WO2011152309A1 - Solar cell module and method for manufacturing same - Google Patents
Solar cell module and method for manufacturing same Download PDFInfo
- Publication number
- WO2011152309A1 WO2011152309A1 PCT/JP2011/062224 JP2011062224W WO2011152309A1 WO 2011152309 A1 WO2011152309 A1 WO 2011152309A1 JP 2011062224 W JP2011062224 W JP 2011062224W WO 2011152309 A1 WO2011152309 A1 WO 2011152309A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- solar cell
- electrode
- cell module
- main surface
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 229910000679 solder Inorganic materials 0.000 claims abstract description 59
- 239000000853 adhesive Substances 0.000 claims abstract description 58
- 230000001070 adhesive effect Effects 0.000 claims abstract description 57
- 230000008018 melting Effects 0.000 claims abstract description 28
- 238000002844 melting Methods 0.000 claims abstract description 28
- 229920005989 resin Polymers 0.000 claims description 13
- 239000011347 resin Substances 0.000 claims description 13
- 229910020816 Sn Pb Inorganic materials 0.000 claims description 7
- 229910020922 Sn-Pb Inorganic materials 0.000 claims description 7
- 229910008783 Sn—Pb Inorganic materials 0.000 claims description 7
- 239000000470 constituent Substances 0.000 claims 4
- 239000010410 layer Substances 0.000 description 86
- 239000000758 substrate Substances 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000009477 glass transition Effects 0.000 description 7
- 229910017944 Ag—Cu Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910017401 Au—Ge Inorganic materials 0.000 description 1
- 229910015365 Au—Si Inorganic materials 0.000 description 1
- 229910015363 Au—Sn Inorganic materials 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910020836 Sn-Ag Inorganic materials 0.000 description 1
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910020988 Sn—Ag Inorganic materials 0.000 description 1
- 229910018731 Sn—Au Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 229920006223 adhesive resin Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/90—Structures for connecting between photovoltaic cells, e.g. interconnections or insulating spacers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/0008—Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
- B23K1/0016—Brazing of electronic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/02—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
- B23K20/023—Thermo-compression bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/16—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/22—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/40—Semiconductor devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00011—Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a solar cell module and a manufacturing method thereof.
- the solar cell module has a configuration in which the output is increased by electrically connecting a plurality of solar cells in series.
- the configuration of the solar cell module 100 will be described with reference to FIG.
- a plurality of solar cells 101 are electrically connected in series by a conductive connection member 102 to constitute a solar cell group 103.
- another adjacent solar cell group 103 is soldered by a connecting member 104.
- the output of the solar cell module 100 is increased by electrically connecting a plurality of solar cells 101 in series.
- the outermost solar cell group 103 is solder-connected to L-shaped connection members (output extraction connection members) 105 and 106 for extracting electric output from the solar cell module 100.
- the solar battery cell 101 needs to be electrically connected to the other solar battery cell 101 by the conductive connecting member 102.
- this point will be described in detail.
- the solar battery cell 101 includes a semiconductor substrate 107 having a pn junction, an antireflection film 108 and a surface side electrode 109 formed on the surface of the semiconductor substrate 107, and a back surface side electrode formed on the back surface of the semiconductor substrate 107. 110.
- the surface-side electrode 109 includes a finger-shaped current collecting electrode 109a and a bus bar electrode 109b orthogonal to the current collecting electrode 109a.
- the back side electrode 110 includes a metal film-like current collecting electrode 110a and a bus bar electrode 110b.
- the solar battery cell 101 is electrically connected to the other solar battery cells 101 by connecting the conductive connecting member 102 described above to the bus bar electrodes 109b and 110b.
- FIG. 9A is a cross-sectional view for explaining the connection between the solar battery cell and the conductive connecting member along AA ′ in FIG. 7, and FIG. 9B is a cross-sectional view along BB ′ in FIG. It is sectional drawing for demonstrating the connection of the photovoltaic cell in a solar cell module along with, and an electroconductive connection member.
- the conductive connection member 102 connects the bus bar electrode 109b of one solar battery cell 101 and the bus bar electrode 110b of another adjacent solar battery cell 101. Thereby, the adjacent photovoltaic cells 101 are electrically connected to each other.
- the bus bar electrode of the solar battery cell and the conductive connection member are connected by thermocompression bonding.
- the conductive connection member 102 includes a conductive member made of Cu or the like and a solder layer covering the conductive member.
- the soldering layer on the surface side of the conductive connecting member is in close contact with the pressure bonding head of the thermocompression bonding apparatus. If it does so, a nonuniform burr
- non-uniform burr can cause various unexpected problems. For example, in the laminating process during the solar cell module manufacturing process, non-uniform burrs pierce the filler present in the solar cell module, and stress concentrates on the non-uniform burrs.
- a conductive connection member in which a surface of a conductive member is covered with a conductive layer and a solar battery cell having an electrode on the surface are prepared, and the conductive connection is performed.
- An adhesive and solder are arranged between one main surface of the member and the electrode, and the conductive connecting member is thermocompression bonded to the electrode to melt the solder and cure the adhesive, thereby A step of connecting the conductive connecting member and the electrode, wherein the conductive connecting member has a melting point of the conductive layer at least on the other main surface facing the one main surface higher than a melting point of the solder. It is comprised,
- the said thermocompression bonding is performed at the temperature which does not exceed melting
- thermocompression bonding In the method for manufacturing a solar cell module according to the present invention, it is possible to melt the solder without melting the conductive layer by thermocompression bonding.
- the surface of the conductive member has a conductive connection member covered with a conductive layer, and a solar cell having an electrode on the surface, and one main surface of the conductive connection member And the electrode are connected via an adhesive member in which an adhesive is mixed in the solder, and the conductive layer has a melting point higher than that of the solder at least on the other main surface facing the one main surface.
- the solar cell module it is possible to melt the solder and connect the solar cell and the conductive connecting member without melting the conductive layer.
- the occurrence of uneven burrs on the surface side of the conductive connecting member is suppressed.
- FIG.1 (a) shows the surface view of a photovoltaic cell
- FIG.1 (b) shows the back view of a photovoltaic cell
- FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG. 3A is a plan view showing a state in which two solar cells are connected
- FIG. 3B is a cross-sectional view taken along the line AA ′ in FIG. Before and after the connection process.
- FIG. 4 is a cross-sectional view taken along the line A-A ′ of FIG. 3A, in which the connection portion between the conductive connection member and the bus bar electrode is enlarged.
- the top view of the adhesion member when peeling a conductive connection member from the photovoltaic cell in Drawing 3 (a) is shown.
- connection location of the electroconductive connection member and bus-bar electrode of the surface side of the photovoltaic cell which concerns on another embodiment of this invention is expanded. It is a top view for demonstrating the conventional solar cell module. It is a perspective view of the photovoltaic cell in the conventional solar cell module.
- FIG. 9A is a cross-sectional view for explaining the connection between the solar battery cell and the conductive connection member
- FIG. 9B shows the connection between the solar battery cell and the conductive connection member in the conventional solar battery module. It is sectional drawing for demonstrating a connection.
- FIG. 1A shows a front view of the solar battery cell 5
- FIG. 1B shows a back view of the solar battery cell 5.
- the solar cell 5 has an antireflection film 18 and a surface side electrode 22 in this order.
- the surface side electrode 22 includes a plurality of finger electrodes 22a and two bus bar electrodes 22b.
- the plurality of finger electrodes 22 a are formed so as to cover the entire surface of the solar battery cell 5.
- Each finger electrode 22a has a narrow linear shape and is arranged in parallel to each other.
- the finger electrodes 22a have a thin line shape having a thickness of 10 to 30 ⁇ m and a width of 50 to 200 ⁇ m, and are arranged at intervals of 2 mm.
- the bus bar electrode 22b is configured to be orthogonally connected to the finger electrode 22a on the surface of the solar battery cell 5.
- the bus bar electrode 22b is formed to have a linear shape with a thickness of 10 to 30 ⁇ m and a width of 0.1 to 1.8 mm.
- Such a surface-side electrode 22 is formed by printing and baking a silver paste in a predetermined pattern by a screen printing method.
- the solar cell 5 has a back surface side electrode 23 on the back surface side.
- the back surface side electrode 23 is composed of a metal film electrode 23a and two bus bar electrodes 23b.
- the metal film electrode 23a is formed by printing and baking a paste containing aluminum on substantially the entire back surface of the solar battery cell 5 by screen printing.
- the bus bar electrode 23 b is formed on the metal film electrode 23 a on the back surface of the solar battery cell 5.
- the bus bar electrode 23b is formed to have a linear shape with a thickness of 10 to 30 ⁇ m and a width of 0.1 to 1.8 mm.
- FIG. 2 is a cross-sectional view taken along line A-A ′ of FIG.
- the solar cell 5 includes a p-type polycrystalline silicon substrate 15, an n-type diffusion layer 16 formed on the surface side of the substrate 15, an antireflection film 18, finger electrodes 22a (not shown), and bus bar electrodes 22b. And a solder layer 22c, a back surface electrode 23 composed of a metal film electrode 23a and a bus bar electrode 23b, and a solder layer 23c.
- the p-type polycrystalline silicon substrate 15 has, for example, a substantially square planar shape of about 125 mm square and a thickness of 100 ⁇ m to 300 ⁇ m. Although not shown here, the substrate 15 has a textured surface described below on the surface side.
- the solar cell 5 On the surface side, the solar cell 5 has an n-type diffusion layer 16, an antireflection film 18 and a surface-side electrode 22 on the surface of the p-type polycrystalline silicon substrate 15 having the texture structure.
- the n-type diffusion layer 16 is formed by thermally diffusing phosphorus on the surface side of the substrate 15.
- an antireflection film 18 is formed on substantially the entire surface except for a part, and a surface side electrode 22 is formed in a region where the antireflection film 18 is not formed.
- the bus bar electrode 22b is formed with a Sn—Pb solder layer 22c having a thickness of 5 to 50 ⁇ m so as to cover the surface thereof. Moreover, although not shown in figure, the solder layer 22c is coat
- the solar battery cell 5 has the metal film electrode 23a and the bus bar electrode 23b on the back surface having the texture structure of the p-type polycrystalline silicon substrate 15.
- a Sn—Pb solder layer 23c having a thickness of about 5 to 50 ⁇ m is also formed on the bus bar electrode 23b so as to cover the surface thereof.
- FIG. 3A is a plan view of a state in which two solar cells 5 are connected
- FIG. 3B is a cross-sectional view taken along the line AA ′ in FIG. The front and back of a connection process with the bus-bar electrode 22b are shown.
- the conductive connection member 6 is connected to the bus bar electrode 22b on the surface side of one solar battery cell 5 by an adhesive 24 containing a resin.
- the conductive connecting member 6 is connected to the bus bar electrode 23b on the back side of the other solar cell 5 adjacent to the one solar cell 5 via the adhesive 24.
- the adhesive 24 is an epoxy thermosetting adhesive, has a glass transition temperature of about 130 ° C., and is cured when thermocompression bonded at about 200 ° C. or higher for 20 seconds or longer.
- the adhesive may be applied and formed on the bus bar electrodes 22b and 23b or the conductive connection member 6, or may be in the form of a film.
- FIG. 3B the upper diagram shows the process steps before the connection between the bus bar electrode 22b and the adhesive 24, and the lower diagram shows the process steps after the connection between the bus bar electrode 22b and the adhesive 24.
- the conductive connecting member 6 is composed of a flat copper electric wire 6a and a first conductive layer 6b and a second conductive layer 6c as conductive layers. Yes.
- the flat copper wire 6a is a flat copper wire having a width of 0.5 mm to 2 mm and a thickness of about 100 to 300 ⁇ m.
- the first conductive layer 6b is coated by, for example, a plating method so that Sn—Ag—Cu having a thickness of 5 to 50 ⁇ m surrounds the back side, which is one main surface of the flat copper wire 6a.
- the second conductive layer 6c is coated by, for example, plating so that Ag having a thickness of 5 to 50 ⁇ m surrounds the surface side that is the other main surface of the flat copper wire 6a.
- the melting point of the first conductive layer 6b is about 220 ° C.
- the melting point of the second conductive layer 6c is about 962 ° C.
- the second conductive layer 6 c is configured to have a higher melting point than the solder layer 22 c, and the solder layer 22 c is configured to be higher than the glass transition temperature of the adhesive 24.
- the adhesive 24 is disposed between the conductive connection member 6 and the bus bar electrode 22b, for example, on the bus bar electrode 22b.
- the conductive connection member 6 is interposed via the adhesive 24.
- the conductive connecting member 6 is heated and pressed at about 200 ° C. for 20 seconds while being pressed against the bus bar electrode 22b at about 2 MPa.
- the adhesive 24 may be provided on the conductive connection member 6 in advance instead of being disposed on the bus bar electrode 22b.
- the electroconductive connection member 6 is thermocompression bonded at approximately 200 ° C. to the substantially entire surface of the electroconductive connection member 6 in the longitudinal direction by a thermocompression bonding portion of a thermocompression bonding apparatus (not shown).
- a thermocompression bonding portion of a thermocompression bonding apparatus not shown.
- the surface side of the conductive connecting member 6 is covered with a second conductive layer 6c having a higher melting point than the solder layer 22c. If it does so, since it can thermocompression-bond at the temperature which exceeds melting
- FIG. 4 is a cross-sectional view taken along the line A-A ′ of FIG. 3A, in which the connection portion between the conductive connection member 6 and the bus bar electrode 22 b is enlarged.
- the solder layer 22c has irregular micron-order micro-projections 22d on the surface of the solder layer 22c, and melts with the first conductive layer 6b in the central portion of the conductive connecting member 6 in the short direction.
- the minute convex portion 22d is formed with an average thickness of about 2 ⁇ m to 3 ⁇ m.
- solder layer 22c contains a metal material, it is easy to melt with the first conductive layer 6b. For this reason, the solder layer 22 c is firmly connected to the conductive connection member 6.
- the adhesive 24 enters the minute convex portion 22d and is cured. Thereby, the contact area between the conductive connecting member 6 and the adhesive 24 is increased, and the adhesive strength between the conductive connecting member 6 and the adhesive 24 is further improved.
- the adhesive 24 is thermocompression bonded and flows at a temperature exceeding its glass transition temperature. For this reason, the adhesive 24 is distributed beyond the width of the conductive connecting member 6 in the short direction. Then, the adhesive 24 forms a fillet on the lateral side surface of the conductive connecting member 6 and is cured. Thereby, even if the solder layer 22c is melted in the thermocompression bonding process, the component is prevented from flowing out beyond the width of the bus bar electrode 22b in the short direction due to the adhesive 24 as a barrier. The adhesive 24 is in close contact with the conductive connection member 6 and the antireflection film 18 beyond the width of the bus bar electrode 22b in the short direction.
- the contact area of the conductive connecting member 6 and the antireflection film 18 and the adhesive 24 increases.
- the adhesive strength between the conductive connecting member 6 and the bus bar electrode 22b is improved by the fillet formed by curing the adhesive 24 to the conductive connecting member 6.
- FIG. 5 shows a top view of the adhesive member when the conductive connection member 6 is peeled from the solar battery cell 5 in FIG.
- thermosetting resin 24a formed by curing the adhesive 24 is unevenly distributed in a random and random manner in size and shape in the solder layer 22c melted and solidified in the vicinity of the center in the short direction of the conductive connecting member 6. Yes.
- the adhesive resin 24a mixed in the solder layer 22c melted and solidified with the conductive connecting member 6 exists in the vicinity of the center of the conductive connecting member 6 in the short direction, and thus the conductive resin becomes conductive.
- the adhesive strength between the connecting member 6 and the bus bar electrode 22b is further improved.
- the solar cell 5 is electrically connected to another solar cell 5 through the conductive connection member 6. Then, a solar cell module as shown in FIG. 7 is completed through a known modularization process.
- the conductive layer is conductive at a temperature higher than the melting point of the solder layer 22c and the glass transition temperature of the adhesive 24 and not exceeding the melting point of the second conductive layer 6c.
- the connecting member 6 is thermocompression bonded to the adhesive 24 on the bus bar electrode 22b.
- the second conductive layer 6c does not melt and the solder layer 22c melts.
- the generation of burrs on the surface side of the conductive connection member 6 can be suppressed.
- Ag which is a highly reflective metal, is used as the second conductive layer 6c on the surface side of the conductive connection member 6 serving as the light receiving surface, so that the reflectance with respect to light incidence is increased. If it does so, it is possible to improve the output of the solar cell module 1 using reflected light.
- the minute protrusion 22d is formed based on the melting of the solder layer 22c by thermocompression bonding.
- the minute projections 22d contribute to an increase in the adhesion area with the adhesive 24, and contribute to an increase in the adhesion strength between the conductive connection member 6 and the bus bar electrode 22b.
- the adhesive 24 is distributed in the conductive connecting member 6 and the melted solder layer 22c, and the adhesive 24 enters the solder layer 22c and is mixed. Then, the adhesive 24 enters and mixes in the solder layer 22c, thereby further contributing to an increase in the adhesive strength between the conductive connection member 6 and the bus bar electrode 22b.
- the above description is mainly about the connection between the bus bar electrode 22 b on the surface side of the solar battery cell 5 and the conductive connection member 6, but the first conductive also in the connection between the bus bar electrode 23 b and the conductive connection member 6.
- the conductive layer 6b has a melting point higher than that of the solder layer 22c, and the solder layer 22c is configured to be higher than the glass transition temperature of the adhesive 24. Similar effects can be obtained by making the same connection also on the bus bar electrode 23b on the back surface side. Play.
- the flat copper wire 6a is configured to have the first conductive layer 6b made of Sn—Ag—Cu and the second conductive layer 6c made of Ag.
- a conductive layer made of Sn—Ag—Cu may be provided so as to cover the side surface in the longitudinal direction, and a conductive layer made of Ag may be provided on the conductive layer on the front surface or the back surface.
- each of the conductive layers has a melting point higher than that of the solder layer 22 c, and the solder layer 22 c is configured to be higher than the glass transition temperature of the adhesive 24.
- FIG. 6 is an enlarged view of the surface side of the connection portion between the conductive connection member and the bus bar electrode of another embodiment.
- This embodiment is not the structure of 1st Embodiment coat
- the front surface, the back surface, and the side surfaces in the longitudinal direction are covered with a conductive layer 60b made of the same material made of Sn—Ag—Cu, which is a lead-free solder having a thickness of 5 to 50 ⁇ m, for example, by plating.
- the same number is attached
- the conductive layer 60b has a melting point higher than that of the solder layer 22c, and the solder layer 22c is configured to be higher than the glass transition temperature of the adhesive 24, and has the same effect as in the first embodiment.
- Example 2 is for making an understanding of this invention easy, and is not for limiting and interpreting this invention.
- the present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
- the conductive layer of Sn—Pb alloy is used as the solder layers 22 c and 23 c for the front surface side electrode 22 and the back surface side electrode 23, and the first conductive layer 6 b is disposed on the back surface side of the conductive connection member 6.
- Sn—Ag—Cu alloy was used as the second conductive layer 6c, and Ag was used as the second conductive layer 6c on the surface side.
- the present invention is not limited to this.
- various conductive layers such as Sn—Ag—In alloy and Sn—Pb alloy can be used as the solder layers 22c and 23c of the front surface side electrode 22 and the back surface side electrode 23.
- Various conductive materials such as Pb—Au alloy, lead-free solder, Au—Si alloy, Au—Ge alloy, Au—Sn alloy, Sn—Cu alloy, Sn—Ag alloy, Sn—Au alloy are provided on the side. Can be used. Of course, the same type of conductive material may be used for the back surface side and the front surface side of the conductive connection member 6, and the conductive material may be covered only on the front surface side of the conductive connection member 6.
- the conductive connection member 6 may include, for example, predetermined regular irregularities on the surface side of the flat copper wire 6a.
- the melting / solidification of the solder layer 22 c covered with the bus bar electrode 22 b is used.
- the bus bar electrode 22 b is covered with the solder layer 22 c.
- the same effect can be obtained by applying solder to the bus bar electrode 22b.
- melts and solidifies may be sufficient.
- an insulating adhesive may be used, or a conductive adhesive may be used.
- the resin is not limited to an epoxy thermosetting resin, and other thermosetting resins can be used as appropriate.
- the adhesive 24 made of the resin may contain conductive particles such as Ni and Ag, and may contain non-conductive materials such as non-conductive particles such as silica, both of which are included. These may be included, or both of them may not be included.
- the present invention is not limited to the structure of the solar cell shown in FIG. 2, and can be appropriately used for various solar cells such as a HIT (Heterojunction with “Intrinsic” Thin-layer) solar cell and a single crystal solar cell.
- HIT Heterojunction with “Intrinsic” Thin-layer
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
本発明は、太陽電池モジュール及びその製造方法に関する。 The present invention relates to a solar cell module and a manufacturing method thereof.
一般に、太陽電池モジュールは、複数の太陽電池セルが電気的に直列に接続されることにより出力が高められた構成である。 Generally, the solar cell module has a configuration in which the output is increased by electrically connecting a plurality of solar cells in series.
図7を参照して、太陽電池モジュール100の構成について説明する。太陽電池モジュール100は、複数の太陽電池セル101が導電性接続部材102により電気的に直列接続されて太陽電池群103が構成されている。太陽電池群103は、隣り合う他の太陽電池群103が接続部材104によって半田接続される。この構成により、太陽電池モジュール100は、複数の太陽電池セル101が電気的に直列接続されることにより出力が高められる。そして、最外側の太陽電池群103は、太陽電池モジュール100から電気出力を取り出すためのL字状の接続部材(出力取り出し用接続部材)105,106と半田接続される。
The configuration of the
このように、太陽電池セル101は他の太陽電池セル101と導電性接続部材102によって電気的に接続される必要がある。以下、この点について詳述する。
Thus, the
はじめに、図8を参照して、太陽電池セル101の構造について詳述する。太陽電池セル101は、pn接合を有した半導体基板107と、半導体基板107の表面上に形成された反射防止膜108及び表面側電極109と、半導体基板107の裏面上に形成された裏面側電極110とを備える。表面側電極109は、フィンガー状の集電電極109aとこの集電電極109aと直交するバスバー電極109bとから構成される。また、裏面側電極110は、金属膜状の集電電極110aとバスバー電極110bとから構成される。
First, the structure of the
太陽電池セル101は、前述した導電性接続部材102がバスバー電極109b,110bに接続されることにより他の太陽電池セル101と電気的に接続される。
The
次に、図9を参照して、導電性接続部材102とバスバー電極109b,110bとの接続形態について詳述する。図9(a)は、図7のA-A’に沿った太陽電池セルと導電性接続部材との接続を説明するための断面図、図9(b)は、図7のB-B’に沿った太陽電池モジュール中の太陽電池セルと導電性接続部材との接続を説明するための断面図である。
Next, with reference to FIG. 9, a connection form between the
導電性接続部材102は、一の太陽電池セル101のバスバー電極109bと、隣り合う他の太陽電池セル101のバスバー電極110bとを接続する。これにより、隣り合う太陽電池セル101は互いに電気的に接続される。
The
ここで、太陽電池セルのバスバー電極と導電性接続部材とを樹脂製接着材料によって接続する方法が提案されている(例えば、特許文献1参照)。 Here, a method of connecting the bus bar electrode of the solar battery cell and the conductive connecting member with a resin adhesive material has been proposed (for example, refer to Patent Document 1).
上述した樹脂製接着剤による方法では、熱圧着により太陽電池セルのバスバー電極と導電性接続部材とを接続する。 In the method using the resin adhesive described above, the bus bar electrode of the solar battery cell and the conductive connection member are connected by thermocompression bonding.
ところが、一般に、導電性接続部材102はCu等からなる導電性部材と、これを被覆する半田層とから構成される。
However, in general, the
このとき、接着力を向上させるために熱圧着の温度を上げると、導電性接続部材の表面側の半田層が溶融した状態で熱圧着装置の圧着ヘッドと密着する。そうすると、導電性接続部材の受光面側である表面側に不均一なバリを発生させてしまうことがある。 At this time, if the temperature of the thermocompression bonding is raised in order to improve the adhesive force, the soldering layer on the surface side of the conductive connecting member is in close contact with the pressure bonding head of the thermocompression bonding apparatus. If it does so, a nonuniform burr | flash may be generated on the surface side which is the light-receiving surface side of an electroconductive connection member.
この不均一なバリは種々の予期しない問題を生じさせる可能性がある。例えば、太陽電池モジュール製造工程中のラミネート工程において、不均一なバリが太陽電池モジュール中に介在している充填剤に対して突き刺さり、不均一なバリの局部に応力が集中する。 This non-uniform burr can cause various unexpected problems. For example, in the laminating process during the solar cell module manufacturing process, non-uniform burrs pierce the filler present in the solar cell module, and stress concentrates on the non-uniform burrs.
本発明に係る太陽電池モジュールの製造方法では、導電性部材の表面が導電性層に覆われた導電性接続部材と、表面上に電極を有する太陽電池セルと、を用意し、前記導電性接続部材の一主面と電極との間に接着剤及び半田を配置し、前記導電性接続部材を前記電極に対して熱圧着して前記半田を溶融させるとともに前記接着剤を硬化させて、前記導電性接続部材と前記電極とを接続する工程を含み、前記導電性接続部材は、少なくとも前記一主面と対向する他の主面における前記導電性層の融点が前記半田の融点より高くなるように構成され、前記熱圧着は、前記他の主面における前記導電性層の融点を超えない温度で行われることを特徴とする。 In the method for manufacturing a solar cell module according to the present invention, a conductive connection member in which a surface of a conductive member is covered with a conductive layer and a solar battery cell having an electrode on the surface are prepared, and the conductive connection is performed. An adhesive and solder are arranged between one main surface of the member and the electrode, and the conductive connecting member is thermocompression bonded to the electrode to melt the solder and cure the adhesive, thereby A step of connecting the conductive connecting member and the electrode, wherein the conductive connecting member has a melting point of the conductive layer at least on the other main surface facing the one main surface higher than a melting point of the solder. It is comprised, The said thermocompression bonding is performed at the temperature which does not exceed melting | fusing point of the said electroconductive layer in the said other main surface.
本発明に係る太陽電池モジュールの製造方法では、熱圧着によって導電性層は溶融させずに、半田を溶融させることが可能である。 In the method for manufacturing a solar cell module according to the present invention, it is possible to melt the solder without melting the conductive layer by thermocompression bonding.
本発明に係る太陽電池モジュールでは、導電性部材の表面が導電性層に覆われた導電性接続部材と、表面上に電極を有する太陽電池セルを有し、前記導電性接続部材の一主面と前記電極とは半田中に接着剤が入り混じっている接着部材を介して接続され、前記導電性層は少なくとも前記一主面と対向する他の主面において、前記半田より融点が高いことを特徴とする。 In the solar cell module according to the present invention, the surface of the conductive member has a conductive connection member covered with a conductive layer, and a solar cell having an electrode on the surface, and one main surface of the conductive connection member And the electrode are connected via an adhesive member in which an adhesive is mixed in the solder, and the conductive layer has a melting point higher than that of the solder at least on the other main surface facing the one main surface. Features.
本発明に係る太陽電池モジュールでは、導電性層を溶融させずに、半田を溶融させて太陽電池セルと導電性接続部材との接続させること可能である。 In the solar cell module according to the present invention, it is possible to melt the solder and connect the solar cell and the conductive connecting member without melting the conductive layer.
本発明に係る太陽電池モジュールによれば、導電性接続部材の表面側の不均一なバリの発生が抑制される。 According to the solar cell module according to the present invention, the occurrence of uneven burrs on the surface side of the conductive connecting member is suppressed.
以下、本発明に係る太陽電池モジュール及びその製造方法の第1実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, a first embodiment of a solar cell module and a manufacturing method thereof according to the present invention will be described in detail with reference to the drawings.
はじめに、図1~図2を参照して、斯かる太陽電池モジュールを構成する太陽電池セルの構成について詳述する。図1(a)は太陽電池セル5の表面図を示し、図1(b)は太陽電池セル5の裏面図を示す。
First, referring to FIGS. 1 and 2, the configuration of the solar battery cells constituting such a solar battery module will be described in detail. FIG. 1A shows a front view of the
図1(a)を参照すると、表面側において、太陽電池セル5は反射防止膜18と表面側電極22とをこの順序で有する。
Referring to FIG. 1 (a), on the surface side, the
表面側電極22は、複数のフィンガー電極22aと、2本のバスバー電極22bとから構成される。
The
前記複数のフィンガー電極22aは、太陽電池セル5の表面上を略全域にわたって覆うように形成されている。それぞれのフィンガー電極22aは、幅狭の直線形状であって互いに平行に配置されている。例えば、フィンガー電極22aは、厚み10~30μm,幅50~200μmの細線状形状であって、互いに2mm間隔で配置される。
The plurality of
バスバー電極22bは、太陽電池セル5の表面上おいてフィンガー電極22aと直交して接続されるように構成される。例えば、バスバー電極22bは、厚み10~30μm,幅0.1~1.8mmの直線状形状となるように形成される。
The
このような表面側電極22は、スクリーン印刷法により銀ペーストが所定のパターンに印刷されるとともに焼成されて形成される。
Such a surface-
図1(b)を参照すると、裏面側において、太陽電池セル5は裏面側電極23を有する。
Referring to FIG. 1 (b), the
裏面側電極23は、金属膜電極23aと、2本のバスバー電極23bとから構成されている。
The back
金属膜電極23aは、スクリーン印刷法によりアルミニウムを含有するペーストが太陽電池セル5の裏面の略全域上に印刷されるとともに焼成されて形成される。
The
バスバー電極23bは、太陽電池セル5の裏面の金属膜電極23a上に形成される。例えば、バスバー電極23bは、厚み10~30μm,幅0.1~1.8mmの直線状形状となるように形成される。
The
次に、図2を参照して、太陽電池セル5の断面構成について詳述する。図2は、図1(a)のA-A’における断面図を示す。
Next, the cross-sectional configuration of the
太陽電池セル5は、p型多結晶シリコンの基板15と、該基板15の表面側に形成されるn型拡散層16と、反射防止膜18と、フィンガー電極22a(不図示)およびバスバー電極22bからなる表面側電極22と、半田層22cと、金属膜電極23aおよびバスバー電極23bからなる裏面側電極23と、半田層23cとを含んで構成される。
The
p型多結晶シリコン基板15は、例えば、約125mm角の略正方形の平面形状であって、厚み100μm~300μmである。なお、ここでは図示しないが、基板15は表面側に以下で説明するテクスチャー面を有する。
The p-type
表面側においては、太陽電池セル5は、p型多結晶シリコン基板15のテクスチャー構造を有する表面上にn型拡散層16、反射防止膜18及び表面側電極22を有する。
On the surface side, the
n型拡散層16は基板15の表面側にリンが熱拡散されて形成される。n型拡散層16上には、反射防止膜18が一部を除く略全面に形成されるとともに、反射防止膜18の形成されていない領域に表面側電極22が形成される。
The n-
バスバー電極22bには、その表面を覆うように厚み5~50μmのSn-Pbの半田層22cが形成されている。また、図示はしないが、各フィンガー電極22aの表面上にも、半田層22cが被覆されている。ここで、半田層22cに用いたSn-Pbの融点は約180℃程度である。
The
同様に、裏面側において、太陽電池セル5は、p型多結晶シリコン基板15のテクスチャー構造を有する裏面上に金属膜電極23a及びバスバー電極23bを有する。そして、バスバー電極23bにもその表面を覆うように厚み約5~50μm程度のSn-Pbの半田層23cが形成されている。
Similarly, on the back surface side, the
次に、図3を参照して、複数の太陽電池セル5を電気的に接続する工程について説明する。図3(a)は2枚の太陽電池セル5が接続された状態の平面図、図3(b)は図3(a)のA-A’における断面図であって導電性接続部材6とバスバー電極22bとの接続工程の前後を示す。
Next, with reference to FIG. 3, the process of electrically connecting a plurality of
図3に示すように、導電性接続部材6は、一の太陽電池セル5の表面側におけるバスバー電極22bと樹脂を含有してなる接着剤24により接続されている。
As shown in FIG. 3, the
また、ここでは図示されないが、導電性接続部材6は、この一の太陽電池セル5と隣り合う他の太陽電池セル5の裏面側のバスバー電極23bと接着剤24を介して接続される。例えば、接着剤24はエポキシ系熱硬化型の接着剤であって、約130℃のガラス転移温度を有し、約200℃以上で20秒以上熱圧着すると硬化する。ここで、接着剤は、バスバー電極22b,23b上又は導電性接続部材6上に塗布形成したものでもよく、又フィルム形状のものでもよい。
Although not shown here, the conductive connecting
ここで、図3(b)を参照して、バスバー電極22bと接着剤24との接続工程について詳述する。図3(b)において、上図はバスバー電極22bと接着剤24との接続前の工程段階を示し、下図はバスバー電極22bと接着剤24との接続後の工程段階を示す。
Here, with reference to FIG.3 (b), the connection process of the bus-
はじめに、導電性接続部材6の断面構造について詳述すると、導電性接続部材6は、平板銅電線6a,導電性層として第1の導電性層6b及び第2の導電性層6cから構成されている。
First, the cross-sectional structure of the conductive connecting
平板銅電線6aは幅0.5mm~2mm,厚み100~300μm程度の平板形状の銅線である。第1の導電性層6bは、例えばメッキ法によって厚み5~50μmのSn-Ag-Cuが平板銅電線6aの一主面である裏面側を囲むように被覆される。第2の導電性層6cは、例えばメッキ法によって厚み5~50μmのAgが平板銅電線6aの他の主面である表面側を囲むように被覆される。この場合、第1の導電性層6bの融点は約220℃程度であり、第2の導電性層6cの融点は約962℃程度である。
The
このように、第2の導電性層6cは、半田層22cよりも融点が高くなるように構成され、半田層22cは接着剤24のガラス転移温度より高く構成されている。
Thus, the second
図3(b)上図に示すように、接着剤24は導電性接続部材6とバスバー電極22bとの間、例えばバスバー電極22b上に配置され、導電性接続部材6は接着剤24を介してバスバー電極22b上に配置される。そして、図3(b)下図に示すように、導電性接続部材6はバスバー電極22bに対して約2MPaで加圧しながら約200℃で20秒加熱されて熱圧着される。なお、バスバー電極22b上に配置する代わりに、接着剤24を導電性接続部材6上に予め設けるようにしてもよい。
3B, the adhesive 24 is disposed between the
ここで、図示しない熱圧着装置の熱圧着部により、導電性接続部材6が導電性接続部材6の長手方向の表面側の略全面に対して200℃で熱圧着されている。これによって、この熱圧着工程と該工程に続く降温工程の間で、導電性接続部材6とバスバー電極22bとは、半田層22cが溶融・固化すると共に接着剤24が硬化し、これらによる接着よって接続される。
Here, the
導電性接続部材6の表面側に半田層22cより高融点の第2の導電性層6cを被覆している。そうすると、半田層22cの融点を超え、且つ第2の導電性層6cの融点を超えない温度で熱圧着できるので、熱圧着部に第2の導電性層6cが付着しない。その結果、導電性接続部材6の表面側のバリの発生が抑制できる。
The surface side of the conductive connecting
ここで、図4を参照して、導電性接続部材6とバスバー電極22bとの接続形態について詳述する。図4は図3(a)のA-A’における断面図であって導電性接続部材6とバスバー電極22bとの接続箇所を拡大したものである。
Here, with reference to FIG. 4, the connection form of the
半田層22cは、半田層22cの表面において不規則のミクロンオーダーの微小凸部22dを有するとともに、導電性接続部材6の短手方向の中央部において第1の導電性層6bと溶融する。例えば、微小凸部22dは平均厚さ約2μm~3μm程度で形成される。
The
半田層22cは金属材料を包含するため第1の導電性層6bと溶融しやすい。このため、半田層22cは、導電性接続部材6と強固に接続される。
Since the
また、接着剤24は微小凸部22dに入り込んで硬化する。これにより、導電性接続部材6と接着剤24との接触面積が増え、導電性接続部材6と接着剤24との接着強度がより向上する。
Also, the adhesive 24 enters the minute
ここで、熱圧着工程において、接着剤24はそのガラス転移温度を超えた温度で熱圧着されて流動する。このため、接着剤24は導電性接続部材6の短手方向の幅を超えて分布する。そうすると、接着剤24は導電性接続部材6の短手方向の側面にフィレットを形成して硬化する。これにより、熱圧着工程において半田層22cが溶融しても、その成分は、接着剤24が障壁となってバスバー電極22bの短手方向の幅を超えた流出が抑制される。また、接着剤24は、バスバー電極22bの短手方向の幅を超えて導電性接続部材6及び反射防止膜18と密着する。このため、導電性接続部材6及び反射防止膜18と接着剤24との接触面積が増大する。この結果、導電性接続部材6に対する接着剤24が硬化してなるフィレットにより、導電性接続部材6とバスバー電極22bとの接着強度も向上する。
Here, in the thermocompression bonding step, the adhesive 24 is thermocompression bonded and flows at a temperature exceeding its glass transition temperature. For this reason, the adhesive 24 is distributed beyond the width of the conductive connecting
図5を参照して、半田層6bと接着剤24が硬化してなる樹脂との接着状態を説明するための上面構成について詳述する。図5は図3(a)における太陽電池セル5から導電性接続部材6を剥がした時の接着部材の上面図を示す。
Referring to FIG. 5, the upper surface configuration for explaining the bonding state between the
接着剤24が硬化してなる熱硬化型樹脂24aは、導電性接続部材6の短手方向の中央付近において溶融・固化した半田層22c中に大きさ、形状も不均一で無秩序に分散している。このように、硬化した樹脂は導電性接続部材6と溶融・固化した半田層22c中に入り混じった接着部材24aが導電性接続部材6の短手方向の中央付近に存在することにより、導電性接続部材6とバスバー電極22bとの接着強度がさらに向上する。
The
以上の工程によって、太陽電池セル5は、導電性接続部材6を介して他の太陽電池セル5と電気的に接続される。その後、周知のモジュール化工程を経て、図7に示すような太陽電池モジュールが完成する。
Through the above steps, the
以上、本実施形態に係る太陽電池モジュールの製造方法では、半田層22cの融点及び接着剤24のガラス転移温度より高く、且つ第2の導電性層6cの融点を超えない温度にて、導電性接続部材6はバスバー電極22b上の接着剤24に熱圧着される。これにより第2の導電性層6cは溶融せずに、半田層22cが溶融する。そうすると、導電性接続部材6の表面側の第2の導電性層6cが溶融しないので、導電性接続部材6の表面側においてバリの発生が抑制できる。さらに本実施形態では、受光面となる導電性接続部材6の表面側に高反射性金属であるAgを第2の導電性層6cとして用いているので、光入射に対する反射率が上がる。そうすると、反射した光を利用して太陽電池モジュール1の出力を向上させることが可能である。
As described above, in the method for manufacturing the solar cell module according to this embodiment, the conductive layer is conductive at a temperature higher than the melting point of the
加えて、熱圧着による半田層22cの溶融に基づいて微小凸部22dが形成される。微小凸部22dは、接着剤24との接着面積増大に寄与し、導電性接続部材6とバスバー電極22bとの接着強度増大に寄与することになる。また、導電性接続部材6と溶融された半田層22c中に接着剤24が分布し、接着剤24が半田層22c中に入り混じる。そうすると、接着剤24が半田層22c中に入り混じることにより、導電性接続部材6とバスバー電極22bとの接着強度増大にさらに寄与することになる。
In addition, the
上述したのは、主に太陽電池セル5の表面側のバスバー電極22bと導電性接続部材6との接続に関して説明したが、バスバー電極23bと導電性接続部材6の接続においても、第1の導電性層6bは半田層22cよりも融点が高く、半田層22cは接着剤24のガラス転移温度より高く構成されており、裏面側のバスバー電極23bにおいても同様の接続をすることで、同様の効果を奏する。
The above description is mainly about the connection between the
本実施形態では、平板銅電線6aにSn-Ag-Cuからなる第1の導電性層6bとAgからなる第2の導電性層6cとする構成としたが、平板銅電線6aの表面、裏面及び長手方向の側面を覆うようにSn-Ag-Cuからなる導電性層を設け、表面又は裏面の該導電性層上にAgからなる導電性層を設けるようにしてもよい。この場合も、上記各導電性層は半田層22cよりも融点が高く、半田層22cは接着剤24のガラス転移温度より高く構成される。
In the present embodiment, the
本発明の別の実施形態について、図6を参照して、以下に詳述する。 Another embodiment of the present invention will be described in detail below with reference to FIG.
図6は別の実施形態の導電性接続部材とバスバー電極との接続箇所の表面側を拡大したものである。 FIG. 6 is an enlarged view of the surface side of the connection portion between the conductive connection member and the bus bar electrode of another embodiment.
本実施形態は、平板銅電線6aの表面、裏面及び長手方向の側面が異なる材料からなる第1、第2の導電性層で被覆された第1実施形態の構成でなく、平板銅電線6aの表面、裏面及び長手方向の側面が、例えばメッキ法によって厚み5~50μmの鉛フリー半田であるSn-Ag-Cuからなる同一材料からなる導電性層60bで覆われている点であり、その他は、第1実施形態と同様であり、同様の箇所には同一番号を付している。
This embodiment is not the structure of 1st Embodiment coat | covered with the 1st, 2nd electroconductive layer which consists of a material from which the surface, back surface, and longitudinal side of flat copper
本実施形態でも上記導電性層60bは半田層22cよりも融点が高く、半田層22cは接着剤24のガラス転移温度より高く構成されており、第1実施形態と同様の効果がある。
Also in this embodiment, the
なお、上記実施例は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 In addition, the said Example is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.
上記各実施形態では、表面側電極22および裏面側電極23に半田層22c、23cとしてSn-Pb合金の導電性層を使用し、導電性接続部材6の裏面側に第1の導電性層6bとしてSn-Ag-Cu合金を使用し、表面側に第2の導電性層6cとしてAgを使用した。しかし、本発明はこれに限定されるものではない。他にも表面側電極22および裏面側電極23の半田層22c、23cとしてSn-Ag-In合金、Sn-Pb合金等の種々の導電性層を使用でき、導電性接続部材の裏面側および表面側にはPb-Au合金、鉛フリー半田であるAu-Si合金、Au-Ge合金、Au-Sn合金、Sn-Cu合金、Sn-Ag合金、Sn-Au合金等の種々の導電性材料を使用できる。また、導電性接続部材6の裏面側及び表面側に同じ種類の導電性材料を用いても勿論良く、導電性接続部材6の表面側のみに導電性材料を被覆する形態でも良い。
In each of the above embodiments, the conductive layer of Sn—Pb alloy is used as the solder layers 22 c and 23 c for the front
上記各実施形態において導電性接続部材6は例えば、平板銅電線6aの表面側に所定の規則的な凹凸を備えていてもよい。
In each of the embodiments described above, the
また、導電性接続部材6と太陽電池セル5との接続方法の一つにバスバー電極22bに被覆された半田層22cの溶融・固化を用いたが、バスバー電極22bに半田層22cを被覆する形態以外に、半田をバスバー電極22bに塗布する形態でも同様の効果を奏する。また、導電性接続部材6のバスバー電極22bと対向している導電性層の一部又は全部が溶融・固化する形態でもよい。
Further, as one of the connection methods between the
また、前記樹脂からなる接着剤24として、絶縁性接着剤を使用してもよく、また導電性接着剤を使用してもよい。また、前記樹脂としては、エポキシ系熱硬化型の樹脂に限らず、それ以外の熱硬化型樹脂が適宜使用可能である。 Further, as the adhesive 24 made of the resin, an insulating adhesive may be used, or a conductive adhesive may be used. The resin is not limited to an epoxy thermosetting resin, and other thermosetting resins can be used as appropriate.
また、前記樹脂からなる接着剤24にNi、Ag等の導電性粒子等を含んでもよく、シリカなどの非導電性粒子等の非導電性材料が含まれてもよく、これらの両方が含まれてもよく、またこれら両方を含まなくてもよい。 Further, the adhesive 24 made of the resin may contain conductive particles such as Ni and Ag, and may contain non-conductive materials such as non-conductive particles such as silica, both of which are included. These may be included, or both of them may not be included.
本発明は、図2に示した太陽電池セルの構造に限定されず、HIT(Heterojunctionwith Intrinsic Thin-layer)太陽電池セル・単結晶太陽電池セル等の種々の太陽電池セルに適宜利用可能である。 The present invention is not limited to the structure of the solar cell shown in FIG. 2, and can be appropriately used for various solar cells such as a HIT (Heterojunction with “Intrinsic” Thin-layer) solar cell and a single crystal solar cell.
1 太陽電池モジュール
5 太陽電池セル
6 導電性接続部材
6a 平板銅電線
6b 第1の導電性層
6c 第2の導電性層
22 表面側電極
22a フィンガー電極
22b バスバー電極
22c 半田層
22d 微小凹凸
23 裏面側電極
23a 金属膜電極
23b バスバー電極
23c 半田層
DESCRIPTION OF
Claims (14)
前記導電性接続部材の一主面と前記電極との間に接着剤及び半田を配置し、
前記導電性接続部材を前記電極に対して熱圧着して前記半田を溶融させるとともに前記接着剤を硬化させて、前記導電性接続部材と前記電極とを接続する工程を含み、
前記導電性接続部材は、少なくとも前記一主面と対向する他の主面における前記導電性層の融点が前記半田の融点より高くなるように構成され、
前記熱圧着は、前記他の主面における前記導電性層の融点を超えない温度で行われることを特徴とする太陽電池モジュールの製造方法。 Preparing a conductive connecting member in which the surface of the conductive member is covered with a conductive layer, and a solar battery cell having an electrode on the surface;
Placing an adhesive and solder between one main surface of the conductive connecting member and the electrode;
Including thermally connecting the conductive connecting member to the electrode to melt the solder and curing the adhesive to connect the conductive connecting member and the electrode;
The conductive connecting member is configured such that the melting point of the conductive layer on at least the other main surface facing the one main surface is higher than the melting point of the solder,
The said thermocompression bonding is performed at the temperature which does not exceed melting | fusing point of the said electroconductive layer in said other main surface, The manufacturing method of the solar cell module characterized by the above-mentioned.
前記導電性接続部材の一主面と前記電極とは半田の中に接着剤が入り混じっている接着部材を介して接続され、
前記導電性層は少なくとも前記一主面と対向する他の主面において、前記半田より融点が高いことを特徴とする太陽電池モジュール。 A conductive connecting member in which the surface of the conductive member is covered with a conductive layer, and a solar battery cell having an electrode on the surface;
One main surface of the conductive connection member and the electrode are connected via an adhesive member in which an adhesive is mixed in solder,
The solar cell module according to claim 1, wherein the conductive layer has a melting point higher than that of the solder on at least another main surface facing the one main surface.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-125252 | 2010-05-31 | ||
JP2010125252 | 2010-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011152309A1 true WO2011152309A1 (en) | 2011-12-08 |
Family
ID=45066677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/062224 WO2011152309A1 (en) | 2010-05-31 | 2011-05-27 | Solar cell module and method for manufacturing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011152309A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012141073A1 (en) * | 2011-04-11 | 2012-10-18 | 三菱電機株式会社 | Solar cell module and method for manufacturing same |
JP2013152979A (en) * | 2012-01-24 | 2013-08-08 | Mitsubishi Electric Corp | Solar cell module and manufacturing method therefor |
JP2013183114A (en) * | 2012-03-05 | 2013-09-12 | Sharp Corp | Manufacturing method and manufacturing apparatus of solar cell, and solar cell |
WO2014132282A1 (en) * | 2013-02-26 | 2014-09-04 | 三洋電機株式会社 | Solar cell module |
EP2624310A4 (en) * | 2010-09-29 | 2015-06-17 | Hitachi Chemical Co Ltd | SOLAR CELL MODULE |
US9484479B2 (en) | 2011-11-09 | 2016-11-01 | Mitsubishi Electric Corporation | Solar cell module and manufacturing method thereof |
US20170104124A1 (en) * | 2015-10-12 | 2017-04-13 | Lg Electronics Inc. | Apparatus and method for attaching interconnector of solar cell panel |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005317904A (en) * | 2003-11-27 | 2005-11-10 | Kyocera Corp | Solar cell module |
JP2009054981A (en) * | 2007-08-02 | 2009-03-12 | Sanyo Electric Co Ltd | Solar cell module and manufacturing method thereof |
-
2011
- 2011-05-27 WO PCT/JP2011/062224 patent/WO2011152309A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005317904A (en) * | 2003-11-27 | 2005-11-10 | Kyocera Corp | Solar cell module |
JP2009054981A (en) * | 2007-08-02 | 2009-03-12 | Sanyo Electric Co Ltd | Solar cell module and manufacturing method thereof |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2624310A4 (en) * | 2010-09-29 | 2015-06-17 | Hitachi Chemical Co Ltd | SOLAR CELL MODULE |
WO2012141073A1 (en) * | 2011-04-11 | 2012-10-18 | 三菱電機株式会社 | Solar cell module and method for manufacturing same |
US9484479B2 (en) | 2011-11-09 | 2016-11-01 | Mitsubishi Electric Corporation | Solar cell module and manufacturing method thereof |
JP2013152979A (en) * | 2012-01-24 | 2013-08-08 | Mitsubishi Electric Corp | Solar cell module and manufacturing method therefor |
JP2013183114A (en) * | 2012-03-05 | 2013-09-12 | Sharp Corp | Manufacturing method and manufacturing apparatus of solar cell, and solar cell |
WO2014132282A1 (en) * | 2013-02-26 | 2014-09-04 | 三洋電機株式会社 | Solar cell module |
JPWO2014132282A1 (en) * | 2013-02-26 | 2017-02-02 | パナソニックIpマネジメント株式会社 | Solar cell module |
US20170104124A1 (en) * | 2015-10-12 | 2017-04-13 | Lg Electronics Inc. | Apparatus and method for attaching interconnector of solar cell panel |
US10290761B2 (en) * | 2015-10-12 | 2019-05-14 | Lg Electronics Inc. | Apparatus and method for attaching interconnector of solar cell panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011152309A1 (en) | Solar cell module and method for manufacturing same | |
JP4024161B2 (en) | Manufacturing method of solar cell module | |
JP5738425B2 (en) | Solar cell module and manufacturing method thereof | |
JP3123842U (en) | Solar cell module | |
JP2007200970A (en) | Photovoltaic module | |
CN104269462B (en) | Back contact solar cell back sheet without main grids, back contact solar cell assembly without main grids and manufacturing technology | |
CN103403882B (en) | Solar module and manufacture method thereof | |
JP2011204955A (en) | Solar cell, solar cell module, electronic component, and solar cell manufacturing method | |
CN103262254B (en) | Solar module and manufacture method thereof | |
US9437765B2 (en) | Solar cell module and solar cell module manufacturing method | |
WO2011152372A1 (en) | Solar cell module and method for manufacturing same | |
JP6249304B2 (en) | Solar cell module | |
CN118156348A (en) | Device and method for shingling solar cells | |
CN116581194A (en) | Preparation method of photovoltaic module and photovoltaic module | |
WO2014020674A1 (en) | Method for producing solar cell module | |
JP4219238B2 (en) | Photovoltaic device and manufacturing method thereof | |
JP6455099B2 (en) | Solar cell unit and method for manufacturing solar cell unit | |
TW202341506A (en) | An electrode assembly | |
JP5934984B2 (en) | Solar cell manufacturing method and solar cell | |
CN119486342A (en) | Bus bar for full screen assembly and manufacturing method thereof | |
JP6083685B2 (en) | Solar cell module and method for manufacturing solar cell module | |
JP5182746B2 (en) | Power generation array for photoelectric conversion device, photoelectric conversion device, and manufacturing method thereof | |
JP5099322B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
JP2019091744A (en) | Solar cell module and manufacturing method thereof | |
JP2008124261A (en) | Photoelectric converting device, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11789712 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11789712 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |