WO2012071032A1 - Seal for anode connection to cable and method of use - Google Patents
Seal for anode connection to cable and method of use Download PDFInfo
- Publication number
- WO2012071032A1 WO2012071032A1 PCT/US2010/057760 US2010057760W WO2012071032A1 WO 2012071032 A1 WO2012071032 A1 WO 2012071032A1 US 2010057760 W US2010057760 W US 2010057760W WO 2012071032 A1 WO2012071032 A1 WO 2012071032A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- joint
- anode
- elongated
- sealing device
- electrical conductor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 17
- 238000007789 sealing Methods 0.000 claims abstract description 45
- 239000000463 material Substances 0.000 claims abstract description 25
- 239000011810 insulating material Substances 0.000 claims abstract description 13
- 238000011065 in-situ storage Methods 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000004020 conductor Substances 0.000 claims description 31
- 239000002033 PVDF binder Substances 0.000 claims description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 9
- 229920006370 Kynar Polymers 0.000 claims description 8
- 239000004705 High-molecular-weight polyethylene Substances 0.000 claims description 6
- 229910003455 mixed metal oxide Inorganic materials 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 229910000510 noble metal Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000000565 sealant Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000004210 cathodic protection Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009969 flowable effect Effects 0.000 description 3
- 229920002396 Polyurea Polymers 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000004078 waterproofing Methods 0.000 description 2
- WJXQFVMTIGJBFX-UHFFFAOYSA-N 4-methoxytyramine Chemical compound COC1=CC=C(CCN)C=C1O WJXQFVMTIGJBFX-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920006798 HMWPE Polymers 0.000 description 1
- RFDFPOGXFHHCII-UHFFFAOYSA-N [Cu].[Nb] Chemical compound [Cu].[Nb] RFDFPOGXFHHCII-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000013521 mastic Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/70—Insulation of connections
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
- C23F13/06—Constructional parts, or assemblies of cathodic-protection apparatus
- C23F13/08—Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
- C23F13/20—Conducting electric current to electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/46—Bases; Cases
- H01R13/52—Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R43/00—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
- H01R43/005—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for making dustproof, splashproof, drip-proof, waterproof, or flameproof connection, coupling, or casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02G—INSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
- H02G15/00—Cable fittings
- H02G15/013—Sealing means for cable inlets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/02—Soldered or welded connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/10—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
- H01R4/18—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
- H01R4/20—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping using a crimping sleeve
Definitions
- This invention relates generally to cathodic protection systems and more particularly to devices for insulating and sealing electrical connections between a wire or strip anode and a cable or other structure to be protected.
- connection or joint When wire type and rod type anodes are connected to the lead wire or conductor cable for the anode/anode assembly, the connection or joint must be both electrically sound and waterproof. If the connection is not waterproof, there is an almost certain risk of connection failure. To that end, various approaches have been taken to seal the electrical joint and isolate it from the ambient surroundings. Connection failures typically occur because the anode connection is almost always in some electrolyte, such as soil or water. As the DC current flows through the electrical joint and if it is exposed to the moisture or soil, it will corrode and fail.
- the anode used is generally made of a noble metal combination, such as mixed metal oxide (MMO) over titanium or platinum over niobium copper.
- MMO mixed metal oxide
- other anode materials may be used.
- the electrical joint connecting a wire or ribbon anode to a cable or other elongated structure has been sealed and insulated using a series of steps of hand applied materials.
- the electrical joint is covered by heat shrink sleeve that may or may not contain a mastic or sealant that melts when heated.
- the sleeve is slid over the connection and heated with a heat gun either electric or propane.
- the process is all done by hand.
- Matcor, Inc. a well known company in the field of cathodic protection systems, and which is the licensee of the subject invention, has typically taken the foregoing approach to sealing and insulating wire anode joints.
- connection (the electrical joint) with a sealant, such as 3M SKOTCHKOTETM structural polyurea coating, sliding a heat shrinkable sleeve over the connection, partially heating the heat shrinkable sleeve and while it is still open at one end and then injecting an additional sealing material, e.g., a hot melt sealant, into the sleeve using a hot melt gun. After that is accomplished the heat shrinkable sleeve is heated further to finishing heating and shrinking it about the joint.
- a brush-on sealer such as the 3M SKOTCHKOTETM structural polyurea coating and then wrapped with two layers of tape. This connection is rarely used today.
- a sealing device for insulating and sealing a joint electrically connecting an elongated anode (e.g., a wire or ribbon anode) to an elongated electrical conductor (e.g., a stranded cable).
- the elongated electrical conductor has an electrically insulating covering (e.g., KYNAR® polyvinylidene fluoride (PVDF) thereon except at an open region where the wire anode is connected to the elongated electrical conductor.
- PVDF polyvinylidene fluoride
- the sealing device comprises a body of an insulating material (e.g., KYNAR® polyvinylidene fluoride, high molecular weight polyethylene, etc.) molded in situ about the joint to completely cover the joint and bond to portions of the electrically insulating covering contiguous with the open region to thereby insulate the joint and prevent the ingress of water or other materials into the joint.
- an insulating material e.g., KYNAR® polyvinylidene fluoride, high molecular weight polyethylene, etc.
- a joint electrically connecting an elongated anode to an elongated electrical conductor.
- the elongated electrical conductor has an electrically insulating covering thereon except at an open region where the elongated anode is connected to the elongated electrical conductor.
- the joint additionally comprises a sealing device comprising a body of an insulating material molded in situ about the joint to completely cover the joint and bond to portions of the electrically insulating covering contiguous with the open region to thereby insulate the joint and prevent the ingress of water or other materials into the joint.
- a method for insulating and sealing a joint electrically connecting an elongated anode to an elongated electrical conductor The elongated electrical conductor has an electrically insulating covering thereon except at an open region where the elongated anode is connected to the elongated electrical conductor.
- the method comprises molding a body of an insulating material in situ about the joint to completely cover the joint and bond to portions of the electrically insulating covering contiguous with the open region to thereby insulate the joint and prevent the ingress of water or other materials into the joint.
- Fig.l is a side elevation view of a portion of a wire anode electrically connected to an electrical cable at an electrical joint, which has been insulated and rendered waterproof by use of a sealing device formed in accordance with one aspect of this invention
- Fig. 2 is a side elevation view, similar to Fig. 1 , but showing a portion of the sealing device broken away along a vertical section, to show the details of the electrical joint;
- Fig. 3 is an enlarged sectional view taken along line 3 - 3 of Fig. 2; and Fig. 4 is a vertical sectional view, similar to Fig. 3, showing the formation of the sealing device shown in Figs. 1 - 3.
- a sealing device 20 for insulating and sealing a joint electrically connecting an elongated wire or ribbon anode 22 to an elongated electrical conductor, e.g., a cable 24.
- an elongated electrical conductor e.g., a cable 24.
- the anode 22 is an elongated thin flexible member, e.g., a wire, a ribbon, a tube, etc., which can be any conventional construction and is formed of an electrically conductive material, e.g., a noble metal combination, such as a mixed metal oxide (MMO) over titanium or platinum over niobium/copper, or any other conventional anode materials.
- the cable 24 can also be of any conventional construction.
- the cable 24 comprises a plurality of electrically conductive, e.g., copper, strands or filaments 24A having an electrically insulating covering or coating 24B, e.g., KYNAR® polyvinylidene fluoride, thereon.
- the sealing device 20 is molded in situ, e.g., injection molded (as will be described later with reference to Fig. 4), about the electrical joint 26 connecting the anode 22 to the cable 24 to establish a waterproof/insulation covering for the anode-to-cable connection.
- the electrical connection between the anode 22 and the cable 24 at the joint 26 is effected by use of an electrically conductive crimp sleeve 28.
- a portion of the insulation 24A of the cable is removed at the point where the electrical connection is to be made. This creates an open region 30 exposing the electrical strands or filaments 24A.
- a portion of the elongated anode 24 is disposed over the filaments 24A in the region 30 and the crimp sleeve 28 is disposed thereabout.
- the sleeve is then crimped in place to result in tightly compressing the underlying portion of the wire anode 22 into engagement with the strands 24A of the cable, as best seen in Fig. 3, thereby electrically connecting the anode to the cable's conductive filaments.
- the anode may be soldered, welded or brazed to the filaments of the cable at the open region 30.
- the sealing device is 20 formed and applied to the joint 26 as best seen in Fig. 4 by disposing a hollow injection mold 32 about the joint 26 and injection molding the device on the joint.
- the mold 32 includes a cylindrically shaped cavity having a tapered leading end and a tapered trailing end. The outside diameter of the cylindrical portion of the cavity is greater than the outside diameter of the joint 26 to create an annular space therebetween.
- the mold 32 includes an inlet port 34 into which a flowable insulating material is injected to fill the annular space with the insulating material. Moreover, the flowable insulating material fills up all of the voids in the joint which are contiguous with the annular space surrounding the joint, thereby totally encapsulating the joint.
- the flowable insulating material comprises the same material as that making up the insulation 24B on the cable 24 so that when it is injected into the mold and sets up (hardens) it chemically bonds to the insulation of the cable thereby forming a body which is bonded to the joint, e.g., is integral with the cable insulation on either sides of the joint.
- the material injected into the mold to form the body of the sealing device 20 may be of different material than that found in the cable insulation in order to provide addition benefits.
- the molding of the body of the sealing device in situ on the joint has the effect of bonding that body to the joint and to the insulation of the cable on either side of the joint. This results in a joint which is electrically insulated and waterproof.
- the following constitutes one exemplary embodiment of a typical electrical joint 26 sealed and insulated by a sealing device 20 constructed in accordance with this invention.
- the anode is a MMO wire anode which is either of 0.31" or 0.62" outside diameter.
- the cable 24 is composed of stranded and annealed copper wires 24B which are covered by a high molecular weight polyethylene (HMWPE or
- HMPE HMPE insulating cover or coating 24B.
- the outside diameter of the cable 24 with the 0.31" anode is 0.36", and is 0.4" with the 0.62" anode.
- the length of the open region 30 is approximately 1.375".
- the length of the crimp sleeve 28 is approximately 1.2", with the outside diameter of the sleeve being 0.365", but will vary with the crimp.
- the length of the body of the sealing device 20 is approximately 3.31", with an outside diameter of 0.5".
- the length of each of the tapered ends of the sealing device 20 is 0.5".
- the subject invention has been disclosed for effecting the insulation and sealing of an electrical joint between a wire or ribbon anode and an insulated cable, this invention is not so limited. Thus, it is contemplated that the subject invention can be used in any suitable cathodic protection system making use of a thin, elongated anode.
- the sealing device and method of making it does not rely on the workmanship of the person applying it.
- the quality of the resulting sealed joint will be consistent.
- the device of this invention is chemically bonded to the insulated conductor cable and can be of the same material as the insulation on the insulated cable to ensure a good bond. This means that it is not possible for the waterproofing/sealant to be pulled off, as is the case with the prior art usage heat shrink sleeves to effect insulation and sealing.
- the conductor cable 24 can stretch, with the heat shrink sleeve remaining of the same length as when initially applied, thereby leaving the bare conductors (e.g., the copper strands) of the joint exposed.
- the subject invention can make use of any material, such as KYNAR® polyvinylidene fluoride, which is commonly used as cable insulation for protection against chlorine. It is not easy to cover a KYNAR® polyvinylidene fluoride insulated cable - wire anode joint with a heat shrinkable sleeve, like used in the prior art. With the subject invention, that is not an issue.
- the sealing device of the subject invention is molded in situ about the joint, the insulating material making up the body will fill all of the cavities and voids at the joint. This should be contrasted with the prior art where voids can and do frequently occur.
- the thickness of the insulation/sealing body formed over the joint with this invention will be more uniform than with the prior art. The uniform covering thickness offers better electrical protection to the connection.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Cable Accessories (AREA)
- Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)
Abstract
A sealing device and method of making it for insulating and sealing a joint electrically connecting a wire or ribbon anode to an electrical cable. The cable is insulated except at an open region where the wire anode is connected to it. The sealing device comprises a body of an insulating material molded in situ about the electrical joint to completely cover it and bond to portions of the electrically insulating covering contiguous with the joint to thereby insulate the joint and prevent the ingress of water or other materials into the joint.
Description
SEAL FOR ANODE CONNECTION TO CABLE AND METHOD OF USE
FIELD OF THE INVENTION
This invention relates generally to cathodic protection systems and more particularly to devices for insulating and sealing electrical connections between a wire or strip anode and a cable or other structure to be protected.
BACKGROUND OF THE INVENTION
When wire type and rod type anodes are connected to the lead wire or conductor cable for the anode/anode assembly, the connection or joint must be both electrically sound and waterproof. If the connection is not waterproof, there is an almost certain risk of connection failure. To that end, various approaches have been taken to seal the electrical joint and isolate it from the ambient surroundings. Connection failures typically occur because the anode connection is almost always in some electrolyte, such as soil or water. As the DC current flows through the electrical joint and if it is exposed to the moisture or soil, it will corrode and fail. Where the structure to be protected comprises a cable, whose conductors are typically copper the anode used is generally made of a noble metal combination, such as mixed metal oxide (MMO) over titanium or platinum over niobium copper. However other anode materials may be used.
Heretofore the electrical joint connecting a wire or ribbon anode to a cable or other elongated structure has been sealed and insulated using a series of steps of hand applied materials. In the simplest form, the electrical joint is covered by heat shrink sleeve that may or may not contain a mastic or sealant that melts when heated. The sleeve is slid over the connection and heated with a heat gun either electric or propane. The process is all done by hand. Matcor, Inc., a well known company in the field of cathodic protection systems, and which is the licensee of the subject invention, has typically taken the foregoing approach to sealing and insulating wire anode joints. In particular, the standard connection made by Matcor, Inc. consists of several steps including: brushing the connection (the electrical joint) with a sealant, such as 3M SKOTCHKOTE™ structural polyurea coating, sliding a heat shrinkable sleeve over the connection, partially heating the heat shrinkable sleeve and while it is still open at one end and then injecting an additional sealing material, e.g., a hot melt sealant, into the sleeve using a hot melt gun. After that is accomplished the heat shrinkable sleeve is heated further to finishing heating and shrinking it about the joint.
In some simple older forms of waterproofing, the electrical joint is covered with a brush-on sealer such as the 3M SKOTCHKOTE™ structural polyurea coating and then wrapped with two layers of tape. This connection is rarely used today.
As should be appreciated by those skilled in the art, all of the above prior art approaches to sealing the electrical joint rely on the workmanship of the person doing the work, so that in some cases a the joint may not be sealed and insulated properly. The subject invention addresses that problem.
All references cited and/or identified herein are specifically incorporated by reference herein.
SUMMARY OF THE INVENTION
In accordance with one aspect of the invention there is provided a sealing device for insulating and sealing a joint electrically connecting an elongated anode (e.g., a wire or ribbon anode) to an elongated electrical conductor (e.g., a stranded cable). The elongated electrical conductor has an electrically insulating covering (e.g., KYNAR® polyvinylidene fluoride (PVDF) thereon except at an open region where the wire anode is connected to the elongated electrical conductor. The sealing device comprises a body of an insulating material (e.g., KYNAR® polyvinylidene fluoride, high molecular weight polyethylene, etc.) molded in situ about the joint to completely cover the joint and bond to portions of the electrically insulating covering contiguous with the open region to thereby insulate the joint and prevent the ingress of water or other materials into the joint.
In accordance with another aspect of this invention there is provided a joint electrically connecting an elongated anode to an elongated electrical conductor. The elongated electrical conductor has an electrically insulating covering thereon except at an open region where the elongated anode is connected to the elongated electrical conductor. The joint additionally comprises a sealing device comprising a body of an insulating material molded in situ about the joint to completely cover the joint and bond to portions of the electrically insulating covering contiguous with the open region to thereby insulate the joint and prevent the ingress of water or other materials into the joint.
In accordance with still another aspect of this invention there is provided a method for insulating and sealing a joint electrically connecting an elongated anode to an elongated electrical conductor. The elongated electrical conductor has an electrically insulating covering thereon except at an open region where the elongated
anode is connected to the elongated electrical conductor. The method comprises molding a body of an insulating material in situ about the joint to completely cover the joint and bond to portions of the electrically insulating covering contiguous with the open region to thereby insulate the joint and prevent the ingress of water or other materials into the joint.
DESCRIPTION OF THE DRAWING
Fig.l is a side elevation view of a portion of a wire anode electrically connected to an electrical cable at an electrical joint, which has been insulated and rendered waterproof by use of a sealing device formed in accordance with one aspect of this invention;
Fig. 2 is a side elevation view, similar to Fig. 1 , but showing a portion of the sealing device broken away along a vertical section, to show the details of the electrical joint;
Fig. 3 is an enlarged sectional view taken along line 3 - 3 of Fig. 2; and Fig. 4 is a vertical sectional view, similar to Fig. 3, showing the formation of the sealing device shown in Figs. 1 - 3.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the various figures of the drawing wherein like reference characters refer to like parts, there is shown in Fig. 1 a sealing device 20 for insulating and sealing a joint electrically connecting an elongated wire or ribbon anode 22 to an elongated electrical conductor, e.g., a cable 24. Some details of the anode 22 and the cable 24 will be described later. Suffice it for now to state that the anode 22 is an elongated thin flexible member, e.g., a wire, a ribbon, a tube, etc., which can be any conventional construction and is formed of an electrically conductive material, e.g., a noble metal combination, such as a mixed metal oxide (MMO) over titanium or platinum over niobium/copper, or any other conventional anode materials. The cable 24 can also be of any conventional construction. In the embodiment shown the cable 24 comprises a plurality of electrically conductive, e.g., copper, strands or filaments 24A having an electrically insulating covering or coating 24B, e.g., KYNAR® polyvinylidene fluoride, thereon.
In accordance with one preferred aspect of this invention the sealing device 20 is molded in situ, e.g., injection molded (as will be described later with reference to Fig. 4), about the electrical joint 26 connecting the anode 22 to the cable 24 to establish a waterproof/insulation covering for the anode-to-cable connection. In the
exemplary embodiment shown the electrical connection between the anode 22 and the cable 24 at the joint 26 is effected by use of an electrically conductive crimp sleeve 28. To that end, a portion of the insulation 24A of the cable is removed at the point where the electrical connection is to be made. This creates an open region 30 exposing the electrical strands or filaments 24A. A portion of the elongated anode 24 is disposed over the filaments 24A in the region 30 and the crimp sleeve 28 is disposed thereabout. The sleeve is then crimped in place to result in tightly compressing the underlying portion of the wire anode 22 into engagement with the strands 24A of the cable, as best seen in Fig. 3, thereby electrically connecting the anode to the cable's conductive filaments. It should be pointed out at this juncture that in lieu of using a crimp sleeve to effect the electrical interconnection of the anode to the cable, other means can be used. For example, the anode may be soldered, welded or brazed to the filaments of the cable at the open region 30.
Irrespective of how the electrical joint 26 is produced, it must be insulated and sealed to protect it from the environment in which it will be disposed. That is the function of the sealing device 20. The sealing device is 20 formed and applied to the joint 26 as best seen in Fig. 4 by disposing a hollow injection mold 32 about the joint 26 and injection molding the device on the joint. The mold 32 includes a cylindrically shaped cavity having a tapered leading end and a tapered trailing end. The outside diameter of the cylindrical portion of the cavity is greater than the outside diameter of the joint 26 to create an annular space therebetween. The mold 32 includes an inlet port 34 into which a flowable insulating material is injected to fill the annular space with the insulating material. Moreover, the flowable insulating material fills up all of the voids in the joint which are contiguous with the annular space surrounding the joint, thereby totally encapsulating the joint.
In accordance with one preferred aspect of this invention the flowable insulating material comprises the same material as that making up the insulation 24B on the cable 24 so that when it is injected into the mold and sets up (hardens) it chemically bonds to the insulation of the cable thereby forming a body which is bonded to the joint, e.g., is integral with the cable insulation on either sides of the joint. However, there will be other cases where the material injected into the mold to form the body of the sealing device 20 may be of different material than that found in the cable insulation in order to provide addition benefits. In any case the molding of the body of the sealing device in situ on the joint has the effect of bonding that
body to the joint and to the insulation of the cable on either side of the joint. This results in a joint which is electrically insulated and waterproof.
As will be appreciated by those skilled in the art, in practice a plurality of electrical joints 26 will be made at sequentially spaced locations along a long cable. Each joint will be sealed and insulated as discussed above.
The following constitutes one exemplary embodiment of a typical electrical joint 26 sealed and insulated by a sealing device 20 constructed in accordance with this invention. The anode is a MMO wire anode which is either of 0.31" or 0.62" outside diameter. The cable 24 is composed of stranded and annealed copper wires 24B which are covered by a high molecular weight polyethylene (HMWPE or
HMPE) insulating cover or coating 24B. The outside diameter of the cable 24 with the 0.31" anode is 0.36", and is 0.4" with the 0.62" anode. The length of the open region 30 is approximately 1.375". The length of the crimp sleeve 28 is approximately 1.2", with the outside diameter of the sleeve being 0.365", but will vary with the crimp. The length of the body of the sealing device 20 is approximately 3.31", with an outside diameter of 0.5". The length of each of the tapered ends of the sealing device 20 is 0.5".
While the subject invention has been disclosed for effecting the insulation and sealing of an electrical joint between a wire or ribbon anode and an insulated cable, this invention is not so limited. Thus, it is contemplated that the subject invention can be used in any suitable cathodic protection system making use of a thin, elongated anode.
As should be appreciated from the foregoing the subject invention offers various advantages over the prior art. For example, the sealing device and method of making it does not rely on the workmanship of the person applying it. Thus, the quality of the resulting sealed joint will be consistent. This very important on linear anodes where as many as one hundred forty (140) connections may exist for one assembly. The device of this invention is chemically bonded to the insulated conductor cable and can be of the same material as the insulation on the insulated cable to ensure a good bond. This means that it is not possible for the waterproofing/sealant to be pulled off, as is the case with the prior art usage heat shrink sleeves to effect insulation and sealing. Moreover, when the anode assembly of the prior art is pulled or placed under tension the conductor cable 24 can stretch, with the heat shrink sleeve remaining of the same length as when initially applied,
thereby leaving the bare conductors (e.g., the copper strands) of the joint exposed. As mentioned above, the subject invention can make use of any material, such as KYNAR® polyvinylidene fluoride, which is commonly used as cable insulation for protection against chlorine. It is not easy to cover a KYNAR® polyvinylidene fluoride insulated cable - wire anode joint with a heat shrinkable sleeve, like used in the prior art. With the subject invention, that is not an issue. Further still, since the sealing device of the subject invention is molded in situ about the joint, the insulating material making up the body will fill all of the cavities and voids at the joint. This should be contrasted with the prior art where voids can and do frequently occur. In addition, the thickness of the insulation/sealing body formed over the joint with this invention will be more uniform than with the prior art. The uniform covering thickness offers better electrical protection to the connection.
Without further elaboration the foregoing will so fully illustrate our invention that others may, by applying current or future knowledge, adopt the same for use under various conditions of service.
Claims
1. A sealing device for insulating and sealing a joint electrically connecting an elongated anode to an elongated electrical conductor, the elongated electrical conductor having an electrically insulating covering thereon except at an open region where the wire anode is connected to the elongated electrical conductor, said sealing device comprising a body of an insulating material molded in situ about the joint to completely cover the joint and bond to portions of the electrically insulating covering contiguous with the open region to thereby insulate the joint and prevent the ingress of water or other materials into the joint.
2. The sealing device of Claim 1 wherein said material of said sealing device is the same as the material making up the electrically insulated covering of the elongated electrical conductor.
3. The sealing device of Claim 2 wherein said material of said sealing device comprises KYNAR® polyvinylidene fluoride.
4. The sealing device of Claim 1 wherein said material of said sealing device comprises high molecular weight polyethylene.
5. The sealing device of Claim 1 wherein said body has a tapered leading end and a tapered trailing end.
6. A joint electrically connecting an elongated anode to an elongated electrical conductor, said elongated electrical conductor having an electrically insulating covering thereon except at an open region where said elongated anode is connected to said elongated electrical conductor, said joint additionally comprising a sealing device comprising a body of an insulating material molded in situ about the joint to completely cover the joint and bond to portions of said electrically insulating covering contiguous with said open region to thereby insulate said joint and prevent the ingress of water or other materials into said joint.
7. The joint of Claim 6 wherein said elongated anode is a wire anode.
8. The joint of Claim 6 wherein said elongated anode is a ribbon anode.
9. The joint of Claim 6 wherein said joint additionally comprises an electrically conductive sleeve surrounding and engaging said elongated electrical conductor and said elongated anode.
10. The joint of Claim 6 wherein said material of said sealing device is the same as said material making up said electrically insulated covering of said elongated electrical conductor.
11. The joint of Claim 10 wherein said material of said sealing device comprises KYNAR® polyvinylidene fluoride.
12. The joint of Claim 6 wherein said material of said sealing device comprises high molecular weight polyethylene.
13. The joint of Claim 6 wherein said body has a tapered leading end and a tapered trailing end.
14. The joint of Claim 6 wherein said elongated anode is a mixed metal oxide anode
15. The joint of Claim 6 wherein said elongated anode is a noble metal anode.
16. A method for insulating and sealing a joint electrically connecting an elongated anode to an elongated electrical conductor, the elongated electrical conductor having an electrically insulating covering thereon except at an open region where the elongated anode is connected to the elongated electrical conductor, said method comprising:
molding a body of an insulating material in situ about the joint to completely cover the joint and bond to portions of the electrically insulating covering contiguous with the open region to thereby insulate the joint and prevent the ingress of water or other materials into the joint.
17. The method of Claim 16 wherein the joint is formed by providing an electrically conductive sleeve around the elongated electrical conductor and the elongated anode to electrically engage them both.
18. The method of Claim 16 wherein said elongated anode is a wire anode.
19. The method of Claim 16 wherein said elongated anode is a ribbon anode.
20. The method of Claim 16 wherein said material of said body is the same as the material making up the electrically insulated covering of the elongated electrical conductor.
21. The method of Claim 20 wherein said material of said body comprises KYNAR® polyvinylidene fluoride.
22. The method of Claim 16 wherein said material of said sealing device comprises high molecular weight polyethylene.
23. The method of Claim 16 wherein said body has a tapered leading end and a tapered trailing end.
24. The method of Claim 16 wherein the elongated anode and the elongated electrical conductor include plural joints electrically connecting them at spaced locations therealong and wherein said method comprises molding a body of an insulating material in situ about each of said joints.
25. The method of Claim 16 wherein said body is injection molded in situ on the joint.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2010/057760 WO2012071032A1 (en) | 2010-11-23 | 2010-11-23 | Seal for anode connection to cable and method of use |
CN201080071131.9A CN103403969B (en) | 2010-11-23 | 2010-11-23 | Connect anode seal and the using method thereof of cable |
CA2818915A CA2818915A1 (en) | 2010-11-23 | 2010-11-23 | Seal for anode connection to cable and method of use |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2010/057760 WO2012071032A1 (en) | 2010-11-23 | 2010-11-23 | Seal for anode connection to cable and method of use |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012071032A1 true WO2012071032A1 (en) | 2012-05-31 |
Family
ID=44140953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/057760 WO2012071032A1 (en) | 2010-11-23 | 2010-11-23 | Seal for anode connection to cable and method of use |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN103403969B (en) |
CA (1) | CA2818915A1 (en) |
WO (1) | WO2012071032A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022225713A1 (en) * | 2021-04-20 | 2022-10-27 | Arkema Inc. | Sealing coating for wire and cable application |
US20240294368A1 (en) * | 2022-10-04 | 2024-09-05 | Altec Industries, Inc. | Electrical insulation liner for aerial lift platform door |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104752936B (en) * | 2013-12-31 | 2019-01-22 | 北京铱钵隆芯科技有限责任公司 | The extension method of the method and detonator wire that are electrically connected between conducting wire |
US9850584B2 (en) * | 2014-06-23 | 2017-12-26 | Matcor, Inc. | Anode assembly with reduced attenuation properties for cathodic protection systems |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1349842A (en) * | 1970-03-19 | 1974-04-10 | British Insulated Callenders | Electric cable joints and methods of making them |
US3970488A (en) * | 1975-03-07 | 1976-07-20 | Townsend And Townsend | Method and apparatus for molding splices in cables |
US4195197A (en) * | 1978-11-08 | 1980-03-25 | Federated Metals Corporation | Corrosion resistant URD cable |
US4292099A (en) * | 1979-03-12 | 1981-09-29 | Amp Incorporated | Method for environmentally sealing a wire splice |
US5185921A (en) * | 1991-04-24 | 1993-02-16 | Materials Protection Company | Method of making a string of cathodic protection anodes |
GB2319906A (en) * | 1996-11-28 | 1998-06-03 | Alsthom Cge Alcatel | Cable sealing method |
CN2600585Y (en) * | 2003-01-31 | 2004-01-21 | 张宗旺 | Spring magnesium band anode device |
-
2010
- 2010-11-23 CN CN201080071131.9A patent/CN103403969B/en not_active Expired - Fee Related
- 2010-11-23 CA CA2818915A patent/CA2818915A1/en not_active Abandoned
- 2010-11-23 WO PCT/US2010/057760 patent/WO2012071032A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1349842A (en) * | 1970-03-19 | 1974-04-10 | British Insulated Callenders | Electric cable joints and methods of making them |
US3970488A (en) * | 1975-03-07 | 1976-07-20 | Townsend And Townsend | Method and apparatus for molding splices in cables |
US4195197A (en) * | 1978-11-08 | 1980-03-25 | Federated Metals Corporation | Corrosion resistant URD cable |
US4292099A (en) * | 1979-03-12 | 1981-09-29 | Amp Incorporated | Method for environmentally sealing a wire splice |
US5185921A (en) * | 1991-04-24 | 1993-02-16 | Materials Protection Company | Method of making a string of cathodic protection anodes |
GB2319906A (en) * | 1996-11-28 | 1998-06-03 | Alsthom Cge Alcatel | Cable sealing method |
CN2600585Y (en) * | 2003-01-31 | 2004-01-21 | 张宗旺 | Spring magnesium band anode device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022225713A1 (en) * | 2021-04-20 | 2022-10-27 | Arkema Inc. | Sealing coating for wire and cable application |
US20240294368A1 (en) * | 2022-10-04 | 2024-09-05 | Altec Industries, Inc. | Electrical insulation liner for aerial lift platform door |
US12280994B2 (en) * | 2022-10-04 | 2025-04-22 | Altec Industries, Inc. | Electrical insulation liner for aerial lift platform door |
Also Published As
Publication number | Publication date |
---|---|
CA2818915A1 (en) | 2012-05-31 |
CN103403969B (en) | 2016-06-01 |
CN103403969A (en) | 2013-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104882688B (en) | CA cable assembly with the terminal with encapsulation wire end | |
US7905755B1 (en) | Electrical terminal connection with sealed core crimp | |
AU2009212879B2 (en) | Apparatus for a Connection Point between Two Electrical High Voltage Cables | |
US8591243B2 (en) | Plug for moisture-protected electrical plug connection | |
US8502074B2 (en) | Seal for anode connection to cable and method of use | |
US20110067238A1 (en) | Method of making an improved electrical connection with sealed cable core and a terminal | |
JP2009230998A (en) | Electric wire with terminal fitting and method of manufacturing the same | |
CN102474090A (en) | A joint for a submarine cable | |
WO2012071032A1 (en) | Seal for anode connection to cable and method of use | |
NZ200757A (en) | Cable joint insulation:rollable elastic sleeves | |
CN112739909A (en) | Down conductor connection system, wind turbine lightning protection system and method for arranging down conductor connection system | |
JP2016225051A (en) | Terminal connection structure for wire end, and manufacturing method thereof | |
EP2661161A1 (en) | Sealing arrangment for cable entry of an overmolded electronic component | |
JP6623072B2 (en) | Electric wire / cable connection structure and electric wire / cable connection method | |
JP2015186296A (en) | Water proof structure of insulation covered cable and wiring harness | |
US7955108B2 (en) | Cable end joint assembly | |
US20120211259A9 (en) | Cable assembly | |
KR101219790B1 (en) | Cable connecting method of ptc heating system | |
JP6912295B2 (en) | Wire with terminal | |
JP5391613B2 (en) | How to shut off shield wire | |
US6459074B1 (en) | Encapsulation for the connection end or the termination end of an electric strip heater cable, and a method for producing it | |
JP2015185274A (en) | Water stop structure of insulation cable, and wire harness | |
US20050252674A1 (en) | Electrical junction | |
JP2020036472A (en) | How to stop water in bundles of wires | |
JP2016192258A (en) | Water cutoff structure for wiring harness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10788450 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2818915 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10788450 Country of ref document: EP Kind code of ref document: A1 |