[go: up one dir, main page]

WO2012070483A1 - Flexible device, method for manufacturing same, and display device - Google Patents

Flexible device, method for manufacturing same, and display device Download PDF

Info

Publication number
WO2012070483A1
WO2012070483A1 PCT/JP2011/076639 JP2011076639W WO2012070483A1 WO 2012070483 A1 WO2012070483 A1 WO 2012070483A1 JP 2011076639 W JP2011076639 W JP 2011076639W WO 2012070483 A1 WO2012070483 A1 WO 2012070483A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
conductive substrate
conductive
insulating
Prior art date
Application number
PCT/JP2011/076639
Other languages
French (fr)
Japanese (ja)
Inventor
松本 晋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012070483A1 publication Critical patent/WO2012070483A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/01Manufacture or treatment
    • H10D86/021Manufacture or treatment of multiple TFTs
    • H10D86/0214Manufacture or treatment of multiple TFTs using temporary substrates

Definitions

  • the present invention relates to a flexible device, a manufacturing method thereof, and a display device, and more particularly to a flexible device that is hardly affected by static electricity, a manufacturing method thereof, and a display device.
  • liquid crystal display devices can be made thinner, smaller and lighter, their use is expanding in various fields.
  • Such a liquid crystal display device has been conventionally formed on a glass substrate.
  • the glass substrate is fragile, there is a problem of mechanical reliability if it is made thin. Further, since the glass substrate is used, there is a problem that the liquid crystal display device cannot be flexibly bent.
  • TFT thin film transistors
  • Japanese Unexamined Patent Publication No. 2006-165124 discloses a flexible device in which a conductive layer is formed on an insulating flexible substrate made of polyethylene terephthalate, and this conductive layer is covered with an insulating cover layer made of polyimide. ing.
  • the flexible device when the flexible device is manufactured, static electricity generated when the flexible device is peeled off from the support substrate and transferred is easily charged to the insulating flexible substrate.
  • the static electricity charged on the flexible substrate may be discharged between the electronic device (Electro Static Discharge: hereinafter referred to as “ESD”), and the electronic device in the flexible device may be destroyed.
  • ESD Electro Static Discharge
  • the insulating cover layer is charged with static electricity, the electrical characteristics of the electronic device may vary. As described above, there is a problem that the flexible device is easily affected by charged static electricity.
  • an object of the present invention is to provide a flexible device that is not easily affected by charged static electricity and a method for manufacturing the same.
  • the first aspect of the present invention is: A flexible conductive substrate; a flexible insulating substrate laminated on the conductive substrate; An electronic device formed on the insulating substrate; An insulating film formed to cover the electronic device; A surface conductive film formed on the insulating film so as to cover the electronic device, The conductive substrate and the surface conductive film are electrically connected.
  • the conductive substrate is made of a polyimide resin mixed with carbon nanotubes
  • the insulating substrate is made of a polyimide resin not mixed with carbon nanotubes.
  • the surface conductive film and the conductive substrate have a surface resistivity capable of diffusing at least a part of charged static electricity.
  • the surface resistivity is 10E10 ⁇ / ⁇ or less.
  • the electronic device includes a thin film transistor.
  • connection layer formed between the insulating film and the insulating substrate and having one end electrically connected to the conductive substrate;
  • the surface conductive film is electrically connected to the conductive substrate through the connection layer.
  • the conductive substrate has a region not covered by the insulating substrate;
  • the surface conductive film is electrically connected to the region of the conductive substrate.
  • the surface conductive film is made of a polyimide resin mixed with carbon nanotubes, and extends from the insulating film to the conductive substrate.
  • the surface conductive film is made of a metal film extending from the insulating film to the conductive substrate.
  • the electronic device includes a self-luminous element and a semiconductor element that drives the self-luminous element,
  • the insulating film is made of a sealing material that seals the self-luminous element and the semiconductor element,
  • the surface conductive film is formed of a conductive film attached to the surface of the sealing material.
  • An eleventh aspect of the present invention is an active matrix display device for displaying an image, A plurality of gate lines, a plurality of source lines crossing the plurality of gate lines, and said plurality of gate wirings and said plurality of respective intersections corresponding pixel formation portions arranged in a matrix of the source wiring
  • a display unit comprising; A gate driver that selectively activates the plurality of gate lines; A source driver for applying an image signal representing an image to be displayed to the source wiring;
  • the pixel forming unit includes: A switching element that is turned on or off according to a signal applied to a corresponding gate wiring; A pixel electrode connected to the switching element and holding the image signal;
  • the switching element is a flexible device according to any one of the first to tenth inventions.
  • a twelfth aspect of the present invention is the eleventh aspect of the present invention,
  • the switching element is a thin film transistor according to a fifth invention,
  • the surface conductive film covers at least a channel region of the thin film transistor.
  • a thirteenth aspect of the present invention is the eleventh aspect of the present invention,
  • the pixel electrode and the surface conductive film are made of the same kind of transparent metal.
  • the fourteenth aspect of the present invention is Forming a flexible conductive substrate on the support substrate; Forming a flexible insulating substrate smaller than the conductive substrate on the conductive substrate; Forming an electronic device on the insulating substrate; Forming an insulating film on the electronic device; Forming a surface conductive film covering the electronic device and electrically connected to the conductive substrate; Pressing the adhesive film on the surface of the surface conductive film at least; Reducing the adhesion between the support substrate and the conductive substrate; And peeling the adhesive film in a direction away from the support substrate.
  • a fifteenth aspect of the present invention is the fourteenth aspect of the present invention.
  • the step of forming the conductive substrate includes a step of applying and curing a polyimide resin mixed with carbon nanotubes on the support substrate, It said step of forming an insulating substrate is characterized in that it comprises a step of curing by applying a polyimide resin not mixed with carbon nanotubes on the conductive substrate.
  • a sixteenth aspect of the present invention is the fourteenth aspect of the present invention,
  • the support substrate is a transparent substrate;
  • the step of weakening the adhesion at the interface includes a step of irradiating the conductive substrate with a laser beam having a wavelength absorbed by the conductive substrate through the transparent substrate.
  • a seventeenth aspect of the present invention is the fourteenth aspect of the present invention,
  • the method further includes a step of forming a release layer between the support substrate and the conductive substrate having a smaller adhesion and a smaller area than the conductive substrate,
  • the step of weakening the adhesion at the interface includes a step of cutting the conductive substrate, the release layer, and the support substrate along an end portion of the release layer.
  • An eighteenth aspect of the present invention is the fourteenth aspect of the present invention,
  • the thermal expansion coefficient of the support substrate is substantially equal to the thermal expansion coefficient of the insulating substrate.
  • a nineteenth aspect of the present invention is the fourteenth aspect of the present invention.
  • the step of forming the surface conductive film includes Before the step of forming the insulating film, forming a connection layer extending from the insulating substrate onto the conductive substrate and having one end electrically connected to the conductive substrate; In the step of forming the insulating film, the step of covering the connection layer with the electronic device together with the insulating film, Opening a contact hole reaching the connection layer in the insulating film;
  • the method includes a step of forming a metal film inside the contact hole and on the insulating film, and a step of patterning the metal film into a predetermined shape.
  • the electronic device is a bottom-gate thin film transistor
  • the connection layer is formed simultaneously with the gate electrode of the thin film transistor.
  • the electronic device is a top-gate thin film transistor
  • the connection layer is formed simultaneously with the gate electrode of the thin film transistor.
  • the step of forming the surface conductive film includes Forming an insulating film so as to cover the electronic device; A step of forming a polyimide resin film by applying and curing a polyimide resin mixed with carbon nanotubes on the insulating film and the insulating substrate; And patterning the polyimide resin film into a predetermined shape.
  • the step of forming the surface conductive film includes Forming a metal film on the insulating film and the conductive substrate; Patterning the metal film into a predetermined shape.
  • a twenty-fourth aspect of the present invention is the fourteenth aspect of the present invention
  • the electronic device includes a self-luminous element and a semiconductor element that drives the self-luminous element
  • the step of forming the electronic device includes: Mounting the self-luminous element and the semiconductor element on the insulating substrate; Sealing the self-luminous element and the semiconductor element with a sealing material,
  • the step of forming the surface conductive film includes a step of attaching a conductive film to the surface of the sealing material.
  • the surface conductive film is electrically connected to the conductive substrate, they have the same potential. Thereby, even if static electricity is charged in the surface conductive film or the conductive substrate, the electronic device sandwiched between them is not easily destroyed by ESD. Further, even if static electricity is charged on the surface conductive film or the conductive substrate, it is difficult to be affected by static electricity, so that the electrical characteristics of the electronic device are less likely to fluctuate.
  • the conductive substrate and the insulating substrate are made of polyimide resin.
  • the conductive substrate and the insulating substrate have a small coefficient of thermal expansion, heat resistance of at least about 300 ° C., resistance to chemicals used in the manufacturing process, high light transmittance, and outgas etc.
  • a flexible device that does not contaminate the apparatus can be formed.
  • the conductive substrate and the surface conductive film are electrically connected to each other by a material having a surface resistivity capable of diffusing at least a part of static electricity charged to them. Constitute.
  • the potential difference can be reduced to such an extent that ESD damage does not occur. Therefore, the flexible device is hardly damaged by ESD. Further, even if static electricity is charged on the surface conductive film or the conductive substrate, it is difficult to be affected by static electricity, so that the electrical characteristics of the electronic device are less likely to fluctuate.
  • the surface resistivity of the conductive substrate and the surface conductive film is 10E6 ⁇ / ⁇ or less, the same effect as that of the third invention is achieved.
  • the flexible device whose electronic device is a thin film transistor is less likely to be destroyed by ESD.
  • connection layer electrically connects the conductive substrate and the surface conductive film
  • the conductive substrate and the surface conductive film have the same potential.
  • the flexible device is less likely to be destroyed by ESD and is less susceptible to static electricity.
  • the seventh aspect of the present invention since the size of the insulating substrate is smaller than the size of the conductive substrate, the region where the surface of the conductive substrate not covered by the insulating substrate is exposed at the end of the insulating substrate. Appears. By utilizing this region, the surface conductive film can be easily and reliably electrically connected to the conductive substrate.
  • the surface conductive film is made of a polyimide resin mixed with carbon nanotubes, and extends from the insulating film to a region not covered by the insulating substrate on the conductive substrate. Thereby, the surface conductive film is easily and reliably electrically connected to the conductive substrate.
  • the surface conductive film extends from the insulating film to a region not covered by the insulating substrate on the conductive substrate. Therefore, the surface conductive film is easily and reliably electrically connected to the conductive substrate.
  • the self-luminous element and the semiconductor element are sandwiched between a flexible conductive substrate and a conductive film.
  • the self-luminous element and the semiconductor element are not easily affected by static electricity.
  • the switching element is hardly affected by static electricity.
  • the display device can be a flexible device.
  • the surface conductive film covers the channel region that is most susceptible to static electricity in the thin film transistor. Accordingly, the thin film transistor functioning as a switching element is not easily affected by static electricity.
  • the pixel electrode and the surface conductive film are made of the same type of transparent metal, they can be formed simultaneously. Thereby, a manufacturing process can be simplified.
  • static electricity is generated between the support substrate and the conductive substrate when the film attached to the surface of the insulating film is peeled off.
  • the conductive substrate is electrically connected to the surface conductive film, the generated static electricity is diffused to reduce the potential difference between the conductive substrate and the surface conductive film, or the potential difference between the conductive substrate and the surface conductive film is reduced. can do.
  • the electronic device is sandwiched between the support substrate and the conductive substrate having the same potential or a small potential difference, so that the electronic device is not easily destroyed by ESD and is not easily affected by static electricity.
  • a flexible conductive substrate and an insulating substrate are formed by applying and curing a polyimide resin.
  • a conductive substrate and an insulating substrate can be formed easily.
  • the surface resistivity of the conductive substrate is adjusted by the amount of carbon nanotubes mixed in the polyimide resin, the surface resistivity of the conductive substrate can be easily adjusted.
  • the conductive substrate and the insulating substrate have a small coefficient of thermal expansion, heat resistance of at least about 300 ° C., resistance to chemicals used in the manufacturing process, high light transmittance, The substrate does not contaminate the device.
  • the conductive substrate made of polyimide resin is irradiated with laser light through the transparent support substrate.
  • the conductive substrate absorbs the laser beam and causes ablation, so that the adhesion between the support substrate and the conductive substrate is weakened, and the conductive substrate is easily peeled from the support substrate.
  • a release layer having a weak adhesion and a small area is formed between the support substrate and the conductive substrate, and the conductive substrate, the release layer, and the support substrate are formed along the edge of the release layer. And disconnect. This facilitates peeling of the conductive substrate from the support substrate.
  • the thermal expansion coefficient of the support substrate and the thermal expansion coefficient of the polyimide resin constituting the insulating substrate are substantially equal, the thermal expansion coefficient of the polyimide resin constituting the conductive substrate is larger than those. Even if the case is small, the thermal expansion of the conductive substrate is suppressed by the support substrate and the insulating substrate. As a result, even if the conductive substrate is exposed to a high temperature in the manufacturing process, the insulating substrate is less likely to warp, so that the electronic device formed on the insulating substrate is prevented from being distorted.
  • the conductive substrate and the surface conductive film are electrically connected through the contact hole formed in the insulating film, it is possible to make the conductive substrate and the surface conductive film have the same potential. it can. As a result, the flexible device is less likely to be destroyed by ESD and is less susceptible to static electricity.
  • connection layer is formed simultaneously with the gate electrode of the bottom gate type thin film transistor, the manufacturing process can be simplified.
  • connection layer is formed simultaneously with the gate electrode of the top gate type thin film transistor, so that the manufacturing process can be simplified.
  • FIG. 1 It is a figure which shows the structure of the flexible device which concerns on the 1st Embodiment of this invention, More specifically, (a) is a top view of a flexible device, (b) is sectional drawing of a flexible device. (A)-(d) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 1st Embodiment. (E)-(g) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 1st Embodiment. (H)-(i) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 1st Embodiment.
  • FIG. 1 It is a figure which shows the structure of the flexible device which concerns on the 2nd Embodiment of this invention, More specifically, (a) is a top view of a flexible device, (b) is sectional drawing of a flexible device. (A)-(d) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 2nd Embodiment. (E)-(f) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 2nd Embodiment. (G)-(h) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 2nd Embodiment.
  • FIG. 1 It is a figure which shows the structure of the flexible device which concerns on the 3rd Embodiment of this invention, More specifically, (a) is a top view of a flexible device, (b) is sectional drawing of a flexible device. (A)-(d) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 3rd Embodiment. (E)-(f) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 3rd Embodiment. (G)-(h) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 3rd Embodiment.
  • FIG. 6 is a block diagram showing a configuration of a liquid crystal display device using TFTs included in the flexible device shown in the first to third embodiments.
  • (A)-(c) is each sectional drawing which shows the structure at the time of using the flexible device which concerns on 2nd Embodiment as a switching element of a liquid crystal display device.
  • (A)-(c) is each sectional drawing which shows the structure at the time of using the flexible device which concerns on 3rd Embodiment as a switching element of a liquid crystal display device.
  • FIG. 1 is a first diagram showing a configuration of a flexible device 10 according to the embodiment of the present invention, and more particularly, FIG. 1 (a) is a plan view of a flexible device 10, and FIG. 1 (b) FIG. 3 is a cross-sectional view of the flexible device 10.
  • the flexible device 10 includes a TFT 11 formed on a flexible substrate, and the flexible substrate is composed of two stacked layers.
  • the lower substrate is a conductive substrate 15 (hereinafter referred to as “backside conductive substrate”) whose surface resistivity is adjusted by mixing carbon nanotubes (hereinafter referred to as “CNT”) into polyimide resin in an appropriate amount in order to impart conductivity. 15 ”or“ conductive substrate ”).
  • backside conductive substrate whose surface resistivity is adjusted by mixing carbon nanotubes (hereinafter referred to as “CNT”) into polyimide resin in an appropriate amount in order to impart conductivity. 15 ”or“ conductive substrate ”).
  • the film thickness of the back conductive substrate 15 is, for example, 1 to 2 ⁇ m.
  • the surface resistivity is about 10E6 ⁇ / ⁇ , for example.
  • Layer of the substrate includes an insulating substrate 16 made of a polyimide resin not mixed with CNT (hereinafter, referred to as "insulating substrate 16"), and its sides, as shown in FIG. 1 (b), has a tapered.
  • the film thickness of the insulating substrate 16 is, for example, 1 to 50 ⁇ m.
  • the area of the insulating substrate 16 is smaller than the area of the back conductive substrate 15. For this reason, the surface of the back conductive substrate 15 around the insulating substrate 16 is exposed without being covered by the insulating substrate 16.
  • back conductive substrate 15 and the insulating substrate 16 are formed of polyimide resin. These substrates have a small coefficient of thermal expansion, heat resistance of at least about 300 ° C., resistance to chemicals used in the manufacturing process, high light transmittance, and outgas etc. This is because a substrate made of a polyimide resin satisfies these conditions.
  • a bottom gate type TFT 11 is formed on the surface of the insulating substrate 16. Specifically, a gate electrode 17 made of a metal such as a refractory metal is formed on the insulating substrate 16, and a gate insulating film 18 is formed so as to cover the entire insulating substrate 16 including the gate electrode 17.
  • An island-shaped channel layer 19 made of amorphous silicon is formed on the surface of the gate insulating film 18 so as to extend from side to side across the gate electrode 17.
  • a source region 20a and a source electrode 21a extending from the left surface of the channel layer 19 to the left are formed in this order, and a drain region 20b and a drain electrode 21b extending from the right surface of the channel layer 19 to the right are formed in this order.
  • the source electrode 21a is in ohmic contact with the channel layer 19 through the source region 20a
  • the drain electrode 21b is in ohmic contact with the channel layer 19 through the drain region 20b.
  • connection layer 22 made of the same metal as the gate electrode 17 is formed between the insulating substrate 16 and the gate insulating film 18.
  • the connection layer 22 extends from the surface of the insulating substrate 16 to the left side so as to cover the taper and onto the back conductive substrate 15, and is electrically connected to the surface of the back conductive substrate 15.
  • An interlayer insulating film 23 made of silicon nitride (SiNx) is formed so as to cover the insulating substrate 16 including the TFT 11 and the connection layer 22, and a planarizing film 25 made of a photosensitive resin is further formed on the interlayer insulating film 23. Yes.
  • the interlayer insulating film 23 and the planarizing film 25 may be collectively referred to as “insulating film”.
  • a surface conductive film 27 made of a transparent metal or an opaque metal is formed on the planarizing film 25 so as to cover the TFT 11.
  • a contact hole 26 reaching the connection layer 22 from the surface of the planarization film 25 through the planarization film 25 and the interlayer insulating film 23 is opened, and the surface conductive film 27 is connected to the connection layer through the contact hole 26. 22 is electrically connected.
  • the back conductive substrate 15 is made of polyimide resin adjusted to have a surface resistivity of 10E6 ⁇ / ⁇
  • the front conductive film 27 is made of transparent metal or opaque metal.
  • the back conductive substrate 15 and the front conductive film 27 are preferably made of a material that diffuses charged static electricity and equalizes their potentials.
  • the potential difference between the back surface conductive substrate 15 and the front surface conductive film 27 is diffused by diffusing at least a part of the charges charged in them. Can be reduced to such an extent that the TFT 11 sandwiched between them does not break by ESD.
  • the back surface conductive substrate 15 and the front surface conductive film 27 are electrically connected, and the surface resistivity is such that static electricity charged on the back surface conductive substrate 15 and the front surface conductive film 27 can be diffused at least slowly. They need to be configured by the materials they have.
  • the back conductive substrate 15 and the front conductive film 27 are formed using a material of 10E10 ⁇ / ⁇ or less.
  • the above description regarding the surface resistivity of the back surface conductive substrate 15 and the front surface conductive film 27 is similarly applied to second to fourth embodiments to be described later and modifications thereof.
  • FIG. 2A a liquid polyimide resin mixed with CNTs for imparting conductivity is applied onto a support substrate 12 such as a glass plate using a slit coating method or a spin coating method.
  • a support substrate 12 such as a glass plate using a slit coating method or a spin coating method.
  • the applied polyimide resin is heat treated (cured) at 300 ° C. for 1 hour.
  • the polyimide resin is cured, and the back conductive substrate 15 having a film thickness of 1 to 2 ⁇ m and a surface resistivity of 10E6 ⁇ / ⁇ is formed.
  • a polyimide resin not mixed with CNT is applied onto the back conductive substrate 15 by using a slit coat method or a spin coat method.
  • the applied polyimide resin is heat treated (cured) at 300 ° C. for 1 hour.
  • the polyimide resin is cured, and an insulating substrate 16 having a thickness of 2 to 50 ⁇ m is formed on the back conductive substrate 15.
  • the area of the insulating substrate 16 is smaller than the area of the back conductive substrate 15. For this reason, the surface of the back conductive substrate 15 around the insulating substrate 16 is exposed without being covered by the insulating substrate 16.
  • the back surface conductive substrate 15 and the insulating substrate 16 can be easily formed by applying and curing the polyimide resin. Moreover, since the surface resistivity of the back surface conductive substrate 15 is adjusted by the amount of CNT mixed in the polyimide resin, the surface resistivity of the back surface conductive substrate 15 can be easily adjusted.
  • a refractory metal such as molybdenum (Mo) or tungsten (W) is used by sputtering or vapor deposition so as to cover the entire back conductive substrate 15 including the insulating substrate 16.
  • a metal film (not shown) made of aluminum (Al) or the like is formed so as to have a film thickness of 330 nm, for example.
  • the gate electrode 17 and the connection layer 22 are formed by patterning the metal film.
  • the connection layer 22 is formed on the left side from the surface of the insulating substrate 16 so as to cover the taper and extend to the surface of the back conductive substrate 15.
  • connection layer 22 is formed by patterning a metal film formed by sputtering or the like, and is electrically connected to the surface of the back conductive substrate 15.
  • the connection layer 22 is formed by patterning a metal film formed by sputtering or the like, and is electrically connected to the surface of the back conductive substrate 15.
  • the electrical connection between the connection layer 22 and the back surface conductive substrate 15 can be easily and reliably performed.
  • the gate electrode 17 and the connection layer 22 can be formed at the same time, the manufacturing process can be simplified.
  • a gate insulating film 18 is formed by plasma CVD so as to cover the entire back conductive substrate 15 including the gate electrode 17 and the connection layer 22.
  • the gate insulating film 18 is made of, for example, silicon oxide (SiO 2 ) and has a film thickness of, for example, 200 to 500 nm.
  • an amorphous silicon film (not shown) is formed on the gate insulating film 18 using a plasma CVD method.
  • the amorphous silicon film is formed by a plasma CVD method using monosilane (SiH 4 ) gas and hydrogen (H 2 ) gas as source gases at a substrate temperature of 350 ° C.
  • the film thickness of the amorphous silicon film is, for example, 100 to 200 nm.
  • an amorphous silicon film (n + silicon film) containing a high concentration n-type impurity is formed on the amorphous silicon film by plasma CVD. Then, the n + silicon film and the amorphous silicon film are patterned in order. Thus, an island-shaped channel layer 19 extending left and right across the gate electrode 17 and an n + silicon layer 20 stacked thereon are formed. Note that the channel layer 19 may be made of polycrystalline silicon or microcrystalline silicon instead of amorphous silicon.
  • a source metal film (not shown) is formed by sputtering or vapor deposition.
  • the source metal film is made of a laminated metal laminated in the order of aluminum, titanium and aluminum, or a refractory metal such as molybdenum and tungsten, and has a film thickness of, for example, 50 to 400 nm.
  • the source metal film and the n + silicon layer 20 are patterned in this order. As a result, a source region 20a extending from the left surface of the channel layer 19 to the left and a source electrode 21a on the upper surface thereof, a drain region 20b extending from the right surface of the channel layer 19 to the right and a drain electrode 21b on the upper surface thereof are formed. .
  • an interlayer insulating film 23 made of silicon nitride is formed so as to cover the entire back conductive substrate 15 including the source electrode 21a and the drain electrode 21b.
  • the film thickness of the interlayer insulating film 23 is, for example, 200 to 300 nm.
  • the interlayer insulating film 23 and the gate insulating film 18 are etched in this order to form a contact hole 24 reaching the connection layer 22. .
  • a planarizing film 25 made of a photosensitive resin is formed on the interlayer insulating film 23 including the contact holes 24, and the planarizing film 25 is exposed and developed using a photomask. As a result, a contact hole 26 reaching the connection layer 22 through the planarizing film 25 and the contact hole 24 is opened.
  • a metal film (not shown) made of a transparent metal or an opaque metal is formed on the planarizing film 25 and in the contact hole 26, and the metal film is patterned to form a surface conductive film. 27 is formed.
  • the surface conductive film 27 thus formed is electrically connected to the connection layer 22 through the contact hole 26.
  • the front conductive film 27 is electrically connected to the back conductive substrate 15 through the connection layer 22.
  • a film 28 (hereinafter referred to as “adhesive film 28”) having a switching characteristic whose adhesiveness varies depending on temperature is pressed against the surface of the surface conductive film 27, so Affixed to the surfaces of the film 27 and the planarizing film 25.
  • a laser beam having a wavelength that is absorbed by the polyimide resin is irradiated from the back side of the support substrate 12 made of glass. The laser light passes through the support substrate 12 and is absorbed by the polyimide resin constituting the back conductive substrate 15, and causes ablation at the interface between the support substrate 12 and the back conductive substrate 15.
  • Ablation is a phenomenon in which the polyimide resin absorbs the energy of the laser beam, so that the chemical bond of the polyimide resin is broken and the surface layer evaporates in an instant. If ablation occurs, the adhesion between the back conductive substrate 15 and the support substrate 12 becomes weak. At this time, the back conductive substrate 15 on which the TFT 11 is formed is peeled off from the support substrate 12 by peeling the adhesive film 28 upward (in a direction away from the support substrate 12), and flexible as shown in FIG. Device 10 is manufactured.
  • the surface conductive film 27 is electrically connected to the back conductive substrate 15 via the connection layer 22.
  • the static electricity charged in the back surface conductive substrate 15 or the front surface conductive film 27 is diffused, and their potentials become equal.
  • the TFT 11 sandwiched between the back conductive substrate 15 and the front conductive film 27 is not easily destroyed by ESD.
  • the back conductive substrate 15 and the front conductive film 27 are formed of a material having a surface resistivity capable of diffusing at least part of static electricity charged on the back conductive substrate 15 and the front conductive film 27. Even if the potential difference cannot be completely eliminated, the potential difference can be reduced to such an extent that ESD damage does not occur.
  • the TFT 11 sandwiched between the back conductive substrate 15 and the front conductive film 27 can be made more difficult to be destroyed by ESD. Furthermore, even if static electricity is charged on the surface conductive film 27 or the back side conductive substrate 15, the electrical characteristics such as threshold voltage of the TFT11 is affected by static electricity becomes more difficult to change.
  • the manufacturing method of the flexible device 10 which concerns on this embodiment, when peeling the adhesive film 28 stuck to the surface of the surface conductive film 27 and the planarization film
  • the back surface conductive substrate 15 is electrically connected to the surface conductive film 27, the generated static electricity charges not only the back surface conductive substrate 15 but also the surface conductive film 27, and they have the same potential.
  • the TFT 11 is sandwiched between the front surface conductive film 27 and the back surface conductive substrate 15 having the same potential, the TFT 11 is not easily destroyed by ESD when the adhesive film 28 is peeled off.
  • the adhesive film 28 charged with static electricity is attached to the surface conductive film 27, the static electricity is charged to the surface conductive film 27.
  • the TFT 11 is not easily destroyed by ESD.
  • FIG. 5 is a diagram showing a configuration of the flexible device 30 according to the second embodiment of the present invention. More specifically, FIG. 5A is a plan view of the flexible device 30, and FIG. FIG. 3 is a cross-sectional view of the flexible device 30.
  • the same components as the flexible device 10 according to the first embodiment shown in FIG. 1 are designated by the same reference numerals, description thereof is omitted To do.
  • the flexible device 30 according to the present embodiment is similar to the flexible device 10 according to the first embodiment in that a back conductive substrate 15 and an insulating substrate 16 are provided on a support substrate (not shown). And a flexible substrate laminated. A bottom gate type TFT 11 is formed on the insulating substrate 16. The configuration of the TFT 11 is the same as the configuration of the TFT 11 of the first embodiment.
  • the flexible device 30 according to the present embodiment is not provided with the connection layer 22 that extends from the surface of the insulating substrate 16 onto the back conductive substrate 15. Therefore, the TFT 11 is formed on the right surface of the insulating substrate 16, but only the gate insulating film 18 and the interlayer insulating film 23 are laminated on the left surface.
  • a surface conductive film 47 is formed on the surface of the interlayer insulating film 23.
  • the surface conductive film 47 is made of a conductive resin such as a polyimide resin mixed with CNTs, for example.
  • the surface conductive film 47 covers the TFT 11, and one end of the surface conductive film 47 extends from the insulating substrate 16 to the back conductive substrate 15 so as to cover the taper and is electrically connected to the surface of the back conductive substrate 15.
  • the interlayer insulating film 23 may be referred to as an “insulating film”.
  • FIGS. 6A and 6B the process of forming the back conductive substrate 15 and the process of forming the insulating substrate 16 on the support substrate 12 such as a glass plate are performed as shown in FIG. And the process is the same as that shown in FIG.
  • a gate electrode 17 is formed on the insulating substrate 16.
  • the connection layer 22 is not formed.
  • the TFT 11 is formed as shown in FIGS. 6 (d) and 7 (e). Since these steps are the same as the steps shown in FIGS. 2D and 3E, their descriptions are omitted.
  • the gate insulating film 18 and the interlayer insulating film 23 stacked on the back conductive substrate 15 and on the taper of the insulating substrate 16 are resisted.
  • the pattern (not shown) is used as a mask and removed by etching. As a result, the gate insulating film 18 and the interlayer insulating film 23 remain on the insulating substrate 16 and the surface of the back conductive substrate 15 is exposed.
  • a polyimide resin mixed with CNTs is applied to the back conductive substrate 15 by a slit coat method or a spin coat method in order to adjust the surface resistivity.
  • the applied polyimide resin is heat-treated at 300 ° C. for 1 hour. Thereby, the polyimide resin is cured, and a surface conductive film 47 having a film thickness of 20 to 30 ⁇ m is formed.
  • One end of the front surface conductive film 47 is electrically connected to the exposed surface of the back surface conductive substrate 15.
  • the surface conductive film 47 is formed into a desired shape by patterning the surface conductive film 47. As described above, by forming the front surface conductive film 47 on the back conductive substrate 15 with one end exposed, the electrical connection between the front conductive film 47 and the back conductive substrate 15 can be easily and reliably performed.
  • the adhesive film 28 is pressed and pasted on the surface of the surface conductive film 47, and polyimide is applied from the back side of the support substrate 12. Irradiate a laser beam having a wavelength to be absorbed. By irradiating with laser light, ablation is generated at the interface between the support substrate 12 and the back conductive substrate 15, and the adhesion between the back conductive substrate 15 and the support substrate 12 is weakened. At this time, the back conductive substrate 15 on which the TFT 11 is formed is peeled off from the support substrate 12 by peeling the adhesive film 28 upward (in a direction away from the support substrate 12), and is flexible as shown in FIG. 8 (h). Device 30 is manufactured.
  • a flexible device 30 and a manufacturing method thereof according to the present embodiment provides the flexible device 10 and the same effect as the production method according to the first embodiment.
  • FIG. 9 is a diagram showing the configuration of the flexible device 50 according to the third embodiment of the present invention.
  • FIG. 9A is a plan view of the flexible device 50
  • FIG. FIG. 4 is a cross-sectional view of the flexible device 50.
  • the components of the flexible device 50 according to the present embodiment the same components as those of the flexible device 10 according to the first embodiment shown in FIG. To do.
  • the flexible device 50 according to the present embodiment is similar to the flexible device 10 according to the first embodiment in that a back conductive substrate 15 and an insulating substrate 16 are provided on a support substrate (not shown). And a flexible substrate laminated. A bottom gate type TFT 11 is formed on the insulating substrate 16. The configuration of the TFT 11 is the same as the configuration of the TFT 11 included in the flexible device 10 according to the first embodiment.
  • the TFT 11 is formed on the right surface of the insulating substrate 16.
  • the connection layer 22 that covers the taper from the left surface of the insulating substrate 16 is not formed. Therefore, only the gate insulating film 18 and the interlayer insulating film 23 are stacked on the left surface.
  • a planarizing film 25 made of a photosensitive resin is formed on the interlayer insulating film 23 covering the TFT 11 so as to cover the entire insulating substrate 16.
  • a surface conductive film 67 is formed on the surface of the planarization film 25 from above the TFT 11 so as to cover the side surface and extend to the surface of the back conductive substrate 15.
  • the front surface conductive film 67 is made of a transparent metal or an opaque metal and is electrically connected to the surface of the back surface conductive substrate 15.
  • the interlayer insulating film 23 and the planarizing film 25 may be collectively referred to as “insulating film”.
  • FIG. 11 (e) to FIG. 11 (f), and FIG. 12 (g) to FIG. 12 (h) are diagrams for manufacturing the flexible device 50 according to the third embodiment. It is sectional drawing which shows a process.
  • the same components as those of the flexible device 10 shown in FIGS. 2 to 4 are designated by the same reference numerals, and the description thereof is omitted. To do.
  • the step of forming the back conductive substrate 15 and the step of forming the insulating substrate 16 on the support substrate 12 such as a glass plate are performed as shown in FIG. And the steps are the same as those shown in FIG.
  • a gate electrode 17 is formed on the insulating substrate 16.
  • the connection layer 22 is not formed.
  • the TFT 11 is formed as shown in FIGS. 10 (d) and 11 (e). Since these steps are the same as the steps shown in FIGS. 2D and 3E, description thereof will be omitted.
  • the gate insulating film 18 and the interlayer insulating film 23 stacked on the back conductive substrate 15 and on the taper of the insulating substrate 16 are resisted.
  • the pattern (not shown) is used as a mask and removed by etching. As a result, the gate insulating film 18 and the interlayer insulating film 23 remain on the insulating substrate, and the surface of the back conductive substrate 15 is exposed.
  • the planarizing film 25 is formed so as to cover the back surface conductive substrate 15, and the planarizing film 25 is patterned so as to cover the insulating substrate 16. Thereby, the surface of the back surface conductive substrate 15 is exposed.
  • a metal film (not shown) is formed by sputtering or vapor deposition so as to cover the entire back conductive substrate 15 including the planarizing film 25.
  • a surface conductive film 67 that extends from the surface of the planarizing film 25 above the TFT 11 to the side of the back conductive substrate 15 covering the side surface thereof is formed. Since the metal film is formed by sputtering or vapor deposition, the surface conductive film 67 is electrically connected to the surface of the back conductive substrate 15.
  • the pressure-sensitive adhesive film 28 is pressed and adhered to the surface of the surface conductive film 67, and polyimide resin is applied from the back surface side of the support substrate 12.
  • a laser beam having a wavelength that is absorbed by the laser beam is irradiated.
  • the laser light irradiation causes ablation at the interface between the support substrate 12 and the back conductive substrate 15 to weaken the adhesion between the back conductive substrate 15 and the support substrate 12.
  • peeling the adhesive film 28 upward in a direction away from the support substrate 12
  • the back surface conductive substrate 15 on which the TFT 11 is formed is peeled from the support substrate 12, and as shown in FIG.
  • the flexible device 50 is manufactured.
  • FIG. 13 is a diagram showing a configuration of a flexible device 70 according to the fourth embodiment of the present invention. More specifically, FIG. 13A is a plan view of the flexible device 70, and FIG. FIG. 6 is a cross-sectional view of the flexible device 70.
  • a flexible device 70 according to the present embodiment includes a flexible substrate in which an insulating substrate 16 is laminated on a back conductive substrate 15, similarly to the flexible device 10 illustrated in FIG. 1. However, on the insulating substrate 16, three types of organic EL (Electro-Luminescence) light emitting elements 73 that emit light of R (red), G (green), and B (blue), and each organic EL light emitting element 73 are provided. A semiconductor element 74 to be driven is mounted.
  • organic EL Electro-Luminescence
  • the organic EL light emitting element 73 and the semiconductor element 74 are sealed with a sealing material 75.
  • the sealing material 75 is preferably made of a material that does not deteriorate the organic EL light emitting element 73 and does not deteriorate due to light emitted from the organic EL light emitting element 73. Therefore, as the sealing material 75, for example, an epoxy resin, an acrylic resin, a urethane resin, or the like is used.
  • the surface of the sealing material 75 is covered with a conductive film 87.
  • One end of the conductive film 87 covers the side surface of the sealing material 75 and extends to the back conductive substrate 15.
  • the conductive film 87 extending to the back conductive substrate 15 is attached to the surface of the back conductive substrate 15 with a conductive adhesive. Thereby, the conductive film 87 is electrically connected to the back surface conductive substrate 15, and they have the same potential.
  • the conductive film 87 is affixed similarly to the case of the first embodiment.
  • the back conductive substrate 15 on which the organic EL light emitting element 73 and the semiconductor element 74 are mounted is irradiated with laser light from the support substrate (not shown) side, and the back conductive substrate 15 is peeled from the support substrate.
  • the light emitting element mounted on the insulating substrate 16 is not limited to the organic EL light emitting element 73, and may be a self light emitting element.
  • a glass substrate is used as the support substrate 12 .
  • a metal substrate such as stainless steel, a quartz substrate, or the like may be used.
  • a transparent support substrate such as a glass substrate or a quartz substrate may be referred to as a “transparent substrate”.
  • an adhesive film was used when the back conductive substrate 15 was peeled from the support substrate 12.
  • a weak adhesive film or a porous sheet may be used instead of the adhesive film 28 .
  • these films or sheets may be referred to as “adhesive film”.
  • the thermal expansion coefficient (Coefficient of Thermal Expansion: CTE) of the support substrate 12 and the thermal expansion coefficient of the polyimide resin constituting the insulating substrate 16 are preferably substantially equal.
  • the thermal expansion coefficient of the back surface conductive substrate 15 is not limited even if the thermal expansion coefficient of the polyimide resin constituting the back surface conductive substrate 15 is larger or smaller than those. 12 and the insulating substrate 16. Thereby, even if the back surface conductive substrate 15 is exposed to a high temperature in the manufacturing process, the insulating substrate 16 is less likely to warp, so that distortion or the like is suppressed in the TFT 11 formed thereon.
  • the back surface conductive substrate 15 when the back surface conductive substrate 15 is peeled from the support substrate 12, the back surface conductive substrate 15 is irradiated with laser light through the support substrate 12 made of glass to generate ablation.
  • the surface of the surface conductive films 27, 47, 67 or the conductive film 87 may be covered with a protective film and removed by immersing the support substrate 12 in hydrofluoric acid (HF). .
  • HF hydrofluoric acid
  • FIG. 14A is a cross-sectional view showing that the release layer 13 is formed between the support substrate 12 and the back surface conductive substrate 15, and FIG. 14B shows that the back surface conductive substrate 15 is peeled from the support substrate 12. It is sectional drawing which shows a state. In FIG. 14A and FIG. 14B, the insulating substrate 16 and the TFT 11 are omitted.
  • a release layer 13 is formed between the support substrate 12 and the back conductive substrate 15.
  • the area A1 of the back conductive substrate 15 is larger than the area A2 of the release layer 13, and the adhesion of the back conductive substrate 15 to the support substrate 12 is higher than the adhesion of the release layer 13 to the support substrate 12.
  • the back conductive substrate 15 After the insulating substrate and the TFT are formed on the back conductive substrate 15, the back conductive substrate 15, the release layer 13 and the support substrate 12 are cut along the end portion of the release layer 13 having low adhesion to the support substrate 12.
  • the back surface conductive substrate 15 can be easily peeled from the support substrate 12. Note that the methods shown in FIGS. 14A and 14B can also be applied to the second to fourth embodiments, as in the case of the first embodiment.
  • FIGS. 15A and 15B are cross-sectional views showing a manufacturing process of the flexible device 80 having the top gate type TFT 81.
  • the same reference is made to the same components as those of the flexible device 10 shown in FIGS. 1A and 1B. Reference numerals are assigned and explanations thereof are omitted.
  • the gate electrode 17 of the TFT 81 is formed at the same time as the connection layer 22, so that the manufacturing process can be simplified.
  • the TFT 81 is a well-known top gate type TFT, the illustration and description of its manufacturing method are omitted.
  • the flexible device 80 corresponding to the flexible device 10 which concerns on 1st Embodiment was demonstrated, it is the same also about the flexible device corresponding to the flexible devices 30 and 50 which concern on 2nd and 3rd embodiment.
  • FIG. 16 is a block diagram showing a configuration of the liquid crystal display device 100 using the flexible devices 10, 30, and 50 including the TFT 11 shown in the first to third embodiments.
  • a liquid crystal display device 100 illustrated in FIG. 16 includes a liquid crystal panel 111, a display control circuit 112, a gate driver 113, and a source driver 114.
  • n gate wirings G1 to Gn extending in the horizontal direction and m source wirings S1 to Sm extending in a direction intersecting the gate wirings G1 to Gn are formed.
  • Pixel forming portions Pij are arranged in the vicinity of the intersections of the i-th gate line Gi and the j-th source line Sj.
  • the display control circuit 112 is supplied with a control signal SC such as a horizontal synchronization signal and a vertical synchronization signal and an image signal DT from the outside of the liquid crystal display device 100. Based on these signals, the display control circuit 112 outputs a control signal SC1 to the gate driver 113 and outputs a control signal SC2 and an image signal DT to the source driver 114.
  • a control signal SC such as a horizontal synchronization signal and a vertical synchronization signal and an image signal DT from the outside of the liquid crystal display device 100. Based on these signals, the display control circuit 112 outputs a control signal SC1 to the gate driver 113 and outputs a control signal SC2 and an image signal DT to the source driver 114.
  • the gate driver 113 is connected to the gate lines G1 to Gn, and the source driver 114 is connected to the source lines S1 to Sm.
  • the gate driver 113 sequentially applies a high level signal indicating the selected state to the gate wirings G1 to Gn.
  • the gate wirings G1 to Gn are sequentially selected one by one. For example, when the i-th gate line Gi is selected, the pixel formation portions Pi1 to Pim for one row are selected at once.
  • the source driver 114 applies a voltage corresponding to the image signal DT to each of the source lines S1 to Sm. As a result, a voltage corresponding to the image signal DT is written into the pixel formation portions Pi1 to Pim for one selected row. In this way, the liquid crystal display device 100 displays an image on the liquid crystal panel 111.
  • the liquid crystal panel 111 may be referred to as a display unit.
  • FIGS. 17A to 17C are cross-sectional views showing configurations of the flexible devices 131, 132, and 133 when the flexible device 30 according to the second embodiment is used as a switching element of the liquid crystal display device 100.
  • FIG. It is.
  • a planarizing film 91 made of a photosensitive resin is further formed on the surface conductive film 48 made of an opaque metal.
  • a pixel electrode 93 made of a transparent metal such as indium tin oxide (hereinafter referred to as “ITO”) is formed on the surface of the planarizing film 91.
  • the pixel electrode 93 is connected to the drain electrode 21 b through a contact hole 92 opened in the planarizing film 91.
  • ITO indium tin oxide
  • the surface conductive film 48 only needs to cover at least the upper portion of the channel region, and more preferably, the entire channel layer 19 may be covered.
  • the front surface conductive film 48 has a channel layer 19 (hereinafter referred to as “channel region 19 c”) sandwiched between the source electrode 21 a and the drain electrode 21 b of the TFT 11 from the back surface conductive substrate 15. ).
  • channel region 19 c sandwiched between the source electrode 21 a and the drain electrode 21 b of the TFT 11 from the back surface conductive substrate 15.
  • the surface conductive film 48 covers not only the channel region 19 c but also the gate electrode 17.
  • the aperture ratio of the pixel decreases, but the TFT 11 becomes less susceptible to static electricity.
  • the surface conductive film 48 further covers the entire channel layer 19. As a result, the aperture ratio of the pixel is further reduced, but the TFT 11 is further less affected by static electricity.
  • the flexible device 50 according to the third embodiment can also be applied as a switching element of a liquid crystal display device.
  • a contact hole 92 reaching the drain electrode 21b through the planarizing film 25 and the interlayer insulating film 23 is opened. Yes.
  • a pixel electrode 93 is formed on the planarizing film 25 by a transparent metal such as ITO.
  • the pixel electrode 93 is electrically connected to the drain electrode 21b through the contact hole 92.
  • the same reference numerals are assigned to the components corresponding to the flexible devices 141, 142, and 143, respectively.
  • the pixel electrode 93 is formed separately from the surface conductive film 67.
  • the surface conductive film 67 may be made of either a transparent metal or an opaque metal.
  • the transparent electrode is made of the same type of transparent metal as the pixel electrode 93, the manufacturing process of the flexible devices 141, 142, and 143 can be simplified.
  • the influence of static electricity and the opening of the pixel are the same as in the case shown in FIGS. 17 (a) to 17 (c).
  • the rate is different.
  • the front surface conductive film 67 covers from the back surface conductive substrate 15 to the channel region 19 c of the TFT 11. This maximizes the aperture ratio of the pixel.
  • the surface conductive film 67 covers not only the channel region 19 c but also the gate electrode 17. As a result, the aperture ratio of the pixel decreases, but the TFT 11 becomes less susceptible to static electricity.
  • the surface conductive film 67 covers the entire channel layer 19. As a result, the aperture ratio of the pixel is further reduced, but the TFT 11 is further less affected by static electricity.
  • the present invention is applied to a device mounted on a display device that is light and bendable and has excellent portability.

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The purpose of the present invention is to provide a flexible device which is not easily affected by electrostatic charge and a method for manufacturing the flexible device. A TFT (11) is formed on the surface of a flexible insulating substrate (16) that is laminated on a flexible backside conductive substrate (15). Since a surface conductive film (27) is electrically connected to the backside conductive substrate (15) via a connection layer (22), the surface conductive film (27) and the backside conductive substrate (15) are at the same potential. Consequently, even if the surface conductive film (27) or the backside conductive substrate (15) is electrostatically charged, the TFT (11) sandwiched therebetween is not easily destroyed by ESD. In addition, even if the surface conductive film (27) or the backside conductive substrate (15) is electrostatically charged, the electrical characteristics of the TFT (11) are not easily changed by the action of the electrostatic charge.

Description

フレキシブルデバイス、その製造方法、および表示装置Flexible device, manufacturing method thereof, and display device

 本発明は、フレキシブルデバイス、その製造方法、および表示装置に関し、特に、静電気による影響を受けにくいフレキシブルデバイス、その製造方法、および表示装置に関する。 The present invention relates to a flexible device, a manufacturing method thereof, and a display device, and more particularly to a flexible device that is hardly affected by static electricity, a manufacturing method thereof, and a display device.

 液晶表示装置は薄型化、小型化、軽量化が可能なことから、いろいろな分野でその使用が拡大している。このような液晶表示装置は、従来ガラス基板に形成されていた。しかし、ガラス基板は脆いので、薄型化とすれば機械的な信頼性の問題がる。また、ガラス基板を用いているので、液晶表示装置はフレキシブルに曲げることができないという問題もある。 Since liquid crystal display devices can be made thinner, smaller and lighter, their use is expanding in various fields. Such a liquid crystal display device has been conventionally formed on a glass substrate. However, since the glass substrate is fragile, there is a problem of mechanical reliability if it is made thin. Further, since the glass substrate is used, there is a problem that the liquid crystal display device cannot be flexibly bent.

 近年、表示装置を搭載した携帯機器が広く普及するようになり、軽くて、曲げることができ、携帯性に優れた液晶表示装置が要望されるようになってきた。そこで、このような液晶表示装置に搭載される薄膜トランジスタ(Thin Film Transistor:以下、「TFT」という)等の電子デバイスにもフレキシブルであることが求められるようになり、フレキシブルデバイスの開発が活発に行なわれるようになってきた。 In recent years, portable devices equipped with a display device have become widespread, and a liquid crystal display device that is light, bendable, and excellent in portability has been demanded. Therefore, electronic devices such as thin film transistors (hereinafter referred to as “TFT”) mounted on such liquid crystal display devices are required to be flexible, and development of flexible devices is actively performed. It has come to be.

 日本の特開2006-165124号公報には、ポリエチレンテレフタレートからなる絶縁性のフレキシブル基板上に導電層を形成し、さらにこの導電層をポリイミドからなる絶縁性のカバー層で覆ったフレキシブルデバイスが開示されている。 Japanese Unexamined Patent Publication No. 2006-165124 discloses a flexible device in which a conductive layer is formed on an insulating flexible substrate made of polyethylene terephthalate, and this conductive layer is covered with an insulating cover layer made of polyimide. ing.

日本の特開2006-165124号公報Japanese Unexamined Patent Publication No. 2006-165124

 しかし、フレキシブルデバイスの製造時に、フレキシブルデバイスを支持基板から剥離して転写するときに発生した静電気が、絶縁性のフレキシブル基板に帯電しやすい。この場合、フレキシブル基板に帯電した静電気が電子デバイスとの間で放電(Electro Static Discharge:以下、「ESD」という)することにより、フレキシブルデバイス内の電子デバイスが破壊される場合がある。また、絶縁性のカバー層に静電気が帯電することにより、電子デバイスの電気的特性が変動する場合がある。このように、フレキシブルデバイスは、帯電した静電気の影響を受けやすいという問題がある。 However, when the flexible device is manufactured, static electricity generated when the flexible device is peeled off from the support substrate and transferred is easily charged to the insulating flexible substrate. In this case, the static electricity charged on the flexible substrate may be discharged between the electronic device (Electro Static Discharge: hereinafter referred to as “ESD”), and the electronic device in the flexible device may be destroyed. In addition, when the insulating cover layer is charged with static electricity, the electrical characteristics of the electronic device may vary. As described above, there is a problem that the flexible device is easily affected by charged static electricity.

 そこで、本発明は、帯電した静電気による影響を受けにくいフレキシブルデバイスおよびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a flexible device that is not easily affected by charged static electricity and a method for manufacturing the same.

 本発明の第1の局面は、
 フレキシブルな導電基板と
 前記導電基板上に積層されたフレキシブルな絶縁基板と、
 前記絶縁基板上に形成された電子デバイスと、
 前記電子デバイスを覆うように形成された絶縁膜と、
 前記絶縁膜上に、前記電子デバイスを覆うように形成された表面導電膜とを備え、
 前記導電基板と前記表面導電膜とが電気的に接続されていることを特徴とする。
The first aspect of the present invention is:
A flexible conductive substrate; a flexible insulating substrate laminated on the conductive substrate;
An electronic device formed on the insulating substrate;
An insulating film formed to cover the electronic device;
A surface conductive film formed on the insulating film so as to cover the electronic device,
The conductive substrate and the surface conductive film are electrically connected.

 本発明の第2の局面は、本発明の第1の局面において、
 前記導電基板は、カーボンナノチューブを混入したポリイミド樹脂からなり、
 前記絶縁基板は、カーボンナノチューブを混入しないポリイミド樹脂からなることを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention,
The conductive substrate is made of a polyimide resin mixed with carbon nanotubes,
The insulating substrate is made of a polyimide resin not mixed with carbon nanotubes.

 本発明の第3の局面は、本発明の第1の局面において、
 前記表面導電膜および前記導電基板は、帯電した少なくとも一部の静電気を拡散させることが可能な表面抵抗率を有することを特徴とする。
According to a third aspect of the present invention, in the first aspect of the present invention,
The surface conductive film and the conductive substrate have a surface resistivity capable of diffusing at least a part of charged static electricity.

 本発明の第4の局面は、本発明の第3の局面において、
 前記表面抵抗率は10E10Ω/□以下であることを特徴とする。
According to a fourth aspect of the present invention, in the third aspect of the present invention,
The surface resistivity is 10E10Ω / □ or less.

 本発明の第5の局面は、本発明の第1の局面において、
 前記電子デバイスは、薄膜トランジスタを含むことを特徴とする。
According to a fifth aspect of the present invention, in the first aspect of the present invention,
The electronic device includes a thin film transistor.

 本発明の第6の局面は、本発明の第1の局面において、
 前記絶縁膜と前記絶縁基板との間に形成され、一端が前記導電基板と電気的に接続された接続層をさらに備え、
 前記表面導電膜は、前記接続層を介して前記導電基板と電気的に接続されていることを特徴とする。
According to a sixth aspect of the present invention, in the first aspect of the present invention,
A connection layer formed between the insulating film and the insulating substrate and having one end electrically connected to the conductive substrate;
The surface conductive film is electrically connected to the conductive substrate through the connection layer.

 本発明の第7の局面は、本発明の第1の局面において、
 前記導電基板は前記絶縁基板によって覆われていない領域を有し、
 前記表面導電膜は、前記導電基板の前記領域に電気的に接続されていることを特徴とする。
According to a seventh aspect of the present invention, in the first aspect of the present invention,
The conductive substrate has a region not covered by the insulating substrate;
The surface conductive film is electrically connected to the region of the conductive substrate.

 本発明の第8の局面は、本発明の第7の局面において、
 前記表面導電膜は、カーボンナノチューブを混入したポリイミド樹脂からなり、前記絶縁膜上から前記導電基板上まで延びていることを特徴とする。
According to an eighth aspect of the present invention, in the seventh aspect of the present invention,
The surface conductive film is made of a polyimide resin mixed with carbon nanotubes, and extends from the insulating film to the conductive substrate.

 本発明の第9の局面は、本発明の第7の局面において、
 前記表面導電膜は、前記絶縁膜上から前記導電基板上まで延びる金属膜からなることを特徴とする。
According to a ninth aspect of the present invention, in a seventh aspect of the present invention,
The surface conductive film is made of a metal film extending from the insulating film to the conductive substrate.

 本発明の第10の局面は、本発明の第1の局面において、
 前記電子デバイスは、自発光素子と前記自発光素子を駆動する半導体素子とを含み、
 前記絶縁膜は、前記自発光素子と前記半導体素子とを封止する封止材からなり、
 前記表面導電膜は、前記封止材の表面に貼り付けられた導電性フィルムからなることを特徴とする。
According to a tenth aspect of the present invention, in the first aspect of the present invention,
The electronic device includes a self-luminous element and a semiconductor element that drives the self-luminous element,
The insulating film is made of a sealing material that seals the self-luminous element and the semiconductor element,
The surface conductive film is formed of a conductive film attached to the surface of the sealing material.

 本発明の第11の局面は、画像を表示するアクティブマトリクス型の表示装置であって、
 複数のゲート配線と、前記複数のゲート配線と交差する複数のソース配線と、前記複数のゲート配線と前記複数のソース配線との交差点にそれぞれ対応してマトリクス状に配置された画素形成部とを備える表示部と、
 前記複数のゲート配線を選択的に活性化するゲートドライバと、
 表示すべき画像を表す画像信号を前記ソース配線に印加するソースドライバとを備え、
 前記画素形成部は、
  対応するゲート配線に印加される信号に応じてオンまたはオフするスイッチング素子と、
  前記スイッチング素子に接続され、前記画像信号を保持する画素電極とを含み、
  前記スイッチング素子は、第1から第10のいずれかの発明に係るフレキシブルデバイスであることを特徴とする。
An eleventh aspect of the present invention is an active matrix display device for displaying an image,
A plurality of gate lines, a plurality of source lines crossing the plurality of gate lines, and said plurality of gate wirings and said plurality of respective intersections corresponding pixel formation portions arranged in a matrix of the source wiring A display unit comprising;
A gate driver that selectively activates the plurality of gate lines;
A source driver for applying an image signal representing an image to be displayed to the source wiring;
The pixel forming unit includes:
A switching element that is turned on or off according to a signal applied to a corresponding gate wiring;
A pixel electrode connected to the switching element and holding the image signal;
The switching element is a flexible device according to any one of the first to tenth inventions.

 本発明の第12の局面は、本発明の第11の局面において、
前記スイッチング素子は、第5の発明に係る薄膜トランジスタであり、
 前記表面導電膜は、少なくとも前記薄膜トランジスタのチャネル領域を覆っていることを特徴とする。
A twelfth aspect of the present invention is the eleventh aspect of the present invention,
The switching element is a thin film transistor according to a fifth invention,
The surface conductive film covers at least a channel region of the thin film transistor.

 本発明の第13の局面は、本発明の第11の局面において、
 前記画素電極と前記表面導電膜とは、同じ種類の透明金属からなることを特徴とする。
A thirteenth aspect of the present invention is the eleventh aspect of the present invention,
The pixel electrode and the surface conductive film are made of the same kind of transparent metal.

 本発明の第14の局面は、
 支持基板上にフレキシブルな導電基板を形成する工程と、
 前記導電基板上に、前記導電基板よりも小さく、フレキシブルな絶縁基板を形成する工程と、
 前記絶縁基板上に電子デバイスを形成する工程と、
 前記電子デバイス上に絶縁膜を形成する工程と、
 前記電子デバイスを覆い、かつ前記導電基板と電気的に接続された表面導電膜を形成する工程と、
 少なくとも前記表面導電膜の表面に粘着性フィルムを押圧する工程と、
 前記支持基板と前記導電基板との密着性を弱める工程と、
 前記粘着性フィルムを、前記支持基板から遠ざかる方向に引き剥がす工程とを含むことを特徴とする。
The fourteenth aspect of the present invention is
Forming a flexible conductive substrate on the support substrate;
Forming a flexible insulating substrate smaller than the conductive substrate on the conductive substrate;
Forming an electronic device on the insulating substrate;
Forming an insulating film on the electronic device;
Forming a surface conductive film covering the electronic device and electrically connected to the conductive substrate;
Pressing the adhesive film on the surface of the surface conductive film at least;
Reducing the adhesion between the support substrate and the conductive substrate;
And peeling the adhesive film in a direction away from the support substrate.

 本発明の第15の局面は、本発明の第14の局面において、
 前記導電基板を形成する工程は、カーボンナノチューブを混入したポリイミド樹脂を前記支持基板上に塗布して硬化させる工程を含み、
 前記絶縁基板を形成する工程は、カーボンナノチューブを混入しないポリイミド樹脂を前記導電基板上に塗布して硬化させる工程を含むことを特徴とする。
A fifteenth aspect of the present invention is the fourteenth aspect of the present invention,
The step of forming the conductive substrate includes a step of applying and curing a polyimide resin mixed with carbon nanotubes on the support substrate,
It said step of forming an insulating substrate is characterized in that it comprises a step of curing by applying a polyimide resin not mixed with carbon nanotubes on the conductive substrate.

 本発明の第16の局面は、本発明の第14の局面において、
 前記支持基板は透明基板であり、
 前記界面の密着性を弱める工程は、前記導電基板に吸収される波長のレーザ光を、前記透明基板を介して前記導電基板に照射する工程を含むことを特徴とする。
A sixteenth aspect of the present invention is the fourteenth aspect of the present invention,
The support substrate is a transparent substrate;
The step of weakening the adhesion at the interface includes a step of irradiating the conductive substrate with a laser beam having a wavelength absorbed by the conductive substrate through the transparent substrate.

 本発明の第17の局面は、本発明の第14の局面において、
 前記支持基板と前記導電基板との間に、前記導電基板よりも密着力が弱くかつ面積が小さな剥離層を形成する工程をさらに備え、
 前記界面の密着性を弱める工程は、前記剥離層の端部に沿って前記導電基板と前記剥離層と前記支持基板とを切断する工程を含むことを特徴とする。
A seventeenth aspect of the present invention is the fourteenth aspect of the present invention,
The method further includes a step of forming a release layer between the support substrate and the conductive substrate having a smaller adhesion and a smaller area than the conductive substrate,
The step of weakening the adhesion at the interface includes a step of cutting the conductive substrate, the release layer, and the support substrate along an end portion of the release layer.

 本発明の第18の局面は、本発明の第14の局面において、
 前記支持基板の熱膨張係数と前記絶縁基板の熱膨張係数とが略等しいことを特徴とする。
An eighteenth aspect of the present invention is the fourteenth aspect of the present invention,
The thermal expansion coefficient of the support substrate is substantially equal to the thermal expansion coefficient of the insulating substrate.

 本発明の第19の局面は、本発明の第14の局面において、
 前記表面導電膜を形成する工程は、
  前記絶縁膜を形成する工程の前に、前記絶縁基板上から前記導電基板上に延び、かつ一端が前記導電基板と電気的に接続された接続層を形成する工程と、
  前記絶縁膜を形成する工程において、前記接続層を前記電子デバイスとともに前記絶縁膜で覆う工程と、
  前記絶縁膜に、前記接続層に達するコンタクトホールを開孔する工程と、
  前記コンタクトホールの内部および前記絶縁膜上に金属膜を成膜する工程と
  前記金属膜を所定の形状にパターニングする工程とを含むことを特徴とする。
A nineteenth aspect of the present invention is the fourteenth aspect of the present invention,
The step of forming the surface conductive film includes
Before the step of forming the insulating film, forming a connection layer extending from the insulating substrate onto the conductive substrate and having one end electrically connected to the conductive substrate;
In the step of forming the insulating film, the step of covering the connection layer with the electronic device together with the insulating film,
Opening a contact hole reaching the connection layer in the insulating film;
The method includes a step of forming a metal film inside the contact hole and on the insulating film, and a step of patterning the metal film into a predetermined shape.

 本発明の第20の局面は、本発明の第19の局面において、
 前記電子デバイスは、ボトムゲート型の薄膜トランジスタであり、
 前記接続層は、前記薄膜トランジスタのゲート電極と同時に形成されることを特徴とする。
According to a twentieth aspect of the present invention, in a nineteenth aspect of the present invention,
The electronic device is a bottom-gate thin film transistor,
The connection layer is formed simultaneously with the gate electrode of the thin film transistor.

 本発明の第21の局面は、本発明の第19の局面において、
 前記電子デバイスは、トップゲート型の薄膜トランジスタであり、
 前記接続層は、前記薄膜トランジスタのゲート電極と同時に形成されることを特徴とする。
According to a twenty-first aspect of the present invention, in a nineteenth aspect of the present invention,
The electronic device is a top-gate thin film transistor,
The connection layer is formed simultaneously with the gate electrode of the thin film transistor.

 本発明の第22の局面は、本発明の第14の局面において、
 前記表面導電膜を形成する工程は、
  前記電子デバイスを覆うように絶縁膜を形成する工程と、
  カーボンナノチューブを混入したポリイミド樹脂を前記絶縁膜上および前記絶縁基板上に塗布して硬化させることによりポリイミド樹脂膜を形成する工程と、
  前記ポリイミド樹脂膜を所定の形状にパターニングする工程とを含むことを特徴とする。
According to a twenty-second aspect of the present invention, in the fourteenth aspect of the present invention,
The step of forming the surface conductive film includes
Forming an insulating film so as to cover the electronic device;
A step of forming a polyimide resin film by applying and curing a polyimide resin mixed with carbon nanotubes on the insulating film and the insulating substrate;
And patterning the polyimide resin film into a predetermined shape.

 本発明の第23の局面は、本発明の第14の局面において、
 前記表面導電膜を形成する工程は、
  前記絶縁膜上および前記導電基板上に金属膜を成膜する工程と、
  前記金属膜を所定の形状にパターニングする工程とを含むことを特徴とする。
According to a twenty-third aspect of the present invention, in the fourteenth aspect of the present invention,
The step of forming the surface conductive film includes
Forming a metal film on the insulating film and the conductive substrate;
Patterning the metal film into a predetermined shape.

 本発明の第24の局面は、本発明の第14の局面において、
 前記電子デバイスは、自発光素子と前記自発光素子を駆動する半導体素子を含み、
 前記電子デバイスを形成する工程は、
  前記自発光素子と前記半導体素子とを前記絶縁基板上に搭載する工程と、
  前記自発光素子と前記半導体素子とを封止材によって封止する工程とを含み、
 前記表面導電膜を形成する工程は、前記封止材の表面に導電性フィルムを貼り付ける工程を含むことを特徴とする。
A twenty-fourth aspect of the present invention is the fourteenth aspect of the present invention,
The electronic device includes a self-luminous element and a semiconductor element that drives the self-luminous element,
The step of forming the electronic device includes:
Mounting the self-luminous element and the semiconductor element on the insulating substrate;
Sealing the self-luminous element and the semiconductor element with a sealing material,
The step of forming the surface conductive film includes a step of attaching a conductive film to the surface of the sealing material.

 本発明の第1の局面によれば、表面導電膜は導電基板に電気的に接続されるので、それらは同電位になる。これにより、表面導電膜または導電基板に静電気が帯電しても、それらによって挟まれた電子デバイスはESDにより破壊されにくくなる。また、表面導電膜または導電基板に静電気が帯電しても、静電気による影響を受けにくくなるので、電子デバイスの電気的特性は変動しにくくなる。 According to the first aspect of the present invention, since the surface conductive film is electrically connected to the conductive substrate, they have the same potential. Thereby, even if static electricity is charged in the surface conductive film or the conductive substrate, the electronic device sandwiched between them is not easily destroyed by ESD. Further, even if static electricity is charged on the surface conductive film or the conductive substrate, it is difficult to be affected by static electricity, so that the electrical characteristics of the electronic device are less likely to fluctuate.

 本発明の第2の局面によれば、導電基板および絶縁基板はポリイミド樹脂からなる。これにより、導電基板および絶縁基板は、熱膨張係数が小さく、少なくとも300℃程度の耐熱性があり、製造工程で使用される薬液に対する耐性があり、光の透過率が高く、および、出ガス等によって装置を汚染しないフレキシブルデバイスを形成することができる。 According to the second aspect of the present invention, the conductive substrate and the insulating substrate are made of polyimide resin. As a result, the conductive substrate and the insulating substrate have a small coefficient of thermal expansion, heat resistance of at least about 300 ° C., resistance to chemicals used in the manufacturing process, high light transmittance, and outgas etc. A flexible device that does not contaminate the apparatus can be formed.

 本発明の第3の局面によれば、導電基板および表面導電膜を、それらを電気的に接続するとともに、それらに帯電した静電気の少なくとも一部を拡散させることができる表面抵抗率を有する材料によって構成する。これにより、導電基板と表面導電膜との電位を等しくすることができない場合でも、ESDによる破壊を生じない程度にまで電位差を小さくすることができるので、フレキシブルデバイスはESDにより破壊されにくくなる。また、表面導電膜または導電基板に静電気が帯電しても、静電気による影響を受けにくくなるので、電子デバイスの電気的特性は変動しにくくなる。 According to the third aspect of the present invention, the conductive substrate and the surface conductive film are electrically connected to each other by a material having a surface resistivity capable of diffusing at least a part of static electricity charged to them. Constitute. As a result, even when the potentials of the conductive substrate and the surface conductive film cannot be made equal, the potential difference can be reduced to such an extent that ESD damage does not occur. Therefore, the flexible device is hardly damaged by ESD. Further, even if static electricity is charged on the surface conductive film or the conductive substrate, it is difficult to be affected by static electricity, so that the electrical characteristics of the electronic device are less likely to fluctuate.

 本発明の第4の局面によれば、導電基板および表面導電膜の表面抵抗率は10E6Ω/□以下であるので、第3の発明と同様の効果を奏する。 According to the fourth aspect of the present invention, since the surface resistivity of the conductive substrate and the surface conductive film is 10E6Ω / □ or less, the same effect as that of the third invention is achieved.

 本発明の第5の局面によれば、電子デバイスが薄膜トランジスタであるフレキシブルデバイスはESDにより破壊されにくくなる。 According to the fifth aspect of the present invention, the flexible device whose electronic device is a thin film transistor is less likely to be destroyed by ESD.

 本発明の第6の局面によれば、接続層は導電基板と表面導電膜とを電気的に接続しているので、導電基板と表面導電膜とは同電位になる。これにより、フレキシブルデバイスは、ESDにより破壊されにくくなり、また静電気による影響を受けにくくなる。 According to the sixth aspect of the present invention, since the connection layer electrically connects the conductive substrate and the surface conductive film, the conductive substrate and the surface conductive film have the same potential. As a result, the flexible device is less likely to be destroyed by ESD and is less susceptible to static electricity.

 本発明の第7の局面によれば、絶縁基板の大きさは、導電基板の大きさよりも小さいので、絶縁基板の端部に、絶縁基板によって覆われていない導電基板の表面が露出された領域が現われる。この領域を利用すれば、表面導電膜は、容易かつ確実に導電基板に電気的に接続することができる。 According to the seventh aspect of the present invention, since the size of the insulating substrate is smaller than the size of the conductive substrate, the region where the surface of the conductive substrate not covered by the insulating substrate is exposed at the end of the insulating substrate. Appears. By utilizing this region, the surface conductive film can be easily and reliably electrically connected to the conductive substrate.

 本発明の第8の局面によれば、表面導電膜は、カーボンナノチューブを混入したポリイミド樹脂からなり、絶縁膜上から導電基板上の絶縁基板によって覆われていない領域まで延びている。これにより、表面導電膜は、容易かつ確実に導電基板に電気的に接続される。 According to the eighth aspect of the present invention, the surface conductive film is made of a polyimide resin mixed with carbon nanotubes, and extends from the insulating film to a region not covered by the insulating substrate on the conductive substrate. Thereby, the surface conductive film is easily and reliably electrically connected to the conductive substrate.

 本発明の第9の局面によれば、表面導電膜は、絶縁膜上から導電基板上の絶縁基板によって覆われていない領域まで延びる。これにより、表面導電膜は、容易かつ確実に導電基板に電気的に接続される。 According to the ninth aspect of the present invention, the surface conductive film extends from the insulating film to a region not covered by the insulating substrate on the conductive substrate. Thereby, the surface conductive film is easily and reliably electrically connected to the conductive substrate.

 本発明の第10の局面によれば、自発光素子と半導体素子はフレキシブルな導電基板と導電性フィルムによって挟まれている。これにより、自発光素子と半導体素子は、静電気による影響を受けにくくなる。 According to the tenth aspect of the present invention, the self-luminous element and the semiconductor element are sandwiched between a flexible conductive substrate and a conductive film. As a result, the self-luminous element and the semiconductor element are not easily affected by static electricity.

 本発明の第11の局面によれば、フレキシブルデバイスをアクティブマトリクス型表示装置のスイッチング素子として使用することにより、スイッチング素子は静電気の影響を受けにくくなる。また、表示装置をフレキシブルな装置にすることもできる。 According to the eleventh aspect of the present invention, by using the flexible device as the switching element of the active matrix display device, the switching element is hardly affected by static electricity. Further, the display device can be a flexible device.

 本発明の第12の局面によれば、表面導電膜は、薄膜トランジスタにおいて最も静電気の影響を受けやすいチャネル領域を覆う。これにより、スイッチング素子として機能する薄膜トランジスタが静電気の影響を受けにくくなる。 According to the twelfth aspect of the present invention, the surface conductive film covers the channel region that is most susceptible to static electricity in the thin film transistor. Accordingly, the thin film transistor functioning as a switching element is not easily affected by static electricity.

 本発明の第13の局面によれば、画素電極と表面導電膜とは同じ種類の透明金属からなるので、それらを同時に形成することができる。これにより、製造工程を簡略化することができる。 According to the thirteenth aspect of the present invention, since the pixel electrode and the surface conductive film are made of the same type of transparent metal, they can be formed simultaneously. Thereby, a manufacturing process can be simplified.

 本発明の第14の局面によれば、絶縁膜の表面に貼着したフィルムを引き剥がす際に、支持基板と導電基板との間で静電気が発生する。しかし、導電基板は表面導電膜と電気的に接続されているので、発生した静電気を拡散させて導電基板と表面導電膜の電位差を小さくしたり、導電基板と表面導電膜の電位差を小さくしたりすることができる。これにより、電子デバイスは、電位が等しいまたは電位差が小さい支持基板と導電基板によって挟まれるので、ESDにより破壊されにくくなり、また静電気による影響を受けにくくなる。 According to the fourteenth aspect of the present invention, static electricity is generated between the support substrate and the conductive substrate when the film attached to the surface of the insulating film is peeled off. However, since the conductive substrate is electrically connected to the surface conductive film, the generated static electricity is diffused to reduce the potential difference between the conductive substrate and the surface conductive film, or the potential difference between the conductive substrate and the surface conductive film is reduced. can do. As a result, the electronic device is sandwiched between the support substrate and the conductive substrate having the same potential or a small potential difference, so that the electronic device is not easily destroyed by ESD and is not easily affected by static electricity.

 本発明の第15の局面によれば、ポリイミド樹脂を塗布して硬化させることにより、フレキシブルな導電基板と絶縁基板を形成する。これにより、導電基板と絶縁基板を容易に形成することができる。また、ポリイミド樹脂に混入させるカーボンナノチューブの量によって導電基板の表面抵抗率を調整するので、導電基板の表面抵抗率の調整を容易に行なうことができる。また、導電基板および絶縁基板は、熱膨張係数が小さく、少なくとも300℃程度の耐熱性があり、製造工程で使用される薬液に対する耐性があり、光の透過率が高く、および、出ガス等によって装置を汚染しない基板となる。 According to the fifteenth aspect of the present invention, a flexible conductive substrate and an insulating substrate are formed by applying and curing a polyimide resin. Thereby, a conductive substrate and an insulating substrate can be formed easily. Further, since the surface resistivity of the conductive substrate is adjusted by the amount of carbon nanotubes mixed in the polyimide resin, the surface resistivity of the conductive substrate can be easily adjusted. In addition, the conductive substrate and the insulating substrate have a small coefficient of thermal expansion, heat resistance of at least about 300 ° C., resistance to chemicals used in the manufacturing process, high light transmittance, The substrate does not contaminate the device.

 本発明の第16の局面によれば、透明な支持基板を通して、ポリイミド樹脂からなる導電基板にレーザ光を照射する。これにより、導電基板はレーザ光を吸収し、アブレーションを引き起こすので、支持基板と導電基板との密着性が弱くなり、支持基板から導電基板を剥離しやすくなる。 According to the sixteenth aspect of the present invention, the conductive substrate made of polyimide resin is irradiated with laser light through the transparent support substrate. As a result, the conductive substrate absorbs the laser beam and causes ablation, so that the adhesion between the support substrate and the conductive substrate is weakened, and the conductive substrate is easily peeled from the support substrate.

 本発明の第17の局面によれば、支持基板と導電基板との間に密着性が弱く、面積が小さな剥離層を形成し、剥離層の端部に沿って導電基板と剥離層と支持基板とを切断する。これにより、支持基板から導電基板を剥離しやすくなる。 According to the seventeenth aspect of the present invention, a release layer having a weak adhesion and a small area is formed between the support substrate and the conductive substrate, and the conductive substrate, the release layer, and the support substrate are formed along the edge of the release layer. And disconnect. This facilitates peeling of the conductive substrate from the support substrate.

 本発明の第18の局面によれば、支持基板の熱膨張係数と絶縁基板を構成するポリイミド樹脂の熱膨張係数とが略等しければ、導電基板を構成するポリイミド樹脂の熱膨張係数がそれらより大きい場合または小さい場合でも、導電基板の熱膨張は、支持基板と絶縁基板によって抑制される。これにより、製造工程において導電基板が高温に晒されても、絶縁基板は反りにくくなるので、絶縁基板上に形成された電子デバイスにひずみ等が生じることが抑制される。 According to the eighteenth aspect of the present invention, if the thermal expansion coefficient of the support substrate and the thermal expansion coefficient of the polyimide resin constituting the insulating substrate are substantially equal, the thermal expansion coefficient of the polyimide resin constituting the conductive substrate is larger than those. Even if the case is small, the thermal expansion of the conductive substrate is suppressed by the support substrate and the insulating substrate. As a result, even if the conductive substrate is exposed to a high temperature in the manufacturing process, the insulating substrate is less likely to warp, so that the electronic device formed on the insulating substrate is prevented from being distorted.

 本発明の第19の局面によれば、導電基板と表面導電膜とを絶縁膜に形成したコンタクトホールを介して電気的に接続するので、導電基板と表面導電膜とを同電位にすることができる。これにより、フレキシブルデバイスは、ESDにより破壊されにくくなり、また静電気による影響を受けにくくなる。 According to the nineteenth aspect of the present invention, since the conductive substrate and the surface conductive film are electrically connected through the contact hole formed in the insulating film, it is possible to make the conductive substrate and the surface conductive film have the same potential. it can. As a result, the flexible device is less likely to be destroyed by ESD and is less susceptible to static electricity.

 本発明の第20の局面によれば、接続層は、ボトムゲート型の薄膜トランジスタのゲート電極と同時に形成されるので、製造工程を簡略化することができる。 According to the twentieth aspect of the present invention, since the connection layer is formed simultaneously with the gate electrode of the bottom gate type thin film transistor, the manufacturing process can be simplified.

 本発明の第21の局面によれば、接続層は、トップゲート型の薄膜トランジスタのゲート電極と同時に形成されるので、製造工程を簡略化することができる。 According to the twenty-first aspect of the present invention, the connection layer is formed simultaneously with the gate electrode of the top gate type thin film transistor, so that the manufacturing process can be simplified.

 本発明の第22の局面によれば、第8の発明と同様の効果を奏する。 According to the twenty-second aspect of the present invention, the same effects as in the eighth invention are achieved.

 本発明の第23の局面によれば、第9の発明と同様の効果を奏する。 According to the twenty-third aspect of the present invention, the same effects as in the ninth invention are achieved.

 本発明の第24の局面によれば、第10の発明と同様の効果を奏する。 According to the twenty-fourth aspect of the present invention, the same effects as in the tenth invention are achieved.

本発明の第1の実施形態に係るフレキシブルデバイスの構成を示す図であり、より詳細には、(a)はフレキシブルデバイスの平面図であり、(b)はフレキシブルデバイスの断面図である。It is a figure which shows the structure of the flexible device which concerns on the 1st Embodiment of this invention, More specifically, (a) is a top view of a flexible device, (b) is sectional drawing of a flexible device. (a)~(d)は、第1の実施形態に係るフレキシブルデバイスの各製造工程を示す断面図である。(A)-(d) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 1st Embodiment. (e)~(g)は、第1の実施形態に係るフレキシブルデバイスの各製造工程を示す断面図である。(E)-(g) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 1st Embodiment. (h)~(i)は、第1の実施形態に係るフレキシブルデバイスの各製造工程を示す断面図である。(H)-(i) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 1st Embodiment. 本発明の第2の実施形態に係るフレキシブルデバイスの構成を示す図であり、より詳細には、(a)はフレキシブルデバイスの平面図であり、(b)はフレキシブルデバイスの断面図である。It is a figure which shows the structure of the flexible device which concerns on the 2nd Embodiment of this invention, More specifically, (a) is a top view of a flexible device, (b) is sectional drawing of a flexible device. (a)~(d)は、第2の実施形態に係るフレキシブルデバイスの各製造工程を示す断面図である。(A)-(d) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 2nd Embodiment. (e)~(f)は、第2の実施形態に係るフレキシブルデバイスの各製造工程を示す断面図である。(E)-(f) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 2nd Embodiment. (g)~(h)は、第2の実施形態に係るフレキシブルデバイスの各製造工程を示す断面図である。(G)-(h) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 2nd Embodiment. 本発明の第3の実施形態に係るフレキシブルデバイスの構成を示す図であり、より詳細には、(a)はフレキシブルデバイスの平面図であり、(b)はフレキシブルデバイスの断面図である。It is a figure which shows the structure of the flexible device which concerns on the 3rd Embodiment of this invention, More specifically, (a) is a top view of a flexible device, (b) is sectional drawing of a flexible device. (a)~(d)は、第3の実施形態に係るフレキシブルデバイスの各製造工程を示す断面図である。(A)-(d) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 3rd Embodiment. (e)~(f)は、第3の実施形態に係るフレキシブルデバイスの各製造工程を示す断面図である。(E)-(f) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 3rd Embodiment. (g)~(h)は、第3の実施形態に係るフレキシブルデバイスの各製造工程を示す断面図である。(G)-(h) is sectional drawing which shows each manufacturing process of the flexible device which concerns on 3rd Embodiment. 本発明の第4の実施形態に係るフレキシブルデバイスの構成を示す図であり、より詳細には、(a)はフレキシブルデバイスの平面図であり、(b)はフレキシブルデバイスの断面図である。It is a figure which shows the structure of the flexible device which concerns on the 4th Embodiment of this invention, More specifically, (a) is a top view of a flexible device, (b) is sectional drawing of a flexible device. (a)は、支持基板と裏面導電基板との間に剥離層を形成したことを示す断面図であり、(b)は支持基板から裏面導電基板を剥離した状態を示す断面図である。(A) is sectional drawing which shows having formed the peeling layer between the support substrate and the back surface conductive substrate, (b) is sectional drawing which shows the state which peeled the back surface conductive substrate from the support substrate. (a)および(b)は、トップゲート型のTFTを有するフレキシブルデバイスの製造工程を示す断面図である。(A) And (b) is sectional drawing which shows the manufacturing process of the flexible device which has a top gate type TFT. 第1~第3の実施形態に示すフレキシブルデバイスに含まれるTFTを用いた液晶表示装置の構成を示すブロック図である。FIG. 6 is a block diagram showing a configuration of a liquid crystal display device using TFTs included in the flexible device shown in the first to third embodiments. (a)~(c)は、第2の実施形態に係るフレキシブルデバイスを液晶表示装置のスイッチング素子として用いた場合の構成を示す各断面図である。(A)-(c) is each sectional drawing which shows the structure at the time of using the flexible device which concerns on 2nd Embodiment as a switching element of a liquid crystal display device. (a)~(c)は、第3の実施形態に係るフレキシブルデバイスを液晶表示装置のスイッチング素子として用いた場合の構成を示す各断面図である。(A)-(c) is each sectional drawing which shows the structure at the time of using the flexible device which concerns on 3rd Embodiment as a switching element of a liquid crystal display device.

<1.第1の実施形態>
<1.1 フレキシブルデバイスの構成>
 図1は、本発明の第1の実施形態に係るフレキシブルデバイス10の構成を示す図であり、より詳細には、図1(a)はフレキシブルデバイス10の平面図であり、図1(b)はフレキシブルデバイス10の断面図である。フレキシブルデバイス10はフレキシブル基板上に形成されたTFT11を含み、フレキシブル基板は積層された2層の基板からなる。下層の基板は、導電性を付与するために、ポリイミド樹脂にカーボンナノチューブ(Carbon nanotube:以下、「CNT」という)を適量混入して表面抵抗率を調整した導電基板15(以下、「裏面導電基板15」または「導電基板」という)である。裏面導電基板15の膜厚は例えば1~2μmとする。また、その表面抵抗率は、例えば10E6Ω/□程度とする。上層の基板は、CNTを混入しないポリイミド樹脂からなる絶縁基板16(以下、「絶縁基板16」という)であり、その側面は、図1(b)に示すように、テーパになっている。絶縁基板16の膜厚は例えば1~50μmである。また、絶縁基板16の面積は、裏面導電基板15の面積よりも小さい。このため、絶縁基板16の周囲の裏面導電基板15の表面は、絶縁基板16によって覆われずに露出している。
<1. First Embodiment>
<1.1 Flexible device configuration>
Figure 1 is a first diagram showing a configuration of a flexible device 10 according to the embodiment of the present invention, and more particularly, FIG. 1 (a) is a plan view of a flexible device 10, and FIG. 1 (b) FIG. 3 is a cross-sectional view of the flexible device 10. The flexible device 10 includes a TFT 11 formed on a flexible substrate, and the flexible substrate is composed of two stacked layers. The lower substrate is a conductive substrate 15 (hereinafter referred to as “backside conductive substrate”) whose surface resistivity is adjusted by mixing carbon nanotubes (hereinafter referred to as “CNT”) into polyimide resin in an appropriate amount in order to impart conductivity. 15 ”or“ conductive substrate ”). The film thickness of the back conductive substrate 15 is, for example, 1 to 2 μm. The surface resistivity is about 10E6Ω / □, for example. Layer of the substrate includes an insulating substrate 16 made of a polyimide resin not mixed with CNT (hereinafter, referred to as "insulating substrate 16"), and its sides, as shown in FIG. 1 (b), has a tapered. The film thickness of the insulating substrate 16 is, for example, 1 to 50 μm. In addition, the area of the insulating substrate 16 is smaller than the area of the back conductive substrate 15. For this reason, the surface of the back conductive substrate 15 around the insulating substrate 16 is exposed without being covered by the insulating substrate 16.

 なお、裏面導電基板15と絶縁基板16をポリイミド樹脂により形成した理由を説明する。これらの基板には、熱膨張係数が小さいこと、少なくとも300℃程度の耐熱性があること、製造工程で使用される薬液に対する耐性があること、光の透過率が高いこと、および、出ガス等によって装置を汚染しないことが求められ、ポリイミド樹脂からなる基板はこれらの条件を満たすからである。 The reason why the back conductive substrate 15 and the insulating substrate 16 are formed of polyimide resin will be described. These substrates have a small coefficient of thermal expansion, heat resistance of at least about 300 ° C., resistance to chemicals used in the manufacturing process, high light transmittance, and outgas etc. This is because a substrate made of a polyimide resin satisfies these conditions.

 絶縁基板16の表面に、ボトムゲート型のTFT11が形成されている。具体的には、絶縁基板16上に、高融点金属等の金属からなるゲート電極17が形成され、ゲート電極17を含む絶縁基板16の全体を覆うようにゲート絶縁膜18が形成されている。 A bottom gate type TFT 11 is formed on the surface of the insulating substrate 16. Specifically, a gate electrode 17 made of a metal such as a refractory metal is formed on the insulating substrate 16, and a gate insulating film 18 is formed so as to cover the entire insulating substrate 16 including the gate electrode 17.

 ゲート絶縁膜18の表面に、非晶質シリコンからなる島状のチャネル層19がゲート電極17を跨いで左右に延びるように形成されている。チャネル層19の左側表面から左側に延びるソース領域20aおよびソース電極21aがこの順に形成され、チャネル層19の右側表面から右側に延びるドレイン領域20bおよびドレイン電極21bがこの順に形成されている。ソース電極21aはソース領域20aを介してチャネル層19とオーミック接触し、ドレイン電極21bはドレイン領域20bを介してチャネル層19とオーミック接触している。 An island-shaped channel layer 19 made of amorphous silicon is formed on the surface of the gate insulating film 18 so as to extend from side to side across the gate electrode 17. A source region 20a and a source electrode 21a extending from the left surface of the channel layer 19 to the left are formed in this order, and a drain region 20b and a drain electrode 21b extending from the right surface of the channel layer 19 to the right are formed in this order. The source electrode 21a is in ohmic contact with the channel layer 19 through the source region 20a, and the drain electrode 21b is in ohmic contact with the channel layer 19 through the drain region 20b.

 また、絶縁基板16とゲート絶縁膜18との間には、ゲート電極17と同じ金属からなる接続層22が形成されている。接続層22は、絶縁基板16の表面から左側に、テーパを覆って裏面導電基板15上まで延び、裏面導電基板15の表面と電気的に接続されている。 Further, a connection layer 22 made of the same metal as the gate electrode 17 is formed between the insulating substrate 16 and the gate insulating film 18. The connection layer 22 extends from the surface of the insulating substrate 16 to the left side so as to cover the taper and onto the back conductive substrate 15, and is electrically connected to the surface of the back conductive substrate 15.

 TFT11および接続層22を含む絶縁基板16を覆うように、窒化シリコン(SiNx)からなる層間絶縁膜23が形成され、さらに層間絶縁膜23上に感光性樹脂からなる平坦化膜25が形成されている。なお、本実施形態では、層間絶縁膜23と平坦化膜25とを合わせて「絶縁膜」ということがある。 An interlayer insulating film 23 made of silicon nitride (SiNx) is formed so as to cover the insulating substrate 16 including the TFT 11 and the connection layer 22, and a planarizing film 25 made of a photosensitive resin is further formed on the interlayer insulating film 23. Yes. In the present embodiment, the interlayer insulating film 23 and the planarizing film 25 may be collectively referred to as “insulating film”.

 平坦化膜25上には、透明金属または不透明金属からなる表面導電膜27がTFT11を覆うように形成されている。平坦化膜25の表面から、平坦化膜25および層間絶縁膜23を介して接続層22に達するコンタクトホール26が開孔されており、表面導電膜27は、コンタクトホール26を介して、接続層22と電気的に接続されている。 A surface conductive film 27 made of a transparent metal or an opaque metal is formed on the planarizing film 25 so as to cover the TFT 11. A contact hole 26 reaching the connection layer 22 from the surface of the planarization film 25 through the planarization film 25 and the interlayer insulating film 23 is opened, and the surface conductive film 27 is connected to the connection layer through the contact hole 26. 22 is electrically connected.

 上記説明では、裏面導電基板15は、表面抵抗率が10E6Ω/□となるように調整されたポリイミド樹脂によって構成され、表面導電膜27は透明金属または不透明金属によって構成されるとした。これらの裏面導電基板15と表面導電膜27は、帯電した静電気を拡散させて、それらの電位を等しくするような材料によって構成されることが好ましい。 In the above description, the back conductive substrate 15 is made of polyimide resin adjusted to have a surface resistivity of 10E6Ω / □, and the front conductive film 27 is made of transparent metal or opaque metal. The back conductive substrate 15 and the front conductive film 27 are preferably made of a material that diffuses charged static electricity and equalizes their potentials.

 しかし、裏面導電基板15と表面導電膜27との電位差をなくすことができなくても、それらに帯電した電荷の少なくとも一部を拡散させることにより、裏面導電基板15と表面導電膜27との電位差を、それらによって挟まれたTFT11のESDによる破壊を生じない程度にまで小さくすることができればよい。そのためには、裏面導電基板15と表面導電膜27とを電気的に接続し、さらに裏面導電基板15および表面導電膜27に帯電した静電気を少なくともゆっくりと拡散させることができるような表面抵抗率を有する材料によって、それらを構成する必要がある。具体的には、裏面導電基板15と表面導電膜27を、10E10Ω/□以下の材料を用いて構成する。なお、裏面導電基板15と表面導電膜27の表面抵抗率に関する上記説明は、後述する第2~第4の実施形態およびそれらの変形例についても同様に適用される。 However, even if the potential difference between the back surface conductive substrate 15 and the front surface conductive film 27 cannot be eliminated, the potential difference between the back surface conductive substrate 15 and the front surface conductive film 27 is diffused by diffusing at least a part of the charges charged in them. Can be reduced to such an extent that the TFT 11 sandwiched between them does not break by ESD. For this purpose, the back surface conductive substrate 15 and the front surface conductive film 27 are electrically connected, and the surface resistivity is such that static electricity charged on the back surface conductive substrate 15 and the front surface conductive film 27 can be diffused at least slowly. They need to be configured by the materials they have. Specifically, the back conductive substrate 15 and the front conductive film 27 are formed using a material of 10E10Ω / □ or less. The above description regarding the surface resistivity of the back surface conductive substrate 15 and the front surface conductive film 27 is similarly applied to second to fourth embodiments to be described later and modifications thereof.

<1.2 フレキシブルデバイスの製造方法>
 図2(a)~図2(d)、図3(e)~図3(g)、図4(h)~図4(i)は、第1の実施形態に係るフレキシブルデバイス10の各製造工程を示す断面図である。図2(a)に示すように、ガラス板等の支持基板12上に、導電性を付与するためにCNTを混入した液状のポリイミド樹脂を、スリットコート法またはスピンコート法等を用いて塗布する。次に、塗布したポリイミド樹脂に、300℃で1時間の熱処理(キュア)を施す。これにより、ポリイミド樹脂は硬化し、膜厚1~2μmで、表面抵抗率が10E6Ω/□の裏面導電基板15が形成される。
<1.2 Manufacturing method of flexible device>
2 (a) to 2 (d), FIG. 3 (e) to FIG. 3 (g), and FIG. 4 (h) to FIG. 4 (i) show the respective production of the flexible device 10 according to the first embodiment. It is sectional drawing which shows a process. As shown in FIG. 2A, a liquid polyimide resin mixed with CNTs for imparting conductivity is applied onto a support substrate 12 such as a glass plate using a slit coating method or a spin coating method. . Next, the applied polyimide resin is heat treated (cured) at 300 ° C. for 1 hour. As a result, the polyimide resin is cured, and the back conductive substrate 15 having a film thickness of 1 to 2 μm and a surface resistivity of 10E6Ω / □ is formed.

 図2(b)に示すように、裏面導電基板15上に、CNTを混入していないポリイミド樹脂を、スリットコート法またはスピンコート法を用いて塗布する。次に、塗布したポリイミド樹脂に、300℃で1時間の熱処理(キュア)を施す。これにより、ポリイミド樹脂は硬化し、膜厚2~50μmの絶縁基板16が裏面導電基板15上に形成される。絶縁基板16の面積は、裏面導電基板15の面積よりも小さい。このため、絶縁基板16の周囲の裏面導電基板15の表面は、絶縁基板16によって覆われずに露出している。このように、ポリイミド樹脂を塗布して硬化させることにより、裏面導電基板15および絶縁基板16を容易に形成することができる。また、ポリイミド樹脂に混入するCNTの量によって裏面導電基板15の表面抵抗率を調整するので、裏面導電基板15の表面抵抗率の調整を容易に行なうことができる。 As shown in FIG. 2B, a polyimide resin not mixed with CNT is applied onto the back conductive substrate 15 by using a slit coat method or a spin coat method. Next, the applied polyimide resin is heat treated (cured) at 300 ° C. for 1 hour. As a result, the polyimide resin is cured, and an insulating substrate 16 having a thickness of 2 to 50 μm is formed on the back conductive substrate 15. The area of the insulating substrate 16 is smaller than the area of the back conductive substrate 15. For this reason, the surface of the back conductive substrate 15 around the insulating substrate 16 is exposed without being covered by the insulating substrate 16. Thus, the back surface conductive substrate 15 and the insulating substrate 16 can be easily formed by applying and curing the polyimide resin. Moreover, since the surface resistivity of the back surface conductive substrate 15 is adjusted by the amount of CNT mixed in the polyimide resin, the surface resistivity of the back surface conductive substrate 15 can be easily adjusted.

 図2(c)に示すように、絶縁基板16を含む裏面導電基板15の全体を覆うように、スパッタリング法または蒸着法を用いて、モリブデン(Mo)、タングステン(W)等の高融点金属、またはアルミニウム(Al)等からなる金属膜(図示しない)を、膜厚が例えば330nmとなるように成膜する。次に、金属膜をパターニングすることにより、ゲート電極17と接続層22とを形成する。接続層22は、絶縁基板16の表面から左側に、テーパを覆って裏面導電基板15の表面まで延びるように形成される。接続層22は、上述のように、スパッタ等によって成膜された金属膜をパターニングすることによって形成され、裏面導電基板15の表面と電気的に接続される。このように、接続層22の一端を、露出した裏面導電基板15に接続することにより、接続層22と裏面導電基板15との電気的な接続を容易かつ確実に行なうことができる。また、ゲート電極17と接続層22とを同時に形成することができるので、製造工程を簡略化することができる。 As shown in FIG. 2 (c), a refractory metal such as molybdenum (Mo) or tungsten (W) is used by sputtering or vapor deposition so as to cover the entire back conductive substrate 15 including the insulating substrate 16. Alternatively, a metal film (not shown) made of aluminum (Al) or the like is formed so as to have a film thickness of 330 nm, for example. Next, the gate electrode 17 and the connection layer 22 are formed by patterning the metal film. The connection layer 22 is formed on the left side from the surface of the insulating substrate 16 so as to cover the taper and extend to the surface of the back conductive substrate 15. As described above, the connection layer 22 is formed by patterning a metal film formed by sputtering or the like, and is electrically connected to the surface of the back conductive substrate 15. Thus, by connecting one end of the connection layer 22 to the exposed back surface conductive substrate 15, the electrical connection between the connection layer 22 and the back surface conductive substrate 15 can be easily and reliably performed. In addition, since the gate electrode 17 and the connection layer 22 can be formed at the same time, the manufacturing process can be simplified.

 図2(d)に示すように、プラズマCVD法を用いて、ゲート電極17および接続層22を含む裏面導電基板15の全体を覆うように、ゲート絶縁膜18を成膜する。ゲート絶縁膜18は、例えば酸化シリコン(SiO2)からなり、その膜厚は例えば200~500nmである。次に、ゲート絶縁膜18上に、プラズマCVD法を用いて非晶質シリコン膜(図示しない)を形成する。非晶質シリコン膜は、プラズマCVD法により、原料ガスとしてモノシラン(SiH4)ガスと水素(H2)ガスとを用いて、基板温度350℃で成膜される。非晶質シリコン膜の膜厚は例えば100~200nmである。さらに、非晶質シリコン膜上に、プラズマCVD法を用いて、高濃度のn型不純物を含む非晶質シリコン膜(n+シリコン膜)を成膜する。そして、n+シリコン膜および非晶質シリコン膜を順にパターニングする。これにより、ゲート電極17を跨いで左右に延びる島状のチャネル層19と、その上に積層されたn+シリコン層20が形成される。なお、チャネル層19を、非晶質シリコンの代わりに、多結晶シリコンまたは微結晶シリコンによって構成してもよい。 As shown in FIG. 2D, a gate insulating film 18 is formed by plasma CVD so as to cover the entire back conductive substrate 15 including the gate electrode 17 and the connection layer 22. The gate insulating film 18 is made of, for example, silicon oxide (SiO 2 ) and has a film thickness of, for example, 200 to 500 nm. Next, an amorphous silicon film (not shown) is formed on the gate insulating film 18 using a plasma CVD method. The amorphous silicon film is formed by a plasma CVD method using monosilane (SiH 4 ) gas and hydrogen (H 2 ) gas as source gases at a substrate temperature of 350 ° C. The film thickness of the amorphous silicon film is, for example, 100 to 200 nm. Further, an amorphous silicon film (n + silicon film) containing a high concentration n-type impurity is formed on the amorphous silicon film by plasma CVD. Then, the n + silicon film and the amorphous silicon film are patterned in order. Thus, an island-shaped channel layer 19 extending left and right across the gate electrode 17 and an n + silicon layer 20 stacked thereon are formed. Note that the channel layer 19 may be made of polycrystalline silicon or microcrystalline silicon instead of amorphous silicon.

 図3(e)に示すように、スパッタリング法または蒸着法を用いて、ソースメタル膜(図示しない)を成膜する。ソースメタル膜は、アルミニウム、チタン、アルミニウムの順に積層された積層金属、またはモリブデン、タングステン等の高融点金属からなり、その膜厚は例えば50~400nmである。次に、ソースメタル膜、n+シリコン層20の順にパターニングする。その結果、チャネル層19の左側表面から左側に延びるソース領域20aおよびその上面のソース電極21aと、チャネル層19の右側表面から右側に延びるドレイン領域20bおよびその上面のドレイン電極21bとが形成される。 As shown in FIG. 3E, a source metal film (not shown) is formed by sputtering or vapor deposition. The source metal film is made of a laminated metal laminated in the order of aluminum, titanium and aluminum, or a refractory metal such as molybdenum and tungsten, and has a film thickness of, for example, 50 to 400 nm. Next, the source metal film and the n + silicon layer 20 are patterned in this order. As a result, a source region 20a extending from the left surface of the channel layer 19 to the left and a source electrode 21a on the upper surface thereof, a drain region 20b extending from the right surface of the channel layer 19 to the right and a drain electrode 21b on the upper surface thereof are formed. .

 次に、ソース電極21aおよびドレイン電極21bを含む裏面導電基板15の全体を覆うように、窒化シリコンからなる層間絶縁膜23を成膜する。層間絶縁膜23の膜厚は、例えば200~300nmである。次に、接続層22の上方に開口部を有するレジストパターン(図示しない)をマスクにして、層間絶縁膜23、ゲート絶縁膜18の順にエッチングし、接続層22に達するコンタクトホール24を開孔する。 Next, an interlayer insulating film 23 made of silicon nitride is formed so as to cover the entire back conductive substrate 15 including the source electrode 21a and the drain electrode 21b. The film thickness of the interlayer insulating film 23 is, for example, 200 to 300 nm. Next, using a resist pattern (not shown) having an opening above the connection layer 22 as a mask, the interlayer insulating film 23 and the gate insulating film 18 are etched in this order to form a contact hole 24 reaching the connection layer 22. .

 図3(f)に示すように、コンタクトホール24を含む層間絶縁膜23上に、感光性樹脂からなる平坦化膜25を形成し、フォトマスクを用いて平坦化膜25を露光・現像する。その結果、平坦化膜25およびコンタクトホール24を通って接続層22に達するコンタクトホール26が開孔される。 As shown in FIG. 3F, a planarizing film 25 made of a photosensitive resin is formed on the interlayer insulating film 23 including the contact holes 24, and the planarizing film 25 is exposed and developed using a photomask. As a result, a contact hole 26 reaching the connection layer 22 through the planarizing film 25 and the contact hole 24 is opened.

 図3(g)に示すように、平坦化膜25上およびコンタクトホール26内に、透明金属または不透明金属からなる金属膜(図示しない)を成膜し、金属膜をパターニングすることにより表面導電膜27を形成する。このようにして形成された表面導電膜27は、コンタクトホール26を介して接続層22と電気的に接続される。その結果、表面導電膜27は、接続層22を介して裏面導電基板15と電気的に接続される。 As shown in FIG. 3G, a metal film (not shown) made of a transparent metal or an opaque metal is formed on the planarizing film 25 and in the contact hole 26, and the metal film is patterned to form a surface conductive film. 27 is formed. The surface conductive film 27 thus formed is electrically connected to the connection layer 22 through the contact hole 26. As a result, the front conductive film 27 is electrically connected to the back conductive substrate 15 through the connection layer 22.

 図4(h)に示すように、表面導電膜27の表面に、粘着性が温度によって変わるスイッチング特性を有するフィルム28(以下、「粘着フィルム28」という)を押圧し、粘着フィルム28を表面導電膜27および平坦化膜25の表面に貼着する。次に、ガラスからなる支持基板12の裏面側から、ポリイミド樹脂に吸収される波長のレーザ光を照射する。レーザ光は、支持基板12を透過して裏面導電基板15を構成するポリイミド樹脂に吸収され、支持基板12と裏面導電基板15との界面でアブレーション(Ablation:溶発)を生じさせる。アブレーションとは、ポリイミド樹脂がレーザ光のエネルギーを吸収することによって、一瞬のうちにポリイミド樹脂の化学結合が破壊されて表面層が蒸発する現象である。アブレーションが生じれば、裏面導電基板15と支持基板12との密着性が弱くなる。このとき、粘着フィルム28を上方(支持基板12から遠ざかる方向)に引き剥がすことにより、TFT11が形成された裏面導電基板15は、支持基板12から剥離され、図4(i)に示すようにフレキシブルデバイス10が製造される。 As shown in FIG. 4 (h), a film 28 (hereinafter referred to as “adhesive film 28”) having a switching characteristic whose adhesiveness varies depending on temperature is pressed against the surface of the surface conductive film 27, so Affixed to the surfaces of the film 27 and the planarizing film 25. Next, a laser beam having a wavelength that is absorbed by the polyimide resin is irradiated from the back side of the support substrate 12 made of glass. The laser light passes through the support substrate 12 and is absorbed by the polyimide resin constituting the back conductive substrate 15, and causes ablation at the interface between the support substrate 12 and the back conductive substrate 15. Ablation is a phenomenon in which the polyimide resin absorbs the energy of the laser beam, so that the chemical bond of the polyimide resin is broken and the surface layer evaporates in an instant. If ablation occurs, the adhesion between the back conductive substrate 15 and the support substrate 12 becomes weak. At this time, the back conductive substrate 15 on which the TFT 11 is formed is peeled off from the support substrate 12 by peeling the adhesive film 28 upward (in a direction away from the support substrate 12), and flexible as shown in FIG. Device 10 is manufactured.

<1.3 効果>
 本実施形態に係るフレキシブルデバイス10によれば、表面導電膜27は、接続層22を介して、裏面導電基板15と電気的に接続される。これにより、裏面導電基板15または表面導電膜27に帯電した静電気が拡散し、それらの電位は等しくなる。その結果、裏面導電基板15と表面導電膜27とによって挟まれたTFT11はESDにより破壊されにくくなる。また、少なくとも、裏面導電基板15と表面導電膜27に帯電した静電気の一部を拡散させることができるような表面抵抗率を有する材料によって、裏面導電基板15と表面導電膜27とを形成した場合には、それらの電位差を完全になくすことができなくても、ESDによる破壊を生じない程度にまで電位差を小さくすることができる。これにより、裏面導電基板15と表面導電膜27とによって挟まれたTFT11がESDによってより破壊されにくくすることができる。さらに、表面導電膜27または裏面導電基板15に静電気が帯電しても、TFT11の閾値電圧等の電気的特性は、帯電した静電気による影響を受けてより変動しにくくなる。
<1.3 Effect>
According to the flexible device 10 according to the present embodiment, the surface conductive film 27 is electrically connected to the back conductive substrate 15 via the connection layer 22. Thereby, the static electricity charged in the back surface conductive substrate 15 or the front surface conductive film 27 is diffused, and their potentials become equal. As a result, the TFT 11 sandwiched between the back conductive substrate 15 and the front conductive film 27 is not easily destroyed by ESD. Further, when the back conductive substrate 15 and the front conductive film 27 are formed of a material having a surface resistivity capable of diffusing at least part of static electricity charged on the back conductive substrate 15 and the front conductive film 27. Even if the potential difference cannot be completely eliminated, the potential difference can be reduced to such an extent that ESD damage does not occur. As a result, the TFT 11 sandwiched between the back conductive substrate 15 and the front conductive film 27 can be made more difficult to be destroyed by ESD. Furthermore, even if static electricity is charged on the surface conductive film 27 or the back side conductive substrate 15, the electrical characteristics such as threshold voltage of the TFT11 is affected by static electricity becomes more difficult to change.

 また、本実施形態に係るフレキシブルデバイス10の製造方法によれば、表面導電膜27および平坦化膜25の表面に貼着した粘着フィルム28を引き剥がす際に、支持基板12と裏面導電基板15との間で静電気が発生する。しかし、裏面導電基板15は表面導電膜27と電気的に接続されているので、発生した静電気は裏面導電基板15だけでなく、表面導電膜27にも帯電し、それらは同電位になる。このように、TFT11は、同電位の表面導電膜27と裏面導電基板15とによって挟まれているので、粘着フィルム28を引き剥がす際にESDによって破壊されにくくなる。 Moreover, according to the manufacturing method of the flexible device 10 which concerns on this embodiment, when peeling the adhesive film 28 stuck to the surface of the surface conductive film 27 and the planarization film | membrane 25, the support substrate 12 and the back surface conductive substrate 15 and Static electricity is generated between the two. However, since the back surface conductive substrate 15 is electrically connected to the surface conductive film 27, the generated static electricity charges not only the back surface conductive substrate 15 but also the surface conductive film 27, and they have the same potential. Thus, since the TFT 11 is sandwiched between the front surface conductive film 27 and the back surface conductive substrate 15 having the same potential, the TFT 11 is not easily destroyed by ESD when the adhesive film 28 is peeled off.

 さらに、静電気が帯電した粘着フィルム28を表面導電膜27に貼着した場合には、静電気が表面導電膜27に帯電する。しかし、この場合にも、同様の理由により、TFT11はESDによって破壊されにくくなる。 Further, when the adhesive film 28 charged with static electricity is attached to the surface conductive film 27, the static electricity is charged to the surface conductive film 27. However, in this case as well, for the same reason, the TFT 11 is not easily destroyed by ESD.

<2.第2の実施形態>
<2.1 フレキシブルデバイスの構成>
 図5は、本発明の第2の実施形態に係るフレキシブルデバイス30の構成を示す図であり、より詳細には、図5(a)はフレキシブルデバイス30の平面図であり、図5(b)はフレキシブルデバイス30の断面図である。本実施形態に係るフレキシブルデバイス30の構成要素のうち、図1に示す第1の実施形態に係るフレキシブルデバイス10の構成要素と同じ構成要素については同一の参照符号を付して、その説明を省略する。
<2. Second Embodiment>
<2.1 Flexible device configuration>
FIG. 5 is a diagram showing a configuration of the flexible device 30 according to the second embodiment of the present invention. More specifically, FIG. 5A is a plan view of the flexible device 30, and FIG. FIG. 3 is a cross-sectional view of the flexible device 30. Among the components of the flexible device 30 according to this embodiment, the same components as the flexible device 10 according to the first embodiment shown in FIG. 1 are designated by the same reference numerals, description thereof is omitted To do.

 図5(b)に示すように、本実施形態に係るフレキシブルデバイス30は、第1の実施形態に係るフレキシブルデバイス10と同様に、支持基板(図示しない)上に裏面導電基板15と絶縁基板16とが積層されたフレキシブル基板を含む。絶縁基板16上には、ボトムゲート型のTFT11が形成されている。TFT11の構成は、第1の実施形態のTFT11の構成と同じである。 As shown in FIG. 5B, the flexible device 30 according to the present embodiment is similar to the flexible device 10 according to the first embodiment in that a back conductive substrate 15 and an insulating substrate 16 are provided on a support substrate (not shown). And a flexible substrate laminated. A bottom gate type TFT 11 is formed on the insulating substrate 16. The configuration of the TFT 11 is the same as the configuration of the TFT 11 of the first embodiment.

 しかし、本実施形態に係るフレキシブルデバイス30は、第1の実施形態に係るフレキシブルデバイス10と異なり、絶縁基板16の表面から裏面導電基板15上に延びる接続層22は設けられていない。このため、絶縁基板16の右側表面にはTFT11が形成されているが、左側表面にはゲート絶縁膜18および層間絶縁膜23のみが積層されている。 However, unlike the flexible device 10 according to the first embodiment, the flexible device 30 according to the present embodiment is not provided with the connection layer 22 that extends from the surface of the insulating substrate 16 onto the back conductive substrate 15. Therefore, the TFT 11 is formed on the right surface of the insulating substrate 16, but only the gate insulating film 18 and the interlayer insulating film 23 are laminated on the left surface.

 図5(a)および図5(b)に示すように、層間絶縁膜23の表面には表面導電膜47が形成されている。表面導電膜47は、例えばCNTが混入されたポリイミド樹脂等の導電性樹脂からなる。表面導電膜47はTFT11を覆い、さらにその一端は絶縁基板16上から、テーパを覆って裏面導電基板15まで延びて、裏面導電基板15の表面と電気的に接続されている。なお、本実施形態では、層間絶縁膜23を「絶縁膜」という場合がある。 As shown in FIGS. 5A and 5B, a surface conductive film 47 is formed on the surface of the interlayer insulating film 23. The surface conductive film 47 is made of a conductive resin such as a polyimide resin mixed with CNTs, for example. The surface conductive film 47 covers the TFT 11, and one end of the surface conductive film 47 extends from the insulating substrate 16 to the back conductive substrate 15 so as to cover the taper and is electrically connected to the surface of the back conductive substrate 15. In the present embodiment, the interlayer insulating film 23 may be referred to as an “insulating film”.

<2.2 フレキシブルデバイスの製造方法>
 図6(a)~図6(d)、図7(e)~図7(f)、図8(g)~図8(h)は、第2の実施形態に係るフレキシブルデバイス30の各製造工程を示す断面図である。なお、図6~図8に示すフレキシブルデバイス30の構成要素のうち、図2~図4に示すフレキシブルデバイス10の構成要素と同じ構成要素については同一の参照符号を付して、その説明を省略する。
<2.2 Flexible device manufacturing method>
6 (a) to 6 (d), 7 (e) to 7 (f), and 8 (g) to 8 (h) are diagrams for manufacturing the flexible device 30 according to the second embodiment. It is sectional drawing which shows a process. Of the components of the flexible device 30 shown in FIGS. 6 to 8, the same components as those of the flexible device 10 shown in FIGS. 2 to 4 are designated by the same reference numerals, and the description thereof is omitted. To do.

 図6(a)および図6(b)に示すように、ガラス板等の支持基板12上に、裏面導電基板15を形成する工程、および絶縁基板16を形成する工程は、図2(a)および図2(b)に示す工程とそれぞれ同じである。図6(c)に示すように、絶縁基板16上にゲート電極17を形成する。このとき、図2(c)に示す場合と異なり、接続層22は形成されない。ゲート電極17を形成した後、図6(d)および図7(e)に示すようにしてTFT11を形成する。それらの工程は、図2(d)および図3(e)に示す工程とそれぞれ同じなので、それらの説明を省略する。 As shown in FIGS. 6A and 6B, the process of forming the back conductive substrate 15 and the process of forming the insulating substrate 16 on the support substrate 12 such as a glass plate are performed as shown in FIG. And the process is the same as that shown in FIG. As shown in FIG. 6C, a gate electrode 17 is formed on the insulating substrate 16. At this time, unlike the case shown in FIG. 2C, the connection layer 22 is not formed. After forming the gate electrode 17, the TFT 11 is formed as shown in FIGS. 6 (d) and 7 (e). Since these steps are the same as the steps shown in FIGS. 2D and 3E, their descriptions are omitted.

 図7(e)に示すように、裏面導電基板15の表面を露出させるため、裏面導電基板15上および絶縁基板16のテーパ上に積層されたゲート絶縁膜18と層間絶縁膜23とを、レジストパターン(図示しない)をマスクにしてエッチングにより除去する。これにより、ゲート絶縁膜18と層間絶縁膜23が絶縁基板16上に残るとともに、裏面導電基板15の表面が露出する。 As shown in FIG. 7E, in order to expose the surface of the back conductive substrate 15, the gate insulating film 18 and the interlayer insulating film 23 stacked on the back conductive substrate 15 and on the taper of the insulating substrate 16 are resisted. The pattern (not shown) is used as a mask and removed by etching. As a result, the gate insulating film 18 and the interlayer insulating film 23 remain on the insulating substrate 16 and the surface of the back conductive substrate 15 is exposed.

 図7(f)に示すように、裏面導電基板15上に、スリットコート法またはスピンコート法等によって、表面抵抗率を調整するためにCNTを混入したポリイミド樹脂を塗布する。次に、塗布したポリイミド樹脂に、300℃で1時間の熱処理を施す。これにより、ポリイミド樹脂は硬化し、膜厚20~30μmの表面導電膜47が形成される。表面導電膜47の一端は、裏面導電基板15の露出した表面と電気的に接続される。表面導電膜47をパターニングすることにより、表面導電膜47を所望の形状にする。このように、表面導電膜47の一端を露出した裏面導電基板15上にも形成することにより、表面導電膜47と裏面導電基板15との電気的な接続を容易かつ確実に行なうことができる。 As shown in FIG. 7F, a polyimide resin mixed with CNTs is applied to the back conductive substrate 15 by a slit coat method or a spin coat method in order to adjust the surface resistivity. Next, the applied polyimide resin is heat-treated at 300 ° C. for 1 hour. Thereby, the polyimide resin is cured, and a surface conductive film 47 having a film thickness of 20 to 30 μm is formed. One end of the front surface conductive film 47 is electrically connected to the exposed surface of the back surface conductive substrate 15. The surface conductive film 47 is formed into a desired shape by patterning the surface conductive film 47. As described above, by forming the front surface conductive film 47 on the back conductive substrate 15 with one end exposed, the electrical connection between the front conductive film 47 and the back conductive substrate 15 can be easily and reliably performed.

 図8(g)に示すように、第1の実施形態の場合と同様に、表面導電膜47の表面に、粘着フィルム28を押圧して貼着し、支持基板12の裏面側から、ポリイミドに吸収される波長のレーザ光を照射する。レーザ光を照射することによって、支持基板12と裏面導電基板15との界面でアブレーションを発生させ、裏面導電基板15と支持基板12との密着性を弱くする。このとき、粘着フィルム28を上方(支持基板12から遠ざかる方向)に引き剥がすことにより、TFT11が形成された裏面導電基板15は、支持基板12から剥離され、図8(h)に示すようにフレキシブルデバイス30が製造される。 As shown in FIG. 8G, as in the case of the first embodiment, the adhesive film 28 is pressed and pasted on the surface of the surface conductive film 47, and polyimide is applied from the back side of the support substrate 12. Irradiate a laser beam having a wavelength to be absorbed. By irradiating with laser light, ablation is generated at the interface between the support substrate 12 and the back conductive substrate 15, and the adhesion between the back conductive substrate 15 and the support substrate 12 is weakened. At this time, the back conductive substrate 15 on which the TFT 11 is formed is peeled off from the support substrate 12 by peeling the adhesive film 28 upward (in a direction away from the support substrate 12), and is flexible as shown in FIG. 8 (h). Device 30 is manufactured.

<2.3 効果>
 本実施形態に係るフレキシブルデバイス30およびその製造方法によれば、第1の実施形態に係るフレキシブルデバイス10およびその製造方法と同様の効果を奏する。
<2.3 Effects>
According to a flexible device 30 and a manufacturing method thereof according to the present embodiment provides the flexible device 10 and the same effect as the production method according to the first embodiment.

<3.第3の実施形態>
<3.1 フレキシブルデバイスの構成>
 図9は、本発明の第3の実施形態に係るフレキシブルデバイス50の構成を示す図であり、より詳細には、図9(a)はフレキシブルデバイス50の平面図であり、図9(b)はフレキシブルデバイス50の断面図である。本実施形態に係るフレキシブルデバイス50の構成要素のうち、図1に示す第1の実施形態に係るフレキシブルデバイス10の構成要素と同じ構成要素については同一の参照符号を付して、その説明を省略する。
<3. Third Embodiment>
<3.1 Configuration of flexible device>
FIG. 9 is a diagram showing the configuration of the flexible device 50 according to the third embodiment of the present invention. In more detail, FIG. 9A is a plan view of the flexible device 50, and FIG. FIG. 4 is a cross-sectional view of the flexible device 50. Among the components of the flexible device 50 according to the present embodiment, the same components as those of the flexible device 10 according to the first embodiment shown in FIG. To do.

 図9(b)に示すように、本実施形態に係るフレキシブルデバイス50は、第1の実施形態に係るフレキシブルデバイス10と同様に、支持基板(図示しない)上に裏面導電基板15と絶縁基板16とが積層されたフレキシブル基板を含む。絶縁基板16上には、ボトムゲート型のTFT11が形成されている。TFT11の構成は、第1の実施形態に係るフレキシブルデバイス10に含まれるTFT11の構成と同じである。 As shown in FIG. 9B, the flexible device 50 according to the present embodiment is similar to the flexible device 10 according to the first embodiment in that a back conductive substrate 15 and an insulating substrate 16 are provided on a support substrate (not shown). And a flexible substrate laminated. A bottom gate type TFT 11 is formed on the insulating substrate 16. The configuration of the TFT 11 is the same as the configuration of the TFT 11 included in the flexible device 10 according to the first embodiment.

 本実施形態に係るフレキシブルデバイス50にも、絶縁基板16の右側表面にはTFT11が形成されている。しかし、第1の実施形態に係るフレキシブルデバイス10と異なり、絶縁基板16の左側表面からテーパを覆う接続層22は形成されていない。このため、その左側表面には、ゲート絶縁膜18および層間絶縁膜23のみが積層されている。 Also in the flexible device 50 according to the present embodiment, the TFT 11 is formed on the right surface of the insulating substrate 16. However, unlike the flexible device 10 according to the first embodiment, the connection layer 22 that covers the taper from the left surface of the insulating substrate 16 is not formed. Therefore, only the gate insulating film 18 and the interlayer insulating film 23 are stacked on the left surface.

 TFT11を覆う層間絶縁膜23上に、絶縁基板16の全体を覆うように、感光性樹脂からなる平坦化膜25が形成されている。平坦化膜25の表面には、TFT11の上方から、その側面を覆って裏面導電基板15の表面まで延びる表面導電膜67が形成されている。表面導電膜67は透明金属または不透明金属からなり、裏面導電基板15の表面と電気的に接続されている。なお、本実施形態では、層間絶縁膜23と平坦化膜25とを合わせて「絶縁膜」ということがある。 A planarizing film 25 made of a photosensitive resin is formed on the interlayer insulating film 23 covering the TFT 11 so as to cover the entire insulating substrate 16. A surface conductive film 67 is formed on the surface of the planarization film 25 from above the TFT 11 so as to cover the side surface and extend to the surface of the back conductive substrate 15. The front surface conductive film 67 is made of a transparent metal or an opaque metal and is electrically connected to the surface of the back surface conductive substrate 15. In the present embodiment, the interlayer insulating film 23 and the planarizing film 25 may be collectively referred to as “insulating film”.

<3.2 フレキシブルデバイスの製造方法>
 図10(a)~図10(d)、図11(e)~図11(f)、図12(g)~図12(h)は、第3の実施形態に係るフレキシブルデバイス50の各製造工程を示す断面図である。なお、図10~図12に示すフレキシブルデバイス50の構成要素のうち、図2~図4に示すフレキシブルデバイス10の構成要素と同じ構成要素については同一の参照符号を付して、その説明を省略する。
<3.2 Manufacturing method of flexible device>
10 (a) to 10 (d), FIG. 11 (e) to FIG. 11 (f), and FIG. 12 (g) to FIG. 12 (h) are diagrams for manufacturing the flexible device 50 according to the third embodiment. It is sectional drawing which shows a process. Of the components of the flexible device 50 shown in FIGS. 10 to 12, the same components as those of the flexible device 10 shown in FIGS. 2 to 4 are designated by the same reference numerals, and the description thereof is omitted. To do.

 図10(a)および図10(b)に示すように、ガラス板等の支持基板12上に、裏面導電基板15を形成する工程、および絶縁基板16を形成する工程は、図2(a)および図2(b)に示す工程とそれぞれ同一である。次に、図10(c)に示すように、絶縁基板16上にゲート電極17を形成する。このとき、図2(c)に示す場合と異なり、接続層22は形成されない。 As shown in FIGS. 10A and 10B, the step of forming the back conductive substrate 15 and the step of forming the insulating substrate 16 on the support substrate 12 such as a glass plate are performed as shown in FIG. And the steps are the same as those shown in FIG. Next, as shown in FIG. 10C, a gate electrode 17 is formed on the insulating substrate 16. At this time, unlike the case shown in FIG. 2C, the connection layer 22 is not formed.

 ゲート電極17を形成した後、図10(d)および図11(e)に示すようにしてTFT11を形成する。それらの工程は、図2(d)および図3(e)に示す工程とそれぞれ同じなので、その説明を省略する。 After the gate electrode 17 is formed, the TFT 11 is formed as shown in FIGS. 10 (d) and 11 (e). Since these steps are the same as the steps shown in FIGS. 2D and 3E, description thereof will be omitted.

 図11(e)に示すように、裏面導電基板15の表面を露出させるため、裏面導電基板15上および絶縁基板16のテーパ上に積層されたゲート絶縁膜18と層間絶縁膜23とを、レジストパターン(図示しない)をマスクにしてエッチングにより除去する。これにより、ゲート絶縁膜18と層間絶縁膜23が絶縁基板上に残るとともに、裏面導電基板15の表面が露出する。 As shown in FIG. 11E, in order to expose the surface of the back conductive substrate 15, the gate insulating film 18 and the interlayer insulating film 23 stacked on the back conductive substrate 15 and on the taper of the insulating substrate 16 are resisted. The pattern (not shown) is used as a mask and removed by etching. As a result, the gate insulating film 18 and the interlayer insulating film 23 remain on the insulating substrate, and the surface of the back conductive substrate 15 is exposed.

 図11(f)に示すように、裏面導電基板15を覆うように平坦化膜25を形成し、絶縁基板16を覆うように平坦化膜25をパターニングする。これにより、裏面導電基板15の表面が露出される。次に、平坦化膜25を含む裏面導電基板15の全体を覆うように、スパッタリング法または蒸着法によって金属膜(図示しない)を成膜する。次に、成膜した金属膜をパターニングすることにより、TFT11の上方の平坦化膜25の表面からその側面を覆って裏面導電基板15上まで延びる表面導電膜67を形成する。なお、金属膜はスパッタリング法または蒸着法によって形成されるので、表面導電膜67は、裏面導電基板15の表面と電気的に接続される。 As shown in FIG. 11 (f), the planarizing film 25 is formed so as to cover the back surface conductive substrate 15, and the planarizing film 25 is patterned so as to cover the insulating substrate 16. Thereby, the surface of the back surface conductive substrate 15 is exposed. Next, a metal film (not shown) is formed by sputtering or vapor deposition so as to cover the entire back conductive substrate 15 including the planarizing film 25. Next, by patterning the formed metal film, a surface conductive film 67 that extends from the surface of the planarizing film 25 above the TFT 11 to the side of the back conductive substrate 15 covering the side surface thereof is formed. Since the metal film is formed by sputtering or vapor deposition, the surface conductive film 67 is electrically connected to the surface of the back conductive substrate 15.

 図12(g)に示すように、第1の実施形態の場合と同様に、表面導電膜67の表面に、粘着フィルム28を押圧して貼着し、支持基板12の裏面側から、ポリイミド樹脂に吸収される波長のレーザ光を照射する。レーザ光の照射によって、支持基板12と裏面導電基板15との界面でアブレーションを発生させて、裏面導電基板15と支持基板12との密着性を弱くする。このとき、粘着フィルム28を上方(支持基板12から遠ざかる方向)に引き剥がすことにより、TFT11が形成された裏面導電基板15は、支持基板12から剥離され、図12(h)に示すように、フレキシブルデバイス50が製造される。 As shown in FIG. 12 (g), as in the case of the first embodiment, the pressure-sensitive adhesive film 28 is pressed and adhered to the surface of the surface conductive film 67, and polyimide resin is applied from the back surface side of the support substrate 12. A laser beam having a wavelength that is absorbed by the laser beam is irradiated. The laser light irradiation causes ablation at the interface between the support substrate 12 and the back conductive substrate 15 to weaken the adhesion between the back conductive substrate 15 and the support substrate 12. At this time, by peeling the adhesive film 28 upward (in a direction away from the support substrate 12), the back surface conductive substrate 15 on which the TFT 11 is formed is peeled from the support substrate 12, and as shown in FIG. The flexible device 50 is manufactured.

<3.3 効果>
 本実施形態に係るフレキシブルデバイス50およびその製造方法によれば、第1の実施形態に係るフレキシブルデバイス10およびその製造方法と同様の効果を奏する。
<3.3 Effects>
According to the flexible device 50 and the manufacturing method thereof according to the present embodiment, the same effects as those of the flexible device 10 according to the first embodiment and the manufacturing method thereof can be obtained.

<4.第4の実施形態>
<4.1 フレキシブルデバイスの構成>
 図13は、本発明の第4の実施形態に係るフレキシブルデバイス70の構成を示す図であり、より詳細には、図13(a)はフレキシブルデバイス70の平面図であり、図13(b)はフレキシブルデバイス70の断面図である。本実施形態に係るフレキシブルデバイス70は、図1に示すフレキシブルデバイス10と同様に、裏面導電基板15上に絶縁基板16が積層されたフレキシブル基板を含む。しかし、絶縁基板16上には、R(赤色)、G(緑色)、B(青色)の光をそれぞれ発する3種類の有機EL(Electro-Luminescence)発光素子73と、各有機EL発光素子73をそれぞれ駆動する半導体素子74とが搭載されている。
<4. Fourth Embodiment>
<4.1 Configuration of flexible device>
FIG. 13 is a diagram showing a configuration of a flexible device 70 according to the fourth embodiment of the present invention. More specifically, FIG. 13A is a plan view of the flexible device 70, and FIG. FIG. 6 is a cross-sectional view of the flexible device 70. A flexible device 70 according to the present embodiment includes a flexible substrate in which an insulating substrate 16 is laminated on a back conductive substrate 15, similarly to the flexible device 10 illustrated in FIG. 1. However, on the insulating substrate 16, three types of organic EL (Electro-Luminescence) light emitting elements 73 that emit light of R (red), G (green), and B (blue), and each organic EL light emitting element 73 are provided. A semiconductor element 74 to be driven is mounted.

 有機EL発光素子73と半導体素子74は封止材75によって封止されている。封止材75は、有機EL発光素子73を劣化させることがなく、また有機EL発光素子73から発せられる光によって劣化しない材料からなることが好ましい。そのため、封止材75としては、例えば、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂等が用いられる。 The organic EL light emitting element 73 and the semiconductor element 74 are sealed with a sealing material 75. The sealing material 75 is preferably made of a material that does not deteriorate the organic EL light emitting element 73 and does not deteriorate due to light emitted from the organic EL light emitting element 73. Therefore, as the sealing material 75, for example, an epoxy resin, an acrylic resin, a urethane resin, or the like is used.

 封止材75の表面は導電性フィルム87によって覆われている。導電性フィルム87の一端は、封止材75の側面を覆って裏面導電基板15上まで延びている。裏面導電基板15上まで延びた導電性フィルム87は、導電性接着剤によって裏面導電基板15の表面に貼り付けられている。これにより、導電性フィルム87は裏面導電基板15と電気的に接続され、それらは同電位になる。 The surface of the sealing material 75 is covered with a conductive film 87. One end of the conductive film 87 covers the side surface of the sealing material 75 and extends to the back conductive substrate 15. The conductive film 87 extending to the back conductive substrate 15 is attached to the surface of the back conductive substrate 15 with a conductive adhesive. Thereby, the conductive film 87 is electrically connected to the back surface conductive substrate 15, and they have the same potential.

 本実施形態に係るフレキシブルデバイス70の製造方法について簡単に説明する。本実施形態でも、第1の実施形態の場合と同様にして、導電性フィルム87を貼り付ける。次に、有機EL発光素子73および半導体素子74が搭載された裏面導電基板15に支持基板(図示しない)側からレーザ光を照射し、裏面導電基板15を支持基板から剥離する。これにより、フレキシブルデバイス70を製造する。なお、絶縁基板16上に搭載される発光素子は、有機EL発光素子73に限られず、自発光素子であればよい。 A method for manufacturing the flexible device 70 according to the present embodiment will be briefly described. Also in this embodiment, the conductive film 87 is affixed similarly to the case of the first embodiment. Next, the back conductive substrate 15 on which the organic EL light emitting element 73 and the semiconductor element 74 are mounted is irradiated with laser light from the support substrate (not shown) side, and the back conductive substrate 15 is peeled from the support substrate. Thereby, the flexible device 70 is manufactured. In addition, the light emitting element mounted on the insulating substrate 16 is not limited to the organic EL light emitting element 73, and may be a self light emitting element.

<4.2 効果>
 本実施形態に係るフレキシブルデバイス70およびその製造方法によれば、第1の実施形態に係るフレキシブルデバイス10およびその製造方法と同様の効果を奏する。
<4.2 Effects>
According to the flexible device 70 and the manufacturing method thereof according to the present embodiment, the same effects as those of the flexible device 10 and the manufacturing method thereof according to the first embodiment can be obtained.

<5.第1~第4の実施形態に共通する変形例>
 第1~第4の実施形態では、支持基板12として、ガラス基板を用いた場合について説明した。しかし、支持基板12として、ステンレス鋼等の金属基板、石英基板等を使用してもよい。なお、本明細書では、ガラス基板や石英基板のように透明な支持基板を「透明基板」ということがある。
<5. Modification Common to First to Fourth Embodiments>
In the first to fourth embodiments, the case where a glass substrate is used as the support substrate 12 has been described. However, as the support substrate 12, a metal substrate such as stainless steel, a quartz substrate, or the like may be used. In the present specification, a transparent support substrate such as a glass substrate or a quartz substrate may be referred to as a “transparent substrate”.

 第1~第4の実施形態では、裏面導電基板15を支持基板12から剥離する際に、粘着フィルムを使用した。しかし、粘着フィルム28の代わりに、弱粘着性フィルムまたは多孔質シートを用いてもよい。なお、本明細書では、これらのフィルムまたはシートを含めて「粘着性フィルム」ということがある。 In the first to fourth embodiments, an adhesive film was used when the back conductive substrate 15 was peeled from the support substrate 12. However, instead of the adhesive film 28, a weak adhesive film or a porous sheet may be used. In this specification, these films or sheets may be referred to as “adhesive film”.

 第1~第4の実施形態では、支持基板12の熱膨張係数(Coefficient of Thermal Expansion:CTE)と絶縁基板16を構成するポリイミド樹脂の熱膨張係数は、略等しいことが好ましい。これらのポリイミド樹脂の熱膨張係数が略等しい場合には、裏面導電基板15を構成するポリイミド樹脂の熱膨張係数がそれらより大きくても、また小さくても裏面導電基板15の熱膨張は、支持基板12と絶縁基板16によって抑制される。これにより、裏面導電基板15が製造工程で高温に晒されても、絶縁基板16は反りにくくなるので、その上に形成されたTFT11にひずみ等が生じることが抑制される。 In the first to fourth embodiments, the thermal expansion coefficient (Coefficient of Thermal Expansion: CTE) of the support substrate 12 and the thermal expansion coefficient of the polyimide resin constituting the insulating substrate 16 are preferably substantially equal. When the thermal expansion coefficients of these polyimide resins are substantially equal, the thermal expansion coefficient of the back surface conductive substrate 15 is not limited even if the thermal expansion coefficient of the polyimide resin constituting the back surface conductive substrate 15 is larger or smaller than those. 12 and the insulating substrate 16. Thereby, even if the back surface conductive substrate 15 is exposed to a high temperature in the manufacturing process, the insulating substrate 16 is less likely to warp, so that distortion or the like is suppressed in the TFT 11 formed thereon.

 第1~第4の実施形態では、裏面導電基板15を支持基板12から剥離する際に、ガラスからなる支持基板12を通して、裏面導電基板15にレーザ光を照射し、アブレーションを発生させた。しかし、アブレーションを発生させる代わりに、表面導電膜27、47、67または導電性フィルム87の表面を保護膜で覆って、支持基板12をフッ酸(HF)に浸漬することにより除去してもよい。 In the first to fourth embodiments, when the back surface conductive substrate 15 is peeled from the support substrate 12, the back surface conductive substrate 15 is irradiated with laser light through the support substrate 12 made of glass to generate ablation. However, instead of generating ablation, the surface of the surface conductive films 27, 47, 67 or the conductive film 87 may be covered with a protective film and removed by immersing the support substrate 12 in hydrofluoric acid (HF). .

 また、裏面導電基板15にレーザ光を照射してアブレーションを発生させる代わりに、特開2010-111853に記載された方法を用いて、裏面導電基板15を支持基板12から剥離もよい。特開2010-111853に記載された方法を、第1の実施形態に適用した場合について簡単に説明する。図14(a)は、支持基板12と裏面導電基板15との間に剥離層13を形成したことを示す断面図であり、図14(b)は支持基板12から裏面導電基板15を剥離した状態を示す断面図である。なお、図14(a)および図14(b)では、絶縁基板16およびTFT11は省略されている。 Further, instead of irradiating the back surface conductive substrate 15 with laser light and generating ablation, the back surface conductive substrate 15 may be peeled off from the support substrate 12 by using the method described in Japanese Patent Application Laid-Open No. 2010-1111853. The case where the method described in JP2010-1111853 is applied to the first embodiment will be briefly described. FIG. 14A is a cross-sectional view showing that the release layer 13 is formed between the support substrate 12 and the back surface conductive substrate 15, and FIG. 14B shows that the back surface conductive substrate 15 is peeled from the support substrate 12. It is sectional drawing which shows a state. In FIG. 14A and FIG. 14B, the insulating substrate 16 and the TFT 11 are omitted.

 図14(a)に示すように、支持基板12と裏面導電基板15との間に剥離層13を形成する。裏面導電基板15の面積A1は剥離層13の面積A2よりも大きく、かつ、裏面導電基板15の支持基板12に対する密着性は、剥離層13の支持基板12に対する密着性よりも高い。裏面導電基板15上に絶縁基板およびTFTを形成した後に、支持基板12との密着性が低い剥離層13の端部に沿って裏面導電基板15、剥離層13および支持基板12を切断する。その結果、図14(b)に示すように、裏面導電基板15を支持基板12から容易に剥離することができる。なお、第2~第4の実施形態の場合も、第1の実施形態の場合と同様に、図14(a)および図14(b)に示す方法を適用することができる。 As shown in FIG. 14A, a release layer 13 is formed between the support substrate 12 and the back conductive substrate 15. The area A1 of the back conductive substrate 15 is larger than the area A2 of the release layer 13, and the adhesion of the back conductive substrate 15 to the support substrate 12 is higher than the adhesion of the release layer 13 to the support substrate 12. After the insulating substrate and the TFT are formed on the back conductive substrate 15, the back conductive substrate 15, the release layer 13 and the support substrate 12 are cut along the end portion of the release layer 13 having low adhesion to the support substrate 12. As a result, as shown in FIG. 14B, the back surface conductive substrate 15 can be easily peeled from the support substrate 12. Note that the methods shown in FIGS. 14A and 14B can also be applied to the second to fourth embodiments, as in the case of the first embodiment.

 また、第1~第3の実施形態では、絶縁基板16上にボトムゲート型のTFT11を形成した。しかし、ボトムゲート型のTFT11の代わりに、トップゲート型のTFT81を形成してもよい。図15(a)および図15(b)は、トップゲート型のTFT81を有するフレキシブルデバイス80の製造工程を示す断面図である。図15(a)および図15(b)に示すフレキシブルデバイス80の構成要素のうち、図1(a)および図1(b)に示すフレキシブルデバイス10の構成要素と同じ構成要素については、同じ参照符号を付してその説明を省略する。図15(a)に示すように、フレキシブルデバイス80でも、TFT81のゲート電極17は、接続層22と同時に形成されるので、製造工程を簡略化することができる。なお、TFT81は、周知のトップゲート型TFTであるので、その製造方法を示す図および説明を省略する。また、第1の実施形態に係るフレキシブルデバイス10に対応するフレキシブルデバイス80について説明したが、第2および第3の実施形態に係るフレキシブルデバイス30、50に対応するフレキシブルデバイスについても同様である。 In the first to third embodiments, the bottom gate type TFT 11 is formed on the insulating substrate 16. However, a top-gate TFT 81 may be formed instead of the bottom-gate TFT 11. FIGS. 15A and 15B are cross-sectional views showing a manufacturing process of the flexible device 80 having the top gate type TFT 81. Of the components of the flexible device 80 shown in FIGS. 15A and 15B, the same reference is made to the same components as those of the flexible device 10 shown in FIGS. 1A and 1B. Reference numerals are assigned and explanations thereof are omitted. As shown in FIG. 15A, even in the flexible device 80, the gate electrode 17 of the TFT 81 is formed at the same time as the connection layer 22, so that the manufacturing process can be simplified. Note that since the TFT 81 is a well-known top gate type TFT, the illustration and description of its manufacturing method are omitted. Moreover, although the flexible device 80 corresponding to the flexible device 10 which concerns on 1st Embodiment was demonstrated, it is the same also about the flexible device corresponding to the flexible devices 30 and 50 which concern on 2nd and 3rd embodiment.

<6.フレキシブルデバイスを液晶表示装置に適用した場合>
<6.1 液晶表示装置の構成>
 図16は、第1~第3の実施形態に示す、TFT11を含むフレキシブルデバイス10、30、50を用いた液晶表示装置100の構成を示すブロック図である。図16に示す液晶表示装置100は、液晶パネル111と、表示制御回路112と、ゲートドライバ113と、ソースドライバ114とを含む。液晶パネル111には、水平方向に延びるn本のゲート配線G1~Gnと、ゲート配線G1~Gnと交差する方向に延びるm本のソース配線S1~Smが形成されている。i番目のゲート配線Giとj番目のソース配線Sjとの交点近傍には、それぞれ画素形成部Pijが配置されている。
<6. When a flexible device is applied to a liquid crystal display>
<6.1 Configuration of liquid crystal display device>
FIG. 16 is a block diagram showing a configuration of the liquid crystal display device 100 using the flexible devices 10, 30, and 50 including the TFT 11 shown in the first to third embodiments. A liquid crystal display device 100 illustrated in FIG. 16 includes a liquid crystal panel 111, a display control circuit 112, a gate driver 113, and a source driver 114. In the liquid crystal panel 111, n gate wirings G1 to Gn extending in the horizontal direction and m source wirings S1 to Sm extending in a direction intersecting the gate wirings G1 to Gn are formed. Pixel forming portions Pij are arranged in the vicinity of the intersections of the i-th gate line Gi and the j-th source line Sj.

 表示制御回路112には、液晶表示装置100の外部から水平同期信号や垂直同期信号等の制御信号SCと画像信号DTが供給される。表示制御回路112は、これらの信号に基づき、ゲートドライバ113に対して制御信号SC1を出力し、ソースドライバ114に対して制御信号SC2と画像信号DTを出力する。 The display control circuit 112 is supplied with a control signal SC such as a horizontal synchronization signal and a vertical synchronization signal and an image signal DT from the outside of the liquid crystal display device 100. Based on these signals, the display control circuit 112 outputs a control signal SC1 to the gate driver 113 and outputs a control signal SC2 and an image signal DT to the source driver 114.

 ゲートドライバ113はゲート配線G1~Gnに接続され、ソースドライバ114はソース配線S1~Smに接続されている。ゲートドライバ113は、選択状態を示すハイレベルの信号をゲート配線G1~Gnに順に与える。これにより、ゲート配線G1~Gnが1本ずつ順に選択される。例えば、i番目のゲート配線Giが選択されたとき、1行分の画素形成部Pi1~Pimが一括して選択される。ソースドライバ114は、各ソース配線S1~Smに対して画像信号DTに応じた電圧を与える。これにより、選択された1行分の画素形成部Pi1~Pimに画像信号DTに応じた電圧が書き込まれる。このようにして、液晶表示装置100は液晶パネル111に画像を表示する。なお、液晶パネル111を表示部ということがある。 The gate driver 113 is connected to the gate lines G1 to Gn, and the source driver 114 is connected to the source lines S1 to Sm. The gate driver 113 sequentially applies a high level signal indicating the selected state to the gate wirings G1 to Gn. As a result, the gate wirings G1 to Gn are sequentially selected one by one. For example, when the i-th gate line Gi is selected, the pixel formation portions Pi1 to Pim for one row are selected at once. The source driver 114 applies a voltage corresponding to the image signal DT to each of the source lines S1 to Sm. As a result, a voltage corresponding to the image signal DT is written into the pixel formation portions Pi1 to Pim for one selected row. In this way, the liquid crystal display device 100 displays an image on the liquid crystal panel 111. The liquid crystal panel 111 may be referred to as a display unit.

<6.2 第1の適用例>
 このような液晶表示装置100のスイッチング素子として、第2の実施形態に係るフレキシブルデバイス30を適用した場合について説明する。表面導電膜47の代わりに、不透明金属からなる表面導電膜を形成した場合、表面導電膜によってTFT11を完全に覆えば、TFT11はESDによって破壊されにくくなったり、帯電した静電気によってTFT11の閾値電圧等の電気的特性が変化することを抑制したりすることができる等、静電気の影響を受けないようにすることができる。しかし、表面導電膜によってTFT11を完全に覆えば、各画素の開口率が低下するという問題が生じる。そこで、第2の実施形態に係るフレキシブルデバイス30を液晶表示装置100のスイッチングデバイスとして用いることにより、静電気の影響を受けにくくするとともに、画素の開口率の低下を押さえることができる構成を説明する。
<6.2 First application example>
A case where the flexible device 30 according to the second embodiment is applied as a switching element of the liquid crystal display device 100 will be described. In the case where a surface conductive film made of an opaque metal is formed instead of the surface conductive film 47, if the TFT 11 is completely covered with the surface conductive film, the TFT 11 becomes difficult to be destroyed by ESD, or the threshold voltage of the TFT 11 is caused by charged static electricity. It is possible to prevent the influence of static electricity from being affected. However, if the TFT 11 is completely covered with the surface conductive film, there arises a problem that the aperture ratio of each pixel is lowered. In view of this, a configuration will be described in which the flexible device 30 according to the second embodiment is used as a switching device of the liquid crystal display device 100 so that it is less susceptible to static electricity and the decrease in the aperture ratio of the pixel can be suppressed.

 図17(a)~図17(c)は、第2の実施形態に係るフレキシブルデバイス30を液晶表示装置100のスイッチング素子として用いた場合のフレキシブルデバイス131、132、133の構成を示す各断面図である。図17(a)~図17(c)に示すいずれのフレキシブルデバイス131、132、133でも、不透明金属からなる表面導電膜48上に、さらに感光性樹脂からなる平坦化膜91が形成されている。平坦化膜91の表面には、酸化インジウム錫(Indium Tin Oxide:以下、「ITO」という)等の透明金属からなる画素電極93が形成されている。画素電極93は、平坦化膜91に開孔されたコンタクトホール92を介してドレイン電極21bと接続されている。なお、フレキシブルデバイス131、132、133に対応する構成要素には、それぞれ同じ参照符号を付している。 FIGS. 17A to 17C are cross-sectional views showing configurations of the flexible devices 131, 132, and 133 when the flexible device 30 according to the second embodiment is used as a switching element of the liquid crystal display device 100. FIG. It is. In any of the flexible devices 131, 132, and 133 shown in FIGS. 17A to 17C, a planarizing film 91 made of a photosensitive resin is further formed on the surface conductive film 48 made of an opaque metal. . A pixel electrode 93 made of a transparent metal such as indium tin oxide (hereinafter referred to as “ITO”) is formed on the surface of the planarizing film 91. The pixel electrode 93 is connected to the drain electrode 21 b through a contact hole 92 opened in the planarizing film 91. Note that the same reference numerals are assigned to the components corresponding to the flexible devices 131, 132, and 133, respectively.

 TFT11が静電気の影響を受けにくくするためには、表面導電膜48は少なくともチャネル領域の上部を覆っていればよく、さらに好ましくはチャネル層19の全体を覆っていればよい。 In order to make the TFT 11 less susceptible to static electricity, the surface conductive film 48 only needs to cover at least the upper portion of the channel region, and more preferably, the entire channel layer 19 may be covered.

 図17(a)に示すフレキシブルデバイス131では、表面導電膜48は、裏面導電基板15から、TFT11のソース電極21aとドレイン電極21bとに挟まれたチャネル層19(以下、「チャネル領域19c」という)までを覆っている。これにより、画素の開口率が最も大きくなる。図17(b)に示すフレキシブルデバイス132では、表面導電膜48は、チャネル領域19cだけではなく、さらにゲート電極17まで覆っている。これにより、画素の開口率は低下するが、TFT11は静電気による影響をより受けにくくなる。図17(c)に示すフレキシブルデバイス133では、表面導電膜48は、さらにチャネル層19の全体を覆っている。これにより、画素の開口率はより一層低下するが、TFT11は静電気による影響をより一層受けにくくなる。 In the flexible device 131 shown in FIG. 17A, the front surface conductive film 48 has a channel layer 19 (hereinafter referred to as “channel region 19 c”) sandwiched between the source electrode 21 a and the drain electrode 21 b of the TFT 11 from the back surface conductive substrate 15. ). This maximizes the aperture ratio of the pixel. In the flexible device 132 shown in FIG. 17B, the surface conductive film 48 covers not only the channel region 19 c but also the gate electrode 17. As a result, the aperture ratio of the pixel decreases, but the TFT 11 becomes less susceptible to static electricity. In the flexible device 133 shown in FIG. 17C, the surface conductive film 48 further covers the entire channel layer 19. As a result, the aperture ratio of the pixel is further reduced, but the TFT 11 is further less affected by static electricity.

<6.3 第2の適用例>
 また、液晶表示装置のスイッチング素子として、第3の実施形態に係るフレキシブルデバイス50を適用することもできる。図18(a)~図18(c)は、第3の実施形態に係るフレキシブルデバイス50を液晶表示装置100のスイッチング素子として用いた場合のフレキシブルデバイス141、142、143の構成を示す各断面図である。図18(a)~図18(c)に示すように、フレキシブルデバイス141、142、143では、平坦化膜25および層間絶縁膜23を介してドレイン電極21bに達するコンタクトホール92が開孔されている。平坦化膜25上には、ITO等の透明金属によって画素電極93が形成されている。画素電極93は、コンタクトホール92を介してドレイン電極21bと電気的に接続されている。なお、フレキシブルデバイス141、142、143に対応する構成要素には、それぞれ同じ参照符号を付している。
<6.3 Second Application Example>
The flexible device 50 according to the third embodiment can also be applied as a switching element of a liquid crystal display device. Figure 18 (a) ~ FIG 18 (c), each cross-sectional view showing the configuration of a flexible device 141, 142 and 143 in the case of using the flexible device 50 according to the third embodiment as a switching element of a liquid crystal display device 100 It is. As shown in FIGS. 18A to 18C, in the flexible devices 141, 142, and 143, a contact hole 92 reaching the drain electrode 21b through the planarizing film 25 and the interlayer insulating film 23 is opened. Yes. A pixel electrode 93 is formed on the planarizing film 25 by a transparent metal such as ITO. The pixel electrode 93 is electrically connected to the drain electrode 21b through the contact hole 92. Note that the same reference numerals are assigned to the components corresponding to the flexible devices 141, 142, and 143, respectively.

 フレキシブルデバイス141、142、143では、画素電極93は、表面導電膜67と分離して形成されている。表面導電膜67は、透明金属または不透明金属のいずれによって構成してもよい。しかし、画素電極93と同じ種類の透明金属によって構成した場合には、フレキシブルデバイス141、142、143の製造工程を簡略化することができる。 In the flexible devices 141, 142, and 143, the pixel electrode 93 is formed separately from the surface conductive film 67. The surface conductive film 67 may be made of either a transparent metal or an opaque metal. However, when the transparent electrode is made of the same type of transparent metal as the pixel electrode 93, the manufacturing process of the flexible devices 141, 142, and 143 can be simplified.

 このようなフレキシブルデバイス141、142、143においても、表面導電膜67によってTFT11をどこまで覆うかにより、図17(a)~図17(c)に示す場合と同様に、静電気による影響および画素の開口率が異なる。図18(a)に示すフレキシブルデバイス141では、表面導電膜67は、裏面導電基板15から、TFT11のチャネル領域19cまでを覆っている。これにより、画素の開口率が最も大きくなる。図18(b)に示すフレキシブルデバイス142では、表面導電膜67は、チャネル領域19cだけではなく、さらにゲート電極17まで覆っている。これにより、画素の開口率は低下するが、TFT11は静電気による影響をより受けにくくなる。図18(c)に示すフレキシブルデバイス143では、表面導電膜67は、チャネル層19の全体を覆っている。これにより、画素の開口率はより一層低下するが、TFT11は静電気による影響をより一層受けにくくなる。 Also in such flexible devices 141, 142, and 143, depending on the extent to which the TFT 11 is covered with the surface conductive film 67, the influence of static electricity and the opening of the pixel are the same as in the case shown in FIGS. 17 (a) to 17 (c). The rate is different. In the flexible device 141 shown in FIG. 18A, the front surface conductive film 67 covers from the back surface conductive substrate 15 to the channel region 19 c of the TFT 11. This maximizes the aperture ratio of the pixel. In the flexible device 142 shown in FIG. 18B, the surface conductive film 67 covers not only the channel region 19 c but also the gate electrode 17. As a result, the aperture ratio of the pixel decreases, but the TFT 11 becomes less susceptible to static electricity. In the flexible device 143 illustrated in FIG. 18C, the surface conductive film 67 covers the entire channel layer 19. As a result, the aperture ratio of the pixel is further reduced, but the TFT 11 is further less affected by static electricity.

<6.4 効果>
 このように、フレキシブルデバイス30、50を液晶表示装置100のスイッチング素子に適用する場合、表面導電膜48、67の大きさを図17(a)~図17(c)または図18(a)~図18(c)に示す範囲で選ぶことにより、静電気による影響を受けにくくするとともに、画素の開口率を小さくしないようにすることができる。また、フレキシブルデバイス30、50を液晶表示装置100のスイッチング素子に適用することにより、液晶表示装置100をフレキシブルな装置にすることができる。
<6.4 Effect>
As described above, when the flexible devices 30 and 50 are applied to the switching elements of the liquid crystal display device 100, the sizes of the surface conductive films 48 and 67 are set as shown in FIG. 17 (a) to FIG. 17 (c) or FIG. By selecting within the range shown in FIG. 18C, it is possible to make it less susceptible to the influence of static electricity and not to reduce the aperture ratio of the pixel. Further, by applying the flexible devices 30 and 50 to the switching element of the liquid crystal display device 100, the liquid crystal display device 100 can be made a flexible device.

 本発明は、軽くて曲げることができ、携帯性に優れた表示装置に搭載されるデバイスに適用される。 The present invention is applied to a device mounted on a display device that is light and bendable and has excellent portability.

 10、30、50、70…フレキシブルデバイス
 11…薄膜トランジスタ(TFT)
 12…支持基板
 13…剥離層
 15…裏面導電基板
 16…絶縁基板
 19…チャネル層
 19c…チャネル領域
 22…接続層
 27、48、67…表面導電膜
 28…粘着フィルム
 73…有機EL発光素子
 74…半導体素子
 87…導電性フィルム
 93…画素電極
 100…液晶表示装置
10, 30, 50, 70 ... Flexible device 11 ... Thin film transistor (TFT)
12 ... supporting substrate 13 ... peeling layer 15 ... back conductor substrate 16: insulating substrate 19 ... channel layer 19c ... channel region 22 ... connecting layer 27,48,67 ... surface conductive film 28 ... adhesive film 73: Organic EL light-emitting element 74 ... Semiconductor element 87 ... conductive film 93 ... pixel electrode 100 ... liquid crystal display device

Claims (24)

 フレキシブルな導電基板と
 前記導電基板上に積層されたフレキシブルな絶縁基板と、
 前記絶縁基板上に形成された電子デバイスと、
 前記電子デバイスを覆うように形成された絶縁膜と、
 前記絶縁膜上に、前記電子デバイスを覆うように形成された表面導電膜とを備え、
 前記導電基板と前記表面導電膜とが電気的に接続されていることを特徴とする、フレキシブルデバイス。
A flexible conductive substrate; a flexible insulating substrate laminated on the conductive substrate;
An electronic device formed on the insulating substrate;
An insulating film formed to cover the electronic device;
A surface conductive film formed on the insulating film so as to cover the electronic device,
The flexible device, wherein the conductive substrate and the surface conductive film are electrically connected.
 前記導電基板は、カーボンナノチューブを混入したポリイミド樹脂からなり、
 前記絶縁基板は、カーボンナノチューブを混入しないポリイミド樹脂からなることを特徴とする、請求項1に記載のフレキシブルデバイス。
The conductive substrate is made of a polyimide resin mixed with carbon nanotubes,
The flexible device according to claim 1, wherein the insulating substrate is made of a polyimide resin in which carbon nanotubes are not mixed.
 前記表面導電膜および前記導電基板は、帯電した少なくとも一部の静電気を拡散させることが可能な表面抵抗率を有することを特徴とする、請求項1に記載のフレキシブルデバイス。 2. The flexible device according to claim 1, wherein the surface conductive film and the conductive substrate have a surface resistivity capable of diffusing at least a part of charged static electricity.  前記表面抵抗率は10E10Ω/□以下であることを特徴とする、請求項3に記載のフレキシブルデバイス。 The flexible device according to claim 3, wherein the surface resistivity is 10E10Ω / □ or less.  前記電子デバイスは、薄膜トランジスタを含むことを特徴とする、請求項1に記載のフレキシブルデバイス。 The flexible device according to claim 1, wherein the electronic device includes a thin film transistor.  前記絶縁膜と前記絶縁基板との間に形成され、一端が前記導電基板と電気的に接続された接続層をさらに備え、
 前記表面導電膜は、前記接続層を介して前記導電基板と電気的に接続されていることを特徴とする、請求項1に記載のフレキシブルデバイス。
A connection layer formed between the insulating film and the insulating substrate and having one end electrically connected to the conductive substrate;
The flexible device according to claim 1, wherein the surface conductive film is electrically connected to the conductive substrate through the connection layer.
 前記導電基板は前記絶縁基板によって覆われていない領域を有し、
 前記表面導電膜は、前記導電基板の前記領域に電気的に接続されていることを特徴とする、請求項1に記載のフレキシブルデバイス。
The conductive substrate has a region not covered by the insulating substrate;
The flexible device according to claim 1, wherein the surface conductive film is electrically connected to the region of the conductive substrate.
 前記表面導電膜は、カーボンナノチューブを混入したポリイミド樹脂からなり、前記絶縁膜上から前記導電基板上まで延びていることを特徴とする、請求項7に記載のフレキシブルデバイス。 The flexible device according to claim 7, wherein the surface conductive film is made of polyimide resin mixed with carbon nanotubes and extends from the insulating film to the conductive substrate.  前記表面導電膜は、前記絶縁膜上から前記導電基板上まで延びる金属膜からなることを特徴とする、請求項7に記載のフレキシブルデバイス。 The flexible device according to claim 7, wherein the surface conductive film is made of a metal film extending from the insulating film to the conductive substrate.  前記電子デバイスは、自発光素子と前記自発光素子を駆動する半導体素子とを含み、
 前記絶縁膜は、前記自発光素子と前記半導体素子とを封止する封止材からなり、
 前記表面導電膜は、前記封止材の表面に貼り付けられた導電性フィルムからなることを特徴とする、請求項1に記載のフレキシブルデバイス。
The electronic device includes a self-luminous element and a semiconductor element that drives the self-luminous element,
The insulating film is made of a sealing material that seals the self-luminous element and the semiconductor element,
The flexible device according to claim 1, wherein the surface conductive film is made of a conductive film attached to a surface of the sealing material.
 画像を表示するアクティブマトリクス型の表示装置であって、
 複数のゲート配線と、前記複数のゲート配線と交差する複数のソース配線と、前記複数のゲート配線と前記複数のソース配線との交差点にそれぞれ対応してマトリクス状に配置された画素形成部とを備える表示部と、
 前記複数のゲート配線を選択的に活性化するゲートドライバと、
 表示すべき画像を表す画像信号を前記ソース配線に印加するソースドライバとを備え、
 前記画素形成部は、
  対応するゲート配線に印加される信号に応じてオンまたはオフするスイッチング素子と、
  前記スイッチング素子に接続され、前記画像信号を保持する画素電極とを含み、
  前記スイッチング素子は、請求項1から10のいずれか1項に記載のフレキシブルデバイスを含むことを特徴とする、表示装置。
An active matrix type display device for displaying an image,
A plurality of gate lines, a plurality of source lines crossing the plurality of gate lines, and said plurality of gate wirings and said plurality of respective intersections corresponding pixel formation portions arranged in a matrix of the source wiring A display unit comprising;
A gate driver that selectively activates the plurality of gate lines;
A source driver for applying an image signal representing an image to be displayed to the source wiring;
The pixel forming unit includes:
A switching element that is turned on or off according to a signal applied to a corresponding gate wiring;
A pixel electrode connected to the switching element and holding the image signal;
The display device, wherein the switching element includes the flexible device according to claim 1.
 前記スイッチング素子は、請求項5に記載の薄膜トランジスタであり、
 前記表面導電膜は、少なくとも前記薄膜トランジスタのチャネル領域を覆っていることを特徴とする、請求項11に記載の表示装置。
The switching element is a thin film transistor according to claim 5,
The display device according to claim 11, wherein the surface conductive film covers at least a channel region of the thin film transistor.
 前記画素電極と前記表面導電膜とは、同じ種類の透明金属からなることを特徴とする、請求項11に記載の表示装置。 The display device according to claim 11, wherein the pixel electrode and the surface conductive film are made of the same type of transparent metal.  支持基板上にフレキシブルな導電基板を形成する工程と、
 前記導電基板上に、前記導電基板よりも小さく、フレキシブルな絶縁基板を形成する工程と、
 前記絶縁基板上に電子デバイスを形成する工程と、
 前記電子デバイス上に絶縁膜を形成する工程と、
 前記電子デバイスを覆い、かつ前記導電基板と電気的に接続された表面導電膜を形成する工程と、
 少なくとも前記表面導電膜の表面に粘着性フィルムを押圧する工程と、
 前記支持基板と前記導電基板との密着性を弱める工程と、
 前記粘着性フィルムを、前記支持基板から遠ざかる方向に引き剥がす工程とを含むことを特徴とする、フレキシブルデバイスの製造方法。
Forming a flexible conductive substrate on the support substrate;
Forming a flexible insulating substrate smaller than the conductive substrate on the conductive substrate;
Forming an electronic device on the insulating substrate;
Forming an insulating film on the electronic device;
Forming a surface conductive film covering the electronic device and electrically connected to the conductive substrate;
Pressing the adhesive film on the surface of the surface conductive film at least;
Reducing the adhesion between the support substrate and the conductive substrate;
And a step of peeling the adhesive film in a direction away from the support substrate.
 前記導電基板を形成する工程は、カーボンナノチューブを混入したポリイミド樹脂を前記支持基板上に塗布して硬化させる工程を含み、
 前記絶縁基板を形成する工程は、カーボンナノチューブを混入しないポリイミド樹脂を前記導電基板上に塗布して硬化させる工程を含むことを特徴とする、請求項14に記載のフレキシブルデバイスの製造方法。
The step of forming the conductive substrate includes a step of applying and curing a polyimide resin mixed with carbon nanotubes on the support substrate,
15. The method of manufacturing a flexible device according to claim 14, wherein the step of forming the insulating substrate includes a step of applying and curing a polyimide resin not mixed with carbon nanotubes on the conductive substrate.
 前記支持基板は透明基板であり、
 前記界面の密着性を弱める工程は、前記導電基板に吸収される波長のレーザ光を、前記透明基板を介して前記導電基板に照射する工程を含むことを特徴とする、請求項14に記載のフレキシブルデバイスの製造方法。
The support substrate is a transparent substrate;
Step of weakening the adhesion of the interface, a laser beam having a wavelength that is absorbed to the conductive substrate, characterized in that it comprises a step of irradiating the conductive substrate through the transparent substrate of claim 14 A manufacturing method of a flexible device.
 前記支持基板と前記導電基板との間に、前記導電基板よりも密着力が弱くかつ面積が小さな剥離層を形成する工程をさらに備え、
 前記界面の密着性を弱める工程は、前記剥離層の端部に沿って前記導電基板と前記剥離層と前記支持基板とを切断する工程を含むことを特徴とする、請求項14に記載のフレキシブルデバイスの製造方法。
The method further includes a step of forming a release layer between the support substrate and the conductive substrate having a smaller adhesion and a smaller area than the conductive substrate,
Step of weakening the adhesion of the interface is characterized by comprising the step of cutting said an end the conductive substrate along a portion of the release layer and the release layer and said support substrate, flexible according to claim 14 Device manufacturing method.
 前記支持基板の熱膨張係数と前記絶縁基板の熱膨張係数とが略等しいことを特徴とする、請求項14に記載のフレキシブルデバイスの製造方法。 The method of manufacturing a flexible device according to claim 14, wherein the thermal expansion coefficient of the support substrate and the thermal expansion coefficient of the insulating substrate are substantially equal.  前記表面導電膜を形成する工程は、
  前記絶縁膜を形成する工程の前に、前記絶縁基板上から前記導電基板上に延び、かつ一端が前記導電基板と電気的に接続された接続層を形成する工程と、
  前記絶縁膜を形成する工程において、前記接続層を前記電子デバイスとともに前記絶縁膜で覆う工程と、
  前記絶縁膜に、前記接続層に達するコンタクトホールを開孔する工程と、
  前記コンタクトホールの内部および前記絶縁膜上に金属膜を成膜する工程と
  前記金属膜を所定の形状にパターニングする工程とを含むことを特徴とする、請求項14に記載のフレキシブルデバイスの製造方法。
The step of forming the surface conductive film includes
Before the step of forming the insulating film, forming a connection layer extending from the insulating substrate onto the conductive substrate and having one end electrically connected to the conductive substrate;
In the step of forming the insulating film, the step of covering the connection layer with the electronic device together with the insulating film,
Opening a contact hole reaching the connection layer in the insulating film;
The method for manufacturing a flexible device according to claim 14, comprising: forming a metal film inside the contact hole and on the insulating film; and patterning the metal film into a predetermined shape. .
 前記電子デバイスは、ボトムゲート型の薄膜トランジスタであり、
 前記接続層は、前記薄膜トランジスタのゲート電極と同時に形成されることを特徴とする、請求項19に記載のフレキシブルデバイスの製造方法。
The electronic device is a bottom-gate thin film transistor,
The method according to claim 19, wherein the connection layer is formed simultaneously with the gate electrode of the thin film transistor.
 前記電子デバイスは、トップゲート型の薄膜トランジスタであり、
 前記接続層は、前記薄膜トランジスタのゲート電極と同時に形成されることを特徴とする、請求項19に記載のフレキシブルデバイスの製造方法。
The electronic device is a top-gate thin film transistor,
The method according to claim 19, wherein the connection layer is formed simultaneously with the gate electrode of the thin film transistor.
 前記表面導電膜を形成する工程は、
  前記電子デバイスを覆うように絶縁膜を形成する工程と、
  カーボンナノチューブを混入したポリイミド樹脂を前記絶縁膜上および前記絶縁基板上に塗布して硬化させることによりポリイミド樹脂膜を形成する工程と、
  前記ポリイミド樹脂膜を所定の形状にパターニングする工程とを含むことを特徴とする、請求項14に記載のフレキシブルデバイスの製造方法。
The step of forming the surface conductive film includes
Forming an insulating film so as to cover the electronic device;
A step of forming a polyimide resin film by applying and curing a polyimide resin mixed with carbon nanotubes on the insulating film and the insulating substrate;
The method for manufacturing a flexible device according to claim 14, further comprising: patterning the polyimide resin film into a predetermined shape.
 前記表面導電膜を形成する工程は、
  前記絶縁膜上および前記導電基板上に金属膜を成膜する工程と、
  前記金属膜を所定の形状にパターニングする工程とを含むことを特徴とする、請求項14に記載のフレキシブルデバイスの製造方法。
The step of forming the surface conductive film includes
Forming a metal film on the insulating film and the conductive substrate;
The method for manufacturing a flexible device according to claim 14, further comprising: patterning the metal film into a predetermined shape.
 前記電子デバイスは、自発光素子と前記自発光素子を駆動する半導体素子を含み、
 前記電子デバイスを形成する工程は、
  前記自発光素子と前記半導体素子とを前記絶縁基板上に搭載する工程と、
  前記自発光素子と前記半導体素子とを封止材によって封止する工程とを含み、
 前記表面導電膜を形成する工程は、前記封止材の表面に導電性フィルムを貼り付ける工程を含むことを特徴とする、請求項14に記載のフレキシブルデバイスの製造方法。
The electronic device includes a self-luminous element and a semiconductor element that drives the self-luminous element,
The step of forming the electronic device includes:
Mounting the self-luminous element and the semiconductor element on the insulating substrate;
Sealing the self-luminous element and the semiconductor element with a sealing material,
The method of manufacturing a flexible device according to claim 14, wherein the step of forming the surface conductive film includes a step of attaching a conductive film to a surface of the sealing material.
PCT/JP2011/076639 2010-11-25 2011-11-18 Flexible device, method for manufacturing same, and display device WO2012070483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-263009 2010-11-25
JP2010263009 2010-11-25

Publications (1)

Publication Number Publication Date
WO2012070483A1 true WO2012070483A1 (en) 2012-05-31

Family

ID=46145826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076639 WO2012070483A1 (en) 2010-11-25 2011-11-18 Flexible device, method for manufacturing same, and display device

Country Status (1)

Country Link
WO (1) WO2012070483A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077836A1 (en) * 2017-10-20 2019-04-25 株式会社ジャパンディスプレイ Display device
JP2019165224A (en) * 2018-03-15 2019-09-26 大日本印刷株式会社 Wiring substrate and method for manufacturing the same
WO2024252675A1 (en) * 2023-06-09 2024-12-12 シャープディスプレイテクノロジー株式会社 Method for manufacturing semiconductor device and method for manufacturing display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019443A (en) * 2005-07-06 2007-01-25 Creative Technology:Kk Conductive wafer
JP2008203761A (en) * 2007-02-22 2008-09-04 Hitachi Displays Ltd Display device
JP2009231533A (en) * 2008-03-24 2009-10-08 Seiko Epson Corp Peeling method, peeling apparatus and method of manufacturing semiconductor device
JP2010097601A (en) * 2008-09-18 2010-04-30 Semiconductor Energy Lab Co Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019443A (en) * 2005-07-06 2007-01-25 Creative Technology:Kk Conductive wafer
JP2008203761A (en) * 2007-02-22 2008-09-04 Hitachi Displays Ltd Display device
JP2009231533A (en) * 2008-03-24 2009-10-08 Seiko Epson Corp Peeling method, peeling apparatus and method of manufacturing semiconductor device
JP2010097601A (en) * 2008-09-18 2010-04-30 Semiconductor Energy Lab Co Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077836A1 (en) * 2017-10-20 2019-04-25 株式会社ジャパンディスプレイ Display device
JP2019165224A (en) * 2018-03-15 2019-09-26 大日本印刷株式会社 Wiring substrate and method for manufacturing the same
JP7275683B2 (en) 2018-03-15 2023-05-18 大日本印刷株式会社 Wiring board and method for manufacturing wiring board
WO2024252675A1 (en) * 2023-06-09 2024-12-12 シャープディスプレイテクノロジー株式会社 Method for manufacturing semiconductor device and method for manufacturing display device

Similar Documents

Publication Publication Date Title
KR101318242B1 (en) Method of manufacturing flexible display device
US8810765B2 (en) Electroluminescence element
KR102127781B1 (en) Thin film transistor array substrate and method for fabricating the same
US8044426B2 (en) Light emitting device capable of removing height difference between contact region and pixel region and method for fabricating the same
US10788693B2 (en) Flexible display device and method for manufacturing thereof
KR101936625B1 (en) Flexible organic light emitting diode display device and fabricating method of the same
US20060275950A1 (en) Method of manufacturing a flexible display device
TW201724616A (en) Flexible organic light emitting diode display having edge bending structure
CN102456712A (en) Method of fabricating flexible display device
KR20110043374A (en) Display device manufacturing method using plastic substrate
CN101097911A (en) Organic light emitting diode display device and manufacturing method thereof
JP2006330739A (en) Method for manufacturing flexible display device
TW201013279A (en) Liquid crystal display and method of manufacturing the same
US20060172470A1 (en) Method of manufacturing thin film element
KR101736925B1 (en) Manufacturing method for flexible display device
JP5727118B2 (en) Thin film transistor substrate, manufacturing method thereof, and display panel having the same
KR102033615B1 (en) Organic light emitting display device and method for manufacturing of the same
CN100428010C (en) Manufacturing method of flexible display
KR20110067448A (en) Display device and manufacturing method
KR20130066410A (en) Method for manufacturing thin film transistor having three-layered metal gate element
CN101504947A (en) Semiconductor device, electro-optical device, electronic apparatus, method for manufacturing semiconductor device, method for manufacturing electro-optical device, and method for manufacturing electro
WO2012070483A1 (en) Flexible device, method for manufacturing same, and display device
KR101845440B1 (en) Method for Manufacturing Flexible Display Device
US20180130859A1 (en) Display device
KR101252847B1 (en) Fabricating Method Of Flexible Display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11842932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11842932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP