[go: up one dir, main page]

WO2012053525A1 - 光配向処理法に適した液晶配向剤、及びそれを用いた液晶配向膜 - Google Patents

光配向処理法に適した液晶配向剤、及びそれを用いた液晶配向膜 Download PDF

Info

Publication number
WO2012053525A1
WO2012053525A1 PCT/JP2011/073970 JP2011073970W WO2012053525A1 WO 2012053525 A1 WO2012053525 A1 WO 2012053525A1 JP 2011073970 W JP2011073970 W JP 2011073970W WO 2012053525 A1 WO2012053525 A1 WO 2012053525A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
component
aligning agent
group
diamine
Prior art date
Application number
PCT/JP2011/073970
Other languages
English (en)
French (fr)
Inventor
勇歩 野口
隆夫 堀
洋介 飯沼
直樹 作本
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2012539738A priority Critical patent/JP5900344B2/ja
Priority to CN201180060822.3A priority patent/CN103261956B/zh
Priority to KR1020137012624A priority patent/KR101878518B1/ko
Publication of WO2012053525A1 publication Critical patent/WO2012053525A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned

Definitions

  • the present invention relates to a liquid crystal alignment agent for producing a liquid crystal alignment film and a liquid crystal alignment film obtained from the liquid crystal alignment agent. More specifically, a photo-alignment treatment method that replaces the rubbing treatment, that is, a liquid crystal alignment agent suitable for forming a liquid crystal alignment film capable of imparting liquid crystal alignment ability by irradiation with polarized ultraviolet rays, and the liquid crystal alignment agent. The liquid crystal alignment film is obtained.
  • the liquid crystal alignment film is made of a polyamic acid formed on an electrode substrate and / or a surface of a film made of polyimide obtained by imidizing this with cotton, nylon, It is produced by carrying out a so-called rubbing process that rubs in one direction with a cloth such as polyester.
  • the method of rubbing the film surface in the alignment process of the liquid crystal alignment film is an industrially useful method that is simple and excellent in productivity.
  • demands for higher performance, higher definition, and larger size of liquid crystal display elements are increasing, and in the case of rubbing treatment, the surface of the alignment film generated by the rubbing, dust generation, the influence of mechanical force and static electricity
  • various problems such as non-uniformity in the orientation processing surface have been clarified.
  • Patent Document 1 proposes that a polyimide film having an alicyclic structure such as a cyclobutane ring in the main chain is used for the photo-alignment method.
  • the photo-alignment method has an advantage that it can be produced by a simple manufacturing process industrially as a rubbing-less alignment treatment method.
  • a liquid crystal display element of an IPS driving method or a fringe field switching (hereinafter referred to as FFS) driving method By using the liquid crystal alignment film obtained by the above-mentioned photo-alignment method, the liquid crystal display element performance can be expected to improve the contrast and viewing angle characteristics of the liquid crystal display element compared to the liquid crystal alignment film obtained by the rubbing treatment method. Therefore, it has attracted attention as a promising liquid crystal alignment method.
  • the liquid crystal alignment film used in the liquid crystal display element of the IPS driving method or the FFS driving method is generated in the liquid crystal display element of the IPS driving method or the FFS driving method in addition to the basic characteristics such as excellent liquid crystal alignment property and electrical characteristics. There is a need for such characteristics as suppressing afterimages due to AC driving and fast relaxation of residual charges accumulated by DC voltage.
  • the liquid crystal alignment film obtained by the photo-alignment method has insufficient liquid crystal alignment control power, electrical characteristics as a liquid crystal display element, and stability of these characteristics, and it has been difficult to satisfy the above characteristics.
  • the present invention provides a liquid crystal alignment film that suppresses an afterimage caused by alternating current drive generated in a liquid crystal display element of an IPS drive method or an FFS drive method, and that quickly relaxes residual charges accumulated by a direct current voltage, and the liquid crystal alignment film It aims at providing the liquid crystal aligning agent suitable for the photo-alignment processing method for this.
  • the inventor of the present invention has a component with excellent liquid crystal alignment and a strong alignment regulating force of liquid crystal (hereinafter also referred to as a liquid crystal alignment component) and a component that quickly relaxes residual charges accumulated by a DC voltage. Attention was focused on a liquid crystal aligning agent blended with (hereinafter also referred to as a charge relaxation component).
  • a liquid crystal aligning agent blended with hereinafter also referred to as a charge relaxation component.
  • a liquid crystal aligning agent does not necessarily solve the above problems. That is, the liquid crystal alignment film obtained from the liquid crystal aligning agent containing the above two components generates an afterimage generated by AC driving even if the residual charge accumulated by the DC voltage is quickly relaxed. The characteristics are not compatible.
  • liquid crystal alignment component a tetracarboxylic dianhydride having a specific structure having a cyclobutane skeleton, p-phenylenediamines and hydrogen by heating are used.
  • a polyamic acid comprising a polyamic acid obtained by a reaction of a tetracarboxylic dianhydride as a charge relaxation component and a diamine compound containing a diamine having an aromatic heterocyclic ring having a nitrogen atom.
  • the liquid crystal aligning agent characterized by including the following (A) component, (B) component, and an organic solvent.
  • the at least 1 sort (s) of polymer chosen from the polyamic acid obtained from diamine and the diamine represented by following formula (2), and its imidized polymer.
  • R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group or alkynyl group having 2 to 6 carbon atoms, or A phenyl group, which may be the same or different.
  • a 1 represents a single bond, -O -, - NQ 1 - , - CONQ 1 -, - NQ 1 CO -, - CH 2 O -, - OCO- least one selected from the group consisting of A divalent organic group of 1 type or an alkylene group having 1 to 3 carbon atoms, Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 5 is a hydrogen atom or 1 to 8 carbon atoms. Divalent organic group.
  • Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 6 carbon atoms.
  • B 1 is -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO -, - CH 2 O -, - at least one member selected from the group consisting of OCO- 2 Q 2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, B 2 is a single bond or an alkylene group having 1 to 4 carbon atoms, and B 3 is a nitrogen atom-containing heterocyclic ring And n is an integer of 1 to 4.
  • the content ratio of the component (A) and the component (B) is 3/7 to 7/3 in mass ratio (A / B), and the content of the component (A) and the component (B) is ( 2.
  • the liquid crystal aligning agent according to 1 above which is 1 to 10% by weight based on the total amount of the component A), the component (B) and the organic solvent.
  • component tetracarboxylic dianhydride is 1,2,3,4-cyclobutanetetracarboxylic dianhydride and 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • the liquid crystal aligning agent in any one of said 1 or 2 which is at least 1 type of tetracarboxylic dianhydride chosen from. 4).
  • the diamine represented by the above formula (2) contained in the component (A) is at least one selected from the following formulas (DA-1) to (DA-3), Liquid crystal aligning agent.
  • the diamine represented by the above formula (3) contained in the component (B) is at least one selected from the following formulas (DB-1) to (DB-6), Liquid crystal aligning agent.
  • the tetracarboxylic dianhydride as the component (B) has a structure represented by the following formula (4), wherein the structure of X 1 is at least one selected from the following structures: The liquid crystal aligning agent in any one.
  • component tetracarboxylic dianhydride is at least one selected from 1,2,3,4-butanetetracarboxylic dianhydride and 1,2,3,4-cyclobutanetetracarboxylic dianhydride 10.
  • the liquid crystal aligning agent as described in any one of 1 to 9 above, wherein the content is 50 to 100 mol% with respect to the total tetracarboxylic dianhydride of component (B).
  • 11. 11 The liquid crystal aligning agent according to any one of 1 to 10 above, wherein the tetracarboxylic dianhydride as the component (B) is 1,2,3,4-cyclobutanetetracarboxylic dianhydride.
  • B 3 is the same as B 1 , B 4 is a single bond or an alkylene group having 1 to 4 carbon atoms, and m is an integer of 1 to 4.
  • the diamine of a component contains the diamine represented by the said Formula (3) and the diamine represented by the said Formula (5), The total amount is 40 with respect to all the diamines of (B) component.
  • 15. A liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of 1 to 14 above. 16. 15.
  • a liquid crystal alignment film obtained by applying and baking the liquid crystal aligning agent according to any one of 1 to 14 above and further irradiating with polarized radiation. 17. 17. An IPS driving type or FFS driving type liquid crystal display device comprising the liquid crystal alignment film as described in 15 or 16 above.
  • a liquid crystal alignment film that suppresses an afterimage due to alternating current drive generated in a liquid crystal display element of an IPS drive method or an FFS drive method, and quickly relaxes residual charges accumulated by a direct current voltage, and the liquid crystal alignment film
  • a novel liquid crystal aligning agent suitable for use in the photo-alignment treatment method for obtaining the above is provided.
  • the reason why the above effect is obtained is not necessarily clear, but is considered as follows.
  • a component having a low surface energy is unevenly distributed on the film surface, and a component having a high surface energy is unevenly distributed in the film or at the interface with the substrate.
  • the component (A) of the liquid crystal aligning agent of the present invention uses a low-polarity t-butyl group, it is a polyamic acid having a low surface energy and becomes a liquid crystal aligning component.
  • the charge relaxation component since the charge relaxation component has a nitrogen-containing aromatic heterocycle such as a pyridine ring, it becomes a polyamic acid having a surface energy higher than that of the liquid crystal alignment component. Therefore, the liquid crystal alignment film in which the liquid crystal alignment component is unevenly distributed on the film surface and the charge relaxation component is unevenly distributed inside the film and at the interface with the substrate is obtained by applying and baking the liquid crystal aligning agent of the present invention.
  • a low-polarity substituent such as t-butyl group is not included, the internal structure of the film does not have the structure as described above, and a charge relaxation component is present on the film surface. Deteriorates and an afterimage due to AC driving occurs.
  • the t-butyl group contained in the liquid crystal alignment component of the present invention is Since the -butyl group is replaced with a hydrogen atom by heating in the subsequent baking process, it no longer exists in the obtained liquid crystal alignment film. For this reason, the obtained liquid crystal alignment film has excellent liquid crystal alignment properties as in the case of using a polyamic acid that does not have a bulky structure such as a t-butyl group.
  • the liquid crystal alignment component having excellent liquid crystal alignment is unevenly distributed, and the charge relaxation component that rapidly relaxes the residual charge accumulated by the DC voltage is contained in the film and the electrode. Since it exists at the interface, it is considered to have excellent characteristics.
  • the component (A) contained in the liquid crystal aligning agent of the present invention includes a tetracarboxylic dianhydride having a cyclobutane ring represented by the following formula (1), and the following formulas (D-1) and (D-2):
  • R 1 , R 2 , R 3 , and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group or alkynyl group having 2 to 6 carbon atoms, or It is a phenyl group and may be the same or different.
  • R 1 , R 2 , R 3 , and R 4 have a three-dimensionally bulky structure, the liquid crystal orientation is deteriorated. Therefore, R 1 , R 2 , R 3 , and R 4 are preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • tetracarboxylic dianhydride having a cyclobutane ring represented by the above formula (1) include the following formulas (1-1) to (1-5). From the viewpoint of liquid crystal alignment, (1-1) and (1-2) are more preferable, and (1-2) is more preferable.
  • Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 4 carbon atoms.
  • the ester bond is represented by —C (O) O— or —OC (O) —.
  • the amide bond a structure represented by —C (O) NH— or —C (O) NR—, —NHC (O) —, —NRC (O) — can be shown.
  • R is an alkyl group having 1 to 4 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, and a t-butyl group.
  • Z 1 is an organic group having 2 to 4 carbon atoms, it can be represented by the structure of the following formula (D2).
  • Z 4 and Z 5 are each independently a single bond, or —O—, —S—, —NR 11 —, an ester bond, an amide bond, a thioester bond, a urea bond, Carbonate bond and carbamate bond.
  • R 11 is a hydrogen atom or a methyl group.
  • the ester bond, amide bond, and thioester bond can have the same structures as the ester bond, amide bond, and thioester bond described above.
  • As the urea bond a structure represented by —NH—C (O) NH— or —NR—C (O) NR— can be shown.
  • R is an alkyl group having 1 to 3 carbon atoms, and the same examples as the above alkyl group can be given.
  • As the carbonate bond a structure represented by —O—C (O) —O— can be shown.
  • the carbamate bond is —NH—C (O) —O—, —O—C (O) —NH—, —NR—C (O) —O—, or —O—C (O) —NR—.
  • the structure represented can be shown.
  • R is an alkyl group having 1 to 4 carbon atoms, and examples thereof are the same as those for the alkyl group.
  • R 6 in the formula (D-2) is each independently a single bond or a structure selected from an alkylene group having 1 to 4 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, and a combination thereof.
  • alkylene group examples include methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, and 1,2-butylene group.
  • Alkenylene groups include 1,1-ethenylene group, 1,2-ethenylene group, 1,2-ethenylenemethylene group, 1-methyl-1,2-ethenylene group, 1,2-ethenylene-1,1-ethylene Group, 1,2-ethenylene-1,2-ethylene group and the like.
  • alkynylene group include ethynylene group, ethynylene methylene group, ethynylene-1,1-ethylene group, ethynylene-1,2-ethylene group and the like.
  • Examples of the arylene group include a 1,2-phenylene group, a 1,3-phenylene group, and a 1,4-phenylene group.
  • the structure of diamine is a structure with high linearity or a rigid structure
  • a liquid crystal alignment film having good liquid crystal alignment can be obtained. Therefore, as the structure of Z 1 , a single bond or the following formula (A1-1) ) To (A1-18) are more preferred.
  • the structure of the diamine has a higher linearity or a rigid structure, a liquid crystal alignment film having better liquid crystal alignment can be obtained.
  • the at least one diamine selected from the group consisting of diamines represented by the above formula (D-1) or diamines represented by the following formulas (D2-1) to (D2-7) is more preferred.
  • the diamine represented by (D-1) is particularly preferred.
  • a 1 is a single bond or -O -, - NQ 1 -, - CONQ 1 -, - NQ 1 CO -, - at least selected from CH 2 O- and the group consisting of -OCO- One type of divalent organic group or an alkylene group having 1 to 3 carbon atoms, wherein Q 1 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 5 is a hydrogen atom or a monovalent organic group having 1 to 8 carbon atoms. If Q 1 is a bulky structure, thereby reducing the liquid crystal alignment property.
  • Q 1 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • a 1 is preferably a single bond or an alkylene group having 1 to 3 carbon atoms, more preferably a single bond, a methylene group or an ethylene group.
  • the monovalent organic group having 1 to 8 carbon atoms for R 5 include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a cyclopentyl group, a cyclohexyl group, Alkyl group such as bicyclohexyl group; vinyl group, allyl group, 1-propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclo An alkenyl group such as a pentenyl group or a cyclohexenyl group, an ethynyl group, a 1-propynyl group or a 2-propynyl group; an aryl group such as a phenyl group; or the
  • R 5 is preferably (R-1) or (R-2) having a hydrogen atom, a methyl group, an ethyl group, and a heat-eliminable group, and a hydrogen atom, a methyl group, (R-1) or (R-2) is more preferable.
  • diamine represented by the above formula (2) examples include diamines represented by the following formulas (DA-1) to (DA-3). From the viewpoint of liquid crystal alignment, (DA-1) or (DA-2) is preferable, and (DA-1) is more preferable.
  • the higher the ratio of the diamine represented by the above formula (2) in the diamine compound, the lower the surface energy of the (A) component, and the (A) component tends to be unevenly distributed on the film surface.
  • the content of the p-phenylenediamine forming the component (A) used in the present invention is preferably 70 to 95 mol%, more preferably 80 to 95 mol%, more preferably 90 to 95 mol% of the diamine compound. % Is more preferable.
  • the content of the diamine represented by the above formula (2) is preferably 30 to 5 mol%, more preferably 20 to 5 mol%, still more preferably 10 to 5 mol% of the diamine compound.
  • the (B) component contained in the liquid crystal aligning agent of this invention is obtained from the diamine compound containing the tetracarboxylic dianhydride represented by following formula (6), and the diamine represented by following formula (3). It is at least one polymer selected from polyamic acids and imidized polymers thereof.
  • B 1 is -O -, - NQ 2 -, - CONQ 2 -, - NQ 2 CO -, - CH 2 O-, and at least one 2 selected from the group consisting of -OCO- Q 2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and Q 2 includes the same structure as Q 1 including preferred examples.
  • B 2 is a single bond or an alkylene group having 1 to 4 carbon atoms
  • B 3 is a nitrogen atom-containing heterocyclic ring
  • n is an integer of 1 to 4.
  • the B 1, it is possible to increase the surface energy of the component (B) is preferably highly polar structure, -O -, - NQ 2 - , - CONQ 2 -, and -OCO- are more preferred.
  • B 2 is preferably an alkylene group having 1 to 4, preferably 1 or 2, carbon atoms for ease of synthesis.
  • Specific examples of the nitrogen atom-containing aromatic heterocycle of B 3 include pyrrole ring, imidazole ring, pyrazole ring, pyridine ring, pyrimidine ring, pyridazine ring, triazine ring, triazole ring, pyrazine ring, benzimidazole ring, benzimidazole ring. Is mentioned.
  • a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, or a pyrimidine ring is more preferable, and an imidazole ring, a pyridine ring, or a pyrimidine ring is more preferable.
  • Specific examples of the diamine having a nitrogen atom-containing aromatic heterocycle represented by the above formula (3) include the following formulas (DB-1) to (DB-6).
  • the content of the diamine having a nitrogen atom-containing aromatic heterocycle represented by the above formula (3) is preferably 30 to 100 mol%, more preferably 40 to 100 mol%, still more preferably 50 to 100 mol% of the diamine compound. %.
  • X is a tetravalent organic group, and its structure is not particularly limited. Specific examples include structures of the following formulas (X-1) to (X-46). From the viewpoint of availability of the compound, the structure of X is X-1, X-2. X-3, X-4, X-5, X-6, X-8, X-16, X-17, X-19, X-21, X-25, X-26, X-27, X- 28, X-32, or X-46 is preferred.
  • a tetracarboxylic dianhydride having an aliphatic or aliphatic ring structure and the structure of X is X-1, X-2, or X -25 is more preferable, and X-1 is more preferable from the viewpoint of reactivity with diamine.
  • X in the above formula (6) includes a tetracarboxylic dianhydride represented by X-1, X-2, or X-25, It is preferable to contain 50 to 100 mol% of tetracarboxylic dianhydride. More preferably, it is 70 to 100 mol%, and still more preferably 80 to 100 mol%.
  • (B) component contained in the liquid crystal aligning agent of this invention uses a diamine compound which has carboxylic acid represented by following formula (5) other than the diamine represented by the said Formula (3), and is liquid crystal.
  • the diamine compound represented by the following formula (5) the surface energy of the component (B) is further increased, the component (A) is unevenly distributed on the film surface, and the component (B) is contained in the film and the substrate. It can be unevenly distributed by the interface.
  • B 3 is the same definition as B 1 in the formula (3), a single bond, -O -, - NQ 3 - , - CONQ 3 -, - NQ 3 CO -, - CH 2 It is at least one divalent organic group selected from the group consisting of O— and —OCO—, where Q 3 includes the same structure as Q 1 including preferred examples.
  • B 4 is a single bond or an alkylene group having 1 to 4 carbon atoms, and m is an integer of 1 to 4.
  • B 3 is preferably a highly polar structure because the surface energy of the component (B) can be increased, and more preferably a single bond, —CONQ 2 —, or —OCO—.
  • diamine having a carboxylic acid represented by the above formula (5) examples include 3,5-diaminobenzoic acid or 2,5-diaminobenzoic acid.
  • diamine which forms a component it is preferable to contain both the diamine represented by the said Formula (3) and the diamine represented by the said Formula (5).
  • the total content of these diamines is preferably 40 to 100 mol% with respect to the total diamines, 50 to 100 mol% is more preferable, and 60 to 100 mol% is more preferable.
  • the diamine other than the above formula (3) and the above formula (5) may include a diamine represented by the following formula (7).
  • Y 1 is a divalent organic group, and its structure is not particularly limited. Specific examples of Y 1 include structures of the following formulas (Y-1) to (Y-75).
  • the structure of Y 1 is Y-8, Y-20, Y-21, Y-22, Y-28, Y -29, Y-30. If the (B) component pomic acid is unevenly distributed on the film surface, the orientation of the liquid crystal may be hindered. Therefore, the surface energy of the (B) component is increased, and the (B) component is used inside the film and at the substrate interface. For the purpose of uneven distribution, it is preferable to use a diamine having a highly polar substituent.
  • a diamine having a highly polar substituent a diamine containing a secondary or tertiary amino group, hydroxyl group, amide group or urea group is preferable. Therefore, as the Y 1 in the formula (7), Y-19, Y-31, Y-40, Y-45, Y-49 ⁇ Y-51, or Y-61 are more preferred.
  • the polyamic acid of the present invention can be obtained by reaction of tetracarboxylic dianhydride and diamine. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more.
  • the concentration of the polymer is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that the polymer is hardly precipitated and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the imidized polymer (polyimide) of the polyamic acid used in the present invention can be produced by imidizing the polyamic acid.
  • the chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction of a diamine component and tetracarboxylic dianhydride is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • the solvent used at the time of the polymerization reaction mentioned above can be used.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C.
  • the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent of this invention contains (A) component, (B) component, and the organic solvent, and has the form of the solution in which (A) component and (B) component were melt
  • the molecular weight of the polyamic acid of the component (A) and the component (B) is preferably 2,000 to 500,000, more preferably 5,000 to 300,000, and still more preferably 10,000 in terms of weight average molecular weight. ⁇ 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the ratio of the component (A) to the component (B) is preferably 3/7 to 7/3 as a mass ratio of ((A) component / (B) component). Such a ratio is more preferably 4/6 to 6/4. By setting the ratio within this range, it is preferable to obtain a liquid crystal alignment film in which afterimages due to AC driving are suppressed and the residual charges accumulated by DC voltage are quickly relaxed.
  • the manufacturing method is not ask
  • a method of mixing the powder of the component (A) and the component (B) and dissolving in an organic solvent a method of mixing the powder of the component (A) and the solution of the component (B), and a solution of the component (A)
  • the polymer concentration of the liquid crystal aligning agent of the present invention can be appropriately changed by setting the thickness of the coating film to be formed, but it is 1% by weight or more from the viewpoint of forming a uniform and defect-free coating film. In view of storage stability of the solution, it is preferably 10% by weight or less.
  • the said organic solvent contained in the liquid crystal aligning agent of this invention will not be specifically limited if (A) component and (B) component melt
  • N-dimethylformamide N, N-diethylformamide, N, N-dimethylacetamide
  • N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone
  • N-methylcaprolactam examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt
  • the liquid crystal aligning agent of the present invention may contain a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate in addition to the organic solvent for dissolving the polymer component.
  • a solvent for improving the uniformity of the coating film when the liquid crystal aligning agent is applied to the substrate in addition to the organic solvent for dissolving the polymer component.
  • a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of
  • liquid crystal aligning agent of the present invention in addition to the above, as long as the effects of the present invention are not impaired, polymers other than the polymers of the components (A) and (B), the dielectric constant and conductivity of the liquid crystal aligning film
  • the dielectric or conductive material for the purpose of changing the electrical properties such as the property, the silane coupling agent for the purpose of improving the adhesion between the liquid crystal alignment film and the substrate, the hardness and density of the film when the liquid crystal alignment film is made A target crosslinkable compound, and further an imidization accelerator for the purpose of efficiently proceeding imidization of the polyamic acid when the coating film is baked may be added.
  • the liquid crystal alignment film of the present invention is a coating film obtained by applying the liquid crystal aligning agent obtained as described above to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like is formed.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes.
  • the thickness of the coating film after baking is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
  • the liquid crystal aligning agent of the present invention can be subjected to conventional rubbing alignment treatment, but is particularly useful when used in a photo-alignment processing method.
  • the photo-alignment treatment method there is a method in which the surface of the coating film is irradiated with radiation polarized in a certain direction, and in some cases, a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • the wavelength of radiation ultraviolet rays and visible rays having a wavelength of 100 nm to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
  • Dose of the radiation is preferably in the range of 1 ⁇ 10,000mJ / cm 2, and particularly preferably in the range of 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • the molecular weight of the polymer is measured by a GPC (normal temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight (hereinafter also referred to as Mw) as polyethylene glycol and polyethylene oxide converted values. Calculated.
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000
  • An ITO electrode with a thickness of 50 nm as an electrode in the first layer, a silicon nitride with a thickness of 500 nm as an insulating film in the second layer, and a comb-like ITO electrode (electrode) as an electrode in the third layer Applying a liquid crystal aligning agent to a glass substrate on which a fringe field switching (hereinafter referred to as FFS) driving electrode having a width: 3 ⁇ m, an electrode interval: 6 ⁇ m, and an electrode height: 50 nm is formed by spin coating. And applied. After drying on an 80 ° C. hot plate for 5 minutes, baking was performed in a hot air circulation oven at 250 ° C.
  • FFS fringe field switching
  • a coating film having a thickness of 100 nm.
  • the coated film surface was irradiated with ultraviolet light having a wavelength of 254 nm via a polarizing plate to obtain a substrate with a liquid crystal alignment film.
  • a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell.
  • VT characteristic voltage-transmittance characteristic
  • a rectangular wave of ⁇ 4 V / 120 Hz was applied for 4 hours.
  • the voltage was turned off, and after standing for 60 minutes at a temperature of 58 ° C., the VT characteristics were measured again, and the difference in voltage ( ⁇ V 50 ) that gave a transmittance of 50% before and after the rectangular wave application was calculated. .
  • Example 1 Into a 20-ml sample tube containing a stir bar, 2.12 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 2.81 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 7 were taken. Then, 5.04 g of NMP and 2.49 g of BCS were added and stirred for 30 minutes with a magnetic stirrer to obtain a liquid crystal aligning agent (A-1). (Example 2) In a 50 ml sample tube containing a stir bar, 3.41 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 and 5.22 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 7 were taken.
  • Example 4 In a 20 ml sample tube containing a stir bar, 2.09 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 4 and 2.81 g of the polyamic acid solution (PAA-7) obtained in Synthesis Example 7 were taken. Then, 5.11 g of NMP and 2.49 g of BCS were added and stirred for 30 minutes with a magnetic stirrer to obtain a liquid crystal aligning agent (A-4).
  • Example 5 On a glass substrate, an ITO electrode having a film thickness of 50 nm is used as the first layer, a silicon nitride film having a film thickness of 500 nm is used as the second layer, and a comb-shaped ITO electrode is used as the third layer (electrode width: 3 ⁇ m).
  • the liquid crystal aligning agent (A-1) obtained in Example 1 is filtered through a 1.0 ⁇ m filter on a glass substrate on which an FFS driving electrode having an electrode interval of 6 ⁇ m and an electrode height of 50 nm is formed. Then, it was applied by spin coating.
  • 230 degreeC hot-air circulation type oven performed baking for 30 minutes, and the coating film with a film thickness of 120 nm was formed.
  • the coated surface was irradiated with 500 mJ / cm 2 of 254 nm ultraviolet light through a polarizing plate to obtain a substrate with a liquid crystal alignment film.
  • a coating film was similarly formed on a glass substrate having a columnar spacer having a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and an orientation treatment was performed.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • ⁇ V 50 was 1.0 mV.
  • ⁇ T after 20 minutes, 60 minutes, and 90 minutes of AC driving were 8%, 0%, and 0%, respectively.
  • Example 6 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-2) obtained in Example 2 was used and irradiated with 400 mJ / cm 2 of polarized ultraviolet rays.
  • ⁇ V 50 was 4.3 mV.
  • ⁇ T after 20 minutes, 60 minutes, and 90 minutes of AC driving were 1.5%, 0%, and 0%, respectively.
  • Example 7 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-3) obtained in Example 3 was used and irradiated with polarized ultraviolet rays at 750 mJ / cm 2 .
  • the voltage difference at which the transmittance was 50% before and after the rectangular wave application was 2.2 mV.
  • ⁇ T after 20 minutes, 60 minutes, and 90 minutes of AC driving were 0%, 0%, and 0%, respectively.
  • Example 8 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-4) obtained in Example 4 was used and irradiated with 1000 mJ / cm 2 of polarized ultraviolet light.
  • ⁇ V 50 was 3.6 mV.
  • ⁇ T after 20 minutes, 60 minutes, and 90 minutes of AC driving were 0%, 0%, and 0%, respectively.
  • Example 9 In a 50 ml sample tube containing a stir bar, 3.20 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 3.98 g of the polyamic acid solution (PAA-8) obtained in Synthesis Example 8 were taken. NMP (8.85 g) and BCS (4.02 g) were added and stirred with a magnetic stirrer for 30 minutes to obtain a liquid crystal aligning agent (A-5). (Example 10) In a 50 ml sample tube containing a stir bar, 3.22 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 3.77 g of the polyamic acid solution (PAA-9) obtained in Synthesis Example 9 were taken.
  • Example 12 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-5) obtained in Example 9 was used and irradiated with polarized ultraviolet rays of 400 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 0.9 mV.
  • Example 13 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-6) obtained in Example 10 was used and irradiated with 400 mJ / cm 2 of polarized ultraviolet light.
  • Example 14 An FFS drive liquid crystal cell was produced in the same manner as in Example 5 except that the liquid crystal aligning agent (A-7) obtained in Example 11 was used and irradiated with polarized ultraviolet rays of 400 mJ / cm 2 . As a result of evaluating the AC drive burn-in characteristics of this FFS drive liquid crystal cell, ⁇ V 50 was 1.1 mV.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制し、且つ、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜、及び該液晶配向膜を得るための光配向処理法用に適した液晶配向剤を提供する。 シクロブタン骨格を有する特定構造のテトラカルボン酸二無水物と、下記式(D-1)及び(D-2)で表される構造からなる群から選ばれる少なくとも1種のジアミン及び加熱により水素に置き換わる熱脱離性基により保護されたアミノ基を有するジアミン化合物との反応により得られるポリアミック酸及びそのイミド化重合体から選ばれる少なくとも1種の重合体((A)成分)と、テトラカルボン酸二無水物と、ピリジンなどの窒素原子を有する芳香族複素環を有するジアミンを含有するジアミン化合物との反応により得られるポリアミック酸及びそのイミド化重合体から選ばれる少なくとも1種の重合体((B)成分)と、有機溶媒とを含有する、光配向処理法用に適した液晶配向剤。

Description

光配向処理法に適した液晶配向剤、及びそれを用いた液晶配向膜
 本発明は、液晶配向膜を作製するための液晶配向剤、この液晶配向剤から得られる液晶配向膜に関する。さらに詳しくは、ラビング処理に代わる光配向処理法、すなわち、偏光された紫外線の照射によって液晶配向能を付与することが可能な液晶配向膜の形成に適した液晶配向剤、及びかかる液晶配向剤から得られる液晶配向膜に関する。
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。
 現在、工業的に最も普及している方法によれば、この液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。
 液晶配向膜の配向過程において膜面をラビング処理する方法は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化への要求は益々高まり、ラビング処理の場合、それによって発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、さらには、配向処理面内の不均一性など種々の問題が明らかとなってきている。
 ラビング処理に代わる方法としては、偏光された紫外線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法による液晶配向処理は、メカニズム的に、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したものなどが提案されている(非特許文献1参照)。また、特許文献1では、主鎖にシクロブタン環などの脂環構造を有するポリイミド膜を光配向法に用いることが提案されている。ポリイミドを用いた光配向用配向膜に用いた場合、他に比べて高い耐熱性を有することからその有用性が期待されている。
 光配向法は、ラビングレス配向処理方法として、工業的にも簡便な製造プロセスで生産できる利点があるだけでなく、IPS駆動方式やフリンジフィールドスイッチング(以下、FFS)駆動方式の液晶表示素子においては、上記の光配向法で得られる液晶配向膜を用いることで、ラビング処理法で得られる液晶配向膜に比べて、液晶表示素子のコントラストや視野角特性の向上が期待できるなど液晶表示素子の性能を向上させることが可能であるため、有望な液晶配向処理方法として注目されている。
 IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜としては、優れた液晶配向性や電気特性などの基本特性に加えて、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制し、且つ直流電圧により蓄積した残留電荷の早い緩和といった特性が必要とされる。しかしながら、光配向法で得られる液晶配向膜は、液晶の配向規制力や液晶表示素子としての電気特性、これら特性の安定性が不十分であり、上記特性を満足することは困難であった。
特開平9-297313号公報
「液晶光配向膜」木戸脇、市村 機能材料 1997年11月号 Vol.17 No.11 13-22ページ
 本発明は、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制し、且つ、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜、及び該液晶配向膜を得るための光配向処理法用に適した液晶配向剤を提供することを目的とする。
 本発明者は、上記目的を達成するために、液晶配向性に優れ、液晶の配向規制力が強い成分(以下、液晶配向成分ともいう)と、直流電圧により蓄積した残留電荷の緩和が早い成分(以下、電荷緩和成分ともいう)とをブレンドした液晶配向剤に着目した。
 しかし、かかる液晶配向剤は、必ずしも上記課題を解決するものではなかった。すなわち、上記2つの成分を含有する液晶配向剤から得られる液晶配向膜は、直流電圧による蓄積した残留電荷の緩和が早くなっても、交流駆動により発生する残像が発生してしまい、必ずしも2つの特性を両立するものではない。
 本発明者は、上記の目的を達成するため、鋭意研究を進めたところ、液晶配向成分として、シクロブタン骨格を有する特定構造のテトラカルボン酸二無水物と、p-フェニレンジアミン類及び加熱により水素に置き換わる熱脱離性基により保護されたアミノ基を有するジアミンを有する特定のジアミンを含有するジアミン化合物と、の反応により得られるポリアミック酸からなるポリアミック酸及びそのイミド化重合体から選ばれる少なくとも1種の重合体を使用し、かつ、電荷緩和成分として、テトラカルボン酸二無水物と、窒素原子を有する芳香族複素環を有するジアミンを含有するジアミン化合物と、の反応により得られるポリアミック酸からなるポリアミック酸及びそのイミド化重合体から選ばれる少なくとも1種の重合体を使用し、これらの成分を含有せしめた液晶配向剤により上記の目的を達成し得ることを見出した。
 かくして、本発明は、下記を要旨とするものである。
1.下記(A)成分、(B)成分、及び有機溶媒を含有することを特徴とする液晶配向剤。
(A)成分:下記式(1)で表されるテトラカルボン酸二無水物と、下記式(D-1)及び(D-2)で表される構造からなる群から選ばれる少なくとも1種のジアミン及び下記式(2)で表されるジアミンから得られるポリアミック酸及びそのイミド化重合体から選ばれる少なくとも1種の重合体。
Figure JPOXMLDOC01-appb-C000009
(式(1)において、R、R、R、及びRはそれぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基若しくはアルキニル基、又はフェニル基であり、同一でも異なっていてもよい。)
(式(2)において、Aは単結合、-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、-OCO-からなる群より選ばれる少なくとも1種類の2価の有機基、又は炭素数1~3のアルキレン基であり、Qは水素原子、又は炭素数1~3のアルキル基であり、Rは水素原子、又は炭素数1~8の2価の有機基である。)
Figure JPOXMLDOC01-appb-C000010
(式(D-2)において、Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~6の2価の有機基である。)
(B)成分:テトラカルボン酸二無水物と、下記式(3)で表されるジアミンを含有するジアミン化合物から得られるポリアミック酸及びそのイミド化重合体から選ばれる少なくとも1種の重合体。
Figure JPOXMLDOC01-appb-C000011
(式(3)において、Bは-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、-OCO-からなる群より選ばれる少なくとも1種類の2価の有機基であり、Qは水素原子又は炭素数1~3のアルキル基であり、Bは単結合、又は炭素数1~4のアルキレン基であり、Bは窒素原子含有複素環であり、nは1~4の整数である。)
2.上記(A)成分と(B)成分との含有比率が、質量比(A/B)にて3/7~7/3であり、(A)成分と(B)成分の含有量が、(A)成分、(B)成分、及び有機溶媒の合計量に対して、1~10重量%である上記1に記載の液晶配向剤。
3.(A)成分のテトラカルボン酸二無水物が、1,2,3,4-シクロブタンテトラカルボン酸二無水物及び1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物から選らばれる少なくとも1種類のテトラカルボン酸二無水物である上記1又は2のいずれかに記載の液晶配向剤。
4.(A)成分のテトラカルボン酸二無水物が、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物である上記1~3のいずれかに記載の液晶配向剤。
5.(A)成分のジアミンが、上記式(2)で表されるジアミンを(A)成分の全ジアミンに対して、5~30mol%含むジアミンである上記1~4のいずれかに記載の液晶配向剤。
6.(A)成分に含まれる上記式(2)で表されるジアミンが、後記する式(DA-1)~(DA-3)から選ばれる少なくとも1種類である上記1~5のいずれかに記載の液晶配向剤。
7.(B)成分のジアミンが、上記式(3)で表されるジアミンを(B)成分の全ジアミンに対して、30~100mol%含むジアミンである上記1~6のいずれに記載の液晶配向剤。
8.(B)成分に含まれる上記式(3)で表されるジアミンが、後記する式(DB-1)~(DB-6)から選ばれる少なくとも1種類である上記1~7のいずれかに記載の液晶配向剤。
9.(B)成分のテトラカルボン酸二無水物が、後記する式(4)で表される構造であり、式中Xの構造が、後記構造から選ばれる少なくとも1種類である上記1~8のいずれかに記載の液晶配向剤。
10.(B)成分のテトラカルボン酸二無水物が、1,2,3,4-ブタンテトラカルボン酸二無水物及び1,2,3,4-シクロブタンテトラカルボン酸二無水物から選ばれる少なくとも1種類のテトラカルボン酸二無水物を含み、その含有量が(B)成分の全テトラカルボン酸二無水物に対して、50~100mol%である上記1~9のいずれかに記載の液晶配向剤。
11.(B)成分のテトラカルボン酸二無水物が、1,2,3,4-シクロブタンテトラカルボン酸二無水物である上記1~10のいずれかに記載の液晶配向剤。
12.(B)成分のジアミンが、上記式(3)で表されるジアミン以外に、下記式(5)で表されるカルボン酸含有ジアミンを含むジアミンである上記1~11のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000012
(式(5)において、Bは、Bと同様であり、Bは単結合、又は炭素数1~4のアルキレン基であり、mは1~4の整数である。)
13.(B)成分のジアミンが、上記式(3)で表されるジアミンと上記式(5)で表されるジアミンとを含み、その合計量が、(B)成分の全ジアミンに対しての40~100mol%である上記1~12のいずれかに記載の液晶配向剤。
14.上記式(5)で表されるジアミンが、3,5-ジアミノ安息香酸及び2,5-ジアミノ安息香酸から選ばれる少なくとも1種類である上記1~13に記載の液晶配向剤。
15.上記1~14のいずれかに記載の液晶配向剤を塗布、焼成して得られる液晶配向膜。
16.上記1~14のいずれかに記載の液晶配向剤を塗布、焼成し、さらに偏光された放射線を照射して得られる液晶配向膜。
17.上記15又は16に記載の液晶配向膜を備えたIPS駆動方式若しくはFFS駆動方式の液晶表示素子。
 本発明によれば、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を抑制し、且つ、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜、及び該液晶配向膜を得るための光配向処理法用に適した新規な液晶配向剤が提供される。
 本発明の液晶配向剤から得られる液晶配向膜において、何故に上記の効果が得られるかについては、必ずしも明らかではないが、ほぼ次のように考えられる。
 一般に、表面エネルギーの異なる2つの成分をブレンドした場合、表面エネルギーの低い成分が膜表面に偏在し、表面エネルギーの高い成分が膜内部や基板との界面に偏在することが知られている。本発明の液晶配向剤の(A)成分は、低極性のt-ブチル基を使用するため、表面エネルギーが低いポリアミック酸であり、液晶配向成分となる。一方、電荷緩和成分は、ピリジン環などの窒素含有芳香族複素環を有するため、液晶配向成分よりも表面エネルギーが高いポリアミック酸となる。よって、本発明の液晶配向剤を塗布、焼成して、得られる膜は液晶配向成分が膜表面に偏在し、電荷緩和成分が膜内部及び基板との界面に偏在する液晶配向膜が得られる。t-ブチル基のような低極性の置換基を含まない場合、膜の内部構造が上記のような構造にはならず、膜表面に電荷緩和成分が存在してしまい、このため、液晶配向性が悪化し、交流駆動による残像が発生してしまう。
 しかし、t-ブチル基のような嵩高い構造は、液晶と配向膜の相互作用が阻害されるため、液晶配向性が低下するが、本発明の液晶配向成分に含まれるt-ブチル基は、その後の焼成過程における加熱によって-ブチル基は水素原子に置き換わるため、得られる液晶配向膜にはもはや存在しない。このため、得られる液晶配向膜は、t-ブチル基のような嵩高い構造を有さないポリアミック酸を用いた場合と同様に優れた液晶配向性が得られる。
 かくして、本発明で得られる液晶配向膜の表面層には、液晶配向性に優れた液晶配向成分が偏在し、また、直流電圧により蓄積した残留電荷の緩和が早い電荷緩和成分が膜内部及び電極界面に存在するため、優れた特性を有するものと考えられる。
<(A)成分>
 本発明の液晶配向剤に含有する(A)成分は、下記式(1)で表されるシクロブタン環を有するテトラカルボン酸二無水物と、下記式(D-1)及び(D-2)で表される構造からなる群から選ばれる少なくとも1種の直線性の高いジアミン及び下記式(2)で表される加熱によって水素原子に置き換わるアミノ基の保護基であるt-ブトキシカルボニル基を有するジアミンを含有するジアミン化合物と、反応により得られるポリアミック酸及びそのイミド化重合体から選ばれる少なくとも1種の重合体である。
Figure JPOXMLDOC01-appb-C000013

 上記式(1)において、R、R、R、及びRはそれぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基若しくはアルキニル基、又はフェニル基であり、同一でも異なっていてもよい。
 R、R、R、及びRが、立体的に嵩高い構造である場合、液晶配向性を低下させてしまう。よって、R、R、R,及びRは、水素原子、メチル基又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。
 上記式(1)で表されるシクロブタン環を有するテトラカルボン酸二無水物の具体例としては、下記式(1-1)~(1-5)が挙げられる。液晶配向性の観点から(1-1)及び(1-2)がより好ましく、(1-2)がさらに好ましい。
Figure JPOXMLDOC01-appb-C000014
 上記式(D-2)において、Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~4の2価の有機基である。
 Zにおいて、エステル結合としては、-C(O)O-、又は-OC(O)-で表される。アミド結合としては、-C(O)NH-、又は、-C(O)NR-、-NHC(O)-、-NRC(O)-で表される構造を示すことができる。Rは炭素数1~4のアルキル基である。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基などが挙げられる。
 Zが炭素数2~4の有機基である場合、下記式(D2)の構造で表すことができる。
Figure JPOXMLDOC01-appb-C000015
 上記式(D-2)における、Z4、Zはそれぞれ独立して、単結合、又は、-O-、-S-、-NR11-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、カルバメート結合である。R11の水素原子、メチル基である。
 Z、Z、Zにおいて、エステル結合、アミド結合、及び、チオエステル結合については、前記のエステル結合、アミド結合、及び、チオエステル結合の同様の構造を示すことができる。
 ウレア結合としては、-NH-C(O)NH-、又は-NR-C(O)NR-で表される構造を示すことができる。Rは炭素数1~3のアルキル基であり、前記のアルキル基と同様の例を挙げることができる。
 カーボネート結合としては、-O-C(O)-O-で表される構造を示すことができる。
 カルバメート結合としては、-NH-C(O)-O-、-O-C(O)-NH-、-NR-C(O)-O-、又は-O-C(O)-NR-で表される構造を示すことができる。Rは炭素数1~4のアルキル基であり、前記のアルキル基と同様の例を挙げることができる。
 式(D-2)中のRは、それぞれ独立して単結合、又は炭素数1~4のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、及びこれらを組み合わせた基から選ばれる構造である。
 上記アルキレン基としては、メチレン基、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,2-ブチレン基などが挙げられる。
 アルケニレン基としては、1,1-エテニレン基、1,2-エテニレン基、1,2-エテニレンメチレン基、1-メチル-1,2-エテニレン基、1,2-エテニレン-1,1-エチレン基、1,2-エテニレン-1,2-エチレン基などが挙げられる。
 アルキニレン基としては、エチニレン基、エチニレンメチレン基、エチニレン-1,1-エチレン基、エチニレン-1,2-エチレン基などが挙げられる。
 アリーレン基としては、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基などが挙げられる。
 ジアミンの構造が、直線性が高い構造や剛直な構造である場合、良好な液晶配向性を有する液晶配向膜が得られるため、Zの構造としては、単結合、又は下記式(A1-1)~(A1-18)の構造がより好ましい。
Figure JPOXMLDOC01-appb-C000016
 ジアミンの構造が直線性が高い構造や剛直な構造であるほど、液晶配向性に優れた液晶配向膜が得られるため、下記式(D-1)及び(D-2)で表される構造からなる群から選ばれる少なくとも1種類のジアミンとしては、上記式(D-1)で表されるジアミン、又は下記式(D2-1)~(D2-7)で表されるジアミンがより好ましく、式(D-1)で表されるジアミンが特に好ましい。
Figure JPOXMLDOC01-appb-C000017
 上記式(2)において、Aは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-CHO-及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基、又は炭素数1~3のアルキレン基であり、ここで、Qは水素原子、又は炭素数1~3のアルキル基である。Rは水素原子、又は炭素数1~8の1価の有機基である。
 Qが嵩高い構造である場合、液晶配向性を低下させてしまう。よって、Qは、水素原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。
 Aとしては、単結合、又は炭素数1~3のアルキレン基が好ましく、単結合、又はメチレン基、エチレン基がより好ましい。
 Rにおいて、炭素数1~8の1価の有機基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などのアルキル基;ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などのアルケニル基、エチニル基、1-プロピニル基、2-プロピニル基などのアルキニル基;フェニル基などのアリール基;又は下記式(R-1)~(R-2)で表される加熱による水素原子に置き換わる熱脱離性基を有する構造が挙げられる。
 Rにおいても、Qと同様に嵩高い構造であると、液晶配向性を低下させてしまう。よって、Rは、水素原子、メチル基、エチル基、及び熱脱離性基を有する(R-1)、又は(R-2)が好ましく、水素原子、メチル基、(R-1)又は(R-2)がより好ましい。
Figure JPOXMLDOC01-appb-C000018
 上記式(2)で表されるジアミンの具体的な例を挙げるとするならば、下記式(DA-1)~(DA-3)のジアミンを挙げることができる。液晶配向性の観点から、(DA-1)、又は(DA-2)が好ましく、(DA-1)がより好ましい。
Figure JPOXMLDOC01-appb-C000019
 本発明の液晶配向剤に含有する(A)成分は、使用されるジアミン化合物中のp-フェニレンジアミンの比率が高いほど、液晶配向性が良好で、液晶分子との相互作用も強いため、交流駆動により発生する残像を低減することができる。一方、ジアミン化合物中の上記式(2)で表されるジアミンの比率が高いほど、(A)成分の表面エネルギーが低くなり、(A)成分が、膜表面に偏在しやすくなる。
 上記のような観点から、本発明に使用される(A)成分を形成するp-フェニレンジアミンの含有量は、ジアミン化合物の70~95mol%が好ましく、80~95mol%がより好ましく、90~95mol%がさらに好ましい。一方、上記式(2)で表されるジアミンの含有量は、ジアミン化合物の30~5mol%が好ましく、20~5mol%がより好ましく、10~5mol%がさらに好ましい。
<(B)成分>
 本発明の液晶配向剤に含有する(B)成分は、下記式(6)で表されるテトラカルボン酸二無水物と、下記式(3)で表されるジアミンを含有するジアミン化合物から得られるポリアミック酸及びそのイミド化重合体から選ばれる少なくとも1種の重合体である。
Figure JPOXMLDOC01-appb-C000020
 式(3)において、Bは-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基であり、ここで、Qは水素原子又は炭素数1~3のアルキル基であり、Qは好ましい例を含めて、Qと同様の構造が挙げられる。Bは単結合、又は炭素数1~4のアルキレン基であり、Bは窒素原子含有複素環であり、nは1~4の整数である。
 Bとしては、(B)成分の表面エネルギーを高くすることができるため、極性が高い構造が好ましく、-O-、-NQ-、-CONQ-、及び-OCO-がより好ましい。Bとしては、合成の容易さから炭素数1~4、好ましくは1又は2のアルキレン基が好ましい。
 Bの窒素原子含有芳香族複素環の具体例としては、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、ピリダジン環、トリアジン環、トリアゾール環、ピラジン環、ベンズイミダゾール環、ベンゾイミダゾール環が挙げられる。原料の入手性の観点から、ピロール環、イミダゾール環、ピラゾール環、ピリジン環、又はピリミジン環がより好ましく、イミダゾール環、ピリジン環、又はピリミジン環がさらに好ましい。
 上記式(3)で表される窒素原子含有芳香族複素環を有するジアミンの具体例を挙げるならば、下記式(DB-1)~(DB-6)が挙られる。
 上記式(3)で表される窒素原子含有芳香族複素環を有するジアミンの含有量としては、ジアミン化合物の30~100mol%が好ましく、より好ましくは、40~100mol%、さらに好ましくは50~100mol%である。
Figure JPOXMLDOC01-appb-C000021
 上記式(6)において、Xは4価の有機基であり、その構造は特に限定されない。具体的例を挙げるならば、下記式(X-1)~(X-46)の構造が挙げられる。化合物の入手性の観点から、Xの構造は、X-1、X-2.X-3、X-4、X-5、X-6、X-8、X-16、X-17、X-19、X-21、X-25、X-26,X-27、X-28、X-32、又はX-46が好ましい。得られる液晶配向膜の透明性が向上するため、脂肪族若しくは脂肪族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xの構造としては、X-1、X-2、又はX-25がより好ましく、ジアミンとの反応性の観点から、X-1がさらに好ましい。
 (B)成分のテトラカルボン酸二無水物において、上記式(6)中のXが、X-1、X-2、又はX-25で表されるテトラカルボン酸二無水物を含む場合、全テトラカルボン酸二無水物の50~100mol%含むことが好ましい。より好ましくは、70~100mol%、さらに好ましくは80~100mol%である。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 本発明の液晶配向剤に含有される(B)成分は、上記式(3)で表されるジアミン以外に、下記式(5)で表されるカルボン酸を有するジアミン化合物を用いることで、液晶配向膜とした場合に、直流電圧による蓄積した残留電荷の緩和をさらに早くすることができる。また、下記式(5)で表されるジアミン化合物を用いることにより、(B)成分の表面エネルギーがさらに高くなり、(A)成分が膜表面により偏在し、(B)成分が膜内部及び基板界面により偏在させることができる。
Figure JPOXMLDOC01-appb-C000026
 式(5)において、Bは、上記式(3)におけるBと同じ定義であり、単結合、-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、-OCO-からなる群より選ばれる少なくとも1種類の2価の有機基であり、ここで、Qは好ましい例を含めて、Qと同様の構造が挙げられる。Bは単結合、又は炭素数1~4のアルキレン基であり、mは1~4の整数である。
 Bとしては、(B)成分の表面エネルギーを高くすることができるため、極性が高い構造が好ましく、単結合、-CONQ-、又は-OCO-がより好ましい。
 上記式(5)で表されるカルボン酸を有するジアミンの具体例を挙げるならば、3,5-ジアミノ安息香酸、又は、2,5-ジアミノ安息香酸を挙げられる。
 (B)成分を形成するジアミンとしては、上記式(3)で表されるジアミンと上記式(5)で表されるジアミンの両方を含有することが好ましい。上記式(3)で表されるジアミンと上記式(5)で表されるジアミンの両方を含有する場合、これらのジアミンの合計含有量は、全ジアミンに対して、40~100mol%が好ましく、50~100mol%がより好ましく、60~100mol%がさらに好ましい。
 (B)成分のジアミン成分としては、上記式(3)及び上記式(5)以外のジアミンとしては、下記式(7)で表されるジアミンを含んでもよい。式中Yは2価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記記式(Y-1)~(Y-75)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 本発明の液晶配向剤の(B)成分の有機溶媒に対する溶解性の向上させるため、Yの構造としては、Y-8、Y-20、Y-21、Y-22、Y-28、Y-29、Y-30が挙げられる。
 (B)成分のポアミック酸が膜表面に偏在してしまうと、液晶の配向を阻害する可能性があるので、(B)成分の表面エネルギーを高くし、(B)成分を膜内部及び基板界面に偏在させる目的で、極性の高い置換基を有するジアミンを用いることが好ましい。極性の高い置換基を有するジアミンとしては、2級又は3級のアミノ基、ヒドロキシル基、アミド基若しくはウレア基を含有するジアミンが好ましい。このため、上記式(7)のYとしては、Y-19、Y-31、Y-40、Y-45、Y-49~Y-51、又はY-61がより好ましい。
<ポリアミック酸の製造方法>
 本発明のポリアミック酸は、テトラカルボン酸二無水物とジアミンとの反応によって得ることができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
 上記の反応に用いる有機溶媒は、モノマーおよびポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<ポリイミドの製造方法>
 本発明に用いられるポリアミック酸のイミド化重合体(ポリイミド)は、前記のポリアミック酸をイミド化することにより製造することができる。
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
<液晶配向剤>
 本発明の液晶配向剤は、(A)成分と(B)成分と、有機溶媒とを含有し、(A)成分と(B)成分とが有機溶媒中に溶解された溶液の形態を有する。
 (A)成分と(B)成分のポリアミック酸の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
 本発明の液晶配向剤において、(A)成分と(B)成分の割合は、((A)成分/(B)成分)の質量比率で、3/7~7/3であるのが好ましい。かかる比率は、より好ましくは4/6~6/4である。かかる比率をこの範囲にせしめることにより、交流駆動による残像を抑制し、且つ、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜となり好ましい。
 本発明の液晶配向剤は、(A)成分と(B)成分が有機溶媒中に溶解された溶液の形態を有する限り、その製造方法は問われない。例えば、(A)成分及び(B)成分の粉末を混合し、有機溶媒に溶解する方法、(A)成分の粉末と(B)成分の溶液を混合する方法、(A)成分の溶液と(B)成分の粉末を混合する方法、(A)成分と(B)成分の溶液を混合する方法がある。(A)成分と(B)成分の溶解する良溶媒が異なる場合でも均一な混合溶液を得ることができるため、(A)成分と(B)成分の溶液を混合する方法がより好ましい。
 本発明の液晶配向剤のポリマー濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1重量%以上であることが好ましく、溶液の保存安定性の点からは10重量%以下とすることが好ましい。
 本発明の液晶配向剤に含有される上記有機溶媒は、(A)成分と(B)成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独ではポリマー成分を均一に溶解できない溶媒であっても、ポリマーが析出しない範囲であれば、上記の有機溶媒に混合してもよい。
 本発明の液晶配向剤は、ポリマー成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類上を併用してもよい。
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、(A)成分と(B)成分の重合体以外のポリマー、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
<液晶配向膜>
 本発明の液晶配向膜は、上記のようにして得られた液晶配向剤を基板に塗布し、乾燥、焼成して得られた塗膜である。
 本発明の液晶配向剤を塗布する基板は、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。
 本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分乾燥させ、その後150℃~300℃で5分~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
 本発明の液晶配向剤は、従来のラビング配向処理もできるが、光配向処理法で使用する場合に特に有用である。
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏光した放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線の波長としては、100nm~800nmの波長を有する紫外線および可視光線を用いることができる。このうち、100nm~400nmの波長を有する紫外線が好ましく、200nm~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmの範囲にあることが好ましく、100~5,000mJ/cmの範囲にあることが特に好ましい。
 以上の様にして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
 以下に、本実施例及び比較例で使用した化合物の略号、及び各特性の測定方法は、以下のとおりである。
DA-1、DA-2、及びDB-1:上記で定義される。
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
[粘度]
 合成例において、ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
 重合体の分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定。
[FFS駆動液晶セルの交流駆動焼き付き特性]
 第1層目に電極として形状の膜厚50nmのITO電極を、第2層目に絶縁膜として形状の膜厚500nmの窒化珪素を、第3層目に電極として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するフリンジフィールドスィッチング(Fringe Field Switching:以下、FFSという)駆動用電極が形成されているガラス基板に、液晶配向剤をスピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、250℃の熱風循環式オーブンで60分間焼成を行い、膜厚100nmの塗膜を形成させた。
 この塗膜面に偏光板を介して波長254nmの紫外線を照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
 上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
 このFFS駆動液晶セルの58℃の温度下でのV-T特性(電圧-透過率特性)を測定した後、±4V/120Hzの矩形波を4時間印加した。4時間後、電圧を切り、58℃の温度下で60分間放置した後、再度V-T特性を測定し、矩形波印加前後の透過率50%となる電圧の差(ΔV50)を算出した。
[電荷緩和特性]
 上記液晶セルを光源上に置き、V-T特性(電圧-透過率特性)を測定した後、±1.5V/60Hzの矩形波を印加した状態での液晶セルの透過率(Ta)を測定した。その後、±1.5V/60Hzの矩形波10分間印加した後、直流2Vを重畳し180分間駆動させた。 直流電圧を切り、再び±1.5V/60Hzの矩形波のみで20分、60分、90分駆動させた時の液晶セルの透過率(T)をそれぞれ測定し、各時間での透過率(T)と初期の透過率(T)の差(ΔT)から液晶表示素子内に残留した電圧により生じた透過率の差を算出した。
(合成例1)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、p-フェニレンジアミンを2.92g(27.0mmol)及びDA-1を0.67g(3.0mmol)取り、NMPを52.27g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を6.66g(29.7mmol)添加し、更に固形分濃度が15重量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-1)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は680mPa・sであった。また、このポリアミック酸の分子量はMn=9,279、Mw=21,886であった。
(合成例2)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、p-フェニレンジアミンを2.60g(24.0mmol)及びDA-1を1.34g(6.0mmol)取り、NMPを52.65g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を6.59g(29.4mmol)添加し、更に固形分濃度が15重量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-2)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は357mPa・sであった。また、このポリアミック酸の分子量はMn=9,042、Mw=19,958であった。
(合成例3)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、p-フェニレンジアミンを1.94g(17.9mmol)及びDA-1を0.44g(1.97mmol)取り、NMPを49.86g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を3.77g(19.2mmol)添加し、更に固形分濃度が10重量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-3)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は142mPa・sであった。また、このポリアミック酸の分子量はMn=11,494、Mw=24,376であった。
(合成例4)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、p-フェニレンジアミンを3.11g(28.8mmol)及びDA-2を0.85g(3.20mmol)取り、NMPを51.89g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を6.21g(31.7mmol)添加し、更に固形分濃度が15重量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-4)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は10010mPa・sであった。また、このポリアミック酸の分子量はMn=21,525、Mw=58,007であった。
(合成例5)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、p-フェニレンジアミンを2.16g(20.0mmol)取り、NMPを52.02g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を4.43g(19.8mmol)添加し、更に固形分濃度が10重量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-5)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は89.1mPa・sであった。また、このポリアミック酸の分子量はMn=7,048、Mw=16,664であった。
(合成例6)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、p-フェニレンジアミンを2.16g(20.0mmol)取り、NMPを47.70g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を3.84g(19.6mmol)添加し、更に固形分濃度が10重量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-6)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は303mPa・sであった。また、このポリアミック酸の分子量はMn=19,188、Mw=49,182であった。
(合成例7)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を2.74g(18.0mmol)及びDB-1を2.92g(12.1mmol)取り、NMPを58.77g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-シクロブタンテトラカルボン酸二無水物を5.88g(30.0mmol)添加し、更に固形分濃度が15重量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-7)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は256mPa・sであった。また、このポリアミック酸の分子量はMn=11,589、Mw=36,055であった。
(合成例8)
 撹拌装置付き及び窒素導入管付きの300mL四つ口フラスコに、3,5-ジアミノ安息香酸を9.13g(60.0mmol)及びDB-1を9.69g(40.0mmol)取り、NMPを55.83g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-ブタンテトラカルボン酸二無水物を9.91g(50.0mmol)を添加し、更に固形分濃度が25重量%になるようにNMPを加えて、室温で2時間撹拌した。2時間後、この重合液にピロメリット酸二無水物を10.69g(49.0mmol)添加し、更に固形分濃度が15重量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-8)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は860mPa・sであった。また、このポリアミック酸の分子量はMn=11,319、Mw=28,237であった。
(合成例9)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を1.83g(12.0mmol)及びDB-1を1.93g(7.97mmol)取り、NMPを12.33g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,2,3,4-ブタンテトラカルボン酸二無水物を9.91g(10.0mmol)を添加し、更に固形分濃度が25重量%になるようにNMPを加えて、室温で2時間撹拌した。2時間後、この重合液に3,3’、4,4’-ビシクロヘキシルテトラカルボン酸二無水物を3.06g(9.99mmol)添加し、更に固形分濃度が20重量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-9)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は760mPa・sであった。また、このポリアミック酸の分子量はMn=10,635、Mw=28,670であった。
(合成例10)
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、3,5-ジアミノ安息香酸を3.66g(24.0mmol)及びDB-1を3.88g(16.0mmol)取り、NMPを57.56g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらピロメリット酸二無水物を8.58g(39.3mmol)添加し、更に固形分濃度が20重量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-10)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は2221mPa・sであった。また、このポリアミック酸の分子量はMn=18,343、Mw=47,290であった。
(実施例1)
 撹拌子を入れた20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を2.12g、合成例7で得られたポリアミック酸溶液(PAA-7)を2.81g取り、NMPを5.04g、BCSを2.49g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-1)を得た。
(実施例2)
 撹拌子を入れた50mlサンプル管に、合成例2で得られたポリアミック酸溶液(PAA-2)を3.41g、合成例7で得られたポリアミック酸溶液(PAA-7)を5.22g取り、NMPを7.39g、BCSを4.07g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-2)を得た。
(実施例3)
 撹拌子を入れた20mlサンプル管に、合成例3で得られたポリアミック酸溶液(PAA-3)を3.12g、合成例7で得られたポリアミック酸溶液(PAA-7)を2.82g取り、NMPを4.09g、BCSを2.50g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-3)を得た。
(実施例4)
 撹拌子を入れた20mlサンプル管に、合成例4で得られたポリアミック酸溶液(PAA-4)を2.09g、合成例7で得られたポリアミック酸溶液(PAA-7)を2.81g取り、NMPを5.11g、BCSを2.49g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-4)を得た。
(比較例1)
 撹拌子を入れた50mlサンプル管に、合成例2で得られたポリアミック酸溶液(PAA-2)を8.52gとり、NMPを7.47g、BCSを3.99g加えてマグネチックスターラーで30分撹拌し液晶配向剤(B-1)を得た。
(比較例2)
 撹拌子を入れた50mlサンプル管に、合成例5で得られたポリアミック酸溶液(PAA-5)を12.39gとり、NMPを3.62g、BCSを4.07g加えてマグネチックスターラーで30分撹拌し液晶配向剤(B-2)を得た。
(比較例3)
 撹拌子を入れた50mlサンプル管に、合成例6で得られたポリアミック酸溶液(PAA-6)を5.96gとり、NMPを1.93g、BCSを1.98g加えてマグネチックスターラーで30分撹拌し液晶配向剤(B-3)を得た。
(比較例4)
 撹拌子を入れた50mlサンプル管に、合成例5で得られたポリアミック酸溶液(PAA-5)を4.96g、合成例7で得られたポリアミック酸溶液(PAA-7)を5.22g取り、NMPを5.81g、BCSを4.01g加えてマグネチックスターラーで30分撹拌し液晶配向剤(B-4)を得た。
(実施例5)
 ガラス基板上に、第1層目として膜厚50nmのITO電極を、第2層目として絶縁膜として膜厚500nmの窒化ケイ素を、第3層目として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有するFFS駆動用電極が形成されているガラス基板に、実施例1で得られた液晶配向剤(A-1)を1.0μmのフィルターで濾過した後、スピンコート塗布にて塗布した。次いで、80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚120nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を500mJ/cm照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、同様に塗膜を形成させ、配向処理を施した。
 上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
 このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1.0mVであった。また、電荷緩和特性を評価した結果、交流駆動20分、60分、及び90分後のΔTは、それぞれ8%、0%、及び0%であった。
(実施例6)
 実施例2で得られた液晶配向剤(A-2)を用い、400mJ/cmの偏光された紫外線を照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は4.3mVであった。また、電荷緩和特性を評価した結果、交流駆動20分、60分、及び90分後のΔTは、それぞれ1.5%、0%、及び0%であった。
(実施例7)
 実施例3で得られた液晶配向剤(A-3)を用い、750mJ/cmの偏光された紫外線を照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、矩形波印加前後の透過率50%となる電圧の差が2.2mVであった。また、電荷緩和特性を評価した結果、交流駆動20分、60分、及び90分後のΔTは、それぞれ0%、0%、及び0%であった。
(実施例8)
 実施例4で得られた液晶配向剤(A-4)を用い、1000mJ/cmの偏光された紫外線を照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は3.6mVであった。また、電荷緩和特性を評価した結果、交流駆動20分、60分、及び90分後のΔTは、それぞれ0%、0%、及び0%であった。
(比較例5)
 比較例1で得られた液晶配向剤(B-1)を用い、400mJ/cmの偏光された紫外線を照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は3.5mVであった。また、電荷緩和特性を評価した結果、交流駆動20分、60分、及び90分後のΔTは、それぞれ0.6%、0.3%、及び0.3%であった。
(比較例6)
 比較例2で得られた液晶配向剤(B-2)を用い、400mJ/cmの偏光された紫外線を照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1.0mVであった。また、電荷緩和特性を評価した結果、交流駆動20分、60分、及び90分後のΔTは、それぞれ0.6%、0.3%、及び0.4%であった。
(比較例7)
 比較例3で得られた液晶配向剤(B-3)を用い、1000mJ/cmの偏光された紫外線を照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は0.8mVであった。また、電荷緩和特性を評価した結果、交流駆動20分、60分、及び90分後のΔTは、それぞれ2.1%、0.4%、及び0.1%であった。
(比較例8)
 比較例4で得られた液晶配向剤(B-4)を用い、400mJ/cmの偏光された紫外線を照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は5.2mVであった。また、電荷緩和特性を評価した結果、交流駆動20分、60分、及び90分後のΔTは、それぞれ4%、0%、及び0%であった。
Figure JPOXMLDOC01-appb-T000040
 上記表1から明らかなように、比較例5の結果より、本発明の配向剤の(A)成分を単独で使用した場合、交流駆動焼き付き特性は良好であるが、蓄積した電荷の緩和が遅い。これに対して、実施例5~8の結果より、本発明の液晶配向剤から得られる液晶配向膜は、(A)成分を単独で使用した場合とほぼ同等の交流駆動焼き付き特性を示し、且つ、電荷緩和特性が良好な液晶配向膜であることが確認された。
 一方、比較例6、比較例7の結果より、本発明の液晶配向剤の(A)成分を単独で使用し、かつ式(2)で表されるジアミンを使用せずに得たポリアミック酸を用いた場合、交流駆動焼き付き特性が低下し、また、蓄積した電荷の緩和が遅い。また、比較例8の結果より、液晶配向剤の(A)成分として式(2)で表されるジアミンを使用せずに得たポリアミック酸に、電荷緩和成分として(B)成分を混合すると、電荷緩和特性は向上するものの、交流駆動焼き付き特性が大幅に悪化してしまうことが確認された。
(実施例9)
 撹拌子を入れた50mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.20g、合成例8で得られたポリアミック酸溶液(PAA-8)を3.98g取り、NMPを8.85g、BCSを4.02g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-5)を得た。
(実施例10)
 撹拌子を入れた50mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.22g、合成例9で得られたポリアミック酸溶液(PAA-9)を3.77g取り、NMPを9.04g、BCSを4.02g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-6)を得た。
(実施例11)
 撹拌子を入れた50mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.21g、合成例10で得られたポリアミック酸溶液(PAA-10)を3.62g取り、NMPを9.28g、BCSを4.01g加えてマグネチックスターラーで30分間撹拌し液晶配向剤(A-7)を得た。
(実施例12)
 実施例9で得られた液晶配向剤(A-5)を用い、400mJ/cmの偏光された紫外線を照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は0.9mVであった。
(実施例13)
 実施例10で得られた液晶配向剤(A-6)を用い、400mJ/cmの偏光された紫外線を照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1.5mVであった。
(実施例14)
 実施例11で得られた液晶配向剤(A-7)を用い、400mJ/cmの偏光された紫外線を照射した以外は、実施例5と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、交流駆動焼き付き特性を評価した結果、ΔV50は1.1mVであった。
Figure JPOXMLDOC01-appb-T000041
 なお、2010年10月19日に出願された日本特許出願2010-234933号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (17)

  1.  下記(A)成分、(B)成分、及び有機溶媒を含有することを特徴とする液晶配向剤。
    (A)成分:下記式(1)で表されるテトラカルボン酸二無水物と、下記式(D-1)及び(D-2)で表される構造からなる群から選ばれる少なくとも1種のジアミン及び下記式(2)で表されるジアミンを含有するジアミン化合物と、の反応により得られるポリアミック酸及びそのイミド化重合体から選ばれる少なくとも1種の重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、R、R、R、及びRは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基若しくはアルキニル基、又はフェニル基である。)
    (式(2)において、Aは単結合、又は-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、-OCO-、及び炭素数1~3のアルキレン基からなる群より選ばれる少なくとも1種の2価の有機基であり、ここで、Qは水素原子又は炭素数1~3のアルキル基である。Rは水素原子又は炭素数1~8の1価の有機基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(D-2)において、Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~6の2価の有機基である。)
    (B)成分:テトラカルボン酸二無水物と、下記式(3)で表されるジアミンを含有するジアミン化合物と、の反応により得られるポリアミック酸及びそのイミド化重合体から選ばれる少なくとも1種の重合体。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)において、Bは、-O-、-NQ-、-CONQ-、-NQCO-、-CHO-、及び-OCO-からなる群より選ばれる少なくとも1種の2価の有機基であり、ここで、Qは水素原子又は炭素数1~3のアルキル基である。Bは単結合、又は炭素数1~4のアルキレン基であり、Bは窒素原子含有複素環であり、nは1~4の整数である。)
  2.  上記(A)成分と(B)成分との含有重量比率(A/B)が、3/7~7/3であり、(A)成分と(B)成分の合計の含有量が、(A)成分、(B)成分、及び有機溶媒の合計量に対して、1~10重量%である請求項1に記載の液晶配向剤。
  3.  (A)成分のテトラカルボン酸二無水物が、1,2,3,4-シクロブタンテトラカルボン酸二無水物及び1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物から選ばれる少なくとも1種のテトラカルボン酸二無水物である請求項1又は2のいずれかに記載の液晶配向剤。
  4.  (A)成分のテトラカルボン酸二無水物が、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物である請求項1~3のいずれかに記載の液晶配向剤。
  5.  (A)成分のジアミン化合物が、上記式(2)で表されるジアミンを5~30mol%含むジアミンである請求項1~4のいずれかに記載の液晶配向剤。
  6.  (A)成分に含まれる上記式(2)で表されるジアミンが、下記の式(DA-1)、(DA-2)及び(DA-3)から選ばれる少なくとも1種である請求項1~5のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
  7.  (B)成分のジアミン化合物が、上記式(3)で表されるジアミンを30~100mol%含むジアミンである請求項1~6のいずれに記載の液晶配向剤。
  8.  (B)成分に含まれる上記式(3)で表されるジアミンが、下記式(DB-1)~(DB-6)から選ばれる少なくとも1種である請求項1~7のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
  9.  (B)成分のテトラカルボン酸二無水物が、下記の式(4)で表され、式中Xが、下記の構造から選ばれる少なくとも1種である請求項1~8のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
  10.  (B)成分のテトラカルボン酸二無水物が、1,2,3,4-ブタンテトラカルボン酸二無水物及び1,2,3,4-シクロブタンテトラカルボン酸二無水物から選ばれる少なくとも1種類のテトラカルボン酸二無水物を含み、その含有量が(B)成分の全テトラカルボン酸二無水物に対して、50~100mol%である請求項1~9のいずれかに記載の液晶配向剤。
  11.  (B)成分のテトラカルボン酸二無水物が、1,2,3,4-シクロブタンテトラカルボン酸二無水物である請求項1~10のいずれかに記載の液晶配向剤。
  12.  (B)成分のジアミン化合物が、上記式(3)で表されるジアミン以外に、下記式(5)で表されるカルボン酸含有ジアミンを含有する請求項1~11のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    (式(5)において、Bは、前記Bと同義であり、Bは単結合、又は炭素数1~4のアルキレン基であり、mは1~4の整数である。)
  13.  (B)成分のジアミンが、上記式(3)で表されるジアミンと上記式(5)で表されるジアミンとを含み、その合計量が、(B)成分の全ジアミンに対しての40~100mol%である請求項1~12のいずれかに記載の液晶配向剤。
  14.  上記式(5)で表されるジアミンが、3,5-ジアミノ安息香酸及び2,5-ジアミノ安息香酸から選ばれる少なくとも1種である請求項1~13に記載の液晶配向剤。
  15.  請求項1~14のいずれかに記載の液晶配向剤を塗布し、焼成して得られる液晶配向膜。
  16.  請求項1~14のいずれかに記載の液晶配向剤を塗布、焼成し、さらに偏光された放射線を照射して得られる液晶配向膜。
  17.  請求項15又は16に記載の液晶配向膜を備えたIPS駆動方式若しくはFFS駆動方式の液晶表示素子。
PCT/JP2011/073970 2010-10-19 2011-10-18 光配向処理法に適した液晶配向剤、及びそれを用いた液晶配向膜 WO2012053525A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012539738A JP5900344B2 (ja) 2010-10-19 2011-10-18 光配向処理法に適した液晶配向剤、及びそれを用いた液晶配向膜
CN201180060822.3A CN103261956B (zh) 2010-10-19 2011-10-18 适用于光取向处理法的液晶取向剂及使用该液晶取向剂的液晶取向膜
KR1020137012624A KR101878518B1 (ko) 2010-10-19 2011-10-18 광 배향 처리법에 적합한 액정 배향제, 및 그것을 사용한 액정 배향막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-234933 2010-10-19
JP2010234933 2010-10-19

Publications (1)

Publication Number Publication Date
WO2012053525A1 true WO2012053525A1 (ja) 2012-04-26

Family

ID=45975236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073970 WO2012053525A1 (ja) 2010-10-19 2011-10-18 光配向処理法に適した液晶配向剤、及びそれを用いた液晶配向膜

Country Status (5)

Country Link
JP (1) JP5900344B2 (ja)
KR (1) KR101878518B1 (ja)
CN (1) CN103261956B (ja)
TW (1) TWI540154B (ja)
WO (1) WO2012053525A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261737B2 (en) 2014-01-17 2016-02-16 Samsung Display Co., Ltd. Liquid crystal display
JP2016079288A (ja) * 2014-10-16 2016-05-16 日産化学工業株式会社 重合体、液晶配向剤、液晶配向膜及び液晶表示素子
JP2016095488A (ja) * 2014-11-05 2016-05-26 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、重合体及び化合物
JPWO2018047872A1 (ja) * 2016-09-07 2019-06-24 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6079148B2 (ja) * 2012-11-07 2017-02-15 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR20150118659A (ko) 2014-04-14 2015-10-23 삼성디스플레이 주식회사 액정 표시 장치
CN104049412A (zh) * 2014-06-27 2014-09-17 上海天马微电子有限公司 光分解型配向膜的制作方法、液晶显示面板和显示装置
JP6418317B2 (ja) * 2015-03-02 2018-11-07 日産化学株式会社 液晶表示素子
JP6447304B2 (ja) * 2015-03-27 2019-01-09 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、液晶表示素子、位相差フィルム及びその製造方法、重合体並びに化合物
KR101809650B1 (ko) 2015-10-02 2017-12-15 주식회사 엘지화학 광배향막의 제조 방법
JP7076939B2 (ja) * 2016-07-19 2022-05-30 株式会社ジャパンディスプレイ 光配向膜用ワニス及び液晶表示装置
JP6996509B2 (ja) * 2016-08-30 2022-01-17 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
CN109937380B (zh) * 2016-09-13 2022-04-19 日产化学株式会社 液晶取向剂、液晶取向膜及液晶表示元件
KR102584666B1 (ko) * 2017-06-08 2023-10-04 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
KR102635627B1 (ko) * 2017-08-29 2024-02-08 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
JP2019056880A (ja) * 2017-09-22 2019-04-11 シャープ株式会社 液晶セル、及び液晶表示装置
JP2020149001A (ja) * 2019-03-15 2020-09-17 株式会社ジャパンディスプレイ 光配向膜用ワニス及び液晶表示装置
JP2021103250A (ja) * 2019-12-25 2021-07-15 株式会社ジャパンディスプレイ 光配向膜用ワニス及び光配向膜の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093707A1 (ja) * 2008-01-25 2009-07-30 Nissan Chemical Industries, Ltd. 液晶配向処理剤、及びそれを用いた液晶表示素子
JP2009294281A (ja) * 2008-06-03 2009-12-17 Jsr Corp 液晶配向剤、液晶配向膜および液晶表示素子
WO2010050523A1 (ja) * 2008-10-29 2010-05-06 日産化学工業株式会社 ジアミン、ポリイミド、液晶配向剤及び液晶配向膜
JP2010156953A (ja) * 2008-12-01 2010-07-15 Chisso Corp 液晶配向剤、液晶配向膜及び液晶表示素子
WO2010104082A1 (ja) * 2009-03-10 2010-09-16 日産化学工業株式会社 ポリイミド前駆体、ポリイミド及び液晶配向剤

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6900271B2 (en) * 2002-05-31 2005-05-31 Elsicon, Inc Hybrid polymer materials for liquid crystal alignment layers
JP4645823B2 (ja) * 2004-06-18 2011-03-09 Jsr株式会社 垂直液晶配向剤、および垂直液晶表示素子
JP2006243637A (ja) * 2005-03-07 2006-09-14 Sharp Corp 液晶表示装置及びその製造方法
CN101495915B (zh) * 2006-07-28 2010-12-15 日产化学工业株式会社 液晶定向处理剂及使用了该处理剂的液晶显示元件
JP5035517B2 (ja) * 2007-02-16 2012-09-26 日産化学工業株式会社 液晶配向剤およびそれを用いた液晶表示素子
JP4544432B2 (ja) * 2007-02-21 2010-09-15 Jsr株式会社 シンナモイル基を持つジアミン化合物の製造法
JP2008216671A (ja) * 2007-03-05 2008-09-18 Jsr Corp 液晶配向剤および液晶表示素子
JP5077048B2 (ja) * 2007-05-02 2012-11-21 Jsr株式会社 垂直配向型液晶配向剤
CN101373296B (zh) * 2007-08-24 2012-07-04 株式会社日立显示器 液晶显示装置及其制造方法
JP5444690B2 (ja) * 2007-12-06 2014-03-19 Jsr株式会社 液晶配向剤および液晶表示素子
JP5594136B2 (ja) * 2008-06-17 2014-09-24 日産化学工業株式会社 液晶配向処理剤及びそれを用いた液晶表示素子
JP5304174B2 (ja) * 2008-10-29 2013-10-02 Jnc株式会社 液晶配向剤、液晶配向膜および液晶表示素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093707A1 (ja) * 2008-01-25 2009-07-30 Nissan Chemical Industries, Ltd. 液晶配向処理剤、及びそれを用いた液晶表示素子
JP2009294281A (ja) * 2008-06-03 2009-12-17 Jsr Corp 液晶配向剤、液晶配向膜および液晶表示素子
WO2010050523A1 (ja) * 2008-10-29 2010-05-06 日産化学工業株式会社 ジアミン、ポリイミド、液晶配向剤及び液晶配向膜
JP2010156953A (ja) * 2008-12-01 2010-07-15 Chisso Corp 液晶配向剤、液晶配向膜及び液晶表示素子
WO2010104082A1 (ja) * 2009-03-10 2010-09-16 日産化学工業株式会社 ポリイミド前駆体、ポリイミド及び液晶配向剤

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9261737B2 (en) 2014-01-17 2016-02-16 Samsung Display Co., Ltd. Liquid crystal display
JP2016079288A (ja) * 2014-10-16 2016-05-16 日産化学工業株式会社 重合体、液晶配向剤、液晶配向膜及び液晶表示素子
JP2016095488A (ja) * 2014-11-05 2016-05-26 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、重合体及び化合物
JPWO2018047872A1 (ja) * 2016-09-07 2019-06-24 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP7299556B2 (ja) 2016-09-07 2023-06-28 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Also Published As

Publication number Publication date
JPWO2012053525A1 (ja) 2014-02-24
KR20130125772A (ko) 2013-11-19
TW201231503A (en) 2012-08-01
JP5900344B2 (ja) 2016-04-06
KR101878518B1 (ko) 2018-07-13
TWI540154B (zh) 2016-07-01
CN103261956B (zh) 2016-03-16
CN103261956A (zh) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5900344B2 (ja) 光配向処理法に適した液晶配向剤、及びそれを用いた液晶配向膜
JP5979142B2 (ja) 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
JP6558245B2 (ja) 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP5962512B2 (ja) 液晶配向剤、及び液晶配向膜
JP6372009B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JPWO2011115078A1 (ja) ポリアミック酸エステルとポリアミック酸とを含有する液晶配向剤及び液晶配向膜
JP6102745B2 (ja) 液晶配向膜の製造方法
WO2013157586A1 (ja) 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子
JPWO2015152174A1 (ja) ポリアミック酸エステル−ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
WO2013039168A1 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
WO2013054858A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6202006B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
WO2013018904A1 (ja) 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
WO2018216664A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2013015407A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6460342B2 (ja) 液晶配向剤及びそれを用いた液晶表示素子
WO2014084362A1 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
CN117546082A (zh) 液晶取向剂、液晶取向膜以及液晶显示元件
WO2017094898A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP6551410B2 (ja) 光配向用の液晶配向剤、液晶配向膜、及び液晶表示素子
JP2024105348A (ja) 液晶配向剤、液晶配向膜及び液晶表示素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180060822.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012539738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012624

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11834364

Country of ref document: EP

Kind code of ref document: A1