WO2011145283A1 - 窒化物半導体発光素子および窒化物半導体発光素子の製造方法 - Google Patents
窒化物半導体発光素子および窒化物半導体発光素子の製造方法 Download PDFInfo
- Publication number
- WO2011145283A1 WO2011145283A1 PCT/JP2011/002535 JP2011002535W WO2011145283A1 WO 2011145283 A1 WO2011145283 A1 WO 2011145283A1 JP 2011002535 W JP2011002535 W JP 2011002535W WO 2011145283 A1 WO2011145283 A1 WO 2011145283A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitride semiconductor
- light emitting
- substrate
- semiconductor layer
- layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 861
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 581
- 238000000034 method Methods 0.000 title claims description 87
- 238000004519 manufacturing process Methods 0.000 title claims description 51
- 239000000758 substrate Substances 0.000 claims abstract description 353
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000013078 crystal Substances 0.000 claims description 57
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 46
- 229910052710 silicon Inorganic materials 0.000 claims description 45
- 239000010703 silicon Substances 0.000 claims description 45
- 229910052594 sapphire Inorganic materials 0.000 claims description 40
- 239000010980 sapphire Substances 0.000 claims description 40
- 230000000737 periodic effect Effects 0.000 claims description 26
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 78
- 229910002601 GaN Inorganic materials 0.000 description 77
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 30
- 238000000206 photolithography Methods 0.000 description 29
- 229910052782 aluminium Inorganic materials 0.000 description 28
- 239000010931 gold Substances 0.000 description 28
- 229910052751 metal Inorganic materials 0.000 description 28
- 239000002184 metal Substances 0.000 description 28
- 239000010936 titanium Substances 0.000 description 28
- 238000001312 dry etching Methods 0.000 description 26
- 229910052759 nickel Inorganic materials 0.000 description 26
- 229910052719 titanium Inorganic materials 0.000 description 26
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 25
- 229910052737 gold Inorganic materials 0.000 description 24
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 20
- 229910004298 SiO 2 Inorganic materials 0.000 description 17
- 239000011777 magnesium Substances 0.000 description 15
- 238000001771 vacuum deposition Methods 0.000 description 15
- 238000000926 separation method Methods 0.000 description 13
- 238000001039 wet etching Methods 0.000 description 13
- 238000005530 etching Methods 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 229910052814 silicon oxide Inorganic materials 0.000 description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 8
- 238000000295 emission spectrum Methods 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000009877 rendering Methods 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/82—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/021—Silicon based substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3202—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
- H01S5/3203—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth on non-planar substrates to create thickness or compositional variations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/32308—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
- H01S5/32341—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2301/00—Functional characteristics
- H01S2301/17—Semiconductor lasers comprising special layers
- H01S2301/173—The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/0207—Substrates having a special shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
Definitions
- the present invention relates to a nitride semiconductor light emitting device and a method for manufacturing a nitride semiconductor light emitting device.
- a white LED light source using a light emitting diode has been actively studied as a white light source such as an illumination light source of a lighting fixture or a backlight light source of a liquid crystal display device.
- a white LED light source for example, there is one constituted by a blue LED that emits blue light and a phosphor that converts blue light of the blue LED into yellow light.
- blue LEDs in particular, nitride semiconductor light emitting devices using wide band gap semiconductors such as nitride semiconductors have been actively developed.
- a light emitting layer which is a layer in which electrons and holes recombine and emit light, is on a crystal plane called a (0001) plane (c plane, polar plane) of a nitride semiconductor crystal. It is common to be provided. However, when a light emitting layer is provided on the c-plane, polarization occurs in the light emitting layer due to the difference in the lattice constant of the material used. For this reason, an internal electric field called a piezo electric field is generated in the light emitting layer, and electrons and holes are spatially separated, resulting in a problem that the light emission efficiency is lowered.
- FIG. 18 is a cross-sectional view schematically showing each step in the conventional method for manufacturing a nitride semiconductor light emitting device.
- a silicon oxide film or a silicon nitride film is formed on the silicon substrate 1 which is 7 ° off from the (100) plane of silicon, and photolithography or dry etching is used.
- a mask 52 having a stripe-shaped opening is formed.
- a mask 53 made of a silicon oxide film or a silicon nitride film is formed on one of the two inclined surfaces of the convex portion (concave portion) by sputtering or vacuum deposition. Cover.
- nitride semiconductor 2 when a nitride semiconductor is crystal-grown on the silicon substrate 1 by metal organic chemical vapor deposition (MOCVD), masks 52 and 53 are formed.
- the nitride semiconductor 2 crystal grows only from the (111) facet surface 61 of silicon, which is an unfinished surface, and the (1-101) facet surface 70 of the nitride semiconductor 2 appears in the growth direction.
- the (1-101) facet plane 70 is the (1-101) plane of the nitride semiconductor 2 in a continuous film state.
- a conventional nitride semiconductor light-emitting device can be manufactured by providing an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer on the nitride semiconductor crystal thus obtained. it can.
- the etching rate of the surface other than the Si (111) surface is high in the alkali wet etching for forming the concavo-convex structure on the silicon substrate. For this reason, the concavo-convex structure cannot be precisely formed on the silicon substrate, and there is a problem that it is difficult to form a nitride semiconductor with good in-plane uniformity.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a nitride semiconductor light emitting device having a nitride semiconductor with high crack uniformity and high in-plane uniformity.
- an aspect of the nitride semiconductor light emitting device includes a concavo-convex substrate having a concavo-convex structure provided with a concave portion, and a first conductivity type first provided on the concavo-convex structure.
- a material constituting the bottom of the recess has a thermal expansion coefficient larger than that of the first nitride semiconductor layer.
- the uneven substrate includes a first substrate made of silicon, an insulating layer provided on the first substrate, and an insulating layer provided on the insulating layer.
- the depth of the concave portion of the second substrate can be controlled by the thickness of the second substrate. Therefore, the contact area between the second substrate and the first nitride semiconductor layer can be reduced by controlling the thickness of the second substrate so that the depth of the recess becomes shallow. As a result, the stress applied to the first nitride semiconductor layer can be further reduced, so that the occurrence of cracks in the first nitride semiconductor layer can be further suppressed.
- the insulating layer can function as an etching stop layer when the concavo-convex structure is formed on the second substrate.
- a concavo-convex structure can be formed on the second substrate with high in-plane uniformity. Therefore, each layer of the nitride semiconductor layer formed on the concavo-convex structure, particularly the first nitride semiconductor layer immediately above the concavo-convex structure. Can be formed with high in-plane uniformity.
- the surface orientation of the side surface of the recess is preferably a (111) plane of silicon.
- the (0001) plane of gallium nitride can be grown on the (111) plane of silicon.
- the plane orientation of the main surface of the second substrate is a plane off by 7 ° from the (100) plane of silicon, the (311) plane of silicon, silicon (110) plane of silicon or (112) plane of silicon is preferable.
- the main surfaces of the first conductivity type nitride semiconductor layer are the (1-101) plane, (11-22) plane, (1-100) plane, and (11-20) plane of gallium nitride, respectively. Therefore, the piezo electric field generated in the light emitting layer can be reduced. As a result, a nitride semiconductor light emitting device with high luminous efficiency can be realized.
- an upper surface of the first nitride semiconductor layer is a flat surface.
- the semiconductor layer formed over the flat surface can also be a flat surface, an uneven pattern or the like for improving light extraction efficiency can be easily formed. As a result, a nitride semiconductor light emitting device with high luminous efficiency can be realized.
- the plane orientation of the main surface of the first substrate is a (100) plane of silicon.
- the manufactured nitride semiconductor light emitting device can be easily cleaved.
- the concavo-convex substrate includes a first region having the concavo-convex structure and a second region having a flat surface, and the first nitride semiconductor.
- a first nitride semiconductor multilayer structure including a layer, the first light emitting layer, and the second nitride semiconductor layer is formed on the first region, and further on the second region,
- a second nitride semiconductor multilayer structure including the first conductivity type third nitride semiconductor layer, the second light emitting layer, and the second conductivity type fourth nitride semiconductor layer is formed.
- the main surface of the first nitride semiconductor multilayer structure and the main surface of the second nitride semiconductor multilayer structure have different plane orientations, and more than light emitted from the first light emitting layer The wavelength of light emitted from the second light emitting layer is longer.
- nitride semiconductor layers having different plane orientations can be grown flat in parallel with the main surface of the concavo-convex substrate.
- the first region and the second region are separated by an insulating layer.
- nitride semiconductor light emitting device having high luminous efficiency, a narrow emission point interval, a plurality of different emission wavelength peaks, and capable of independently driving emission of each wavelength.
- the first region and the second region are made of Si single crystal.
- nitride semiconductor light emitting device having high luminous efficiency, a narrow emission point interval, a plurality of different emission wavelength peaks, and capable of independently driving emission of each wavelength.
- the convex portion of the concave-convex structure in the first region has at least two side surfaces, and the surface orientation of one side surface of the convex portion is ( 111) surface, and the other side surface of the convex portion is preferably covered with a predetermined mask.
- the first nitride semiconductor layer grows flat, and it becomes possible to easily produce fine electrodes and uneven patterns by a general semiconductor process. Accordingly, it is possible to realize a nitride semiconductor light emitting device having high luminous efficiency, a narrow emission point interval, a plurality of different emission wavelength peaks, and capable of independently driving emission of each wavelength.
- the first region and the second region may be a sapphire substrate having a (11-20) plane as a main surface.
- a concavo-convex structure is formed in at least one of the second nitride semiconductor layer and the fourth nitride semiconductor layer.
- a light emitting surface having a concavo-convex structure can be formed, so that light can be efficiently extracted from the first nitride semiconductor layer or the second nitride semiconductor layer.
- a fifth nitride semiconductor layer of the first conductivity type, a third light emitting layer, and the second conductivity are provided on the uneven substrate.
- a third nitride semiconductor multilayer structure including a sixth nitride semiconductor layer of the type, and a center wavelength of light emitted from the third light emitting layer is the first light emitting layer and the second light emitting layer. It is preferable that the center wavelength of the light emitted from the light emitting layer is different.
- the uneven structure of the uneven substrate is preferably a periodic structure.
- a first step of forming a concavo-convex substrate having a concavo-convex structure provided with a concave portion, and a first conductive type on the concavo-convex structure A second step of forming a first nitride semiconductor layer; a third step of forming a first light emitting layer on the first nitride semiconductor layer; and the first step on the light emitting layer.
- the first step comprises: an insulating layer that is a material constituting the bottom of the recess on the first substrate made of silicon;
- the step of forming the second substrate made of silicon and the surface orientation of the main surface of the second substrate differ from each other by removing a part of the second substrate so that the insulating layer is exposed. Forming the recess having a side surface in a plane orientation, and forming the first nitride semiconductor layer on the side surface of the recess in the second step.
- the insulating layer can function as an etching stop layer when the uneven structure is formed on the second substrate, the nitride semiconductor layer on the uneven structure can be formed with high in-plane uniformity.
- the surface orientation of the side surface of the recess is preferably a (111) plane of silicon.
- the (0001) plane of gallium nitride can be grown on the (111) plane of silicon.
- a step of bonding a third substrate to the second nitride semiconductor layer, the first substrate, the insulating layer, and the first And removing the second substrate is also possible.
- the first nitride semiconductor layer having an uneven surface can be formed on the third substrate.
- a nitride semiconductor light emitting device with high luminous efficiency can be realized.
- an Si layer having a surface orientation different from the (111) plane is formed on an insulating layer on a first substrate made of Si single crystal.
- a step of forming a second substrate made of a single crystal, and a convex portion having a first side surface made of a (111) plane by removing a part of the second substrate so that the insulating layer is exposed And a step of covering a second side surface different from the first side surface among the side surfaces of the convex portion between the first step and the second step.
- nitride semiconductor layers are formed on two substrates having different plane orientations of the main surface, so that nitride semiconductor layers having different plane orientations are grown flat in parallel to the main surface of the substrate. Can do. Thereby, a fine electrode and an uneven
- a nitride semiconductor layer having a concavo-convex surface can be formed on the third substrate, a nitride semiconductor light emitting device with high luminous efficiency can be manufactured.
- the first step includes (0001) in a partial region on a sapphire substrate having a (11-20) plane as a main surface. ) Forming the concavo-convex structure having a side surface comprising a surface, and further forming a third nitride semiconductor layer of the first conductivity type on the main surface of the sapphire substrate; Forming a second light emitting layer on the second nitride semiconductor layer, and forming a second nitride semiconductor layer of the second conductivity type on the second light emitting layer.
- nitride semiconductor layers having different plane orientations can be grown flat in parallel with the main surface of the sapphire substrate.
- a nitride semiconductor layer having a concavo-convex surface can be formed on the third substrate, a nitride semiconductor light emitting device with high luminous efficiency can be manufactured.
- the occurrence of cracks in the nitride semiconductor layer can be suppressed.
- a nitride semiconductor layer capable of suppressing the generation of cracks can be formed.
- FIG. 1 is a cross-sectional view showing the structure of a nitride semiconductor light emitting device according to Embodiment 1 of the present invention.
- FIG. 2 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 1 of the present invention.
- FIG. 3 is a cross-sectional view showing the structure of the nitride semiconductor light emitting device according to the second embodiment of the present invention.
- FIG. 4 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 2 of the present invention.
- FIG. 1 is a cross-sectional view showing the structure of a nitride semiconductor light emitting device according to Embodiment 1 of the present invention.
- FIG. 2 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emit
- FIG. 5A is a cross-sectional view showing the structure of a nitride semiconductor light emitting device according to Embodiment 3 of the present invention.
- FIG. 5B is a perspective view showing a structure of a nitride semiconductor light emitting device according to Embodiment 3 of the present invention.
- FIG. 6 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 3 of the present invention.
- FIG. 7 is a sectional view showing the structure of a nitride semiconductor light emitting device according to the fourth embodiment of the present invention.
- FIG. 8 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 4 of the present invention.
- FIG. 9A is a cross-sectional view showing the structure of the nitride semiconductor light-emitting device according to embodiment 5 of the present invention.
- FIG. 9B is a perspective view showing the structure of the nitride semiconductor light-emitting element according to Embodiment 5 of the present invention.
- FIG. 10 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 5 of the present invention.
- FIG. 9A is a cross-sectional view showing the structure of the nitride semiconductor light-emitting device according to embodiment 5 of the present invention.
- FIG. 9B is a perspective view showing the structure of the nitride semiconductor light-emitting element according to Embodiment 5 of
- FIG. 11 is a sectional view showing the structure of a nitride semiconductor light emitting device according to the sixth embodiment of the present invention.
- FIG. 12 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 6 of the present invention.
- FIG. 13A is a cross-sectional view showing the structure of the nitride semiconductor light-emitting device according to embodiment 7 of the present invention.
- FIG. 13B is a perspective view showing the structure of the nitride semiconductor light-emitting device according to embodiment 7 of the present invention.
- FIG. 14 is a cross-sectional view showing the structure of the nitride semiconductor light emitting device according to the eighth embodiment of the present invention.
- FIG. 13A is a cross-sectional view showing the structure of the nitride semiconductor light-emitting device according to embodiment 7 of the present invention.
- FIG. 13B is a perspective view showing the structure
- FIG. 15A is a cross-sectional view showing a state (operation mode A) in which only the first nitride semiconductor multilayer structure is operated in the nitride semiconductor light-emitting device according to Embodiment 8 of the present invention.
- FIG. 15B shows a state where the first nitride semiconductor multilayer structure and the second nitride semiconductor multilayer structure are operated (operation mode B) in the nitride semiconductor light emitting device according to Embodiment 8 of the present invention. It is sectional drawing shown.
- FIG. 15C is a diagram showing an emission spectrum A (broken line) obtained in the operation mode A in FIG. 15A and an emission spectrum B (solid line) obtained in the operation mode B in FIG. 15B.
- FIG. 15C is a diagram showing an emission spectrum A (broken line) obtained in the operation mode A in FIG. 15A and an emission spectrum B (solid line) obtained in the operation mode B in FIG. 15B.
- FIG. 16 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 8 of the present invention.
- FIG. 17A is a diagram illustrating an application example of a nitride semiconductor light emitting device according to a comparative example.
- FIG. 17B is a view for explaining a first application example of the nitride semiconductor light emitting device according to the embodiment of the present invention.
- FIG. 17C is a view for explaining a second application example of the nitride semiconductor light emitting device according to the embodiment of the present invention.
- FIG. 18 is a cross-sectional view schematically showing the configuration of each step in the conventional method for manufacturing a nitride semiconductor light emitting device.
- FIG. 1 is a cross-sectional view showing the structure of a nitride semiconductor light emitting device according to Embodiment 1 of the present invention.
- a nitride semiconductor light emitting device 100 includes a first substrate 111 made of a single crystal of Si (silicon), an insulating layer 112, and a second substrate 113 made of a Si single crystal in this order.
- the n-type nitride semiconductor layer 121 (first nitride semiconductor layer) having the n-type as the first conductivity type, the light-emitting layer 122 (first light-emitting layer), and the p-type second
- the nitride semiconductor multilayer structure 120 including the p-type nitride semiconductor layer 123 (second nitride semiconductor layer) to be conductive is formed.
- the first substrate 111 is configured such that the plane orientation of the main surface is the (100) plane of silicon.
- a plurality of openings are formed in the second substrate 113 such that the surface of the insulating layer 112 is exposed to the nitride semiconductor multilayer structure 120.
- the second substrate 113 has a concavo-convex structure in which the opening is a concave portion and island-shaped convex portions formed by adjacent concave portions are formed.
- the recess provided in the concavo-convex structure is formed such that the bottom of the recess becomes the surface of the insulating layer 112. Therefore, in this embodiment, the material constituting the bottom of the recess is the insulating layer 112.
- one side surface 130 of both side surfaces of the convex portion (concave portion) in the concavo-convex structure of the second substrate 113 is exposed, and the other side surface is covered with the second mask 151. It has been broken.
- One side surface 130 of the convex portion (concave portion) is configured to be different from the surface orientation of the main surface of the second substrate 113, and is a Si (111) surface in this embodiment.
- the second mask 151 also covers the main surface (upper surface) of the second substrate 113, but the second mask 151 covers the main surface (upper surface) of the second substrate 113. It doesn't matter.
- the n-type nitride semiconductor layer 121 is in contact with the insulating layer 112 so as to fill a plurality of openings (concave portions) of the uneven structure in the second substrate 113. 112 and on the second substrate 113.
- the thermal expansion coefficient of the n-type nitride semiconductor layer 121 is configured to be smaller than the thermal expansion coefficient of the insulating layer 112. That is, the thermal expansion coefficient of the insulating layer 112 is larger than the thermal expansion coefficient of the n-type nitride semiconductor layer 121.
- the upper surface (side surface of the light emitting layer 122) of the n-type nitride semiconductor layer 121 is a flat surface.
- the nitride semiconductor multilayer structure 120 is provided with an opening that exposes the n-type nitride semiconductor layer 121, and an n-electrode (n-type) so as to be electrically connected to the n-type nitride semiconductor layer 121. Electrode) 143 is formed. A transparent electrode 141 and a p-electrode (p-type electrode) 142 are formed on the p-type nitride semiconductor layer 123 so as to be electrically connected to the p-type nitride semiconductor layer 123.
- the nitride semiconductor multilayer structure 120 exhibits p-type nitride semiconductor layer 123 made of GaN (gallium nitride) doped with, for example, Mg (magnesium), for example, blue light emission centered on a wavelength of 470 nm.
- the p-electrode 142 is formed of a multilayer film of metal such as Ti (titanium), Al (aluminum), Ni (nickel), Au (gold), and the like.
- the n-electrode 143 is composed of, for example, a multilayer film of a metal such as Ti, Al, Ni, and Au, and is exposed by selectively removing a part of the p-type nitride semiconductor layer 123 and the light emitting layer 122. It is formed in contact with the physical semiconductor layer 121.
- the transparent electrode 141 is made of a conductive material having a high transmittance with respect to a wavelength near 470 nm, such as ITO (indium tin oxide).
- the insulating layer 112 is preferably formed of SiO 2 (silicon oxide film). However, the insulating layer 112 is not limited to the silicon oxide film, and may have any thermal expansion coefficient larger than that of the n-type nitride semiconductor layer 121.
- the second mask 151 SiO 2, or, it is preferable to form a multilayer film made of a dielectric such as SiO 2 or TiO 2 (titanium oxide).
- the nitride semiconductor light emitting device 100 is configured such that the thermal expansion coefficient of the insulating layer 112 is larger than the thermal expansion coefficient of the n-type nitride semiconductor layer 121, the n-type nitride semiconductor layer The occurrence of cracks at 121 can be suppressed.
- the difference between the thermal expansion coefficients of the two materials Si thermal expansion coefficient: 2.6 ⁇ 10 ⁇ 6 / K, GaN thermal expansion coefficient: 5.6 ⁇ 10 ⁇ 6 / K
- tensile strain is generated in the GaN crystal, and cracks are likely to occur in the GaN crystal.
- a material having a larger thermal expansion coefficient than GaN for example, a SiO 2 (thermal expansion coefficient: 8 to 10 ⁇ 10 ⁇ 6 / K) layer is added between the Si substrate and GaN.
- the tensile strain due to the difference in thermal expansion coefficient with GaN can be relaxed. Thereby, since the stress added to GaN can be reduced, it can suppress that a crack generate
- a concavo-convex structure is formed by the second substrate 113.
- the depth of the concave portion in the concavo-convex structure provided on the second substrate 113 can be controlled by the thickness of the second substrate 113. Therefore, the contact area between the second substrate 113 and the n-type nitride semiconductor layer 121 can be reduced by controlling the thickness of the second substrate 113 so that the depth of the concave portion of the concavo-convex structure becomes shallow. it can.
- the stress applied to n-type nitride semiconductor layer 121 can be reduced, and the occurrence of cracks in n-type nitride semiconductor layer 121 can be suppressed.
- the concavo-convex substrate 110 has a laminated structure of the first substrate 111, the insulating layer 112, and the second substrate 113.
- the insulating layer 112 can be functioned as an etching stop layer with respect to the alkali wet etching by KOH or TMAH, for example.
- the concavo-convex structure of the second substrate 113 can be accurately formed with high in-plane uniformity, so that the nitride semiconductor multilayer structure 120 formed on the concavo-convex structure is also formed with high in-plane uniformity. can do.
- the n-type nitride semiconductor layer 121 formed immediately above the concavo-convex structure can be formed with high in-plane uniformity.
- the plane orientation of the main surface of the second substrate 113 is a plane off by 7 ° from the (100) plane of Si, the Si (113) plane, and the Si (112). ) Or Si (110) plane.
- the side surface 130 of the convex portion (concave portion) in the concavo-convex structure of the second substrate 113 is the Si (111) surface, so that the nitride semiconductor multilayer structure 120 is selectively formed on the Si (111) surface.
- the main surface of each layer of the nitride semiconductor multilayer structure 120 can be a nonpolar plane inclined with respect to the c-plane of gallium nitride.
- the main surface of the n-type nitride semiconductor layer 121 can be the (1-101) plane, the (11-22) plane, the (1-100) plane, and the (11-20) plane of gallium nitride, respectively.
- the main surface of each layer of the nitride semiconductor multilayer structure 120 is a nonpolar plane inclined with respect to the c-plane of gallium nitride, whereby the piezoelectric field in the light emitting layer 122 can be reduced. As a result, since the spatial separation of electrons and holes in the light emitting layer 122 can be improved, the light emission efficiency can be improved.
- the uneven structure provided on the second substrate 113 has a periodic structure as described above, so that the light emitted from the light emitting layer 122 is nitrided. It is possible to improve the efficiency (light extraction efficiency) of taking out the physical semiconductor multilayer structure 120 from the outside.
- the generation of cracks is suppressed, and a nitride semiconductor light emitting device with high in-plane uniformity and high luminous efficiency can be realized.
- FIG. 2 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 2 of the present invention.
- a first substrate 111 made of Si single crystal and a second substrate 113 made of Si single crystal are bonded via an insulating layer 112 made of, for example, SiO 2.
- the main surface of the second substrate 113 is configured to have a different plane orientation from the (111) plane of silicon.
- a first mask 150 made of a silicon oxide film or a silicon nitride film is formed on the second substrate 113 by a thermal oxidation method, a plasma CVD (Chemical Vapor Deposition) method, or the like. Thereafter, as shown in FIG. 2B, the first mask 150 is patterned using a photolithography method and a dry etching method so as to have a stripe-shaped opening extending in the direction perpendicular to the paper surface of FIG. Then, the second substrate 113 is exposed.
- the second substrate 113 is wet-etched by, for example, KOH or TMAH, and an opening penetrating the second substrate 113 is formed in the second substrate 113.
- the concave portion By forming the concave portion to form a concave-convex structure having island-shaped convex portions.
- the insulating layer 112 is exposed in the opening of the second substrate 113.
- the side surface 130 of the convex portion (concave portion) in the concavo-convex structure of the second substrate 113 is an inclined surface, and the surface orientation thereof is the Si (111) surface.
- the first mask 150 is removed by wet etching using, for example, HF (hydrofluoric acid).
- the MOCVD method is used to fill the plurality of openings (concave portions) of the concavo-convex structure in the second substrate 113 so as to fill the surface of the insulating layer 112 and the second substrate.
- An n-type nitride semiconductor layer 121 is formed on 113, and then a light emitting layer 122 and a p-type nitride semiconductor layer 123 are formed.
- the n-type nitride semiconductor layer 121 is exposed in accordance with the surface orientation of the side surface 130 of each convex portion (concave portion) of the second substrate 113 that is exposed, that is, the concave-convex structure of the second substrate 113 (oblique arrow in the drawing).
- the n-type nitride semiconductor layers 121 formed on the second mask 151 and then crystal-grown from the side surface 130 of the adjacent opening are then grown. Join. Thereby, one n-type nitride semiconductor layer 121 whose upper surface is a flat surface parallel to the main surface of the first substrate 111 is formed. Further, the upper surfaces of the light emitting layer 122 and the p-type nitride semiconductor layer 123 that are subsequently crystal-grown are also flat surfaces that are parallel to the main surface of the first substrate 111.
- an opening 160 is provided in the nitride semiconductor multilayer structure 120 by photolithography and dry etching to expose the n-type nitride semiconductor layer 121.
- the transparent electrode 141 and the p electrode 142 are formed so as to be electrically connected to the p-type nitride semiconductor layer 123 by using a photolithography method and a vacuum evaporation method. To do. Further, the n-electrode 143 is formed so as to be electrically connected to the n-type nitride semiconductor layer 121.
- a nitride semiconductor light emitting element is formed by performing chip separation by dicing using a blade.
- FIG. 3 is a cross-sectional view showing the structure of the nitride semiconductor light emitting device according to the second embodiment of the present invention.
- the nitride semiconductor light emitting device 200 has a p-type nitride semiconductor layer 223 (second array) formed on a reflective layer 280 stacked on a third substrate 215.
- Nitride semiconductor layer), light emitting layer 222 (first light emitting layer), and n-type nitride semiconductor layer 221 (first nitride semiconductor layer) are stacked.
- the third substrate 215 and the reflective layer 280 have conductivity.
- the n-type nitride semiconductor layer 221 has an uneven surface 230 having an uneven structure.
- n-electrode 243 is formed on the n-type nitride semiconductor layer 221 so as to be electrically connected to the n-type nitride semiconductor layer 221.
- a p-electrode 242 is formed on the third substrate 215 on the surface opposite to the surface on which the reflective layer 280 is provided.
- the nitride semiconductor multilayer structure 220 includes, for example, a p-type nitride semiconductor layer 223 made of GaN doped with Mg, such as InGaN adjusted to exhibit blue light emission centered on a wavelength of 470 nm.
- the light-emitting layer 222 is made of a GaN multiple quantum well, for example, an n-type nitride semiconductor layer 221 made of Si-doped GaN.
- the reflective layer 280 is made of a metal having a high reflectance with respect to the vicinity of a wavelength of 470 nm, such as Ag or Al.
- the p-electrode 242 is composed of a multilayer film of metal such as Ti, Al, Ni, Au, for example.
- the n-electrode 243 is composed of a multilayer film of metal such as Ti, Al, Ni, Au, for example.
- the uneven structure of the uneven surface 230 formed in the n-type nitride semiconductor layer 221 is desirably a structure in which concave portions and convex portions having the same shape are periodically formed.
- FIG. 4 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing the nitride semiconductor light emitting device 200 according to Embodiment 2 of the present invention.
- a first substrate 211 made of Si single crystal and a second substrate 213 made of Si single crystal are bonded via an insulating layer 212.
- the main surface of the second substrate 213 is configured to have a plane orientation different from the (111) plane of silicon.
- the material of the insulating layer 212 is configured such that the thermal expansion coefficient of the insulating layer 212 is larger than the thermal expansion coefficient of the n-type nitride semiconductor layer 221 to be stacked later.
- SiO 2 having a thermal expansion coefficient of 8 to 10 ⁇ 10 ⁇ 6 / K is used as in the first embodiment.
- a first mask 250 made of a silicon oxide film or a silicon nitride film is formed on the second substrate 213 by a thermal oxidation method, a plasma CVD method, or the like. After that, as shown in FIG. 4B, the first mask 250 is patterned so as to have a stripe-shaped opening by using a photolithography method and a dry etching method to expose the second substrate 213. .
- the second substrate 213 is wet-etched by, for example, KOH or TMAH, and an opening penetrating the second substrate 213 is formed in the second substrate 213.
- the concave portion By forming the concave portion to form a concave-convex structure having island-shaped convex portions.
- the insulating layer 212 is exposed in the opening of the second substrate 213.
- the side surface of the convex portion (concave portion) in the concavo-convex structure of the second substrate 213 is an inclined surface, and the plane orientation is the (111) plane of Si.
- the first mask 250 is removed by wet etching using HF, for example.
- one of the inclined surfaces of the both side surfaces of the convex portion (concave portion) in the concavo-convex structure formed on the second substrate 213 by using a sputtering method or a vacuum deposition method. Is covered with a second mask 251.
- the main surface (upper surface) of the second substrate 213 is also covered with the second mask 251.
- the second substrate is formed on the surface of the insulating layer 212 so as to fill a plurality of openings (concave portions) of the concavo-convex structure in the second substrate 213 by MOCVD.
- An n-type nitride semiconductor layer 221 is formed on 213, and then a light-emitting layer 222 and a p-type nitride semiconductor layer 223 are formed.
- the n-type nitride semiconductor layer 221 grows in crystal according to the surface orientation of the side surfaces of the exposed second substrate 213, that is, each convex portion (concave portion) of the concave-convex structure of the second substrate 213, and in each opening
- the n-type nitride semiconductor layers 221 formed on the second mask 251 and then crystal-grown from the side surfaces of the adjacent openings are joined together.
- one n-type nitride semiconductor layer 221 whose upper surface is a flat surface parallel to the main surface of the first substrate 211 is formed.
- the upper surfaces of the light emitting layer 222 and the p-type nitride semiconductor layer 223 that are subsequently crystal-grown are also flat surfaces parallel to the main surface of the first substrate 211.
- a third substrate 215 is bonded onto the p-type nitride semiconductor layer 223 via the reflective layer 280. Thereafter, a p-electrode 242 is stacked on the third substrate 215 by vacuum deposition.
- the nitride semiconductor multilayer structure shown in (g) is inverted, and as shown in (h) of FIG. 4, for example, using dry etching with ClF 3 gas, wet etching with hydrofluoric acid, or the like,
- the first substrate 211, the insulating layer 212, and the second substrate 213 are removed.
- the n-type nitride semiconductor layer 221 with the uneven surface 230 formed on the surface can be formed.
- an n-electrode 243 is formed so as to be in electrical contact with the n-type nitride semiconductor layer 221 by photolithography and vacuum deposition.
- a nitride semiconductor light emitting element is formed by performing chip separation by dicing using a blade.
- the nitride semiconductor light emitting device 200 according to Embodiment 2 of the present invention can be manufactured.
- the thermal expansion coefficient between the first substrate 211 and the n-type nitride semiconductor layer 221 is n-type nitride semiconductor layer.
- An n-type nitride semiconductor layer 221 is crystal-grown by inserting an insulating layer 212 larger than 221.
- the stress strain of the n-type nitride semiconductor layer 221 caused by the difference in thermal expansion coefficient between the first substrate 211 and the n-type nitride semiconductor layer 221 can be reduced. Therefore, since the stress applied to the n-type nitride semiconductor layer 221 can be reduced, the occurrence of cracks in the n-type nitride semiconductor layer 221 can be suppressed.
- the uneven surface 230 is formed on the n-type nitride semiconductor layer 221 by the uneven structure provided on the second substrate 213. Accordingly, the height of the convex portion (or the depth of the concave portion) in the concave and convex surface 230 of the n-type nitride semiconductor layer 221 is determined by the depth of the concave portion (or the height of the convex portion) in the concave and convex structure provided on the second substrate 213. ) Can be controlled.
- the height of the convex portion (or the depth of the concave portion) on the concave / convex surface 230 of the n-type nitride semiconductor layer 221 can be controlled by the thickness of the second substrate 213. Accordingly, the thickness of the second substrate 213 is controlled to be thin so that the depth of the concave portion in the concavo-convex structure of the second substrate 213 is reduced, and the contact between the second substrate 213 and the n-type nitride semiconductor layer 221 is achieved. The area can be reduced. As a result, the stress applied to the n-type nitride semiconductor layer 221 can be reduced, and the occurrence of cracks in the n-type nitride semiconductor layer 221 can be suppressed.
- the uneven surface 230 is formed on the n-type nitride semiconductor layer 221, the stacked structure of the first substrate 211, the insulating layer 212, and the second substrate 213 is used. Used. Thereby, when forming an uneven structure on the second substrate 213, the insulating layer 212 can function as an etching stop layer for alkaline wet etching using, for example, KOH or TMAH.
- the concavo-convex structure of the second substrate 213 can be accurately formed with high in-plane uniformity, so that the concavo-convex surface 230 of the n-type nitride semiconductor layer 221 formed according to the shape of the concavo-convex structure,
- the light emitting layer 222 and the p-type nitride semiconductor layer 223 can also be formed with high in-plane uniformity.
- the plane orientation of the main surface of the second substrate 213 is a plane off by 7 ° from the (100) plane of Si, the Si (113) plane, and the Si (112). ) Or Si (110) plane.
- each side of the nitride semiconductor multilayer structure 220 is selectively formed on the Si (111) surface by setting the side surface of the convex portion (concave portion) in the concavo-convex structure of the second substrate 213 to be the Si (111) surface.
- the main surface of each layer of the nitride semiconductor multilayer structure 220 can be a nonpolar plane inclined with respect to the c-plane of gallium nitride.
- the main surface of the n-type nitride semiconductor layer 221 can be a (1-101) plane, a (11-22) plane, a (1-100) plane, and a (11-20) plane of gallium nitride, respectively.
- the main surface of each layer of the nitride semiconductor multilayer structure 220 is a nonpolar surface inclined with respect to the c-plane of gallium nitride, whereby the piezoelectric field in the light emitting layer 222 can be reduced. As a result, since the spatial separation of electrons and holes in the light emitting layer 222 can be improved, the light emission efficiency can be improved.
- the uneven surface 230 provided on the n-type nitride semiconductor layer 221 has a periodic structure, so that the light emitted from the light emitting layer 222 is nitrided. It is possible to improve the efficiency (light extraction efficiency) of extracting the semiconductor multilayer structure 220 to the outside.
- the periodic structure of the uneven surface 230 can be formed by making the uneven structure of the second substrate 213 into a periodic structure.
- FIG. 5A is a cross-sectional view showing the structure of a nitride semiconductor light emitting device according to Embodiment 3 of the present invention.
- FIG. 5B is a perspective view of the nitride semiconductor light-emitting element according to Embodiment 3 of the present invention.
- FIG. 5B shows a state before the first n-electrode 343, the first p-electrode 342, the second n-electrode 345, and the second p-electrode 344 are formed in FIG. 5A.
- the nitride semiconductor light emitting device 300 is composed of a first substrate 311 made of Si (silicon) single crystal, an insulating layer 312 and a Si single crystal.
- the second substrate 313 includes the uneven substrate 310 having a structure in which the second substrate 313 is stacked in this order.
- the concavo-convex substrate 310 includes a first region having a concavo-convex structure formed in an island shape so that the second substrate 313 exposes the insulating layer 312, and the second substrate 313 does not exist and is insulated.
- the layer 312 includes a second region formed so as to partially expose the first substrate 311.
- the Si (111) surface is exposed on one side surface (first side surface) of both side surfaces of the convex portion in the concavo-convex structure of the second substrate 313, and the other side surface (second surface). Side surface) is covered with a second mask 301. Further, the concave portion in the concave-convex structure is formed so that the bottom of the concave portion is the surface of the insulating layer 312. Therefore, in this embodiment, the material constituting the bottom of the recess is the insulating layer 312.
- the first n-type semiconductor layer 321 (first nitride semiconductor layer), the first light-emitting layer 322, and the first p-type semiconductor layer 323 (first A first nitride semiconductor multilayer structure 320 having a structure in which two nitride semiconductor layers) are laminated in this order is formed.
- the first n-type semiconductor layer 321 is flatly grown parallel to the main surface of the first substrate 311 so as to fill the concave portion of the concave-convex structure in the first region.
- the first nitride semiconductor multilayer structure 320 is provided with an opening through which the first n-type semiconductor layer 321 is exposed.
- the first n-electrode (first n-type electrode) 343 and the first p-electrode (first p-type electrode) 342 are respectively formed so as to be electrically connected.
- a ridge is formed in the first p-type semiconductor layer 323, and a high current is injected between the first n-electrode 343 and the first p-electrode 342, so that the first light-emitting layer 322 A laser beam having a desired wavelength is emitted.
- an opening 302 is provided in the insulating layer 312 in the second region of the concavo-convex substrate 310.
- the opening 302 includes a plurality of openings, and is formed so that the flat surface, which is the main surface of the first substrate 311, is partially exposed.
- the second n-type semiconductor layer 331 (third nitride semiconductor layer), the second light-emitting layer 332, and the second p-type semiconductor layer 333 (fourth)
- a second nitride semiconductor multilayer structure 330 having a structure in which the nitride semiconductor layers are stacked in this order is formed.
- the second nitride semiconductor multilayer structure 330 is provided with an opening through which the second n-type semiconductor layer 331 is exposed.
- a second n-electrode (second n-type electrode) 345 and a second p-electrode 344 (second p-type electrode) are respectively formed so as to be electrically connected.
- a ridge is formed in the second p-type semiconductor layer 333, and a high current is injected between the second n-electrode 345 and the second p-electrode 344, so that the second light-emitting layer 332 A laser beam having a desired wavelength is emitted.
- the first nitride semiconductor multilayer structure 320 formed on the first region and the second nitride semiconductor multilayer structure 330 formed on the second region are formed on the same uneven substrate 310. However, it is insulated by the insulating layer 312 under the first nitride semiconductor multilayer structure 320.
- the first nitride semiconductor multilayer structure 320 and the second nitride semiconductor multilayer structure 330 are element-isolated and emit light having different center wavelengths.
- the first nitride semiconductor multilayer structure 320 includes the first p-type semiconductor layer 323 made of GaN (gallium nitride) doped with, for example, Mg (magnesium), for example, blue with a wavelength of 470 nm as the center.
- the first light-emitting layer 322 made of multiple quantum wells of InGaN and GaN and adjusted to show light emission, for example, a first n-type semiconductor layer 321 made of GaN doped with Si, for example.
- the first p-electrode 342 is composed of a multilayer film of metal such as Ti (titanium), Al (aluminum), Ni (nickel), Au (gold), for example.
- the first n-electrode 343 is composed of, for example, a multilayer film of a metal such as Ti, Al, Ni, and Au, and selectively removes part of the first p-type semiconductor layer 323 and the first light emitting layer 322. Thus, the first n-type semiconductor layer 321 exposed is formed in contact with the first n-type semiconductor layer 321.
- the second nitride semiconductor multilayer structure 330 exhibits a second p-type semiconductor layer 333 made of, for example, GaN doped with Mg, for example, green light emission centered on a wavelength of 530 nm.
- the second light-emitting layer 332 made of a multiple quantum well of InGaN and GaN, for example, a second n-type semiconductor layer 331 made of GaN doped with Si, for example, is formed.
- the second p electrode 344 is formed of a multilayer film of metal such as Ti, Al, Ni, Au, for example.
- the second n-electrode 345 is composed of, for example, a multilayer film of metal such as Ti, Al, Ni, and Au, and selectively removes part of the second p-type semiconductor layer 333 and the second light emitting layer 332. Thus, the second n-type semiconductor layer 331 exposed is formed in contact with the second n-type semiconductor layer 331.
- the insulating layer 312 is preferably made of SiO 2 (silicon oxide film).
- the main surface of the second substrate 313 is preferably a (100) 7 ° off-plane, a (113) plane, a (112) plane, or a (110) plane of Si.
- the uneven structure provided on the second substrate 313 is preferably a periodic structure.
- the opening 302 preferably has a periodic structure in which the openings and the insulating layers 312 are alternately arranged.
- the second mask 301 is preferably a multilayer film made of a dielectric such as SiO 2 or SiO 2 and TiO 2 .
- a GaN crystal is grown on a Si substrate having two different plane orientations (for example, (111) plane and (100) 7 ° off plane). And the growth surface of the GaN crystal is different for each plane orientation. For example, the (0001) plane of GaN grows on the Si (111) plane, and the (1-101) plane of GaN grows on the Si (100) 7 ° off plane. Therefore, GaN crystals having different plane orientations can be grown on a flat surface in parallel with the main surface of the substrate with a narrow interval. On this flat surface, it is possible to form a fine pattern using a general semiconductor process such as photolithography and dry etching.
- a fine electrode pattern for improving current injection and light extraction efficiency are improved. Therefore, it is possible to easily form a fine concavo-convex pattern for improving the light emission efficiency of the nitride semiconductor light emitting device. As a result, it is possible to realize a nitride semiconductor light emitting device with high light emission efficiency and a narrow light emitting point interval.
- the InGaN emission layer on the (1-101) plane of GaN has a lower In incorporation efficiency than the InGaN emission layer on the (0001) plane of GaN.
- the emission wavelength of the InGaN emission layer on the (1-101) plane of GaN is longer than the emission wavelength of the InGaN emission layer on the (0001) plane of GaN.
- first nitride semiconductor multilayer structure 320 and the second nitride semiconductor multilayer structure 330 are not in electrical contact, and the first n-electrode 343 and the first p-electrode 342,
- the n electrode 345 and the second p electrode 344 can be formed independently of each other. Therefore, it is possible to realize a nitride semiconductor light emitting device capable of independently driving the first nitride semiconductor multilayer structure 320 and the second nitride semiconductor multilayer structure 330 that emit different emission wavelengths.
- the main surface of the second substrate 313 is a (100) 7 ° off-surface, a (113) surface, a (112) surface, or a (110) surface of Si.
- the first nitride semiconductor multilayer structure 320 is selectively grown on the Si (111) surface appearing on the side surface of the convex portion of the first nitride semiconductor multilayer structure 320, thereby the main surface of the first nitride semiconductor multilayer structure 320 Can be a nonpolar plane inclined with respect to the GaN (0001) plane. Therefore, the piezoelectric field in the first light emitting layer 322 can be reduced. As a result, the spatial separation of electrons and holes in the first light-emitting layer 322 can be improved, and the light emission efficiency can be improved.
- the concavo-convex structure provided on the second substrate 313 into a periodic structure, light emitted from the first light-emitting layer 322 can be efficiently transmitted to the outside of the first nitride semiconductor multilayer structure 320. It can be taken out.
- the plane orientations for crystal growth are different, and in general, the second nitride semiconductor multilayer structure 330 is more than the first nitride semiconductor multilayer structure 320 having an uneven structure.
- the growth rate in the vertical direction of the substrate is fast. Therefore, at the initial stage of growth, the first nitride semiconductor multilayer structure 320 is thicker than the second nitride semiconductor multilayer structure 330 by the thickness of the concavo-convex structure, but as the crystal growth of the flat surface progresses, Due to the difference in growth rate, the step between the two growth surfaces becomes smaller. Therefore, it becomes possible to form a finer pattern, and as a result, a nitride semiconductor light emitting device with high luminous efficiency can be realized.
- a nitride semiconductor light emitting device having high luminous efficiency, narrow emission point intervals, a plurality of different emission wavelength peaks, and capable of independently driving emission of each wavelength.
- the thermal expansion coefficient of the insulating layer 312 is the same as that of the first n-type semiconductor layer 321 or the second n-type semiconductor layer 321 as in the nitride semiconductor light emitting device 100 according to the first embodiment. Since the n-type semiconductor layer 331 is configured to have a coefficient of thermal expansion larger than that of the n-type semiconductor layer 331, it is possible to suppress the occurrence of cracks in the first n-type semiconductor layer 321 and the second n-type semiconductor layer 331. .
- FIG. 6 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 3 of the present invention.
- a first substrate 311 made of Si single crystal and a second substrate 313 made of Si single crystal are bonded via an insulating layer 312 made of, for example, SiO 2.
- the main surface of the second substrate 313 is configured to have a plane orientation different from the (111) plane of silicon.
- a first mask 314 made of a silicon oxide film or a silicon nitride film is formed on the second substrate 313 by a thermal oxidation method, a plasma CVD (Chemical Vapor Deposition) method, or the like.
- the first mask 314 is patterned so as to have a stripe-shaped opening in a portion to be the first region by using a photolithography method and a dry etching method.
- the second substrate 313 is exposed. Note that the first mask 314 is entirely removed by etching in the portion to be the second region.
- the second substrate 313 is wet-etched with, for example, KOH (potassium hydroxide) or TMAH (tetramethylammonium hydroxide) to form the second substrate 313.
- KOH potassium hydroxide
- TMAH tetramethylammonium hydroxide
- An opening is formed in the surface to form an uneven structure having island-shaped protrusions.
- the insulating layer 312 is exposed in the opening of the second substrate 313.
- the side surface of the convex portion of the second substrate 313 is an inclined surface, and the plane orientation is the Si (111) plane. Note that the second substrate 313 is entirely removed in the second region.
- the first mask 314 is removed by wet etching using, for example, HF (hydrofluoric acid). Thereby, the concavo-convex structure in the first region can be formed.
- HF hydrofluoric acid
- one of the inclined surfaces of the convex and concave side surfaces of the concavo-convex structure formed on the second substrate 313 is formed by using a sputtering method or a vacuum evaporation method.
- the mask 301 is covered.
- the insulating layer 312 is selectively removed by photolithography or dry etching in the second region where the second substrate 313 is removed and there is no uneven structure.
- a plurality of openings are formed in the insulating layer 312.
- an opening 302 is formed in the insulating layer 312, and the first substrate 311 in the opening is exposed. At this time, it is desirable to form the openings of the opening 302 periodically.
- a first n-type semiconductor layer 321 and a second n-type semiconductor layer 331 are formed.
- the first n-type semiconductor layer 321 is exposed according to the surface orientation of the exposed second substrate 313, that is, the main surface of the second substrate 313 and the side surface of the convex portion (in the drawing). Crystal growth (in the direction of an oblique arrow) and flat growth parallel to the main surface of the first substrate 311.
- the second n-type semiconductor layer 331 is in accordance with the exposed main surface of the first substrate 311 (in the upward arrow direction in the drawing) with respect to the main surface of the first substrate 311. And grow flat in parallel.
- the second n-type semiconductor layer 331 has a faster growth rate in the direction perpendicular to the main surface than the first n-type semiconductor layer 321. Therefore, the step between the two growth planes becomes smaller as the crystal growth of the two semiconductor layers proceeds.
- the first light-emitting layer 322 and the first p-type semiconductor layer 323 are formed on the first n-type semiconductor layer 321 by MOCVD to form the second n-type semiconductor layer 321.
- a second light-emitting layer 332 and a second p-type semiconductor layer 333 are formed over the semiconductor layer 331, respectively.
- ridges are formed in the first p-type semiconductor layer 323 and the second p-type semiconductor layer 333 by using a photolithography method and a dry etching method. Similarly, openings are selectively formed so that the first n-type semiconductor layer 321 and the second n-type semiconductor layer 331 are exposed.
- a first n-electrode 343 is formed in a form of being electrically connected to the first n-type semiconductor layer 321 by using a photolithography method and a vacuum evaporation method.
- the first p-electrode 342 is formed so as to be electrically connected to the first p-type semiconductor layer 323.
- the second n-electrode 345 is formed in a form that is electrically connected to the second n-type semiconductor layer 331, and the second n-type semiconductor layer 333 is electrically connected to the second p-type semiconductor layer 333.
- the p-electrode 344 is formed.
- a nitride semiconductor light emitting device is formed by performing chip separation by dicing using a blade or cleavage.
- a nitride semiconductor light emitting device with high luminous efficiency, narrow emission point intervals, a plurality of different emission wavelength peaks, and capable of independently driving the emission of each wavelength.
- FIG. 7 is a sectional view showing the structure of a nitride semiconductor light emitting device according to the fourth embodiment of the present invention.
- a nitride semiconductor light emitting device 400 includes a first substrate 411 made of Si single crystal, an insulating layer 412, and a second substrate 413 made of Si single crystal.
- a concavo-convex substrate 410 having a structure laminated in this order is provided.
- the uneven substrate 410 includes a first region having an uneven structure formed in an island shape so that the second substrate 413 exposes the insulating layer 412, and an insulating layer in which the second substrate 413 is not present.
- 412 includes a second region formed so as to expose the first substrate 411.
- the Si (111) surface is exposed on one side surface (first side surface) of both side surfaces of the convex portion in the concavo-convex structure of the second substrate 413, and the other side surface (second surface). Is covered with a second mask 401. Further, the concave portion in the concave-convex structure is formed so that the bottom of the concave portion becomes the surface of the insulating layer 412. Therefore, in this embodiment, the material constituting the bottom of the recess is the insulating layer 412.
- the first n-type semiconductor layer 421 (first nitride semiconductor layer), the first light-emitting layer 422, and the first p-type semiconductor layer 423 (first A first nitride semiconductor multilayer structure 420 having a structure in which two nitride semiconductor layers) are laminated in this order is formed.
- the first n-type semiconductor layer 421 is flatly grown parallel to the main surface of the first substrate 411 so as to fill the concave portion of the concave-convex structure in the first region.
- the first nitride semiconductor multilayer structure 420 is provided with an opening through which the first n-type semiconductor layer 421 is exposed. On the first n-type semiconductor layer 421 and the first p-type semiconductor layer 423, Each of the first n-electrode 443 and the first p-electrode 442 is formed so as to be electrically connected.
- a first light emitting surface 451 having periodic unevenness is further formed on the upper surface of the first p-type semiconductor layer 423.
- an opening 402 is provided in the insulating layer 412.
- the opening 402 is a single opening and is formed so that the flat surface, which is the main surface of the first substrate 411, is exposed.
- the second nitride semiconductor multilayer structure 430 is provided with an opening through which the second n-type semiconductor layer 431 is exposed.
- the second n-electrode 445 and the second p-electrode 444 are formed so as to be electrically connected to each other.
- a second light emitting surface 452 having periodic irregularities is further formed on the upper surface of the second p-type semiconductor layer 433.
- the first nitride semiconductor multilayer structure 420 formed on the first region and the second nitride semiconductor multilayer structure 430 formed on the second region are formed on the same uneven substrate 410. However, the insulating layer 412 under the first nitride semiconductor multilayer structure 420 is insulated.
- the first nitride semiconductor multilayer structure 420 and the second nitride semiconductor multilayer structure 430 are element-isolated and emit light having different center wavelengths.
- the first nitride semiconductor multilayer structure 420 is adjusted so as to exhibit blue light emission centered on, for example, a first p-type semiconductor layer 423 made of GaN doped with Mg, for example, a wavelength of 470 nm.
- the first light-emitting layer 422 made of a multiple quantum well of InGaN and GaN, for example, a first n-type semiconductor layer 421 made of GaN doped with Si is formed.
- the first p-electrode 442 is formed of a multilayer film of metal such as Ti, Al, Ni, Au, for example.
- the first n-electrode 443 is composed of, for example, a multilayer film of metal such as Ti, Al, Ni, and Au, and selectively removes part of the first p-type semiconductor layer 423 and the first light emitting layer 422. Thus, the first n-type semiconductor layer 421 exposed is exposed.
- the second nitride semiconductor multilayer structure 430 exhibits a second p-type semiconductor layer 433 made of, for example, GaN doped with Mg, for example, green light emission centered on a wavelength of 530 nm.
- the second p-electrode 444 is composed of a multilayer film of metal such as Ti, Al, Ni, Au, for example.
- the second n-electrode 445 is composed of, for example, a multilayer film of a metal such as Ti, Al, Ni, and Au, and selectively removes part of the second p-type semiconductor layer 433 and the second light-emitting layer 432. Thus, the second n-type semiconductor layer 431 exposed is formed in contact with the second n-type semiconductor layer 431.
- the insulating layer 412 is preferably made of SiO 2 . Further, it is desirable that a transparent electrode made of, for example, ITO (indium tin oxide) is inserted between the first p-electrode 442 and the first p-type semiconductor layer 423. Further, it is desirable that a transparent electrode made of, for example, ITO is inserted between the second p-electrode 444 and the second p-type semiconductor layer 433. Furthermore, it is desirable that the transparent electrode made of ITO is provided with an uneven structure.
- ITO indium tin oxide
- the main surface of the second substrate 413 is preferably a (100) 7 ° off-surface, a (113) surface, a (112) surface, or a (110) surface of Si.
- the uneven structure provided in the second substrate 413 is desirably a periodic structure.
- the opening 402 may have a periodic structure in which openings and insulating layers 412 are alternately arranged as in Embodiment Mode 1.
- the second mask 401 is preferably a multilayer film made of a dielectric such as SiO 2 or SiO 2 and TiO 2 .
- the nitride semiconductor light emitting device 400 includes a concavo-convex substrate 410 that includes a first region having a concavo-convex structure and a second region having a flat surface. Therefore, GaN crystals having different plane orientations can be grown on a flat surface in parallel with the main surface of the substrate with a narrow interval. On this flat surface, it is possible to form a fine pattern using a general semiconductor process such as photolithography and dry etching. Therefore, a fine electrode pattern for improving current injection and light extraction efficiency are improved. Therefore, it is possible to easily form a fine concavo-convex pattern for improving the light emission efficiency of the nitride semiconductor light emitting device.
- the first nitride semiconductor multilayer structure 420 and the second nitride are respectively formed. It becomes possible to efficiently extract light from the physical semiconductor stacked structure 430. As a result, it is possible to realize a nitride semiconductor light emitting device with high light emission efficiency and a narrow light emitting point interval.
- a nitride semiconductor having a plurality of peaks of different emission wavelengths in a single crystal growth since it has two different growth planes and the amount of In incorporation can be made different, a nitride semiconductor having a plurality of peaks of different emission wavelengths in a single crystal growth. A light emitting element can be realized.
- the first n-electrode 443 and the first p-electrode 442, and the second n-electrode 445 and the second p-electrode 444 are independently formed. Therefore, a nitride semiconductor light emitting device capable of independently driving the first nitride semiconductor multilayer structure 420 and the second nitride semiconductor multilayer structure 430 that emit different emission wavelengths can be realized.
- the first nitride semiconductor multilayer structure 420 can be selectively grown in the first region, so that the piezoelectric field in the first light emitting layer 422 is reduced. be able to. As a result, the spatial separation of electrons and holes in the first light-emitting layer 422 can be improved, and the light emission efficiency can be improved.
- the uneven structure provided on the second substrate 413 has a periodic structure so that light emitted from the first light-emitting layer 422 is emitted from the first nitride semiconductor multilayer structure. It can be efficiently taken out of the body 420.
- the step between the two growth planes becomes smaller than the initial growth stage due to the difference in the growth rate in the substrate vertical direction between the first region and the second region. Therefore, it becomes possible to form a finer pattern, and as a result, a nitride semiconductor light emitting device with high luminous efficiency can be realized.
- a nitride semiconductor light emitting device having high luminous efficiency, narrow emission point intervals, a plurality of different emission wavelength peaks, and capable of independently driving emission of each wavelength.
- the thermal expansion coefficient of the insulating layer 412 is the same as that of the first n-type semiconductor layer 421 or the second semiconductor layer 421 as in the nitride semiconductor light emitting device 100 according to the first embodiment. Since the thermal expansion coefficient of the n-type semiconductor layer 431 is greater than that of the n-type semiconductor layer 431, it is possible to suppress the occurrence of cracks in the first n-type semiconductor layer 421 and the second n-type semiconductor layer 431. .
- FIG. 8 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 4 of the present invention.
- a first substrate 411 made of Si single crystal and a second substrate 413 made of Si single crystal are bonded via an insulating layer 412 made of, for example, SiO 2.
- the main surface of the second substrate 413 is configured to have a plane orientation different from the (111) plane of silicon.
- a first mask 414 made of a silicon oxide film or a silicon nitride film is formed on the second substrate 413 by a thermal oxidation method or a plasma CVD method. After that, as shown in FIG. 8B, the first mask 414 is patterned so as to have a stripe-shaped opening in a portion to be the first region by using a photolithography method and a dry etching method. Then, the second substrate 413 is exposed. Note that the first mask 414 is removed by etching in a portion to be the second region.
- the second substrate 413 is wet-etched by, for example, KOH or TMAH to form a concavo-convex structure having island-shaped convex portions on the second substrate 413.
- the insulating layer 412 is exposed in the opening of the second substrate 413.
- the side surface of the convex portion of the second substrate 413 is an inclined surface, and the plane orientation is the Si (111) plane. Note that the second substrate 413 is entirely removed in the second region.
- the first mask 414 is removed by wet etching using HF, for example. Thereby, the concavo-convex structure in the first region can be formed.
- one of the inclined surfaces of the convex and concave side surfaces of the concavo-convex structure formed on the second substrate 413 is formed by using a sputtering method or a vacuum evaporation method.
- the mask 401 is covered.
- part of the insulating layer 412 is removed by photolithography or dry etching in the second region where the second substrate 413 is removed and there is no uneven structure. Then, an opening 402 having a single opening is formed in the insulating layer 412, and the first substrate 411 is exposed. At this time, the opening 402 may have a structure in which a plurality of openings are periodically arranged.
- a first n-type semiconductor layer 421 and a second n-type semiconductor layer 431 are formed.
- the first n-type semiconductor layer 421 is exposed in accordance with the surface orientations of the exposed second substrate 413, that is, the main surface of the second substrate 413 and the side surfaces of the protrusions (in the drawing). Crystal growth (in the direction of an oblique arrow) and flat growth parallel to the main surface of the first substrate 411.
- the second n-type semiconductor layer 431 has a main surface of the first substrate 411 in a direction perpendicular to the main surface of the exposed first substrate 411 (in the upward arrow direction in the drawing). Grows parallel to the surface.
- the second n-type semiconductor layer 431 has a faster growth rate in the direction perpendicular to the main surface than the first n-type semiconductor layer 421. Therefore, the step between the two growth planes becomes smaller as the crystal growth of the two semiconductor layers proceeds.
- the first light-emitting layer 422 and the first p-type semiconductor layer 423 are formed on the first n-type semiconductor layer 421 by MOCVD, and the second n-type semiconductor layer 421 is formed.
- a second light-emitting layer 432 and a second p-type semiconductor layer 433 are formed over the semiconductor layer 431, respectively.
- the first n-type semiconductor layer 421 and the second n-type semiconductor layer 431 are selectively exposed using a photolithography method and a dry etching method. An opening is formed in
- the first light-emitting surface 451 having periodic unevenness is formed on the first p-type semiconductor layer 423 by using the photolithography method and the dry etching method.
- Second light emitting surfaces 452 each having periodic unevenness are formed on each p-type semiconductor layer 433.
- the first n-electrode 443 is formed so as to be electrically connected to the first n-type semiconductor layer 421 by using a photolithography method and a vacuum evaporation method.
- the first p-electrode 442 is formed so as to be electrically connected to the first p-type semiconductor layer 423.
- the second n-electrode 445 is formed so as to be electrically connected to the second n-type semiconductor layer 431, and the second n-electrode 445 is electrically connected to the second p-type semiconductor layer 433.
- the p-electrode 444 is formed.
- a nitride semiconductor light emitting element is formed by performing chip separation by dicing using a blade.
- a nitride semiconductor light emitting device with high luminous efficiency, narrow emission point intervals, a plurality of different emission wavelength peaks, and capable of independently driving the emission of each wavelength.
- FIG. 9A is a cross-sectional view showing the structure of the nitride semiconductor light-emitting device according to embodiment 5 of the present invention.
- FIG. 9B is a perspective view of the nitride semiconductor light-emitting element according to Embodiment 5 of the present invention. 9B shows a state before the first n-electrode 543, the first p-electrode 542, the second n-electrode 545, and the second p-electrode 544 are formed in FIG. 9A.
- the nitride semiconductor light emitting device 500 is composed of a sapphire substrate having a (11-20) plane as a main surface and has a periodic concavo-convex structure. And a concavo-convex substrate 510 including a first region 501 and a second region 502 which is a flat surface.
- the side surface in the convex part of the concavo-convex structure is a (0001) plane.
- the recessed part in an uneven structure is formed by etching a sapphire substrate. Therefore, in this embodiment, the material which comprises the bottom part of a recessed part is sapphire.
- the first n-type semiconductor layer 521 (first nitride semiconductor layer), the first light-emitting layer 522, and the first p-type semiconductor layer 523 (second nitride semiconductor)
- a first nitride semiconductor multilayer structure 520 having a structure in which layers are stacked in this order is formed.
- the first n-type semiconductor layer 521 is flatly grown parallel to the main surface of the sapphire substrate so as to fill the concave portion of the concavo-convex structure in the first region 501.
- the first nitride semiconductor multilayer structure 520 is provided with an opening through which the first n-type semiconductor layer 521 is exposed. On the first n-type semiconductor layer 521 and the first p-type semiconductor layer 523, Each of the first n-electrode 543 and the first p-electrode 542 is formed so as to be electrically connected.
- a ridge is formed in the first p-type semiconductor layer 523.
- a desired current is emitted from the first light-emitting layer 522.
- a laser beam having a wavelength of is emitted.
- a second nitride semiconductor multilayer structure 530 having a structure in which (semiconductor layers) are laminated in this order is formed.
- the second nitride semiconductor multilayer structure 530 is provided with an opening through which the second n-type semiconductor layer 531 is exposed. On the second n-type semiconductor layer 531 and the second p-type semiconductor layer 533, Each of the second n-electrode 545 and the second p-electrode 544 is formed so as to be electrically connected.
- a ridge is formed in the second p-type semiconductor layer 533.
- the second light-emitting layer 532 has a desired ridge.
- a laser beam having a wavelength of is emitted.
- the first nitride semiconductor multilayer structure 520 formed on the first region 501 and the second nitride semiconductor multilayer structure 530 formed on the second region 502 are on the same uneven substrate 510.
- the uneven substrate 510 is made of an insulating sapphire substrate, the first nitride semiconductor multilayer structure 520 and the second nitride semiconductor multilayer structure 530 are insulated.
- the first nitride semiconductor multilayer structure 520 and the second nitride semiconductor multilayer structure 530 are element-isolated and emit light having different center wavelengths.
- the first nitride semiconductor multilayer structure 520 is adjusted so as to exhibit blue light emission centered on, for example, a first p-type semiconductor layer 523 made of GaN doped with Mg, for example, a wavelength of 470 nm. Further, the first light emitting layer 522 made of a multiple quantum well of InGaN and GaN, for example, a first n-type semiconductor layer 521 made of GaN doped with Si is formed.
- the first p-electrode 542 is composed of a multilayer film of metal such as Ti, Al, Ni, Au, for example.
- the first n-electrode 543 is composed of, for example, a multilayer film of a metal such as Ti, Al, Ni, and Au, and selectively removes part of the first p-type semiconductor layer 523 and the first light-emitting layer 522. Thus, the first n-type semiconductor layer 521 exposed is formed in contact with the first n-type semiconductor layer 521.
- the second nitride semiconductor multilayer structure 530 exhibits the second p-type semiconductor layer 533 made of, for example, GaN doped with Mg, for example, green light emission centered on the wavelength of 530 nm.
- the second light-emitting layer 532 made of an adjusted InGaN and GaN multiple quantum well, for example, a second n-type semiconductor layer 531 made of Si-doped GaN is formed.
- the second p-electrode 544 is composed of a multilayer film of a metal such as Ti, Al, Ni, or Au.
- the second n-electrode 545 is composed of, for example, a multilayer film of metal such as Ti, Al, Ni, and Au, and selectively removes part of the second p-type semiconductor layer 533 and the second light emitting layer 532. Thus, the second n-type semiconductor layer 531 exposed in this way is formed.
- the side surface of the convex portion (or concave portion) of the concave-convex structure in the first region 501 is vertical.
- a (1-100) plane of GaN grows on the first region 501, and (0001) of GaN grows on the second region 502.
- the plane grows. Therefore, as in the third embodiment, GaN crystals having different plane orientations can be grown on a flat surface parallel to the main surface of the substrate with a narrow interval. On this flat surface, it is possible to form a fine pattern using a general semiconductor process such as photolithography and dry etching. Therefore, a fine electrode pattern for improving current injection and light extraction efficiency are improved. Therefore, it is possible to easily form a fine concavo-convex pattern for improving the light emission efficiency of the nitride semiconductor light emitting device. As a result, it is possible to realize a nitride semiconductor light emitting device with high light emission efficiency and a narrow light emitting point interval.
- a nitride semiconductor having a plurality of peaks of different emission wavelengths in a single crystal growth since it has two different growth planes and the amount of In incorporation can be made different, a nitride semiconductor having a plurality of peaks of different emission wavelengths in a single crystal growth. A light emitting element can be realized.
- the first n-electrode 543 and the first p-electrode 542, and the second n-electrode 545 and the second p-electrode 544 are independently formed. Therefore, it is possible to realize a nitride semiconductor light emitting element capable of independently driving the first nitride semiconductor multilayer structure 520 and the second nitride semiconductor multilayer structure 530 that emit different emission wavelengths.
- the piezoelectric field in the first light emitting layer 522 is reduced. can do.
- the spatial separation of electrons and holes in the first light-emitting layer 522 can be improved, and the light emission efficiency can be improved.
- the uneven structure in the first region 501 has a periodic structure, so that light emitted from the first light-emitting layer 522 is emitted from the first nitride semiconductor multilayer structure 520. It can be taken out efficiently.
- a nitride semiconductor light emitting device having high luminous efficiency, narrow emission point intervals, a plurality of different emission wavelength peaks, and capable of independently driving emission of each wavelength.
- the thermal expansion coefficient of the concave portion (sapphire) in the concavo-convex substrate 510 is determined from the thermal expansion coefficient of the first n-type semiconductor layer 521 and the second n-type semiconductor layer 531.
- the generation of cracks in the first n-type semiconductor layer 521 and the second n-type semiconductor layer 531 is suppressed. can do.
- FIG. 10 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 5 of the present invention.
- a mask 514 is formed on a sapphire substrate 510S having (11-20) as a main surface by using a sputtering method or a plasma CVD method.
- the mask 514 is patterned so as to have a stripe-shaped opening in a portion to be the first region 501 by using a photolithography method and a dry etching method.
- the sapphire substrate 510S is exposed. Note that the mask 514 is not removed by etching in a portion to be the second region 502.
- a concavo-convex structure is formed on the sapphire substrate 510S by performing dry etching on the sapphire substrate 510S. At this time, it is formed so that the side surface of the convex portion of the concavo-convex structure becomes the (0001) plane.
- the mask 514 is removed, for example, by wet etching using HF. Accordingly, the uneven substrate 510 including the first region 501 having an uneven structure and the second region 502 having a flat surface can be manufactured.
- the first n-type semiconductor layer 521 and the second n-type semiconductor layer 531 are formed on the first region 501 and the second region 502 by MOCVD, respectively.
- the first n-type semiconductor layer 521 grows in crystal according to the surface orientation of the concavo-convex structure and grows flat in parallel with the main surface of the sapphire substrate 510S.
- the second n-type semiconductor layer 531 grows flat in parallel with the main surface of the sapphire substrate 510S.
- the first light-emitting layer 522 and the first p-type semiconductor layer 523 are formed on the first n-type semiconductor layer 521 by MOCVD, and the second n-type semiconductor layer 521 is formed.
- a second light-emitting layer 532 and a second p-type semiconductor layer 533 are formed over the semiconductor layer 531.
- ridges are formed in the first p-type semiconductor layer 523 and the second p-type semiconductor layer 533 by using a photolithography method and a dry etching method. Similarly, an opening is selectively formed so that the first n-type semiconductor layer 521 and the second n-type semiconductor layer 531 are exposed.
- the first n-electrode 543 is formed in a form of being electrically connected to the first n-type semiconductor layer 521 by using a photolithography method and a vacuum evaporation method.
- the first p-electrode 542 is formed so as to be electrically connected to the first p-type semiconductor layer 523.
- the second n-electrode 545 is formed in a form that is electrically connected to the second n-type semiconductor layer 531, and the second n-type electrode 545 is electrically connected to the second p-type semiconductor layer 533.
- the p-electrode 544 is formed.
- a nitride semiconductor light emitting device is formed by performing chip separation by dicing using a blade or cleavage.
- a nitride semiconductor light emitting device with high luminous efficiency, narrow emission point intervals, a plurality of different emission wavelength peaks, and capable of independently driving the emission of each wavelength.
- FIG. 11 is a sectional view showing the structure of a nitride semiconductor light emitting device according to the sixth embodiment of the present invention.
- a nitride semiconductor light emitting device 600 is composed of a sapphire substrate having a (11-20) plane as a main surface, and has a first region having a periodic concavo-convex structure.
- the concavo-convex substrate 610 includes a 601 and a second region 602 that is a flat surface.
- the side surface in the convex part of the concavo-convex structure is a (0001) plane.
- the recessed part in an uneven structure is formed by etching a sapphire substrate. Therefore, in this embodiment, the material which comprises the bottom part of a recessed part is sapphire.
- a first n-type semiconductor layer 621 (first nitride semiconductor layer), a first light-emitting layer 622, and a first p-type semiconductor layer 623 (second nitride semiconductor).
- a first nitride semiconductor multilayer structure 620 having a structure in which layers are stacked in this order is formed.
- the first n-type semiconductor layer 621 is flatly grown parallel to the main surface of the sapphire substrate so as to fill the concave portion of the concavo-convex structure in the first region 601.
- the first nitride semiconductor multilayer structure 620 is provided with an opening through which the first n-type semiconductor layer 621 is exposed. On the first n-type semiconductor layer 621 and the first p-type semiconductor layer 623, Each of the first n-electrode 643 and the first p-electrode 642 is formed so as to be electrically connected.
- a first light emitting surface 651 having periodic irregularities is further formed on the upper surface of the first p-type semiconductor layer 623.
- a second nitride semiconductor multilayer structure 630 having a structure in which (semiconductor layers) are laminated in this order is formed.
- the second nitride semiconductor multilayer structure 630 is provided with an opening through which the second n-type semiconductor layer 631 is exposed.
- the second n-electrode 645 and the second p-electrode 644 are formed so as to be electrically connected to each other.
- a second light emitting surface 652 having periodic irregularities is further formed on the upper surface of the second p-type semiconductor layer 633.
- the first nitride semiconductor multilayer structure 620 formed on the first region 601 and the second nitride semiconductor multilayer structure 630 formed on the second region 602 are on the same uneven substrate 610. However, since the uneven substrate 610 is made of an insulating sapphire substrate, the first nitride semiconductor multilayer structure 620 and the second nitride semiconductor multilayer structure 630 are insulated. The first nitride semiconductor multilayer structure 620 and the second nitride semiconductor multilayer structure 630 are separated from each other and emit light having different center wavelengths.
- the first nitride semiconductor multilayer structure 620 is adjusted so as to exhibit blue light emission centered on the first p-type semiconductor layer 623 made of, for example, GaN doped with Mg, for example, a wavelength of 470 nm. Further, the first light emitting layer 622 made of a multiple quantum well of InGaN and GaN, for example, a first n-type semiconductor layer 621 made of GaN doped with Si, for example.
- the first p-electrode 642 is composed of a multilayer film of metal such as Ti, Al, Ni, Au, for example.
- the first n-electrode 643 is formed of a multilayer film of metal such as Ti, Al, Ni, Au, and the like, and selectively removes part of the first p-type semiconductor layer 623 and the first light-emitting layer 622. Thus, the first n-type semiconductor layer 621 exposed is formed in contact with the first n-type semiconductor layer 621.
- the second nitride semiconductor multilayer structure 630 exhibits a second p-type semiconductor layer 633 made of, for example, GaN doped with Mg, for example, green light emission centered on a wavelength of 530 nm.
- the second light-emitting layer 632 made of an adjusted InGaN and GaN multiple quantum well, for example, a second n-type semiconductor layer 631 made of Si-doped GaN is formed.
- the second p electrode 644 is formed of a multilayer film of metal such as Ti, Al, Ni, Au, for example.
- the second n-electrode 645 is composed of, for example, a multilayer film of metal such as Ti, Al, Ni, and Au, and selectively removes part of the second p-type semiconductor layer 633 and the second light-emitting layer 632. Thus, the second n-type semiconductor layer 631 exposed in this way is formed.
- the side surface of the convex portion (or concave portion) of the concave-convex structure in the first region 601 is vertical.
- the uneven substrate 610 including the first region 601 having the uneven structure and the second region 602 having a flat surface is provided.
- the uneven substrate 610 including the first region 601 having the uneven structure and the second region 602 having a flat surface is provided.
- the uneven substrate 610 including the first region 601 having the uneven structure and the second region 602 having a flat surface is provided.
- GaN crystals having different plane orientations can be grown on a flat surface in parallel with the substrate at a narrow interval.
- a fine pattern using a general semiconductor process such as photolithography and dry etching. Therefore, a fine electrode pattern for improving current injection and light extraction efficiency are improved. Therefore, it is possible to easily form a fine concavo-convex pattern for improving the light emission efficiency of the nitride semiconductor light emitting device. For example, as shown in FIG.
- the first nitride semiconductor multilayer structure 620 and the second nitride are respectively formed.
- Light can be efficiently extracted from the physical semiconductor stacked structure 630. As a result, it is possible to realize a nitride semiconductor light emitting device with high light emission efficiency and a narrow light emitting point interval.
- the nitride semiconductor light emitting device having a plurality of different emission wavelength peaks in one crystal growth can be realized.
- the first n-electrode 643 and the first p-electrode 642, and the second n-electrode 645 and the second p-electrode 644 are independently formed. Therefore, it is possible to realize a nitride semiconductor light emitting device capable of independently driving the first nitride semiconductor multilayer structure 620 and the second nitride semiconductor multilayer structure 630 that emit different emission wavelengths.
- the first nitride semiconductor multilayer structure 620 can be selectively grown in the first region 601, the piezoelectric field in the first light emitting layer 622 is reduced. can do. As a result, the spatial separation of electrons and holes in the first light-emitting layer 622 can be improved, and the light emission efficiency can be improved.
- the uneven structure in the first region 601 has a periodic structure, so that light emitted from the first light emitting layer 622 is emitted from the first nitride semiconductor multilayer structure 620. It can be taken out efficiently.
- a nitride semiconductor light emitting device having high luminous efficiency, narrow emission point intervals, a plurality of different emission wavelength peaks, and capable of independently driving emission of each wavelength.
- the thermal expansion coefficient of the concave portion (sapphire) in the concavo-convex substrate 610 is determined from the thermal expansion coefficient of the first n-type semiconductor layer 621 and the second n-type semiconductor layer 631.
- FIG. 12 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing a nitride semiconductor light emitting device according to Embodiment 6 of the present invention.
- a mask 614 is formed on a sapphire substrate 610S whose main surface is (11-20) by using a sputtering method or a plasma CVD method.
- the mask 614 is patterned so as to have a stripe-shaped opening in a portion to be the first region 601 by using a photolithography method and a dry etching method.
- the sapphire substrate 610S is exposed. Note that the mask 614 is not removed by etching in the portion to be the second region 602.
- a concavo-convex structure is formed on the sapphire substrate 610S by performing dry etching on the sapphire substrate 610S. At this time, it is formed so that the side surface of the convex portion of the concavo-convex structure becomes the (0001) plane.
- the mask 614 is removed by wet etching using, for example, HF. Accordingly, the uneven substrate 610 including the first region 601 having an uneven structure and the second region 602 having a flat surface can be manufactured.
- the first n-type semiconductor layer 621 and the second n-type semiconductor layer 631 are formed on the first region 601 and the second region 602 by MOCVD, respectively.
- the first n-type semiconductor layer 621 grows in crystal according to the surface orientation of the concavo-convex structure and grows flat in parallel with the main surface of the sapphire substrate 610S.
- the second n-type semiconductor layer 631 grows flat in parallel with the main surface of the sapphire substrate 610S.
- the first light-emitting layer 622 and the first p-type semiconductor layer 623 are formed on the first n-type semiconductor layer 621 by MOCVD, and the second n-type semiconductor layer 621 is formed.
- a second light-emitting layer 632 and a second p-type semiconductor layer 633 are formed over the semiconductor layer 631.
- the first n-type semiconductor layer 621 and the second n-type semiconductor layer 631 are selectively exposed by photolithography and dry etching. An opening is formed in
- the first light emitting surface 651 having periodic unevenness is formed on the first p-type semiconductor layer 623 by using the photolithography method and the dry etching method.
- a second light emitting surface 652 having periodic unevenness is formed on each p-type semiconductor layer 633.
- a first n-electrode 643 is formed so as to be electrically connected to the first n-type semiconductor layer 621 by using a photolithography method and a vacuum evaporation method.
- the first p-electrode 642 is formed so as to be electrically connected to the first p-type semiconductor layer 623.
- the second n-electrode 645 is formed so as to be electrically connected to the second n-type semiconductor layer 631, and the second n-electrode 645 is electrically connected to the second p-type semiconductor layer 633.
- the p-electrode 644 is formed.
- a nitride semiconductor light emitting element is formed by performing chip separation by dicing using a blade.
- a nitride semiconductor light emitting device with high luminous efficiency, narrow emission point intervals, a plurality of different emission wavelength peaks, and capable of independently driving the emission of each wavelength.
- FIG. 13A is a cross-sectional view showing the structure of the nitride semiconductor light-emitting device according to embodiment 7 of the present invention.
- FIG. 13B is a perspective view showing a mounted state of the nitride semiconductor light emitting device according to the seventh embodiment of the present invention.
- the nitride semiconductor light emitting device 700 includes a first substrate 711 made of Si single crystal, a first insulating layer 712, and a Si single crystal.
- the second substrate 713 has an uneven substrate 710 having a structure in which the second substrate 713 is stacked in this order.
- the uneven substrate 710 includes a first region having an uneven structure formed in an island shape so that the second substrate 713 exposes the first insulating layer 712, and the second substrate 713.
- the first insulating layer 712 includes a second region formed so as to partially expose the first substrate 711.
- the Si (111) surface is exposed on one side surface (first side surface) of both side surfaces of the convex portion in the concavo-convex structure of the second substrate 713, and the other side surface (second surface). Is covered with a second mask 701.
- the concave portion in the concave-convex structure is formed so that the bottom of the concave portion becomes the surface of the insulating layer 712. Therefore, in this embodiment, the material that forms the bottom of the recess is the first insulating layer 712.
- the first n-type semiconductor layer 721 (first nitride semiconductor layer), the first light-emitting layer 722, and the first p-type semiconductor layer 723 (first A first nitride semiconductor multilayer structure 720 having a structure in which one nitride semiconductor layer) is laminated in this order is formed.
- the first n-type semiconductor layer 721 is flatly grown parallel to the main surface of the first substrate 711 so as to fill the concave portion of the concave-convex structure in the first region.
- the first nitride semiconductor multilayer structure 720 is provided with an opening through which the first n-type semiconductor layer 721 is exposed. On the first n-type semiconductor layer 721 and the first p-type semiconductor layer 723, Each of the first n-electrode 743 and the first p-electrode 742 is formed so as to be electrically connected.
- a ridge is formed in the first p-type semiconductor layer 723, and by injecting a high current between the first n-electrode 743 and the first p-electrode 742, the ridge is formed from the first light-emitting layer 722. A laser having a desired wavelength is emitted.
- an opening 702 is provided in the first insulating layer 712 in the second region of the uneven substrate 710.
- the opening 702 includes a plurality of openings and is formed so that the flat surface, which is the main surface of the first substrate 711, is partially exposed.
- the second n-type semiconductor layer 731 (third nitride semiconductor layer), the second light-emitting layer 732, and the second p-type semiconductor layer 733 (fourth)
- a second nitride semiconductor multilayer structure 730 having a structure in which the nitride semiconductor layers are laminated in this order is formed.
- the second nitride semiconductor multilayer structure 730 is provided with an opening through which the second n-type semiconductor layer 731 is exposed.
- the second n-electrode 745 and the second p-electrode 744 are formed so as to be electrically connected to each other.
- a ridge is formed in the second p-type semiconductor layer 733, and a high current is injected between the second n-electrode 745 and the second p-electrode 744, so that the second light-emitting layer 732 A laser beam having a desired wavelength is emitted.
- the first nitride semiconductor multilayer structure 720 formed on the first region and the second nitride semiconductor multilayer structure 730 formed on the second region are formed on the same uneven substrate 710. However, it is insulated by the first insulating layer 712 under the first nitride semiconductor multilayer structure 720.
- the first nitride semiconductor multilayer structure 720 and the second nitride semiconductor multilayer structure 730 are separated from each other and emit light having different center wavelengths.
- the second insulating layer 761 is further formed so as to cover the first p-type semiconductor layer 723 and the second p-type semiconductor layer 733.
- a common p-electrode 770 is formed on the second insulating layer 761 so as to be electrically connected to the first p-electrode 742 and the second p-electrode 744.
- the second insulating layer 761 is also formed in a region for isolating the first nitride semiconductor multilayer structure 720 and the second nitride semiconductor multilayer structure 730.
- a third p electrode 746 is formed on the common p electrode 770 so as to be electrically connected to the common p electrode 770.
- a third insulating layer 762 is formed on the common p electrode 770 where the third p electrode 746 is not formed.
- a third n-type semiconductor layer 751 (fifth nitride semiconductor layer), a third light emitting layer 752, and a third p-type semiconductor layer 753 in which a ridge is formed.
- a third nitride semiconductor multilayer structure 750 in which (sixth nitride semiconductor layer) is formed in this order from the upper layer is provided.
- a third n-electrode 747 is formed so as to be electrically connected to the third n-type semiconductor layer 751. That is, in the present embodiment, the third nitride semiconductor multilayer structure 750 is laminated on the first nitride semiconductor multilayer structure 720 and the second nitride semiconductor multilayer structure 730. These three semiconductor layers are configured to emit light having different center wavelengths.
- the first n-electrode 743, the second n-electrode 745, the common p-electrode 770, and the third n-electrode 747 can be supplied with independent voltages. It is electrically connected to a predetermined wiring by bonding or the like.
- the first nitride semiconductor multilayer structure 720 is adjusted so as to exhibit blue light emission centered on, for example, a first p-type semiconductor layer 723 made of GaN doped with Mg, for example, a wavelength of 470 nm.
- the first light emitting layer 722 made of a multiple quantum well of InGaN and GaN, for example, a first n-type semiconductor layer 721 made of GaN doped with Si is formed.
- the first p-electrode 742 is composed of a multilayer film of metal such as Ti, Al, Ni, Au, for example.
- the first n-electrode 743 is composed of, for example, a multilayer film of a metal such as Ti, Al, Ni, and Au, and selectively removes part of the first p-type semiconductor layer 723 and the first light-emitting layer 722. Thus, the first n-type semiconductor layer 721 exposed is formed in contact with the first n-type semiconductor layer 721.
- the second mask 701 is preferably a multilayer film made of a dielectric such as SiO 2 or SiO 2 and TiO 2 .
- the second nitride semiconductor multilayer structure 730 is adjusted so as to exhibit a second p-type semiconductor layer 733 made of, for example, Mg-doped GaN, for example, green light emission centered at a wavelength of 530 nm.
- the second light emitting layer 732 made of a multiple quantum well of InGaN and GaN, for example, the second n-type semiconductor layer 731 made of GaN doped with Si, for example.
- the second p-electrode 744 is composed of a multilayer film of metal such as Ti, Al, Ni, Au, for example.
- the second n-electrode 745 is composed of, for example, a multilayer film of a metal such as Ti, Al, Ni, and Au, and selectively removes part of the second p-type semiconductor layer 733 and the second light-emitting layer 732. Thus, the second n-type semiconductor layer 731 exposed is formed in contact with the second n-type semiconductor layer 731.
- the third nitride semiconductor multilayer structure 750 exhibits a red light emission centered on, for example, a wavelength of 660 nm with the third p-type semiconductor layer 753 made of GaAs doped with Zn, for example.
- the third light-emitting layer 752 made of AlGaInP and GaAs multiple quantum wells and the third n-type semiconductor layer 751 made of GaAs doped with Si, for example, are prepared.
- the common p-electrode 770 and the third p-type semiconductor layer 753 are bonded by, for example, bonding.
- a nitride semiconductor light emitting device 700 according to Embodiment 7 of the present invention is obtained by providing, for example, a semiconductor light emitting device that emits light in the red region on the nitride semiconductor light emitting device 300 of Embodiment 3. Therefore, it is possible to obtain the same effect as in the third embodiment, and to emit light having the third wavelength. Therefore, it is possible to realize a nitride semiconductor light emitting device that has high luminous efficiency, has a narrow interval between light emitting points, has a plurality of peaks of different light emission wavelengths, and can independently drive light emission of each wavelength.
- the thermal expansion coefficient of the first insulating layer 712 is the same as that of the first n-type semiconductor layer 721 or the nitride semiconductor light emitting device 100 according to the first embodiment. Since the second n-type semiconductor layer 731 is configured to have a coefficient of thermal expansion larger than that of the second n-type semiconductor layer 731, the occurrence of cracks in the first n-type semiconductor layer 721 and the second n-type semiconductor layer 731 is suppressed. be able to.
- FIG. 14 is a cross-sectional view showing the structure of the nitride semiconductor light emitting device according to the eighth embodiment of the present invention.
- a nitride semiconductor light emitting device 800 includes a common reflective layer 880 formed on a third substrate 815. On the common reflective layer 880, a first p-type semiconductor layer 823 (second nitride semiconductor layer), a first light emitting layer 822, and a first n-type semiconductor layer 821 (first nitride semiconductor).
- first nitride semiconductor multilayer structure 820 the second p-type semiconductor layer 833 (fourth nitride semiconductor layer), the second light emitting layer 832, and the second n
- a second nitride semiconductor multilayer structure 830 in which type semiconductor layers 831 (third nitride semiconductor layers) are laminated in this order is provided.
- first n-type semiconductor layer 821 in the first nitride semiconductor multilayer structure 820 an uneven surface 810 having an uneven structure is formed. Further, a first n-electrode 843 is formed on the first n-type semiconductor layer 821 so as to be electrically connected.
- a second n-electrode 845 is formed on the second n-type semiconductor layer 831 in the second nitride semiconductor multilayer structure 830 so as to be electrically connected.
- a common p-electrode 870 is formed on the third substrate 815 on the surface opposite to the surface on which the common reflective layer 880 is provided.
- the first nitride semiconductor multilayer structure 820 is adjusted so as to exhibit blue light emission centered on, for example, a first p-type semiconductor layer 823 made of GaN doped with Mg, for example, a wavelength of 470 nm.
- the first light emitting layer 822 made of a multiple quantum well of InGaN and GaN, for example, a first n-type semiconductor layer 821 made of GaN doped with Si is formed.
- the first n-electrode 843 is formed of a multilayer film of a metal such as Ti, Al, Ni, or Au, for example, and is formed in contact with the first n-type semiconductor layer 821.
- the second nitride semiconductor multilayer structure 830 exhibits a second p-type semiconductor layer 833 made of, for example, Mg doped GaN, for example, green light emission centered on a wavelength of 530 nm.
- the second light emitting layer 832 made of InGaN and GaN multiple quantum wells, for example, the second n-type semiconductor layer 831 made of GaN doped with Si, is prepared.
- the second n-electrode 845 is formed of a multilayer film of metal such as Ti, Al, Ni, Au, etc., and is formed in contact with the second n-type semiconductor layer 831.
- FIG. 15A is a cross-sectional view showing a state (operation mode A) in which only the first nitride semiconductor multilayer structure 820 is operated in the nitride semiconductor light-emitting device according to Embodiment 8 of the present invention.
- FIG. 15B shows a state in which the first nitride semiconductor multilayer structure 820 and the second nitride semiconductor multilayer structure 830 are operated (operation mode B) in the nitride semiconductor light emitting device according to Embodiment 8 of the present invention. It is sectional drawing which showed).
- FIG. 15C is a diagram showing an emission spectrum A (broken line) obtained in the operation mode A and an emission spectrum B (solid line) obtained in the operation mode B.
- the nitride semiconductor light emitting device 800 is sealed with a resin 892 containing a phosphor 891 that converts blue light into yellow light.
- the first nitride is emitted from the second nitride semiconductor multilayer structure 830.
- Light having a longer wavelength than the light emitted from the physical semiconductor multilayer structure 820 and yellow light obtained by converting blue light by the phosphor are emitted.
- the emission spectrum B includes light in the red region, and as a result, the color rendering is improved.
- the conventional nitride semiconductor light emitting device can be driven only in the operation mode A and has a low color rendering property.
- the color rendering can be performed because it can be driven in the operation mode B.
- a nitride semiconductor light emitting device having excellent properties can be realized.
- the first nitride semiconductor multilayer structure 820 and the second nitride semiconductor multilayer structure 830 can be driven independently, so that the nitride semiconductor light emitting device of this embodiment has a color rendering property. Can be adjusted as desired.
- FIG. 16 is a cross-sectional view schematically showing the configuration of each step in the method for manufacturing the nitride semiconductor light emitting device 800 according to Embodiment 8 of the present invention.
- a first substrate 811 made of Si single crystal and a second substrate 813 made of Si single crystal are bonded via an insulating layer 812 made of, for example, SiO 2.
- the main surface of the second substrate 813 is configured to have a plane orientation different from the (111) plane of silicon.
- a mask 814 made of a silicon oxide film or a silicon nitride film is formed on the second substrate 813 by a thermal oxidation method, a plasma CVD method, or the like. After that, as shown in FIG. 16B, a mask 814 is patterned so as to have a stripe-shaped opening by using a photolithography method and a dry etching method, and the second substrate 813 is exposed.
- the second substrate 813 is wet-etched by, for example, KOH or TMAH to form a concavo-convex structure having island-shaped convex portions on the second substrate 813.
- the insulating layer 812 is exposed in the opening of the second substrate 813.
- the side surface of the convex portion of the second substrate 813 is an inclined surface, and the plane orientation is the Si (111) plane.
- the mask 814 is removed by wet etching using, for example, HF. Furthermore, one inclined surface is covered with a mask (not shown) among the both side surfaces of the convex part in the uneven structure formed in the 2nd board
- an opening 802 is formed in the insulating layer 812 by photolithography or dry etching, and the first substrate 811 is exposed.
- the first region having the concavo-convex structure of the second substrate 813 and the second region where the opening 802 is formed respectively.
- a first n-type semiconductor layer 821 and a second n-type semiconductor layer 831 are formed.
- the first n-type semiconductor layer 821 grows according to the surface orientation of the exposed second substrate 813, that is, the main surface of the second substrate 813 and the side surface of the convex portion. Then, it grows flat in parallel to the main surface of the first substrate 811.
- the second n-type semiconductor layer 831 grows flat in parallel with the main surface of the first substrate 811 in accordance with the surface orientation of the main surface of the first substrate 811 that is exposed. .
- the second n-type semiconductor layer 831 has a faster growth rate in the direction perpendicular to the main surface than the first n-type semiconductor layer 821. Therefore, the step between the two growth planes becomes smaller as the crystal growth proceeds.
- first light-emitting layer 822 and the first p-type semiconductor layer 823 are formed on the first n-type semiconductor layer 821, and the second light-emitting layer 832 and the second light-emitting layer 832 are formed on the second n-type semiconductor layer 831 by MOCVD.
- Second p-type semiconductor layers 833 are formed respectively.
- the first p-type semiconductor layer 823 and the second p-type semiconductor layer 833 are covered via a common reflective layer 880 made of, for example, Al or Ag.
- a third substrate 815 made of Ge is attached.
- the first substrate 811, the insulating layer 812, and the second substrate 813 are removed by wet etching using hydrofluoric acid or dry etching using ClF 3 .
- the semiconductor element of FIG. 16H is inverted, and the first n-type semiconductor layer 821 is electrically connected to the first n-type semiconductor layer 821 by using a photolithography method and a vacuum evaporation method.
- the first n-electrode 843 is formed so as to be connected to the second n-type electrode
- the second n-electrode 845 is formed so as to be electrically connected to the second n-type semiconductor layer 831.
- a common p-electrode 870 is formed on the back surface of the third substrate 815 by using a vacuum evaporation method.
- a nitride semiconductor light emitting device is formed by performing chip separation by dicing using a blade or cleavage.
- a nitride semiconductor light emitting device having high luminous efficiency, narrow emission point intervals, a plurality of different emission wavelength peaks, and capable of independently driving emission of each wavelength.
- a concavo-convex structure is formed on the second substrate 813 using a substrate including the first substrate 811, the insulating layer 812, and the second substrate 813, whereby the first n-type semiconductor is formed.
- the uneven surface 810 is formed in the layer 821, it is not limited to this.
- an uneven structure is formed on the sapphire substrate using a sapphire substrate, whereby an uneven surface is formed on the first n-type semiconductor layer 821. 810 may be formed.
- the first nitride semiconductor layer including the first n-type semiconductor layer is formed on the region where the concavo-convex structure of the sapphire substrate is formed, and the second n-type is formed on the region without the concavo-convex structure of the sapphire substrate.
- a second nitride semiconductor layer including the semiconductor layer is formed. Then, after the third substrate 815 is bonded as described above, the sapphire substrate is removed.
- FIG. 17A is a diagram illustrating an application example of a nitride semiconductor light emitting device according to a comparative example.
- FIG. 17B is a diagram illustrating a first application example in which the nitride semiconductor light emitting element according to the embodiment of the present invention is applied.
- FIG. 17C is a diagram illustrating a second application example in which the nitride semiconductor light-emitting element according to the embodiment of the present invention is applied.
- symbol is attached
- an application example of the nitride semiconductor light emitting device according to the comparative example uses three LED light sources that emit light in the red, green, and blue regions as small projector light sources.
- the blue light emitted from the blue LED light source 981 the green light emitted from the green LED light source 982, and the red LED light source 983.
- the emitted red light passes through the collimator lens 984, the collimator lens 985, and the collimator lens 986, respectively, and then mirror 987, mirror 988, mirror 989, polarizer 990, liquid crystal panel 991, polarizer 992, and projection lens group 993. Is projected as an image.
- the first application example according to the present embodiment uses the nitride semiconductor light emitting element 300 and the red LED light source 983 according to the third embodiment of the present invention as the light source of the small projector.
- the light source of the nitride semiconductor light emitting device 300 according to the first application example can emit blue light and green light at a narrow light emission interval. Accordingly, the blue light and green light emitted from the nitride semiconductor light emitting device 300 pass through the collimator lens 984 and then pass through the mirror 989, the polarizer 990, the liquid crystal panel 991, the polarizer 992, and the projection lens group 993. And projected as an image.
- the optical system can be simplified as compared with the comparative example shown in FIG. 17A.
- the nitride semiconductor light emitting element 300 according to the third embodiment is used, but the nitride semiconductor light emitting element according to the fourth to sixth and eighth embodiments may be used.
- the second application example according to the present embodiment uses the nitride semiconductor light emitting device 700 according to the seventh embodiment of the present invention as a light source of a small projector.
- the light source of the nitride semiconductor light emitting device 700 according to the second application example can emit blue light, green light, and red light at a narrow light emission interval. Therefore, the blue light, the green light, and the red light emitted from the nitride semiconductor light emitting device 700 pass through the collimator lens 986 and then pass through the polarizer 990, the liquid crystal panel 991, the polarizer 992, and the projection lens group 993. And projected as an image. Accordingly, the optical system can be further simplified as compared with FIGS. 17A and 17B.
- the nitride semiconductor light emitting device and the manufacturing method thereof according to the present invention have been described based on the embodiments, but the present invention is not limited to the above embodiments. Forms obtained by subjecting each embodiment to various modifications conceived by those skilled in the art, and forms realized by arbitrarily combining the components and functions in each embodiment without departing from the spirit of the present invention It is included in the present invention.
- the present invention is useful, for example, as a light source used in various display devices or lighting devices, and other light emitting devices.
- Nitride semiconductor light emitting device 110 310, 410, 510, 610, 710 Uneven substrate 111, 211, 311, 411, 711, 811 First substrate 112, 212, 312, 412, 812 Insulating layer 113, 213, 313, 413, 713, 813 Second substrate 120, 220 Nitride semiconductor multilayer structure 121, 221 N-type nitride semiconductor layer 122, 222 Light emitting layer 123, 223 p-type nitride semiconductor layer 130 side surface 141 transparent electrode 142, 242 p-electrode 143, 243 n-electrode 150, 250, 314, 414 first mask 151, 251, 301, 401, 701 second mask 160, 302, 402 , 702, 802 Openings 215, 815 Third substrate 230, 810 Uneven surface 280 Reflective layer 320, 420, 520, 620, 720, 820 First nitride
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Led Devices (AREA)
- Semiconductor Lasers (AREA)
Abstract
本発明に係る窒化物半導体発光素子(100)は、凹部が設けられた凹凸構造を有する凹凸基板(110)と、凹凸構造上に設けられた第1導電型の第1の窒化物半導体層(121)と、第1の窒化物半導体層(121)上に設けられた第1の発光層(122)と、発光層(122)上に設けられた第2導電型の第2の窒化物半導体層(123)とを備え、凹部の底部を構成する材料の熱膨張係数は、第1の窒化物半導体層(121)の熱膨張係数よりも大きい。
Description
本発明は、窒化物半導体発光素子および窒化物半導体発光素子の製造方法に関する。
近年、照明器具の照明用光源または液晶表示装置のバックライト光源等の白色光源として、発光ダイオード(LED)を用いた白色LED光源が盛んに研究されている。白色LED光源としては、例えば、青色光を放射する青色LEDと当該青色LEDの青色光を黄色光に変換する蛍光体とによって構成されるものがある。青色LEDの中でも特に、例えば窒化物半導体等のワイドバンドギャップ半導体を用いた窒化物半導体発光素子が盛んに開発されている。
現在用いられている青色LEDにおいて、電子と正孔が再結合し光を放出する層である発光層は、窒化物半導体結晶の(0001)面(c面、極性面)と呼ばれる結晶面上に設けられるのが一般的である。しかし、c面上に発光層を設けた場合、用いる材料の格子定数差に由来して発光層内には分極が発生する。このため、発光層内にピエゾ電界と呼ばれる内部電界が発生し、電子と正孔が空間的に分離され、発光効率が低下するという課題がある。
この課題を解決するために、発光層をc面に対して傾斜した面(非極性面)上に設けることで、ピエゾ電界の影響を軽減するという試みが研究されている。しかし、非極性面上では、大口径化や高い転位密度が課題となり、未だ実用には至っていない。非極性面を用いた青色LEDに関して、従来、例えば特許文献1に開示される窒化物半導体発光素子が提案されている。
以下に、従来の窒化物半導体発光素子の製造方法について、図18を参照しながら説明する。図18は、従来の窒化物半導体発光素子の製造方法における各工程を模式的に示した断面図である。
図18の(a)に示すように、まず、シリコンの(100)面から7°オフしたシリコン基板1上にシリコン酸化膜もしくはシリコン窒化膜を形成し、フォトリソグラフィ法やドライエッチングを用いて、ストライプ状の開口を有するマスク52を形成する。
次に、図18の(b)に示すように、マスク52が形成されたシリコン基板1に対して、例えば水酸化カリウム(KOH)や水酸化テトラメチルアンモニウム(TMAH)を用いたウェットエッチングを施すことにより、マスク52の開口部分におけるシリコン基板1に断面三角形状の凹凸構造を形成する。このとき、凹凸構造における凸部(凹部)の傾斜した面はシリコンの(111)ファセット面61となる。
次に、図18の(c)に示すように、スパッタリング法や真空蒸着法により、凸部(凹部)における2つの傾斜面のうちの一方に、シリコン酸化膜もしくはシリコン窒化膜からなるマスク53を被覆する。
次に、図18の(d)に示すように、有機金属気相成長法(Metal Organic Chemical Vapor Deposition;MOCVD)により、シリコン基板1に窒化物半導体を結晶成長させると、マスク52、53が形成されていない面であるシリコンの(111)ファセット面61からのみ窒化物半導体2が結晶成長し、成長方向に窒化物半導体2の(1-101)ファセット面70が現れる。
その後、さらに結晶成長を継続すると、図18の(e)~(g)に示すように、隣り合う凸部(凹部)の側面から成長した窒化物半導体2同士が接合し、窒化物半導体2の(1-101)ファセット面70は、連続膜の状態になった窒化物半導体2の(1-101)面となる。
その後、図示しないが、このようにして得られた窒化物半導体の結晶上に、n型半導体層、発光層、p型半導体層を設けることにより、従来の窒化物半導体発光素子を製造することができる。
しかしながら、上記の従来の窒化物半導体発光素子では、以下に示すような課題を有する。
上記の従来の窒化物半導体発光素子において、基板であるシリコン(Si)と窒化物半導体との間には大きな熱膨張係数差があるため、結晶成長後の窒化物半導体に引っ張り応力が加わり、窒化物半導体にクラックが生じやすいという課題がある。
また、従来の窒化物半導体発光素子では、シリコン基板に凹凸構造を形成するためのアルカリウェットエッチングにおいて、Si(111)面以外の面のエッチングレートが高い。このため、シリコン基板に凹凸構造を精密に形成することができず、面内均一性良く窒化物半導体を形成することが困難であるという課題がある。
本発明は、上記課題を解決するためになされたものであり、クラックの発生が抑制され、面内均一性の高い窒化物半導体を有する窒化物半導体発光素子を提供することを目的とする。
上記課題を解決するために、本発明に係る窒化物半導体発光素子の一態様は、凹部が設けられた凹凸構造を有する凹凸基板と、前記凹凸構造上に設けられた第1導電型の第1の窒化物半導体層と、前記第1の窒化物半導体層上に設けられた第1の発光層と、前記発光層上に設けられ、前記第1導電型とは異なる導電型である第2導電型の第2の窒化物半導体層とを備え、前記凹部の底部を構成する材料の熱膨張係数は、前記第1の窒化物半導体層の熱膨張係数よりも大きい。
これにより、凹凸基板における凹凸構造の凹部と第1の窒化物半導体層との熱膨張係数の差によって生じる第1の窒化物半導体層における応力歪を緩和することができる。従って、第1の窒化物半導体層においてクラックが発生することを抑制することができる。
また、本発明に係る窒化物半導体発光素子の一態様において、前記凹凸基板は、シリコンからなる第1の基板と、前記第1の基板上に設けられた絶縁層と、前記絶縁層上に設けられたシリコンからなる第2の基板とを有し、前記凹部は、当該凹部の底部が前記絶縁層の表面となるように前記第2の基板に形成された開口であり、前記凹部の底部を構成する材料は、前記絶縁層であり、前記凹部の側面の面方位は、前記第2の基板の主面の面方位とは異なる。
これにより、シリコンからなる第1の基板の熱膨張係数と第1の窒化物半導体層の熱膨張係数との差によって生じる第1の窒化物半導体層における応力歪を緩和するができる。従って、第1の窒化物半導体層においてクラックが発生することを抑制することができる。
また、第2の基板の凹部の深さを第2の基板の厚さで制御することができる。従って、凹部の深さが浅くなるように第2の基板の厚さを薄く制御して、第2の基板と第1の窒化物半導体層との接触面積を減少させることができる。この結果、第1の窒化物半導体層に加えられる応力をさらに低減することができるので、第1の窒化物半導体層におけるクラックの発生を一層抑制することができる。
さらに、第1の基板と絶縁層と第2の基板とが積層構造となっているので、第2の基板に凹凸構造を形成する際、絶縁層をエッチングストップ層として機能させることができる。これにより、高い面内均一性で第2の基板に凹凸構造を形成することができるので、凹凸構造上に形成する窒化物半導体層の各層、特に、凹凸構造直上の第1の窒化物半導体層を高い面内均一性で成膜することができる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、前記凹部の前記側面の面方位が、シリコンの(111)面であることが好ましい。
これにより、シリコンの(111)面上において窒化ガリウムの(0001)面を結晶成長させることができる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、前記第2の基板の主面の面方位が、シリコンの(100)面から7°オフした面、シリコンの(311)面、シリコンの(110)面、またはシリコンの(112)面であることが好ましい。
これにより、第1導電型の窒化物半導体層の主面が、それぞれ窒化ガリウムの(1-101)面、(11-22)面、(1-100)面、(11-20)面とすることができるので、発光層内に発生するピエゾ電界を低減することができる。この結果、高発光効率の窒化物半導体発光素子を実現することができる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、前記第1の窒化物半導体層の上面は平坦面であることが好ましい。
これにより、一般的な半導体プロセスを用いて当該平坦面上に各種半導体層を容易に形成することができる。また、当該平坦面上に形成された半導体層も平坦面とすることができるので、光の取り出し効率を向上させるための凹凸パターン等を容易に形成することができる。この結果、高発光効率の窒化物半導体発光素子を実現することができる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、前記第1の基板の主面の面方位が、シリコンの(100)面であることが好ましい。
これにより、第1の基板の主面がへき開性を有するシリコンの(100)面となるので、製造した窒化物半導体発光素子を容易にへき開することができる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、前記凹凸基板は、前記凹凸構造を有する第1の領域と平坦面を有する第2の領域とを含み、前記第1の窒化物半導体層、前記第1の発光層および前記第2の窒化物半導体層を含む第1の窒化物半導体積層構造体は、前記第1の領域上に形成され、さらに、前記第2の領域上に、前記第1導電型の第3の窒化物半導体層と、第2の発光層と、前記第2導電型の第4の窒化物半導体層とを含む第2の窒化物半導体積層構造体が形成され、前記第1の窒化物半導体積層構造体の主面と前記第2の窒化物半導体積層構造体の主面とが異なる面方位であり、さらに、前記第1の発光層から発せられる光よりも前記第2の発光層から発せられる光の波長の方が長い。
このようにすることで、異なる面方位の窒化物半導体層を、前記凹凸基板の主面に対して平行に、平坦成長させることができる。これにより、一般的な半導体プロセスにより容易に微細な電極や凹凸パターンを作製することが可能となる。したがって、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を実現できる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、前記第1の領域と前記第2の領域が、絶縁層により分離されていることが好ましい。
このようにすることで、前記第1の領域と前記第2の領域に異なる基板を用いることができ、異なる面方位の窒化物半導体結晶の成長が容易になる。これにより、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を実現できる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、前記第1の領域と前記第2の領域が、Si単結晶からなることが好ましい。
このようにすることで、異なる面方位の窒化物半導体結晶の成長が容易になる。これにより、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を実現できる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、前記第1の領域における前記凹凸構造の凸部は、少なくとも2つの側面を有し、前記凸部における一方の側面の面方位は(111)面であり、前記凸部における他方の側面は所定のマスクにて覆われていることが好ましい。
このようにすることで、前記第1の窒化物半導体層が平坦成長し、一般的な半導体プロセスにより容易に微細な電極や凹凸パターンを作製することが可能となる。これにより、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を実現できる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、前記第1の領域と前記第2の領域が、(11-20)面を主面とするサファイア基板であってもよい。
これにより、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を実現できる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、少なくとも前記第2の窒化物半導体層と前記第4の窒化物半導体層のいずれか一方に凹凸構造が形成されていることが好ましい。
これにより、凹凸構造を有する発光面を形成することができるので、第1の窒化物半導体層または第2の窒化物半導体層から効率よく光を取り出すことが可能となる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、前記凹凸基板上に設けられ、前記第1導電型の第5の窒化物半導体層と、第3の発光層と、前記第2導電型の第6の窒化物半導体層とを含む第3の窒化物半導体積層構造体を備え、前記第3の発光層から発せられる光の中心波長は、前記第1の発光層および前記第2の発光層から発せられる光の中心波長と異なることが好ましい。
これにより、3つの異なる波長の光を発する半導体発光素子を得ることができる。
さらに、本発明に係る窒化物半導体発光素子の一態様において、前記凹凸基板の前記凹凸構造が周期的な構造であることが好ましい。
このようにすることで、凹凸構造により第1の発光層から発せられた光を取り出すことが可能となる。これにより、高発光効率の窒化物半導体発光素子を実現できる。
また、本発明に係る窒化物半導体発光素子の製造方法の一態様は、凹部が設けられた凹凸構造を有する凹凸基板を形成する第1の工程と、前記凹凸構造上に、第1導電型の第1の窒化物半導体層を形成する第2の工程と、前記第1の窒化物半導体層上に、第1の発光層を形成する第3の工程と、前記発光層上に、前記第1導電型とは異なる導電型である第2導電型の第2の窒化物半導体層を形成する第4の工程とを含み、前記凹部の底面を構成する材料の熱膨張係数は、前記第1の窒化物半導体層の熱膨張係数よりも大きい。
これにより、凹凸基板における凹凸構造の凹部と第1の窒化物半導体層との熱膨張係数の差によって生じる第1の窒化物半導体層における応力歪を緩和することができる。従って、第1の窒化物半導体層においてクラックが発生することを抑制することができる。
さらに、本発明に係る窒化物半導体発光素子の製造方法の一態様において、前記第1の工程は、シリコンからなる第1の基板上に、前記凹部の底部を構成する材料である絶縁層と、シリコンからなる第2の基板とを形成する工程と、前記絶縁層が露出するように前記第2の基板の一部を除去することにより、前記第2の基板の主面の面方位とは異なる面方位の側面を有する前記凹部を形成する工程とを含み、前記第2の工程において、前記凹部の前記側面上に、前記第1の窒化物半導体層を形成する。
これにより、第1の基板の熱膨張係数と第1の窒化物半導体層の熱膨張係数との差によって生じる第1の窒化物半導体層における応力歪を緩和するができる。また、第2の基板の凹凸構造における凹部の深さを第2の基板の厚さで制御することができる。従って、第1の窒化物半導体層においてクラックが発生することを抑制できる。
また、絶縁層を第2の基板に凹凸構造の形成する際のエッチングストップ層として機能させることができるので、凹凸構造上における窒化物半導体層を高い面内均一性で成膜することができる。
さらに、本発明に係る窒化物半導体発光素子の製造方法の一態様において、前記凹部の前記側面の面方位が、シリコンの(111)面であることが好ましい。
これにより、シリコンの(111)面上において窒化ガリウムの(0001)面を結晶成長させることができる。
さらに、本発明に係る窒化物半導体発光素子の製造方法の一態様において、前記第2の窒化物半導体層に第3の基板を貼り合わせる工程と、前記第1の基板と前記絶縁層と前記第2の基板とを除去する工程と、を含むことが好ましい。
これにより、第3の基板上に、凹凸面を有する第1の窒化物半導体層を形成することができる。これにより、高発光効率の窒化物半導体発光素子を実現することができる。
さらに、本発明に係る窒化物半導体発光素子の製造方法の一態様において、Si単結晶からなる第1の基板上に、絶縁層と、主面が(111)面とは異なる面方位であるSi単結晶からなる第2の基板を形成する工程と、前記絶縁層が露出するように前記第2の基板の一部を除去することにより、(111)面からなる第1の側面を有する凸部を形成する工程とを含み、さらに、前記第1の工程と前記第2の工程との間に、前記凸部の側面のうち、前記第1の側面とは異なる第2の側面を覆う所定のマスクを形成する工程と、前記第1の基板が露出するように前記絶縁層の一部を除去する工程と、露出した前記第1の基板上に、前記第1導電型の第3の窒化物半導体層を形成する工程と、前記第3の窒化物半導体層上に第2の発光層を形成する工程と、前記第2の発光層上に、前記第2導電型の第4の窒化物半導体層を形成する工程と、を有する。
このようにすることで、主面の面方位が異なる2つの基板上に窒化物半導体層を形成するので、面方位の異なる窒化物半導体層を基板の主面に対して平行に平坦成長させることができる。これにより、一般的な半導体プロセスにより容易に微細な電極や凹凸パターンを作製することができる。したがって、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を製造することができる。
さらに、本発明に係る窒化物半導体発光素子の製造方法の一態様において、前記第1の窒化物半導体層および前記第3の窒化物半導体層を第3の基板に貼り合わせる工程と、前記第1の基板と前記絶縁層と前記第2の基板とを除去する工程とを有することが好ましい。
これにより、第3の基板上に凹凸面を有する窒化物半導体層を形成することができるので、高発光効率の窒化物半導体発光素子を製造することができる。
また、本発明に係る窒化物半導体発光素子の製造方法の別の一態様において、前記第1の工程は、(11-20)面を主面とするサファイア基板上の一部の領域に(0001)面からなる側面を有する前記凹凸構造を形成する工程であり、さらに、前記サファイア基板の前記主面の上に、前記第1導電型の第3の窒化物半導体層を形成する工程と、前記第2の窒化物半導体層上に第2の発光層を形成する工程と、前記第2の発光層上に、前記第2導電型の第4の窒化物半導体層を形成する工程と、を有する。
これにより、サファイア基板を用いて、面方位の異なる窒化物半導体層をサファイア基板の主面に対して平行に平坦成長させることができる。
さらに、本発明に係る窒化物半導体発光素子の製造方法の別の一態様において、前記第1の窒化物半導体層および前記第3の窒化物半導体層に第3の基板を貼り合わせる工程と、前記サファイア基板を除去する工程を有することが好ましい。
これにより、第3の基板上に、凹凸面を有する窒化物半導体層を形成することができるので、高発光効率の窒化物半導体発光素子を製造することができる。
本発明に係る窒化物半導体発光素子によれば、窒化物半導体層においてクラックの発生を抑制することができる。
また、本発明に係る窒化物半導体発光素子の製造方法によれば、クラックの発生を抑制することができる窒化物半導体層を形成することができる。
以下に、本発明の実施形態に係る窒化物半導体発光素子およびその製造方法について、図面を参照しながら説明する。
(実施形態1)
まず、本発明の実施形態1に係る窒化物半導体発光素子100について、図1を用いて説明する。図1は、本発明の実施形態1に係る窒化物半導体発光素子の構造を示す断面図である。
まず、本発明の実施形態1に係る窒化物半導体発光素子100について、図1を用いて説明する。図1は、本発明の実施形態1に係る窒化物半導体発光素子の構造を示す断面図である。
図1に示すように、窒化物半導体発光素子100は、Si(シリコン)の単結晶からなる第1の基板111、絶縁層112、およびSi単結晶からなる第2の基板113がこの順に積層された凹凸基板110上に、n型を第1導電型とするn型窒化物半導体層121(第1の窒化物半導体層)、発光層122(第1の発光層)、およびp型を第2導電型とするp型窒化物半導体層123(第2の窒化物半導体層)を含む窒化物半導体積層構造体120が形成された構造となっている。
凹凸基板110において、第1の基板111は、主面の面方位がシリコンの(100)面となるように構成されている。また、第2の基板113には、絶縁層112の表面が窒化物半導体積層構造体120に対して露出するような複数の開口が形成されている。第2の基板113は、当該開口を凹部とし、隣り合う凹部によって構成される島状の凸部が形成された凹凸構造を有する。このように、凹凸構造に設けられた凹部は、当該凹部の底部が絶縁層112の表面となるように形成されている。従って、本実施形態において、凹部の底部を構成する材料は、絶縁層112である。
また、図1に示すように、第2の基板113の凹凸構造における凸部(凹部)の両側面のうち、一方の側面130は露出されており、他方の側面は第2のマスク151で覆われている。凸部(凹部)の一方の側面130は、第2の基板113の主面の面方位とは異なるように構成されており、本実施形態では、Siの(111)面である。なお、図1において、第2のマスク151は、第2の基板113の主面(上面)も覆っているが、第2のマスク151は第2の基板113の主面(上面)を覆っていなくても構わない。
また、窒化物半導体積層構造体120において、n型窒化物半導体層121は、第2の基板113における凹凸構造の複数の開口(凹部)を埋めるように絶縁層112と接するようにして、絶縁層112上および第2の基板113上に形成されている。さらに、本実施形態では、n型窒化物半導体層121の熱膨張係数が、絶縁層112の熱膨張係数よりも小さくなるように構成されている。すなわち、絶縁層112の熱膨張係数は、n型窒化物半導体層121の熱膨張係数よりも大きい。また、n型窒化物半導体層121の上面(発光層122側面)は平坦面となっている。
なお、窒化物半導体積層構造体120にはn型窒化物半導体層121が露出するような開口部が設けられ、n型窒化物半導体層121と電気的に接続されるようにn電極(n型電極)143が形成されている。また、p型窒化物半導体層123と電気的に接続されるようにp型窒化物半導体層123上に透明電極141およびp電極(p型電極)142が形成されている。
上記の構成において、窒化物半導体積層構造体120は、例えばMg(マグネシウム)がドープされたGaN(窒化ガリウム)からなるp型窒化物半導体層123、例えば波長470nmを中心とする青色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる発光層122、例えばSiがドープされたGaNからなるn型窒化物半導体層121により構成される。また、p電極142は、例えばTi(チタン)、Al(アルミニウム)、Ni(ニッケル)、Au(金)等の金属の多層膜で構成される。n電極143は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、p型窒化物半導体層123および発光層122の一部を選択的に除去することで露出したn型窒化物半導体層121に接する形で形成されている。また、透明電極141は、ITO(インジウムスズ酸化物)などの波長470nm付近の波長に対して透過率の高い導電性材料からなる。
また、絶縁層112は、SiO2(シリコン酸化膜)で形成することが好ましい。但し、絶縁層112は、シリコン酸化膜に限らず、熱膨張係数がn型窒化物半導体層121の熱膨張係数よりも大きいものであれば構わない。
また、第2のマスク151は、SiO2、または、SiO2やTiO2(酸化チタン)などの誘電体からなる多層膜によって構成することが好ましい。
次に、このように形成された本発明の実施形態1に係る窒化物半導体発光素子100の動作について説明する。
本実施形態に係る窒化物半導体発光素子100は、絶縁層112の熱膨張係数がn型窒化物半導体層121の熱膨張係数よりも大きくなるように構成されているので、n型窒化物半導体層121においてクラックが発生することを抑制することができる。
すなわち、Si基板上に例えばGaN結晶を成長させる場合、二つの材料の熱膨張係数の差(Siの熱膨張係数:2.6×10-6/K、GaNの熱膨張係数:5.6×10-6/K)により、GaN結晶に引っ張り歪が生じ、GaN結晶にクラックが発生しやすい。本実施形態では、Si基板とGaNの間にGaNよりも熱膨張係数が大きい材料、例えばSiO2(熱膨張係数:8~10×10-6/K)層を加えているので、Si基板とGaNとの熱膨張係数差による上記引っ張り歪を緩和することができる。これにより、GaNに加えられる応力を低減することができるので、GaNにおいてクラックが発生することを抑制することができる。
また、本実施形態に係る窒化物半導体発光素子100は、第2の基板113によって凹凸構造を形成している。これにより、第2の基板113に設けた凹凸構造における凹部の深さを第2の基板113の厚さで制御することができる。従って、凹凸構造の凹部の深さが浅くなるように第2の基板113の厚さを薄く制御して、第2の基板113とn型窒化物半導体層121との接触面積を減少させることができる。その結果、n型窒化物半導体層121に加えられる応力を低減することができるので、n型窒化物半導体層121におけるクラックの発生を抑制することができる。
また、本実施形態に係る窒化物半導体発光素子100において、凹凸基板110は、第1の基板111、絶縁層112および第2の基板113の積層構造となっている。これにより、第2の基板113に凹凸構造を形成する際、絶縁層112を、例えばKOHやTMAHによるアルカリウェットエッチングに対して、エッチングストップ層として機能させることができる。その結果、第2の基板113の凹凸構造を、高い面内均一性で精度良く形成することができるので、凹凸構造上に形成する窒化物半導体積層構造体120も高い面内均一性で成膜することができる。特に、凹凸構造の直上に形成されるn型窒化物半導体層121については、高い面内均一性で成膜することができる。
また、本実施形態に係る窒化物半導体発光素子100において、第2の基板113の主面の面方位は、Siの(100)面から7°オフした面、Si(113)面、Si(112)、またはSi(110)面とすることが好ましい。この場合、第2の基板113の凹凸構造における凸部(凹部)の側面130をSi(111)面とすることにより、当該Si(111)面上に選択的に窒化物半導体積層構造体120の各層を順次結晶成長させたときに、窒化物半導体積層構造体120の各層の主面を窒化ガリウムのc面に対して傾斜した非極性面とすることができる。特に、n型窒化物半導体層121の主面は、それぞれ窒化ガリウムの(1-101)面、(11-22)面、(1-100)面、(11-20)面とすることができる。このように、窒化物半導体積層構造体120の各層の主面を窒化ガリウムのc面に対して傾斜した非極性面とすることにより、発光層122内のピエゾ電界を低減することができる。この結果、発光層122内での電子と正孔の空間的な分離を改善することができるので、発光効率を向上させることができる。
また、本実施形態に係る窒化物半導体発光素子100において、第2の基板113に設けられた凹凸構造を上記のような周期的な構造とすることにより、発光層122から放出された光を窒化物半導体積層構造体120の外部に取り出す効率(光の取り出し効率)を向上させることができる。
以上により、本実施形態によれば、クラックの発生が抑制され、高い面内均一性で、高発光効率の窒化物半導体発光素子を実現することができる。
次に、本発明の実施形態1に係る窒化物半導体発光素子100の製造方法について、図2を用いて説明する。図2は、本発明の実施形態2に係る窒化物半導体発光素子の製造方法における各工程の構成を模式的に示した断面図である。
図2の(a)に示すように、まず、Si単結晶からなる第1の基板111と、Si単結晶からなる第2の基板113とを、例えばSiO2からなる絶縁層112を介して接合させる。このとき、第2の基板113の主面が、シリコンの(111)面とは異なる面方位となるように構成されている。
次に、熱酸化法やプラズマCVD(Chemical Vapor Deposition)法などにより、第2の基板113上にシリコン酸化膜またはシリコン窒化膜からなる第1のマスク150を形成する。その後、図2の(b)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、図2の紙面垂直方向に延びるストライプ状の開口を有するように、第1のマスク150をパターニングして、第2の基板113を露出させる。
次に、図2の(c)に示すように、第2の基板113に対して、例えばKOHやTMAHによりウェットエッチングを施し、第2の基板113に当該第2の基板113を貫通する開口を形成して凹部を構成することにより、島状の凸部を有する凹凸構造を形成する。これにより、第2の基板113の開口において絶縁層112を露出させる。このとき、第2の基板113の凹凸構造における凸部(凹部)の側面130は傾斜面となり、その面方位はSiの(111)面となる。
次に、図2の(d)に示すように、例えばHF(フッ酸)によるウェットエッチングにより、第1のマスク150を除去する。
次に、図2の(e)に示すように、スパッタリング法や真空蒸着法を用いて、第2の基板113に形成した凹凸構造における凸部(凹部)の両側面のうち、一方の側面130は露出させたままとし、他方の側面を第2のマスク151で被覆する。このとき、第2の基板113の主面(上面)も第2のマスク151で被覆する。なお、本実施形態では、第2の基板113の主面(上面)は第2のマスク151で被覆したが、第2の基板113の主面(上面)は被覆しなくても構わない。
次に、図2の(f)に示すように、MOCVD法により、第2の基板113における凹凸構造の複数の開口(凹部)を埋めるようにして、絶縁層112の表面上および第2の基板113上にn型窒化物半導体層121を形成し、引き続き、発光層122およびp型窒化物半導体層123を形成する。
このとき、n型窒化物半導体層121は、露出する第2の基板113、すなわち、第2の基板113の凹凸構造の各凸部(凹部)における側面130の面方位に従って(図中の斜め矢印方向に)結晶成長し、各開口において結晶成長が進行することにより、第2のマスク151上にも形成され、その後、隣り合う開口の側面130から結晶成長したn型窒化物半導体層121同士が接合する。これにより、上面が第1の基板111の主面に対して平行な平坦面となる1つのn型窒化物半導体層121が成膜される。また、この後に結晶成長される発光層122とp型窒化物半導体層123の上面も、その上面は第1の基板111の主面に対して平行な平坦面となる。
次に、図2の(g)に示すように、フォトリソグラフィ法とドライエッチング法により、窒化物半導体積層構造体120に開口部160を設け、n型窒化物半導体層121を露出させる。
次に、図2の(h)に示すように、フォトリソグラフィ法と真空蒸着法を用いて、p型窒化物半導体層123に電気的に接続される形で透明電極141およびp電極142を形成する。また、n型窒化物半導体層121に電気的に接続される形でn電極143を形成する。
最後に、図示しないが、ブレードを用いたダイシングによりチップ分離を行うことで、窒化物半導体発光素子を形成する。
以上により、クラックの発生が抑制され、面内均一性の高い、高発光効率の窒化物半導体発光素子を製造することができる。
(実施形態2)
次に、本発明の実施形態2に係る窒化物半導体発光素子について、図3を用いて説明する。図3は、本発明の実施形態2に係る窒化物半導体発光素子の構造を示す断面図である。
次に、本発明の実施形態2に係る窒化物半導体発光素子について、図3を用いて説明する。図3は、本発明の実施形態2に係る窒化物半導体発光素子の構造を示す断面図である。
図3に示すように、本発明の実施形態2に係る窒化物半導体発光素子200は、第3の基板215上に積層された反射層280上に、p型窒化物半導体層223(第2の窒化物半導体層)、発光層222(第1の発光層)、およびn型窒化物半導体層221(第1の窒化物半導体層)からなる窒化物半導体積層構造体220が積層された構造となっている。第3の基板215および反射層280は、導電性を有する。
窒化物半導体積層構造体220において、n型窒化物半導体層221には、凹凸構造の凹凸面230が形成されている。
n型窒化物半導体層221上には、n型窒化物半導体層221と電気的に接続されるようにn電極243が形成されている。また、第3の基板215には、反射層280が設けられている面とは逆の面に、p電極242が形成されている。
上記の構成において、窒化物半導体積層構造体220は、例えばMgがドープされたGaNからなるp型窒化物半導体層223、例えば波長470nmを中心とする青色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる発光層222、例えばSiがドープされたGaNからなるn型窒化物半導体層221により構成される。反射層280は、例えばAgやAl等の波長470nm付近に対して反射率の高い金属により構成される。p電極242は、例えばTi、Al、Ni、Au等の金属の多層膜で構成される。n電極243は、例えばTi、Al、Ni、Au等の金属の多層膜で構成される。
また、n型窒化物半導体層221に形成された凹凸面230の凹凸構造は、同じ形状の凹部と凸部とが周期的に形成された構造であることが望ましい。
次に、本発明の実施形態2に係る窒化物半導体発光素子200の製造方法について、図4を用いて説明する。図4は、本発明の実施形態2に係る窒化物半導体発光素子200の製造方法における各工程の構成を模式的に示した断面図である。
図4の(a)に示すように、まず、Si単結晶からなる第1の基板211と、Si単結晶からなる第2の基板213とを絶縁層212を介して接合させる。このとき、第2の基板213の主面が、シリコンの(111)面とは異なる面方位となるように構成されている。このとき、絶縁層212の材料は、絶縁層212の熱膨張係数が後で積層するn型窒化物半導体層221の熱膨張係数よりも大きくなるように構成されている。本実施形態では、実施形態1と同様に、熱膨張係数が8~10×10-6/KであるSiO2を用いた。
次に、熱酸化法やプラズマCVD法などにより、第2の基板213上にシリコン酸化膜またはシリコン窒化膜からなる第1のマスク250を形成する。その後、図4の(b)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、ストライプ状の開口を有するように第1のマスク250をパターニングして、第2の基板213を露出させる。
次に、図4の(c)に示すように、第2の基板213に対して、例えばKOHやTMAHによりウェットエッチングを施し、第2の基板213に当該第2の基板213を貫通する開口を形成して凹部を構成することにより、島状の凸部を有する凹凸構造を形成する。これにより、第2の基板213の開口において絶縁層212を露出させる。このとき、第2の基板213の凹凸構造における凸部(凹部)の側面は傾斜面となり、その面方位はSiの(111)面となる。
次に、図4の(d)に示すように、例えばHFによるウェットエッチングにより、第1のマスク250を除去する。
次に、図4の(e)に示すように、スパッタリング法や真空蒸着法を用いて、第2の基板213に形成した凹凸構造における凸部(凹部)の両側面のうち、一方の傾斜面を第2のマスク251で被覆する。このとき、第2の基板213の主面(上面)も第2のマスク251で被覆する。
次に、図4の(f)に示すように、MOCVD法により、第2の基板213における凹凸構造の複数の開口(凹部)を埋めるようにして、絶縁層212の表面上および第2の基板213上にn型窒化物半導体層221を形成し、引き続き、発光層222およびp型窒化物半導体層223を形成する。
このとき、n型窒化物半導体層221は、露出する第2の基板213、すなわち、第2の基板213の凹凸構造の各凸部(凹部)における側面の面方位に従って結晶成長し、各開口において結晶成長が進行することにより、第2のマスク251上にも形成され、その後、隣り合う開口の側面から結晶成長したn型窒化物半導体層221同士が接合する。これにより、上面が第1の基板211の主面に対して平行な平坦面となる1つのn型窒化物半導体層221が成膜される。また、この後に結晶成長される発光層222とp型窒化物半導体層223の上面も、その上面は第1の基板211の主面に対して平行な平坦面となる。
次に、図4の(g)に示すように、p型窒化物半導体層223上に反射層280を介して第3の基板215を貼り合わせる。その後、第3の基板215上に真空蒸着法によりp電極242を積層する。
次に、(g)に示す窒化物半導体の積層構造体を反転させて、図4の(h)に示すように、例えばClF3ガスによるドライエッチングや、フッ硝酸によるウェットエッチング等を用いて、第1の基板211、絶縁層212および第2の基板213を除去する。これにより、表面に凹凸面230が形成されたn型窒化物半導体層221を形成することができる。
次に、図4の(i)に示すように、フォトリソグラフィ法と真空蒸着法により、n型窒化物半導体層221と電気的に接するようにしてn電極243を形成する。
最後に、図示しないが、ブレードを用いたダイシングによりチップ分離を行うことで、窒化物半導体発光素子を形成する。
以上により、本発明の実施形態2に係る窒化物半導体発光素子200を製造することができる。
このように、本発明の実施形態2に係る窒化物半導体発光素子200によれば、第1の基板211とn型窒化物半導体層221との間に、熱膨張係数がn型窒化物半導体層221よりも大きい絶縁層212を挿入してn型窒化物半導体層221を結晶成長している。これにより、実施形態1と同様に、第1の基板211とn型窒化物半導体層221との熱膨張係数の差によって生じるn型窒化物半導体層221の応力歪を緩和することができる。従って、n型窒化物半導体層221に加えられる応力を低減することができるので、n型窒化物半導体層221においてクラックが発生することを抑制することができる。
さらに、本実施形態に係る窒化物半導体発光素子200によれば、第2の基板213に設けた凹凸構造によってn型窒化物半導体層221に凹凸面230を形成している。これにより、第2の基板213に設けた凹凸構造における凹部の深さ(または凸部の高さ)によってn型窒化物半導体層221の凹凸面230における凸部の高さ(または凹部の深さ)で制御することができる。つまり、第2の基板213の厚さによってn型窒化物半導体層221の凹凸面230における凸部の高さ(または凹部の深さ)を制御することができる。従って、第2の基板213の凹凸構造における凹部の深さが浅くなるように第2の基板213の厚さを薄く制御して、第2の基板213とn型窒化物半導体層221との接触面積を減少させることができる。その結果、n型窒化物半導体層221に加えられる応力を低減することができるので、n型窒化物半導体層221におけるクラックの発生を抑制することができる。
また、本実施形態に係る窒化物半導体発光素子200において、n型窒化物半導体層221に凹凸面230を形成する場合、第1の基板211、絶縁層212および第2の基板213の積層構造を用いている。これにより、第2の基板213に凹凸構造を形成する際、絶縁層212を、例えばKOHやTMAHによるアルカリウェットエッチングに対して、エッチングストップ層として機能させることができる。その結果、第2の基板213の凹凸構造を、高い面内均一性で精度良く形成することができるので、当該凹凸構造の形状に従って形成されるn型窒化物半導体層221の凹凸面230、また、発光層222およびp型窒化物半導体層223も高い面内均一性で成膜することができる。
また、本実施形態に係る窒化物半導体発光素子200において、第2の基板213の主面の面方位は、Siの(100)面から7°オフした面、Si(113)面、Si(112)、またはSi(110)面とすることが好ましい。この場合、第2の基板213の凹凸構造における凸部(凹部)の側面をSi(111)面とすることにより、当該Si(111)面上に選択的に窒化物半導体積層構造体220の各層を順次結晶成長させたときに、窒化物半導体積層構造体220の各層の主面を窒化ガリウムのc面に対して傾斜した非極性面とすることができる。特に、n型窒化物半導体層221の主面は、それぞれ窒化ガリウムの(1-101)面、(11-22)面、(1-100)面、(11-20)面とすることができる。このように、窒化物半導体積層構造体220の各層の主面を窒化ガリウムのc面に対して傾斜した非極性面とすることにより、発光層222内のピエゾ電界を低減することができる。この結果、発光層222内での電子と正孔の空間的な分離を改善することができるので、発光効率を向上させることができる。
また、本実施形態に係る窒化物半導体発光素子200において、n型窒化物半導体層221に設けられた凹凸面230を周期的な構造とすることにより、発光層222から放出された光を窒化物半導体積層構造体220の外部に取り出す効率(光の取り出し効率)を向上させることができる。なお、凹凸面230の周期的な構造は、第2の基板213の凹凸構造を周期的な構造とすることにより形成することができる。
以上により、本実施形態においても、クラックの発生が抑制され、面内均一性の高い、発光効率の高い窒化物半導体発光素子を製造することができる。
(実施形態3)
まず、本発明の実施形態1に係る窒化物半導体発光素子について、図5Aおよび図5Bを用いて説明する。図5Aは、本発明の実施形態3に係る窒化物半導体発光素子の構造を示す断面図である。図5Bは、本発明の実施形態3に係る窒化物半導体発光素子の斜視図である。なお、図5B)は、図5Aにおいて、第1のn電極343、第1のp電極342、第2のn電極345および第2のp電極344が形成される前の状態を示している。
まず、本発明の実施形態1に係る窒化物半導体発光素子について、図5Aおよび図5Bを用いて説明する。図5Aは、本発明の実施形態3に係る窒化物半導体発光素子の構造を示す断面図である。図5Bは、本発明の実施形態3に係る窒化物半導体発光素子の斜視図である。なお、図5B)は、図5Aにおいて、第1のn電極343、第1のp電極342、第2のn電極345および第2のp電極344が形成される前の状態を示している。
図5Aおよび図5Bに示すように、本発明の実施形態3に係る窒化物半導体発光素子300は、Si(シリコン)単結晶からなる第1の基板311、絶縁層312、およびSi単結晶からなる第2の基板313がこの順で積層された構造の凹凸基板310を有する。
ここで、凹凸基板310は、第2の基板313が絶縁層312を露出するようにして島状に形成された凹凸構造を有する第1の領域と、第2の基板313が存在せず、絶縁層312が第1の基板311を部分的に露出させるようにして形成された第2の領域とからなる。
第1の領域において、第2の基板313の凹凸構造における凸部の両側面のうち、一方の側面(第1の側面)はSi(111)面が露出しており、他方の側面(第2の側面)は第2のマスク301で覆われている。また、凹凸構造における凹部は、当該凹部の底部が絶縁層312の表面となるように形成されている。従って、本実施形態において、凹部の底部を構成する材料は、絶縁層312である。
第1の領域における第2の基板313上には、第1のn型半導体層321(第1の窒化物半導体層)、第1の発光層322、および第1のp型半導体層323(第2の窒化物半導体層)がこの順に積層された構造の第1の窒化物半導体積層構造体320が形成されている。第1のn型半導体層321は、第1の領域における凹凸構造の凹部を埋めるようにして、第1の基板311の主面に対して平行に平坦成長されている。
第1の窒化物半導体積層構造体320には第1のn型半導体層321が露出するような開口が設けられ、第1のn型半導体層321および第1のp型半導体層323上に、それぞれ第1のn電極(第1のn型電極)343および第1のp電極(第1のp型電極)342がそれぞれ電気的に接続されるように形成されている。
さらに、第1のp型半導体層323にはリッジが形成されており、第1のn電極343と第1のp電極342の間に高電流を注入することにより、第1の発光層322から、所望の波長のレーザ光が発せられる。
一方、凹凸基板310の第2の領域においては、絶縁層312に開口部302が設けられている。開口部302は、複数の開口からなり、第1の基板311の主面である平坦面が部分的に露出するように形成されている。
第2の領域における開口部302上には、第2のn型半導体層331(第3の窒化物半導体層)、第2の発光層332、および第2のp型半導体層333(第4の窒化物半導体層)がこの順に積層された構造の第2の窒化物半導体積層構造体330が形成されている。
第2の窒化物半導体積層構造体330には第2のn型半導体層331が露出するような開口が設けられ、第2のn型半導体層331および第2のp型半導体層333上に、それぞれ第2のn電極(第2のn型電極)345および第2のp電極344(第2のp型電極)がそれぞれ電気的に接続されるように形成されている。
さらに、第2のp型半導体層333にはリッジが形成されており、第2のn電極345と第2のp電極344の間に高電流を注入することにより、第2の発光層332から、所望の波長のレーザ光が発せられる。
第1の領域上に形成された第1の窒化物半導体積層構造体320と第2の領域上に形成された第2の窒化物半導体積層構造体330とは、同一の凹凸基板310上に形成されるが、第1の窒化物半導体積層構造体320の下層にある絶縁層312によって絶縁されている。第1の窒化物半導体積層構造体320と第2の窒化物半導体積層構造体330とは素子分離されており、中心波長の異なる光を発する。
上記の構成において、第1の窒化物半導体積層構造体320は、例えばMg(マグネシウム)がドープされたGaN(窒化ガリウム)からなる第1のp型半導体層323、例えば波長470nmを中心とする青色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第1の発光層322、例えばSiがドープされたGaNからなる第1のn型半導体層321により構成されている。第1のp電極342は、例えばTi(チタン)、Al(アルミニウム)、Ni(ニッケル)、Au(金)等の金属の多層膜で構成される。第1のn電極343は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第1のp型半導体層323および第1の発光層322の一部を選択的に除去することで露出した第1のn型半導体層321に接する形で形成されている。
また、上記の構成において、第2の窒化物半導体積層構造体330は、例えばMgがドープされたGaNからなる第2のp型半導体層333、例えば波長530nmを中心とする緑色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第2の発光層332、例えばSiがドープされたGaNからなる第2のn型半導体層331により構成されている。第2のp電極344は、例えばTi、Al、Ni、Au等の金属の多層膜で構成される。第2のn電極345は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第2のp型半導体層333および第2の発光層332の一部を選択的に除去することで露出した第2のn型半導体層331に接する形で形成されている。
また、絶縁層312は、SiO2(シリコン酸化膜)からなることが好ましい。また、第2の基板313の主面は、Siの(100)7°オフ面、(113)面、(112)面、または(110)面であることが好ましい。また、第2の基板313に設けられた凹凸構造は、周期的な構造であることが望ましい。また、開口部302は、開口と絶縁層312とが交互に配置された周期的な構造となることが望ましい。
また、第2のマスク301は、SiO2またはSiO2とTiO2などの誘電体からなる多層膜であることが望ましい。
次に、このように構成された本発明の実施形態3に係る窒化物半導体発光素子300の動作について説明する。
本発明の実施形態3に係る窒化物半導体発光素子300のように、異なる二つの面方位(例えば、(111)面と(100)7°オフ面)を有するSi基板上にGaN結晶を成長させると、それぞれの面方位に対してGaN結晶の成長面が異なる。例えばSi(111)面上にはGaNの(0001)面が成長し、Si(100)7°オフ面上にはGaNの(1-101)面が成長する。したがって、異なる面方位のGaN結晶を、間隔を狭く、それぞれ基板の主面に対して平行に平坦面成長することが可能となる。この平坦面上には、フォトリソグラフィやドライエッチングなどの一般的な半導体プロセスを用いて、微細なパターン形成が可能であるため、電流注入を改善するための微細電極パターンや、光取り出し効率を改善するための微細凹凸パターンを容易に形成することができ、これにより、窒化物半導体発光素子の発光効率を向上させることができる。この結果、高発光効率で、発光点間隔が狭い窒化物半導体発光素子を実現できる。
また、異なる二つの成長面上では、例えばInGaNからなる発光層においては、In(インジウム)の取り込み効率が異なる。例えば同一の成長条件では、GaNの(0001)面上のInGaN発光層よりもGaNの(1-101)面上のInGaN発光層の方がInの取り込み効率が低い。そのため、GaNの(0001)面上のInGaN発光層の発光波長よりもGaNの(1-101)面上のInGaN発光層の発光波長の方が長波長となる。この結果、一度の結晶成長で、複数の異なる発光波長のピークを持つ窒化物半導体発光素子を実現できる。
また、第1の窒化物半導体積層構造体320と第2の窒化物半導体積層構造体330は電気的に接しておらず、第1のn電極343および第1のp電極342と、第2のn電極345および第2のp電極344とをそれぞれ独立に形成することができる。そのため、互いに異なる発光波長を発する第1の窒化物半導体積層構造体320と第2の窒化物半導体積層構造体330とをそれぞれ独立に駆動可能な窒化物半導体発光素子を実現できる。
また、第2の基板313の主面を、Siの(100)7°オフ面、(113)面、(112)面、または(110)面とし、この主面上と、第2の基板313の凸部の側面に現れたSi(111)面上とに、選択的に第1の窒化物半導体積層構造体320を結晶成長させることにより、第1の窒化物半導体積層構造体320の主面をGaN(0001)面に対して傾斜した非極性面とすることができる。そのため、第1の発光層322内のピエゾ電界を低減することができる。その結果、第1の発光層322内での電子と正孔の空間的な分離を改善することができ、発光効率を向上させることができる。
また、第2の基板313に設けられた凹凸構造を周期的な構造とすることにより、第1の発光層322から放出された光を第1の窒化物半導体積層構造体320の外部へ効率よく取り出すことができる。
また、本実施形態では、結晶成長する面方位が異なっており、一般的には凹凸構造を有する第1の窒化物半導体積層構造体320よりも第2の窒化物半導体積層構造体330の方が基板垂直方向への成長速度が速い。そのため、成長初期は、凹凸構造の厚みの分だけ第1の窒化物半導体積層構造体320の方が第2の窒化物半導体積層構造体330よりも厚いが、平坦面の結晶成長が進むにつれて上記成長速度の差によって二つの成長面間の段差は小さくなる。したがって、より微細なパターンを形成することが可能となり、その結果、高発光効率の窒化物半導体発光素子を実現できる。
以上により、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を実現できる。
なお、本実施形態に係る窒化物半導体発光素子300では、実施形態1に係る窒化物半導体発光素子100と同様に、絶縁層312の熱膨張係数が第1のn型半導体層321や第2のn型半導体層331の熱膨張係数よりも大きくなるように構成されているので、第1のn型半導体層321や第2のn型半導体層331においてクラックが発生することを抑制することができる。
次に、本発明の実施形態3に係る窒化物半導体発光素子300の製造方法について、図6を用いて説明する。図6は、本発明の実施形態3に係る窒化物半導体発光素子の製造方法における各工程の構成を模式的に示した断面図である。
図6の(a)に示すように、まず、Si単結晶からなる第1の基板311と、Si単結晶からなる第2の基板313とを、例えばSiO2からなる絶縁層312を介して接合させる。このとき、第2の基板313の主面が、シリコンの(111)面とは異なる面方位となるように構成されている。
次に、熱酸化法やプラズマCVD(Chemical Vapor Deposition)法などにより、第2の基板313上にシリコン酸化膜またはシリコン窒化膜からなる第1のマスク314を形成する。その後、図6の(b)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、第1の領域となる部分において、ストライプ状の開口を有するように第1のマスク314をパターニングして、第2の基板313を露出させる。なお、第2の領域となる部分においては、第1のマスク314は全てエッチング除去される。
次に、図6の(c)に示すように、第2の基板313に対して、例えばKOH(水酸化カリウム)やTMAH(水酸化テトラメチルアンモニウム)によりウェットエッチングを施し、第2の基板313に開口を形成して、島状の凸部を有する凹凸構造を形成する。これにより、第2の基板313の開口において絶縁層312を露出させる。このとき、第2の基板313の凸部の側面は傾斜面となり、その面方位はSiの(111)面となる。なお、第2の領域においては、第2の基板313は全て除去される。
次に、図6の(d)に示すように、例えばHF(フッ酸)によるウェットエッチングにより、第1のマスク314を除去する。これにより、第1の領域における凹凸構造を形成することができる。
次に、図6の(e)に示すように、スパッタリング法や真空蒸着法を用いて、第2の基板313に形成した凹凸構造における凸部の両側面のうち、一方の傾斜面を第2のマスク301で被覆する。
次に、図6の(f)に示すように、第2の基板313が除去されて凹凸構造のない第2の領域において、フォトリソグラフィ法やドライエッチング法により、絶縁層312を選択的に除去して絶縁層312に複数の開口を形成する。これにより、絶縁層312に開口部302が形成され、開口部分の第1の基板311が露出する。このとき、開口部302の開口は周期的に形成することが望ましい。
次に、図6の(g)に示すように、MOCVDにより、第2の基板313の凹凸構造を有する第1の領域上、および、開口部302が形成された第2の領域上に、それぞれ第1のn型半導体層321と第2のn型半導体層331を形成する。このとき、第1の領域において、第1のn型半導体層321は、露出する第2の基板313、すなわち、第2の基板313の主面と凸部の側面の面方位に従って(図中の斜め矢印方向に)結晶成長するとともに、第1の基板311の主面に対して平行に平坦成長する。また、第2の領域においては、第2のn型半導体層331は、露出する第1の基板311の主面に従って(図中の上向き矢印方向に)、第1の基板311の主面に対して平行に平坦成長する。この場合、第1のn型半導体層321よりも第2のn型半導体層331の方が、主面に垂直方向の成長レートが速い。したがって、二つの成長面間の段差は、二つの半導体層の結晶成長が進むに従って小さくなる。
続いて、図6の(h)に示すように、MOCVDにより、第1のn型半導体層321上には第1の発光層322および第1のp型半導体層323を、第2のn型半導体層331上には第2の発光層332および第2のp型半導体層333を、それぞれ形成する。
次に、図6の(i)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、第1のp型半導体層323および第2のp型半導体層333にリッジを形成する。また、同様に、第1のn型半導体層321および第2のn型半導体層331が露出するように、それぞれ選択的に開口を形成する。
次に、図6の(j)に示すように、フォトリソグラフィ法と真空蒸着法を用いて、第1のn型半導体層321に電気的に接続される形で第1のn電極343を形成し、また、第1のp型半導体層323に電気的に接続される形で第1のp電極342を形成する。さらに、第2のn型半導体層331に電気的に接続される形で第2のn電極345を形成し、また、第2のp型半導体層333に電気的に接続される形で第2のp電極344を形成する。
最後に、図示しないが、ブレードを用いたダイシング、またはへき開によりチップ分離を行うことで、窒化物半導体発光素子を形成する。
以上により、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を製造することができる。
(実施形態4)
次に、本発明の実施形態4に係る窒化物半導体発光素子について、図7を用いて説明する。図7は、本発明の実施形態4に係る窒化物半導体発光素子の構造を示す断面図である。
次に、本発明の実施形態4に係る窒化物半導体発光素子について、図7を用いて説明する。図7は、本発明の実施形態4に係る窒化物半導体発光素子の構造を示す断面図である。
図7に示すように、本発明の実施形態4に係る窒化物半導体発光素子400は、Si単結晶からなる第1の基板411、絶縁層412、およびSi単結晶からなる第2の基板413がこの順に積層された構造の凹凸基板410を有する。
ここで、凹凸基板410は、第2の基板413が絶縁層412を露出するようにして島状に形成された凹凸構造を有する第1の領域と、第2の基板413が存在せず絶縁層412が第1の基板411を露出するようにして形成された第2の領域とからなる。
第1の領域において、第2の基板413の凹凸構造における凸部の両側面のうち、一方の側面(第1の側面)はSi(111)面が露出しており、他方の側面(第2の側面)は第2のマスク401で覆われている。また、凹凸構造における凹部は、当該凹部の底部が絶縁層412の表面となるように形成されている。従って、本実施形態において、凹部の底部を構成する材料は、絶縁層412である。
第1の領域における第2の基板413上には、第1のn型半導体層421(第1の窒化物半導体層)、第1の発光層422、および第1のp型半導体層423(第2の窒化物半導体層)がこの順に積層された構造の第1の窒化物半導体積層構造体420が形成されている。第1のn型半導体層421は、第1の領域における凹凸構造の凹部を埋めるようにして、第1の基板411の主面に対して平行に平坦成長されている。
第1の窒化物半導体積層構造体420には第1のn型半導体層421が露出するような開口が設けられ、第1のn型半導体層421および第1のp型半導体層423上に、それぞれ第1のn電極443および第1のp電極442がそれぞれ電気的に接続されるように形成されている。
本実施形態においては、さらに、第1のp型半導体層423の上面には周期的な凹凸を有する第1の発光面451が形成されている。
一方、凹凸基板410の第2の領域においては、絶縁層412に開口部402が設けられている。開口部402は、単一開口からなり、第1の基板411の主面である平坦面が露出するように形成されている。
第2の領域における開口部402上には、第2のn型半導体層431(第3の窒化物半導体層)、第2の発光層432、および第2のp型半導体層433(第4の窒化物半導体層)がこの順に積層された構造の第2の窒化物半導体積層構造体430が形成されている。
第2の窒化物半導体積層構造体430には第2のn型半導体層431が露出するような開口が設けられ、第2のn型半導体層431および第2のp型半導体層433上に、それぞれ第2のn電極445および第2のp電極444がそれぞれ電気的に接続されるように形成されている。
本実施形態においては、さらに、第2のp型半導体層433の上面には周期的な凹凸を有する第2の発光面452が形成されている。
第1の領域上に形成された第1の窒化物半導体積層構造体420と第2の領域上に形成された第2の窒化物半導体積層構造体430とは、同一の凹凸基板410上に形成されるが、第1の窒化物半導体積層構造体420の下層にある絶縁層412によって絶縁されている。第1の窒化物半導体積層構造体420と第2の窒化物半導体積層構造体430とは素子分離されており、中心波長の異なる光を発する。
上記の構成において、第1の窒化物半導体積層構造体420は、例えばMgがドープされたGaNからなる第1のp型半導体層423、例えば波長470nmを中心とする青色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第1の発光層422、例えばSiがドープされたGaNからなる第1のn型半導体層421により構成されている。第1のp電極442は、例えばTi、Al、Ni、Au等の金属の多層膜で構成される。第1のn電極443は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第1のp型半導体層423および第1の発光層422の一部を選択的に除去することで露出した第1のn型半導体層421に接する形で形成されている。
また、上記の構成において、第2の窒化物半導体積層構造体430は、例えばMgがドープされたGaNからなる第2のp型半導体層433、例えば波長530nmを中心とする緑色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第2の発光層432、例えばSiがドープされたGaNからなる第2のn型半導体層431により構成されている。第2のp電極444は、例えばTi、Al、Ni、Au等の金属の多層膜で構成される。第2のn電極445は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第2のp型半導体層433および第2の発光層432の一部を選択的に除去することで露出した第2のn型半導体層431に接する形で形成されている。
また、絶縁層412は、SiO2からなることが好ましい。また、第1のp電極442と第1のp型半導体層423の間には、例えばITO(インジウムスズ酸化物)からなる透明電極が挿入されていることが望ましい。また、第2のp電極444と第2のp型半導体層433の間には、例えばITOからなる透明電極が挿入されていることが望ましい。さらに、ITOからなる透明電極に凹凸構造が設けられていることが望ましい。
また、第2の基板413の主面は、Siの(100)7°オフ面、(113)面、(112)、または(110)面であることが好ましい。また、第2の基板413に設けられた凹凸構造は、周期的な構造であることが望ましい。また、開口部402は、実施の形態1のように、開口と絶縁層412が交互に配置された周期的な構造となっていてもよい。
また、第2のマスク401は、SiO2またはSiO2とTiO2などの誘電体からなる多層膜であることが望ましい。
次に、このように構成された本発明の実施形態4に係る窒化物半導体発光素子400の動作について説明する。
本発明の実施形態4に係る窒化物半導体発光素子400は、実施形態3と同様に、凹凸構造を有する第1の領域と平坦面を有する第2の領域とを含む凹凸基板410を備える。したがって、異なる面方位のGaN結晶を、間隔を狭く、それぞれ基板の主面に対して平行に平坦面成長することが可能となる。この平坦面上には、フォトリソグラフィやドライエッチングなどの一般的な半導体プロセスを用いて、微細なパターン形成が可能であるため、電流注入を改善するための微細電極パターンや、光取り出し効率を改善するための微細凹凸パターンを容易に形成することができ、これにより、窒化物半導体発光素子の発光効率を向上させることができる。例えば、図7に示すように、第1の発光面451および第2の発光面452に周期的な凹凸パターンを形成することで、それぞれ第1の窒化物半導体積層構造体420および第2の窒化物半導体積層構造体430から効率よく光を取り出すことが可能となる。この結果、高発光効率で、発光点間隔が狭い窒化物半導体発光素子を実現できる。
また、実施形態3と同様に、異なる二つの成長面を有しており、Inの取り込み量を異ならせることができるので、一度の結晶成長で、複数の異なる発光波長のピークを持つ窒化物半導体発光素子を実現できる。
また、実施形態3と同様に、第1のn電極443および第1のp電極442と、第2のn電極445および第2のp電極444とをそれぞれ独立に形成している。したがって、互いに異なる発光波長を発する第1の窒化物半導体積層構造体420と第2の窒化物半導体積層構造体430とをそれぞれ独立に駆動可能な窒化物半導体発光素子を実現できる。
また、実施形態3と同様に、第1の領域において、選択的に第1の窒化物半導体積層構造体420を結晶成長させることができるので、第1の発光層422内のピエゾ電界を低減することができる。その結果、第1の発光層422内での電子と正孔の空間的な分離を改善することができ、発光効率を向上させることができる。
また、実施形態3と同様に、第2の基板413に設けられた凹凸構造を周期的な構造とすることにより、第1の発光層422から放出された光を第1の窒化物半導体積層構造体420の外部へ効率よく取り出すことができる。
また、実施形態3と同様に、第1の領域と第2の領域とにおける基板垂直方向の成長速度の差によって、二つの成長面間の段差が成長初期よりも小さくなる。したがって、より微細なパターンを形成することが可能となり、その結果、高発光効率の窒化物半導体発光素子を実現できる。
以上により、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を実現できる。
なお、本実施形態に係る窒化物半導体発光素子400では、実施形態1に係る窒化物半導体発光素子100と同様に、絶縁層412の熱膨張係数が第1のn型半導体層421や第2のn型半導体層431の熱膨張係数よりも大きくなるように構成されているので、第1のn型半導体層421や第2のn型半導体層431においてクラックが発生することを抑制することができる。
次に、本発明の実施形態4に係る窒化物半導体発光素子400の製造方法について、図8を用いて説明する。図8は、本発明の実施形態4に係る窒化物半導体発光素子の製造方法における各工程の構成を模式的に示した断面図である。
図8の(a)に示すように、まず、Si単結晶からなる第1の基板411と、Si単結晶からなる第2の基板413とを、例えばSiO2からなる絶縁層412を介して接合させる。このとき、第2の基板413の主面が、シリコンの(111)面とは異なる面方位となるように構成されている。
次に、熱酸化法やプラズマCVD法などにより、第2の基板413上にシリコン酸化膜またはシリコン窒化膜からなる第1のマスク414を形成する。その後、図8の(b)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、第1の領域となる部分において、ストライプ状の開口を有するように第1のマスク414をパターニングして、第2の基板413を露出させる。なお、第2の領域となる部分においては、第1のマスク414はエッチング除去される。
次に、図8の(c)に示すように、第2の基板413に対して、例えばKOHやTMAHによりウェットエッチングを施し、第2の基板413に島状の凸部を有する凹凸構造を形成する。これにより、第2の基板413の開口において絶縁層412を露出させる。このとき、第2の基板413の凸部の側面は傾斜面となり、その面方位はSiの(111)面となる。なお、第2の領域においては、第2の基板413は全て除去される。
次に、図8の(d)に示すように、例えばHFによるウェットエッチングにより、第1のマスク414を除去する。これにより、第1の領域における凹凸構造を形成することができる。
次に、図8の(e)に示すように、スパッタリング法や真空蒸着法を用いて、第2の基板413に形成した凹凸構造における凸部の両側面のうち、一方の傾斜面を第2のマスク401で被覆する。
次に、図8の(f)に示すように、第2の基板413が除去されて凹凸構造のない第2の領域において、フォトリソグラフィ法やドライエッチング法により、絶縁層412の一部を除去して絶縁層412に単一開口の開口部402を形成し、第1の基板411を露出させる。このとき、開口部402は複数の開口が周期的に配置された構造としてもよい。
次に、図8の(g)に示すように、MOCVDにより、第2の基板413の凹凸構造を有する第1の領域上、および、開口部402が形成された第2の領域上に、それぞれ第1のn型半導体層421と第2のn型半導体層431を形成する。このとき、第1の領域において、第1のn型半導体層421は、露出する第2の基板413、すなわち、第2の基板413の主面と凸部の側面の面方位に従って(図中の斜め矢印方向に)結晶成長するとともに、第1の基板411の主面に対して平行に平坦成長する。また、第2の領域においては、第2のn型半導体層431は、露出する第1の基板411の主面垂直方向に(図中の上向き矢印方向に)、第1の基板411の主面に対して平行に平坦成長する。この場合、第1のn型半導体層421よりも第2のn型半導体層431の方が、主面に垂直方向の成長レートが速い。したがって、二つの成長面間の段差は、二つの半導体層の結晶成長が進むに従って小さくなる。
続いて、図8の(h)に示すように、MOCVDにより、第1のn型半導体層421上には第1の発光層422および第1のp型半導体層423を、第2のn型半導体層431上には第2の発光層432および第2のp型半導体層433を、それぞれ形成する。
次に、図8の(i)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、第1のn型半導体層421および第2のn型半導体層431が露出するように、選択的に開口を形成する。
次に、図8の(j)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、第1のp型半導体層423に周期的な凹凸からなる第1の発光面451を、第2のp型半導体層433に周期的な凹凸からなる第2の発光面452を、それぞれ形成する。
次に、図8の(k)に示すように、フォトリソグラフィ法と真空蒸着法を用いて、第1のn型半導体層421に電気的に接続される形で第1のn電極443を形成し、また、第1のp型半導体層423に電気的に接続される形で第1のp電極442を形成する。さらに、第2のn型半導体層431に電気的に接続される形で第2のn電極445を形成し、また、第2のp型半導体層433に電気的に接続される形で第2のp電極444を形成する。
最後に、図示しないが、ブレードを用いたダイシングによりチップ分離を行うことで、窒化物半導体発光素子を形成する。
以上により、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を製造することができる。
(実施形態5)
次に、本発明の実施形態5に係る窒化物半導体発光素子について、図9Aおよび図9Bを用いて説明する。図9Aは、本発明の実施形態5に係る窒化物半導体発光素子の構造を示す断面図である。図9Bは、本発明の実施形態5に係る窒化物半導体発光素子の斜視図である。なお、図9Bは、図9Aにおいて、第1のn電極543、第1のp電極542、第2のn電極545および第2のp電極544が形成される前の状態を示している。
次に、本発明の実施形態5に係る窒化物半導体発光素子について、図9Aおよび図9Bを用いて説明する。図9Aは、本発明の実施形態5に係る窒化物半導体発光素子の構造を示す断面図である。図9Bは、本発明の実施形態5に係る窒化物半導体発光素子の斜視図である。なお、図9Bは、図9Aにおいて、第1のn電極543、第1のp電極542、第2のn電極545および第2のp電極544が形成される前の状態を示している。
図9Aおよび図9Bに示すように、本発明の実施形態5に係る窒化物半導体発光素子500は、(11-20)面を主面とするサファイア基板からなり、周期的な凹凸構造を有する第1の領域501と、平坦面である第2の領域502とから構成されている凹凸基板510を備える。凹凸構造の凸部における側面は、(0001)面となっている。また、凹凸構造における凹部は、サファイア基板をエッチングすることによって形成されている。従って、本実施形態において、凹部の底部を構成する材料は、サファイアである。
第1の領域501上には、第1のn型半導体層521(第1の窒化物半導体層)、第1の発光層522、および第1のp型半導体層523(第2の窒化物半導体層)がこの順に積層された構造の第1の窒化物半導体積層構造体520が形成されている。第1のn型半導体層521は、第1の領域501における凹凸構造の凹部を埋めるようにして、サファイア基板の主面に対して平行に平坦成長されている。
第1の窒化物半導体積層構造体520には第1のn型半導体層521が露出するような開口が設けられ、第1のn型半導体層521および第1のp型半導体層523上に、それぞれ第1のn電極543および第1のp電極542がそれぞれ電気的に接続されるように形成されている。
第1のp型半導体層523にはリッジが形成されており、第1のn電極543と第1のp電極542の間に高電流を注入することにより、第1の発光層522から、所望の波長のレーザ光が発せられる。
一方、第2の領域502上には、第2のn型半導体層531(第3の窒化物半導体層)、第2の発光層532、および第2のp型半導体層533(第4の窒化物半導体層)がこの順に積層された構造の第2の窒化物半導体積層構造体530が形成されている。
第2の窒化物半導体積層構造体530には第2のn型半導体層531が露出するような開口が設けられ、第2のn型半導体層531および第2のp型半導体層533上に、それぞれ第2のn電極545および第2のp電極544がそれぞれ電気的に接続されるように形成されている。
第2のp型半導体層533にはリッジが形成されており、第2のn電極545と第2のp電極544の間に高電流を注入することにより、第2の発光層532から、所望の波長のレーザ光が発せられる。
第1の領域501上に形成された第1の窒化物半導体積層構造体520と第2の領域502上に形成された第2の窒化物半導体積層構造体530とは、同一の凹凸基板510上に形成されるが、凹凸基板510は絶縁性のサファイア基板からなるので、第1の窒化物半導体積層構造体520と第2の窒化物半導体積層構造体530とは絶縁されている。第1の窒化物半導体積層構造体520と第2の窒化物半導体積層構造体530とは素子分離されており、中心波長の異なる光を発する。
上記の構成において、第1の窒化物半導体積層構造体520は、例えばMgがドープされたGaNからなる第1のp型半導体層523、例えば波長470nmを中心とする青色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第1の発光層522、例えばSiがドープされたGaNからなる第1のn型半導体層521により構成されている。第1のp電極542は、例えばTi、Al、Ni、Au等の金属の多層膜で構成される。第1のn電極543は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第1のp型半導体層523および第1の発光層522の一部を選択的に除去することで露出した第1のn型半導体層521に接する形で形成されている。
また、上記の構成において、第2の窒化物半導体積層構造体530は、例えばMgがドープされたGaNからなる第2のp型半導体層533、例えば波長530nmを中心とする緑色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第2の発光層532、例えばSiがドープされたGaNからなる第2のn型半導体層531により構成されている。第2のp電極544は、例えばTi、Al、Ni、Au等の金属の多層膜で構成される。第2のn電極545は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第2のp型半導体層533および第2の発光層532の一部を選択的に除去することで露出した第2のn型半導体層531に接する形で形成されている。
また、第1の領域501における凹凸構造の凸部(または凹部)の側面は、垂直であることが望ましい。
次に、このように構成された本発明の実施形態5に係る窒化物半導体発光素子500の動作について説明する。
本発明の実施形態5に係る窒化物半導体発光素子500においては、第1の領域501上にはGaNの(1-100)面が成長し、第2の領域502上にはGaNの(0001)面が成長する。したがって、実施形態3と同様に、異なる面方位のGaN結晶を、間隔を狭く、それぞれ基板の主面に対して平行に平坦面成長することが可能となる。この平坦面上には、フォトリソグラフィやドライエッチングなどの一般的な半導体プロセスを用いて、微細なパターン形成が可能であるため、電流注入を改善するための微細電極パターンや、光取り出し効率を改善するための微細凹凸パターンを容易に形成することができ、これにより、窒化物半導体発光素子の発光効率を向上させることができる。この結果、高発光効率で、発光点間隔が狭い窒化物半導体発光素子を実現できる。
また、実施形態3と同様に、異なる二つの成長面を有しており、Inの取り込み量を異ならせることができるので、一度の結晶成長で、複数の異なる発光波長のピークを持つ窒化物半導体発光素子を実現できる。
また、実施形態3と同様に、第1のn電極543および第1のp電極542と、第2のn電極545および第2のp電極544とをそれぞれ独立に形成している。したがって、互いに異なる発光波長を発する第1の窒化物半導体積層構造体520と第2の窒化物半導体積層構造体530とを、それぞれ独立に駆動可能な窒化物半導体発光素子を実現できる。
また、実施形態3と同様に、第1の領域501において、選択的に第1の窒化物半導体積層構造体520を結晶成長させることができるので、第1の発光層522内のピエゾ電界を低減することができる。その結果、第1の発光層522内での電子と正孔の空間的な分離を改善することができ、発光効率を向上させることができる。
また、実施形態3と同様に、第1の領域501における凹凸構造を周期的な構造とすることにより、第1の発光層522から放出された光を第1の窒化物半導体積層構造体520の外部へ効率よく取り出すことができる。
以上により、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を実現できる。
なお、本実施形態に係る窒化物半導体発光素子500において、凹凸基板510における凹部(サファイア)の熱膨張係数を第1のn型半導体層521や第2のn型半導体層531の熱膨張係数よりも大きくなるように構成することにより、実施形態1に係る窒化物半導体発光素子100と同様に、第1のn型半導体層521や第2のn型半導体層531においてクラックが発生することを抑制することができる。
次に、本発明の実施形態5に係る窒化物半導体発光素子500の製造方法について、図10を用いて説明する。図10は、本発明の実施形態5に係る窒化物半導体発光素子の製造方法における各工程の構成を模式的に示した断面図である。
図10の(a)に示すように、まず、(11-20)を主面とするサファイア基板510S上に、スパッタリング法やプラズマCVD法を用いて、マスク514を形成する。
次に、図10の(b)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、第1の領域501となる部分において、ストライプ状の開口を有するようにマスク514をパターニングして、サファイア基板510Sを露出させる。なお、第2の領域502となる部分においては、マスク514はエッチング除去されない。
次に、図10の(c)に示すように、サファイア基板510S上にドライエッチングを施すことにより、サファイア基板510Sに凹凸構造を形成する。このとき、凹凸構造の凸部の側面が(0001)面となるように形成する。
次に、図10の(d)に示すように、例えばHFによるウェットエッチングにより、マスク514を除去する。これにより、凹凸構造を有する第1の領域501と平坦面である第2の領域502とを含む凹凸基板510を作製することができる。
次に、図10の(e)に示すように、MOCVDにより、第1の領域501上および第2の領域502上に、それぞれ第1のn型半導体層521と第2のn型半導体層531を形成する。このとき、第1の領域501において、第1のn型半導体層521は、凹凸構造の面方位に従って結晶成長するとともに、サファイア基板510Sの主面に対して平行に平坦成長する。また、第2の領域502においては、第2のn型半導体層531は、サファイア基板510Sの主面に対して平行に平坦成長する。
続いて、図10の(f)に示すように、MOCVDにより、第1のn型半導体層521上には第1の発光層522および第1のp型半導体層523を、第2のn型半導体層531上には第2の発光層532および第2のp型半導体層533を、それぞれ形成する。
次に、図10の(g)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、第1のp型半導体層523および第2のp型半導体層533にリッジを形成する。また、同様に、第1のn型半導体層521および第2のn型半導体層531が露出するように、選択的に開口を形成する。
次に、図10の(h)に示すように、フォトリソグラフィ法と真空蒸着法を用いて、第1のn型半導体層521に電気的に接続される形で第1のn電極543を形成し、また、第1のp型半導体層523に電気的に接続される形で第1のp電極542を形成する。さらに、第2のn型半導体層531に電気的に接続される形で第2のn電極545を形成し、また、第2のp型半導体層533に電気的に接続される形で第2のp電極544を形成する。
最後に、図示しないが、ブレードを用いたダイシング、またはへき開によりチップ分離を行うことで、窒化物半導体発光素子を形成する。
以上により、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を製造することができる。
(実施形態6)
次に、本発明の実施形態6に係る窒化物半導体発光素子について、図11を用いて説明する。図11は、本発明の実施形態6に係る窒化物半導体発光素子の構造を示す断面図である。
次に、本発明の実施形態6に係る窒化物半導体発光素子について、図11を用いて説明する。図11は、本発明の実施形態6に係る窒化物半導体発光素子の構造を示す断面図である。
図11に示すように、本発明の実施形態6に係る窒化物半導体発光素子600は、(11-20)面を主面とするサファイア基板からなり、周期的な凹凸構造を有する第1の領域601と、平坦面である第2の領域602とから構成されている凹凸基板610を備える。凹凸構造の凸部における側面は、(0001)面となっている。また、凹凸構造における凹部は、サファイア基板をエッチングすることによって形成されている。従って、本実施形態において、凹部の底部を構成する材料は、サファイアである。
第1の領域601上には、第1のn型半導体層621(第1の窒化物半導体層)、第1の発光層622、および第1のp型半導体層623(第2の窒化物半導体層)がこの順に積層された構造の第1の窒化物半導体積層構造体620が形成されている。第1のn型半導体層621は、第1の領域601における凹凸構造の凹部を埋めるようにして、サファイア基板の主面に対して平行に平坦成長されている。
第1の窒化物半導体積層構造体620には第1のn型半導体層621が露出するような開口が設けられ、第1のn型半導体層621および第1のp型半導体層623上に、それぞれ第1のn電極643および第1のp電極642がそれぞれ電気的に接続されるように形成されている。
本実施形態では、さらに、第1のp型半導体層623の上面には周期的な凹凸を有する第1の発光面651が形成されている。
一方、第2の領域602上には、第2のn型半導体層631(第3の窒化物半導体層)、第2の発光層632、および第2のp型半導体層633(第4の窒化物半導体層)がこの順に積層された構造の第2の窒化物半導体積層構造体630が形成されている。
第2の窒化物半導体積層構造体630には第2のn型半導体層631が露出するような開口が設けられ、第2のn型半導体層631および第2のp型半導体層633上に、それぞれ第2のn電極645および第2のp電極644がそれぞれ電気的に接続されるように形成されている。
本実施形態では、さらに、第2のp型半導体層633の上面には周期的な凹凸を有する第2の発光面652が形成されている。
第1の領域601上に形成された第1の窒化物半導体積層構造体620と第2の領域602上に形成された第2の窒化物半導体積層構造体630とは、同一の凹凸基板610上に形成されるが、凹凸基板610は絶縁性のサファイア基板からなるので、第1の窒化物半導体積層構造体620と第2の窒化物半導体積層構造体630とは絶縁されている。また、第1の窒化物半導体積層構造体620と第2の窒化物半導体積層構造体630とは素子分離されており、中心波長の異なる光を発する。
上記の構成において、第1の窒化物半導体積層構造体620は、例えばMgがドープされたGaNからなる第1のp型半導体層623、例えば波長470nmを中心とする青色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第1の発光層622、例えばSiがドープされたGaNからなる第1のn型半導体層621により構成されている。第1のp電極642は、例えばTi、Al、Ni、Au等の金属の多層膜で構成される。第1のn電極643は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第1のp型半導体層623および第1の発光層622の一部を選択的に除去することで露出した第1のn型半導体層621に接する形で形成されている。
また、上記の構成において、第2の窒化物半導体積層構造体630は、例えばMgがドープされたGaNからなる第2のp型半導体層633、例えば波長530nmを中心とする緑色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第2の発光層632、例えばSiがドープされたGaNからなる第2のn型半導体層631により構成されている。第2のp電極644は、例えばTi、Al、Ni、Au等の金属の多層膜で構成される。第2のn電極645は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第2のp型半導体層633および第2の発光層632の一部を選択的に除去することで露出した第2のn型半導体層631に接する形で形成されている。
また、第1の領域601における凹凸構造の凸部(または凹部)の側面は、垂直であることが望ましい。
次に、このように構成された本発明の実施形態6に係る窒化物半導体発光素子600の動作について説明する。
本発明の実施形態6に係る窒化物半導体発光素子600においては、実施形態5と同様に、凹凸構造を有する第1の領域601と平坦面である第2の領域602とを含む凹凸基板610を備えている。これにより、異なる面方位のGaN結晶を、間隔を狭く、それぞれ基板に対して平行に平坦面成長することが可能となる。この平坦面上には、フォトリソグラフィやドライエッチングなどの一般的な半導体プロセスを用いて、微細なパターン形成が可能であるため、電流注入を改善するための微細電極パターンや、光取り出し効率を改善するための微細凹凸パターンを容易に形成することができ、これにより、窒化物半導体発光素子の発光効率を向上させることができる。例えば、図11に示すように、第1の発光面651および第2の発光面652に周期的な凹凸パターンを形成することで、それぞれ第1の窒化物半導体積層構造体620および第2の窒化物半導体積層構造体630から効率よく光を取り出すことが可能となる。この結果、高発光効率で、発光点間隔が狭い窒化物半導体発光素子を実現できる。
また、実施形態3と同様に、異なる二つの成長面を有してInの取り込み量を異ならせることができるので、一度の結晶成長で、複数の異なる発光波長のピークを持つ窒化物半導体発光素子を実現できる。
また、実施形態3と同様に、第1のn電極643および第1のp電極642と、第2のn電極645および第2のp電極644とをそれぞれ独立に形成している。したがって、互いに異なる発光波長を発する第1の窒化物半導体積層構造体620と第2の窒化物半導体積層構造体630とをそれぞれ独立に駆動可能な窒化物半導体発光素子を実現できる。
また、実施形態3と同様に、第1の領域601において、選択的に第1の窒化物半導体積層構造体620を結晶成長させることができるので、第1の発光層622内のピエゾ電界を低減することができる。その結果、第1の発光層622内での電子と正孔の空間的な分離を改善することができ、発光効率を向上させることができる。
また、実施形態3と同様に、第1の領域601における凹凸構造を周期的な構造とすることにより、第1の発光層622から放出された光を第1の窒化物半導体積層構造体620の外部へ効率よく取り出すことができる。
以上により、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を実現できる。
なお、本実施形態に係る窒化物半導体発光素子600において、凹凸基板610における凹部(サファイア)の熱膨張係数を第1のn型半導体層621や第2のn型半導体層631の熱膨張係数よりも大きくなるように構成することにより、実施形態5に係る窒化物半導体発光素子100と同様に、第1のn型半導体層621や第2のn型半導体層631においてクラックが発生することを抑制することができる。
次に、本発明の実施形態6に係る窒化物半導体発光素子600の製造方法について、図12を用いて説明する。図12は、本発明の実施形態6に係る窒化物半導体発光素子の製造方法における各工程の構成を模式的に示した断面図である。
図12の(a)に示すように、まず、(11-20)を主面とするサファイア基板610S上に、スパッタリング法やプラズマCVD法を用いて、マスク614を形成する。
次に、図12の(b)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、第1の領域601となる部分において、ストライプ状の開口を有するようにマスク614をパターニングして、サファイア基板610Sを露出させる。なお、第2の領域602となる部分においては、マスク614はエッチング除去されない。
次に、図12の(c)に示すように、サファイア基板610S上にドライエッチングを施すことにより、サファイア基板610Sに凹凸構造を形成する。このとき、凹凸構造の凸部の側面が(0001)面となるように形成する。
次に、図12の(d)に示すように、例えばHFによるウェットエッチングにより、マスク614を除去する。これにより、凹凸構造を有する第1の領域601と平坦面である第2の領域602とを含む凹凸基板610を作製することができる。
次に、図12の(e)に示すように、MOCVDにより、第1の領域601上および第2の領域602上に、それぞれ第1のn型半導体層621と第2のn型半導体層631を形成する。このとき、第1の領域601において、第1のn型半導体層621は、凹凸構造の面方位に従って結晶成長するとともに、サファイア基板610Sの主面に対して平行に平坦成長する。また、第2の領域602においては、第2のn型半導体層631は、サファイア基板610Sの主面に対して平行に平坦成長する。
続いて、図12の(f)に示すように、MOCVDにより、第1のn型半導体層621上には第1の発光層622および第1のp型半導体層623を、第2のn型半導体層631上には第2の発光層632および第2のp型半導体層633を、それぞれ形成する。
次に、図12の(g)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、第1のn型半導体層621および第2のn型半導体層631が露出するように、選択的に開口を形成する。
次に、図12の(h)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、第1のp型半導体層623に周期的な凹凸からなる第1の発光面651を、第2のp型半導体層633に周期的な凹凸からなる第2の発光面652を、それぞれ形成する。
次に、図12の(i)に示すように、フォトリソグラフィ法と真空蒸着法を用いて、第1のn型半導体層621に電気的に接続される形で第1のn電極643を形成し、また、第1のp型半導体層623に電気的に接続される形で第1のp電極642を形成する。さらに、第2のn型半導体層631に電気的に接続される形で第2のn電極645を形成し、また、第2のp型半導体層633に電気的に接続される形で第2のp電極644を形成する。
最後に、図示しないが、ブレードを用いたダイシングによりチップ分離を行うことで、窒化物半導体発光素子を形成する。
以上により、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を製造することができる。
(実施形態7)
次に、本発明の実施形態7に係る窒化物半導体発光素子について、図13Aおよび図13Bを用いて説明する。図13Aは、本発明の実施形態7に係る窒化物半導体発光素子の構造を示す断面図である。図13Bは、本発明の実施形態7に係る窒化物半導体発光素子の実装状態を示す斜視図である。
次に、本発明の実施形態7に係る窒化物半導体発光素子について、図13Aおよび図13Bを用いて説明する。図13Aは、本発明の実施形態7に係る窒化物半導体発光素子の構造を示す断面図である。図13Bは、本発明の実施形態7に係る窒化物半導体発光素子の実装状態を示す斜視図である。
図13Aおよび図13Bに示すように、本発明の実施形態7に係る窒化物半導体発光素子700は、Si単結晶からなる第1の基板711、第1の絶縁層712、およびSi単結晶からなる第2の基板713がこの順に積層された構造の凹凸基板710上を有する。
ここで、凹凸基板710は、第2の基板713が第1の絶縁層712を露出するようにして島状に形成された凹凸構造を有する第1の領域と、第2の基板713が存在せず第1の絶縁層712が第1の基板711を部分的に露出させるようにして形成された第2の領域とからなる。
第1の領域において、第2の基板713の凹凸構造における凸部の両側面のうち、一方の側面(第1の側面)はSi(111)面が露出しており、他方の側面(第2の側面)は第2のマスク701で覆われている。また、凹凸構造における凹部は、当該凹部の底部が絶縁層712の表面となるように形成されている。従って、本実施形態において、凹部の底部を構成する材料は、第1の絶縁層712である。
第1の領域における第2の基板713上には、第1のn型半導体層721(第1の窒化物半導体層)、第1の発光層722、および第1のp型半導体層723(第1の窒化物半導体層)がこの順に積層された構造の第1の窒化物半導体積層構造体720が形成されている。第1のn型半導体層721は、第1の領域における凹凸構造の凹部を埋めるようにして、第1の基板711の主面に対して平行に平坦成長されている。
第1の窒化物半導体積層構造体720には第1のn型半導体層721が露出するような開口が設けられ、第1のn型半導体層721および第1のp型半導体層723上に、それぞれ第1のn電極743および第1のp電極742がそれぞれ電気的に接続されるように形成されている。
さらに、第1のp型半導体層723にはリッジが形成されており、第1のn電極743と第1のp電極742の間に高電流を注入することにより、第1の発光層722から、所望の波長のレーザが発せられる。
一方、凹凸基板710の第2の領域においては、第1の絶縁層712に開口部702が設けられている。開口部702は、複数の開口からなり、第1の基板711の主面である平坦面が部分的に露出するように形成されている。
第2の領域における開口部702上には、第2のn型半導体層731(第3の窒化物半導体層)、第2の発光層732、および第2のp型半導体層733(第4の窒化物半導体層)がこの順に積層された構造の第2の窒化物半導体積層構造体730が形成されている。
第2の窒化物半導体積層構造体730には第2のn型半導体層731が露出するような開口が設けられ、第2のn型半導体層731および第2のp型半導体層733上に、それぞれ第2のn電極745および第2のp電極744がそれぞれ電気的に接続されるように形成されている。
さらに、第2のp型半導体層733にはリッジが形成されており、第2のn電極745と第2のp電極744の間に高電流を注入することにより、第2の発光層732から、所望の波長のレーザ光が発せられる。
第1の領域上に形成された第1の窒化物半導体積層構造体720と第2の領域上に形成された第2の窒化物半導体積層構造体730とは、同一の凹凸基板710上に形成されるが、第1の窒化物半導体積層構造体720の下層にある第1の絶縁層712によって絶縁されている。第1の窒化物半導体積層構造体720と第2の窒化物半導体積層構造体730とは素子分離されており、中心波長の異なる光を発する。
そして、本実施形態では、さらに、第1のp型半導体層723および第2のp型半導体層733を覆うように、第2の絶縁層761が形成されている。第2の絶縁層761の上には、第1のp電極742および第2のp電極744と電気的に接続されるように、共通p電極770が形成されている。なお、第2の絶縁層761は、第1の窒化物半導体積層構造体720と第2の窒化物半導体積層構造体730とを素子分離する領域にも形成されている。
共通p電極770上には、当該共通p電極770と電気的に接続されるように第3のp電極746が形成されている。また、第3のp電極746が形成されていない共通p電極770上には第3の絶縁層762が形成されている。第3の絶縁層762上には、第3のn型半導体層751(第5の窒化物半導体層)、第3の発光層752、およびリッジが形成されている第3のp型半導体層753(第6の窒化物半導体層)が、上層からこの順に形成されている第3の窒化物半導体積層構造体750が設けられている。そして、第3のn型半導体層751に電気的に接続されるように第3のn電極747が形成されている。すなわち、本実施形態では、第1の窒化物半導体積層構造体720および第2の窒化物半導体積層構造体730の上に第3の窒化物半導体積層構造体750が積層された構造となっており、これら三つの半導体層は、互いに異なる中心波長の光を発するように構成される。
なお、図13Bに示すように、第1のn電極743、第2のn電極745、共通p電極770、および第3のn電極747は、それぞれ独立した電圧を供給することができるようにワイヤボンディング等によって所定の配線に電気的に接続されている。
上記の構成において、第1の窒化物半導体積層構造体720は、例えばMgがドープされたGaNからなる第1のp型半導体層723、例えば波長470nmを中心とする青色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第1の発光層722、例えばSiがドープされたGaNからなる第1のn型半導体層721により構成されている。第1のp電極742は、例えばTi、Al、Ni、Au等の金属の多層膜で構成される。第1のn電極743は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第1のp型半導体層723および第1の発光層722の一部を選択的に除去することで露出した第1のn型半導体層721に接する形で形成されている。
また、第2のマスク701は、SiO2またはSiO2とTiO2などの誘電体からなる多層膜であることが望ましい。
また、上記の構成において、第2の窒化物半導体積層構造体730は例えばMgがドープされたGaNからなる第2のp型半導体層733、例えば波長530nmを中心とする緑色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第2の発光層732、例えばSiがドープされたGaNからなる第2のn型半導体層731により構成されている。第2のp電極744は、例えばTi、Al、Ni、Au等の金属の多層膜で構成される。第2のn電極745は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第2のp型半導体層733および第2の発光層732の一部を選択的に除去することで露出した第2のn型半導体層731に接する形で形成されている。
また、上記の構成において、第3の窒化物半導体積層構造体750は、例えばZnがドープされたGaAsからなる第3のp型半導体層753と、例えば波長660nmを中心とする赤色発光を示すように調整された、AlGaInPとGaAsの多重量子井戸からなる第3の発光層752と、例えばSiがドープされたGaAsからなる第3のn型半導体層751により構成されている。また、共通p電極770と第3のp型半導体層753は、例えば貼り合わせにより接合されている。
次に、このように構成された本発明の実施形態7に係る窒化物半導体発光素子700の動作について説明する。
本発明の実施形態7に係る窒化物半導体発光素子700は、実施形態3の窒化物半導体発光素子300上に、例えば赤色領域の光を発する半導体発光素子を設けたものである。そのため、実施形態3と同様の効果を得ることができ、さらに、第3の波長の光を発することができる。したがって、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を実現できる。
なお、本実施形態に係る窒化物半導体発光素子700では、実施形態1に係る窒化物半導体発光素子100と同様に、第1の絶縁層712の熱膨張係数が第1のn型半導体層721や第2のn型半導体層731の熱膨張係数よりも大きくなるように構成されているので、第1のn型半導体層721や第2のn型半導体層731においてクラックが発生することを抑制することができる。
(実施形態8)
次に、本発明の実施形態8に係る窒化物半導体発光素子について、図14を用いて説明する。図14は、本発明の実施形態8に係る窒化物半導体発光素子の構造を示す断面図である。
次に、本発明の実施形態8に係る窒化物半導体発光素子について、図14を用いて説明する。図14は、本発明の実施形態8に係る窒化物半導体発光素子の構造を示す断面図である。
図14に示すように、本発明の実施形態8に係る窒化物半導体発光素子800は、第3の基板815の上に形成された共通反射層880を備える。共通反射層880の上には、第1のp型半導体層823(第2の窒化物半導体層)、第1の発光層822、および第1のn型半導体層821(第1の窒化物半導体層)がこの順に積層された第1の窒化物半導体積層構造体820と、第2のp型半導体層833(第4の窒化物半導体層)、第2の発光層832、および第2のn型半導体層831(第3の窒化物半導体層)がこの順に積層された第2の窒化物半導体積層構造体830とが、設けられている。
第1の窒化物半導体積層構造体820における第1のn型半導体層821には、凹凸構造の凹凸面810が形成されている。また、第1のn型半導体層821上には第1のn電極843が電気的に接続されるように形成されている。
第2の窒化物半導体積層構造体830における第2のn型半導体層831上には、第2のn電極845が電気的に接続されるように形成されている。
また、第3の基板815には、共通反射層880が設けられている面と逆の面に、共通p電極870が形成されている。
上記の構成において、第1の窒化物半導体積層構造体820は、例えばMgがドープされたGaNからなる第1のp型半導体層823、例えば波長470nmを中心とする青色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第1の発光層822、例えばSiがドープされたGaNからなる第1のn型半導体層821により構成されている。第1のn電極843は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第1のn型半導体層821に接する形で形成されている。
また、上記の構成において、第2の窒化物半導体積層構造体830は、例えばMgがドープされたGaNからなる第2のp型半導体層833、例えば波長530nmを中心とする緑色発光を示すように調整された、InGaNとGaNの多重量子井戸からなる第2の発光層832、例えばSiがドープされたGaNからなる第2のn型半導体層831により構成されている。第2のn電極845は、例えばTi、Al、Ni、Au等の金属の多層膜で構成され、第2のn型半導体層831に接する形で形成されている。
次に、このように構成された本発明の実施形態8に係る窒化物半導体発光素子800の動作について、図15A~図15Cを用いて説明する。図15Aは、本発明の実施形態8に係る窒化物半導体発光素子において、第1の窒化物半導体積層構造体820のみを動作させた状態(動作モードA)を示した断面図である。図15Bは、本発明の実施形態8に係る窒化物半導体発光素子において、第1の窒化物半導体積層構造体820と第2の窒化物半導体積層構造体830とを動作させた状態(動作モードB)を示した断面図である。図15Cは、動作モードAのときに得られる発光スペクトルA(破線)と動作モードBのときに得られる発光スペクトルB(実線)を示した図である。
なお、図15Aおよび図15Bにおいて、窒化物半導体発光素子800は、青色光を黄色光に変換する蛍光体891が含有された樹脂892で封止されている。
図15Aに示すように、動作モードAでは、第1の窒化物半導体積層構造体820からの青色光と、青色光を蛍光体によって変換した黄色光とが発せられる。この場合、図15Cに示すように、発光スペクトルAには赤色領域の光の強度が弱く、結果として演色性が低下する。
一方、図15Bに示すように、動作モードBでは、第1の窒化物半導体積層構造体820から発せられる青色光に加え、第2の窒化物半導体積層構造体830から発せられる、第1の窒化物半導体積層構造体820から発せられる光よりも長い波長の光、および青色光を蛍光体によって変換した黄色光が発せられる。この場合、図15Cに示すように、発光スペクトルAと発光スペクトルBとでは、発光スペクトルBの方が、より赤色領域の光を含むこととなり、結果として演色性が向上する。
すなわち、従来の窒化物半導体発光素子は、動作モードAのみしか駆動することができず、演色性が低かったが、本実施形態では、動作モードBのような駆動を行うことができるので、演色性に優れた窒化物半導体発光素子を実現することができる。さらに、本実施形態では、第1の窒化物半導体積層構造体820と第2の窒化物半導体積層構造体830は独立に駆動可能であるため、本実施形態の窒化物半導体発光素子は、演色性を所望に調整することができる。
次に、本発明の実施形態8に係る窒化物半導体発光素子800の製造方法について、図16を用いて説明する。図16は、本発明の実施形態8に係る窒化物半導体発光素子800の製造方法における各工程の構成を模式的に示した断面図である。
図16の(a)に示すように、まず、Si単結晶からなる第1の基板811と、Si単結晶からなる第2の基板813とを、例えばSiO2からなる絶縁層812を介して接合させる。このとき、第2の基板813の主面が、シリコンの(111)面とは異なる面方位となるように構成されている。
次に、熱酸化法やプラズマCVD法などにより、第2の基板813上にシリコン酸化膜またはシリコン窒化膜からなるマスク814を形成する。その後、図16の(b)に示すように、フォトリソグラフィ法とドライエッチング法を用いて、ストライプ状の開口を有するようにマスク814をパターニングして、第2の基板813を露出させる。
次に、図16の(c)に示すように、第2の基板813に対して、例えばKOHやTMAHによりウェットエッチングを施し、第2の基板813に島状の凸部を有する凹凸構造を形成する。これにより、第2の基板813の開口において絶縁層812を露出させる。このとき、第2の基板813の凸部の側面は傾斜面となり、その面方位はSiの(111)面となる。
次に、図16の(d)に示すように、例えばHFによるウェットエッチングにより、マスク814を除去する。さらに、スパッタリング法や真空蒸着法を用いて、第2の基板813に形成した凹凸構造における凸部の両側面のうち、一方の傾斜面をマスク(図示せず)で被覆する。
次に、図16の(e)に示すように、フォトリソグラフィ法やドライエッチング法により、絶縁層812に開口部802を形成し、第1の基板811を露出させる。
次に、図16の(f)に示すように、MOCVDにより、第2の基板813の凹凸構造を有する第1の領域上、および、開口部802が形成された第2の領域上に、それぞれ第1のn型半導体層821と第2のn型半導体層831を形成する。このとき、第1の領域において、第1のn型半導体層821は、露出する第2の基板813、すなわち、第2の基板813の主面と凸部の側面の面方位に従って結晶成長するとともに、第1の基板811の主面に対して平行に平坦成長する。また、第2の領域においては、第2のn型半導体層831は、露出する第1の基板811の主面の面方位に従って、第1の基板811の主面に対して平行に平坦成長する。この場合、第1のn型半導体層821よりも第2のn型半導体層831の方が、主面に垂直方向の成長レートが速い。したがって、二つの成長面間の段差は結晶成長が進むに従って小さくなる。
続いて、MOCVDにより、第1のn型半導体層821上に第1の発光層822および第1のp型半導体層823を、第2のn型半導体層831上に第2の発光層832および第2のp型半導体層833を、それぞれ形成する。
次に、図16の(g)に示すように、第1のp型半導体層823および第2のp型半導体層833を覆うように、例えばAlやAgからなる共通反射層880を介して、例えばGeからなる第3の基板815を貼り合わせる。
次に、図16の(h)に示すように、第1の基板811、絶縁層812、および第2の基板813を、フッ硝酸によるウェットエッチング、またはClF3によるドライエッチングにより除去する。
次に、図16の(i)に示すように、図16の(h)の半導体素子を反転させて、フォトリソグラフィ法と真空蒸着法を用いて、第1のn型半導体層821と電気的に接続される形で第1のn電極843を形成し、また、第2のn型半導体層831に電気的に接続される形で第2のn電極845を形成する。さらに、第3の基板815の裏面に、真空蒸着法を用いて、共通p電極870を形成する。
最後に、図示しないが、ブレードを用いたダイシング、またはへき開によりチップ分離を行うことで、窒化物半導体発光素子を形成する。
以上により、高発光効率で、発光点間隔が狭く、複数の異なる発光波長のピークを持ち、それぞれの波長の発光を独立に駆動可能な窒化物半導体発光素子を実現できる。
なお、本実施形態では、第1の基板811と絶縁層812と第2の基板813とからなる基板を用いて第2の基板813に凹凸構造を形成し、これにより、第1のn型半導体層821に凹凸面810を形成したが、これに限らない。
例えば、図9Aに示す実施形態5または図11に示す実施形態6のように、サファイア基板を用いて当該サファイア基板に凹凸構造を形成し、これにより、第1のn型半導体層821に凹凸面810を形成するように構成しても構わない。
すなわち、サファイア基板の凹凸構造が形成された領域上には第1のn型半導体層を含む第1の窒化物半導体層を形成し、サファイア基板の凹凸構造のない領域には第2のn型半導体層を含む第2の窒化物半導体層を形成する。その後、上記のように第3の基板815を貼り合わせた後に、サファイア基板を除去する。
(適用例)
次に、本発明の実施形態に係る窒化物半導体発光素子を応用した適用例について、図17A~図17Cを用いて説明する。図17Aは、比較例に係る窒化物半導体発光素子の応用例を説明する図である。図17Bは、本発明の実施形態に係る窒化物半導体発光素子を応用した第1適用例を説明する図である。図17Cは、本発明の実施形態に係る窒化物半導体発光素子を応用した第2適用例を説明する図である。なお、各図において、同じ構成要素については、同じ符号を付けている。
次に、本発明の実施形態に係る窒化物半導体発光素子を応用した適用例について、図17A~図17Cを用いて説明する。図17Aは、比較例に係る窒化物半導体発光素子の応用例を説明する図である。図17Bは、本発明の実施形態に係る窒化物半導体発光素子を応用した第1適用例を説明する図である。図17Cは、本発明の実施形態に係る窒化物半導体発光素子を応用した第2適用例を説明する図である。なお、各図において、同じ構成要素については、同じ符号を付けている。
図17Aに示すように、比較例に係る窒化物半導体発光素子の応用例は、小型プロジェクタ光源として、赤色、緑色、青色領域の光を発する3つのLED光源を用いたものである。比較例に係る窒化物半導体発光素子の応用例では、図17Aに示すように、青色LED光源981から発せられた青色光と、緑色LED光源982から発せられた緑色光と、赤色LED光源983から発せられた赤色光は、それぞれコリメートレンズ984、コリメートレンズ985、コリメートレンズ986を通過した後、ミラー987、ミラー988、ミラー989、偏光子990、液晶パネル991、偏光子992、および投影レンズ群993を通過して、画像として投影される。
次に、図17Bに示すように、本実施形態に係る第1適用例は、小型プロジェクタの光源として、本発明の実施形態3に係る窒化物半導体発光素子300と赤色LED光源983とを用いたものである。図17Bに示すように、第1適用例に係る窒化物半導体発光素子300の光源は、青色光と緑色光を狭い発光間隔で発することができる。したがって、窒化物半導体発光素子300から発せられた青色光および緑色光は、コリメートレンズ984を通過した後に、ミラー989、偏光子990、液晶パネル991、偏光子992、および投影レンズ群993を通過して、画像として投影される。これにより、図17Aに示す比較例と比較して光学系の簡略化を図ることができる。なお、本適用例では、実施形態3に係る窒化物半導体発光素子300を用いたが、実施形態4~6、8に係る窒化物半導体発光素子を用いても構わない。
次に、図17Cに示すように、本実施形態に係る第2適用例は、小型プロジェクタの光源として、本発明の実施形態7に係る窒化物半導体発光素子700を用いたものである。図17Cに示すように、第2適用例に係る窒化物半導体発光素子700の光源は、青色光、緑色光および赤色光を狭い発光間隔で発することができる。したがって、窒化物半導体発光素子700から発せられた、青色光、緑色光および赤色光は、コリメートレンズ986を通過した後に、偏光子990、液晶パネル991、偏光子992、および投影レンズ群993を通過して、画像として投影される。これにより、図17A、図17Bと比較して、さらに光学系の簡略化を図ることができる。
以上、本発明に係る窒化物半導体発光素子およびその製造方法について、実施形態に基づいて説明してきたが、本発明は、上記の実施形態に限定されるものではない。各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本発明に含まれる。
本発明は、例えば各種表示装置または照明装置に用いられる光源、その他の発光装置として有用である。
100、200、300、400、500、600、700、800 窒化物半導体発光素子
110、310、410、510、610、710 凹凸基板
111、211、311、411、711、811 第1の基板
112、212、312、412、812 絶縁層
113、213、313、413、713、813 第2の基板
120、220 窒化物半導体積層構造体
121、221 n型窒化物半導体層
122、222 発光層
123、223 p型窒化物半導体層
130 側面
141 透明電極
142、242 p電極
143、243 n電極
150、250、314、414 第1のマスク
151、251、301、401、701 第2のマスク
160、302、402、702、802 開口部
215、815 第3の基板
230、810 凹凸面
280 反射層
320、420、520、620、720、820 第1の窒化物半導体積層構造体
321、421、521、621、721、821 第1のn型半導体層
322、422、522、622、722、822 第1の発光層
323、423、523、623、723、823 第1のp型半導体層
330、430、530、630、730、830 第2の窒化物半導体積層構造体
331、431、531、631、731、831 第2のn型半導体層
332、432、532、632、732、832 第2の発光層
333、433、533、633、733、833 第2のp型半導体層
342、442、542、642、742 第1のp電極
343、443、543、643、743、843 第1のn電極
344、444、544、644、744 第2のp電極
345、445、545、645、745、845 第2のn電極
451、651 第1の発光面
452、652 第2の発光面
510S、610S サファイア基板
501、601 第1の領域
502、602 第2の領域
514、614、814 マスク
712 第1の絶縁層
746 第3のp電極
747 第3のn電極
750 第3の窒化物半導体積層構造体
751 第3のn型半導体層
752 第3の発光層
753 第3のp型半導体層
761 第2の絶縁層
762 第3の絶縁層
770、870 共通p電極
880 共通反射層
891 蛍光体
892 樹脂
981 青色LED光源
982 緑色LED光源
983 赤色LED光源
984、985、986 コリメートレンズ
987、988、989 ミラー
990、992 偏光子
991 液晶パネル
993 投影レンズ群
110、310、410、510、610、710 凹凸基板
111、211、311、411、711、811 第1の基板
112、212、312、412、812 絶縁層
113、213、313、413、713、813 第2の基板
120、220 窒化物半導体積層構造体
121、221 n型窒化物半導体層
122、222 発光層
123、223 p型窒化物半導体層
130 側面
141 透明電極
142、242 p電極
143、243 n電極
150、250、314、414 第1のマスク
151、251、301、401、701 第2のマスク
160、302、402、702、802 開口部
215、815 第3の基板
230、810 凹凸面
280 反射層
320、420、520、620、720、820 第1の窒化物半導体積層構造体
321、421、521、621、721、821 第1のn型半導体層
322、422、522、622、722、822 第1の発光層
323、423、523、623、723、823 第1のp型半導体層
330、430、530、630、730、830 第2の窒化物半導体積層構造体
331、431、531、631、731、831 第2のn型半導体層
332、432、532、632、732、832 第2の発光層
333、433、533、633、733、833 第2のp型半導体層
342、442、542、642、742 第1のp電極
343、443、543、643、743、843 第1のn電極
344、444、544、644、744 第2のp電極
345、445、545、645、745、845 第2のn電極
451、651 第1の発光面
452、652 第2の発光面
510S、610S サファイア基板
501、601 第1の領域
502、602 第2の領域
514、614、814 マスク
712 第1の絶縁層
746 第3のp電極
747 第3のn電極
750 第3の窒化物半導体積層構造体
751 第3のn型半導体層
752 第3の発光層
753 第3のp型半導体層
761 第2の絶縁層
762 第3の絶縁層
770、870 共通p電極
880 共通反射層
891 蛍光体
892 樹脂
981 青色LED光源
982 緑色LED光源
983 赤色LED光源
984、985、986 コリメートレンズ
987、988、989 ミラー
990、992 偏光子
991 液晶パネル
993 投影レンズ群
Claims (22)
- 凹部が設けられた凹凸構造を有する凹凸基板と、
前記凹凸構造上に設けられた第1導電型の第1の窒化物半導体層と、
前記第1の窒化物半導体層上に設けられた第1の発光層と、
前記第1の発光層上に設けられ、前記第1導電型とは異なる導電型である第2導電型の第2の窒化物半導体層とを備え、
前記凹部の底部を構成する材料の熱膨張係数は、前記第1の窒化物半導体層の熱膨張係数よりも大きい
窒化物半導体発光素子。 - 前記凹凸基板は、シリコンからなる第1の基板と、前記第1の基板上に設けられた絶縁層と、前記絶縁層上に設けられたシリコンからなる第2の基板とを有し、
前記凹部は、当該凹部の底部が前記絶縁層の表面となるように前記第2の基板に形成された開口であり、
前記凹部の底部を構成する材料は、前記絶縁層であり、
前記凹部の側面の面方位は、前記第2の基板の主面の面方位と異なる
請求項1に記載の窒化物半導体発光素子。 - 前記凹部の前記側面の面方位が、シリコンの(111)面である
請求項2に記載の窒化物半導体発光素子。 - 前記第2の基板の主面の面方位が、シリコンの(100)面から7°オフした面、シリコンの(311)面、シリコンの(110)面、またはシリコンの(112)面である
請求項2または3に記載の窒化物半導体発光素子。 - 前記第1の窒化物半導体層の上面は平坦面である
請求項2~4のいずれか1項に記載の窒化物半導体発光素子。 - 前記第1の基板の主面の面方位が、シリコンの(100)面である
請求項2~5のいずれか1項に記載の窒化物半導体発光素子。 - 前記凹凸基板は、前記凹凸構造を有する第1の領域と平坦面を有する第2の領域とを含み、
前記第1の窒化物半導体層、前記第1の発光層および前記第2の窒化物半導体層を含む第1の窒化物半導体積層構造体は、前記第1の領域上に形成され、
さらに、前記第2の領域上に、前記第1導電型の第3の窒化物半導体層と、第2の発光層と、前記第2導電型の第4の窒化物半導体層とを含む第2の窒化物半導体積層構造体が形成され、
前記第1の窒化物半導体積層構造体の主面と前記第2の窒化物半導体積層構造体の主面とが異なる面方位であり、
前記第1の発光層から発せられる光の波長よりも前記第2の発光層から発せられる光の波長の方が長い
請求項1に記載の窒化物半導体発光素子。 - 前記第1の領域と前記第2の領域が、絶縁層により分離されている
請求項7に記載の窒化物半導体発光素子。 - 前記第1の領域と前記第2の領域が、Si単結晶からなる
請求項7または8に記載の窒化物半導体発光素子。 - 前記第1の領域における前記凹凸構造の凸部は、少なくとも2つの側面を有し、
前記凸部における一方の側面の面方位は(111)面であり、
前記凸部における他方の側面は所定のマスクにて覆われている
請求項7~9のいずれか1項に記載の窒化物半導体発光素子。 - 前記凹凸基板が、(11-20)面を主面とするサファイア基板である
請求項7に記載の窒化物半導体発光素子。 - 少なくとも前記第2の窒化物半導体層と前記第4の窒化物半導体層のいずれか一方に凹凸構造が形成されている
請求項7~11のいずれか1項に記載の窒化物半導体発光素子。 - さらに、前記凹凸基板上に設けられ、前記第1導電型の第5の窒化物半導体層と、第3の発光層と、前記第2導電型の第6の窒化物半導体層とを含む第3の窒化物半導体積層構造体を備え、
前記第3の発光層から発せられる光の波長は、前記第1の発光層および前記第2の発光層から発せられる光の波長と異なる
請求項7~12のいずれか1項に記載の窒化物半導体発光素子。 - 前記凹凸基板の前記凹凸構造が周期的な構造である
請求項1~13のいずれか1項に記載の窒化物半導体発光素子。 - 凹部が設けられた凹凸構造を有する凹凸基板を形成する第1の工程と、
前記凹凸構造上に、第1導電型の第1の窒化物半導体層を形成する第2の工程と、
前記第1の窒化物半導体層上に、第1の発光層を形成する第3の工程と、
前記発光層上に、前記第1導電型とは異なる導電型である第2導電型の第2の窒化物半導体層を形成する第4の工程とを含み、
前記凹部の底部を構成する材料の熱膨張係数は、前記第1の窒化物半導体層の熱膨張係数よりも大きい
窒化物半導体発光素子の製造方法。 - 前記第1の工程は、シリコンからなる第1の基板上に、前記凹部の底部を構成する材料である絶縁層と、シリコンからなる第2の基板とを形成する工程と、前記絶縁層が露出するように前記第2の基板の一部を除去することにより、前記第2の基板の主面の面方位とは異なる面方位の側面を有する前記凹部を形成する工程とを含み、
前記第2の工程において、前記凹部の前記側面上に、前記第1の窒化物半導体層を形成する
請求項15に記載の窒化物半導体発光素子の製造方法。 - 前記凹部の前記側面の面方位が、シリコンの(111)面である
請求項16に記載の窒化物半導体発光素子の製造方法。 - さらに、前記第2の窒化物半導体層に第3の基板を貼り合わせる工程と、
前記第1の基板と前記絶縁層と前記第2の基板とを除去する工程と、を含む
請求項16または17に記載の窒化物半導体発光素子の製造方法。 - 前記第1の工程は、Si単結晶からなる第1の基板上に、絶縁層と、主面が(111)面とは異なる面方位であるSi単結晶からなる第2の基板とを形成する工程と、前記絶縁層が露出するように前記第2の基板の一部を除去することにより、(111)面からなる第1の側面を有する凸部を形成する工程とを含み、
さらに、
前記第1の工程と前記第2の工程との間に、前記凸部の側面のうち、前記第1の側面とは異なる第2の側面を覆う所定のマスクを形成する工程と、
前記第1の基板が露出するように前記絶縁層の一部を除去する工程と、
露出した前記第1の基板上に、前記第1導電型の第3の窒化物半導体層を形成する工程と、
前記第3の窒化物半導体層上に第2の発光層を形成する工程と、
前記第2の発光層上に、前記第2導電型の第4の窒化物半導体層を形成する工程と、を有する
請求項15に記載の窒化物半導体発光素子の製造方法。 - さらに、
前記第2の窒化物半導体層および前記第4の窒化物半導体層に第3の基板を貼り合わせる工程と、
前記第1の基板と前記絶縁層と前記第2の基板とを除去する工程と、を有する
請求項19に記載の窒化物半導体発光素子の製造方法。 - 前記第1の工程は、(11-20)面を主面とするサファイア基板上の一部の領域に(0001)面からなる側面を有する前記凹凸構造を形成する工程であり、
さらに、
前記サファイア基板の前記主面の上に、前記第1導電型の第3の窒化物半導体層を形成する工程と、
前記第3の窒化物半導体層上に第2の発光層を形成する工程と、
前記第2の発光層上に、前記第2導電型の第4の窒化物半導体層を形成する工程と、を有する
請求項15に記載の窒化物半導体発光素子の製造方法。 - さらに、
前記第1の窒化物半導体層および前記第3の窒化物半導体層に第3の基板を貼り合わせる工程と、
前記サファイア基板を除去する工程と、を有する
請求項21に記載の窒化物半導体発光素子の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012515727A JP5789782B2 (ja) | 2010-05-20 | 2011-05-02 | 窒化物半導体発光素子および窒化物半導体発光素子の製造方法 |
US13/675,929 US9006778B2 (en) | 2010-05-20 | 2012-11-13 | Nitride semiconductor light emitting device and method of manufacturing the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010116797 | 2010-05-20 | ||
JP2010-116797 | 2010-05-20 | ||
JP2010123437 | 2010-05-28 | ||
JP2010-123437 | 2010-05-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/675,929 Continuation US9006778B2 (en) | 2010-05-20 | 2012-11-13 | Nitride semiconductor light emitting device and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011145283A1 true WO2011145283A1 (ja) | 2011-11-24 |
Family
ID=44991406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/002535 WO2011145283A1 (ja) | 2010-05-20 | 2011-05-02 | 窒化物半導体発光素子および窒化物半導体発光素子の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9006778B2 (ja) |
JP (1) | JP5789782B2 (ja) |
WO (1) | WO2011145283A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014075459A (ja) * | 2012-10-04 | 2014-04-24 | Nano Material Kenkyusho:Kk | 半導体デバイス |
CN105280775A (zh) * | 2014-06-25 | 2016-01-27 | 株式会社东芝 | 氮化物半导体层、氮化物半导体装置和用于制造氮化物半导体层的方法 |
WO2021140910A1 (ja) * | 2020-01-07 | 2021-07-15 | ソニーグループ株式会社 | 多波長光源、多波長光源の製造方法及び表示装置 |
JP2022087136A (ja) * | 2017-03-17 | 2022-06-09 | ソイテック | 光電子デバイスを形成するための成長基板、そのような基板を作製するための方法、及び特にマイクロディスプレイスクリーンの分野における基板の使用 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI474507B (zh) * | 2011-10-18 | 2015-02-21 | Lextar Electronics Corp | 固態發光元件之製作方法 |
KR101649060B1 (ko) * | 2012-03-12 | 2016-08-17 | 미쓰비시덴키 가부시키가이샤 | 태양전지 셀의 제조 방법 |
KR101942515B1 (ko) * | 2012-05-03 | 2019-01-28 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법 |
JP5460831B1 (ja) * | 2012-11-22 | 2014-04-02 | 株式会社東芝 | 半導体発光素子 |
DE102013103602A1 (de) * | 2013-04-10 | 2014-10-16 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und Verfahren zu seiner Herstellung |
CN104603959B (zh) * | 2013-08-21 | 2017-07-04 | 夏普株式会社 | 氮化物半导体发光元件 |
JP2015176961A (ja) * | 2014-03-14 | 2015-10-05 | 株式会社東芝 | 半導体発光装置およびその製造方法 |
WO2017098689A1 (ja) * | 2015-12-09 | 2017-06-15 | パナソニック株式会社 | 半導体発光装置 |
US10027086B2 (en) * | 2016-04-21 | 2018-07-17 | Board Of Trustees Of The University Of Illinois | Maximizing cubic phase group III-nitride on patterned silicon |
US20200185883A1 (en) * | 2018-12-11 | 2020-06-11 | Sharp Kabushiki Kaisha | Nitride semiconductor laser device and method for producing nitride semiconductor laser device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6119186A (ja) * | 1984-07-05 | 1986-01-28 | Oki Electric Ind Co Ltd | 二波長モノリシツク半導体レ−ザアレイの製造方法 |
JPH0582834A (ja) * | 1991-05-30 | 1993-04-02 | Kyocera Corp | 半導体発光装置の製造方法 |
JP2003347585A (ja) * | 2002-03-19 | 2003-12-05 | Nobuhiko Sawaki | 半導体発光素子およびその製造方法 |
JP2005311034A (ja) * | 2004-04-21 | 2005-11-04 | Sharp Corp | 窒化物半導体発光素子およびその製造方法 |
JP2010103578A (ja) * | 2006-12-22 | 2010-05-06 | Showa Denko Kk | Iii族窒化物半導体層の製造方法 |
JP2010109147A (ja) * | 2008-10-30 | 2010-05-13 | Sanyo Electric Co Ltd | 発光素子およびその製造方法 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4099305A (en) * | 1977-03-14 | 1978-07-11 | Bell Telephone Laboratories, Incorporated | Fabrication of mesa devices by MBE growth over channeled substrates |
JPS5873178A (ja) * | 1981-10-27 | 1983-05-02 | Fujitsu Ltd | 半導体発光装置 |
EP0709902B1 (en) * | 1994-10-26 | 2002-01-23 | Mitsubishi Chemical Corporation | Light-emitting semiconductor device and method for manufacturing the same |
US5787104A (en) * | 1995-01-19 | 1998-07-28 | Matsushita Electric Industrial Co., Ltd. | Semiconductor light emitting element and method for fabricating the same |
KR100238452B1 (ko) * | 1997-08-05 | 2000-01-15 | 정선종 | 초미세 구조 일괄 성장방법 |
EP0899781A3 (en) * | 1997-08-28 | 2000-03-08 | Lucent Technologies Inc. | Corrosion protection in the fabrication of optoelectronic assemblies |
JP4032538B2 (ja) * | 1998-11-26 | 2008-01-16 | ソニー株式会社 | 半導体薄膜および半導体素子の製造方法 |
US6635901B2 (en) | 2000-12-15 | 2003-10-21 | Nobuhiko Sawaki | Semiconductor device including an InGaAIN layer |
JP4743989B2 (ja) | 2000-12-15 | 2011-08-10 | 宣彦 澤木 | 半導体素子およびその製造方法ならびに半導体基板の製造方法 |
TW536841B (en) * | 2001-03-21 | 2003-06-11 | Mitsubishi Cable Ind Ltd | Semiconductor light emitting element |
US6888867B2 (en) | 2001-08-08 | 2005-05-03 | Nobuhiko Sawaki | Semiconductor laser device and fabrication method thereof |
JP4233268B2 (ja) * | 2002-04-23 | 2009-03-04 | シャープ株式会社 | 窒化物系半導体発光素子およびその製造方法 |
JP2006196631A (ja) * | 2005-01-13 | 2006-07-27 | Hitachi Ltd | 半導体装置及びその製造方法 |
US7982205B2 (en) * | 2006-01-12 | 2011-07-19 | National Institute Of Advanced Industrial Science And Technology | III-V group compound semiconductor light-emitting diode |
JP5326225B2 (ja) * | 2006-05-29 | 2013-10-30 | 日亜化学工業株式会社 | 窒化物半導体発光素子 |
JP4462289B2 (ja) * | 2007-05-18 | 2010-05-12 | ソニー株式会社 | 半導体層の成長方法および半導体発光素子の製造方法 |
US20090032799A1 (en) * | 2007-06-12 | 2009-02-05 | Siphoton, Inc | Light emitting device |
US7956370B2 (en) * | 2007-06-12 | 2011-06-07 | Siphoton, Inc. | Silicon based solid state lighting |
US8183557B2 (en) * | 2007-09-19 | 2012-05-22 | The Regents Of The University Of California | (Al,In,Ga,B)N device structures on a patterned substrate |
DE102007059732B4 (de) * | 2007-12-12 | 2020-11-12 | Pictiva Displays International Limited | Lichtemittierende Vorrichtung |
US7713769B2 (en) * | 2007-12-21 | 2010-05-11 | Tekcore Co., Ltd. | Method for fabricating light emitting diode structure having irregular serrations |
US8134169B2 (en) * | 2008-07-01 | 2012-03-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Patterned substrate for hetero-epitaxial growth of group-III nitride film |
US20110101502A1 (en) * | 2009-11-05 | 2011-05-05 | Fairfield Crystal Technology, Llc | Composite wafers and substrates for iii-nitride epitaxy and devices and methods therefor |
KR20110056866A (ko) * | 2009-11-23 | 2011-05-31 | 삼성전자주식회사 | 질화물 발광소자 및 그 제조방법 |
US8129205B2 (en) * | 2010-01-25 | 2012-03-06 | Micron Technology, Inc. | Solid state lighting devices and associated methods of manufacturing |
US8242510B2 (en) * | 2010-01-28 | 2012-08-14 | Intersil Americas Inc. | Monolithic integration of gallium nitride and silicon devices and circuits, structure and method |
KR101007136B1 (ko) * | 2010-02-18 | 2011-01-10 | 엘지이노텍 주식회사 | 발광 소자, 발광 소자 패키지 및 발광 소자 제조방법 |
JP4865047B2 (ja) * | 2010-02-24 | 2012-02-01 | 株式会社東芝 | 結晶成長方法 |
US8536594B2 (en) * | 2011-01-28 | 2013-09-17 | Micron Technology, Inc. | Solid state lighting devices with reduced dimensions and methods of manufacturing |
US8217418B1 (en) * | 2011-02-14 | 2012-07-10 | Siphoton Inc. | Semi-polar semiconductor light emission devices |
-
2011
- 2011-05-02 WO PCT/JP2011/002535 patent/WO2011145283A1/ja active Application Filing
- 2011-05-02 JP JP2012515727A patent/JP5789782B2/ja not_active Expired - Fee Related
-
2012
- 2012-11-13 US US13/675,929 patent/US9006778B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6119186A (ja) * | 1984-07-05 | 1986-01-28 | Oki Electric Ind Co Ltd | 二波長モノリシツク半導体レ−ザアレイの製造方法 |
JPH0582834A (ja) * | 1991-05-30 | 1993-04-02 | Kyocera Corp | 半導体発光装置の製造方法 |
JP2003347585A (ja) * | 2002-03-19 | 2003-12-05 | Nobuhiko Sawaki | 半導体発光素子およびその製造方法 |
JP2005311034A (ja) * | 2004-04-21 | 2005-11-04 | Sharp Corp | 窒化物半導体発光素子およびその製造方法 |
JP2010103578A (ja) * | 2006-12-22 | 2010-05-06 | Showa Denko Kk | Iii族窒化物半導体層の製造方法 |
JP2010109147A (ja) * | 2008-10-30 | 2010-05-13 | Sanyo Electric Co Ltd | 発光素子およびその製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014075459A (ja) * | 2012-10-04 | 2014-04-24 | Nano Material Kenkyusho:Kk | 半導体デバイス |
CN105280775A (zh) * | 2014-06-25 | 2016-01-27 | 株式会社东芝 | 氮化物半导体层、氮化物半导体装置和用于制造氮化物半导体层的方法 |
JP2022087136A (ja) * | 2017-03-17 | 2022-06-09 | ソイテック | 光電子デバイスを形成するための成長基板、そのような基板を作製するための方法、及び特にマイクロディスプレイスクリーンの分野における基板の使用 |
JP7322329B2 (ja) | 2017-03-17 | 2023-08-08 | ソイテック | 光電子デバイスを形成するための成長基板、そのような基板を作製するための方法、及び特にマイクロディスプレイスクリーンの分野における基板の使用 |
WO2021140910A1 (ja) * | 2020-01-07 | 2021-07-15 | ソニーグループ株式会社 | 多波長光源、多波長光源の製造方法及び表示装置 |
JP7647586B2 (ja) | 2020-01-07 | 2025-03-18 | ソニーグループ株式会社 | 多波長光源、多波長光源の製造方法及び表示装置 |
Also Published As
Publication number | Publication date |
---|---|
US9006778B2 (en) | 2015-04-14 |
JP5789782B2 (ja) | 2015-10-07 |
US20130069107A1 (en) | 2013-03-21 |
JPWO2011145283A1 (ja) | 2013-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5789782B2 (ja) | 窒化物半導体発光素子および窒化物半導体発光素子の製造方法 | |
TWI527262B (zh) | 以晶軸鬆弛結構為基礎的固態發光裝置 | |
KR100714638B1 (ko) | 단면 발광형 led 및 그 제조방법 | |
JP2011216882A (ja) | 高効率発光ダイオード及びその製造方法 | |
KR20120092326A (ko) | 광 결정 구조를 갖는 비극성 발광 다이오드 및 그것을 제조하는 방법 | |
JP2003332618A (ja) | 半導体発光素子 | |
WO2011030789A1 (ja) | 発光装置 | |
US20240136469A1 (en) | Light-emitting element and manufacturing method thereof | |
US8017421B2 (en) | Method of manufacturing semiconductor light emitting device | |
JP4362125B2 (ja) | 側面発光半導体素子及び側面発光半導体素子の製造方法 | |
JP2011091251A (ja) | 窒化物半導体発光素子 | |
JP2008277323A (ja) | 半導体発光素子およびウエハ | |
JP4802314B2 (ja) | 窒化物半導体発光素子とその製造方法 | |
JP2007294804A (ja) | 半導体発光素子およびウエハ | |
JP7547960B2 (ja) | 発光装置の製造方法 | |
US20160118547A1 (en) | Light-emitting device and method of producing the same | |
JP2010258230A (ja) | 半導体発光素子およびその製造方法 | |
WO2011058890A1 (ja) | 発光素子 | |
CN107591463B (zh) | 发光组件及发光组件的制造方法 | |
JP2012134327A (ja) | 窒化物半導体発光素子 | |
KR20120081335A (ko) | 질화물계 반도체 발광 소자 | |
JP2009170639A (ja) | 窒化物半導体レーザチップ及び窒化物半導体レーザ素子並びに窒化物半導体レーザチップの製造方法 | |
JP7613127B2 (ja) | 発光装置、プロジェクター | |
JP2019212834A (ja) | 発光素子及びその製造方法 | |
KR100826395B1 (ko) | 수직구조 질화물 반도체 발광소자 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11783222 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012515727 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11783222 Country of ref document: EP Kind code of ref document: A1 |