, it can be seen that the mass spectrometry is not performed at all when the matrix and the Ti0 2 nanowire are not used, and the effect is superior to that of the conventional matrix when TiO 2 or the route is used. You can check it.
또한, 도 9(a) 내지 9(c)는 각각 도 6 내지 도 8에 따른 화합물에 대한 정량 분석을 실시한 결과를 도시하는 도면으로서, 도 9에서 보듯이 본 실시예에 따른 TiO2 나노선을 이용한 경우 정량분석이 가능한 것을 확인할 수 있다. 9 (a) to 9 (c) show the results of quantitative analysis of the compounds according to FIGS. 6 to 8, respectively. FIG. 9 shows TiO 2 nanowires according to the present embodiment. If used, it can be confirmed that quantitative analysis is possible.
한편, 상기 실시예는 Ti 평판을 이용하여 Ti02 나노선 스폿을 형성한 경우를 예를 들어 설명하였만, TiO2 외에도 Znᄋ, Sn02, V2O5와 같은 광촉매 기능을 갖는 다른 금속 산화물로 형성된 나노선 스폿도 말디톱 질량분석기용 시료 플레이트의 구성요소로 이용가능하다. 이 경우, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 ZnO, SnO2, V2O5인 금속 산화물 나노선 스폿을 형성하기 위한 금속 평판 은 각각 Zn 평판, Sn 평판 및 V 평판이 바람직하다는 것을 이해할 것이므로 상세한 설명은 생략한다. On the other hand, the embodiment has been described for the case of forming a Ti0 2 nanowire spot using a Ti plate, for example, in addition to TiO 2 other metal oxides having a photocatalytic function such as Zn, Sn0 2 , V 2 O 5 The nanowire spots formed by the PSA are also available as components of the sample plate for the Malditop mass spectrometer. In this case, those skilled in the art to which the present invention belongs ZnO, SnO 2 , V 2 O 5 metal plate for forming a metal oxide nanowire spot is preferably a Zn plate, Sn plate and V plate, respectively It will be understood that the detailed description is omitted.
이상으로 본 발명의 바람직한 실시예에 따른 시료 플레이트의 제조방법, 상 기 시료 플레이트를 포함하는 말디톱 질량분석기, 및 상기 질량분석기를 이용한 화 합물의 질량분석 방법을 상세하게 설명하였다. 하지만, 본 발명이 속하는 기술분야 에서 통상의 지식을 가진 자는 기타 본 발명의 바람직한 실시예에서 기재된 구성에 대한 다양한 수정 및 변형도 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 범위는 오직 뒤에서 설명할 특허청구범위에 의해서만 한정된다. The method of manufacturing a sample plate according to a preferred embodiment of the present invention, a malditop mass spectrometer including the sample plate, and the mass spectrometry method of a compound using the mass spectrometer have been described in detail. However, one of ordinary skill in the art will appreciate that various modifications and variations to the configurations described in the preferred embodiments of the present invention are possible. Accordingly, the scope of the invention is limited only by the claims set forth below.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110015076A KR101204342B1 (en) | 2011-02-21 | 2011-02-21 | Sample plate for MALDI-Tof mass spectrometer and a method for analysing a mass using the MALDI-Tof mass spectrometer |
KR10-2011-0015076 | 2011-02-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012115380A2 true WO2012115380A2 (en) | 2012-08-30 |
WO2012115380A3 WO2012115380A3 (en) | 2012-11-01 |
Family
ID=46721297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/001048 WO2012115380A2 (en) | 2011-02-21 | 2012-02-13 | Sample plate for a maldi-tof mass spectrometer, and mass spectrometry method using the maldi-tof mass spectrometer implementing the sample plate |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101204342B1 (en) |
WO (1) | WO2012115380A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107515243A (en) * | 2017-09-29 | 2017-12-26 | 浙江和谱生物科技有限公司 | Target plate and preparation method thereof and mass spectrograph |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101687949B1 (en) | 2013-07-03 | 2016-12-21 | 연세대학교 산학협력단 | Matrix using an analysing a mass assissted laser, a method for manufacturing the matrix, and chamber for munufacturing the matrix |
KR20150052898A (en) | 2013-11-06 | 2015-05-15 | 연세대학교 산학협력단 | Sample plate using MALDI-TOF mass spectrometer and manufacturing method of the sample plate |
WO2018097616A1 (en) * | 2016-11-24 | 2018-05-31 | 주식회사 아스타 | Maldi tof ms data processing device and method |
KR102019561B1 (en) * | 2016-12-13 | 2019-09-09 | 연세대학교 산학협력단 | Sample plate, method of fabricating the same and mass spectrometer analysis by using the same |
US11075065B2 (en) * | 2016-12-13 | 2021-07-27 | University-Industry Foundation (Uif), Yonsei University | Sample plate, method of fabricating the same and mass spectrometer analysis by using the same |
KR101980863B1 (en) | 2017-02-17 | 2019-05-23 | (주)바이오니아 | Sample plate for Matrix-assisted laser desorption/ionization mass spectrometry, and method of manufacturing the same |
WO2018151556A1 (en) | 2017-02-17 | 2018-08-23 | (주)바이오니아 | Sample plate for maldi mass spectrometry and manufacturing method therefor |
KR102148602B1 (en) * | 2019-03-29 | 2020-08-26 | 연세대학교 산학협력단 | gout and pseudogout diagnosis kit and method for providing the same information |
KR102207765B1 (en) * | 2019-03-29 | 2021-01-25 | 연세대학교 산학협력단 | Sample plate and method of fabricating the same |
KR102460081B1 (en) * | 2020-08-14 | 2022-10-27 | 연세대학교 산학협력단 | Sample plate for laser desorption ionization mass spectrometry and method of manufacturing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6685810B2 (en) | 2000-02-22 | 2004-02-03 | California Institute Of Technology | Development of a gel-free molecular sieve based on self-assembled nano-arrays |
KR100534204B1 (en) * | 2004-03-17 | 2005-12-07 | 한국과학기술연구원 | Nanowire assisted laser desorption/ionization mass spectrometric analysis |
TWI274874B (en) * | 2004-12-30 | 2007-03-01 | Univ Nat Chiao Tung | Metal oxide-assisted laser desorption/ionization mass spectrometry |
AU2006342115A1 (en) * | 2005-12-20 | 2007-10-25 | Board Of Regents Of The University Of Texas System | Nanoporous substrates for analytical methods |
-
2011
- 2011-02-21 KR KR1020110015076A patent/KR101204342B1/en active Active
-
2012
- 2012-02-13 WO PCT/KR2012/001048 patent/WO2012115380A2/en active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107515243A (en) * | 2017-09-29 | 2017-12-26 | 浙江和谱生物科技有限公司 | Target plate and preparation method thereof and mass spectrograph |
Also Published As
Publication number | Publication date |
---|---|
KR20120095638A (en) | 2012-08-29 |
KR101204342B1 (en) | 2012-11-23 |
WO2012115380A3 (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012115380A2 (en) | Sample plate for a maldi-tof mass spectrometer, and mass spectrometry method using the maldi-tof mass spectrometer implementing the sample plate | |
TWI434314B (en) | Substrate for mass spectrometry, mass spectrometry, and mass spectrometer | |
EP1879214B1 (en) | Substrate for mass spectrometry, and method for manufacturing substrate for mass spectrometry | |
Kim et al. | Top-down synthesized TiO2 nanowires as a solid matrix for surface-assisted laser desorption/ionization time-of-flight (SALDI-TOF) mass spectrometry | |
EP1730511B1 (en) | Nanowire assisted laser desorption/ionization mass spectrometric analysis | |
KR101592517B1 (en) | Substrate for Laser Desorption Ionization Mass Spectrometry and method for manufacturing the same | |
US20090166523A1 (en) | Use of carbon nanotubes (cnts) for analysis of samples | |
Kim et al. | A TiO 2 nanowire photocatalyst for dual-ion production in laser desorption/ionization (LDI) mass spectrometry | |
US8080784B2 (en) | Ionization device | |
KR102019561B1 (en) | Sample plate, method of fabricating the same and mass spectrometer analysis by using the same | |
EP1743356A2 (en) | Use of a composite or composition of diamond and other material for analysis of analytes | |
WO2009001963A1 (en) | Sample holder for maldi mass spectrometric analysis, and mass spectrometric analysis method | |
JP2008107209A (en) | Substrate for mass spectrometry, manufacturing method therefor, and mass spectrometry measuring device | |
US20160202266A1 (en) | Ultrathin calcinated films on a gold surface for highly effective laser desorption/ ionization of biomolecules | |
JPWO2006046697A1 (en) | Substrate for MALDI-TOFMS and mass spectrometric method using the same | |
KR20170041528A (en) | The nano island solid matrix for matrix assisted laser desorption/ionization time-of-flight mass spectrometry and the method thereof | |
WO2006085950A2 (en) | Sample desorption/ionization from mesoporous silica | |
KR20120095821A (en) | Sample plate for maldi-tof mass spectrometer and a method for analysing a mass using the maldi-tof mass spectrometer | |
Peng et al. | Redox chemistry in thin layers of organometallic complexes prepared using ion soft landing | |
KR101687949B1 (en) | Matrix using an analysing a mass assissted laser, a method for manufacturing the matrix, and chamber for munufacturing the matrix | |
KR102062447B1 (en) | Target surfaces for MALDI mass spectrometry using Graphene films and Mass analysis method using the same | |
US7256394B2 (en) | Target support and method | |
KR102097319B1 (en) | Sample plate with adjustable ionization efficiency, method of fabricating the same and mass spectrometer analysis by using the same | |
Colaianni et al. | Reduction of spectral interferences using ultraclean gold nanowire arrays in the LDI-MS analysis of a model peptide | |
WO2005069961A2 (en) | Gas-phase purification of biomolecules by ion mobility for patterning microarrays and protein crystal growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12749934 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12749934 Country of ref document: EP Kind code of ref document: A2 |