WO2011111724A1 - Die for forming dynamic pressure grooves and method for manufacturing dynamic pressure-type oil-impregnated sintered bearing - Google Patents
Die for forming dynamic pressure grooves and method for manufacturing dynamic pressure-type oil-impregnated sintered bearing Download PDFInfo
- Publication number
- WO2011111724A1 WO2011111724A1 PCT/JP2011/055448 JP2011055448W WO2011111724A1 WO 2011111724 A1 WO2011111724 A1 WO 2011111724A1 JP 2011055448 W JP2011055448 W JP 2011055448W WO 2011111724 A1 WO2011111724 A1 WO 2011111724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dynamic pressure
- pressure groove
- bearing
- peripheral surface
- die
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/14—Special methods of manufacture; Running-in
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
- B22F3/164—Partial deformation or calibration
- B22F3/168—Local deformation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/026—Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/005—Article surface comprising protrusions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2220/00—Shaping
- F16C2220/20—Shaping by sintering pulverised material, e.g. powder metallurgy
Definitions
- the present invention is a hydrodynamic type in which a sintered metal bearing body is impregnated with lubricating oil or lubricating grease to have a self-lubricating function, and the outer peripheral surface of a shaft is levitated and supported by a hydrodynamic oil film of oil interposed in a bearing gap.
- the present invention relates to a method for producing a sintered oil-impregnated bearing and a dynamic pressure groove forming mold used in the production.
- Hydrodynamic sintered oil-impregnated bearings are used for equipment that requires high rotational accuracy at high speeds, such as polygon mirrors for laser beam printers (LBP) and spindle motors for magnetic disk drives (HDD, etc.) and DVD-ROMs.
- LBP laser beam printers
- HDD hard disk drives
- DVD-ROMs DVD-ROMs.
- a spindle motor it is suitably used for a device that is driven at a high speed by applying a large unbalance load when a disk is placed thereon.
- a dynamic pressure groove such as a herringbone type or a spiral type is provided on the bearing surface, and a dynamic oil film is generated in the bearing gap by the action of the dynamic pressure groove due to the rotation of the shaft.
- floating support non-contact support
- a shaft-shaped jig in which a plurality of balls harder than the bearing material are arranged and held at equal intervals around the circumference is inserted into the inner circumferential surface of the bearing material.
- a method is known in which the ball is pressed against the inner peripheral surface of the material while the ball is subjected to a spiral motion by rotation and feed of the material to plastically process the formation region of the dynamic pressure groove (see Patent Document 1).
- a method for improving this method a method is known in which a material bulge that occurs in a region adjacent to a dynamic pressure groove during molding is removed by a lathe or reamer (see Patent Document 2).
- Patent Document 1 and Patent Document 2 require a jig rotation drive mechanism and a feed mechanism, which complicates manufacturing equipment. Moreover, since post-processing of the area
- a molding die size pin having a first molding part for molding a dynamic pressure groove forming region on the bearing surface and a second molding part for molding a region other than the dynamic pressure groove forming region. Is inserted into the inner peripheral surface of the cylindrical sintered metal material, and the outer peripheral surface of the sintered metal material is press-fitted into the die while the sintered metal material is constrained from both sides in the axial direction by the first punch and the second punch.
- the material of the sizing pin which is a dynamic pressure groove forming die for transferring the groove
- a cemented carbide having excellent wear resistance is used as the die material of the sizing pin.
- the sizing pin for transferring the groove may wear, and the inner diameter dimension and groove depth of the product may not fall within the required tolerances. Therefore, it is necessary to replace the sizing pin with a new sizing pin according to the wear situation of the sizing pin, and it is desired to improve the wear resistance of the sizing pin in order to extend the replacement life of the sizing pin.
- the present invention has been made in order to cope with such problems, and is a dynamic pressure groove forming mold having excellent wear resistance and extending the replacement life, and a dynamic pressure type sintered oil impregnation using the mold. It aims at providing the manufacturing method of a bearing.
- the die for forming a dynamic pressure groove of the present invention forms a bearing body by forming a bearing surface having an inclined dynamic pressure groove on the inner peripheral surface of a cylindrical sintered metal material.
- a dynamic pressure groove forming mold used in a method for manufacturing a hydrodynamic sintered oil-impregnated bearing in which oil is retained by impregnation of lubricating oil or lubricating grease in pores, for forming a region of the dynamic pressure groove
- the dynamic pressure groove forming mold has at least one hard coating selected from a nitride hard coating, a carbide hard coating, and a hard carbon coating on the outer peripheral surface.
- the film thickness of the hard coating is 0.2 to 8 ⁇ m. Further, the indentation hardness of the hard coating is 10 GPa or more.
- the hard coating is a hard carbon coating.
- the dynamic pressure groove forming mold has a metal intermediate layer between the mold and the hard carbon coating.
- the metal intermediate layer is at least one selected from tungsten (hereinafter referred to as W), chromium (hereinafter referred to as Cr), silicon (hereinafter referred to as Si), and titanium (hereinafter referred to as Ti). It contains a metal element.
- the hard carbon film is formed by an unbalanced magnetron sputtering (hereinafter referred to as UBMS) method.
- the hard coating is characterized in that the indentation hardness increases continuously or stepwise from the outer peripheral surface side of the dynamic pressure groove forming mold to the outermost surface side of the hard coating.
- the dynamic pressure groove forming mold base material is made of a cemented carbide material.
- the method of manufacturing a hydrodynamic sintered oil-impregnated bearing according to the present invention forms a bearing body having an inclined dynamic pressure groove on the inner peripheral surface of a cylindrical sintered metal material to form a bearing body.
- a mold is inserted into the inner peripheral surface of the sintered metal material, and a forming portion for forming the dynamic pressure groove region of the dynamic pressure groove forming mold is pressed onto the inner peripheral surface of the sintered metal material. And a step of forming the region of the dynamic pressure groove on the inner peripheral surface by plastic working.
- the hydrodynamic sintered oil-impregnated bearing targeted by the above manufacturing method is a bearing used for a spindle motor for a magnetic disk drive.
- the dynamic pressure groove forming mold of the present invention is a sizing pin having inclined dynamic pressure grooves on the outer peripheral surface, and on the outer peripheral surface, a nitride-based hard coating, a carbide-based hard coating, a hard carbon Since it has at least one hard coating selected from coatings, it has excellent wear resistance. For this reason, dynamic pressure type sintering including a step of inserting and pressurizing the dynamic pressure groove forming die into the inner peripheral surface of the sintered metal material and forming a region of the dynamic pressure groove on the inner peripheral surface by plastic working. Even when used in the manufacture of oil-impregnated bearings, the replacement life of the die (sizing pin) can be extended.
- a hard carbon film is adopted as the hard film, and (1) a metal intermediate layer is provided between the mold and the hard carbon film, or (2) the indentation hardness of the hard carbon film is set on the mold substrate side.
- the method of manufacturing a hydrodynamic sintered oil-impregnated bearing according to the present invention forms a bearing body having an inclined dynamic pressure groove on the inner peripheral surface of a cylindrical sintered metal material to form a bearing body.
- This is a method for manufacturing a hydrodynamic sintered oil-impregnated bearing in which oil is retained in the internal pores by impregnation with lubricating oil or lubricating grease, and the bearing surface molding step sinters the dynamic pressure groove forming mold described above.
- FIG. 1 is a cross-sectional view showing an example of a hydrodynamic sintered oil-impregnated bearing.
- the hydrodynamic sintered oil-impregnated bearing 1 includes, for example, a bearing body 1a made of sintered metal mainly composed of copper or iron, or both, and the pores of the bearing body 1a by impregnation with lubricating oil or lubricating grease. It is made up of retained oil (base oil of lubricating oil or lubricating grease).
- the hydrodynamic sintered oil-impregnated bearing 1 is used, for example, in a spindle motor for a magnetic disk drive, a scanner motor for a laser beam printer, or the like.
- a bearing surface 1b is formed on the inner periphery of the bearing body 1a so as to face the outer peripheral surface of the shaft to be supported via a bearing gap, and an inclined dynamic pressure groove 1c is formed on the bearing surface 1b.
- the two bearing surfaces 1b are formed to be separated from each other in the axial direction.
- Each bearing surface 1b has a first region in which a plurality of dynamic pressure grooves 1c inclined in one direction with respect to the axial direction are arranged in the circumferential direction, and is spaced apart from the first region in the axial direction.
- the backs (regions between the dynamic pressure grooves 1c) 1e of the first region and the second region are each continuous with the smooth region 1d.
- the surface openings are distributed almost uniformly over the entire region including the region where the dynamic pressure grooves 1c are formed.
- FIG. 2 is a partially enlarged view of a sizing pin that is a die for forming a dynamic pressure groove.
- the sizing pin 3 which is a dynamic pressure groove forming mold, has a convex first molding part 3a and a concave second molding part 3b on its outer peripheral surface.
- molding part 3a shape
- the step (depth) between the first molded portion 3a and the second molded portion 3b is about 2 to 4 ⁇ m, which is the same as the depth of the dynamic pressure groove 1c (see FIG. 1) on the bearing surface 1b, but is exaggerated in FIG. It is illustrated as follows.
- the material of the sizing pin 3 includes carbon tool steel, alloy tool steel, high speed tool steel, cemented carbide and the like.
- cemented carbide is excellent in wear resistance and is therefore suitable as a mold material.
- a surface treatment such as nitriding treatment or shot peening may be performed.
- At least one selected from a nitride-based hard coating, a carbide-based hard coating, and a hard carbon coating is provided on the outer peripheral surface of the mold including the first molded portion 3a and the second molded portion 3b.
- One hard coating is formed.
- the nitride hard coating examples include TiN, TiBN, CrN, CrAlN, TiAlN, SiN, SiAlN, AlCrSiN, TiBON, ZrN, SiCN, and AlN.
- the carbide hard coating examples include SiC and TiC.
- the hard carbon coating in the present invention has an intermediate structure in which a diamond structure and a graphite structure are mixed structurally, and is called a diamond-like carbon (hereinafter referred to as DLC). It is.
- DLC diamond-like carbon
- Each of the above coating films can be formed alone or in a laminate of two or more.
- a hard film can be formed by doping with an element effective for improving mechanical properties such as wear resistance, friction characteristics, hardness, and non-adhesiveness.
- the film thickness of the hard coating is preferably 0.2 to 8 ⁇ m. If it is too thick, the stress generated in the film during film formation becomes excessive, and cracks may occur during film formation. Even if a crack does not occur, a film that is too thick tends to be peeled off because the residual stress is high. On the other hand, if the thickness is too thin, the effect of extending the life of the mold is reduced when the hard coating is worn. It is more preferable that the film thickness of the hard coating is 0.4 to 8 ⁇ m because at least the effect of extending the life of the mold can be confirmed, and it does not peel off due to high residual stress. Further, if it exceeds 5 ⁇ m, it may be easy to peel off at the edge portion, so that the film thickness of the hard coating is more preferably 0.4 to 5 ⁇ m.
- the indentation hardness of the hard coating of the present invention is preferably 10 GPa or more. If it is less than 10 GPa, the surface of the mold is easily damaged, the wear resistance is poor, and the replacement life of the mold is shortened.
- the hard carbon coating (DLC) is particularly suitable as the hard coating formed on the dynamic pressure groove forming mold of the present invention because it has excellent frictional wear characteristics and the coating surface is smooth.
- the surface roughness of the mold surface (coating surface) can be made the same as that of the mold substrate, so that post-processing such as polishing and lapping is unnecessary. Become. This post-processing such as polishing and lapping is necessary to match the surface roughness required for the product surface because the surface of the coating becomes rough when other hard coating is used.
- the film formation method of the hard carbon coating is not particularly limited, but for example, a CVD method using heat, light, plasma (DC plasma, holocathode plasma, RF plasma, pulsed plasma, surface wave plasma), Examples thereof include PVD film forming methods such as ion beam, ionized vapor deposition, holocathode arc, vacuum arc vapor deposition, UBMS, plasma sublimation, and electron beam vapor deposition. Among these, it is preferable to employ a UBMS film formation method that can provide a hard coating having particularly excellent wear resistance.
- FIG. 7 An inner magnet 14 a and an outer magnet 14 b having different magnetic characteristics are arranged in the central portion and the peripheral portion of a round target 15, and the above magnet is formed while forming a high-density plasma 19 near the target 15.
- a part 16 a of the magnetic force lines 16 generated by 14 a and 14 b reaches the vicinity of the base material 12 connected to the bias power source 11.
- the Ar plasma generated during the sputtering along the magnetic force lines 16a can be diffused to the vicinity of the base material 12.
- a dense film (layer) 13 can be formed.
- a graphite target is used as the solid target 15. Further, if necessary, a carbon hydrogen gas such as methane gas can be introduced into the apparatus to serve as a carbon supply source.
- the film When a hard carbon film (DLC) is employed as the hard film, the film has a high hardness and Young's modulus, but has a characteristic that the deformability is extremely small and the adhesion to the substrate is weak, and thus the substrate is a base material.
- DLC hard carbon film
- the metal intermediate layer can be formed using, for example, the target 15 corresponding to the metal intermediate layer in FIG.
- the metal intermediate layer preferably contains at least one metal element selected from W, Cr, Si, and Ti.
- a metal element selected from W, Cr, Si, and Ti.
- the metal intermediate layer adjacent to the hard carbon coating reduces the metal content from the mold or other metal intermediate layer side toward the hard carbon coating side, while the carbon content is continuously increased. It is preferable to use a graded layer that is gradually or stepwise increased. This inclined layer becomes a stress relaxation layer, and the adhesion between the metal intermediate layer and the hard carbon coating can be improved.
- the hard film is preferably a hardness gradient film whose indentation hardness increases continuously or stepwise from the outer peripheral surface side of the mold toward the outermost surface layer side of the film.
- a hardness gradient coating By adopting a hardness gradient coating, it is possible to eliminate a steep hardness difference from the metal intermediate layer, and to improve adhesion.
- a hard carbon film (DLC) with a gradient in hardness can be obtained by using a graphite target in the UBMS method and forming a film by continuously or stepwise increasing the bias voltage for a mold as a base material.
- the reason why the hardness increases continuously or stepwise is that the composition ratio between the graphite structure (sp 2 ) and the diamond structure (sp 3 ) in the DLC structure is biased toward the latter as the bias voltage increases.
- the sizing pin which is a die for forming a dynamic pressure groove of the present invention, forms the hard coating as described above on the outer peripheral surface, so it has excellent wear resistance and is replaced in comparison with sizing pins that do not have these hard coatings.
- the service life can be greatly extended.
- the method of manufacturing a hydrodynamic sintered oil-impregnated bearing according to the present invention forms a bearing body having an inclined dynamic pressure groove on the inner peripheral surface of a cylindrical sintered metal material to form a bearing body.
- the above-mentioned hydrodynamic groove forming mold (sizing pin) is inserted into the inner periphery of the sintered metal material, and then sintered.
- the outer peripheral surface of the sintered metal material is pressed into the die to apply a pressing force, and the inner peripheral surface is formed with the dynamic pressure groove.
- the sintered metal material is axially formed by the first punch and the second punch.
- a configuration is adopted in which the die is pressed into the die while restrained from both sides.
- the press-fitting operation of the sintered metal material to the die can be performed by fixing the die and interlocking the dynamic pressure groove forming mold with the first punch and the second punch. It can also be performed by holding the restraint position of the material by the mold and the first punch and the second punch and moving the die in the axial direction with respect to the sintered metal material.
- the sintered metal material is shown in FIG. FIG. 3 is a cross-sectional view showing an example of a sintered metal material.
- the sintered metal material 1 ′ is obtained by mixing one or more kinds of metal powders and compacting them, followed by firing to form a predetermined cylindrical porous sintered body.
- the sintered metal material 1 ' is preferably made of copper, iron, or both as a main component.
- a bearing body 1a of the hydrodynamic sintered oil-impregnated bearing 1 shown in FIG. 1 can be manufactured, for example, by subjecting the cylindrical sintered metal material 1 'to the bearing surface forming process described above.
- the molding process of the bearing surface is performed by pressurizing a molding die having a shape corresponding to the bearing surface 1b of the bearing body 1a, which is a finished product, on the inner peripheral surface of the sintered metal material 1 ′ subjected to a predetermined sizing process.
- This is a step of simultaneously forming the formation region of the dynamic pressure groove 1c on the bearing surface 1b and the other regions (smooth region 1d, spine 1e).
- This step includes steps (a) to (h) shown in FIGS.
- FIG. 6 is an enlarged cross-sectional view of the main part showing step (c) and step (e) in FIG.
- the molding apparatus used in the bearing surface molding process includes a cylindrical die 2 for press-fitting the outer peripheral surface of the sintered metal material 1 ′, a sizing pin (core rod) 3 for molding the inner peripheral surface of the sintered metal material 1 ′,
- the upper punch 4 and the lower punch 5 that press both end surfaces of the sintered metal material 1 ′ from the up and down direction (axial direction) are configured as main elements.
- Reference numeral 6 denotes a ram (hydraulic ram or the like) for driving the sizing pin 3 and the upper punch 4.
- the sizing pin 3 is connected to the ram 6 and moves up and down integrally with the ram 6.
- the upper punch 4 is not connected to the ram 6, and after the ram 6 is lowered to some extent, it is pushed by the ram 6 to perform a lowering operation.
- the lower punch 5 is fixed.
- the die 2 is driven up and down by driving means (not shown).
- the sizing pin 3 is the dynamic pressure groove forming die of the present invention, and the dynamic pressure groove forming portion is shown enlarged in FIG.
- the die 2 In the initial state shown in FIG. 4A, the die 2 is in the lower position, and the sizing pin 3, the upper punch 4 and the ram 6 are in the upper position.
- the die 2 is slidably inserted in the lower punch 5, and the lower punch 5 waits at the upper end entrance of the forming hole of the die 2 and receives the lower end surface of the sintered metal material 1 ′.
- the sizing pin 3 is slidably inserted into the upper punch 4.
- the ram 6 is lowered and the sizing pin 3 is inserted into the inner peripheral surface of the sintered metal material 1 '(see FIG. 4B).
- the size of the inner diameter clearance T is, for example, 50 ⁇ m (diameter amount).
- the ram 6 is further lowered and applied to the upper punch 4.
- the upper punch 4 is lowered together with the sizing pin 3 and pressed against the upper end surface of the sintered metal material 1 ′.
- the lower punch 5 is pressed and restrained from above and below (see FIGS. 4C and 6C).
- the press-fitting allowance S at this time is, for example, 150 ⁇ m (diameter amount).
- the sintered metal material 1 ′ is deformed by receiving a pressing force from the die 2 and the upper and lower punches 4, 5, and the inner peripheral surface is pressed against the outer peripheral surface of the sizing pin 3.
- the amount of pressurization on the inner peripheral surface is substantially equal to the difference of 100 ⁇ m (diameter amount) between the press-fitting allowance S (diameter amount 150 ⁇ m) and the inner diameter clearance T (diameter amount 50 ⁇ m), and from the inner peripheral surface to a depth of 50 ⁇ m (radial amount).
- the surface layer portion of the sizing pin 3 is pressed against a molding die composed of the first molding portion 3a and the second molding portion 3b to cause plastic flow and bite into the molding die. As a result, the shape of the molding die is transferred to the inner peripheral surface of the sintered metal material 1 ′, and the bearing surface 1 b is molded into the shape shown in FIG. 1.
- the die 2 is moved down while the vertical restraint state of the sintered metal material 1 ′ is maintained (see FIG. 5 (f)), and the sintered metal material 1 ′ is moved to the die. 2 is removed (see FIG. 5G). Thereafter, the sizing pin 3 and the upper punch 4 are raised by the raising of the ram 6 (the raising of the upper punch 4 is performed by a driving means or a returning means not shown), and the sizing pin 3 is moved to the sintered metal material 1 ′. (See FIGS. 5G and 5H).
- the above-mentioned hydrodynamic groove forming mold is inserted into the inner peripheral surface of the sintered metal material in the bearing surface molding step. Thereafter, the outer peripheral surface of the sintered metal material is press-fitted into the die (the die is fixed) with the first punch, and then the material is compressed with the die, the first punch, and the second punch to form a dynamic pressure groove.
- the method will be described below. The process of forming the bearing surface is shown in FIGS.
- the molding apparatus used in the bearing surface molding process in this example is the same as the above-described molding apparatus, and the cylindrical die 2 for press-fitting the outer peripheral surface of the sintered metal material 1 ′ and the inner periphery of the sintered metal material 1 ′.
- a sizing pin (core rod) 3 for forming the surface, and an upper punch 4 and a lower punch 5 for pressing both end surfaces of the sintered metal material 1 ′ from the vertical direction (axial direction) are configured as main elements.
- Both the sizing pin 3 and the upper punch 4 are lowered, and the signing pin 3 is inserted into the inner peripheral surface of the sintered metal material 1 ′, and the upper punch 4 is pressed against the upper end surface of the sintered metal material 1 ′ ( FIG. 10 (a)). Thereafter, the sintered metal material 1 ′ is pressed by the upper punch 4, and the outer peripheral surface of the sintered metal material 1 ′ is press-fitted into the forming hole of the die 2 (see FIG. 10B).
- the press-fitting allowance at this time is the same as that described above. Since the sintered metal material 1 ′ is press-fitted into the die 2, the inner peripheral surface thereof is shaped to hug the sizing pin 3.
- the sintered metal material 1 ′ is deformed by receiving a pressing force from the die 2 and the upper and lower punches 4, 5, and forms a molding die whose inner peripheral surface is composed of the first molding part 3 a and the second molding part 3 b of the sizing pin 3. Pressurized.
- the amount of pressurization of the inner peripheral surface is substantially equal to the difference between the outer diameter interference and the inner clearance, and the surface layer portion from the inner peripheral surface to a predetermined depth is pressed to the mold of the sizing pin 3 to cause plastic flow. Biting into the mold.
- the shape of the molding die is transferred to the inner peripheral surface of the sintered metal material 1 ′, and the bearing surface 1 b is molded into the shape shown in FIG. 1.
- the lower punch 5 and the sizing pin 3 are raised in conjunction with the sizing pin 3 inserted into the sintered metal material 1 ′. Then, the sintered metal material 1 ′ is removed from the die 2. When the sintered metal material 1 ′ is pulled out of the die 2, a spring back is generated in the sintered metal material 1 ′ and the inner diameter thereof is enlarged, so that the sintered metal material is not destroyed without breaking the dynamic pressure groove 1c of the bearing surface 1b.
- the molding die of the sizing pin 3 can be extracted from the inner peripheral surface of 1 ′. Thereby, the bearing main body 1a is completed.
- the radius of the springback amount of the sintered metal material 1 ′ is smaller than the depth of the dynamic pressure groove 1c, and the forming die slightly interferes with the inner peripheral surface of the sintered metal material 1 ′.
- a hard coating having excellent wear resistance is formed on the outer peripheral surface of the sizing pin 3 in the present invention. Therefore, it is possible to suppress wear on the outer peripheral surface of the sizing pin 3 including the mold composed of the first molding part 3a and the second molding part 3b.
- the bearing main body 1a When the bearing main body 1a is manufactured through the above-described processes, and this is impregnated with lubricating oil or lubricating grease to hold the oil, the hydrodynamic sintered oil-impregnated bearing 1 shown in FIG. 1 is completed.
- the shape of the bearing surface is not limited to that shown in the figure, and may be one in which, for example, a V-shaped or spiral dynamic pressure groove is formed. Moreover, what formed one bearing surface in the bearing main body may be used. These can be dealt with by changing the shape and number of sizing pin molds.
- the base materials used in the examples and comparative examples and the apparatuses used for film formation are as follows.
- Substrate material cemented carbide or cold die steel SKD-11 (in the table, “carbide” is an abbreviation for cemented carbide, and “SKD-11” is an abbreviation for cold die steel) .
- UBMS method manufactured by Kobe Steel; UBMS202 / AIP combined device
- Plasma CVD method manufactured by Shinko Seiki Co., Ltd .; experimental pulsed plasma CVD device (5)
- Arc ion plating (hereinafter referred to as AIP) method Kobe Steel; UBMS202 / AIP combined device (6)
- HCD method Interface Corporation; 3-target HCD-PCD device
- FIG. 8 is a schematic diagram of a UBMS device having an AIP function.
- the UBMS 202 / AIP composite apparatus instantaneously vaporizes and ionizes the AIP evaporation source material 20 using a vacuum arc discharge to the base material 22 arranged on the disk 21,
- the AIP function for depositing this on the substrate 22 to form a film and the sputter evaporation source materials (targets) 23 and 24 with a non-equilibrium magnetic field increase the plasma density in the vicinity of the substrate 22 to increase the ion assist effect.
- a composite film in which an AIP film and a plurality of UBMS films (including a composition gradient) are arbitrarily combined can be formed on a substrate.
- Examples 1 to 19 and Comparative Examples 1 to 2 The substrate shown in Table 1 was ultrasonically cleaned with acetone and then dried. After drying, the base material was attached to each apparatus shown in Table 1, and a metal intermediate layer and a hard film of the kind shown in Table 1 were respectively formed to obtain test pieces. In addition, with the hardness gradient, the indentation hardness of the hard coating is gradually increased from the base material or metal intermediate layer side toward the outermost layer side.
- the Cr, Ti, and WC layers, which are metal intermediate layers, are evacuated to about 5 ⁇ 10 ⁇ 3 Pa inside the film forming chamber of the UBMS202 / AIP composite apparatus, and the base material is baked with a heater. It formed by each method after etching the base-material surface with plasma.
- the obtained test piece was subjected to a film thickness test, a surface roughness test, a hardness test and an abrasion test shown below, and the film thickness, maximum surface roughness, hardness and specific wear amount were measured and / or evaluated.
- the results and the overall judgment results shown below are also shown in Tables 1 and 2.
- ⁇ Film thickness test> The film thickness of the obtained test piece was measured by using a surface shape / surface roughness measuring instrument (manufactured by Taylor Hobson Co., Ltd .: Foam Talysurf PGI830). The film thickness was obtained from the step difference between the non-film forming part and the film forming part by masking a part of the film forming part.
- the indentation hardness of the obtained test piece was measured using a nanoindenter (G200) manufactured by Agilent. The measurement results are also shown in Table 1. In addition, the measured value has shown the average value of the depth (location where hardness is stabilized) which is not influenced by surface roughness, and is measuring 10 each test piece.
- FIG. 9A shows a front view
- FIG. 9B shows a side view
- Material Sintered alloy Cu 58.6% -Fe 39% -Sn 1.5% -C 0.5% -Stearic acid 0.4%, surface roughness Ra: 0.2 to 0.3 ⁇ m, curvature: 60 mm
- a sintered alloy is attached to the rotating shaft 25 as a counterpart material 27, a test piece 26 is fixed to an arm portion 28, and a predetermined load 29 is applied from the upper side of the drawing, whereby the maximum contact surface pressure of Hertz is 0.5 GPa, room temperature (25 ))
- the frictional force generated between the piece 26 was detected by the load cell 30.
- the specific wear amount was calculated from the test conditions
- Examples 1 to 19 showed excellent results with respect to each comparative example in which a hard coating was not formed.
- the method of manufacturing a hydrodynamic sintered oil-impregnated bearing according to the present invention can be manufactured with a simple facility, with a small number of man-hours and with high accuracy, and in addition, replacement of a dynamic pressure groove forming die (sizing pin) Since the lifetime is long and the manufacturing cost can be reduced, it can be suitably used for manufacturing a hydrodynamic sintered oil-impregnated bearing used for a spindle motor for a magnetic disk drive, a scanner motor for a laser beam printer, or the like.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Sliding-Contact Bearings (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
Provided are a die for forming dynamic pressure grooves and a method for manufacturing a dynamic pressure-type oil-impregnated sintered bearing using the die. The die has excellent abrasion resistance and thus can be used for a long time before being replaced. The die (3) for forming dynamic pressure grooves is used in a method for manufacturing a dynamic pressure-type oil-impregnated sintered bearing in which a bearing main body is formed by molding a bearing surface which has oblique dynamic pressure grooves in the inner circumferential surface of a cylindrical sintered metal material, and the bearing main body is made to contain oil by means of the impregnation of lubricating oil or lubricating grease into pores within the bearing main body, wherein the die (3) has a molding part on an outer circumferential surface thereof to mold a dynamic pressure groove region. When the bearing main body is being formed, the die (3) is inserted into the inner circumferential surface of the sintered metal material and pressure is applied, and the dynamic pressure groove region is molded in the inner circumferential surface by means of plasticity processing. The die (3) for forming dynamic pressure grooves has a hard coating of at least one selected from a hard nitride coating, a hard carbide coating, and a hard carbon coating.
Description
本発明は、焼結金属製の軸受本体に潤滑油または潤滑グリースを含浸させて自己潤滑機能を持たせると共に、軸受隙間に介在する油の動圧油膜によって軸の外周面を浮上支持する動圧型焼結含油軸受の製造方法と、この製造の際に用いられる動圧溝形成用金型とに関する。
The present invention is a hydrodynamic type in which a sintered metal bearing body is impregnated with lubricating oil or lubricating grease to have a self-lubricating function, and the outer peripheral surface of a shaft is levitated and supported by a hydrodynamic oil film of oil interposed in a bearing gap. The present invention relates to a method for producing a sintered oil-impregnated bearing and a dynamic pressure groove forming mold used in the production.
動圧型焼結含油軸受は、レーザビームプリンタ(LBP)のポリゴンミラー用や磁気ディスクドライブ(HDD等)用のスピンドルモータなど、高速下で高回転精度が要求される機器や、DVD-ROM用のスピンドルモータのように、ディスクが載ることによって大きなアンバランス荷重が作用し高速で駆動する機器などに好適に使用されている。
Hydrodynamic sintered oil-impregnated bearings are used for equipment that requires high rotational accuracy at high speeds, such as polygon mirrors for laser beam printers (LBP) and spindle motors for magnetic disk drives (HDD, etc.) and DVD-ROMs. Like a spindle motor, it is suitably used for a device that is driven at a high speed by applying a large unbalance load when a disk is placed thereon.
上記のような情報機器関連の小型スピンドルモータでは、回転性能のより一層の向上と低コスト化が求められている。そのための手段として、スピンドルの軸受部を転がり軸受から焼結含油軸受に置き換えることが検討されている。しかし、焼結含油軸受は、真円軸受の一種であるため、軸の偏心が小さいところでは、不安定振動が発生しやすく、回転速度の1/2の速度で振れ回るいわゆるホワールが発生しやすい欠点がある。そこで、動圧型焼結含油軸受として、軸受面にヘリングボーン形やスパイラル形などの動圧溝を設け、軸の回転に伴う動圧溝の作用によって軸受隙間に動圧油膜を発生させて軸を浮上支持(非接触支持)することが従来より試みられている。
In the above-mentioned small spindle motors related to information equipment, further improvement in rotational performance and cost reduction are required. As a means for that, it has been studied to replace the bearing portion of the spindle with a sintered oil-impregnated bearing from a rolling bearing. However, since the sintered oil-impregnated bearing is a kind of a perfect circle bearing, unstable vibration is likely to occur where the shaft eccentricity is small, and so-called whirling that tends to swing at half the rotational speed is likely to occur. There are drawbacks. Therefore, as a hydrodynamic sintered oil-impregnated bearing, a dynamic pressure groove such as a herringbone type or a spiral type is provided on the bearing surface, and a dynamic oil film is generated in the bearing gap by the action of the dynamic pressure groove due to the rotation of the shaft. Conventionally, floating support (non-contact support) has been attempted.
従来、軸受面における動圧溝の成形方法として、軸受素材よりも硬質の複数個のボールを円周等間隔に配列保持した軸状の治具を軸受素材の内周面に挿入し、治具の回転と送りによってボールに螺旋運動を与えながら、ボールを素材内周面に加圧して動圧溝の形成領域を塑性加工する方法が知られている(特許文献1参照)。また、この方法の改良方法として成形時に動圧溝に隣接する領域で起こる素材隆起を旋盤やリーマで除去加工する方法が知られている(特許文献2参照)。
Conventionally, as a method for forming a dynamic pressure groove on a bearing surface, a shaft-shaped jig in which a plurality of balls harder than the bearing material are arranged and held at equal intervals around the circumference is inserted into the inner circumferential surface of the bearing material. A method is known in which the ball is pressed against the inner peripheral surface of the material while the ball is subjected to a spiral motion by rotation and feed of the material to plastically process the formation region of the dynamic pressure groove (see Patent Document 1). Further, as a method for improving this method, a method is known in which a material bulge that occurs in a region adjacent to a dynamic pressure groove during molding is removed by a lathe or reamer (see Patent Document 2).
また、特許文献1や特許文献2の方法では、治具の回転駆動機構と送り機構が必要であるため、製造設備が複雑になる。また、軸受面における動圧溝に隣接する領域の後加工が必要であるため、製造工数が多くなる。これらの対策として、軸受面の動圧溝の形成領域を成形するための第1成形部と動圧溝の形成領域以外の領域を成形するための第2成形部を有する成形型(サイジングピン)を円筒状の焼結金属素材の内周面に挿入し、焼結金属素材を第1パンチと第2パンチとで軸方向両側から拘束した状態で、焼結金属素材の外周面をダイに圧入して圧迫力を加え、その内周面を成形型に加圧して塑性変形させることにより、軸受面の動圧溝の形成領域とそれ以外の領域とを同時成形する方法が知られている(特許文献3参照)。この方法では、傾斜状の動圧溝を有する軸受面の成形加工を簡易な設備で、少ない工数で、かつ、精度良く行なうことができる。
In addition, the methods of Patent Document 1 and Patent Document 2 require a jig rotation drive mechanism and a feed mechanism, which complicates manufacturing equipment. Moreover, since post-processing of the area | region adjacent to the dynamic pressure groove in a bearing surface is required, a manufacturing man-hour increases. As these measures, a molding die (sizing pin) having a first molding part for molding a dynamic pressure groove forming region on the bearing surface and a second molding part for molding a region other than the dynamic pressure groove forming region. Is inserted into the inner peripheral surface of the cylindrical sintered metal material, and the outer peripheral surface of the sintered metal material is press-fitted into the die while the sintered metal material is constrained from both sides in the axial direction by the first punch and the second punch. Then, a method of simultaneously forming the formation region of the dynamic pressure groove on the bearing surface and the other region by applying a pressing force and plastically deforming the inner peripheral surface by pressing the inner peripheral surface of the forming die is known ( (See Patent Document 3). In this method, the molding process of the bearing surface having the inclined dynamic pressure groove can be performed with a simple facility, with a small number of steps and with high accuracy.
しかしながら、特許文献3では溝を転写する動圧溝形成用金型であるサイジングピンの材質は限定されておらず、サイジングピンの金型材質として、耐摩耗性に優れる超硬合金などを用いた場合でも、生産個数が多くなると溝を転写するサイジングピンが摩耗し、製品の内径寸法や溝深さが必要公差内に入らなくなる場合がある。このため、サイジングピンの摩耗状況に合わせて新作のサイジングピンに交換しなくてはならず、サイジングピンの交換寿命を延長するためにサイジングピンの耐摩耗性を改良することが望まれている。
However, in Patent Document 3, the material of the sizing pin, which is a dynamic pressure groove forming die for transferring the groove, is not limited, and a cemented carbide having excellent wear resistance is used as the die material of the sizing pin. Even when the number of products to be produced increases, the sizing pin for transferring the groove may wear, and the inner diameter dimension and groove depth of the product may not fall within the required tolerances. Therefore, it is necessary to replace the sizing pin with a new sizing pin according to the wear situation of the sizing pin, and it is desired to improve the wear resistance of the sizing pin in order to extend the replacement life of the sizing pin.
本発明はこのような問題に対処するためになされたものであり、耐摩耗性に優れ交換寿命の延長が図れる動圧溝形成用金型、および、該金型を用いた動圧型焼結含油軸受の製造方法を提供することを目的とする。
The present invention has been made in order to cope with such problems, and is a dynamic pressure groove forming mold having excellent wear resistance and extending the replacement life, and a dynamic pressure type sintered oil impregnation using the mold. It aims at providing the manufacturing method of a bearing.
本発明の動圧溝形成用金型は、円筒状の焼結金属素材の内周面に傾斜状の動圧溝を有する軸受面を成形して軸受本体を形成し、その軸受本体の内部の細孔内に潤滑油または潤滑グリースの含浸によって油を保有させる動圧型焼結含油軸受の製造方法に用いられる動圧溝形成用金型であって、上記動圧溝の領域を成形するための成形部を外周面に有し、上記軸受本体を形成する際に、上記焼結金属素材の内周面に挿入および加圧して、該内周面に上記動圧溝の領域を塑性加工により成形するものであり、上記動圧溝形成用金型は、外周面に、窒化物系硬質被膜、炭化物系硬質被膜、硬質炭素被膜から選ばれた少なくとも1つの硬質被膜を有することを特徴とする。
The die for forming a dynamic pressure groove of the present invention forms a bearing body by forming a bearing surface having an inclined dynamic pressure groove on the inner peripheral surface of a cylindrical sintered metal material. A dynamic pressure groove forming mold used in a method for manufacturing a hydrodynamic sintered oil-impregnated bearing in which oil is retained by impregnation of lubricating oil or lubricating grease in pores, for forming a region of the dynamic pressure groove When forming the bearing body with the forming part on the outer peripheral surface, it is inserted and pressed into the inner peripheral surface of the sintered metal material, and the region of the dynamic pressure groove is formed on the inner peripheral surface by plastic working The dynamic pressure groove forming mold has at least one hard coating selected from a nitride hard coating, a carbide hard coating, and a hard carbon coating on the outer peripheral surface.
上記硬質被膜の膜厚が、0.2~8μmであることを特徴とする。また、上記硬質被膜の押し込み硬さが、10GPa以上であることを特徴とする。
The film thickness of the hard coating is 0.2 to 8 μm. Further, the indentation hardness of the hard coating is 10 GPa or more.
上記硬質被膜が、硬質炭素被膜であることを特徴とする。また、上記動圧溝形成用金型は、該金型と上記硬質炭素被膜との間に金属中間層を有することを特徴とする。また、上記金属中間層が、タングステン(以下、Wと記す)、クロム(以下、Crと記す)、珪素(以下、Siと記す)、チタン(以下、Tiと記す)から選ばれた少なくとも一つの金属元素を含むことを特徴とする。また、上記硬質炭素被膜が、アンバランスド・マグネトロン・スパッタリング(以下、UBMSと記す)法により形成されたことを特徴とする。
The hard coating is a hard carbon coating. Further, the dynamic pressure groove forming mold has a metal intermediate layer between the mold and the hard carbon coating. The metal intermediate layer is at least one selected from tungsten (hereinafter referred to as W), chromium (hereinafter referred to as Cr), silicon (hereinafter referred to as Si), and titanium (hereinafter referred to as Ti). It contains a metal element. The hard carbon film is formed by an unbalanced magnetron sputtering (hereinafter referred to as UBMS) method.
上記硬質被膜は、その押し込み硬さが上記動圧溝形成用金型の外周面側から該硬質被膜の最表面側へと連続的もしくは段階的に高くなる被膜であることを特徴とする。
The hard coating is characterized in that the indentation hardness increases continuously or stepwise from the outer peripheral surface side of the dynamic pressure groove forming mold to the outermost surface side of the hard coating.
上記動圧溝形成用金型の基材が、超硬合金材からなることを特徴とする。
The dynamic pressure groove forming mold base material is made of a cemented carbide material.
本発明の動圧型焼結含油軸受の製造方法は、円筒状の焼結金属素材の内周面に傾斜状の動圧溝を有する軸受面を成形して軸受本体を形成し、その軸受本体の内部の細孔内に潤滑油または潤滑グリースの含浸によって油を保有させる動圧型焼結含油軸受の製造方法であって、上記軸受面の成形工程は、上述の本発明の動圧溝形成用金型を上記焼結金属素材の内周面に挿入し、該動圧溝形成用金型の動圧溝の領域を成形するための成形部を上記焼結金属素材の内周面に加圧して、該内周面に前記動圧溝の領域を塑性加工により成形する工程を含むことを特徴とする。
The method of manufacturing a hydrodynamic sintered oil-impregnated bearing according to the present invention forms a bearing body having an inclined dynamic pressure groove on the inner peripheral surface of a cylindrical sintered metal material to form a bearing body. A method of manufacturing a hydrodynamic sintered oil-impregnated bearing in which oil is retained in an internal pore by impregnation with lubricating oil or lubricating grease, wherein the forming step of the bearing surface includes the above-described gold for forming a dynamic pressure groove according to the present invention. A mold is inserted into the inner peripheral surface of the sintered metal material, and a forming portion for forming the dynamic pressure groove region of the dynamic pressure groove forming mold is pressed onto the inner peripheral surface of the sintered metal material. And a step of forming the region of the dynamic pressure groove on the inner peripheral surface by plastic working.
上記製造方法が対象とする動圧型焼結含油軸受は、磁気ディスクドライブ用のスピンドルモータに使用される軸受であることを特徴とする。
The hydrodynamic sintered oil-impregnated bearing targeted by the above manufacturing method is a bearing used for a spindle motor for a magnetic disk drive.
本発明の動圧溝形成用金型は、上述のように、傾斜状の動圧溝を外周面に有するサイジングピンであり、外周面に、窒化物系硬質被膜、炭化物系硬質被膜、硬質炭素被膜から選ばれた少なくとも1つの硬質被膜を有するので、耐摩耗性に優れる。このため、該動圧溝形成用金型を焼結金属素材の内周面に挿入および加圧して、該内周面に動圧溝の領域を塑性加工により成形する工程を含む動圧型焼結含油軸受の製造に用いた場合でも、該金型(サイジングピン)の交換寿命を延長できる。
As described above, the dynamic pressure groove forming mold of the present invention is a sizing pin having inclined dynamic pressure grooves on the outer peripheral surface, and on the outer peripheral surface, a nitride-based hard coating, a carbide-based hard coating, a hard carbon Since it has at least one hard coating selected from coatings, it has excellent wear resistance. For this reason, dynamic pressure type sintering including a step of inserting and pressurizing the dynamic pressure groove forming die into the inner peripheral surface of the sintered metal material and forming a region of the dynamic pressure groove on the inner peripheral surface by plastic working. Even when used in the manufacture of oil-impregnated bearings, the replacement life of the die (sizing pin) can be extended.
特に、上記硬質被膜として硬質炭素被膜を採用し、(1)金型と硬質炭素被膜との間に金属中間層を設けることや、(2)硬質炭素被膜の押し込み硬さを金型基材側から該硬質炭素被膜の最表面側へと連続的もしくは段階的に高くすることで、耐摩耗性および密着性をより向上させることができ、該金型(サイジングピン)の交換寿命のさらなる延長が図れる。
In particular, a hard carbon film is adopted as the hard film, and (1) a metal intermediate layer is provided between the mold and the hard carbon film, or (2) the indentation hardness of the hard carbon film is set on the mold substrate side. By continuously or stepwise increasing from the hard carbon coating to the outermost surface side, the wear resistance and adhesion can be further improved, and the replacement life of the die (sizing pin) can be further extended. I can plan.
本発明の動圧型焼結含油軸受の製造方法は、円筒状の焼結金属素材の内周面に傾斜状の動圧溝を有する軸受面を成形して軸受本体を形成し、その軸受本体の内部の細孔内に潤滑油または潤滑グリースの含浸によって油を保有させる動圧型焼結含油軸受の製造方法であり、上記軸受面の成形工程は、上述の動圧溝形成用金型を焼結金属素材の内周面に挿入し、この動圧溝形成用金型の成形部を焼結金属素材の内周面に加圧して、該内周面に動圧溝の領域を塑性加工により成形する工程を含むので、簡易な設備で、少ない工数で製造を行なうことができ、加えて、動圧溝形成用金型(サイジングピン)の交換寿命が長く、製造コストの低減が図れる。
The method of manufacturing a hydrodynamic sintered oil-impregnated bearing according to the present invention forms a bearing body having an inclined dynamic pressure groove on the inner peripheral surface of a cylindrical sintered metal material to form a bearing body. This is a method for manufacturing a hydrodynamic sintered oil-impregnated bearing in which oil is retained in the internal pores by impregnation with lubricating oil or lubricating grease, and the bearing surface molding step sinters the dynamic pressure groove forming mold described above. Insert into the inner peripheral surface of the metal material, press the molded part of this dynamic pressure groove forming mold to the inner peripheral surface of the sintered metal material, and shape the region of the dynamic pressure groove on the inner peripheral surface by plastic working Therefore, it is possible to manufacture with a simple equipment and a small number of man-hours. In addition, the replacement life of the dynamic pressure groove forming die (sizing pin) is long, and the manufacturing cost can be reduced.
本発明の動圧溝形成用金型は、後述の動圧型焼結含油軸受の製造方法に用いられるものである。この製造方法が対象とする動圧型焼結含油軸受を図1に基づいて説明する。図1は、動圧型焼結含油軸受の一例を示す断面図である。動圧型焼結含油軸受1は、例えば、銅または鉄、あるいは、その両者を主成分とする焼結金属からなる軸受本体1aと、潤滑油または潤滑グリースの含浸によって軸受本体1aの細孔内に保有された油(潤滑油または潤滑グリースの基油)とで構成される。この動圧型焼結含油軸受1は、例えば、磁気ディスクドライブ用のスピンドルモータや、レーザビームプリンタのスキャナモータなどに用いられる。
The dynamic pressure groove forming mold of the present invention is used in a method of manufacturing a dynamic pressure type sintered oil-impregnated bearing described later. A hydrodynamic sintered oil-impregnated bearing targeted by this manufacturing method will be described with reference to FIG. FIG. 1 is a cross-sectional view showing an example of a hydrodynamic sintered oil-impregnated bearing. The hydrodynamic sintered oil-impregnated bearing 1 includes, for example, a bearing body 1a made of sintered metal mainly composed of copper or iron, or both, and the pores of the bearing body 1a by impregnation with lubricating oil or lubricating grease. It is made up of retained oil (base oil of lubricating oil or lubricating grease). The hydrodynamic sintered oil-impregnated bearing 1 is used, for example, in a spindle motor for a magnetic disk drive, a scanner motor for a laser beam printer, or the like.
軸受本体1aの内周には、支持すべき軸の外周面と軸受隙間を介して対向する軸受面1bが形成され、その軸受面1bに傾斜状の動圧溝1cが形成されている。図1に示す態様では、2つの軸受面1bが軸方向に離間して形成されている。また、各軸受面1bは、軸方向に対して一方に傾斜した複数の動圧溝1cを円周方向に配列形成した第1領域と、第1領域から軸方向に離隔し、軸方向に対して他方に傾斜した複数の動圧溝1cを円周方向に配列形成した第2領域と、第1領域と第2領域との間に位置する環状の平滑領域1dとを備えている。第1領域および第2領域の背(動圧溝1c間の領域)1eは、それぞれ平滑領域1dに連続している。軸受面1bには、動圧溝1cの形成領域を含む全領域にわたって表面開孔がほぼ均一に分布している。軸受本体1aと軸との間に相対回転が生じると、第1領域と第2領域にそれぞれ逆向きに傾斜形成された動圧溝1cによって、軸受隙間内の油が平滑領域1dに向けて引き込まれて動圧油膜を形成し、その動圧油膜によって軸の外周面が軸受面1bに対して浮上支持(非接触支持)される。
A bearing surface 1b is formed on the inner periphery of the bearing body 1a so as to face the outer peripheral surface of the shaft to be supported via a bearing gap, and an inclined dynamic pressure groove 1c is formed on the bearing surface 1b. In the embodiment shown in FIG. 1, the two bearing surfaces 1b are formed to be separated from each other in the axial direction. Each bearing surface 1b has a first region in which a plurality of dynamic pressure grooves 1c inclined in one direction with respect to the axial direction are arranged in the circumferential direction, and is spaced apart from the first region in the axial direction. And a second region in which a plurality of dynamic pressure grooves 1c inclined to the other side are arranged in the circumferential direction, and an annular smooth region 1d positioned between the first region and the second region. The backs (regions between the dynamic pressure grooves 1c) 1e of the first region and the second region are each continuous with the smooth region 1d. On the bearing surface 1b, the surface openings are distributed almost uniformly over the entire region including the region where the dynamic pressure grooves 1c are formed. When relative rotation occurs between the bearing body 1a and the shaft, the oil in the bearing gap is drawn toward the smooth region 1d by the dynamic pressure grooves 1c formed in the first region and the second region so as to incline in opposite directions. Thus, a dynamic pressure oil film is formed, and the outer peripheral surface of the shaft is levitated and supported (non-contact support) with respect to the bearing surface 1b by the dynamic pressure oil film.
本発明の動圧溝形成用金型は、図1に示すような動圧型焼結含油軸受1の軸受本体1aの形成に際し用いられる。本発明の動圧溝形成用金型の一例を図2に基づいて説明する。図2は、動圧溝形成用金型であるサイジングピンの一部拡大図である。図2に示すように、動圧溝形成用金型であるサイジングピン3は、その外周面に、凸状の第1成形部3aと、凹状の第2成形部3bとを有する。第1成形部3aは、軸受面1bにおける動圧溝1cの領域(図1参照)を成形するものである。第2成形部3bは、動圧溝1c以外の領域(環状の平滑領域1d、背1e)を成形するものである。第1成形部3aと第2成形部3bとの段差(深さ)は、軸受面1bにおける動圧溝1cの深さ(図1参照)と同じ2~4μm程度であるが、図2では誇張して図示されている。
The die for forming a dynamic pressure groove of the present invention is used for forming a bearing body 1a of a dynamic pressure type sintered oil-impregnated bearing 1 as shown in FIG. An example of the dynamic pressure groove forming mold of the present invention will be described with reference to FIG. FIG. 2 is a partially enlarged view of a sizing pin that is a die for forming a dynamic pressure groove. As shown in FIG. 2, the sizing pin 3, which is a dynamic pressure groove forming mold, has a convex first molding part 3a and a concave second molding part 3b on its outer peripheral surface. The 1st shaping | molding part 3a shape | molds the area | region (refer FIG. 1) of the dynamic pressure groove 1c in the bearing surface 1b. The 2nd shaping | molding part 3b shape | molds areas | regions (annular smooth area | region 1d, spine 1e) other than the dynamic pressure groove 1c. The step (depth) between the first molded portion 3a and the second molded portion 3b is about 2 to 4 μm, which is the same as the depth of the dynamic pressure groove 1c (see FIG. 1) on the bearing surface 1b, but is exaggerated in FIG. It is illustrated as follows.
サイジングピン3の材質としては、炭素工具鋼、合金工具鋼、高速度工具鋼、超硬合金などを挙げることができる。特に超硬合金は耐摩耗性に優れるため、金型材質として好適である。また、金型の表面硬度を上げるため、窒化処理やショットピーニングなどの表面処理を施してもよい。
The material of the sizing pin 3 includes carbon tool steel, alloy tool steel, high speed tool steel, cemented carbide and the like. In particular, cemented carbide is excellent in wear resistance and is therefore suitable as a mold material. Further, in order to increase the surface hardness of the mold, a surface treatment such as nitriding treatment or shot peening may be performed.
本発明では、サイジングピン3において、第1成形部3aと第2成形部3bとを含む該金型の外周面に、窒化物系硬質被膜、炭化物系硬質被膜、硬質炭素被膜から選ばれた少なくとも1つの硬質被膜が形成されている。
In the present invention, in the sizing pin 3, at least one selected from a nitride-based hard coating, a carbide-based hard coating, and a hard carbon coating is provided on the outer peripheral surface of the mold including the first molded portion 3a and the second molded portion 3b. One hard coating is formed.
窒化物系硬質被膜としては、TiN、TiBN、CrN、CrAlN、TiAlN、SiN、SiAlN、AlCrSiN、TiBON、ZrN、SiCN、AlNなどが挙げられる。また、炭化物系硬質被膜としては、SiC、TiCなどが挙げられる。また、本発明における硬質炭素被膜は、構造的にはダイヤモンド構造とグラファイト構造が混ざり合った両者の中間構造を有するものであり、ダイヤモンドライクカーボン(以下、DLCと記す)と呼ばれている硬質被膜である。以上の各被膜は、単独で形成することも、2種類以上を積層して形成することも可能である。また、耐摩耗性、摩擦特性、硬度、非粘着性等の機械的物性を向上させるのに有効な元素をドーピングして、硬質被膜を形成することもできる。
Examples of the nitride hard coating include TiN, TiBN, CrN, CrAlN, TiAlN, SiN, SiAlN, AlCrSiN, TiBON, ZrN, SiCN, and AlN. Examples of the carbide hard coating include SiC and TiC. In addition, the hard carbon coating in the present invention has an intermediate structure in which a diamond structure and a graphite structure are mixed structurally, and is called a diamond-like carbon (hereinafter referred to as DLC). It is. Each of the above coating films can be formed alone or in a laminate of two or more. In addition, a hard film can be formed by doping with an element effective for improving mechanical properties such as wear resistance, friction characteristics, hardness, and non-adhesiveness.
上記硬質被膜の膜厚は0.2~8μmであることが好ましい。厚すぎると、成膜中に膜内に発生する応力が過大となり成膜中にクラックが生じるおそれがある。また、クラックが生じなくとも厚すぎる膜では残留応力が高いため剥離し易い傾向がある。逆に薄すぎると、硬質被膜が摩耗した場合、金型の寿命延長の効果が薄れるので好ましくない。少なくとも金型の寿命延長の効果が確認でき、かつ高い残留応力のために剥離することがないことから、上記硬質被膜の膜厚は0.4~8μmであることがより好ましい。また、5μmをこえるとエッジ部では剥離し易くなる場合があることから、上記硬質被膜の膜厚は0.4~5μmであることがさらに好ましい。
The film thickness of the hard coating is preferably 0.2 to 8 μm. If it is too thick, the stress generated in the film during film formation becomes excessive, and cracks may occur during film formation. Even if a crack does not occur, a film that is too thick tends to be peeled off because the residual stress is high. On the other hand, if the thickness is too thin, the effect of extending the life of the mold is reduced when the hard coating is worn. It is more preferable that the film thickness of the hard coating is 0.4 to 8 μm because at least the effect of extending the life of the mold can be confirmed, and it does not peel off due to high residual stress. Further, if it exceeds 5 μm, it may be easy to peel off at the edge portion, so that the film thickness of the hard coating is more preferably 0.4 to 5 μm.
本発明の硬質被膜の押し込み硬さが10GPa以上であることが好ましい。10GPa未満であると金型表面に傷がつきやすく、耐摩耗性に劣り、金型の交換寿命が短くなるので好ましくない。
The indentation hardness of the hard coating of the present invention is preferably 10 GPa or more. If it is less than 10 GPa, the surface of the mold is easily damaged, the wear resistance is poor, and the replacement life of the mold is shortened.
上述した硬質被膜の中でも、特に硬質炭素被膜(DLC)が摩擦摩耗特性に優れ、かつ被膜表面が平滑であることから、本発明の動圧溝形成用金型に形成する硬質被膜として好適である。例えば、硬質被膜に硬質炭素被膜(DLC)を使用することで、金型表面(被膜表面)の面粗さが金型基材と同程度にできるので、研磨、ラッピングなどの後加工が不要となる。この研磨、ラッピングなどの後加工は、他の硬質被膜を用いる場合には、被膜表面が荒れるので、製品表面に必要な面粗さに合わせるために必要となるものである。
Among the hard coatings described above, the hard carbon coating (DLC) is particularly suitable as the hard coating formed on the dynamic pressure groove forming mold of the present invention because it has excellent frictional wear characteristics and the coating surface is smooth. . For example, by using a hard carbon coating (DLC) as the hard coating, the surface roughness of the mold surface (coating surface) can be made the same as that of the mold substrate, so that post-processing such as polishing and lapping is unnecessary. Become. This post-processing such as polishing and lapping is necessary to match the surface roughness required for the product surface because the surface of the coating becomes rough when other hard coating is used.
硬質炭素被膜(DLC)の成膜方法としては、特に限定しないが、例えば熱、光、プラズマ(直流プラズマ、ホロカソードプラズマ、RFプラズマ、パルスプラズマ、表面波プラズマ)などを使用したCVD方式や、イオンビーム、イオン化蒸着、ホロカソードアーク、真空アーク蒸着、UBMS、プラズマ昇華、電子ビーム蒸着などのPVD方式の成膜方式を挙げることができる。これらの中で、特に耐摩耗性に優れた硬質被膜が得られるUBMS式による成膜方式を採用することが好ましい。
The film formation method of the hard carbon coating (DLC) is not particularly limited, but for example, a CVD method using heat, light, plasma (DC plasma, holocathode plasma, RF plasma, pulsed plasma, surface wave plasma), Examples thereof include PVD film forming methods such as ion beam, ionized vapor deposition, holocathode arc, vacuum arc vapor deposition, UBMS, plasma sublimation, and electron beam vapor deposition. Among these, it is preferable to employ a UBMS film formation method that can provide a hard coating having particularly excellent wear resistance.
UBMS装置を用いたUBMS法の成膜原理を図7に示す模式図を用いて説明する。図7に示すように、丸形のターゲット15の中心部と周辺部で異なる磁気特性を有する内側磁石14a、外側磁石14bが配置され、ターゲット15付近で高密度プラズマ19を形成しつつ、上記磁石14a、14bにより発生する磁力線16の一部16aがバイアス電源11に接続された基材12近傍まで達するようにしたものである。この磁力線16aに沿ってスパッタリング時に発生したArプラズマが基材12付近まで拡散する効果が得られる。このようなUBMS法により、基材12付近まで達する磁力線16aに沿ってArイオン17および電子が、通常のスパッタリングに比べてイオン化されたターゲット18をより多く基材12に到達させるイオンアシスト効果によって、緻密な被膜(層)13を成膜できる。硬質炭素被膜(DLC)の成膜に際しては、固体のターゲット15として黒鉛ターゲットを用いる。また、必要に応じて、装置内にメタンガスなどの炭素水素系ガスを導入し、炭素供給源とすることもできる。
The film forming principle of the UBMS method using the UBMS apparatus will be described with reference to the schematic diagram shown in FIG. As shown in FIG. 7, an inner magnet 14 a and an outer magnet 14 b having different magnetic characteristics are arranged in the central portion and the peripheral portion of a round target 15, and the above magnet is formed while forming a high-density plasma 19 near the target 15. A part 16 a of the magnetic force lines 16 generated by 14 a and 14 b reaches the vicinity of the base material 12 connected to the bias power source 11. The Ar plasma generated during the sputtering along the magnetic force lines 16a can be diffused to the vicinity of the base material 12. By such an UBMS method, the ion assist effect that Ar ions 17 and electrons reach the base material 12 more than the normal sputtering, along the magnetic field lines 16a reaching the vicinity of the base material 12, due to the ion assist effect. A dense film (layer) 13 can be formed. In forming the hard carbon film (DLC), a graphite target is used as the solid target 15. Further, if necessary, a carbon hydrogen gas such as methane gas can be introduced into the apparatus to serve as a carbon supply source.
硬質被膜として硬質炭素被膜(DLC)を採用する場合、該被膜は高い硬度およびヤング率を持つ反面、変形能が極めて小さく、基材との密着性が弱いという特性を有するので、基材である金型に対する硬質炭素被膜の密着性を向上させるために、金型と硬質炭素被膜との間に金属中間層を形成することが好ましい。金属中間層は、例えば、図7において金属中間層に対応するターゲット15を用いて形成することができる。
When a hard carbon film (DLC) is employed as the hard film, the film has a high hardness and Young's modulus, but has a characteristic that the deformability is extremely small and the adhesion to the substrate is weak, and thus the substrate is a base material. In order to improve the adhesion of the hard carbon film to the mold, it is preferable to form a metal intermediate layer between the mold and the hard carbon film. The metal intermediate layer can be formed using, for example, the target 15 corresponding to the metal intermediate layer in FIG.
金属中間層は、W、Cr、Si、Tiから選ばれた少なくとも一つの金属元素を含むことが好ましい。これらの金属種を含むことで、炭素工具鋼、合金工具鋼、高速度工具鋼、超硬合金などからなる金型(サイジングピン)基材との密着性をより向上させることができる。また、金属中間層は、必要に応じて、組成の異なる複数の層とすることもできる。
The metal intermediate layer preferably contains at least one metal element selected from W, Cr, Si, and Ti. By including these metal species, adhesion to a die (sizing pin) substrate made of carbon tool steel, alloy tool steel, high-speed tool steel, cemented carbide, or the like can be further improved. Moreover, a metal intermediate | middle layer can also be made into several layers from which a composition differs as needed.
また、硬質炭素被膜(DLC)に隣接する金属中間層は、金型または他の金属中間層側から、硬質炭素被膜側に向けて金属の含有量を減少させ、一方、炭素の含有量を連続的または段階的に増加させた傾斜層とすることが好ましい。この傾斜層が応力緩和層となり、金属中間層と硬質炭素被膜との間の密着性の向上が図れる。
Also, the metal intermediate layer adjacent to the hard carbon coating (DLC) reduces the metal content from the mold or other metal intermediate layer side toward the hard carbon coating side, while the carbon content is continuously increased. It is preferable to use a graded layer that is gradually or stepwise increased. This inclined layer becomes a stress relaxation layer, and the adhesion between the metal intermediate layer and the hard carbon coating can be improved.
硬質被膜は、その押し込み硬さが、金型の外周面側から、該被膜の最表面層側に向けて連続的または段階的に高くなる硬度傾斜被膜であることが好ましい。硬度傾斜被膜とすることで、金属中間層との間で急激な硬度差をなくすことができ、密着性の向上が図れる。硬度傾斜させた硬質炭素被膜(DLC)は、UBMS法において黒鉛ターゲットを用い、基材である金型に対するバイアス電圧を連続的または段階的に上昇させて成膜することで得られる。硬度が連続的または段階的に上昇するのは、DLC構造におけるグラファイト構造(sp2)とダイヤモンド構造(sp3)との構成比率が、バイアス電圧の上昇により後者に偏っていくためである。
The hard film is preferably a hardness gradient film whose indentation hardness increases continuously or stepwise from the outer peripheral surface side of the mold toward the outermost surface layer side of the film. By adopting a hardness gradient coating, it is possible to eliminate a steep hardness difference from the metal intermediate layer, and to improve adhesion. A hard carbon film (DLC) with a gradient in hardness can be obtained by using a graphite target in the UBMS method and forming a film by continuously or stepwise increasing the bias voltage for a mold as a base material. The reason why the hardness increases continuously or stepwise is that the composition ratio between the graphite structure (sp 2 ) and the diamond structure (sp 3 ) in the DLC structure is biased toward the latter as the bias voltage increases.
本発明の動圧溝形成用金型であるサイジングピンは、以上のような硬質被膜を外周面に形成するので、耐摩耗性に優れ、これらの硬質被膜を有さないサイジングピンと比較して交換寿命を大幅に延長できる。
The sizing pin, which is a die for forming a dynamic pressure groove of the present invention, forms the hard coating as described above on the outer peripheral surface, so it has excellent wear resistance and is replaced in comparison with sizing pins that do not have these hard coatings. The service life can be greatly extended.
本発明の動圧型焼結含油軸受の製造方法は、円筒状の焼結金属素材の内周面に傾斜状の動圧溝を有する軸受面を成形して軸受本体を形成し、その軸受本体の内部の細孔内に潤滑油または潤滑グリースの含浸によって油を保有させる動圧型焼結含油軸受の製造方法であり、上記軸受面の成形工程において、上述の動圧溝形成用金型(サイジングピン)を焼結金属素材の内周面に挿入し、該動圧溝形成用金型の動圧溝の領域を成形するための成形部を焼結金属素材の内周面に加圧して、該内周面に動圧溝の領域を塑性加工により成形する工程を含むものである。
The method of manufacturing a hydrodynamic sintered oil-impregnated bearing according to the present invention forms a bearing body having an inclined dynamic pressure groove on the inner peripheral surface of a cylindrical sintered metal material to form a bearing body. A method for manufacturing a hydrodynamic sintered oil-impregnated bearing in which oil is retained in an internal pore by impregnation with lubricating oil or lubricating grease, and in the molding process of the bearing surface, the above-described dynamic pressure groove forming mold (sizing pin) ) Is inserted into the inner peripheral surface of the sintered metal material, and a molding portion for forming the dynamic pressure groove region of the dynamic pressure groove forming mold is pressed onto the inner peripheral surface of the sintered metal material, This includes a step of forming the region of the dynamic pressure groove on the inner peripheral surface by plastic working.
本発明の動圧型焼結含油軸受の製造方法の一例として、軸受面の成形工程において、上述の動圧溝形成用金型(サイジングピン)を焼結金属素材の内周に挿入した後、焼結金属素材を第1パンチと第2パンチとで軸方向両側から拘束した状態で、焼結金属素材の外周面をダイに圧入して圧迫力を加え、その内周面を該動圧溝形成用金型の外周面に加圧して塑性変形させることにより、軸受面の動圧溝の形成領域とそれ以外の領域とを同時成形する方法を以下に説明する。
As an example of the manufacturing method of the hydrodynamic sintered oil-impregnated bearing of the present invention, in the bearing surface forming step, the above-mentioned hydrodynamic groove forming mold (sizing pin) is inserted into the inner periphery of the sintered metal material, and then sintered. In a state in which the sintered metal material is constrained from both sides in the axial direction by the first punch and the second punch, the outer peripheral surface of the sintered metal material is pressed into the die to apply a pressing force, and the inner peripheral surface is formed with the dynamic pressure groove. A method of simultaneously forming the formation region of the dynamic pressure groove on the bearing surface and the other region by pressurizing and plastically deforming the outer peripheral surface of the metal mold will be described below.
この製造方法では、ダイへの圧入に伴う焼結金属素材の軸方向の伸びを抑制し、軸受面の位置ずれを防止するため、焼結金属素材を第1パンチと第2パンチとで軸方向両側から拘束した状態でダイに圧入する構成を採用している。
In this manufacturing method, in order to suppress the axial extension of the sintered metal material due to the press-fitting into the die and prevent the displacement of the bearing surface, the sintered metal material is axially formed by the first punch and the second punch. A configuration is adopted in which the die is pressed into the die while restrained from both sides.
焼結金属素材のダイへの圧入動作は、ダイを固定とし、動圧溝形成用金型と、第1パンチおよび第2パンチとを連動させて行なうこともできるが、動圧溝形成用金型と第1パンチおよび第2パンチとによる素材の拘束位置を保持し、ダイを焼結金属素材に対して軸方向移動させることにより行なうこともできる。
The press-fitting operation of the sintered metal material to the die can be performed by fixing the die and interlocking the dynamic pressure groove forming mold with the first punch and the second punch. It can also be performed by holding the restraint position of the material by the mold and the first punch and the second punch and moving the die in the axial direction with respect to the sintered metal material.
焼結金属素材を図3に示す。図3は、焼結金属素材の一例を示す断面図である。図3に示すように、焼結金属素材1’は、一種類以上の金属粉を混合して圧粉成形した後、焼成して所定の円筒形状の多孔質焼結体としたものである。この焼結金属素材1’は、銅または鉄、あるいは、その両者を主成分としたものが好ましい。この円筒形状の焼結金属素材1’に対して、例えば上述の軸受面成形加工を施すことで、図1に示す動圧型焼結含油軸受1の軸受本体1aを製造することができる。
The sintered metal material is shown in FIG. FIG. 3 is a cross-sectional view showing an example of a sintered metal material. As shown in FIG. 3, the sintered metal material 1 ′ is obtained by mixing one or more kinds of metal powders and compacting them, followed by firing to form a predetermined cylindrical porous sintered body. The sintered metal material 1 'is preferably made of copper, iron, or both as a main component. A bearing body 1a of the hydrodynamic sintered oil-impregnated bearing 1 shown in FIG. 1 can be manufactured, for example, by subjecting the cylindrical sintered metal material 1 'to the bearing surface forming process described above.
軸受面の成形工程は、所定のサイジング加工を施した焼結金属素材1’の内周面に、完成品である軸受本体1aの軸受面1bに対応した形状の成形型を加圧することによって、軸受面1bの動圧溝1cの形成領域とそれ以外の領域(平滑領域1d、背1e)とを同時成形する工程である。この工程は、図4~図6に示す工程(a)~(h)からなる。なお、図6は図4における工程(c)、工程(e)を示す要部拡大断面図である。
The molding process of the bearing surface is performed by pressurizing a molding die having a shape corresponding to the bearing surface 1b of the bearing body 1a, which is a finished product, on the inner peripheral surface of the sintered metal material 1 ′ subjected to a predetermined sizing process. This is a step of simultaneously forming the formation region of the dynamic pressure groove 1c on the bearing surface 1b and the other regions (smooth region 1d, spine 1e). This step includes steps (a) to (h) shown in FIGS. FIG. 6 is an enlarged cross-sectional view of the main part showing step (c) and step (e) in FIG.
軸受面の成形工程で使用する成形装置は、焼結金属素材1’の外周面を圧入する円筒状のダイ2、焼結金属素材1’の内周面を成形するサイジングピン(コアロッド)3、焼結金属素材1’の両端面を上下方向(軸方向)から押さえる上パンチ4および下パンチ5を主要な要素として構成される。6は、サイジングピン3および上パンチ4を駆動するラム(油圧ラム等)である。サイジングピン3はラム6に連結されており、ラム6と一体となって昇降動作を行なう。上パンチ4はラム6に連結されておらず、ラム6がある程度下降した後、ラム6に押されて下降動作を行なう。下パンチ5は固定である。ダイ2は、図示されていない駆動手段によって昇降駆動される。ここで、サイジングピン3が本発明の動圧溝形成用金型であり、その動圧溝成形部は上述の図2に拡大して示すものである。
The molding apparatus used in the bearing surface molding process includes a cylindrical die 2 for press-fitting the outer peripheral surface of the sintered metal material 1 ′, a sizing pin (core rod) 3 for molding the inner peripheral surface of the sintered metal material 1 ′, The upper punch 4 and the lower punch 5 that press both end surfaces of the sintered metal material 1 ′ from the up and down direction (axial direction) are configured as main elements. Reference numeral 6 denotes a ram (hydraulic ram or the like) for driving the sizing pin 3 and the upper punch 4. The sizing pin 3 is connected to the ram 6 and moves up and down integrally with the ram 6. The upper punch 4 is not connected to the ram 6, and after the ram 6 is lowered to some extent, it is pushed by the ram 6 to perform a lowering operation. The lower punch 5 is fixed. The die 2 is driven up and down by driving means (not shown). Here, the sizing pin 3 is the dynamic pressure groove forming die of the present invention, and the dynamic pressure groove forming portion is shown enlarged in FIG.
図4(a)に示す初期状態において、ダイ2は下位置にあり、サイジングピン3、上パンチ4、およびラム6は上位置にある。ダイ2は下パンチ5に摺動自在に外挿され、下パンチ5はダイ2の成形孔の上端入口部で待機して焼結金属素材1’の下端面を受ける。サイジングピン3は、上パンチ4に摺動自在に挿入されている。
In the initial state shown in FIG. 4A, the die 2 is in the lower position, and the sizing pin 3, the upper punch 4 and the ram 6 are in the upper position. The die 2 is slidably inserted in the lower punch 5, and the lower punch 5 waits at the upper end entrance of the forming hole of the die 2 and receives the lower end surface of the sintered metal material 1 ′. The sizing pin 3 is slidably inserted into the upper punch 4.
上記の初期状態から、ラム6を下降させて、サイジングピン3を焼結金属素材1’の内周面に挿入する(図4(b)参照)。この時、焼結金属素材1’の内周面とサイジングピン3の成形型(第1成形部3aを基準)との間には内径すきまTがある。内径すきまTの大きさは、例えば50μm(直径量)である。
From the initial state, the ram 6 is lowered and the sizing pin 3 is inserted into the inner peripheral surface of the sintered metal material 1 '(see FIG. 4B). At this time, there is an internal clearance T between the inner peripheral surface of the sintered metal material 1 ′ and the molding die of the sizing pin 3 (based on the first molding part 3 a). The size of the inner diameter clearance T is, for example, 50 μm (diameter amount).
ラム6をさらに下降させて、上パンチ4に当て、上パンチ4をサイジングピン3とともに下降させて、焼結金属素材1’の上端面に押し当て、焼結金属素材1’を上パンチ4と下パンチ5によって上下方向から加圧して拘束する(図4(c)、図6(c)参照)。
The ram 6 is further lowered and applied to the upper punch 4. The upper punch 4 is lowered together with the sizing pin 3 and pressed against the upper end surface of the sintered metal material 1 ′. The lower punch 5 is pressed and restrained from above and below (see FIGS. 4C and 6C).
その後、焼結金属素材1’の上下方向の拘束状態を保持しながらダイ2を上昇させて、焼結金属素材1’の外周面をダイ2の成形孔に圧入する(図4(d)、(e)、図6(e))。この時の圧入代Sは、例えば150μm(直径量)である。
Thereafter, the die 2 is raised while maintaining the restrained state of the sintered metal material 1 ′ in the vertical direction, and the outer peripheral surface of the sintered metal material 1 ′ is pressed into the forming hole of the die 2 (FIG. 4D). (E), FIG. 6 (e)). The press-fitting allowance S at this time is, for example, 150 μm (diameter amount).
焼結金属素材1’はダイ2と上下パンチ4、5から圧迫力を受けて変形を起こし、内周面がサイジングピン3の外周面に加圧される。内周面の加圧量は、圧入代S(直径量150μm)と内径すきまT(直径量50μm)との差100μm(直径量)に略等しく、内周面から深さ50μm(半径量)までの表層部分がサイジングピン3の第1成形部3aと第2成形部3bとからなる成形型に加圧され、塑性流動を起こして該成形型に食い付く。これにより、成形型の形状が焼結金属素材1’の内周面に転写され、軸受面1bが図1に示す形状に成形される。
The sintered metal material 1 ′ is deformed by receiving a pressing force from the die 2 and the upper and lower punches 4, 5, and the inner peripheral surface is pressed against the outer peripheral surface of the sizing pin 3. The amount of pressurization on the inner peripheral surface is substantially equal to the difference of 100 μm (diameter amount) between the press-fitting allowance S (diameter amount 150 μm) and the inner diameter clearance T (diameter amount 50 μm), and from the inner peripheral surface to a depth of 50 μm (radial amount). The surface layer portion of the sizing pin 3 is pressed against a molding die composed of the first molding portion 3a and the second molding portion 3b to cause plastic flow and bite into the molding die. As a result, the shape of the molding die is transferred to the inner peripheral surface of the sintered metal material 1 ′, and the bearing surface 1 b is molded into the shape shown in FIG. 1.
軸受面1bの成形が完了した後、焼結金属素材1’の上下方向の拘束状態を保持した状態でダイ2を下降させて(図5(f)参照)、焼結金属素材1’をダイ2から抜く(図5(g)参照)。その後、ラム6の上昇により、サイジングピン3および上パンチ4を上昇させて(上パンチ4の上昇は図示されていない駆動手段または復帰手段によってなされる)、サイジングピン3を焼結金属素材1’の内周面から抜く(図5(g)、(h)参照)。焼結金属素材1’をダイ2から抜くと、焼結金属素材1’にスプリングバックが生じ、その内径寸法が拡大するので、軸受面1bの動圧溝1cを崩すことなく、焼結金属素材1’の内周面からサイジングピン3の成形型を抜き取ることができる。これにより、軸受本体1aが完成する。
After the formation of the bearing surface 1b is completed, the die 2 is moved down while the vertical restraint state of the sintered metal material 1 ′ is maintained (see FIG. 5 (f)), and the sintered metal material 1 ′ is moved to the die. 2 is removed (see FIG. 5G). Thereafter, the sizing pin 3 and the upper punch 4 are raised by the raising of the ram 6 (the raising of the upper punch 4 is performed by a driving means or a returning means not shown), and the sizing pin 3 is moved to the sintered metal material 1 ′. (See FIGS. 5G and 5H). When the sintered metal material 1 ′ is pulled out of the die 2, a spring back is generated in the sintered metal material 1 ′ and the inner diameter thereof is enlarged, so that the sintered metal material is not destroyed without breaking the dynamic pressure groove 1c of the bearing surface 1b. The molding die of the sizing pin 3 can be extracted from the inner peripheral surface of 1 ′. Thereby, the bearing main body 1a is completed.
本発明の動圧型焼結含油軸受の製造方法の他の例として、軸受面の成形工程において、上述の動圧溝形成用金型(サイジングピン)を焼結金属素材の内周面に挿入した後、第1パンチで焼結金属素材の外周面をダイ(ダイは固定)に圧入し、その後、ダイ、第1パンチ、および第2パンチとで上記素材を圧縮して動圧溝を形成する方法を以下に説明する。この軸受面の成形工程を図10および図11に示す。
As another example of the method for producing the hydrodynamic sintered oil-impregnated bearing of the present invention, the above-mentioned hydrodynamic groove forming mold (sizing pin) is inserted into the inner peripheral surface of the sintered metal material in the bearing surface molding step. Thereafter, the outer peripheral surface of the sintered metal material is press-fitted into the die (the die is fixed) with the first punch, and then the material is compressed with the die, the first punch, and the second punch to form a dynamic pressure groove. The method will be described below. The process of forming the bearing surface is shown in FIGS.
この例における軸受面の成形工程で使用する成形装置は上述の成形装置と同様であり、焼結金属素材1’の外周面を圧入する円筒状のダイ2、焼結金属素材1’の内周面を成形するサイジングピン(コアロッド)3、焼結金属素材1’の両端面を上下方向(軸方向)から押さえる上パンチ4および下パンチ5を主要な要素として構成される。
The molding apparatus used in the bearing surface molding process in this example is the same as the above-described molding apparatus, and the cylindrical die 2 for press-fitting the outer peripheral surface of the sintered metal material 1 ′ and the inner periphery of the sintered metal material 1 ′. A sizing pin (core rod) 3 for forming the surface, and an upper punch 4 and a lower punch 5 for pressing both end surfaces of the sintered metal material 1 ′ from the vertical direction (axial direction) are configured as main elements.
サイジングピン3と上パンチ4をともに下降させて、サインジングピン3を焼結金属素材1’の内周面に挿入するとともに、上パンチ4を焼結金属素材1’の上端面に押し当てる(図10(a)参照)。その後、上パンチ4で焼結金属素材1’を押して、焼結金属素材1’の外周面をダイ2の成形孔に圧入する(図10(b)参照)。この時の圧入代などは上述の場合と同様である。焼結金属素材1’はダイ2に圧入されているため、その内周面はサイジングピン3に抱きつく形になっている。
Both the sizing pin 3 and the upper punch 4 are lowered, and the signing pin 3 is inserted into the inner peripheral surface of the sintered metal material 1 ′, and the upper punch 4 is pressed against the upper end surface of the sintered metal material 1 ′ ( FIG. 10 (a)). Thereafter, the sintered metal material 1 ′ is pressed by the upper punch 4, and the outer peripheral surface of the sintered metal material 1 ′ is press-fitted into the forming hole of the die 2 (see FIG. 10B). The press-fitting allowance at this time is the same as that described above. Since the sintered metal material 1 ′ is press-fitted into the die 2, the inner peripheral surface thereof is shaped to hug the sizing pin 3.
この後、下パンチ5を焼結金属素材1’の下端面に押し当てて、焼結金属素材1’を上下方向から加圧する(図11(a)参照)。焼結金属素材1’はダイ2と上下パンチ4、5から圧迫力を受けて変形を起こし、内周面がサイジングピン3の第1成形部3aと第2成形部3bとからなる成形型に加圧される。内周面の加圧量は、外径しめしろと内径すきまとの差に略等しく、内周面から所定深さまでの表層部分がサイジングピン3の成形型に加圧され、塑性流動を起こして該成形型に食い付く。これにより、成形型の形状が焼結金属素材1’の内周面に転写され、軸受面1bが図1に示す形状に成形される。
Thereafter, the lower punch 5 is pressed against the lower end surface of the sintered metal material 1 'to pressurize the sintered metal material 1' from above and below (see FIG. 11 (a)). The sintered metal material 1 ′ is deformed by receiving a pressing force from the die 2 and the upper and lower punches 4, 5, and forms a molding die whose inner peripheral surface is composed of the first molding part 3 a and the second molding part 3 b of the sizing pin 3. Pressurized. The amount of pressurization of the inner peripheral surface is substantially equal to the difference between the outer diameter interference and the inner clearance, and the surface layer portion from the inner peripheral surface to a predetermined depth is pressed to the mold of the sizing pin 3 to cause plastic flow. Biting into the mold. As a result, the shape of the molding die is transferred to the inner peripheral surface of the sintered metal material 1 ′, and the bearing surface 1 b is molded into the shape shown in FIG. 1.
軸受面1bの成形が完了した後、図11(b)に示すように、焼結金属素材1’にサイジングピン3を挿入したままの状態で下パンチ5とサイジングピン3を連動して上昇させ、焼結金属素材1’をダイ2から抜く。焼結金属素材1’をダイ2から抜くと、焼結金属素材1’にスプリングバックが生じ、その内径寸法が拡大するので、軸受面1bの動圧溝1cを崩すことなく、焼結金属素材1’の内周面からサイジングピン3の成形型を抜き取ることができる。これにより、軸受本体1aが完成する。
After the molding of the bearing surface 1b is completed, as shown in FIG. 11B, the lower punch 5 and the sizing pin 3 are raised in conjunction with the sizing pin 3 inserted into the sintered metal material 1 ′. Then, the sintered metal material 1 ′ is removed from the die 2. When the sintered metal material 1 ′ is pulled out of the die 2, a spring back is generated in the sintered metal material 1 ′ and the inner diameter thereof is enlarged, so that the sintered metal material is not destroyed without breaking the dynamic pressure groove 1c of the bearing surface 1b. The molding die of the sizing pin 3 can be extracted from the inner peripheral surface of 1 ′. Thereby, the bearing main body 1a is completed.
上記した各方法において、焼結金属素材1’のスプリングバック量の半径量が動圧溝1cの深さよりも小さく、成形型が焼結金属素材1’の内周面に多少干渉する場合であっても、焼結金属素材1’の材料弾性による拡径量(半径量)を付加して、軸受面1bの形状を崩すことなく成形型を離型できればよい。サイジングピン3を焼結金属素材1’の内周面から抜く際において上記干渉が起こる場合であっても、本発明ではサイジングピン3の外周面に耐摩耗性に優れる硬質被膜が形成されているので、第1成形部3aと第2成形部3bとからなる成形型を含むサイジングピン3の外周面の摩耗を抑制できる。
In each of the above-described methods, the radius of the springback amount of the sintered metal material 1 ′ is smaller than the depth of the dynamic pressure groove 1c, and the forming die slightly interferes with the inner peripheral surface of the sintered metal material 1 ′. However, it is only necessary to add a diameter expansion amount (radius amount) due to material elasticity of the sintered metal material 1 ′ and release the molding die without breaking the shape of the bearing surface 1b. Even in the case where the interference occurs when the sizing pin 3 is pulled out from the inner peripheral surface of the sintered metal material 1 ′, a hard coating having excellent wear resistance is formed on the outer peripheral surface of the sizing pin 3 in the present invention. Therefore, it is possible to suppress wear on the outer peripheral surface of the sizing pin 3 including the mold composed of the first molding part 3a and the second molding part 3b.
以上のような工程を経て軸受本体1aを製造し、これに潤滑油または潤滑グリースを含浸させて油を保有させると、図1に示す動圧型焼結含油軸受1が完成する。なお、軸受面の形状は同図に示すものに限らず、例えばV字形状やスパイラル状の動圧溝を形成したものでもよい。また、軸受本体に1つの軸受面を形成したものでもよい。これらは、サイジングピンの成形型の形状、個数を変えることによって対応することができる。
When the bearing main body 1a is manufactured through the above-described processes, and this is impregnated with lubricating oil or lubricating grease to hold the oil, the hydrodynamic sintered oil-impregnated bearing 1 shown in FIG. 1 is completed. The shape of the bearing surface is not limited to that shown in the figure, and may be one in which, for example, a V-shaped or spiral dynamic pressure groove is formed. Moreover, what formed one bearing surface in the bearing main body may be used. These can be dealt with by changing the shape and number of sizing pin molds.
各実施例および比較例に用いた基材および成膜に用いた装置は以下のとおりである。
(1)基材材質:超硬合金または冷間ダイス鋼SKD-11(表中において、「超硬」は超硬合金の略称であり、「SKD-11」は冷間ダイス鋼の略称である。)
(2)基材寸法;鏡面(Ra=0.005μm以下)30mm角、厚さ5mm
(3)UBMS法:神戸製鋼所製;UBMS202/AIP複合装置
(4)プラズマCVD法:神港精機社製;実験用パルスプラズマCVD装置
(5)アークイオンプレーティング(以下、AIPと記す)法:神戸製鋼所製;UBMS202/AIP複合装置
(6)HCD法:インターフェイス社製;3元ターゲット型HCD-PCD装置 The base materials used in the examples and comparative examples and the apparatuses used for film formation are as follows.
(1) Substrate material: cemented carbide or cold die steel SKD-11 (in the table, “carbide” is an abbreviation for cemented carbide, and “SKD-11” is an abbreviation for cold die steel) .)
(2) Base material dimensions: mirror surface (Ra = 0.005 μm or less) 30 mm square,thickness 5 mm
(3) UBMS method: manufactured by Kobe Steel; UBMS202 / AIP combined device (4) Plasma CVD method: manufactured by Shinko Seiki Co., Ltd .; experimental pulsed plasma CVD device (5) Arc ion plating (hereinafter referred to as AIP) method : Kobe Steel; UBMS202 / AIP combined device (6) HCD method: Interface Corporation; 3-target HCD-PCD device
(1)基材材質:超硬合金または冷間ダイス鋼SKD-11(表中において、「超硬」は超硬合金の略称であり、「SKD-11」は冷間ダイス鋼の略称である。)
(2)基材寸法;鏡面(Ra=0.005μm以下)30mm角、厚さ5mm
(3)UBMS法:神戸製鋼所製;UBMS202/AIP複合装置
(4)プラズマCVD法:神港精機社製;実験用パルスプラズマCVD装置
(5)アークイオンプレーティング(以下、AIPと記す)法:神戸製鋼所製;UBMS202/AIP複合装置
(6)HCD法:インターフェイス社製;3元ターゲット型HCD-PCD装置 The base materials used in the examples and comparative examples and the apparatuses used for film formation are as follows.
(1) Substrate material: cemented carbide or cold die steel SKD-11 (in the table, “carbide” is an abbreviation for cemented carbide, and “SKD-11” is an abbreviation for cold die steel) .)
(2) Base material dimensions: mirror surface (Ra = 0.005 μm or less) 30 mm square,
(3) UBMS method: manufactured by Kobe Steel; UBMS202 / AIP combined device (4) Plasma CVD method: manufactured by Shinko Seiki Co., Ltd .; experimental pulsed plasma CVD device (5) Arc ion plating (hereinafter referred to as AIP) method : Kobe Steel; UBMS202 / AIP combined device (6) HCD method: Interface Corporation; 3-target HCD-PCD device
UBMS202/AIP複合装置の概要を図8に示す。図8はAIP機能を備えたUBMS装置の模式図である。図8に示すように、UBMS202/AIP複合装置は、円盤21上に配置された基材22に対し、真空アーク放電を利用して、AIP蒸発源材料20を瞬間的に蒸気化・イオン化し、これを基材22上に堆積させて被膜を成膜するAIP機能と、スパッタ蒸発源材料(ターゲット)23、24を非平衡な磁場により、基材22近傍のプラズマ密度を上げてイオンアシスト効果を増大することによって、基材上に堆積する被膜の特性を制御できるUBMS機能を備える装置である。この装置により、基材上に、AIP被膜および複数のUBMS被膜(組成傾斜を含む)を任意に組合わせた複合被膜を成膜することができる。
The outline of the UBMS202 / AIP combined apparatus is shown in FIG. FIG. 8 is a schematic diagram of a UBMS device having an AIP function. As shown in FIG. 8, the UBMS 202 / AIP composite apparatus instantaneously vaporizes and ionizes the AIP evaporation source material 20 using a vacuum arc discharge to the base material 22 arranged on the disk 21, The AIP function for depositing this on the substrate 22 to form a film and the sputter evaporation source materials (targets) 23 and 24 with a non-equilibrium magnetic field increase the plasma density in the vicinity of the substrate 22 to increase the ion assist effect. It is an apparatus having a UBMS function capable of controlling the characteristics of a film deposited on a substrate by increasing the number of films. With this apparatus, a composite film in which an AIP film and a plurality of UBMS films (including a composition gradient) are arbitrarily combined can be formed on a substrate.
実施例1~実施例19および比較例1~比較例2
表1に示す基材をアセトンで超音波洗浄した後、乾燥した。乾燥後、基材を表1に示す各装置に取り付けて、表1に示す種類の金属中間層、硬質被膜をそれぞれ成膜し、試験片を得た。なお、硬度傾斜有りは、硬質被膜の押し込み硬さを基材または金属中間層側から、最表層側に向けて徐々に増加させたものである。また、金属中間層であるCr層、Ti層、WC層は、UBMS202/AIP複合装置の成膜チャンバー内を5×10-3Pa程度まで真空引きし、ヒータで基材をベーキングして、Arプラズマにて基材表面をエッチング後、各方法にて形成した。得られた試験片を以下に示す膜厚試験、表面粗さ試験、硬度試験および摩耗試験に供し、膜厚、最大表面粗さ、硬度および比摩耗量を測定および/または評価した。結果および以下に示す総合判定結果を表1および表2に併記する。 Examples 1 to 19 and Comparative Examples 1 to 2
The substrate shown in Table 1 was ultrasonically cleaned with acetone and then dried. After drying, the base material was attached to each apparatus shown in Table 1, and a metal intermediate layer and a hard film of the kind shown in Table 1 were respectively formed to obtain test pieces. In addition, with the hardness gradient, the indentation hardness of the hard coating is gradually increased from the base material or metal intermediate layer side toward the outermost layer side. The Cr, Ti, and WC layers, which are metal intermediate layers, are evacuated to about 5 × 10 −3 Pa inside the film forming chamber of the UBMS202 / AIP composite apparatus, and the base material is baked with a heater. It formed by each method after etching the base-material surface with plasma. The obtained test piece was subjected to a film thickness test, a surface roughness test, a hardness test and an abrasion test shown below, and the film thickness, maximum surface roughness, hardness and specific wear amount were measured and / or evaluated. The results and the overall judgment results shown below are also shown in Tables 1 and 2.
表1に示す基材をアセトンで超音波洗浄した後、乾燥した。乾燥後、基材を表1に示す各装置に取り付けて、表1に示す種類の金属中間層、硬質被膜をそれぞれ成膜し、試験片を得た。なお、硬度傾斜有りは、硬質被膜の押し込み硬さを基材または金属中間層側から、最表層側に向けて徐々に増加させたものである。また、金属中間層であるCr層、Ti層、WC層は、UBMS202/AIP複合装置の成膜チャンバー内を5×10-3Pa程度まで真空引きし、ヒータで基材をベーキングして、Arプラズマにて基材表面をエッチング後、各方法にて形成した。得られた試験片を以下に示す膜厚試験、表面粗さ試験、硬度試験および摩耗試験に供し、膜厚、最大表面粗さ、硬度および比摩耗量を測定および/または評価した。結果および以下に示す総合判定結果を表1および表2に併記する。 Examples 1 to 19 and Comparative Examples 1 to 2
The substrate shown in Table 1 was ultrasonically cleaned with acetone and then dried. After drying, the base material was attached to each apparatus shown in Table 1, and a metal intermediate layer and a hard film of the kind shown in Table 1 were respectively formed to obtain test pieces. In addition, with the hardness gradient, the indentation hardness of the hard coating is gradually increased from the base material or metal intermediate layer side toward the outermost layer side. The Cr, Ti, and WC layers, which are metal intermediate layers, are evacuated to about 5 × 10 −3 Pa inside the film forming chamber of the UBMS202 / AIP composite apparatus, and the base material is baked with a heater. It formed by each method after etching the base-material surface with plasma. The obtained test piece was subjected to a film thickness test, a surface roughness test, a hardness test and an abrasion test shown below, and the film thickness, maximum surface roughness, hardness and specific wear amount were measured and / or evaluated. The results and the overall judgment results shown below are also shown in Tables 1 and 2.
<膜厚試験>
得られた試験片の膜厚を表面形状・表面粗さ測定器(テーラーホブソン社製:フォーム・タリサーフPGI830)を用いて測定した。膜厚は成膜部の一部にマスキングを施し、非成膜部と成膜部の段差から膜厚を求めた。 <Film thickness test>
The film thickness of the obtained test piece was measured by using a surface shape / surface roughness measuring instrument (manufactured by Taylor Hobson Co., Ltd .: Foam Talysurf PGI830). The film thickness was obtained from the step difference between the non-film forming part and the film forming part by masking a part of the film forming part.
得られた試験片の膜厚を表面形状・表面粗さ測定器(テーラーホブソン社製:フォーム・タリサーフPGI830)を用いて測定した。膜厚は成膜部の一部にマスキングを施し、非成膜部と成膜部の段差から膜厚を求めた。 <Film thickness test>
The film thickness of the obtained test piece was measured by using a surface shape / surface roughness measuring instrument (manufactured by Taylor Hobson Co., Ltd .: Foam Talysurf PGI830). The film thickness was obtained from the step difference between the non-film forming part and the film forming part by masking a part of the film forming part.
<表面粗さ試験>
得られた試験片の表面最大粗さRzをテーラーホブソン社製:フォーム・タリサーフPGI830を用いて測定した。測定結果を表1に併記する。なお、表面最大粗さが小さい方が、製品の表面形状が滑らかになるので好ましい。 <Surface roughness test>
The surface maximum roughness Rz of the obtained test piece was measured using Taylor Tobs Surf PGI830 manufactured by Taylor Hobson. The measurement results are also shown in Table 1. In addition, since the surface shape of a product becomes smooth, the one where surface maximum roughness is small is preferable.
得られた試験片の表面最大粗さRzをテーラーホブソン社製:フォーム・タリサーフPGI830を用いて測定した。測定結果を表1に併記する。なお、表面最大粗さが小さい方が、製品の表面形状が滑らかになるので好ましい。 <Surface roughness test>
The surface maximum roughness Rz of the obtained test piece was measured using Taylor Tobs Surf PGI830 manufactured by Taylor Hobson. The measurement results are also shown in Table 1. In addition, since the surface shape of a product becomes smooth, the one where surface maximum roughness is small is preferable.
<硬度試験>
得られた試験片の押し込み硬さをアジレント社製:ナノインデンタ(G200)を用いて測定した。測定結果を表1に併記する。なお、測定値は表面粗さの影響を受けない深さ(硬さが安定している箇所)の平均値を示しており、各試験片10箇所ずつ測定している。 <Hardness test>
The indentation hardness of the obtained test piece was measured using a nanoindenter (G200) manufactured by Agilent. The measurement results are also shown in Table 1. In addition, the measured value has shown the average value of the depth (location where hardness is stabilized) which is not influenced by surface roughness, and is measuring 10 each test piece.
得られた試験片の押し込み硬さをアジレント社製:ナノインデンタ(G200)を用いて測定した。測定結果を表1に併記する。なお、測定値は表面粗さの影響を受けない深さ(硬さが安定している箇所)の平均値を示しており、各試験片10箇所ずつ測定している。 <Hardness test>
The indentation hardness of the obtained test piece was measured using a nanoindenter (G200) manufactured by Agilent. The measurement results are also shown in Table 1. In addition, the measured value has shown the average value of the depth (location where hardness is stabilized) which is not influenced by surface roughness, and is measuring 10 each test piece.
<摩耗試験>
得られた試験片を、図9に示す摩擦試験機用いて摩耗試験を行なった。図9(a)は正面図を、図9(b)は側面図を、それぞれ表す。材質:焼結合金 Cu58.6%-Fe39%-Sn1.5%-C0.5%-ステアリン酸0.4%、表面粗さRa:0.2~0.3μmであり、曲率:60mmである焼結合金を相手材27として回転軸25に取り付け、試験片26をアーム部28に固定して所定の荷重29を図面上方から印加して、ヘルツの最大接触面圧0.5GPa、室温(25℃)下、0.1m/sの回転速度で30分間、試験片26と相手材27との間に潤滑剤を介在させることなく、相手材27を回転させたときに、相手材27と試験片26との間に発生する摩擦力をロードセル30により検出した。上記試験条件および試験後の摩耗量から比摩耗量を算出した。 <Abrasion test>
The obtained test piece was subjected to an abrasion test using a friction tester shown in FIG. FIG. 9A shows a front view, and FIG. 9B shows a side view. Material: Sintered alloy Cu 58.6% -Fe 39% -Sn 1.5% -C 0.5% -Stearic acid 0.4%, surface roughness Ra: 0.2 to 0.3 μm, curvature: 60 mm A sintered alloy is attached to therotating shaft 25 as a counterpart material 27, a test piece 26 is fixed to an arm portion 28, and a predetermined load 29 is applied from the upper side of the drawing, whereby the maximum contact surface pressure of Hertz is 0.5 GPa, room temperature (25 )) At a rotational speed of 0.1 m / s for 30 minutes when the mating material 27 is rotated without interposing a lubricant between the test piece 26 and the mating material 27. The frictional force generated between the piece 26 was detected by the load cell 30. The specific wear amount was calculated from the test conditions and the wear amount after the test.
得られた試験片を、図9に示す摩擦試験機用いて摩耗試験を行なった。図9(a)は正面図を、図9(b)は側面図を、それぞれ表す。材質:焼結合金 Cu58.6%-Fe39%-Sn1.5%-C0.5%-ステアリン酸0.4%、表面粗さRa:0.2~0.3μmであり、曲率:60mmである焼結合金を相手材27として回転軸25に取り付け、試験片26をアーム部28に固定して所定の荷重29を図面上方から印加して、ヘルツの最大接触面圧0.5GPa、室温(25℃)下、0.1m/sの回転速度で30分間、試験片26と相手材27との間に潤滑剤を介在させることなく、相手材27を回転させたときに、相手材27と試験片26との間に発生する摩擦力をロードセル30により検出した。上記試験条件および試験後の摩耗量から比摩耗量を算出した。 <Abrasion test>
The obtained test piece was subjected to an abrasion test using a friction tester shown in FIG. FIG. 9A shows a front view, and FIG. 9B shows a side view. Material: Sintered alloy Cu 58.6% -Fe 39% -Sn 1.5% -C 0.5% -Stearic acid 0.4%, surface roughness Ra: 0.2 to 0.3 μm, curvature: 60 mm A sintered alloy is attached to the
実施例1~実施例19は、硬質被膜を形成しない各比較例に対して、耐摩耗性に優れた結果を示した。
Examples 1 to 19 showed excellent results with respect to each comparative example in which a hard coating was not formed.
本発明の動圧型焼結含油軸受の製造方法は、簡易な設備で、少ない工数で、かつ、精度良く製造を行なうことができ、加えて、動圧溝形成用金型(サイジングピン)の交換寿命が長く、製造コストの低減が図れるので、磁気ディスクドライブ用のスピンドルモータや、レーザビームプリンタのスキャナモータなどに用いられる動圧型焼結含油軸受の製造に好適に利用できる。
The method of manufacturing a hydrodynamic sintered oil-impregnated bearing according to the present invention can be manufactured with a simple facility, with a small number of man-hours and with high accuracy, and in addition, replacement of a dynamic pressure groove forming die (sizing pin) Since the lifetime is long and the manufacturing cost can be reduced, it can be suitably used for manufacturing a hydrodynamic sintered oil-impregnated bearing used for a spindle motor for a magnetic disk drive, a scanner motor for a laser beam printer, or the like.
1 動圧型焼結含油軸受
1a 軸受本体
1b 軸受面
1c 動圧溝
1d 環状の平滑領域
1e 動圧溝間の領域
1’ 焼結金属素材
2 ダイ
3 サイジングピン(動圧溝形成用金型)
3a 第1成形部
3b 第2成形部
4 上パンチ
5 下パンチ
6 ラム
11 バイアス電源
12 基材
13 被膜(層)
14a 内側磁石
14b 外側磁石
15 ターゲット
16 磁力線
16a 磁力線の一部
17 Arイオン
18 ターゲット
19 高密度プラズマ
20 AIP蒸発源材料
21 円盤
22 基材
23、24 スパッタ蒸発源材料(ターゲット)
25 回転軸
26 試験片
27 相手材
28 アーム部
29 荷重
30 ロードセル DESCRIPTION OFSYMBOLS 1 Dynamic pressure type sintered oil-impregnated bearing 1a Bearing body 1b Bearing surface 1c Dynamic pressure groove 1d Annular smooth area 1e Area between dynamic pressure grooves 1 'Sintered metal material 2 Die 3 Sizing pin (dynamic pressure groove forming die)
3a1st molding part 3b 2nd molding part 4 Upper punch 5 Lower punch 6 Ram 11 Bias power supply 12 Base material 13 Film (layer)
14a Inner magnet14b Outer magnet 15 Target 16 Magnetic field line 16a Part of magnetic field line 17 Ar ion 18 Target 19 High-density plasma 20 AIP evaporation source material 21 Disk 22 Base material 23, 24 Sputter evaporation source material (target)
25 Rotatingshaft 26 Test piece 27 Mating material 28 Arm part 29 Load 30 Load cell
1a 軸受本体
1b 軸受面
1c 動圧溝
1d 環状の平滑領域
1e 動圧溝間の領域
1’ 焼結金属素材
2 ダイ
3 サイジングピン(動圧溝形成用金型)
3a 第1成形部
3b 第2成形部
4 上パンチ
5 下パンチ
6 ラム
11 バイアス電源
12 基材
13 被膜(層)
14a 内側磁石
14b 外側磁石
15 ターゲット
16 磁力線
16a 磁力線の一部
17 Arイオン
18 ターゲット
19 高密度プラズマ
20 AIP蒸発源材料
21 円盤
22 基材
23、24 スパッタ蒸発源材料(ターゲット)
25 回転軸
26 試験片
27 相手材
28 アーム部
29 荷重
30 ロードセル DESCRIPTION OF
3a
14a Inner magnet
25 Rotating
Claims (11)
- 円筒状の焼結金属素材の内周面に傾斜状の動圧溝を有する軸受面を成形して軸受本体を形成し、その軸受本体の内部の細孔内に潤滑油または潤滑グリースの含浸によって油を保有させる動圧型焼結含油軸受の製造方法に用いられる動圧溝形成用金型であって、
該動圧溝形成用金型は、前記動圧溝の領域を成形するための成形部を外周面に有し、前記軸受本体を形成する際に、前記焼結金属素材の内周面に挿入および加圧して、該内周面に前記動圧溝の領域を塑性加工により成形するものであり、
前記動圧溝形成用金型は、外周面に、窒化物系硬質被膜、炭化物系硬質被膜、硬質炭素被膜から選ばれた少なくとも1つの硬質被膜を有することを特徴とする動圧溝形成用金型。 A bearing body having a slanted dynamic pressure groove is formed on the inner peripheral surface of a cylindrical sintered metal material to form a bearing body, and the fine pores inside the bearing body are impregnated with lubricating oil or lubricating grease. A dynamic pressure groove forming mold used in a manufacturing method of a dynamic pressure type sintered oil-impregnated bearing for retaining oil,
The die for forming a dynamic pressure groove has a molding part for forming the region of the dynamic pressure groove on the outer peripheral surface, and is inserted into the inner peripheral surface of the sintered metal material when forming the bearing body. And pressurizing to form the region of the dynamic pressure groove on the inner peripheral surface by plastic working,
The dynamic pressure groove forming mold has at least one hard film selected from a nitride-based hard film, a carbide-based hard film, and a hard carbon film on an outer peripheral surface. Type. - 前記硬質被膜の膜厚が、0.2~8μmであることを特徴とする請求項1記載の動圧溝形成用金型。 2. The dynamic pressure groove forming mold according to claim 1, wherein the thickness of the hard coating is 0.2 to 8 μm.
- 前記硬質被膜の押し込み硬さが、10GPa以上であることを特徴とする請求項1記載の動圧溝形成用金型。 2. The dynamic pressure groove forming mold according to claim 1, wherein the indentation hardness of the hard coating is 10 GPa or more.
- 前記硬質被膜が、硬質炭素被膜であることを特徴とする請求項1記載の動圧溝形成用金型。 2. The dynamic pressure groove forming mold according to claim 1, wherein the hard coating is a hard carbon coating.
- 前記動圧溝形成用金型は、該金型と前記硬質炭素被膜との間に金属中間層を有することを特徴とする請求項4記載の動圧溝形成用金型。 5. The dynamic pressure groove forming mold according to claim 4, wherein the dynamic pressure groove forming mold has a metal intermediate layer between the mold and the hard carbon coating.
- 前記金属中間層が、タングステン、クロム、珪素、チタンから選ばれた少なくとも一つの金属元素を含むことを特徴とする請求項5記載の動圧溝形成用金型。 6. The dynamic pressure groove forming mold according to claim 5, wherein the metal intermediate layer contains at least one metal element selected from tungsten, chromium, silicon, and titanium.
- 前記硬質炭素被膜が、アンバランスド・マグネトロン・スパッタリング法により形成されたことを特徴とする請求項4記載の動圧溝形成用金型。 5. The dynamic pressure groove forming die according to claim 4, wherein the hard carbon coating is formed by an unbalanced magnetron sputtering method.
- 前記硬質被膜は、その押し込み硬さが前記動圧溝形成用金型の外周面側から該硬質被膜の最表面側へと連続的もしくは段階的に高くなる被膜であることを特徴とする請求項1記載の動圧溝形成用金型。 The hard coating is a coating whose indentation hardness increases continuously or stepwise from the outer peripheral surface side of the dynamic pressure groove forming mold to the outermost surface side of the hard coating. 1. The dynamic pressure groove forming mold according to 1.
- 前記動圧溝形成用金型の基材が、超硬合金材からなることを特徴とする請求項1記載の動圧溝形成用金型。 2. The dynamic pressure groove forming mold according to claim 1, wherein a base material of the dynamic pressure groove forming mold is made of a cemented carbide material.
- 円筒状の焼結金属素材の内周面に傾斜状の動圧溝を有する軸受面を成形して軸受本体を形成し、その軸受本体の内部の細孔内に潤滑油または潤滑グリースの含浸によって油を保有させる動圧型焼結含油軸受の製造方法であって、
前記軸受面の成形工程は、請求項1記載の動圧溝形成用金型を前記焼結金属素材の内周面に挿入し、該動圧溝形成用金型の動圧溝の領域を成形するための成形部を前記焼結金属素材の内周面に加圧して、該内周面に前記動圧溝の領域を塑性加工により成形する工程を含むことを特徴とする動圧型焼結含油軸受の製造方法。 A bearing body having a slanted dynamic pressure groove is formed on the inner peripheral surface of a cylindrical sintered metal material to form a bearing body, and the fine pores inside the bearing body are impregnated with lubricating oil or lubricating grease. A method for producing a hydrodynamic sintered oil-impregnated bearing that retains oil,
In the molding process of the bearing surface, the dynamic pressure groove forming mold according to claim 1 is inserted into the inner peripheral surface of the sintered metal material, and the dynamic pressure groove region of the dynamic pressure groove forming mold is molded. And pressurizing a molded portion to the inner peripheral surface of the sintered metal material, and forming a region of the dynamic pressure groove on the inner peripheral surface by plastic working. Manufacturing method of bearing. - 前記動圧型焼結含油軸受は、磁気ディスクドライブ用のスピンドルモータに使用される軸受であることを特徴とする請求項10記載の動圧型焼結含油軸受の製造方法。 The method of manufacturing a hydrodynamic sintered oil-impregnated bearing according to claim 10, wherein the hydrodynamic sintered oil-impregnated bearing is a bearing used in a spindle motor for a magnetic disk drive.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010055363A JP2011190827A (en) | 2010-03-12 | 2010-03-12 | Die for forming dynamic pressure grooves and method for manufacturing dynamic pressure-type oil-impregnated sintered bearing |
JP2010-055363 | 2010-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011111724A1 true WO2011111724A1 (en) | 2011-09-15 |
Family
ID=44563524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/055448 WO2011111724A1 (en) | 2010-03-12 | 2011-03-09 | Die for forming dynamic pressure grooves and method for manufacturing dynamic pressure-type oil-impregnated sintered bearing |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2011190827A (en) |
WO (1) | WO2011111724A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101561383B1 (en) * | 2014-02-17 | 2015-10-16 | 영남대학교 산학협력단 | Manufacture method of cemented carbide core pin |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005188747A (en) * | 2005-01-27 | 2005-07-14 | Ntn Corp | Hydrodynamic bearing device and its manufacturing method |
JP2006316896A (en) * | 2005-05-12 | 2006-11-24 | Ntn Corp | Method for manufacturing oil-impregnated sintered bearing and oil-impregnated sintered bearing |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006250348A (en) * | 2005-02-14 | 2006-09-21 | Riken Corp | Sliding member |
WO2009099226A1 (en) * | 2008-02-06 | 2009-08-13 | Kanagawa Prefecture | Dlc coated sliding member and method for producing the same |
JP5756255B2 (en) * | 2008-07-02 | 2015-07-29 | 株式会社神戸製鋼所 | Machine part and sliding method of machine part |
-
2010
- 2010-03-12 JP JP2010055363A patent/JP2011190827A/en active Pending
-
2011
- 2011-03-09 WO PCT/JP2011/055448 patent/WO2011111724A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005188747A (en) * | 2005-01-27 | 2005-07-14 | Ntn Corp | Hydrodynamic bearing device and its manufacturing method |
JP2006316896A (en) * | 2005-05-12 | 2006-11-24 | Ntn Corp | Method for manufacturing oil-impregnated sintered bearing and oil-impregnated sintered bearing |
Also Published As
Publication number | Publication date |
---|---|
JP2011190827A (en) | 2011-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4503097B2 (en) | DLC-coated sliding member and manufacturing method thereof | |
JP5393108B2 (en) | Manufacturing method of hard multilayer film molded body | |
CN101573206B (en) | Friction element operating at a contact pressure of greater than 200MPa in a working lubricating medium and use thereof in the automotive field | |
JP4873617B2 (en) | Hard film covering member with low friction characteristics and peel resistance | |
EP3287544A1 (en) | Coated metal mold and method for manufacturing same | |
CN100525948C (en) | Punch | |
JP4761374B2 (en) | Piston ring for internal combustion engine | |
JP2009133408A (en) | Rolling sliding member, rolling device using the same, and pulley device | |
JP5176378B2 (en) | Rolling sliding member and rolling device using the same | |
CN112739922B (en) | Rolling bearing and main shaft support device for wind power generation | |
JP2010111935A (en) | Rocker arm assembly | |
WO2009116269A1 (en) | Bearing | |
JP7079175B2 (en) | Multi-row self-aligning roller bearings and spindle support devices for wind power generation equipped with them | |
JP2009061464A (en) | Die for warm and hot forging, and its manufacturing method | |
WO2011111724A1 (en) | Die for forming dynamic pressure grooves and method for manufacturing dynamic pressure-type oil-impregnated sintered bearing | |
JP5207891B2 (en) | bearing | |
JP2009243619A (en) | Rolling slide member and bearing for steel pipe forming roll | |
JP6569376B2 (en) | Carbide tool and manufacturing method thereof | |
WO2005100810A1 (en) | Process for finishing critical surfaces of a bearing | |
JP4838455B2 (en) | Rolling sliding member and rolling device | |
JP2007327631A (en) | Rolling sliding member and rolling device | |
JP4642686B2 (en) | Sliding bearing manufacturing method | |
JP2007120613A (en) | Rolling sliding member and rolling device | |
WO2020067334A1 (en) | Rolling bearing, and main shaft support device for wind power generation | |
JP2008151264A (en) | Roller bearing cage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11753382 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11753382 Country of ref document: EP Kind code of ref document: A1 |