WO2011115041A1 - Semiconductor device manufacturing method and semiconductor device - Google Patents
Semiconductor device manufacturing method and semiconductor device Download PDFInfo
- Publication number
- WO2011115041A1 WO2011115041A1 PCT/JP2011/055907 JP2011055907W WO2011115041A1 WO 2011115041 A1 WO2011115041 A1 WO 2011115041A1 JP 2011055907 W JP2011055907 W JP 2011055907W WO 2011115041 A1 WO2011115041 A1 WO 2011115041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- redundant
- electrode
- hole
- defective
- position information
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 116
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 239000000758 substrate Substances 0.000 claims abstract description 49
- 238000012360 testing method Methods 0.000 claims abstract description 45
- 230000002950 deficient Effects 0.000 claims description 173
- 238000000034 method Methods 0.000 claims description 28
- 239000004020 conductor Substances 0.000 claims description 18
- 239000011810 insulating material Substances 0.000 claims description 18
- 230000007547 defect Effects 0.000 claims description 16
- 239000000523 sample Substances 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 15
- 230000000149 penetrating effect Effects 0.000 claims description 7
- 235000012431 wafers Nutrition 0.000 description 74
- 239000011159 matrix material Substances 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000007689 inspection Methods 0.000 description 6
- 230000035515 penetration Effects 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013100 final test Methods 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/70—Masking faults in memories by using spares or by reconfiguring
- G11C29/78—Masking faults in memories by using spares or by reconfiguring using programmable devices
- G11C29/84—Masking faults in memories by using spares or by reconfiguring using programmable devices with improved access time or stability
- G11C29/846—Masking faults in memories by using spares or by reconfiguring using programmable devices with improved access time or stability by choosing redundant lines at an output stage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
- H01L22/22—Connection or disconnection of sub-entities or redundant parts of a device in response to a measurement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/585—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries comprising conductive layers or plates or strips or rods or rings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H10D89/00
- H01L25/0657—Stacked arrangements of devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/50—Multistep manufacturing processes of assemblies consisting of devices, the devices being individual devices of subclass H10D or integrated devices of class H10
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/50—Peripheral circuit region structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06513—Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06527—Special adaptation of electrical connections, e.g. rewiring, engineering changes, pressure contacts, layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06541—Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2225/00—Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
- H01L2225/03—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
- H01L2225/04—All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L2225/065—All the devices being of a type provided for in the same main group of the same subclass of class H10
- H01L2225/06503—Stacked arrangements of devices
- H01L2225/06596—Structural arrangements for testing
Definitions
- the present invention relates to a semiconductor device manufacturing method and a semiconductor device manufactured by the manufacturing method.
- an electrical test is performed on a circuit formed on a semiconductor wafer of a semiconductor chip (hereinafter referred to as “wafer”), and a defective memory cell determined as defective in the electrical test is determined as a redundant memory. Relieving by replacing the cell.
- Such a defective memory cell is remedied by, for example, a laser trimming process using a plurality of fuse elements that can be blown by a laser beam. Specifically, the address of the defective memory cell determined to be defective by the electrical test of the circuit is held by fusing a fuse element provided on the circuit side of the semiconductor chip with laser light. Based on the address of the defective memory cell, the defective memory cell is replaced with a redundant memory cell (Patent Document 1).
- the semiconductor device to be manufactured becomes thick due to the thickness of the wafer. Therefore, for example, before stacking the semiconductor chips, a support substrate is provided on the circuit side of the semiconductor chips, and the wafer is thinned by polishing the back surface of the wafer.
- the method for relieving a defective memory cell described in the above-mentioned conventional document 1 cannot be applied. That is, since the support substrate is provided on the circuit side of the semiconductor chip, the fuse element cannot be blown by the laser beam. Then, the address of the defective memory cell cannot be recorded, and the defective memory cell cannot be replaced with a redundant memory cell. For this reason, the yield of the semiconductor device is reduced.
- the present invention has been made in view of the above points, and when a semiconductor device is manufactured by stacking semiconductor chips, a defective electronic element in a circuit of the semiconductor chip is relieved and the yield of the semiconductor device is improved. With the goal.
- a normal element region in which a plurality of electronic elements are arranged, and a redundant electronic element for replacing a defective electronic element in the normal element region Forming a plurality of circuits having redundant element regions on the substrate surface, forming a device layer including the circuit on the substrate surface, and penetrating in a thickness direction of the substrate and the device layer
- the through hole forming step a redundant through hole penetrating the substrate and the device layer is formed, and in the defective position information recording step, the position information of the defective electronic element is recorded in the defective position information recording unit. Yes. Therefore, for example, in the above-described three-dimensional integration technology, even when a support substrate is provided on the surface of the device layer on the substrate and a semiconductor device is manufactured by stacking semiconductor chips, the position of the defective electronic element from the back side of the substrate Information can be recorded. Then, in the redundant replacement step, based on the position information of the defective electronic element recorded in the defective position information recording unit, the defective electronic element is replaced with the redundant electronic element and repaired, thereby improving the yield of the semiconductor device. Can do. In addition, in the through hole forming step, the redundant through hole is formed together with the electrode through hole, so that it is not necessary to perform a separate step of forming the redundant through hole. Therefore, the semiconductor device can be manufactured efficiently.
- each position information line corresponding to the plurality of redundant through holes may be connected to a ground line or a power line.
- the plurality of redundant through holes are a pair of redundant through holes provided with a first redundant through hole for power supply line connection and a second redundant through hole for ground line connection.
- a plurality of holes, and in the defect position information recording step, a power line and a position information line are connected via the first redundant through hole, or a ground line is connected via the second redundant through hole.
- the position information line may be connected to record the position information of the defective electronic element in the defective position information recording unit.
- the upper portion of the first redundant through hole is filled with a conductive material
- the lower portion of the first redundant through electrode is filled with an insulating material.
- the second redundant through hole is filled with an insulating material, and when the ground line and the position information line are connected, the upper portion of the second redundant through hole is filled with a conductive material, and
- the insulating material may be filled in the lower part of the second redundant through electrode, and the insulating material may be filled in the first redundant through hole.
- the plurality of electronic elements are arranged in a lattice shape so as to be specified by a row address and a column address, and in the redundant element region, the redundant electronic element is arranged for each row address, In the redundant replacement step, the defective electronic element may be replaced with the redundant electronic element for each row address.
- the electronic element and the redundant electronic element may each have volatility.
- the through hole forming step the plurality of electrode through holes and the plurality of redundant through holes are formed, and the substrate and the device layer are divided to form a plurality of semiconductor chips having the circuit.
- the scribe line may be formed.
- an electrical test of the circuit may be performed for each semiconductor chip.
- the electrode through hole, the through electrode, the redundant through hole, and the scribe line are formed to extend from the surface of the device layer to the inside of the substrate, respectively.
- a support substrate is provided on the surface of the device layer, and then the back surface of the substrate is polished to thereby form the through electrode, the redundant through hole, and the scribe.
- Each line may be formed through the substrate in the thickness direction.
- the semiconductor chips may be stacked and joined after the redundant replacement step.
- the semiconductor chips may be stacked and bonded after the defect position information recording step and before the redundant replacement step.
- the substrate and the device layer may be stacked and bonded, and then the bonded substrate and device layer may be divided for each semiconductor chip having the circuit.
- the substrate and the device layer are stacked and bonded, and then the bonded substrate and device layer are provided for each semiconductor chip having the circuit. It may be divided.
- the plurality of redundant electronic elements to be replaced may be arranged so as to be continuous in the redundant element region.
- a probe In the circuit test process, a probe is used that is disposed at a position corresponding to the through electrode and has a conductive liquid attached to the tip thereof. In the circuit test process, the probe is brought close to the through electrode to conduct the conductive test. You may carry out in the state which made the property liquid contact the said penetration electrode.
- the conductive liquid for example, a liquid having a nano-order diameter and diffusing conductive metal particles is used.
- the present invention is a semiconductor device manufactured using a predetermined manufacturing method, wherein the predetermined manufacturing method includes a normal element region in which a plurality of electronic elements are arranged, and a normal element region in the normal element region.
- the predetermined manufacturing method includes a normal element region in which a plurality of electronic elements are arranged, and a normal element region in the normal element region.
- the A defective position information recording step for recording position information of defective electronic elements in the normal element region in the defective position information recording unit having the plurality of redundant through holes, and defective electrons recorded in the defective position information recording unit And a redundant replacement step of replacing the defective electronic element with the redundant electronic element based on the position information of the element.
- the present invention when a semiconductor device is manufactured by stacking semiconductor chips, defective electronic elements in the circuit of the semiconductor chip can be remedied and the yield of the semiconductor device can be improved.
- FIG. 1 shows a main processing flow of the semiconductor device manufacturing method according to the present embodiment.
- a plurality of circuits 11 are formed on the surface of a wafer 10 as a substrate. Then, a device layer 12 including these circuits 11 is formed on the surface of the wafer 10 (step S1 in FIG. 1). In the device layer 12, in addition to the circuit 11, signal wiring (not shown) for power supply, grounding, and an address as position information is also formed.
- the circuit 11 has a normal cell array region 20 as a normal element region and a redundant cell array region 21 as a redundant element region as shown in FIG.
- a normal cell array region 20 In the normal cell array region 20, a plurality of memory cells 22 as volatile electronic elements are arranged.
- the memory cells 22 are arranged in a lattice shape so as to be specified by a row address and a column address.
- a plurality of redundant memory cells 23 as volatile redundant electronic elements for replacing defective memory cells as defective electronic elements in the normal cell array area 20 are arranged in the redundant cell array region 21. Redundant memory cells 23 are arranged for each row address, and are arranged in a line in the present embodiment.
- Memory cell 22 and redundant memory cell 23 are connected to word line 24 and bit line 25, respectively.
- the number of columns of redundant memory cells 23 in the redundant cell array region 21 is not limited to the present embodiment, and is determined according to the failure mode. That is, in the normal cell array region 20, for example, in the failure mode in which two defective memory cells are detected in one row address, the redundant memory cells 23 in the redundant cell array region 21 are arranged in two columns.
- a plurality of electrode through holes 30 and a plurality of redundant holes are formed so as to extend from the surface of the device layer 12 to the inside of the wafer 10 as shown in FIGS.
- a through-hole 31 for use and a scribe line 32 are respectively formed (step S2 in FIG. 1).
- the electrode through-hole 30, the redundant through-hole 31, and the scribe line 32 are lower end positions of the wafer 10 that have been thinned by polishing the back surface of the wafer 10 so as to penetrate in the thickness direction of the wafer 10 in step S5 described later. Or deeper than its lower end position.
- the electrode through-hole 30 is formed at a position corresponding to the circuit 11.
- the redundant through holes 31 include the number of input matrix address buses 83 to be described later corresponding to the memory cells 22 of the circuit 11, the number (two) of redundant through holes 31 for power supply connection and ground line connection, and redundancy.
- the plurality of redundant through holes 31 form a defective address recording portion 33 to be described later.
- the scribe line 32 is formed such that the wafer 10 and the device layer 11 to be divided include at least one circuit 11.
- the electrode through hole 30, the redundant through hole 31, and the scribe line 32 are simultaneously formed by, for example, a photolithography process and an etching process. That is, after a predetermined resist pattern is formed on the device layer 12 by photolithography, the device layer 12 and the wafer 10 are etched using the resist pattern as a mask, so that the electrode through hole 30, the redundant through hole 31, the scribe line are etched. A line 32 is formed. 4 and 5, the positions and sizes of the electrode through hole 30, the redundant through hole 31, the scribe line 32, and the defective address recording unit 33 as the defective position information recording unit make it easy to understand the technology. In order to give priority, it does not necessarily correspond to the actual position and size. These positions and sizes are not limited to the illustrated example and can be arbitrarily selected.
- the electrode through hole 30, the redundant through hole 31, and the scribe line 32 do not penetrate in the thickness direction of the wafer 10 in the step S2, but the wafer 10 is thinned in the step S5 to be described later. Since it is formed so as to penetrate in the thickness direction of 10, it is expressed as penetration or scribe for convenience.
- each electrode through hole 30 is filled with a conductive material to form a through electrode 34 as shown in FIG.
- the through electrode 34 is formed so as to be electrically connected to the circuit 11 (step S3 in FIG. 1).
- the through electrode 34 does not penetrate in the thickness direction of the wafer 10 at the stage of step S3, but is formed so as to penetrate in the thickness direction of the wafer 10 by thinning the wafer 10 in step S5 described later. Therefore, it is expressed as penetration for convenience.
- a support wafer 40 as a support substrate is disposed on the surface of the device layer 12 (step S4 in FIG. 1).
- the support wafer 40 is bonded to the device layer 12 by, for example, an adhesive.
- the support substrate is not limited to a wafer, and for example, a glass substrate or the like may be used.
- the back surface of the wafer 10 is polished to thin the wafer 10 (step S5 in FIG. 1).
- the through electrode 34 electrode through hole 30
- the redundant through hole 31 and the scribe line 32 penetrate in the thickness direction of the wafer 10.
- the wafer 10 and the device layer 12 are divided by the scribe line 22 to form a plurality of semiconductor chips 50.
- the inspection device 60 includes a tester 61 and a plurality of probes 62 supported on the tester 61 and having conductivity.
- the probe 62 is disposed at a position corresponding to the through electrode 34.
- a conductive liquid 63 is attached to the tip of the probe 62.
- the conductive liquid 63 for example, a liquid having a nano-order diameter and diffusing conductive metal particles is used.
- the inspection apparatus 60 When performing an electrical test using such an inspection apparatus 60, first, the inspection apparatus 60 is raised to the wafer 10 side and the probe 62 is brought close to the through electrode 34. Then, the conductive liquid 63 spreads by its surface tension and comes into contact with the through electrode 34. Subsequently, an electrical signal is sent from the tester 61 to the circuit 11 through the probe 62, the conductive liquid 63, and the through electrode 34, and an electrical test of the circuit 11 is performed.
- the shape of the probe 62 is not limited to the illustrated example, and can take various shapes such as a cantilever shape.
- the address of the defective memory cell is recorded by cutting the fuse from the device side. For this reason, two electrical tests are performed: a probe test performed in a state where the wafer and the device layer before the support wafer is bonded and a device layer are not divided, and a final test performed for each semiconductor chip.
- the conventional probe test can be omitted.
- the electrical test of the circuit 11 for each semiconductor chip 50 can be easily performed collectively.
- the address of the defective memory cell is recorded in the defective address recording unit 33 (step S7 in FIG. 1).
- the plurality of redundant through holes 31 are provided with a first redundant through hole 31a for power supply line connection and a second redundant through hole for ground line connection as shown in FIGS. And a hole 31b.
- Each of the pair of redundant through holes 31a and 31b is formed by the number of (number of input matrix address bus 83) ⁇ (number of redundant memory cells 23).
- the number of redundant through holes 31 is (number of input matrix address bus 83) ⁇ (two for power supply connection and ground line connection) ⁇ (number of redundant memory cells 23).
- the device layer 12 of the defective address recording unit 33 is provided with an address line 70 and a power supply line 71 as position information lines for output on both sides of the first redundant through hole 31a. Further, an address line 72 and a ground line 73 as output position information lines are wired on both sides of the second redundant through hole 31b.
- the address of the defective memory cell is recorded by signals “1” and “0”.
- the address line 70 and the power supply line 71 are connected through the first redundant through hole 31a as shown in FIGS.
- the upper portion of the first redundant through hole 31a is filled with the conductive material 74
- the lower portion of the first redundant through hole 31a is filled with the insulating material 75
- the second redundant through hole 31a is filled.
- the through hole 31b is filled with an insulating material 75.
- the upper portion of the second redundant through hole 31b is filled with the conductive material 74, and the lower portion of the second redundant through hole 31b is filled with the insulating material 75, and the first redundant through hole 31b is filled.
- An insulating material 75 is filled in the through hole 31a.
- the address of the defective memory cell is recorded in the defective address recording unit 33. Since the insulating material 75 is filled in the lower portions of the first redundant through hole 31a and the second redundant through hole 31b in this way, the semiconductor chip 50 is laminated and bonded in step S9 described later.
- the address line 70, the power supply line 71, the address line 72, and the ground line 73 are electrically connected through the first redundant through hole 31a and the second redundant through hole 31b, respectively.
- the filling of the conductive material 74 and the insulating material 75 into the redundant through hole 31 may be performed by, for example, an ink jet method.
- a plurality of nozzles may be arranged corresponding to the formation pattern of the redundant through holes 31, and the conductive material 74 or the insulating material 75 may be supplied from each nozzle to the corresponding redundant through hole 31.
- the defective memory cell is replaced with the redundant memory cell 23 in the redundant cell array region 21 based on the address of the defective memory cell (step of FIG. 1). S8).
- an address input from the outside is latched in the address buffer 80.
- the row address is output to the row address decoder 81.
- the word line 24 is selected by decoding the row address.
- the column address is output to the comparator 82. Further, the row address and column address of the defective memory cell recorded by the defective address recording unit 33 are input to the comparator 82.
- the comparator 82 compares the input matrix address from the outside with the matrix address of the defective memory cell. As shown in FIG. 14, the comparator 82 includes an input matrix address bus 83 for transmitting the input matrix address A from the address buffer 80 and a defective matrix address bus 84 for transmitting the matrix address B of the defective memory cell. Have. Then, the input matrix address A and the matrix address B of the defective memory cell are compared, and if they match, “1” is output as the signal Y, and if they do not match, “0” is output as the signal Y.
- the matrix address B of a plurality of defective memory cells is input to one comparator 82, but a comparator may be provided for each defective memory cell.
- the comparator compares the input matrix address A from the address buffer 80 with the matrix address B of one defective memory cell.
- the comparison result is output to the circuit, and in the circuit, it is determined which comparator matches the matrix addresses A and B. If they match, “1” is output as the signal Y, and if they do not match, “0” is output as the signal Y.
- Subsequent replacement of the defective memory cell with the redundant memory cell 23 is as described above, and thus the description thereof is omitted.
- a read / write circuit 86 is connected to the normal cell array region 20 and the redundant cell array region 21. By this read / write circuit 86, data can be exchanged between the data input / output buffer 87 and the normal cell array region 20 and the redundant cell array region 21.
- the electrical test of the circuit 11 may be performed again in the same manner as in step S6.
- the above-described processes of steps S1 to S8 are separately performed, and the non-defective semiconductor chip 50 after the redundant replacement of the defective memory cell is formed. Thereafter, as shown in FIG. 15, the semiconductor chip 50 supported by one support wafer 40 and the semiconductor chip 50 supported by another support wafer 40 are stacked and joined in the vertical direction (step S9 in FIG. 1). At this time, the semiconductor chips 50 are joined so that the through electrodes 34 are conductive.
- the upper support wafer 40 is removed (step S10 in FIG. 1).
- the removal of the upper support wafer 40 is performed, for example, by heating the support wafer 40 and the semiconductor chip 50 to weaken the adhesiveness of the adhesive.
- step S7 the address line 70 and the power supply line 71 are connected via the first redundant through hole 31a, or the address line is connected via the second redundant through hole 31b.
- the address of the defective memory cell can be recorded in the defective address recording unit 33. Therefore, in the three-dimensional integration technique, even when the support wafer 40 is disposed on the surface of the device layer 12 on the wafer 10 and the semiconductor device 100 is manufactured by stacking the semiconductor chips 50, the back surface side of the wafer 10.
- the address of the defective memory cell can be recorded in the defective address recording unit 33.
- step S8 based on the address of the defective memory cell recorded in the defective address recording unit 33, the defective memory cell is replaced by the redundant memory cell 23 and repaired. Therefore, the yield of the semiconductor device 100 is improved. Can do.
- the address of the defective memory cell can be recorded in the defective address recording unit 33. Therefore, for example, a volatile semiconductor chip 50 such as a DRAM.
- the non-volatile defective address recording unit 33 can be formed functionally.
- the defective address recording unit 33 can be formed by a simple method. That is, in step S ⁇ b> 2, the redundant through hole 31 of the defective address recording unit 33 is formed together with the electrode through hole 30. For this reason, it is not necessary to perform the process of forming the redundant through-hole 31 separately.
- the address line 70 and the power supply line 71 are connected via the first redundant through hole 31a by filling the redundant through hole 31 with the conductive material 74 or the insulating material 75 by, for example, an inkjet method.
- the defective address recording section 33 can be formed by connecting the address line 72 and the ground line 73 through the second redundant through hole 31b.
- the semiconductor device 100 can be manufactured efficiently.
- step S8 the defective memory cells can be replaced with the redundant memory cells 23 on a one-to-one basis for each row address, so that the defective memory cells can be efficiently relieved.
- step S2 the scribe line 32 is formed together with the electrode through hole 30 and the redundant through hole 31, so that the step of forming the scribe line 32, that is, the wafer 10 and the device layer 12 are divided to form the semiconductor chip 50. There is no need to perform the process of forming separately. Therefore, the semiconductor device 100 can be manufactured more efficiently.
- step S6 the electrical test of the circuit 10 is performed for each semiconductor chip 50 in a state where the plurality of semiconductor chips 50 are supported by the support wafer 40. That is, a final test for each semiconductor chip 50 can be performed from the beginning without performing a conventional probe test. Therefore, the semiconductor device 100 can be manufactured more efficiently.
- step S6 the electrical test of the circuit 11 is performed by causing the conductive liquid 63 and the through electrode 34 to conduct. Since the conductive liquid 63 spreads by the surface tension and contacts the penetrating electrode 34, the electrical test of the circuit 11 can be performed even if the probe 62 is not arranged with strict positional accuracy with respect to the penetrating electrode 34. Moreover, when the test is performed with the probe in direct contact with the through electrode, the contact load increases. However, in this embodiment, since the conductive liquid 63 contacts the through electrode 34, the contact load can be reduced. it can. Therefore, the electrical test of the circuit 11 can be performed efficiently.
- the semiconductor chip 50 is stacked in step S9.
- the defective memory cell is replaced with the redundant memory cell.
- the cell 23 may be replaced.
- the defective memory cell in the upper semiconductor chip 50 is relieved in a state where the upper support wafer 40 is removed.
- the yield of the semiconductor device 100 can be improved.
- the electrode through hole 30, the redundant through hole 31, and the scribe line 32 are formed in step S2, the through electrode 34 is formed in step S3, and then the surface of the device layer 12 in step S4.
- the electrode through hole 30, the redundant through hole 31, the scribe line 32, and the through electrode 34 are formed. May be.
- the other steps S1 and the steps S5 to S10 are the same as those in the above embodiment, and the description thereof is omitted.
- the defective address recording unit 33 is provided with the first redundant through hole 31a for connecting the power supply line and the second redundant through hole 31b for connecting the ground line separately.
- a redundant through-hole 110 that serves both as a power supply line connection and a ground line connection may be provided.
- the address line 70 and the power supply line 71 are wired on both sides of the redundant through hole 110.
- An address line 72 and a ground line 73 are wired on both sides of the redundant through hole 110 and above the address line 70 and the power supply line 71.
- the address line 70 and the power supply line 71 are connected via the redundant through hole 110 as shown in FIG.
- the portion corresponding to the power supply line 71 of the redundant through hole 110 is filled with the conductive material 74, and the portion corresponding to the ground line 73 and the portion corresponding to the power supply line 71 of the redundant through hole 110 are used.
- An insulating material 75 is filled in the lower part.
- the conductive material 74 is filled in the portion corresponding to the ground line 73 of the redundant through hole 110, and the insulating material 75 is formed in the portion corresponding to the power line 71 of the redundant through hole 110 and the lower portion thereof. Fill.
- the number of redundant through holes 110 is half the number of redundant through holes 31 of the above embodiment, and the addresses of defective memory cells can be recorded using the redundant through holes 110.
- the address line 72 and the ground line 73 are provided above the address line 70 and the power line 71.
- the address line 70 and the power line 71 are provided above the address line 72 and the ground line 73. May be.
- the scribe line 32 is formed in step S2 to divide the wafer 10 and the device layer 12, and then the semiconductor chip 50 is laminated and bonded in step S9. After laminating and bonding, the wafer 10 and the device layer 12 may be divided.
- step S1 After forming the device layer 12 on the wafer 10 in step S1, a plurality of electrode through holes 30 and a plurality of redundant through holes 31 (not shown) are formed in step S2 as shown in FIG. To do. At this time, the scribe line 32 is not formed as in the above embodiment. Thereafter, in step S3, as shown in FIG. 21, each electrode through hole 30 is filled with a conductive material to form a through electrode 34. In step S4, the support wafer 40 is disposed on the surface of the device layer 12. Then, after the back surface of the wafer 10 is polished and thinned in step S5 as shown in FIG. 22, the circuit 11 is electrically tested using the inspection device 60 from the back surface side of the wafer 10 in step S6. .
- step S7 the address of the defective memory cell is recorded in the defective address recording unit 33, and in step S8, the defective memory cell is replaced with the redundant memory cell 23 and repaired.
- step S9 as shown in FIG. 23, the wafer 10 (and the device layer 12) from which the defective memory cell is relieved is stacked and bonded in the vertical direction.
- step S10 the support wafer 40 is removed.
- the wafers when the wafers are simply stacked in the conventional manner, it is difficult to relieve the defective memory cell with the redundant memory cell.
- the laminated wafer is divided for each semiconductor chip, defective memory cells that cannot be relieved in one semiconductor chip remain, so that the laminated semiconductor chip itself becomes a defective product.
- the yield of the semiconductor device 100 can be improved even when the wafer 10 and the device layer 12 are divided after being stacked. it can.
- the method of the present invention is particularly useful when the wafer 10 and the device layer 12 are stacked and then divided as in the present embodiment.
- the wafer 10 and the device layer 12 are stacked in step S9.
- the wafer 10 and the device layer 12 are stacked.
- the defective memory cell may be replaced with the redundant memory cell 23.
- the wafer 10 (and the device layer 12) having the non-defective memory cells 22 can be stacked, the yield of the semiconductor device 100 can be improved.
- the redundant cell array region 21 of the above embodiment may be shared by a plurality of blocks.
- the semiconductor chip 50 (circuit 11) is provided with, for example, a plurality of blocks A1 and A2.
- Each of the blocks A1 and A2 has a normal cell array region 20.
- the redundant cell array region 21 that shares the word line 24 is provided in the blocks A1 and A2.
- the configuration of other defective address recording unit 33, address buffer 80, row address decoder 81, comparator 82, column address recorder 85, read / write circuit 86, input / output buffer 87, and the like is the same as that of the above embodiment. Therefore, the description is omitted.
- the defective memory cells 22a and 22b of the blocks A1 and A2 can be repaired by replacing them with the redundant memory cells 23a and 23b, respectively.
- the yield of the apparatus 100 can be improved.
- the number of redundant memory cells 23 in the redundant cell array region 21 is one column.
- the number of columns is not limited to this embodiment, and the number of columns is two or more columns. May be.
- the possibility that these defective memory cells can be replaced with the redundant memory cells 23 and repaired is improved. To do.
- the semiconductor chip 50 (circuit 11) is provided with a plurality of, for example, four blocks B1, B2, B3, and B4.
- Each of the blocks B1 to B4 has a normal cell array region 20 and a redundant cell array region 21, respectively.
- Each block B1 to B4 is provided with a row address decoder 81, a column address recorder 85, a read / write circuit 86, and an input / output buffer 87.
- step S8 of replacing the defective memory cell with the redundant memory cell 23 in the semiconductor chip 50 will be described.
- the address (address map data) of the defective memory cell recorded in the defective address memory recording unit 33 in step S7 is output to the defective address buffer 120.
- the address of the defective memory cell is latched and output to the comparator 82.
- the address of the defective memory cell is also output from the defective address buffer 120 to the address conversion circuit 121.
- an address input from the outside is latched and output to the comparator 82.
- the comparator 82 compares the input matrix address from the outside with the matrix address of the defective memory cell. Specifically, it is determined whether or not the input matrix address matches the matrix address of the defective memory cell, and it is determined whether or not the memory cell 22 is a defective memory cell. Note that the comparison of addresses in the comparator 82 is the same as that in the above embodiment, so that the description thereof is omitted.
- an address mismatch signal is output from the comparator 82 to the row address decoder 81 and the column address recorder 85 of each of the blocks B1 to B4.
- an address match signal is output from the comparator 82 to the address conversion circuit 121 as indicated by a dotted arrow in FIG.
- the address of the defective memory cell input from the defective address buffer 120 is used to access the redundant memory cell 23 to which the defective memory cell is replaced (hereinafter referred to as “redundant memory access address”). )).
- the redundant memory access addresses correspond one-to-one in order from the lower to the higher address of the defective memory cell. Redundant memory address access addresses are associated in order from the bottom.
- the redundant memory access address converted by the address conversion circuit 121 is output from the address conversion circuit 121 to the row address decoder 81 and the column address recorder 85 of each of the blocks B1 to B4. Is done.
- the address conversion circuit 121 when an address of a predetermined defective memory cell is input, a circuit that generates “1” only at the address is created.
- the redundant memory access address is output by this "1" signal. In such a case, the address for redundant memory access is not output because it is “0” in other cases. Therefore, a redundant memory access address corresponding to the defective memory cell on a one-to-one basis is output. Then, the redundant memory cell 23 is accessed based on the redundant memory access address, and the defective memory cell is replaced with the redundant memory cell 23 to be relieved.
- the defective memory cell 22a of the block B1, the defective memory cell 22b of the block B2, and the defective memory cell 22c of the block B3 are respectively connected to the blocks B1 and B2.
- B3 is replaced by the redundant memory cell 23 in the redundant cell array region 21, and is repaired.
- the defective memory cell is relieved for each of the blocks B1, B2, and B3, for example, if all the redundant memory cells 23 in the redundant cell array region 21 of the block B1 are replaced, the normal cell array region 20 of the block B1 is replaced.
- the defective memory cell cannot be relieved any more.
- the defective memory cell of the block B1 cannot be relieved, and the semiconductor chip 50 becomes a defective product. That is, when viewed as a whole of the semiconductor chip 50, the semiconductor chip 50 becomes a defective product even though the redundant cell memory 23 remains.
- defective memory cells 22a, 22b, and 22c in different blocks B1, B2, and B3 are replaced with redundant memory cells 23a, 23b, 23c is rearranged.
- redundant memory cells 23a, 23b, and 23c are continuously arranged.
- redundant memory cells 23 are continuously arranged in the redundant cell array region 21 in the blocks B2, B3, and B4.
- the redundant memory cell 23 can be used effectively, the number of redundant memory cells 23 to be arranged in the circuit 11 can be reduced, and the semiconductor chip 50 can be reduced in size. It can also be converted.
- the address conversion circuit 121 of the above embodiment may convert the address of the defective memory cell into an address for redundant memory address access using the same method as the defective address recording unit 33. That is, the redundant memory address access address corresponding one-to-one with the address of the defective memory cell may be recorded using the same method as the defective address recording unit 33. In such a case, the address conversion can be performed more efficiently. Note that the specific recording method of this address is the same as that in the above embodiment, and the description thereof will be omitted.
- a memory (not shown) in which a redundant memory access address corresponding to the address of the defective memory cell is written in advance as data may be used.
- the redundant memory access address data corresponding to the defective memory cell address is read from the memory. If the addresses compared by the comparator 82 do not match, the redundant memory 23 is accessed based on the read address data, and the defective memory cell is replaced with the redundant memory cell 23 to be relieved.
- a memory cell memory element
- the present invention can also be applied to other electronic elements such as a logic element. That is, by using the method of the present invention, a defective logic element can be replaced with a redundant logic element and repaired.
- defective memory cells are relieved in units of memory cells, but defective aggregates may be relieved in units of memory cell aggregates.
- a set of memory cells a set of arbitrary units is selected. For example, a so-called block which is a set of normal cell array regions 20 in which the same address is selected is used. In such a case, the defective block can be replaced with a redundant block and repaired using the method of the present invention.
- the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.
- the present invention is not limited to this example and can take various forms.
- the present invention can also be applied to a case where the substrate is another substrate such as an FPD (flat panel display) other than a wafer or a mask reticle for a photomask.
- FPD flat panel display
- the present invention is useful when a semiconductor device is manufactured by stacking semiconductor chips.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Abstract
A device layer including a plurality of circuits is formed on a surface of a substrate. Thereafter, a plurality of electrode through-holes, a plurality of redundancy through-holes and scribe lines are formed in the substrate and device layer. Thereafter, feedthrough electrodes are formed in the electrode through-holes. Thereafter, a support board is provided on the device layer surface. Thereafter, the substrate is thinned. Thereafter, an electrical test of the circuits is performed. Thereafter, positional information of faulty electronic elements is recorded into a fault positional-information recording part having the plurality of redundancy through-holes. Thereafter, the faulty electronic elements are replaced by redundant electronic elements. Thereafter, semiconductor chips are jointed. Thereafter, the support board located on the upper side is removed.
Description
本発明は、半導体装置の製造方法及びその製造方法で製造される半導体装置に関する。
The present invention relates to a semiconductor device manufacturing method and a semiconductor device manufactured by the manufacturing method.
半導体装置の製造工程では、半導体チップの半導体ウェハ(以下、「ウェハ」という。)上に形成された回路の電気的試験を行い、当該電気的試験において不良と判定された不良メモリセルを冗長メモリセルに置換して救済することが行われている。
In the manufacturing process of a semiconductor device, an electrical test is performed on a circuit formed on a semiconductor wafer of a semiconductor chip (hereinafter referred to as “wafer”), and a defective memory cell determined as defective in the electrical test is determined as a redundant memory. Relieving by replacing the cell.
かかる不良メモリセルの救済は、例えばレーザ光で溶断可能な複数のヒューズ素子を用いたレーザトリミング処理によって行われる。具体的には、回路の電気的試験で不良と判定された不良メモリセルのアドレスが、半導体チップの回路側に設けられたヒューズ素子をレーザ光で溶断することによって保持される。そして、この不良メモリセルのアドレスに基づいて、不良メモリセルが冗長メモリセルに置換される(特許文献1)。
Such a defective memory cell is remedied by, for example, a laser trimming process using a plurality of fuse elements that can be blown by a laser beam. Specifically, the address of the defective memory cell determined to be defective by the electrical test of the circuit is held by fusing a fuse element provided on the circuit side of the semiconductor chip with laser light. Based on the address of the defective memory cell, the defective memory cell is replaced with a redundant memory cell (Patent Document 1).
ところで、近年、半導体装置の高性能化が進んでいる。かかる状況下で、例えばDRAM等の半導体チップを水平面内に複数配置し、これら半導体チップを配線で接続して半導体装置を製造する場合、配線長が増大し、それにより配線の抵抗が大きくなること、また配線遅延が大きくなることが懸念される。
By the way, in recent years, the performance of semiconductor devices has been improved. Under such circumstances, when a semiconductor device is manufactured by arranging a plurality of semiconductor chips such as DRAMs in a horizontal plane and connecting these semiconductor chips with wiring, the wiring length increases, thereby increasing the resistance of the wiring. Moreover, there is a concern that the wiring delay becomes large.
そこで、半導体チップを3次元に積層する3次元集積技術を用いることが考えられている。この場合、単に半導体チップを積層すると、ウェハの厚みにより、製造される半導体装置も厚くなる。そこで、例えば半導体チップを積層する前に、半導体チップの回路側に支持基板を設け、ウェハの裏面を研磨して当該ウェハを薄化することが行われる。
Therefore, it is considered to use a three-dimensional integration technique in which semiconductor chips are stacked three-dimensionally. In this case, if the semiconductor chips are simply stacked, the semiconductor device to be manufactured becomes thick due to the thickness of the wafer. Therefore, for example, before stacking the semiconductor chips, a support substrate is provided on the circuit side of the semiconductor chips, and the wafer is thinned by polishing the back surface of the wafer.
しかしながら、かかる3次元集積技術において、上述の従来文献1に記載された不良メモリセルの救済方法を適用することができない。すなわち、半導体チップの回路側には支持基板が設けられているため、ヒューズ素子をレーザ光で溶断することができない。そうすると、不良メモリセルのアドレスを記録することができず、さらに不良メモリセルを冗長メモリセルに置換することができない。このため、半導体装置の歩留まり低下が生じることになる。
However, in such a three-dimensional integration technique, the method for relieving a defective memory cell described in the above-mentioned conventional document 1 cannot be applied. That is, since the support substrate is provided on the circuit side of the semiconductor chip, the fuse element cannot be blown by the laser beam. Then, the address of the defective memory cell cannot be recorded, and the defective memory cell cannot be replaced with a redundant memory cell. For this reason, the yield of the semiconductor device is reduced.
本発明は、かかる点に鑑みてなされたものであり、半導体チップを積層して半導体装置を製造する際に、当該半導体チップの回路の不良電子素子を救済し、半導体装置の歩留まりを向上させることを目的とする。
The present invention has been made in view of the above points, and when a semiconductor device is manufactured by stacking semiconductor chips, a defective electronic element in a circuit of the semiconductor chip is relieved and the yield of the semiconductor device is improved. With the goal.
前記の目的を達成するため、本発明は、半導体装置を製造する方法において、複数の電子素子が配置された通常素子領域と、前記通常素子領域内の不良電子素子を置換するための冗長電子素子が配置された冗長素子領域とを備えた回路を基板表面に複数形成して、当該基板表面に前記回路を含むデバイス層を形成するデバイス形成工程と、前記基板及び前記デバイス層の厚み方向に貫通する、複数の電極用貫通孔と複数の冗長用貫通孔をそれぞれ形成する貫通孔形成工程と、前記電極用貫通孔に導電性材料を充填し、前記回路に電気的に接続される貫通電極を形成する電極形成工程と、前記基板の裏面側から前記貫通電極を介して前記回路の電気的試験を行う回路試験工程と、前記回路試験工程で検出された前記通常素子領域内の不良電子素子の位置情報を、前記複数の冗長用貫通孔を有する不良位置情報記録部に記録する不良位置情報記録工程と、前記不良位置情報記録部に記録された不良電子素子の位置情報に基づいて、当該不良電子素子を前記冗長電子素子に置換する冗長置換工程と、を有する。なお、本発明における電子素子は、例えばメモリ素子(メモリセル)やロジック素子である。また、本発明における位置情報は、例えば不良電子素子を識別するための情報であって、例えば電子素子のアドレスである。
To achieve the above object, according to the present invention, in a method of manufacturing a semiconductor device, a normal element region in which a plurality of electronic elements are arranged, and a redundant electronic element for replacing a defective electronic element in the normal element region Forming a plurality of circuits having redundant element regions on the substrate surface, forming a device layer including the circuit on the substrate surface, and penetrating in a thickness direction of the substrate and the device layer A through-hole forming step of forming a plurality of electrode through-holes and a plurality of redundant through-holes, respectively, and filling the electrode through-holes with a conductive material and electrically connecting the through-electrodes to the circuit An electrode forming step to be formed, a circuit test step for conducting an electrical test of the circuit from the back side of the substrate through the through electrode, and defective electrons in the normal element region detected in the circuit test step Based on the defect position information recording step for recording the child position information in the defect position information recording unit having the plurality of redundant through holes, and the position information of the defective electronic element recorded in the defect position information recording unit, A redundant replacement step of replacing the defective electronic element with the redundant electronic element. The electronic element in the present invention is, for example, a memory element (memory cell) or a logic element. Further, the position information in the present invention is information for identifying a defective electronic element, for example, and is an address of the electronic element, for example.
本発明によれば、貫通孔形成工程において、基板及びデバイス層を貫通する冗長用貫通孔を形成し、不良位置情報記録工程において、不良位置情報記録部に不良電子素子の位置情報を記録している。したがって、例えば上述した3次元集積技術において、基板上のデバイス層表面に支持基板を設け、半導体チップを積層して半導体装置を製造する場合であっても、基板の裏面側から不良電子素子の位置情報を記録することができる。そして、冗長置換工程において、不良位置情報記録部に記録された不良電子素子の位置情報に基づいて、当該不良電子素子を冗長電子素子に置換して救済するので、半導体装置の歩留まりを向上させることができる。しかも、貫通孔形成工程において、冗長用貫通孔は電極用貫通孔と共に形成されるので、別途冗長用貫通孔を形成する工程を行う必要がない。したがって、半導体装置を効率よく製造することができる。
According to the present invention, in the through hole forming step, a redundant through hole penetrating the substrate and the device layer is formed, and in the defective position information recording step, the position information of the defective electronic element is recorded in the defective position information recording unit. Yes. Therefore, for example, in the above-described three-dimensional integration technology, even when a support substrate is provided on the surface of the device layer on the substrate and a semiconductor device is manufactured by stacking semiconductor chips, the position of the defective electronic element from the back side of the substrate Information can be recorded. Then, in the redundant replacement step, based on the position information of the defective electronic element recorded in the defective position information recording unit, the defective electronic element is replaced with the redundant electronic element and repaired, thereby improving the yield of the semiconductor device. Can do. In addition, in the through hole forming step, the redundant through hole is formed together with the electrode through hole, so that it is not necessary to perform a separate step of forming the redundant through hole. Therefore, the semiconductor device can be manufactured efficiently.
前記不良位置情報記録工程において、前記複数の冗長用貫通孔に対応する各々の位置情報線を接地線又は電源線に接続してもよい。
In the defect position information recording step, each position information line corresponding to the plurality of redundant through holes may be connected to a ground line or a power line.
前記不良位置情報記録部において、前記複数の冗長用貫通孔は、電源線接続用の第1の冗長用貫通孔と接地線接続用の第2の冗長用貫通孔を備えた一対の冗長用貫通孔を複数有し、前記不良位置情報記録工程において、前記第1の冗長用貫通孔を介して電源線と位置情報線を接続するか、あるいは前記第2の冗長用貫通孔を介して接地線と位置情報線を接続することで、前記不良位置情報記録部に前記不良電子素子の位置情報を記録してもよい。
In the defect position information recording section, the plurality of redundant through holes are a pair of redundant through holes provided with a first redundant through hole for power supply line connection and a second redundant through hole for ground line connection. A plurality of holes, and in the defect position information recording step, a power line and a position information line are connected via the first redundant through hole, or a ground line is connected via the second redundant through hole. And the position information line may be connected to record the position information of the defective electronic element in the defective position information recording unit.
前記電源線と位置情報線を接続する際には、前記第1の冗長用貫通孔の上部に導電性材料を充填し、且つ第1の冗長用貫通電極の下部に絶縁性材料を充填すると共に、前記第2の冗長用貫通孔に絶縁性材料を充填し、前記接地線と位置情報線を接続する際には、前記第2の冗長用貫通孔の上部に導電性材料を充填し、且つ第2の冗長用貫通電極の下部に絶縁性材料を充填すると共に、前記第1の冗長用貫通孔に絶縁性材料を充填してもよい。
When the power supply line and the position information line are connected, the upper portion of the first redundant through hole is filled with a conductive material, and the lower portion of the first redundant through electrode is filled with an insulating material. The second redundant through hole is filled with an insulating material, and when the ground line and the position information line are connected, the upper portion of the second redundant through hole is filled with a conductive material, and The insulating material may be filled in the lower part of the second redundant through electrode, and the insulating material may be filled in the first redundant through hole.
前記通常素子領域には、前記複数の電子素子が行アドレスと列アドレスで特定されるように格子状に配置され、前記冗長素子領域には、各行アドレス毎に前記冗長電子素子がそれぞれ配置され、前記冗長置換工程において、各行アドレス毎に不良電子素子を前記冗長電子素子に置換してもよい。
In the normal element region, the plurality of electronic elements are arranged in a lattice shape so as to be specified by a row address and a column address, and in the redundant element region, the redundant electronic element is arranged for each row address, In the redundant replacement step, the defective electronic element may be replaced with the redundant electronic element for each row address.
前記電子素子と前記冗長電子素子は、それぞれ揮発性を有していてもよい。
The electronic element and the redundant electronic element may each have volatility.
前記貫通孔形成工程において、前記複数の電極用貫通孔と前記複数の冗長用貫通孔を形成すると共に、前記基板及び前記デバイス層を分割して、前記回路を有する複数の半導体チップを形成するためのスクライブラインを形成してもよい。
In the through hole forming step, the plurality of electrode through holes and the plurality of redundant through holes are formed, and the substrate and the device layer are divided to form a plurality of semiconductor chips having the circuit. The scribe line may be formed.
前記回路試験工程において、前記半導体チップ毎に前記回路の電気的試験を行ってもよい。
In the circuit test step, an electrical test of the circuit may be performed for each semiconductor chip.
前記貫通孔形成工程と前記電極形成工程において、前記電極用貫通孔、前記貫通電極、前記冗長用貫通孔及び前記スクライブラインをそれぞれデバイス層の表面から前記基板の内部まで延伸するように形成し、前記電極形成工程後であって前記回路試験工程前に、前記デバイス層の表面に支持基板を設け、その後、前記基板の裏面を研磨することにより、前記貫通電極、前記冗長用貫通孔、前記スクライブラインをそれぞれ前記基板の厚み方向に貫通させて形成してもよい。
In the through hole forming step and the electrode forming step, the electrode through hole, the through electrode, the redundant through hole, and the scribe line are formed to extend from the surface of the device layer to the inside of the substrate, respectively. After the electrode forming step and before the circuit testing step, a support substrate is provided on the surface of the device layer, and then the back surface of the substrate is polished to thereby form the through electrode, the redundant through hole, and the scribe. Each line may be formed through the substrate in the thickness direction.
前記冗長置換工程後に、前記半導体チップを積層して接合してもよい。あるいは、前記不良位置情報記録工程後であって前記冗長置換工程前に、前記半導体チップを積層して接合してもよい。
The semiconductor chips may be stacked and joined after the redundant replacement step. Alternatively, the semiconductor chips may be stacked and bonded after the defect position information recording step and before the redundant replacement step.
また、前記冗長置換工程後において、前記基板及び前記デバイス層を積層して接合した後、前記回路を有する半導体チップ毎に前記接合された基板及びデバイス層を分割してもよい。あるいは、前記不良位置情報記録工程後であって前記冗長置換工程前において、前記基板及び前記デバイス層を積層して接合した後、前記回路を有する半導体チップ毎に前記接合された基板及びデバイス層を分割してもよい。
In addition, after the redundant replacement step, the substrate and the device layer may be stacked and bonded, and then the bonded substrate and device layer may be divided for each semiconductor chip having the circuit. Alternatively, after the defective position information recording step and before the redundant replacement step, the substrate and the device layer are stacked and bonded, and then the bonded substrate and device layer are provided for each semiconductor chip having the circuit. It may be divided.
前記冗長置換工程において、複数の前記不良電子素子が前記冗長電子素子に置換された場合に、当該置換される複数の冗長電子素子は冗長素子領域内で連続するように配置されてもよい。
In the redundant replacement step, when a plurality of defective electronic elements are replaced with the redundant electronic elements, the plurality of redundant electronic elements to be replaced may be arranged so as to be continuous in the redundant element region.
前記回路試験工程では、前記貫通電極に対応する位置に配置され、且つ先端に導電性液が付着したプローブが用いられ、当該回路試験工程は、前記プローブを前記貫通電極に近接させて、前記導電性液を前記貫通電極に接触させた状態で行われてもよい。なお、導電性液には、例えばナノオーダの径を有し、かつ導電性を有する金属粒子を拡散させた液が用いられる。
In the circuit test process, a probe is used that is disposed at a position corresponding to the through electrode and has a conductive liquid attached to the tip thereof. In the circuit test process, the probe is brought close to the through electrode to conduct the conductive test. You may carry out in the state which made the property liquid contact the said penetration electrode. As the conductive liquid, for example, a liquid having a nano-order diameter and diffusing conductive metal particles is used.
別な観点による本発明は、所定の製造方法を用いて製造される半導体装置であって、前記所定の製造方法は、複数の電子素子が配置された通常素子領域と、前記通常素子領域内の不良電子素子を置換するための冗長電子素子が配置された冗長素子領域とを備えた回路を基板表面に複数形成して、当該基板表面に前記回路を含むデバイス層を形成するデバイス形成工程と、前記基板及び前記デバイス層の厚み方向に貫通する、複数の電極用貫通孔と複数の冗長用貫通孔をそれぞれ形成する貫通孔形成工程と、前記電極用貫通孔に導電性材料を充填し、前記回路に電気的に接続される貫通電極を形成する電極形成工程と、前記基板の裏面側から前記貫通電極を介して前記回路の電気的試験を行う回路試験工程と、前記回路試験工程で検出された前記通常素子領域内の不良電子素子の位置情報を、前記複数の冗長用貫通孔を有する不良位置情報記録部に記録する不良位置情報記録工程と、前記不良位置情報記録部に記録された不良電子素子の位置情報に基づいて、当該不良電子素子を前記冗長電子素子に置換する冗長置換工程と、を有する。
The present invention according to another aspect is a semiconductor device manufactured using a predetermined manufacturing method, wherein the predetermined manufacturing method includes a normal element region in which a plurality of electronic elements are arranged, and a normal element region in the normal element region. Forming a plurality of circuits on a substrate surface with a redundant element region in which redundant electronic elements for replacing defective electronic elements are arranged, and forming a device layer including the circuit on the substrate surface; A through hole forming step of forming a plurality of electrode through holes and a plurality of redundant through holes, respectively, penetrating in the thickness direction of the substrate and the device layer; and filling the electrode through holes with a conductive material, Detected in an electrode forming step of forming a through electrode electrically connected to the circuit, a circuit test step of performing an electrical test of the circuit from the back side of the substrate through the through electrode, and the circuit test step. The A defective position information recording step for recording position information of defective electronic elements in the normal element region in the defective position information recording unit having the plurality of redundant through holes, and defective electrons recorded in the defective position information recording unit And a redundant replacement step of replacing the defective electronic element with the redundant electronic element based on the position information of the element.
本発明によれば、半導体チップを積層して半導体装置を製造する際に、当該半導体チップの回路の不良電子素子を救済し、半導体装置の歩留まりの向上させることができる。
According to the present invention, when a semiconductor device is manufactured by stacking semiconductor chips, defective electronic elements in the circuit of the semiconductor chip can be remedied and the yield of the semiconductor device can be improved.
以下、本発明の実施の形態について説明する。図1は、本実施の形態にかかる半導体装置の製造方法の主な処理フローを示している。
Hereinafter, embodiments of the present invention will be described. FIG. 1 shows a main processing flow of the semiconductor device manufacturing method according to the present embodiment.
先ず、図2に示すように基板としてのウェハ10の表面に複数の回路11を形成する。そして、ウェハ10の表面にこれら回路11を含むデバイス層12を形成する(図1の工程S1)。なお、デバイス層12には、回路11のほか、電源用、接地用、位置情報としてのアドレス等の信号用配線(図示せず)も形成されている。
First, as shown in FIG. 2, a plurality of circuits 11 are formed on the surface of a wafer 10 as a substrate. Then, a device layer 12 including these circuits 11 is formed on the surface of the wafer 10 (step S1 in FIG. 1). In the device layer 12, in addition to the circuit 11, signal wiring (not shown) for power supply, grounding, and an address as position information is also formed.
なお、回路11は、図3に示すように通常素子領域としての通常セルアレイ領域20と冗長素子領域としての冗長セルアレイ領域21を有している。通常セルアレイ領域20内には、複数の揮発性の電子素子としてのメモリセル22が配置されている。メモリセル22は、行アドレスと列アドレスで特定されるように格子状に配置されている。冗長セルアレイ領域21内には、通常セルアレイ領域20内の不良電子素子としての不良メモリセルを置換するための揮発性の冗長電子素子としての冗長メモリセル23が複数配置されている。冗長メモリセル23は、各行アドレス毎に配置され、本実施の形態においては、一列に配置されている。メモリセル22と冗長メモリセル23は、ワード線24とビット線25にそれぞれ接続されている。なお、冗長セルアレイ領域21における冗長メモリセル23の列数は、本実施の形態に限定されず、不良モードに合わせて決定される。すなわち、通常セルアレイ領域20において、例えば一行アドレス中に不良メモリセルが2つ検出される不良モードの場合、冗長セルアレイ領域21内の冗長メモリセル23は2列に配置される。
The circuit 11 has a normal cell array region 20 as a normal element region and a redundant cell array region 21 as a redundant element region as shown in FIG. In the normal cell array region 20, a plurality of memory cells 22 as volatile electronic elements are arranged. The memory cells 22 are arranged in a lattice shape so as to be specified by a row address and a column address. A plurality of redundant memory cells 23 as volatile redundant electronic elements for replacing defective memory cells as defective electronic elements in the normal cell array area 20 are arranged in the redundant cell array region 21. Redundant memory cells 23 are arranged for each row address, and are arranged in a line in the present embodiment. Memory cell 22 and redundant memory cell 23 are connected to word line 24 and bit line 25, respectively. Note that the number of columns of redundant memory cells 23 in the redundant cell array region 21 is not limited to the present embodiment, and is determined according to the failure mode. That is, in the normal cell array region 20, for example, in the failure mode in which two defective memory cells are detected in one row address, the redundant memory cells 23 in the redundant cell array region 21 are arranged in two columns.
ウェハ10の表面にデバイス層12が形成されると、図4及び図5に示すようにデバイス層12の表面からウェハ10の内部に延伸するように、複数の電極用貫通孔30、複数の冗長用貫通孔31、及びスクライブライン32をそれぞれ形成する(図1の工程S2)。電極用貫通孔30、冗長用貫通孔31、スクライブライン32は、後述する工程S5においてウェハ10の厚み方向に貫通するように、ウェハ10の裏面を研磨して薄化されたウェハ10の下端位置、又はその下端位置よりも深く形成される。また、電極用貫通孔30は、回路11に対応する位置に形成される。冗長用貫通孔31は、回路11のメモリセル22に対応する後述の入力行列アドレスバス83の本数と、電源接続用と接地線接続用の冗長用貫通孔31の個数(2個)と、冗長メモリセル23の個数と、を掛け合わせた個数形成される。すなわち、冗長用貫通孔31の個数は、(入力行列アドレスバス83の本数)×(電源接続用と接地線接続用の2個)×(冗長メモリセル23の個数)となる。例えばメモリセル22が8行×8列の64個の場合、入力行列アドレスバス83の本数は6本となる。そして、冗長メモリセル23が2列の16個である場合、冗長貫通孔31の個数は、(6本)×(2個)×(16個)=192個となる。これら複数の冗長用貫通孔31は、後述する不良アドレス記録部33を形成している。スクライブライン32は、分割されるウェハ10及びデバイス層11が少なくとも一つの回路11を含むように形成される。
When the device layer 12 is formed on the surface of the wafer 10, a plurality of electrode through holes 30 and a plurality of redundant holes are formed so as to extend from the surface of the device layer 12 to the inside of the wafer 10 as shown in FIGS. A through-hole 31 for use and a scribe line 32 are respectively formed (step S2 in FIG. 1). The electrode through-hole 30, the redundant through-hole 31, and the scribe line 32 are lower end positions of the wafer 10 that have been thinned by polishing the back surface of the wafer 10 so as to penetrate in the thickness direction of the wafer 10 in step S5 described later. Or deeper than its lower end position. The electrode through-hole 30 is formed at a position corresponding to the circuit 11. The redundant through holes 31 include the number of input matrix address buses 83 to be described later corresponding to the memory cells 22 of the circuit 11, the number (two) of redundant through holes 31 for power supply connection and ground line connection, and redundancy. The number is formed by multiplying the number of memory cells 23. That is, the number of the redundant through holes 31 is (number of input matrix address buses 83) × (two for power supply connection and ground line connection) × (number of redundant memory cells 23). For example, when the number of memory cells 22 is 64 (8 rows × 8 columns), the number of input matrix address buses 83 is six. When the number of redundant memory cells 23 is 16 in two rows, the number of redundant through holes 31 is (6) × (2) × (16) = 192. The plurality of redundant through holes 31 form a defective address recording portion 33 to be described later. The scribe line 32 is formed such that the wafer 10 and the device layer 11 to be divided include at least one circuit 11.
これら電極用貫通孔30、冗長用貫通孔31、スクライブライン32は、例えばフォトリソグラフィー処理及びエッチング処理によって同時に形成される。すなわち、フォトリソグラフィー処理によってデバイス層12上に所定のレジストパターンを形成した後、当該レジストパターンをマスクとしてデバイス層12とウェハ10をエッチングして、電極用貫通孔30、冗長用貫通孔31、スクライブライン32が形成される。なお、図4及び図5における電極用貫通孔30、冗長用貫通孔31、スクライブライン32、不良位置情報記録部としての不良アドレス記録部33の位置及び大きさは、技術の理解の容易さを優先させるため、必ずしも実際の位置及び大きさに対応していない。これらの位置及び大きさは、図示の例に限定されず任意に選択することができる。また、電極用貫通孔30、冗長用貫通孔31、スクライブライン32は、工程S2の段階ではウェハ10の厚み方向に貫通していないが、後述する工程S5においてウェハ10を薄化することによりウェハ10の厚み方向に貫通するように形成されるので、便宜上貫通やスクライブ等と表現している。
The electrode through hole 30, the redundant through hole 31, and the scribe line 32 are simultaneously formed by, for example, a photolithography process and an etching process. That is, after a predetermined resist pattern is formed on the device layer 12 by photolithography, the device layer 12 and the wafer 10 are etched using the resist pattern as a mask, so that the electrode through hole 30, the redundant through hole 31, the scribe line are etched. A line 32 is formed. 4 and 5, the positions and sizes of the electrode through hole 30, the redundant through hole 31, the scribe line 32, and the defective address recording unit 33 as the defective position information recording unit make it easy to understand the technology. In order to give priority, it does not necessarily correspond to the actual position and size. These positions and sizes are not limited to the illustrated example and can be arbitrarily selected. Further, the electrode through hole 30, the redundant through hole 31, and the scribe line 32 do not penetrate in the thickness direction of the wafer 10 in the step S2, but the wafer 10 is thinned in the step S5 to be described later. Since it is formed so as to penetrate in the thickness direction of 10, it is expressed as penetration or scribe for convenience.
その後、各電極用貫通孔30内に導電性材料を充填して、図6に示すように貫通電極34を形成する。貫通電極34は、回路11と電気的に接続されるように形成される(図1の工程S3)。なお、貫通電極34についても、工程S3の段階ではウェハ10の厚み方向に貫通していないが、後述する工程S5においてウェハ10を薄化することによりウェハ10の厚み方向に貫通するように形成されるので、便宜上貫通と表現している。
Thereafter, each electrode through hole 30 is filled with a conductive material to form a through electrode 34 as shown in FIG. The through electrode 34 is formed so as to be electrically connected to the circuit 11 (step S3 in FIG. 1). The through electrode 34 does not penetrate in the thickness direction of the wafer 10 at the stage of step S3, but is formed so as to penetrate in the thickness direction of the wafer 10 by thinning the wafer 10 in step S5 described later. Therefore, it is expressed as penetration for convenience.
その後、図7に示すようにデバイス層12の表面に支持基板としての支持ウェハ40を配設する(図1の工程S4)。支持ウェハ40は、例えば接着剤によってデバイス層12と接着される。なお、支持基板はウェハに限定されず、例えばガラス基板等を用いてもよい。
Thereafter, as shown in FIG. 7, a support wafer 40 as a support substrate is disposed on the surface of the device layer 12 (step S4 in FIG. 1). The support wafer 40 is bonded to the device layer 12 by, for example, an adhesive. The support substrate is not limited to a wafer, and for example, a glass substrate or the like may be used.
その後、図8に示すようにウェハ10の裏面を研磨し、ウェハ10を薄化する(図1の工程S5)。これによって、貫通電極34(電極用貫通孔30)、冗長用貫通孔31、スクライブライン32がウェハ10の厚み方向に貫通する。そして、スクライブライン22によりウェハ10とデバイス層12が分割され、複数の半導体チップ50が形成される。
Thereafter, as shown in FIG. 8, the back surface of the wafer 10 is polished to thin the wafer 10 (step S5 in FIG. 1). As a result, the through electrode 34 (electrode through hole 30), the redundant through hole 31, and the scribe line 32 penetrate in the thickness direction of the wafer 10. Then, the wafer 10 and the device layer 12 are divided by the scribe line 22 to form a plurality of semiconductor chips 50.
その後、図9に示すように検査装置60を用いて、ウェハ10の裏面側から回路11の電気的試験を行う(図8の工程S6)。検査装置60は、テスタ61と、当該テスタ61上に支持され、導電性を有する複数のプローブ62とを有している。プローブ62は、貫通電極34に対応する位置に配置されている。また、プローブ62の先端には、導電性液63が付着している。導電性液63には、例えばナノオーダの径を有し、かつ導電性を有する金属粒子を拡散させた液が用いられる。
Thereafter, an electrical test of the circuit 11 is performed from the back side of the wafer 10 using the inspection device 60 as shown in FIG. 9 (step S6 in FIG. 8). The inspection device 60 includes a tester 61 and a plurality of probes 62 supported on the tester 61 and having conductivity. The probe 62 is disposed at a position corresponding to the through electrode 34. A conductive liquid 63 is attached to the tip of the probe 62. As the conductive liquid 63, for example, a liquid having a nano-order diameter and diffusing conductive metal particles is used.
かかる検査装置60を用いて電気的試験を行う際には、先ず、検査装置60をウェハ10側に上昇させて、プローブ62を貫通電極34に近接させる。そうすると、導電性液63は、その表面張力によって拡がり貫通電極34と接触する。続いて、テスタ61からプローブ62、導電性液63、貫通電極34を通じて回路11に電気信号が送られ、回路11の電気的試験が行われる。なお、プローブ62の形状は、図示の例に限定されず、例えばカンチレバー形状等、種々の形状を取り得ることができる。
When performing an electrical test using such an inspection apparatus 60, first, the inspection apparatus 60 is raised to the wafer 10 side and the probe 62 is brought close to the through electrode 34. Then, the conductive liquid 63 spreads by its surface tension and comes into contact with the through electrode 34. Subsequently, an electrical signal is sent from the tester 61 to the circuit 11 through the probe 62, the conductive liquid 63, and the through electrode 34, and an electrical test of the circuit 11 is performed. The shape of the probe 62 is not limited to the illustrated example, and can take various shapes such as a cantilever shape.
ここで、従来はデバイス側からヒューズを切断することにより不良メモリセルのアドレスが記録される。そのため、支持ウェハが接着される前のウェハ及びデバイス層が分割されていない状態で行われるプローブ試験と、半導体チップ毎に行うファイナル試験の2度の電気的試験が行われている。本実施の形態では、最初から半導体チップ50毎に回路11の電気的試験を行うことができるので、従来のプローブ試験を省略することができる。しかも、ウェハ10の裏面は研磨され平坦化しているので、半導体チップ50毎の回路11の電気的試験を一括して容易に行うことができる。
Here, conventionally, the address of the defective memory cell is recorded by cutting the fuse from the device side. For this reason, two electrical tests are performed: a probe test performed in a state where the wafer and the device layer before the support wafer is bonded and a device layer are not divided, and a final test performed for each semiconductor chip. In the present embodiment, since the electrical test of the circuit 11 can be performed for each semiconductor chip 50 from the beginning, the conventional probe test can be omitted. Moreover, since the back surface of the wafer 10 is polished and flattened, the electrical test of the circuit 11 for each semiconductor chip 50 can be easily performed collectively.
回路11の電気的試験を行って、通常セルアレイ領域20内に不良メモリセルが検出されると、当該不良メモリセルのアドレスが不良アドレス記録部33に記録される(図1の工程S7)。不良アドレス記録部33において、複数の冗長用貫通孔31は、図10~図13に示すように電源線接続用の第1の冗長用貫通孔31aと接地線接続用の第2の冗長用貫通孔31bとを有している。これら一対の冗長用貫通孔31a、31bは、それぞれ(入力行列アドレスバス83の本数)×(冗長メモリセル23の個数)の個数形成される。すなわち、冗長用貫通孔31の個数は、上述したように(入力行列アドレスバス83の本数)×(電源接続用と接地線接続用の2個)×(冗長メモリセル23の個数)となる。また、不良アドレス記録部33のデバイス層12には、第1の冗長用貫通孔31aの両側に、出力用の位置情報線としてのアドレス線70と電源線71が配線されている。さらに、第2の冗長用貫通孔31bの両側には、出力用の位置情報線としてのアドレス線72と接地線73が配線されている。
When an electrical test of the circuit 11 is performed and a defective memory cell is detected in the normal cell array region 20, the address of the defective memory cell is recorded in the defective address recording unit 33 (step S7 in FIG. 1). In the defective address recording section 33, the plurality of redundant through holes 31 are provided with a first redundant through hole 31a for power supply line connection and a second redundant through hole for ground line connection as shown in FIGS. And a hole 31b. Each of the pair of redundant through holes 31a and 31b is formed by the number of (number of input matrix address bus 83) × (number of redundant memory cells 23). That is, as described above, the number of redundant through holes 31 is (number of input matrix address bus 83) × (two for power supply connection and ground line connection) × (number of redundant memory cells 23). The device layer 12 of the defective address recording unit 33 is provided with an address line 70 and a power supply line 71 as position information lines for output on both sides of the first redundant through hole 31a. Further, an address line 72 and a ground line 73 as output position information lines are wired on both sides of the second redundant through hole 31b.
そして、不良アドレス記録部33において、不良メモリセルのアドレスは“1”と“0”の信号で記録される。例えば“1”の信号を記録する際には、図10及び図11に示すように第1の冗長用貫通孔31aを介してアドレス線70と電源線71を接続する。具体的には、第1の冗長用貫通孔31aの上部に導電性材料74を充填し、且つ第1の冗長用貫通孔31aの下部に絶縁性材料75を充填すると共に、第2の冗長用貫通孔31bに絶縁性材料75を充填する。また、“0”の信号を記録する際には、図12及び図13に示すように第2の冗長用貫通孔31bを介してアドレス線72と接地線73を接続する。具体的には、第2の冗長用貫通孔31bの上部に導電性材料74を充填し、且つ第2の冗長用貫通孔31bの下部に絶縁性材料75を充填すると共に、第1の冗長用貫通孔31aに絶縁性材料75を充填する。こうして、不良アドレス記録部33に不良メモリセルのアドレスが記録される。なお、このように第1の冗長用貫通孔31a、第2の冗長用貫通孔31bの下部には絶縁性材料75が充填されているので、後述する工程S9で半導体チップ50が積層され接合されても、積層された半導体チップ50間において、第1の冗長用貫通孔31aや第2の冗長用貫通孔31bを介してアドレス線70、電源線71、アドレス線72、接地線73がそれぞれ導通することはない。また、冗長用貫通孔31への導電性材料74、絶縁性材料75の充填は、例えばインクジェット方式で行ってもよい。あるいは、冗長用貫通孔31の形成パターンに対応して複数のノズルを配置し、各ノズルから対応する冗長用貫通孔31に導電性材料74又は絶縁性材料75を供給してもよい。
In the defective address recording unit 33, the address of the defective memory cell is recorded by signals “1” and “0”. For example, when the signal “1” is recorded, the address line 70 and the power supply line 71 are connected through the first redundant through hole 31a as shown in FIGS. Specifically, the upper portion of the first redundant through hole 31a is filled with the conductive material 74, and the lower portion of the first redundant through hole 31a is filled with the insulating material 75, and the second redundant through hole 31a is filled. The through hole 31b is filled with an insulating material 75. When recording a signal of “0”, the address line 72 and the ground line 73 are connected via the second redundant through hole 31b as shown in FIGS. Specifically, the upper portion of the second redundant through hole 31b is filled with the conductive material 74, and the lower portion of the second redundant through hole 31b is filled with the insulating material 75, and the first redundant through hole 31b is filled. An insulating material 75 is filled in the through hole 31a. Thus, the address of the defective memory cell is recorded in the defective address recording unit 33. Since the insulating material 75 is filled in the lower portions of the first redundant through hole 31a and the second redundant through hole 31b in this way, the semiconductor chip 50 is laminated and bonded in step S9 described later. However, between the stacked semiconductor chips 50, the address line 70, the power supply line 71, the address line 72, and the ground line 73 are electrically connected through the first redundant through hole 31a and the second redundant through hole 31b, respectively. Never do. Further, the filling of the conductive material 74 and the insulating material 75 into the redundant through hole 31 may be performed by, for example, an ink jet method. Alternatively, a plurality of nozzles may be arranged corresponding to the formation pattern of the redundant through holes 31, and the conductive material 74 or the insulating material 75 may be supplied from each nozzle to the corresponding redundant through hole 31.
不良アドレス記録部33に不良メモリセルのアドレスが記録されると、この不良メモリセルのアドレスに基づいて、不良メモリセルが冗長セルアレイ領域21内の冗長メモリセル23に置換される(図1の工程S8)。
When the address of the defective memory cell is recorded in the defective address recording unit 33, the defective memory cell is replaced with the redundant memory cell 23 in the redundant cell array region 21 based on the address of the defective memory cell (step of FIG. 1). S8).
具体的には、図3に示すようにアドレスバッファ80において、外部から入力されるアドレスがラッチされる。この入力されたアドレスのうち、行アドレスは行アドレスデコーダ81に出力される。行アドレスデコーダ81では、行アドレスをデコードしてワード線24が選択される。
Specifically, as shown in FIG. 3, an address input from the outside is latched in the address buffer 80. Of the input addresses, the row address is output to the row address decoder 81. In the row address decoder 81, the word line 24 is selected by decoding the row address.
アドレスバッファ80に入力されたアドレスのうち、列アドレスはコンパレータ82に出力される。また、コンパレータ82には、不良アドレス記録部33で記録された不良メモリセルの行アドレスと列アドレスが入力される。コンパレータ82では、外部からの入力行列アドレスと不良メモリセルの行列アドレスの比較が行われる。コンパレータ82は、図14に示すようにアドレスバッファ80からの入力行列アドレスAを伝送するための入力行列アドレスバス83と、不良メモリセルの行列アドレスBを伝送するための不良行列アドレスバス84とを有している。そして、入力行列アドレスAと不良メモリセルの行列アドレスBとを比較し、一致している場合には信号Yとして“1”を出力し、一致していない場合には信号Yとして“0”を出力する。すなわち、行アドレスと列アドレスそれぞれの一致不一致を考慮して、信号Yとして“1”又は“0”を出力する。例えば信号Yが“1”であって、且つ行列アドレスA、Bが“1”の場合には、対応する行列アドレスのメモリセル22が不良メモリセルと判定され、冗長メモリセル23に置換されるようにする。一方、例えば信号Yが“1”であって、且つ行列アドレスA、Bが“0”の場合には、対応する行列アドレスのメモリセル22が不良でないと判断され、当該メモリセル22がそのまま用いられるようにする。このコンパレータ82での比較結果は、図3に示すように列アドレスデコーダ85に出力される。列アドレスレコーダ85では、上述した行アドレスデコーダ81で選択されたワード線24毎に、コンパレータ82での比較結果をデコードしてビット線25が選択される。
Of the addresses input to the address buffer 80, the column address is output to the comparator 82. Further, the row address and column address of the defective memory cell recorded by the defective address recording unit 33 are input to the comparator 82. The comparator 82 compares the input matrix address from the outside with the matrix address of the defective memory cell. As shown in FIG. 14, the comparator 82 includes an input matrix address bus 83 for transmitting the input matrix address A from the address buffer 80 and a defective matrix address bus 84 for transmitting the matrix address B of the defective memory cell. Have. Then, the input matrix address A and the matrix address B of the defective memory cell are compared, and if they match, “1” is output as the signal Y, and if they do not match, “0” is output as the signal Y. Output. In other words, “1” or “0” is output as the signal Y in consideration of the match / mismatch between the row address and the column address. For example, when the signal Y is “1” and the matrix addresses A and B are “1”, the memory cell 22 of the corresponding matrix address is determined as a defective memory cell and is replaced with the redundant memory cell 23. Like that. On the other hand, for example, when the signal Y is “1” and the matrix addresses A and B are “0”, it is determined that the memory cell 22 of the corresponding matrix address is not defective, and the memory cell 22 is used as it is. To be able to. The comparison result in the comparator 82 is output to the column address decoder 85 as shown in FIG. In the column address recorder 85, the bit line 25 is selected by decoding the comparison result of the comparator 82 for each word line 24 selected by the row address decoder 81 described above.
なお、本実施の形態では、1つのコンパレータ82に複数の不良メモリセルの行列アドレスBが入力されていたが、不良メモリセル毎にコンパレータを設けてもよい。かかる場合、コンパレータでは、アドレスバッファ80からの入力行列アドレスAと1つの不良メモリセルの行列アドレスBとの比較が行われる。この比較結果は回路に出力され、当該回路において、どのコンパレータで行列アドレスA、Bが一致しているかが判断される。そして、一致している場合には信号Yとして“1”を出力し、一致していない場合には信号Yとして“0”を出力する。その後の不良メモリセルの冗長メモリセル23への置換は、上述したとおりであるので説明を省略する。
In this embodiment, the matrix address B of a plurality of defective memory cells is input to one comparator 82, but a comparator may be provided for each defective memory cell. In such a case, the comparator compares the input matrix address A from the address buffer 80 with the matrix address B of one defective memory cell. The comparison result is output to the circuit, and in the circuit, it is determined which comparator matches the matrix addresses A and B. If they match, “1” is output as the signal Y, and if they do not match, “0” is output as the signal Y. Subsequent replacement of the defective memory cell with the redundant memory cell 23 is as described above, and thus the description thereof is omitted.
通常セルアレイ領域20及び冗長セルアレイ領域21には、読み出し/書き出し回路86が接続されている。この読み出し/書き出し回路86により、データ入出力バッファ87と通常セルアレイ領域20及び冗長セルアレイ領域21との間のデータのやり取りが可能となっている。
A read / write circuit 86 is connected to the normal cell array region 20 and the redundant cell array region 21. By this read / write circuit 86, data can be exchanged between the data input / output buffer 87 and the normal cell array region 20 and the redundant cell array region 21.
なお、このように不良メモリセルが冗長メモリセル23に置換された後、再度、工程S6と同様に回路11の電気的試験を行ってもよい。
Note that after the defective memory cell is replaced with the redundant memory cell 23 in this manner, the electrical test of the circuit 11 may be performed again in the same manner as in step S6.
回路11において不良メモリセルが冗長メモリセル23に置換されると、上述した工程S1~S8の処理を別途行い、不良メモリセルを冗長置換後の良品の半導体チップ50を形成する。その後、図15に示すよう一の支持ウェハ40に支持された半導体チップ50と他の支持ウェハ40に支持された半導体チップ50とを鉛直方向に積層し接合する(図1の工程S9)。このとき、半導体チップ50同士は、貫通電極34が導通するように接合される。
When the defective memory cell is replaced with the redundant memory cell 23 in the circuit 11, the above-described processes of steps S1 to S8 are separately performed, and the non-defective semiconductor chip 50 after the redundant replacement of the defective memory cell is formed. Thereafter, as shown in FIG. 15, the semiconductor chip 50 supported by one support wafer 40 and the semiconductor chip 50 supported by another support wafer 40 are stacked and joined in the vertical direction (step S9 in FIG. 1). At this time, the semiconductor chips 50 are joined so that the through electrodes 34 are conductive.
その後、図16に示すように、例えば上側の支持ウェハ40が除去される(図1の工程S10)。この上側の支持ウェハ40の除去は、例えば支持ウェハ40と半導体チップ50とを加熱して接着剤の粘着性を弱めることによって行われる。
Thereafter, as shown in FIG. 16, for example, the upper support wafer 40 is removed (step S10 in FIG. 1). The removal of the upper support wafer 40 is performed, for example, by heating the support wafer 40 and the semiconductor chip 50 to weaken the adhesiveness of the adhesive.
上述した工程S1~S10を繰り返し行い、図17に示すように複数の半導体チップ50が鉛直方向に積層され、半導体装置100が製造される。
The above-described steps S1 to S10 are repeated, and a plurality of semiconductor chips 50 are stacked in the vertical direction as shown in FIG. 17, and the semiconductor device 100 is manufactured.
以上の実施の形態によれば、工程S7において、第1の冗長用貫通孔31aを介してアドレス線70と電源線71を接続するか、あるいは第2の冗長用貫通孔31bを介してアドレス線72と接地線73を接続することで、不良アドレス記録部33に不良メモリセルのアドレスを記録することができる。したがって、3次元集積技術において、ウェハ10上のデバイス層12の表面に支持ウェハ40を配設し、半導体チップ50を積層して半導体装置100を製造する場合であっても、ウェハ10の裏面側から不良アドレス記録部33に不良メモリセルのアドレスを記録することができる。そして、工程S8において、不良アドレス記録部33に記録された不良メモリセルのアドレスに基づいて、当該不良メモリセルを冗長メモリセル23に置換して救済するので、半導体装置100の歩留まりを向上させることができる。
According to the above embodiment, in step S7, the address line 70 and the power supply line 71 are connected via the first redundant through hole 31a, or the address line is connected via the second redundant through hole 31b. By connecting 72 and the ground line 73, the address of the defective memory cell can be recorded in the defective address recording unit 33. Therefore, in the three-dimensional integration technique, even when the support wafer 40 is disposed on the surface of the device layer 12 on the wafer 10 and the semiconductor device 100 is manufactured by stacking the semiconductor chips 50, the back surface side of the wafer 10. Thus, the address of the defective memory cell can be recorded in the defective address recording unit 33. In step S8, based on the address of the defective memory cell recorded in the defective address recording unit 33, the defective memory cell is replaced by the redundant memory cell 23 and repaired. Therefore, the yield of the semiconductor device 100 is improved. Can do.
また、メモリセル22と冗長メモリセル23が揮発性を有している場合でも、不良アドレス記録部33に不良メモリセルのアドレスを記録することができるので、例えばDRAM等の揮発性の半導体チップ50に、機能上、不揮発性の不良アドレス記録部33を形成することができる。
In addition, even when the memory cell 22 and the redundant memory cell 23 are volatile, the address of the defective memory cell can be recorded in the defective address recording unit 33. Therefore, for example, a volatile semiconductor chip 50 such as a DRAM. In addition, the non-volatile defective address recording unit 33 can be formed functionally.
しかも、かかる不良アドレス記録部33は、簡易な方法で形成することができる。すなわち、工程S2において、不良アドレス記録部33の冗長用貫通孔31は、電極用貫通孔30と共に形成される。このため、冗長用貫通孔31を形成する工程を別途行う必要がない。また、工程S7において、例えばインクジェット方式で冗長用貫通孔31に導電性材料74や絶縁性材料75を充填することにより、第1の冗長用貫通孔31aを介してアドレス線70と電源線71を接続するか、あるいは第2の冗長用貫通孔31bを介してアドレス線72と接地線73を接続して、不良アドレス記録部33を形成することができる。このように不揮発性の不良アドレス記録部33を簡易な方法で形成できるので、半導体装置100を効率よく製造することができる。
Moreover, the defective address recording unit 33 can be formed by a simple method. That is, in step S <b> 2, the redundant through hole 31 of the defective address recording unit 33 is formed together with the electrode through hole 30. For this reason, it is not necessary to perform the process of forming the redundant through-hole 31 separately. In step S7, the address line 70 and the power supply line 71 are connected via the first redundant through hole 31a by filling the redundant through hole 31 with the conductive material 74 or the insulating material 75 by, for example, an inkjet method. The defective address recording section 33 can be formed by connecting the address line 72 and the ground line 73 through the second redundant through hole 31b. Thus, since the non-volatile defective address recording part 33 can be formed by a simple method, the semiconductor device 100 can be manufactured efficiently.
また、不良アドレス記録部33に不良メモリセルのアドレスが記録されるので、冗長セルアレイ領域21には不良モードに合わせた列数の冗長メモリセル23を配置するだけでよい。したがって、冗長セルアレイ領域21を小さくすることができる。また、工程S8において、行アドレス毎に不良メモリセルを冗長メモリセル23に1対1で置換できるので、効率よく不良メモリセルを救済することができる。
Further, since the address of the defective memory cell is recorded in the defective address recording unit 33, it is only necessary to arrange the redundant memory cells 23 having the number of columns corresponding to the defective mode in the redundant cell array region 21. Therefore, the redundant cell array region 21 can be reduced. In step S8, the defective memory cells can be replaced with the redundant memory cells 23 on a one-to-one basis for each row address, so that the defective memory cells can be efficiently relieved.
また、工程S2において、スクライブライン32は電極用貫通孔30と冗長用貫通孔31と共に形成されるので、スクライブライン32を形成する工程、すなわちウェハ10及びデバイス層12を分割して半導体チップ50を形成する工程を別途行う必要がない。したがって、半導体装置100をさらに効率よく製造することができる。
In step S2, the scribe line 32 is formed together with the electrode through hole 30 and the redundant through hole 31, so that the step of forming the scribe line 32, that is, the wafer 10 and the device layer 12 are divided to form the semiconductor chip 50. There is no need to perform the process of forming separately. Therefore, the semiconductor device 100 can be manufactured more efficiently.
また、工程S6において、複数の半導体チップ50が支持ウェハ40に支持された状態で、当該半導体チップ50毎に回路10の電気的試験が行われる。すなわち、従来のプローブ試験を行うことなく、最初から半導体チップ50毎のファイナル試験を行うことができる。したがって、半導体装置100をさらに効率よく製造することができる。
In step S6, the electrical test of the circuit 10 is performed for each semiconductor chip 50 in a state where the plurality of semiconductor chips 50 are supported by the support wafer 40. That is, a final test for each semiconductor chip 50 can be performed from the beginning without performing a conventional probe test. Therefore, the semiconductor device 100 can be manufactured more efficiently.
また、工程S6において、回路11の電気的試験は、導電性液63と貫通電極34を導通させることによって行われる。導電性液63はその表面張力によって拡がって貫通電極34に接触するため、貫通電極34に対してプローブ62が厳密な位置精度で配置されていなくても回路11の電気的試験を行うことできる。しかも、プローブを貫通電極に直接接触させて試験を行う場合には接触荷重が大きくなるが、本実施の形態では、導電性液63が貫通電極34に接触するため、接触荷重を小さくすることができる。したがって、回路11の電気的試験を効率よく行うことができる。
In step S6, the electrical test of the circuit 11 is performed by causing the conductive liquid 63 and the through electrode 34 to conduct. Since the conductive liquid 63 spreads by the surface tension and contacts the penetrating electrode 34, the electrical test of the circuit 11 can be performed even if the probe 62 is not arranged with strict positional accuracy with respect to the penetrating electrode 34. Moreover, when the test is performed with the probe in direct contact with the through electrode, the contact load increases. However, in this embodiment, since the conductive liquid 63 contacts the through electrode 34, the contact load can be reduced. it can. Therefore, the electrical test of the circuit 11 can be performed efficiently.
以上の実施の形態では、工程S8において不良メモリセルを冗長メモリセル23に置換した後、工程S9において半導体チップ50を積層していたが、半導体チップ50を積層した後、不良メモリセルを冗長メモリセル23に置換してもよい。かかる場合、例えば図16に示したように上側の支持ウェハ40を除去した状態で、上側の半導体チップ50における不良メモリセルの救済が行われる。本実施の形態においても、良品の半導体チップ50を積層することができるので、半導体装置100の歩留まりを向上させることができる。
In the above embodiment, after replacing the defective memory cell with the redundant memory cell 23 in step S8, the semiconductor chip 50 is stacked in step S9. However, after stacking the semiconductor chip 50, the defective memory cell is replaced with the redundant memory cell. The cell 23 may be replaced. In such a case, for example, as shown in FIG. 16, the defective memory cell in the upper semiconductor chip 50 is relieved in a state where the upper support wafer 40 is removed. Also in the present embodiment, since good semiconductor chips 50 can be stacked, the yield of the semiconductor device 100 can be improved.
また、以上の実施の形態では、工程S2で電極用貫通孔30、冗長用貫通孔31、スクライブライン32を形成し、工程S3で貫通電極34を形成した後、工程S4でデバイス層12の表面に支持ウェハ40を配設していたが、デバイス層12の表面に支持ウェハ40を配設した後、電極用貫通孔30、冗長用貫通孔31、スクライブライン32、及び貫通電極34を形成してもよい。なお、その他の工程S1及び工程S5~工程S10の工程は、上記実施の形態と同様であるので説明を省略する。
In the above embodiment, the electrode through hole 30, the redundant through hole 31, and the scribe line 32 are formed in step S2, the through electrode 34 is formed in step S3, and then the surface of the device layer 12 in step S4. However, after the support wafer 40 is disposed on the surface of the device layer 12, the electrode through hole 30, the redundant through hole 31, the scribe line 32, and the through electrode 34 are formed. May be. The other steps S1 and the steps S5 to S10 are the same as those in the above embodiment, and the description thereof is omitted.
また、以上の実施の形態では、不良アドレス記録部33には電源線接続用の第1の冗長用貫通孔31aと接地線接続用の第2の冗長用貫通孔31bとが別々に設けられていたが、図18及び図19に示すように電源線接続用と接地線接続用を兼ねる冗長用貫通孔110を設けてもよい。かかる場合、冗長用貫通孔110の両側にアドレス線70と電源線71が配線される。また、冗長用貫通孔110の両側であって、アドレス線70と電源線71の上方には、アドレス線72と接地線73が配線される。そして、例えば不良メモリセルのアドレスとして“1”の信号を記録する際には、図18に示すように冗長用貫通孔110を介してアドレス線70と電源線71を接続する。具体的には、冗長用貫通孔110の電源線71に対応する部分に導電性材料74を充填すると共に、冗長用貫通孔110の接地線73に対応する部分及び電源線71に対応する部分より下部に絶縁性材料75を充填する。また、例えば不良メモリセルのアドレスとして“0”の信号を記録する際には、図19に示すように冗長用貫通孔110を介してアドレス線72と接地線73を接続する。具体的には、冗長用貫通孔110の接地線73に対応する部分に導電性材料74を充填すると共に、冗長用貫通孔110の電源線71に対応する部分及びその下部に絶縁性材料75を充填する。かかる場合、冗長用貫通孔110の個数は上記実施の形態の冗長用貫通孔31の個数の半分となり、当該冗長貫通孔110を用いて不良メモリセルのアドレスを記録することができる。なお、本実施の形態では、アドレス線70と電源線71の上方にアドレス線72と接地線73を設けていたが、アドレス線72と接地線73の上方にアドレス線70と電源線71を設けてもよい。
In the above embodiment, the defective address recording unit 33 is provided with the first redundant through hole 31a for connecting the power supply line and the second redundant through hole 31b for connecting the ground line separately. However, as shown in FIGS. 18 and 19, a redundant through-hole 110 that serves both as a power supply line connection and a ground line connection may be provided. In such a case, the address line 70 and the power supply line 71 are wired on both sides of the redundant through hole 110. An address line 72 and a ground line 73 are wired on both sides of the redundant through hole 110 and above the address line 70 and the power supply line 71. For example, when a signal “1” is recorded as the address of the defective memory cell, the address line 70 and the power supply line 71 are connected via the redundant through hole 110 as shown in FIG. Specifically, the portion corresponding to the power supply line 71 of the redundant through hole 110 is filled with the conductive material 74, and the portion corresponding to the ground line 73 and the portion corresponding to the power supply line 71 of the redundant through hole 110 are used. An insulating material 75 is filled in the lower part. Further, for example, when a signal “0” is recorded as the address of the defective memory cell, the address line 72 and the ground line 73 are connected through the redundant through hole 110 as shown in FIG. Specifically, the conductive material 74 is filled in the portion corresponding to the ground line 73 of the redundant through hole 110, and the insulating material 75 is formed in the portion corresponding to the power line 71 of the redundant through hole 110 and the lower portion thereof. Fill. In this case, the number of redundant through holes 110 is half the number of redundant through holes 31 of the above embodiment, and the addresses of defective memory cells can be recorded using the redundant through holes 110. In this embodiment, the address line 72 and the ground line 73 are provided above the address line 70 and the power line 71. However, the address line 70 and the power line 71 are provided above the address line 72 and the ground line 73. May be.
以上の実施の形態では、工程S2においてスクライブライン32を形成してウェハ10及びデバイス層12を分割した後、工程S9において半導体チップ50を積層して接合していたが、ウェハ10及びデバイス層12を積層して接合した後、当該ウェハ10及びデバイス層12を分割してもよい。
In the above embodiment, the scribe line 32 is formed in step S2 to divide the wafer 10 and the device layer 12, and then the semiconductor chip 50 is laminated and bonded in step S9. After laminating and bonding, the wafer 10 and the device layer 12 may be divided.
かかる場合、工程S1においてウェハ10上にデバイス層12を形成した後、工程S2において、図20に示すように複数の電極用貫通孔30と複数の冗長用貫通孔31(図示せず)を形成する。このとき、上記実施の形態のようにスクライブライン32を形成しない。その後、工程S3において図21に示すように各電極用貫通孔30内に導電性材料を充填して貫通電極34を形成し、工程S4においてデバイス層12の表面に支持ウェハ40を配設する。その後、工程S5において図22に示すようにウェハ10の裏面を研磨してウェハ10を薄化した後、工程S6においてウェハ10の裏面側から検査装置60を用いて回路11の電気的試験を行う。その後、工程S7において不良メモリセルのアドレスを不良アドレス記録部33に記録し、工程S8において不良メモリセルを冗長メモリセル23に置換して救済する。その後、工程S9において、図23に示すように不良メモリセルが救済されたウェハ10(及びデバイス層12)を鉛直方向に積層し接合する。そして、工程S10において支持ウェハ40を除去する。これら工程S1~S10を繰り返し行い、図24に示すように複数のウェハ10及びデバイス層12が鉛直方向に積層される。その後、積層されたウェハ10及びデバイス層12を半導体チップ50毎に分割し、図17に示したように半導体装置100が製造される。
In this case, after forming the device layer 12 on the wafer 10 in step S1, a plurality of electrode through holes 30 and a plurality of redundant through holes 31 (not shown) are formed in step S2 as shown in FIG. To do. At this time, the scribe line 32 is not formed as in the above embodiment. Thereafter, in step S3, as shown in FIG. 21, each electrode through hole 30 is filled with a conductive material to form a through electrode 34. In step S4, the support wafer 40 is disposed on the surface of the device layer 12. Then, after the back surface of the wafer 10 is polished and thinned in step S5 as shown in FIG. 22, the circuit 11 is electrically tested using the inspection device 60 from the back surface side of the wafer 10 in step S6. . Thereafter, in step S7, the address of the defective memory cell is recorded in the defective address recording unit 33, and in step S8, the defective memory cell is replaced with the redundant memory cell 23 and repaired. Thereafter, in step S9, as shown in FIG. 23, the wafer 10 (and the device layer 12) from which the defective memory cell is relieved is stacked and bonded in the vertical direction. In step S10, the support wafer 40 is removed. By repeating these steps S1 to S10, a plurality of wafers 10 and device layers 12 are laminated in the vertical direction as shown in FIG. Thereafter, the laminated wafer 10 and device layer 12 are divided for each semiconductor chip 50, and the semiconductor device 100 is manufactured as shown in FIG.
ここで、上述したように従来において単にウェハを積層した場合、不良メモリセルを冗長メモリセルで救済することが困難である。そして、積層されたウェハを半導体チップ毎に分割する場合、一の半導体チップにおいて救済できなかった不良メモリセルが残存するため、積層された半導体チップ自体が不良品となる。この点、本実施の形態によれば、工程S9において不良メモリセルが適切に救済されるので、ウェハ10及びデバイス層12を積層した後に分割する場合でも、半導体装置100の歩留まりを向上させることができる。換言すれば、本発明の方法は、本実施の形態のようにウェハ10及びデバイス層12を積層した後に分割する場合に特に有用である。
Here, as described above, when the wafers are simply stacked in the conventional manner, it is difficult to relieve the defective memory cell with the redundant memory cell. When the laminated wafer is divided for each semiconductor chip, defective memory cells that cannot be relieved in one semiconductor chip remain, so that the laminated semiconductor chip itself becomes a defective product. In this regard, according to the present embodiment, since defective memory cells are appropriately relieved in step S9, the yield of the semiconductor device 100 can be improved even when the wafer 10 and the device layer 12 are divided after being stacked. it can. In other words, the method of the present invention is particularly useful when the wafer 10 and the device layer 12 are stacked and then divided as in the present embodiment.
なお、以上の実施の形態では、工程S8において不良メモリセルを冗長メモリセル23に置換した後、工程S9においてウェハ10及びデバイス層12を積層していたが、ウェハ10及びデバイス層12を積層した後、不良メモリセルを冗長メモリセル23に置換してもよい。かかる場合においても、良品のメモリセル22を有するウェハ10(及びデバイス層12)を積層することができるので、半導体装置100の歩留まりを向上させることができる。
In the above embodiment, after replacing the defective memory cell with the redundant memory cell 23 in step S8, the wafer 10 and the device layer 12 are stacked in step S9. However, the wafer 10 and the device layer 12 are stacked. Thereafter, the defective memory cell may be replaced with the redundant memory cell 23. Even in such a case, since the wafer 10 (and the device layer 12) having the non-defective memory cells 22 can be stacked, the yield of the semiconductor device 100 can be improved.
以上の実施の形態の冗長セルアレイ領域21は、複数のブロックに共有されて配置されていてもよい。例えば図25に示すように半導体チップ50(回路11)には、例えば複数のブロックA1、A2が設けられている。各ブロックA1、A2は、それぞれ通常セルアレイ領域20を有している。また、ブロックA1、A2には、ワード線24を共通とする冗長セルアレイ領域21が設けられている。なお、その他の不良アドレス記録部33、アドレスバッファ80、行アドレスデコーダ81、コンパレータ82、列アドレスレコーダ85、読み出し/書き出し回路86、入出力バッファ87などの構成は、上記実施の形態と同様であるため、説明を省略する。このように冗長セルアレイ領域21が複数のブロックA1、A2に共有されていても、各ブロックA1、A2の不良メモリセル22a、22bをそれぞれ冗長メモリセル23a、23bに置換して救済できるので、半導体装置100の歩留まりを向上させることができる。
The redundant cell array region 21 of the above embodiment may be shared by a plurality of blocks. For example, as shown in FIG. 25, the semiconductor chip 50 (circuit 11) is provided with, for example, a plurality of blocks A1 and A2. Each of the blocks A1 and A2 has a normal cell array region 20. In addition, the redundant cell array region 21 that shares the word line 24 is provided in the blocks A1 and A2. The configuration of other defective address recording unit 33, address buffer 80, row address decoder 81, comparator 82, column address recorder 85, read / write circuit 86, input / output buffer 87, and the like is the same as that of the above embodiment. Therefore, the description is omitted. Thus, even if the redundant cell array region 21 is shared by the plurality of blocks A1 and A2, the defective memory cells 22a and 22b of the blocks A1 and A2 can be repaired by replacing them with the redundant memory cells 23a and 23b, respectively. The yield of the apparatus 100 can be improved.
なお、図25の例においては、冗長セルアレイ領域21における冗長メモリセル23の列数は1列であったが、当該列数は本実施の形態に限定されず、2列以上の複数列であってもよい。冗長メモリセル23が複数列設けられている場合、同一のワード線24において複数の不良メモリセルが発生しても、これらの不良メモリセルを冗長メモリセル23に置換して救済できる可能性が向上する。
In the example of FIG. 25, the number of redundant memory cells 23 in the redundant cell array region 21 is one column. However, the number of columns is not limited to this embodiment, and the number of columns is two or more columns. May be. In the case where a plurality of redundant memory cells 23 are provided, even if a plurality of defective memory cells occur on the same word line 24, the possibility that these defective memory cells can be replaced with the redundant memory cells 23 and repaired is improved. To do.
以上の実施の形態の工程S8において、複数の不良メモリセルを冗長メモリセル23に置換する場合、当該置換される複数の冗長メモリセル23は冗長セルアレイ領域21内で連続するように再配置されてもよい。例えば図26に示すように半導体チップ50(回路11)には、複数、例えば4つのブロックB1、B2、B3、B4が設けられている。各ブロックB1~B4は、それぞれ通常セルアレイ領域20と冗長セルアレイ領域21を有している。また、各ブロックB1~B4には、行アドレスデコーダ81、列アドレスレコーダ85、読み出し/書き出し回路86、入出力バッファ87が設けられている。
In the step S8 of the above embodiment, when a plurality of defective memory cells are replaced with the redundant memory cells 23, the plurality of redundant memory cells 23 to be replaced are rearranged so as to be continuous in the redundant cell array region 21. Also good. For example, as shown in FIG. 26, the semiconductor chip 50 (circuit 11) is provided with a plurality of, for example, four blocks B1, B2, B3, and B4. Each of the blocks B1 to B4 has a normal cell array region 20 and a redundant cell array region 21, respectively. Each block B1 to B4 is provided with a row address decoder 81, a column address recorder 85, a read / write circuit 86, and an input / output buffer 87.
次に、かかる半導体チップ50において、不良メモリセルを冗長メモリセル23に置換する工程S8について説明する。工程S7において不良アドレスメモリ記録部33に記録された不良メモリセルのアドレス(アドレスマップデータ)は、不良アドレスバッファ120に出力される。不良アドレスバッファ120では、不良メモリセルのアドレスがラッチされ、コンパレータ82に出力される。また、不良メモリセルのアドレスは、不良アドレスバッファ120からアドレス変換回路121にも出力される。
Next, step S8 of replacing the defective memory cell with the redundant memory cell 23 in the semiconductor chip 50 will be described. The address (address map data) of the defective memory cell recorded in the defective address memory recording unit 33 in step S7 is output to the defective address buffer 120. In the defective address buffer 120, the address of the defective memory cell is latched and output to the comparator 82. The address of the defective memory cell is also output from the defective address buffer 120 to the address conversion circuit 121.
一方、アドレスバッファ80では、外部から入力されるアドレスがラッチされ、コンパレータ82に出力される。そして、コンパレータ82では、外部からの入力行列アドレスと不良メモリセルの行列アドレスの比較が行われる。具体的には、入力行列アドレスと不良メモリセルの行列アドレスの一致不一致が判定され、メモリセル22が不良メモリセルであるか否かが判定される。なお、コンパレータ82におけるアドレスの比較は、上記実施の形態と同様であるので説明を省略する。
On the other hand, in the address buffer 80, an address input from the outside is latched and output to the comparator 82. The comparator 82 compares the input matrix address from the outside with the matrix address of the defective memory cell. Specifically, it is determined whether or not the input matrix address matches the matrix address of the defective memory cell, and it is determined whether or not the memory cell 22 is a defective memory cell. Note that the comparison of addresses in the comparator 82 is the same as that in the above embodiment, so that the description thereof is omitted.
アドレスが不一致の場合、メモリセル22が不良でないと判定され、当該メモリセル22がそのまま用いられるようにする。かかる場合、図25の実線矢印で示すように、コンパレータ82から各ブロックB1~B4の行アドレスデコーダ81と列アドレスレコーダ85にアドレス不一致の信号が出力される。
If the addresses do not match, it is determined that the memory cell 22 is not defective, and the memory cell 22 is used as it is. In such a case, as indicated by a solid line arrow in FIG. 25, an address mismatch signal is output from the comparator 82 to the row address decoder 81 and the column address recorder 85 of each of the blocks B1 to B4.
一方、アドレスが一致している場合、メモリセル22が不良と判定され、当該不良メモリセルが冗長メモリセル23に置換される。かかる場合、図25の点線矢印で示すように、コンパレータ82からアドレス変換回路121にアドレス一致の信号が出力される。
On the other hand, if the addresses match, the memory cell 22 is determined to be defective, and the defective memory cell is replaced with the redundant memory cell 23. In such a case, an address match signal is output from the comparator 82 to the address conversion circuit 121 as indicated by a dotted arrow in FIG.
そして、アドレス変換回路121では、不良アドレスバッファ120から入力された不良メモリセルのアドレスが、当該不良メモリセルが置換される冗長メモリセル23にアクセスするためのアドレス(以下、「冗長メモリアクセス用アドレス」)に変換される。ここで、アドレス変換回路121では、例えば不良メモリセルのアドレスの下位から上位の順に冗長メモリアクセス用アドレスが一対一で対応している。また、冗長メモリアドレスアクセス用アドレスは下位から順番に対応付けされている。そして、図25の点線矢印で示すように、アドレス変換回路121で変換された冗長メモリアクセス用アドレスが、当該アドレス変換回路121から各ブロックB1~B4の行アドレスデコーダ81と列アドレスレコーダ85に出力される。このとき、例えばアドレス変換回路121として、所定の不良メモリセルのアドレスが入力された際、そのアドレスでのみ“1”を発生させる回路を作成しておく。この“1”の信号で冗長メモリアクセス用アドレスを出力する。かかる場合、それ以外の場合は“0”なので、冗長メモリアクセス用アドレスは出力されない。したがって、不良メモリセルに一対一に対応する冗長メモリアクセス用アドレスが出力される。そして、この冗長メモリアクセス用アドレスに基づいて冗長メモリセル23にアクセスし、不良メモリセルが当該冗長メモリセル23に置換されて救済される。
In the address conversion circuit 121, the address of the defective memory cell input from the defective address buffer 120 is used to access the redundant memory cell 23 to which the defective memory cell is replaced (hereinafter referred to as “redundant memory access address”). )). Here, in the address conversion circuit 121, for example, the redundant memory access addresses correspond one-to-one in order from the lower to the higher address of the defective memory cell. Redundant memory address access addresses are associated in order from the bottom. 25, the redundant memory access address converted by the address conversion circuit 121 is output from the address conversion circuit 121 to the row address decoder 81 and the column address recorder 85 of each of the blocks B1 to B4. Is done. At this time, for example, as the address conversion circuit 121, when an address of a predetermined defective memory cell is input, a circuit that generates “1” only at the address is created. The redundant memory access address is output by this "1" signal. In such a case, the address for redundant memory access is not output because it is “0” in other cases. Therefore, a redundant memory access address corresponding to the defective memory cell on a one-to-one basis is output. Then, the redundant memory cell 23 is accessed based on the redundant memory access address, and the defective memory cell is replaced with the redundant memory cell 23 to be relieved.
ここで、上記実施の形態の方法と同様の方法を用いた場合、例えばブロックB1の不良メモリセル22a、ブロックB2の不良メモリセル22b、ブロックB3の不良メモリセル22cは、それぞれのブロックB1、B2、B3の冗長セルアレイ領域21の冗長メモリセル23に置換されて救済される。このようにブロックB1、B2、B3毎に不良メモリセルを救済した場合、例えばブロックB1の冗長セルアレイ領域21内の冗長メモリセル23がすべて置換されると、当該ブロックB1の通常セルアレイ領域20内の不良メモリセルをそれ以上救済できなくなる。そうすると、例えばブロックB2、B3、B4の冗長セルアレイ領域21内に冗長メモリセル23が残存している場合でも、上記ブロックB1の不良メモリセルを救済できず、半導体チップ50が不良品となる。すなわち、半導体チップ50全体で見た場合に、冗長セルメモリ23が残存しているにも関わらず、当該半導体チップ50が不良品となる。
Here, when a method similar to the method of the above embodiment is used, for example, the defective memory cell 22a of the block B1, the defective memory cell 22b of the block B2, and the defective memory cell 22c of the block B3 are respectively connected to the blocks B1 and B2. , B3 is replaced by the redundant memory cell 23 in the redundant cell array region 21, and is repaired. In this way, when the defective memory cell is relieved for each of the blocks B1, B2, and B3, for example, if all the redundant memory cells 23 in the redundant cell array region 21 of the block B1 are replaced, the normal cell array region 20 of the block B1 is replaced. The defective memory cell cannot be relieved any more. Then, for example, even when the redundant memory cell 23 remains in the redundant cell array region 21 of the blocks B2, B3, and B4, the defective memory cell of the block B1 cannot be relieved, and the semiconductor chip 50 becomes a defective product. That is, when viewed as a whole of the semiconductor chip 50, the semiconductor chip 50 becomes a defective product even though the redundant cell memory 23 remains.
これに対して、本実施の形態では、異なるブロックB1、B2、B3の不良メモリセル22a、22b、22cが、図27に示すようにブロックB1の冗長セルアレイ領域21の冗長メモリセル23a、23b、23cに再配置される。こうして冗長メモリセル23a、23b、23cが連続して配置される。同様に、ブロックB2、B3、B4における冗長セルアレイ領域21にも冗長メモリセル23が連続して配置される。このようにすべての冗長メモリセル23を有効に使用することができるので、冗長メモリセル23を使用する自由度が向上する。したがって、半導体チップ50の歩留まりを向上させることができる。また、本実施の形態によれば、冗長メモリセル23を有効に使用することができるので、回路11に配置しておくべき冗長メモリセル23の数を減少させることもでき、半導体チップ50を小型化することもできる。
On the other hand, in this embodiment, defective memory cells 22a, 22b, and 22c in different blocks B1, B2, and B3 are replaced with redundant memory cells 23a, 23b, 23c is rearranged. Thus, redundant memory cells 23a, 23b, and 23c are continuously arranged. Similarly, redundant memory cells 23 are continuously arranged in the redundant cell array region 21 in the blocks B2, B3, and B4. As described above, since all the redundant memory cells 23 can be used effectively, the degree of freedom in using the redundant memory cells 23 is improved. Therefore, the yield of the semiconductor chip 50 can be improved. Further, according to the present embodiment, since the redundant memory cell 23 can be used effectively, the number of redundant memory cells 23 to be arranged in the circuit 11 can be reduced, and the semiconductor chip 50 can be reduced in size. It can also be converted.
以上の実施の形態のアドレス変換回路121は、不良アドレス記録部33と同様の方法を用いて、不良メモリセルのアドレスを冗長メモリアドレスアクセス用アドレスに変換してもよい。すなわち、不良メモリセルのアドレスと一対一に対応する冗長メモリアドレスアクセス用アドレスを、不良アドレス記録部33と同様の方法を用いて記録してもよい。かかる場合、より効率よくアドレスの変換を行うことができる。なお、このアドレスの具体的な記録方法は、上記実施の形態と同様であるので説明を省略する。
The address conversion circuit 121 of the above embodiment may convert the address of the defective memory cell into an address for redundant memory address access using the same method as the defective address recording unit 33. That is, the redundant memory address access address corresponding one-to-one with the address of the defective memory cell may be recorded using the same method as the defective address recording unit 33. In such a case, the address conversion can be performed more efficiently. Note that the specific recording method of this address is the same as that in the above embodiment, and the description thereof will be omitted.
また、以上の実施の形態のアドレス変換回路121に代えて、予め不良メモリセルのアドレスに対応した冗長メモリアクセス用アドレスがデータとして書き込まれたメモリ(図示せず)を用いてもよい。そして、不良アドレスバッファ120からコンパレータ82に不良メモリのアドレスを出力する際、その不良メモリセルのアドレスに対応した冗長メモリアクセス用アドレスのデータをメモリから読み出す。そして、コンパレータ82で比較されたアドレスが不一致の場合、読み出したアドレスデータに基づいて冗長メモリ23にアクセスし、不良メモリセルが当該冗長メモリセル23に置換されて救済される。
Further, instead of the address conversion circuit 121 of the above embodiment, a memory (not shown) in which a redundant memory access address corresponding to the address of the defective memory cell is written in advance as data may be used. When a defective memory address is output from the defective address buffer 120 to the comparator 82, the redundant memory access address data corresponding to the defective memory cell address is read from the memory. If the addresses compared by the comparator 82 do not match, the redundant memory 23 is accessed based on the read address data, and the defective memory cell is replaced with the redundant memory cell 23 to be relieved.
以上の実施の形態では、電子素子としてメモリセル(メモリ素子)を用いた場合について説明したが、他の電子素子、例えばロジック素子などに対しても本発明を適用することができる。すなわち、本発明の方法を用いて、不良ロジック素子を冗長ロジック素子に置換して救済することができる。
In the above embodiment, the case where a memory cell (memory element) is used as an electronic element has been described. However, the present invention can also be applied to other electronic elements such as a logic element. That is, by using the method of the present invention, a defective logic element can be replaced with a redundant logic element and repaired.
また、以上の実施の形態では、メモリセル単位で不良メモリセルを救済していたが、メモリセルの集合体の単位で不良な集合体を救済するようにしてもよい。メモリセルの集合体には、任意の単位の集合体が選択されるが、例えば同じアドレスが選択される通常セルアレイ領域20の集合である、いわゆるブロックが用いられる。かかる場合、本発明の方法を用いて、不良ブロックを冗長ブロックに置換して救済することができる。
In the above embodiment, defective memory cells are relieved in units of memory cells, but defective aggregates may be relieved in units of memory cell aggregates. As a set of memory cells, a set of arbitrary units is selected. For example, a so-called block which is a set of normal cell array regions 20 in which the same address is selected is used. In such a case, the defective block can be replaced with a redundant block and repaired using the method of the present invention.
以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。本発明はこの例に限らず種々の態様を採りうるものである。本発明は、基板がウェハ以外のFPD(フラットパネルディスプレイ)、フォトマスク用のマスクレチクルなどの他の基板である場合にも適用できる。
The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood. The present invention is not limited to this example and can take various forms. The present invention can also be applied to a case where the substrate is another substrate such as an FPD (flat panel display) other than a wafer or a mask reticle for a photomask.
本発明は、半導体チップを積層して半導体装置を製造する際に有用である。
The present invention is useful when a semiconductor device is manufactured by stacking semiconductor chips.
10 ウェハ
11 回路
12 デバイス層
20 通常セルアレイ領域
21 冗長セルアレイ領域
22 メモリセル
23 冗長メモリセル
24 ワード線
25 ビット線
30 電極用貫通孔
31 冗長用貫通孔
31a 第1の冗長用貫通孔
31b 第2の冗長用貫通孔
32 スクライブライン
33 不良アドレス記録部
34 貫通電極
40 支持ウェハ
50 半導体チップ
60 検査装置
61 テスタ
62 プローブ
63 導電性液
70、72 アドレス線
71 電源線
73 接地線
74 導電性材料
75 絶縁性材料
100 半導体装置
110 冗長用貫通孔
120 不良アドレスバッファ
121 アドレス変換回路 DESCRIPTION OFSYMBOLS 10 Wafer 11 Circuit 12 Device layer 20 Normal cell array area 21 Redundant cell array area 22 Memory cell 23 Redundant memory cell 24 Word line 25 Bit line 30 Electrode through hole 31 Redundant through hole 31a First redundant through hole 31b Second Redundant through hole 32 Scribe line 33 Defective address recording section 34 Through electrode 40 Support wafer 50 Semiconductor chip 60 Inspection device 61 Tester 62 Probe 63 Conductive liquid 70, 72 Address line 71 Power line 73 Ground line 74 Conductive material 75 Insulation Material 100 Semiconductor device 110 Redundant through hole 120 Defective address buffer 121 Address conversion circuit
11 回路
12 デバイス層
20 通常セルアレイ領域
21 冗長セルアレイ領域
22 メモリセル
23 冗長メモリセル
24 ワード線
25 ビット線
30 電極用貫通孔
31 冗長用貫通孔
31a 第1の冗長用貫通孔
31b 第2の冗長用貫通孔
32 スクライブライン
33 不良アドレス記録部
34 貫通電極
40 支持ウェハ
50 半導体チップ
60 検査装置
61 テスタ
62 プローブ
63 導電性液
70、72 アドレス線
71 電源線
73 接地線
74 導電性材料
75 絶縁性材料
100 半導体装置
110 冗長用貫通孔
120 不良アドレスバッファ
121 アドレス変換回路 DESCRIPTION OF
Claims (16)
- 半導体装置の製造方法において、
複数の電子素子が配置された通常素子領域と、前記通常素子領域内の不良電子素子を置換するための冗長電子素子が配置された冗長素子領域とを備えた回路を基板表面に複数形成して、当該基板表面に前記回路を含むデバイス層を形成するデバイス形成工程と、
前記基板及び前記デバイス層の厚み方向に貫通する、複数の電極用貫通孔と複数の冗長用貫通孔をそれぞれ形成する貫通孔形成工程と、
前記電極用貫通孔に導電性材料を充填し、前記回路に電気的に接続される貫通電極を形成する電極形成工程と、
前記基板の裏面側から前記貫通電極を介して前記回路の電気的試験を行う回路試験工程と、
前記回路試験工程で検出された前記通常素子領域内の不良電子素子の位置情報を、前記複数の冗長用貫通孔を有する不良位置情報記録部に記録する不良位置情報記録工程と、
前記不良位置情報記録部に記録された不良電子素子の位置情報に基づいて、当該不良電子素子を前記冗長電子素子に置換する冗長置換工程と、を有する。 In a method for manufacturing a semiconductor device,
A plurality of circuits including a normal element region in which a plurality of electronic elements are arranged and a redundant element region in which redundant electronic elements for replacing defective electronic elements in the normal element region are formed are formed on the substrate surface. A device forming step of forming a device layer containing the circuit on the substrate surface;
A through hole forming step of forming a plurality of electrode through holes and a plurality of redundant through holes, respectively, penetrating in the thickness direction of the substrate and the device layer;
An electrode forming step of filling the electrode through-hole with a conductive material and forming a through-electrode electrically connected to the circuit;
A circuit test process for conducting an electrical test of the circuit from the back side of the substrate through the through electrode;
A defect position information recording step of recording position information of a defective electronic element in the normal element region detected in the circuit test step in a defect position information recording unit having the plurality of redundant through holes;
A redundant replacement step of replacing the defective electronic element with the redundant electronic element based on the position information of the defective electronic element recorded in the defective position information recording unit. - 請求項1に記載の半導体装置の製造方法であって、
前記不良位置情報記録工程において、前記複数の冗長用貫通孔に対応する各々の位置情報線を接地線又は電源線に接続する。 A method of manufacturing a semiconductor device according to claim 1,
In the defect position information recording step, each position information line corresponding to the plurality of redundant through holes is connected to a ground line or a power line. - 請求項1に記載の半導体装置の製造方法であって、
前記不良位置情報記録部において、前記複数の冗長用貫通孔は、電源線接続用の第1の冗長用貫通孔と接地線接続用の第2の冗長用貫通孔を備えた一対の冗長用貫通孔を複数有し、
前記不良位置情報記録工程において、前記第1の冗長用貫通孔を介して電源線と位置情報線を接続するか、あるいは前記第2の冗長用貫通孔を介して接地線と位置情報線を接続することで、前記不良位置情報記録部に前記不良電子素子の位置情報を記録する。 A method of manufacturing a semiconductor device according to claim 1,
In the defect position information recording section, the plurality of redundant through holes are a pair of redundant through holes provided with a first redundant through hole for power supply line connection and a second redundant through hole for ground line connection. Have multiple holes,
In the defect position information recording step, the power supply line and the position information line are connected through the first redundant through hole, or the ground line and the position information line are connected through the second redundant through hole. Thus, the position information of the defective electronic element is recorded in the defect position information recording unit. - 請求項3に記載の半導体装置の製造方法であって、
前記電源線と位置情報線を接続する際には、前記第1の冗長用貫通孔の上部に導電性材料を充填し、且つ第1の冗長用貫通電極の下部に絶縁性材料を充填すると共に、前記第2の冗長用貫通孔に絶縁性材料を充填し、
前記接地線と位置情報線を接続する際には、前記第2の冗長用貫通孔の上部に導電性材料を充填し、且つ第2の冗長用貫通電極の下部に絶縁性材料を充填すると共に、前記第1の冗長用貫通孔に絶縁性材料を充填する。 A method of manufacturing a semiconductor device according to claim 3,
When the power supply line and the position information line are connected, the upper portion of the first redundant through hole is filled with a conductive material, and the lower portion of the first redundant through electrode is filled with an insulating material. Filling the second redundant through hole with an insulating material;
When connecting the ground line and the position information line, the upper portion of the second redundant through hole is filled with a conductive material, and the lower portion of the second redundant through electrode is filled with an insulating material. The first redundant through hole is filled with an insulating material. - 請求項1に記載の半導体装置の製造方法であって、
前記通常素子領域には、前記複数の電子素子が行アドレスと列アドレスで特定されるように格子状に配置され、
前記冗長素子領域には、各行アドレス毎に前記冗長電子素子がそれぞれ配置され、
前記冗長置換工程において、各行アドレス毎に不良電子素子を前記冗長電子素子に置換する。 A method of manufacturing a semiconductor device according to claim 1,
In the normal element region, the plurality of electronic elements are arranged in a lattice shape so as to be specified by a row address and a column address,
In the redundant element region, the redundant electronic elements are arranged for each row address,
In the redundant replacement step, the defective electronic element is replaced with the redundant electronic element for each row address. - 請求項1に記載の半導体装置の製造方法であって、
前記電子素子と前記冗長電子素子は、それぞれ揮発性を有する。 A method of manufacturing a semiconductor device according to claim 1,
The electronic element and the redundant electronic element each have volatility. - 請求項1に記載の半導体装置の製造方法であって、
前記貫通孔形成工程において、前記複数の電極用貫通孔と前記複数の冗長用貫通孔を形成すると共に、前記基板及び前記デバイス層を分割して、前記回路を有する複数の半導体チップを形成するためのスクライブラインを形成する。 A method of manufacturing a semiconductor device according to claim 1,
In the through hole forming step, the plurality of electrode through holes and the plurality of redundant through holes are formed, and the substrate and the device layer are divided to form a plurality of semiconductor chips having the circuit. Form a scribe line. - 請求項7に記載の半導体装置の製造方法であって、
前記回路試験工程において、前記半導体チップ毎に前記回路の電気的試験を行う。 A method of manufacturing a semiconductor device according to claim 7,
In the circuit test step, an electrical test of the circuit is performed for each semiconductor chip. - 請求項7に記載の半導体装置の製造方法であって、
前記貫通孔形成工程と前記電極形成工程において、前記電極用貫通孔、前記貫通電極、前記冗長用貫通孔及び前記スクライブラインをそれぞれデバイス層の表面から前記基板の内部まで延伸するように形成し、
前記電極形成工程後であって前記回路試験工程前に、前記デバイス層の表面に支持基板を設け、その後、前記基板の裏面を研磨することにより、前記貫通電極、前記冗長用貫通孔、前記スクライブラインをそれぞれ前記基板の厚み方向に貫通させて形成する。 A method of manufacturing a semiconductor device according to claim 7,
In the through hole forming step and the electrode forming step, the electrode through hole, the through electrode, the redundant through hole, and the scribe line are formed to extend from the surface of the device layer to the inside of the substrate, respectively.
After the electrode forming step and before the circuit testing step, a support substrate is provided on the surface of the device layer, and then the back surface of the substrate is polished to thereby form the through electrode, the redundant through hole, and the scribe. Each line is formed through the substrate in the thickness direction. - 請求項7に記載の半導体装置の製造方法であって、
前記冗長置換工程後に、前記半導体チップを積層して接合する。 A method of manufacturing a semiconductor device according to claim 7,
After the redundant replacement step, the semiconductor chips are stacked and bonded. - 請求項7に記載の半導体装置の製造方法であって、
前記不良位置情報記録工程後であって前記冗長置換工程前に、前記半導体チップを積層して接合する。 A method of manufacturing a semiconductor device according to claim 7,
The semiconductor chips are stacked and bonded after the defective position information recording step and before the redundant replacement step. - 請求項1に記載の半導体装置の製造方法であって、
前記冗長置換工程後において、前記基板及び前記デバイス層を積層して接合した後、前記回路を有する半導体チップ毎に前記接合された基板及びデバイス層を分割する。 A method of manufacturing a semiconductor device according to claim 1,
After the redundant replacement step, the substrate and the device layer are stacked and bonded, and then the bonded substrate and device layer are divided for each semiconductor chip having the circuit. - 請求項1に記載の半導体装置の製造方法であって、
前記不良位置情報記録工程後であって前記冗長置換工程前において、前記基板及び前記デバイス層を積層して接合した後、前記回路を有する半導体チップ毎に前記接合された基板及びデバイス層を分割する。 A method of manufacturing a semiconductor device according to claim 1,
After the defect position information recording step and before the redundant replacement step, the substrate and the device layer are stacked and bonded, and then the bonded substrate and device layer are divided for each semiconductor chip having the circuit. . - 請求項1に記載の半導体装置の製造方法であって、
前記冗長置換工程において、複数の前記不良電子素子が前記冗長電子素子に置換された場合に、当該置換される複数の冗長電子素子は冗長素子領域内で連続するように配置される。 A method of manufacturing a semiconductor device according to claim 1,
In the redundant replacement step, when a plurality of defective electronic elements are replaced with the redundant electronic elements, the plurality of redundant electronic elements to be replaced are arranged to be continuous in the redundant element region. - 請求項1に記載の半導体装置の製造方法であって、
前記回路試験工程では、前記貫通電極に対応する位置に配置され、且つ先端に導電性液が付着したプローブが用いられ、
当該回路試験工程は、前記プローブを前記貫通電極に近接させて、前記導電性液を前記貫通電極に接触させた状態で行われる。 A method of manufacturing a semiconductor device according to claim 1,
In the circuit test step, a probe that is disposed at a position corresponding to the through electrode and has a conductive liquid attached to the tip is used.
The circuit test step is performed in a state where the probe is brought close to the through electrode and the conductive liquid is in contact with the through electrode. - 所定の製造方法を用いて製造される半導体装置であって、
前記所定の製造方法は、
複数の電子素子が配置された通常素子領域と、前記通常素子領域内の不良電子素子を置換するための冗長電子素子が配置された冗長素子領域とを備えた回路を基板表面に複数形成して、当該基板表面に前記回路を含むデバイス層を形成するデバイス形成工程と、
前記基板及び前記デバイス層の厚み方向に貫通する、複数の電極用貫通孔と複数の冗長用貫通孔をそれぞれ形成する貫通孔形成工程と、
前記電極用貫通孔に導電性材料を充填し、前記回路に電気的に接続される貫通電極を形成する電極形成工程と、
前記基板の裏面側から前記貫通電極を介して前記回路の電気的試験を行う回路試験工程と、
前記回路試験工程で検出された前記通常素子領域内の不良電子素子の位置情報を、前記複数の冗長用貫通孔を有する不良位置情報記録部に記録する不良位置情報記録工程と、
前記不良位置情報記録部に記録された不良電子素子の位置情報に基づいて、当該不良電子素子を前記冗長電子素子に置換する冗長置換工程と、を有する。 A semiconductor device manufactured using a predetermined manufacturing method,
The predetermined manufacturing method is:
A plurality of circuits including a normal element region in which a plurality of electronic elements are arranged and a redundant element region in which redundant electronic elements for replacing defective electronic elements in the normal element region are formed are formed on the substrate surface. A device forming step of forming a device layer containing the circuit on the substrate surface;
A through hole forming step of forming a plurality of electrode through holes and a plurality of redundant through holes, respectively, penetrating in the thickness direction of the substrate and the device layer;
An electrode forming step of filling the electrode through hole with a conductive material and forming a through electrode electrically connected to the circuit;
A circuit test process for conducting an electrical test of the circuit from the back side of the substrate through the through electrode;
A defect position information recording step of recording position information of a defective electronic element in the normal element region detected in the circuit test step in a defect position information recording unit having the plurality of redundant through holes;
A redundant replacement step of replacing the defective electronic element with the redundant electronic element based on the position information of the defective electronic element recorded in the defective position information recording unit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010060678 | 2010-03-17 | ||
JP2010-060678 | 2010-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011115041A1 true WO2011115041A1 (en) | 2011-09-22 |
Family
ID=44649134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/055907 WO2011115041A1 (en) | 2010-03-17 | 2011-03-14 | Semiconductor device manufacturing method and semiconductor device |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201214594A (en) |
WO (1) | WO2011115041A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103824788A (en) * | 2012-11-19 | 2014-05-28 | 上海华虹宏力半导体制造有限公司 | Groove bottom particle detection method |
JP2015176958A (en) * | 2014-03-14 | 2015-10-05 | 株式会社東芝 | Semiconductor device and manufacturing method of the same |
JP2017049237A (en) * | 2015-08-31 | 2017-03-09 | ゼネラル・エレクトリック・カンパニイ | System and method for bonding quartz wafers |
US11996335B2 (en) | 2021-03-09 | 2024-05-28 | Kioxia Corporation | Manufacturing method of semiconductor device |
CN118412342A (en) * | 2024-07-03 | 2024-07-30 | 西安紫光国芯半导体股份有限公司 | Three-dimensional chip and preparation method thereof, and electronic device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001326326A (en) * | 2000-05-16 | 2001-11-22 | Seiko Epson Corp | Semiconductor device and manufacturing method thereof |
JP2004289131A (en) * | 2003-03-05 | 2004-10-14 | Ricoh Co Ltd | Semiconductor device and manufacturing method therefor |
JP2009295616A (en) * | 2008-06-02 | 2009-12-17 | Philtech Inc | Silicon substrate, method for manufacturing device, device and testing method |
-
2011
- 2011-03-14 WO PCT/JP2011/055907 patent/WO2011115041A1/en active Application Filing
- 2011-03-16 TW TW100108948A patent/TW201214594A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001326326A (en) * | 2000-05-16 | 2001-11-22 | Seiko Epson Corp | Semiconductor device and manufacturing method thereof |
JP2004289131A (en) * | 2003-03-05 | 2004-10-14 | Ricoh Co Ltd | Semiconductor device and manufacturing method therefor |
JP2009295616A (en) * | 2008-06-02 | 2009-12-17 | Philtech Inc | Silicon substrate, method for manufacturing device, device and testing method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103824788A (en) * | 2012-11-19 | 2014-05-28 | 上海华虹宏力半导体制造有限公司 | Groove bottom particle detection method |
JP2015176958A (en) * | 2014-03-14 | 2015-10-05 | 株式会社東芝 | Semiconductor device and manufacturing method of the same |
JP2017049237A (en) * | 2015-08-31 | 2017-03-09 | ゼネラル・エレクトリック・カンパニイ | System and method for bonding quartz wafers |
US10432168B2 (en) | 2015-08-31 | 2019-10-01 | General Electric Company | Systems and methods for quartz wafer bonding |
US11996335B2 (en) | 2021-03-09 | 2024-05-28 | Kioxia Corporation | Manufacturing method of semiconductor device |
CN118412342A (en) * | 2024-07-03 | 2024-07-30 | 西安紫光国芯半导体股份有限公司 | Three-dimensional chip and preparation method thereof, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
TW201214594A (en) | 2012-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100895073B1 (en) | 3-d-memory device for large storage capacity | |
US8319351B2 (en) | Planar multi semiconductor chip package | |
US5414637A (en) | Intra-module spare routing for high density electronic packages | |
JP4507101B2 (en) | Semiconductor memory device and manufacturing method thereof | |
WO2012173238A1 (en) | Semiconductor device manufacturing method and semiconductor device | |
WO2014077154A1 (en) | Semiconductor device | |
WO2011115041A1 (en) | Semiconductor device manufacturing method and semiconductor device | |
TWI452664B (en) | Semiconductor device and manufacturing method thereof | |
US20120187401A1 (en) | Device allowing suppression of stress on chip | |
JP2020536382A (en) | Chip intermediates, their manufacturing systems, how to make semiconductor chips, and how to test them | |
US11158552B2 (en) | Semiconductor device and method to manufacture the same | |
JP2011139040A (en) | Semiconductor device, probe test method and manufacturing method of the same | |
JP2006261671A (en) | Analytical structure for semiconductor failure analysis | |
US9024428B2 (en) | Semiconductor device and stacked semiconductor device | |
JP2011100898A (en) | Semiconductor device | |
WO2014045993A1 (en) | Semiconductor device, semiconductor wafer, and semiconductor-wafer testing method | |
JP2011211113A (en) | Method of manufacturing semiconductor device | |
KR20110047884A (en) | Semiconductor memory device | |
KR101060714B1 (en) | Fuses in semiconductor devices and methods of forming them | |
JP2015197932A (en) | semiconductor device | |
KR101110479B1 (en) | Fuses in semiconductor devices and methods of forming them | |
KR101051173B1 (en) | Fuse Layout of Semiconductor Devices | |
JP2000156253A (en) | Laminated connector device and circuit board inspection device | |
JP2007053126A (en) | Semiconductor storage device and method of manufacturing same | |
KR20100002673A (en) | Fuses in semiconductor devices and methods of forming them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11756226 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11756226 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |