WO2011111111A1 - 通信区間設定方法、中継局、移動通信システム - Google Patents
通信区間設定方法、中継局、移動通信システム Download PDFInfo
- Publication number
- WO2011111111A1 WO2011111111A1 PCT/JP2010/001774 JP2010001774W WO2011111111A1 WO 2011111111 A1 WO2011111111 A1 WO 2011111111A1 JP 2010001774 W JP2010001774 W JP 2010001774W WO 2011111111 A1 WO2011111111 A1 WO 2011111111A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- station
- relay station
- mobile
- communication section
- base station
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 131
- 238000010295 mobile communication Methods 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 title claims description 64
- 230000005540 biological transmission Effects 0.000 claims abstract description 90
- 238000005259 measurement Methods 0.000 claims abstract description 42
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims description 31
- 230000008054 signal transmission Effects 0.000 claims description 17
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 238000012986 modification Methods 0.000 description 34
- 230000004048 modification Effects 0.000 description 34
- 238000010586 diagram Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 238000003672 processing method Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000007726 management method Methods 0.000 description 4
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 3
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- JZEPSDIWGBJOEH-UHFFFAOYSA-N 4-decylbicyclo[2.2.1]hept-2-ene Chemical compound C1CC2C=CC1(CCCCCCCCCC)C2 JZEPSDIWGBJOEH-UHFFFAOYSA-N 0.000 description 1
- 206010022998 Irritability Diseases 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/26—Cell enhancers or enhancement, e.g. for tunnels, building shadow
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/155—Ground-based stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0083—Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
- H04W36/0085—Hand-off measurements
- H04W36/0088—Scheduling hand-off measurements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/34—Reselection control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/28—Discontinuous transmission [DTX]; Discontinuous reception [DRX]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/047—Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
Definitions
- the present invention relates to a relay technology for wireless communication between a base station and a mobile station.
- LTE Universal Mobile Progress is being made from Telecommunication System (LTE) to LTE (Long Term Evolution).
- LTE employs OFDM (Orthogonal Frequency Division Multiplexing) and SC-FDMA (Single Carrier-Frequency Division Multiple Access) as downlink and uplink radio access technologies, respectively, with a downlink peak transmission rate of 100 Mb / s or more and uplink High-speed wireless packet communication with a peak transmission rate of 50 Mb / s or more is possible.
- the 3GPP (3rd Generation Partnership Project), an international standardization organization, is currently examining LTE-A (LTE-Advanced), a mobile communication system based on LTE, for further high-speed communication.
- LTE-A LTE-Advanced
- LTE-A aims for a downlink peak transmission rate of 1 Gb / s and an uplink peak transmission rate of 500 Mb / s, and various new technologies are being studied for radio access systems and network architectures ( Non-patent documents 1 to 6). On the other hand, since LTE-A is a system based on LTE, it is attempted to maintain backward compatibility.
- a method of introducing a relay station (RN: Relay Node) as shown in FIG. 1 is being studied in order to support communication between a base station and a mobile station (non-patent) Reference 2).
- the relay station is installed to relay between the base station (DonerNBeNB or eNB) and the mobile station (UE: User Equipment) and support high-speed data communication.
- the link between the mobile station UE and the relay station RN is referred to as Uu
- the link between the base station (eNB) and the relay station (RN) is referred to as Un.
- Uu may be referred to as an access link and Un as a backhaul.
- the repeater relay station has only a function of amplifying a radio signal (data signal and noise).
- a decode & forward relay station has a function of amplifying only a data signal from radio signals.
- An L2 relay station has L2 functions such as a MAC layer.
- An L3 relay station has L3 functions such as an RRC layer and operates in the same manner as a base station. Note that an L3 relay station is called Type 1 RN in LTE-A. A method of deploying relay stations in cells is also being studied.
- a deployment method in which a relay station is installed at the cell edge for the purpose of increasing the throughput at the cell edge, or a relay station is installed in a range (dead zone) where radio waves from the base station do not reach locally in the cell Deployment methods are mainly being studied.
- the same frequency band is set between the base station and the relay station, and between the relay station and the mobile station.
- self-interference means that when a relay station receives downlink data addressed to itself from the base station, for example, and transmits downlink data addressed to the mobile station from the own station, This means that the transmission data goes around to the receiving section of its own station and interferes with the data from the base station.
- self-interference can occur. When self-interference occurs, the relay station cannot receive data correctly.
- Non-patent Document 2 LTE-A has been studied under the following policy (Non-patent Document 2).
- DL backhaul downlink backhaul
- UL backhaul uplink backhaul
- the subframe between the relay station and the mobile station is MBSFN (Multicast / Broadcast (over (Single) Frequency (Network)) subframe.
- MBSFN Multicast / Broadcast (over (Single) Frequency (Network)
- the relay station transmits PDCCH (Physical Downlink Control Channel), PHICH (Physical Hybrid ARQ Indicator Channel), and PCFICH (Physical Control Format Indicator Channel) as control signals addressed to the mobile station in the downlink backhaul. It is possible, but PDSCH cannot be transmitted.
- PDCCH Physical Downlink Control Channel
- PHICH Physical Hybrid ARQ Indicator Channel
- PCFICH Physical Control Format Indicator Channel
- a reference signal is arranged in the first half of the MBSFN subframe (CTRL section in FIG. 3), but no reference signal is arranged in the second half of the MBSFN subframe.
- the relay station is controlled not to give an uplink data transmission permission (UL grant) to the mobile station 4 subframes (4 ms) before the uplink backhaul. This is to avoid the fact that if the mobile station is permitted to transmit uplink data 4 ms before the uplink backhaul, the mobile station transmits data to the relay station via the uplink backhaul. Further, the relay station is controlled not to execute downlink data transmission to the mobile station 4 subframes (4 ms) before the uplink backhaul. This is due to the following reason.
- UL grant uplink data transmission permission
- LTE HARQ Hybrid Automatic Repeat reQuest
- a destination station returns an ACK / NACK signal 4 ms (for 4 subframes) after one station transmits data. Therefore, if the downlink data is transmitted to the mobile station in 4 ms of the uplink backhaul, the mobile station transmits an ACK / NACK signal to the relay station via the uplink backhaul.
- PUCCH Physical Uplink Control Channel
- PUSCH physical uplink shared channel
- the backhaul set between the relay station and the base station covering the cell where the relay station is arranged is almost fixed, It is thought that it does not change with progress.
- the backhaul of a moving relay station (hereinafter referred to as “mobile relay station” as appropriate) can be changed according to the base station to be connected with the handover of the relay station (see FIG. 4). Therefore, when a handover occurs, the mobile relay station notifies a subordinate mobile station of a new MBSFN subframe as a downlink backhaul after the handover. Notification of this new MBSFN subframe is performed by updating broadcast information (BCCH (Broadcast Control Channel)).
- BCCH Broadcast Control Channel
- FIG. 5 is a diagram for explaining the relationship between the update of the notification information and the update of the backhaul.
- the mobile station In order to update the broadcast information, the mobile station first notifies the mobile station that the broadcast information is updated by transmitting a Paging message or transmitting broadcast information including Value Tag.
- the broadcast information is updated based on the section “BCCH ⁇ modification period”. In other words, the content of the broadcast information is reflected in the next BCCH modification period after the advance notice is given.
- BCCH modification period if the current BCCH modification ⁇ ⁇ ⁇ period ⁇ ⁇ ⁇ is BCCH modification period (n), and if a notice is given within this BCCH modification period (n), then in the next section Broadcast information is applied in a certain BCCH modification period (n + 1).
- the boundary between adjacent BCCH modification mod periods is referred to as “BCCH modification modifications boundaries”.
- BCCH modification boundaries SFN mod m (SFN is a frame Number (System ⁇ Frame Number)).
- a new backhaul based on the notice information is in between. Cannot be set.
- a handover (HO) of a mobile relay station is detected at a certain timing in BCCH modification period (n), and an advance notice is given to the subordinate mobile stations.
- Application of new notification information based on the notice of notice is performed from BCCH modification period (n + 1).
- FIGS. FIG. 6 and FIG. 7 are diagrams for explaining a situation where it is difficult to continuously set the backhaul before the handover after the handover.
- FIGS. FIG. 6 and FIG. 7 are diagrams for explaining a situation where it is difficult to continuously set the backhaul before the handover after the handover.
- (a) schematically shows a state before completion of handover, and (b) a state after completion of handover.
- the downlink backhaul is subframe # for the subordinate relay station RN1.
- the MBSFN subframe used for the mobile station subordinate to the target base station eNB in subframe # 1 is transmitted to the subordinate mobile station in a signal format dedicated to MBSFN as shown in FIG. ing.
- a signal is transmitted in a signal format dedicated to unicast data on the backhaul. Both signals cannot be compatible in subframe # 1. Therefore, in the example shown in FIG. 6A, the mobile relay station RN3 preferably changes to a subframe other than subframe # 1, for example, subframe # 3, as the downlink backhaul (FIG. 6B).
- the downlink backhaul set before and after the handover is the same, but setting the same backhaul as the relay stations RN1 and RN2 for the mobile relay station RN3 can reduce traffic load and QoS. It may be difficult from the viewpoint.
- the mobile relay station RN3 preferably changes to a subframe other than subframes # 1 and # 3, for example, subframes # 6 and # 8, as a downlink backhaul (FIG. 7B).
- An object of the present invention is to provide a communication section setting method, a relay station, and a mobile communication system that appropriately set a communication section in a period until the communication section is applied.
- a communication section setting method in a mobile communication system including a movable relay station that relays wireless communication between a base station and a mobile station.
- This communication section setting method is (A) By restricting transmission of signals from the relay station to the mobile station, by restricting transmission of signals from the mobile station to the relay station in a downlink communication section in which the relay station receives a transmission signal from the base station Setting at least one communication section of an uplink communication section in which a relay station transmits a transmission signal to the base station; (B) Signal transmission / reception between the relay station and the mobile station to which the relay station is connected during the first period from the detection of handover at the relay station to the establishment of the communication section between the relay station and the handover destination base station. Restricting or stopping and using a desired section of the first period as the communication section; including.
- the communication section is set between the relay station and the handover destination base station from the handover destination base station. Obtaining information for setting the communication section, and setting the communication section using the information.
- a movable relay station that relays wireless communication between a base station and a mobile station.
- This relay station (D) a first transmission / reception unit that transmits / receives data to / from the base station; (E) a second transmitting / receiving unit that transmits / receives data to / from the mobile station; (F) By restricting signal transmission from the relay station to the mobile station, the relay station receives a transmission signal from the base station at the relay station, and by restricting signal transmission from the mobile station to the relay station.
- a control unit that sets at least one communication section of an uplink communication section in which a relay station transmits a transmission signal to the base station; Is provided.
- the control unit determines whether the control unit is connected to the mobile station to which the relay station is connected during the first period from the detection of the handover at the relay station to the setting of the communication section between the relay station and the handover destination base station.
- the transmission / reception of signals between them is limited or stopped, and a desired section in the first period is used as the communication section.
- control unit obtains information for setting the communication section between the relay station and the handover destination base station from the handover destination base station during handover at the relay station, and the information The communication section can be set using.
- a mobile communication system including a base station, a mobile station, and a movable relay station that relays wireless communication between the base station and the mobile station is provided.
- the handover destination base is detected after the handover is detected.
- the communication section can be set appropriately in the period until the new communication section with the station is applied. Thereby, the self-interference of the relay station in the period is avoided.
- the figure for demonstrating the backhaul setting method of 1st Embodiment The block diagram which shows the structural example of the base station of 1st Embodiment.
- the figure for demonstrating the backhaul setting method of 2nd Embodiment The flowchart which shows an example of operation
- FIG. 9 is a flowchart for exchanging information about MBSFN subframe sections between adjacent base stations in the mobile communication system according to the fifth embodiment.
- FIG. 9 is a flowchart for exchanging information about MBSFN subframe sections between adjacent base stations in the mobile communication system according to the fifth embodiment.
- FIG. 9 is a flowchart for exchanging information about MBSFN subframe sections between adjacent base stations in the mobile communication system according to the fifth embodiment.
- FIG. 9 is a flowchart for exchanging information about MBSFN subframe sections between adjacent base stations in the mobile communication system according to the fifth embodiment.
- the flowchart which shows an example of operation
- the base station is abbreviated as eNB
- the relay station is RN
- the mobile station is abbreviated as appropriate.
- the base station eNB of the present embodiment is a donor base station (Donor eNB or DeNB) that supports a backhaul with the relay station RN.
- “backhaul section” refers to one or a plurality of sections among a plurality of sections set in units of TTI (Transmission Time Interval) in a single radio frame.
- TTI Transmission Time Interval
- the TTI is a time in units of subframes (1 ms).
- “Setting a backhaul” may mean setting or specifying a backhaul as a subframe in a radio frame. Note that this embodiment is applicable even when the TTI is not a time in units of subframes. That is, the TTI is “time required for transmitting the Transport Block” in the original sense, and the subframe is “section in which radio resources are set” in the original sense. Therefore, there are cases where the TTI is not necessarily a time in units of subframes (for example, when two Transport Blocks are transmitted in one subframe), but this embodiment is applicable even in this case.
- (1-1) Backhaul setting method In the mobile communication system according to the present embodiment, the start time of the next BCCH modification period from the time when the handover of the movable mobile relay station RN is detected and the advance notice is given.
- a common communication restriction period is set for all mobile stations during the first period until (BCCH modification boundaries).
- a measurement gap defined by LTE is applied as the communication restriction period.
- the measurement gap is a section of 6 ms for downlink and 7 ms for uplink provided for handover of the mobile station UE. For example, 40 ms is defined as the measurement gap interval.
- the mobile station UE switches the reception frequency, and performs radio quality measurement in a frequency band different from the frequency band of the currently communicating base station eNB. That is, since uplink transmission from the mobile station UE to the mobile relay station RN is not performed in the measurement gap, an uplink backhaul can be set in the measurement gap.
- FIG. 8 is a diagram for explaining the backhaul setting method of the present embodiment. 8, (a) is a subframe interval that can be set as a downlink backhaul, (b) is a subframe interval that can be set as an uplink backhaul, and (c) is a measurement that is set for all mobile stations UE. A gap interval is shown.
- FIG. 8A shows a subframe section that can be set as a downlink backhaul in consideration of LTE communication specifications. That is, in LTE downlink communication, subframes # 0, # 4, # 5, and # 9 addressed to the mobile station UE are primary SCH, Paging, and Secondary, respectively. Since it is defined that it is used for SCH and Paging, a downlink backhaul cannot be set in these subframes. Therefore, any of the remaining subframes # 1, # 2, # 3, # 6, # 7, and # 8 is a downlink backhaul setting candidate. Therefore, in the example of FIG. 8A, an example is shown in which downlink backhaul is set in subframes # 2, # 3, # 6, and # 7.
- the upstream backhaul is the same as that of the downstream backhaul (FIG. 8B).
- the ACK / MACK signal (A / N) as an acknowledgment to the data transmission (data) performed from the base station eNB to the mobile relay station RN in subframes # 2 and # 3 is 4 ms defined by LTE. Later, that is, in subframes # 6 and # 7, which are uplink backhauls.
- the A / N for data transmission (data) performed from the mobile relay station RN to the base station eNB in subframes # 2 and # 3 is 4 ms later, that is, subframes # 6 and # 7 which are downlink backhauls. To be done.
- a common Measurement gap is set for all the mobile stations UE (UE1 to UE4 in this case).
- the mobile relay station RN detects that the handover has been performed and notified in advance, and during the first period (the period until the start time of the next BCCH modification modification period) Try to set a hole.
- the backhaul is set in any subframe within one frame as long as it is within Measurement gap, the access link communication is not performed, and therefore, the mobile relay station RN may cause self-interference in the first period. Absent.
- FIG. 8C shows an example in which downlink and uplink backhauls are set in subframes # 2, # 3, # 6, and # 7, this is merely an example. As long as a common measurement-gap section is set for all mobile stations UE and a backhaul is set in this section, the backhaul may be set in any subframe section in one frame.
- the base station eNB of the present embodiment includes transmission / reception units 11 and 12, a radio frame processing unit 13, and a control unit 20.
- the control unit 20 includes a data plane unit 21 and a control plane unit 22 including a backhaul control unit 221.
- the transmission / reception unit 11 performs transmission / reception processing with other base stations performed in accordance with the X2 protocol and transmission / reception processing with an upper station such as MME (Mobility Management Entity) performed in accordance with the S1 protocol.
- the transmission / reception unit 12 performs transmission / reception processing between the mobile relay station RN and the mobile station UE.
- the transmission / reception unit 12 converts the radio frame generated by the radio frame processing unit 13 into a time domain signal for each subcarrier (IFFT process), a time domain signal synthesis process, And CP (Cyclic Prefix) addition processing.
- IFFT process IFFT process
- time domain signal synthesis process a time domain signal synthesis process
- CP Cyclic Prefix
- the data plane unit 21 of the control unit 20 mainly performs protocol processing of data plane signals between the mobile relay station RN and the mobile station UE, and performs scheduling on a resource block basis for each mobile relay station RN and mobile station UE ( Radio resource allocation processing).
- the control plane unit 22 of the control unit 20 mainly performs protocol processing of control plane signals among the upper station or other base stations, the mobile relay station RN, and the mobile station UE.
- the backhaul control unit 221 performs control related to setting of a backhaul with the mobile relay station RN.
- the backhaul control unit 221 performs, for example, backhaul setting, backhauling or releasing (release) based on a message from the mobile relay station RN.
- the scheduling in the data plane unit 21 takes into account the backhaul set by the backhaul control unit 221.
- the radio frame processing unit 13 generates radio frames for the mobile relay station RN and the mobile station UE according to the scheduling result of the data plane unit 21.
- the mobile relay station RN of the present embodiment relays radio communication between the base station eNB and the mobile station UE.
- the mobile relay station RN includes transmission / reception units 31 and 32, a scheduler 33, and a control unit 40.
- the control unit 40 includes a data plane unit 41 including a scheduler control unit 411 and a control plane unit 42 including a backhaul control unit 421.
- the transmission / reception unit 31 (first transmission / reception unit) performs transmission / reception processing with the base station eNB.
- the transmission / reception unit 32 (second transmission / reception unit) performs transmission / reception processing with the mobile station UE.
- this mobile relay station RN when relaying wireless communication between the base station eNB and the mobile station UE, the received signal is once demodulated and decoded. Then, the demodulated and decoded data signal in the received signal is subjected to scheduling and then encoded and modulated again and transmitted.
- the transmission / reception unit 32 separates the data signal in units of subcarriers by performing FFT processing on the OFDM signal received from the base station eNB, and performs demodulation and decoding processing on the data signal. Do.
- the data signal is encoded and modulated again, and is mapped to a predetermined radio frame format by the scheduler 33.
- the transmission / reception unit 31 performs conversion into time domain signals (IFFT processing) for each subcarrier, time domain signal synthesis processing, CP (Cyclic Prefix) addition processing, and the like.
- the data plane unit 41 of the control unit 40 mainly performs protocol processing of data plane signals between the base station eNB and the mobile station UE. Further, the scheduler control unit 411 performs scheduling for each mobile station UE, for example, in resource block units. The processing of the scheduler 33 is performed based on the scheduling result of the scheduler control unit 411.
- the control plane unit 42 of the control unit 40 mainly performs protocol processing of control plane signals between the base station eNB and the mobile station UE.
- the backhaul control unit 421 performs control related to the setting of the backhaul with the base station eNB.
- the backhaul control unit 421 performs, for example, a backhaul setting with the base station eNB, a backhaul setting based on a backhaul designation notification by the mobile relay station RN, a set backhaul release (release) request, and the like.
- the control plane unit 22 sequentially manages the timing of handover and BCCH modification modification boundaries.
- the backhaul control unit 221 sets a backhaul in Measurement gap until the next BCCH modification boundaries after the handover is detected (the first period).
- the scheduler control unit 411 of the data plane unit 41 performs scheduling of each mobile station UE based on the backhaul set by the backhaul control unit 421.
- the scheduler 33 performs mapping of the data signal addressed to each mobile station UE to the radio frame format according to the scheduling result in the scheduler control unit 411.
- FIG. 11 is a flowchart showing an example of the operation of the mobile relay station RN.
- the mobile relay station RN detects a handover (YES in Step S10), the mobile station UE is notified of Measurement gap (Step S12), and the backhaul control unit 221 creates a backhaul in the Measurement gap. Set (step S14).
- the control plane unit 22 performs control so as to stop transmission of the downlink reference signal to the mobile station UE (step S16).
- the reference signal is included in the data signal, but this reference signal wraps around the transmission / reception unit for the base station eNB of the mobile relay station RN to cause self-interference. is there.
- the mobile relay station can control signals related to handover transmitted / received to / from the movement-destination base station (control signals related to random access and higher layer control information for call setting). ) Can be transmitted and received at any timing.
- the mobile relay station RN is installed in a vehicle.
- the mobile stations UE to be communicated with by the mobile relay station RN are limited to the limited mobile stations UE in the vehicle, and the mobile station UE outside the vehicle is not scheduled to be handed over to the mobile relay station RN. May be. Therefore, temporarily stopping the reference signal addressed to the mobile station UE as described above is performed at the time of handover because a backhaul can be secured between the relay station and the base station during the stopped period. This is preferable in that control signals required for a procedure (for example, random access) can be transmitted and received.
- a procedure for example, random access
- the control plane unit 42 performs the following processing.
- control plane unit 42 performs processing related to the mobile station such as determination of whether or not to perform handover of the mobile station and determination of the modulation and coding scheme of the mobile station, based on the measurement result of the measurement-gap section. Special processing such as excluding from the measurement result as the basis of (step S18).
- control plane unit 42 performs uplink transmission control considering the uplink backhaul set in step S14 (step S20). That is, the control plane unit 42 does not transmit an uplink transmission permission signal (UL grant transmitted by PDCCH) to the mobile station UE 4 subframes (4 ms before) of the uplink backhaul set in step S14. Control.
- uplink transmission permission signal UL grant transmitted by PDCCH
- the mobile relay station RN detects a handover and applies a new backhaul with the handover destination base station (first period).
- a common communication restriction period is set for the mobile stations UE subordinate to the mobile relay station RN.
- this common communication restriction period is set to Measurement gap. In this Measurement gap, each mobile station UE under the control of the mobile relay station RN does not transmit / receive data, so a backhaul can be set in any section in MeasurementMeasuregap.
- the mobile relay station RN detects a handover and then performs a new backhaul with the handover destination base station, as in the first embodiment.
- a common communication restriction period is set for the mobile stations UE under the control of the mobile relay station RN until (1) is applied.
- this common communication restriction period is a DRX (Discontinuous Reception) section.
- This DRX section is an intermittent reception period that does not require reception of radio signals in accordance with LTE specifications in order to suppress power consumption of the mobile station UE.
- the mobile station UE does not necessarily need information on PDCCH (Physical Downlink Control Channel) that is a downlink L1 / L2 control signal addressed to the mobile station UE. Therefore, the mobile relay station RN does not have to transmit the PDCCH during the DRX interval. That is, since the mobile relay station RN can stop downlink data transmission addressed to the mobile station UE in the DRX section, a downlink backhaul can be set between the DRX sections. At this time, it is preferable that the mobile relay station RN also stops the downlink reference signal for the same reason as in the first embodiment.
- PDCCH Physical Downlink Control Channel
- the mobile relay station RN can execute resource control and / or RA-procedure to limit the number of subframes in which SR transmission is possible when a common DRX section is set for each subordinate mobile station UE. It is preferable to perform resource control that limits the number of PRACHs (Physical Random Access Channel) in order to limit the interval.
- PRACHs Physical Random Access Channel
- FIG. 12 is a diagram for explaining the backhaul setting method of the present embodiment. 12, (a) is a subframe that can be set as a downlink backhaul, (b) is a subframe that can be set as an uplink backhaul, and (c) is a DRX section (reception ON) that is set for all mobile stations UE. ) And reception OFF section).
- FIGS. 12A and 12B are the same as FIGS. 8A and 8B.
- a common DRX section is set for all mobile stations UE (for example, UE1 to UE4).
- the mobile relay station RN of the present embodiment is triggered by the fact that a handover is detected and a notice is made, and during the first period (the period until the start time of the next BCCH modification period) Set the backhaul in the subframe.
- FIG. 12C shows an example in which downlink and uplink backhauls are set in subframes # 2, # 3, # 6, and # 7.
- this is only an example.
- the backhaul may be set in any subframe in one frame.
- FIG. 13 is a flowchart showing an example of the operation of the mobile relay station RN.
- step S30 when the mobile relay station RN detects a handover (YES in step S30), the mobile station UE is notified of the DRX section (step S32), and the backhaul control unit 221 creates a backhaul in the DRX section. Set (step S34). At this time, the control plane unit 22 controls the mobile station UE to stop transmitting the reference signal (step S36). The reason for stopping the transmission of the reference signal is the same as in the case of the first embodiment.
- the control plane unit 42 of the mobile relay station RN sets the number of PRACHs in order to limit resource control for limiting the number of subframes in which SR transmission is possible and / or the period in which RA procedure can be executed. Limited resource control is performed (step S38). As a result, the amount of uplink data transmission that can occur during the DRX interval is limited, and the possibility of self-interference occurring in the mobile relay station RN can be reduced.
- the control plane unit 42 displays the measurement result in the measurement Measure gap section. .
- Perform special processing such as determination as to whether or not to perform handover of the mobile station, determination of the modulation and coding scheme of the mobile station, etc., such as exclusion from measurement results that are the basis for performing processing related to the mobile station (step S40).
- control plane unit 42 controls uplink transmission in consideration of the uplink backhaul set in step S34 (step S42). That is, the control plane unit 42 does not transmit an uplink transmission permission signal (UL grant transmitted by PDCCH) to the mobile station UE 4 subframes (4 ms before) of the uplink backhaul set in step S34. Control.
- uplink transmission permission signal UL grant transmitted by PDCCH
- FIG. 14 is a flowchart showing a preferred processing method on the mobile communication system from the detection of the handover of the mobile relay station RN to the setting of a new backhaul with the handover destination base station eNB. is there.
- the mobile relay station RN is currently communicating the radio quality and the like from the source base station eNB (Source eNB) and the target base station eNB (Target eNB) in the format of Measurement Reports. Report to eNB (step S50).
- the source base station eNB receives the report of the received power value and determines the handover of the mobile relay station RN, it transmits a handover request message (Handover ⁇ Request) to the target base station eNB (step S51).
- the target base station eNB transmits a handover request confirmation message (Handover Request Ack) to the source base station eNB (step S52).
- the target base station eNB sends information (backhaul setting information) on the backhaul (for example, the position of the MBSFN subframe) that can be set by the own station in the handover request confirmation message.
- backhaul setting information for example, the position of the MBSFN subframe
- the source base station eNB is addressed to the mobile relay station RN, and includes an HO command (RRC Connection) that includes information for backhaul setting at the target base station eNB.
- Reconfiguration including MobilityControlInfo) is transmitted (step S53).
- the handover has been detected by the mobile relay station RN up to this point at the latest.
- the mobile relay station RN recognizes a backhaul that can be set in the target base station eNB, the mobile relay station RN compares the backhaul with the backhaul currently set in the local station, and determines the backhaul currently set in the local station. It is determined whether it can be maintained after the handover.
- the mobile relay station RN transmits a Paging message in response to reception of the broadcast information, or Value By transmitting the notification information including the Tag, the notification of the notification information being updated is notified to the subordinate mobile station UE (step S54). Thereafter, as shown in the first and second embodiments, the mobile relay station RN may set the measurement gap or DRX section so as to include the backhaul.
- the mobile relay station RN executes a handover (HO) process with the target base station eNB at the timing of the next BCCH “modification” boundaries or before that timing, and completes it (step S55).
- the mobile relay station RN internally manages the timing of successive BCCH “modification” boundaries. Since the mobile relay station RN has acquired information on the backhaul set in the target base station eNB in step S53 and has notified the subordinate mobile station UE in step S54, the handover is completed. Immediately, a new backhaul can be set (step S56).
- Non-Patent Document 4 The basic procedure of the handover process itself is disclosed in Non-Patent Document 4.
- the processing method of the present embodiment shown in FIG. 14 is different from the procedure disclosed in Non-Patent Document 4 ( Figure A.2-1: RN Mobility -Alt 1-) mainly in the following points.
- a point that the mobile relay station RN notifies the subordinate mobile station UE before the handover is completed.
- the mobile relay station RN completes the handover process with the target base station eNB at or before the next BCCH modification boundaries.
- FIG. 15 is a flowchart showing an example of the operation of the mobile relay station RN.
- step S60 After the mobile relay station RN detects a handover (YES in step S60), when it is determined that the backhaul currently set in the local station cannot be maintained after the handover, the broadcast information is notified to the subordinate mobile station UE. Is notified that the change will be made (step S62). This advance notice corresponds to step S54 in FIG.
- the mobile relay station RN can set a backhaul within a measurement-gap or DRX section according to the method described in the first or second embodiment (step S64).
- the mobile relay station RN When the mobile relay station RN completes the handover to the target base station eNB (step S66), the mobile relay station RN newly sets the backhaul set in the target base station eNB for the local station (step S68). Note that the handover by the mobile relay station RN is completed at the timing of the next BCCHBCmodification boundaries or before that timing. The timing of each BCCH modification boundaries is managed by the control plane unit 42.
- control plane unit 42 of the mobile relay station RN performs uplink transmission control in consideration of the uplink backhaul set in step S68 (step S70). That is, the control plane unit 42 does not transmit an uplink transmission permission signal (UL grant transmitted by PDCCH) to the mobile station UE 4 subframes (4 ms before) of the uplink backhaul set in step S68. Control.
- uplink transmission permission signal UL grant transmitted by PDCCH
- the mobile relay station RN during the handover process of its own station, includes the HO command (RRC Connection Reconfiguration including the backhaul set in the target base station eNB. Get MobilityControlInfo). Based on the information for backhaul setting notified by this HO command, the mobile station UE is notified of the advance notice, and the handover is completed at or before the timing of the next BCCH modification boundaries. Therefore, the mobile relay station RN can set the backhaul set in the target base station eNB for the mobile station immediately after reaching the timing of BCCH modification boundaries.
- the HO command RRC Connection Reconfiguration including the backhaul set in the target base station eNB. Get MobilityControlInfo
- the mobile relay station RN does not set the backhaul until it reaches the timing of the next BCCH modification boundaries after acquiring the backhaul information that can be set by the target base station eNB. It was.
- the mobile relay station RN acquires backhaul information that can be set in the target base station eNB, and then transmits the HO command to the source base station eNB. In addition to the backhaul, set the newly acquired backhaul.
- step S57 The backhaul setting method of this embodiment is shown in FIG. 16 (#inventor comment: S53 should be changed in the same manner as above).
- FIG. 16 differs from FIG. 14 in that step S57 is provided instead of step S56. Note that step S57 may be executed before step S53.
- the mobile relay station RN recognizes a backhaul that can be set in the target base station eNB, in step S57, the mobile relay station RN compares the backhaul with the backhaul currently set in the local station, and performs the following processing. That is, the mobile relay station RN first determines whether or not the backhaul currently set in the local station can be maintained after the handover.
- the mobile relay station RN adds to the backhaul (first section) set up with the source base station eNB, and in the backhaul that can be set up at the target base station eNB.
- the broadcast information is updated by transmitting the Paging message as described above or by transmitting the broadcast information including Value Tag, and the BCCH modification boundaries is reached and the MBSFN subframe is actually reached.
- backhaul is set. In this way, the mobile relay station can transmit and receive a control signal (such as random access) related to the handover with the target base station eNB even on the newly added backhaul.
- FIGS. 17 and 18 are diagrams schematically showing the backhaul setting method of the present embodiment, and correspond to the situations shown in FIGS. 6 and 7, respectively.
- (a) schematically shows a state before completion of handover, and (b) a state after completion of handover.
- the mobile relay station RN3 sets subframe # 1 as a downlink backhaul (MBSFN subframe) with the source base station eNB.
- the mobile relay station RN acquires a backhaul that can be set in the target base station eNB from the target base station eNB, and additionally sets subframe # 3 as a backhaul from the backhaul.
- the mobile relay station RN3 serves as a downlink backhaul (MBSFN subframe) with the source base station eNB in 10 subframes # 0 to # 9 in one frame.
- the target base station eNB sets from the target base station eNB to the source base station eNB by a handover request confirmation message (Handover Request Ack). Possible backhaul is notified.
- the notification method is not limited to this. You may make it exchange the information regarding the backhaul set by each base station eNB regularly, for example between adjacent base stations eNB.
- FIGS. 19A to 19C are flowcharts in the case of exchanging information on the MBSFN subframe section between the neighboring base stations eNB_1 and eNB_2.
- information is directly exchanged between adjacent base stations eNB_1 and eNB_2 through the X2 interface. That is, the base station eNB_1 transmits an MBSFN subframe information request message (MBSFN subframe Request) to the base station eNB_2 (step S80).
- MBSFN subframe Request MBSFN subframe information request message
- This message may include information on the section of the MBSFN subframe set in the base station eNB_1.
- the base station eNB_2 notifies information related to the section of the MBSFN subframe set by itself (step S82).
- the base station eNB_1 transmits an MBSFN subframe information request message (MBSFN subframe Request) to the MME (step S84).
- MBSFN subframe Request MBSFN subframe information request message
- This message may include information on the section of the MBSFN subframe set in the base station eNB_1.
- the MME notifies information related to the section of the MBSFN subframe of the recorded base station eNB_2 (step S86).
- the MME transmits an MBSFN subframe information request message (MBSFN subframe Request) to the base station eNB_2 (step S88).
- MBSFN subframe Request MBSFN subframe information request message
- This message may include information related to the MBSFN subframe section of the base station eNB_1 recorded by the MME.
- the base station eNB_2 notifies the MME of information related to the MBSFN subframe section of the own station (step S90).
- the communication target with the MME is not limited to the adjacent base station, and may be an adjacent relay station. That is, information can be exchanged between adjacent base stations and adjacent relay stations.
- a backhaul is set in an arbitrary section in the frame.
- the mobile relay station RN may continuously set the backhaul that has been set, or from among the backhaul that can be set by the target base station eNB acquired during the handover procedure.
- a backhaul may be set.
- the mobile relay station RN stops transmission of downlink signals (such as reference signals) addressed to the mobile station UE, and uplinks from the mobile station UE. Control is performed so that signals (data signal, retransmission signal, SRS, PRACH, etc.) are not transmitted.
- FIG. 20 is a diagram for explaining the backhaul setting method of the present embodiment.
- (a) is a downlink backhaul set during the first period
- (b) is an uplink backhaul set during the first period
- (c) is transmitted in a specific subframe. No signal, showing.
- FIG. 20 shows an example in which a backhaul is set according to the situation shown in FIG. That is, it is assumed that the mobile relay station RN sets subframe # 3 as a backhaul during the first period from downlink backhauls that can be set by the target base station eNB. At this time, subframes # 3 and # 7 are set as the uplink backhaul.
- Data transmission (data) is performed from the base station eNB to the mobile relay station RN in subframe # 3 (downlink backhaul).
- the mobile relay station RN refers to the mobile station UE in subframe # 3. Since no signal (RS) is transmitted, the mobile relay station RN does not cause self-interference.
- data transmission (data) is performed from the mobile relay station RN to the base station eNB in subframe # 3 (uplink backhaul), and after 4 subframes (4 ms), that is, from the base station eNB in subframe # 7 ACK / NACK signal (A / N) is received.
- the mobile relay station RN does not transmit a reference signal (RS) addressed to the mobile station UE in the first period, so that no self-interference of the mobile relay station RN occurs. Further, in subframe # 9, the mobile relay station RN sends a PDCCH to the mobile station UE, that is, an uplink transmission permission signal (UL grant) is not sent. Accordingly, the mobile station UE does not transmit a signal to the mobile relay station RN 4 ms after the subframe # 9, that is, in the uplink backhaul of the subframe # 3. In this way, with respect to the uplink backhaul, the mobile relay station RN performs control so as not to transmit the PDCCH in the subframe 4 ms before the set uplink backhaul.
- RS reference signal
- the mobile relay station RN is installed in a vehicle.
- the mobile stations UE to be communicated with by the mobile relay station RN are limited to the limited mobile stations UE in the vehicle, and the mobile station UE outside the vehicle is not scheduled to be handed over to the mobile relay station RN. May be. Therefore, as described above, temporarily stopping the reference signal addressed to the mobile station UE can ensure a backhaul between the relay station and the base station during the stopped period, and thus the procedure executed at the time of handover This is preferable in that control signals necessary for (for example, random access) can be transmitted and received.
- FIG. 21 is a flowchart showing an example of the operation of the mobile relay station RN.
- the backhaul control unit 421 of the mobile relay station RN Sets a backhaul at an arbitrary position (step S122). Thereafter, the mobile relay station RN stops transmission of the downlink signal addressed to the mobile station UE and controls so that the uplink signal from the mobile station UE is not transmitted.
- the control plane unit 42 of the mobile relay station RN starts a process for stopping transmission / reception of a signal such as a reference signal with the mobile station UE (step S124).
- control plane unit 42 further controls resource control that limits the number of subframes in which SR transmission is possible and / or the number of PRACHs in order to limit the sections in which the RA procedure can be executed. Resource control is performed to limit (step S126).
- the control plane unit 42 receives the measurement report from the mobile station UE as in the first embodiment. Special processing such as determination as to whether or not to perform handover of the mobile station, determination of the modulation and coding scheme of the mobile station, and the like are excluded from the measurement results that are the basis for performing processing related to the mobile station (step S128). ).
- control plane unit 42 of the mobile relay station RN performs uplink transmission control in consideration of the uplink backhaul set in step S122 (step S130). That is, the control plane unit 42 performs control so as not to transmit an uplink transmission permission signal (PDCCH UL grant) to the mobile station UE 4 subframes (4 ms before) of the uplink backhaul set in step S122.
- PDCCH UL grant uplink transmission permission signal
- the communication section setting method, relay station, and mobile communication system of the present invention are not limited to the above embodiment, and various improvements can be made without departing from the gist of the present invention. Of course, you may make changes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Telecommunication System)からLTE(Long Term Evolution)への進展が図られている。LTEでは下り及び上りの無線アクセス技術としてそれぞれ、OFDM(Orthogonal Frequency Division Multiplexing)及びSC-FDMA(Single Carrier-Frequency Division Multiple Access)が採用され、下りのピーク伝送レートは100 Mb/s以上、上りのピーク伝送レートは50Mb/s以上の高速無線パケット通信が可能となる。国際標準化団体である3GPP(3rd Generation Partnership Project)では現在、さらなる高速通信の実現にむけて、LTEをベースとした移動通信システムLTE-A(LTE-Advanced)の検討が始められている。LTE-Aでは、下りのピーク伝送レートは1Gb/s、上りのピーク伝送レートは500Mb/sを目指しており、無線アクセス方式やネットワークアーキテクチャ等に関して、様々な新技術の検討が行われている(非特許文献1~6)。一方で、LTE-AはLTEをベースとしたシステムとなるため、後方互換性を維持することが図られている。
中継局をセルに展開する方法も検討されている。例えば、セル端のスループットを増加させることを目的として中継局をセル端に設置する展開方法や、セル内で局所的に基地局からの電波が到達しない範囲(不感地帯)に中継局を設置する展開方法が主に検討されている。
(A)下り:中継局は、上位の基地局からデータを受信するサブフレームである下りバックホール(DL backhaul)では、移動局宛てのデータ送信を実行しない。
(B)上り:中継局は、上位の基地局にデータを送信するサブフレームである上りバックホール(UL backhaul)では、移動局からのデータ受信を実行しない。
また、中継局では、上りバックホールの4サブフレーム(4ms)前において、移動局に対して下りデータ送信を実行しないように制御される。これは以下の理由による。すなわち、LTEのHARQ (Hybrid Automatic Repeat reQuest)では、一方の局がデータを送信してから4ms(4サブフレーム分)後に送信先の局がACK/NACK信号を返信するように規定されている。よって、上りバックホールの4msに下りデータを移動局宛に送信すると、上りバックホールで移動局が中継局宛にACK/NACK信号を送信してしまうため、これを避けるためである。
なお、上りバックホールでは、中継局向けの制御信号であるPUCCH(Physical Uplink Control Channel)、PUSCH (physical uplink shared channel)は送信可能であるが、移動局が送信する制御信号であるPUCCH、PUSCHは送信不可となる。
これは以下の理由による。すなわち、サブフレーム#1においてターゲット基地局eNBの配下の移動局に対して使用されているMBSFNサブフレームは、配下の移動局に対し、図3で図示したようにMBSFN専用の信号フォーマットで送信されている。これに対し、仮に、ハンドオーバ後の移動中継局RN3の下りバックホールをサブフレーム#1に設定することを試みても、バックホール上ではユニキャストデータ専用の信号フォーマットで信号が送信されるため、この両者の信号はサブフレーム#1において両立しえない。
そこで、図6(a)に示す例では、移動中継局RN3は、下りバックホールとしてサブフレーム#1以外のサブフレーム、例えばサブフレーム#3に変更することが好ましい(図6(b))。
この通信区間設定方法は、
(A)中継局から移動局への信号の送信を制限することにより中継局で基地局からの送信信号を受信する下り通信区間と、移動局から中継局への信号の送信を制限することにより中継局で基地局への送信信号を送信する上り通信区間と、の少なくともいずれかの通信区間を設定すること;
(B)中継局でのハンドオーバの検出から、中継局とハンドオーバ先の基地局との間で上記通信区間を設定するまでの第1期間、中継局が接続する移動局との間の信号の送受信を制限または停止し第1期間のうちの所望の区間を上記通信区間として用いること;
を含む。
この中継局は、
(D)基地局との間でデータの送受信を行う第1送受信部;
(E)移動局との間でデータの送受信を行う第2送受信部;
(F)中継局から移動局への信号の送信を制限することにより中継局で基地局からの送信信号を受信する下り通信区間と、移動局から中継局への信号の送信を制限することにより中継局で基地局への送信信号を送信する上り通信区間と、の少なくともいずれかの通信区間を設定する制御部;
を備える。
制御部は、制御部は、中継局でのハンドオーバの検出から、中継局とハンドオーバ先の基地局との間で上記通信区間を設定するまでの第1期間、中継局が接続する移動局との間の信号の送受信を制限または停止し、第1期間のうちの所望の区間を上記通信区間として用いる。
以下の説明において、「バックホールの区間」とは、単一の無線フレーム中においてTTI(Transmission Time Interval;伝送時間間隔)単位で設定されている複数の区間の中の1又は複数の区間を指す。本実施形態では、TTIはサブフレーム(1ms)単位の時間としている。「バックホールを設定する」とは、無線フレーム中におけるサブフレームとしてバックホールを設定又は特定することを意味しうる。なお、TTIがサブフレーム単位の時間でない場合でも、本実施形態は適用可能である。すなわち、TTIは本来の意味では「Transport Blockが送信されるに要する時間」であり、サブフレームは本来の意味では「無線リソースが設定される区間」である。したがって、TTIがサブフレーム単位の時間とは限らない場合(例えば、2つのTransport Blockが1つのサブフレームで送信される場合等)が存在するが、この場合でも本実施形態は適用可能である。
以下、第1実施形態について説明する。
本実施形態の移動通信システムでは、移動可能な移動中継局RNのハンドオーバを検出して予告通知がなされた時刻から次のBCCH modification periodの開始時刻(BCCH modification boundaries)までの第1期間の間、すべての移動局に共通の通信制限期間が設定される。本実施形態では、上記通信制限期間として、LTEで規定されるMeasurement gapが適用される。
Measurement gapは、上記非特許文献3に記載されるように、移動局UEのハンドオーバのために設けられる、下りで6ms、上りで7msの区間である。Measurement gapの間隔は、例えば40msが規定されている。このMeasurement gapにおいて、移動局UEは受信周波数を切り替えて、現在通信している基地局eNBの周波数帯域と異なる周波数帯域の無線品質測定を行う。すなわち、Measurement gapでは移動局UEから移動中継局RNへの上り送信は行われないため、Measurement gap内に上りバックホールを設定することができる。
SCH、Pagingに使用されることが規定されているため、これらのサブフレームには下りバックホールを設定することができない。そこで、残りのサブフレーム#1,#2,#3,#6,#7,#8のいずれかが下りバックホールの設定候補になる。そこで、図8の(a)の例では、サブフレーム#2,#3,#6,#7に下りバックホールを設定した例を示している。また、ここでは、上りバックホールは、下りバックホールのそれと同一にしてある(図8(b))。このとき、サブフレーム#2,#3で基地局eNBから移動中継局RN宛に行われるデータ送信(data)に対する確認応答としてのACK/MACK信号(A/N)は、LTEで規定される4ms後、すなわち上りバックホールであるサブフレーム#6,#7に行われる。同様に、サブフレーム#2,#3で移動中継局RNから基地局eNB宛に行われるデータ送信(data)に対するA/Nは、4ms後、すなわち下りバックホールであるサブフレーム#6,#7に行われる。
次に、本実施形態の基地局eNB及び移動中継局RNの構成例について説明する。
先ず、図9及び図10を参照して、基地局eNBと移動中継局RNの構成について説明する。図9及び図10はそれぞれ、基地局eNB及び移動中継局RNの構成を示すブロック図である。
送受信部11は、X2プロトコルに従って行われる他の基地局との送受信処理や、S1プロトコルに従って行われるMME(Mobility Management Entity)等の上位局との間の送受信処理を行う。送受信部12は、移動中継局RN及び移動局UEとの間の送受信処理を行う。例えば下り無線フレームをOFDMで送信するときには、送受信部12は、無線フレーム処理部13により生成された無線フレームのサブキャリア毎の時間領域信号への変換(IFFT処理)、時間領域信号の合成処理、及びCP(Cyclic Prefix)付加処理等を行う。
制御部20の制御プレーン部22は主として、上位局若しくは他の基地局、移動中継局RN及び移動局UEとの間の制御プレーンの信号のプロトコル処理を行う。
なお、データプレーン部21におけるスケジューリングは、バックホール制御部221により設定されたバックホールが考慮される。無線フレーム処理部13は、データプレーン部21のスケジューリング結果に従って、移動中継局RN及び移動局UE向けの無線フレームを生成する。
制御部40の制御プレーン部42は主として、基地局eNB及び移動局UEとの間の制御プレーンの信号のプロトコル処理を行う。
次に、図11を参照して、主としてバックホール設定に関連した、ハンドオーバを行う移動中継局RNの動作の一例について説明する。図11は、移動中継局RNの動作の一例を示すフローチャートである。
以下、第2実施形態について説明する。
本実施形態においても、第1実施形態と同様に、移動中継局RNは、ハンドオーバを検出してからハンドオーバ先の基地局との新たなバックホールが適用されるまでの間(第1期間)に、移動中継局RNの配下の移動局UEに対して共通の通信制限期間を設定する。本実施形態では、この共通の通信制限期間をDRX(Discontinuous Reception)の区間とする。このDRX区間は、移動局UEの消費電力抑制等のために、LTEの仕様上、無線信号の受信を要しない間欠受信期間である。
図12の(a)及び(b)は、図8の(a)及び(b)と同一である。ここでは、図12(c)に示すように、すべての移動局UE(例えば、UE1~4)に対して共通のDRX区間が設定される。本実施形態の移動中継局RNは、ハンドオーバを検出して予告通知を行ったことを契機として、第1期間(次のBCCH modification periodの開始時刻までの区間)の間は、DRX区間内の任意のサブフレームにバックホールを設定するようにする。
次に、図13を参照して、主としてバックホール設定に関連した、ハンドオーバを行う移動中継局RNの動作の一例について説明する。図13は、移動中継局RNの動作の一例を示すフローチャートである。
以下、第3実施形態について説明する。
本実施形態のバックホール設定方法を含む、移動通信システムにおけるハンドオーバの処理方法について、図14を参照して説明する。図14は、移動中継局RNのハンドオーバの検出から、ハンドオーバ先の基地局eNBとの間で新たなバックホールを設定するに至るまでの好適な、移動通信システム上の処理方法を示すフロー図である。
Reconfiguration including MobilityControlInfo)を送信する(ステップS53)。遅くともこの時点まで移動中継局RNによりハンドオーバが検出されている。
移動中継局RNは、ターゲット基地局eNBで設定可能なバックホールを認識すると、そのバックホールを現在自局で設定されているバックホールと比較して、現在自局で設定されているバックホールをハンドオーバ後も維持できるか否かを判断する。維持できないと判断したならば、移動中継局RNは、上記報知情報の受信に応じて、Pagingメッセージを送信するか、又はValue
Tagを含む報知情報を送信することで、報知情報が更新されることを配下の移動局UE宛に予告通知する(ステップS54)。この後、移動中継局RNは、第1及び第2実施形態で示したように、バックホールを包含するようにしてMeasurement gap又はDRXの区間を設定するようにしてもよい。
・ソース基地局eNBがターゲット基地局eNBから、ターゲット基地局eNBのバックホールに関する情報を取得する点。
・移動中継局RNがソース基地局eNBから、ターゲット基地局eNBのバックホールに関する情報を取得する点。
・移動中継局RNが配下の移動局UEに対してハンドオーバ完了前に予告通知をする点。
・移動中継局RNが、次のBCCH modification boundariesのタイミングで、又はそのタイミング前に、ターゲット基地局eNBとの間のハンドオーバ処理を完了させる点。
次に、図15を参照して、主としてバックホール設定に関連した、ハンドオーバを行う移動中継局RNの動作の一例について説明する。図15は、移動中継局RNの動作の一例を示すフローチャートである。
以下、第4実施形態について説明する。
以下、第5実施形態について説明する。
図19Aでは、隣接基地局eNB_1, eNB_2の間でX2インタフェースにより直接情報交換が行われる。すなわち、基地局eNB_1が基地局eNB_2宛てに、MBSFNサブフレーム情報要求メッセージ(MBSFN subframe Request)を送信する(ステップS80)。このメッセージには、基地局eNB_1で設定されているMBSFNサブフレームの区間に関する情報を含ませてもよい。このメッセージに応じて基地局eNB_2は、自局で設定されているMBSFNサブフレームの区間に関する情報を通知する(ステップS82)。
また、図19Cにおいて、MMEが基地局eNB_2宛てに、MBSFNサブフレーム情報要求メッセージ(MBSFN subframe Request)を送信する(ステップS88)。このメッセージには、MMEが記録している基地局eNB_1のMBSFNサブフレームの区間に関する情報を含ませてもよい。このメッセージに応じて基地局eNB_2はMME宛に、自局のMBSFNサブフレームの区間に関する情報を通知する(ステップS90)。
また、図19B及び図19Cに示したように、MMEを経由して情報交換を行う場合、MMEとの通信対象は隣接基地局に限られず、隣接中継局でもよい。すなわち、隣接基地局及び隣接中継局の間で情報を交換するようにすることもできる。
以下、第6実施形態について説明する。
ハンドオーバの処理中において、移動中継局RNとソース基地局eNB及びターゲット基地局eNBの間では、様々な制御情報の送受信が行われる。このような制御情報の送受信は、例えば非特許文献4(Figure A.2-1: RN Mobility -Alt 1-)に開示されている手続きでは、7. RRC Conn. Reconf incl MobilityControlInformation、9. Synchronization、10. UL allocation + TA for UE、11. RRC Conn Reconf Complete、に相当する。制御情報の送受信はバックホールで行われるが、設定されているバックホール次第では、制御情報の送受信に時間を要するため、ハンドオーバの処理の遅延時間が長くなる場合がある。
また、サブフレーム#3(上りバックホール)で移動中継局RNから基地局eNB宛にデータ送信(data)が行われ、その4サブフレーム(4ms)後、すなわちサブフレーム#7で基地局eNBからACK/NACK信号(A/N)を受信する。このサブフレーム#7で第1期間では移動中継局RNは移動局UE宛の参照信号(RS)を送信しないため、移動中継局RNの自己干渉は生じない。
さらに、サブフレーム#9では、移動中継局RNは移動局UEに対してPDCCH、すなわち上り送信許可信号(UL
grant)を送信しない。これにより、サブフレーム#9の4ms後、すなわちサブフレーム#3の上りバックホールにおいて、移動局UEが移動中継局RNに対して信号を送信することがなくなる。このように上りバックホールに関し、移動中継局RNは、設定された上りバックホールの4ms前のサブフレームにおいてPDCCHを送信しないようにする制御を行う。
次に、図21を参照して、主としてバックホール設定に関連した、ハンドオーバを行う移動中継局RNの動作の一例について説明する。図21は、移動中継局RNの動作の一例を示すフローチャートである。
この後、移動中継局RNは、移動局UE宛の下り信号の送信を停止するとともに、移動局UEからの上り信号の送信が行われないように制御する。先ず、移動中継局RNの制御プレーン部42が、参照信号等の移動局UEとの間の信号の送受信の停止処理を開始する(ステップS124)。制御プレーン部42はさらに、第2実施形態と同様に、SR送信が可能となるサブフレーム数を限定するリソース制御、及び/又は、RA procedureが実行可能となる区間を限定するためにPRACHの数を限定するリソース制御を行う(ステップS126)。また、移動局UE宛の下りの参照信号の送信を停止しているため、制御プレーン部42は、第1実施形態と同様に、Measurement reportを移動局UEから受信した場合、その計測結果を、移動局のハンドオーバを実行するか否かの判断や、移動局の変調符号化方式の決定など、移動局に関する処理を行うための基礎とする測定結果から除外する等の特殊処理を行う(ステップS128)。
13…無線フレーム処理部
20…制御部
21…データプレーン部
22…制御プレーン部
221…バックホール制御部
31,32…送受信部
33…スケジューラ
40…制御部
41…データプレーン部
411…スケジューラ制御部
42…制御プレーン部
421…バックホール制御部
Claims (22)
- 基地局と移動局の間の無線通信を中継する移動可能な中継局を備えた移動通信システムにおける通信区間設定方法であって、
中継局から移動局への信号の送信を制限することにより中継局で基地局からの送信信号を受信する下り通信区間と、移動局から中継局への信号の送信を制限することにより中継局で基地局への送信信号を送信する上り通信区間と、の少なくともいずれかの通信区間を設定し、
中継局でのハンドオーバの検出から、中継局とハンドオーバ先の基地局との間で前記通信区間を設定するまでの第1期間、中継局が接続する移動局との間の信号の送受信を制限または停止し、前記第1期間のうちの所望の区間を前記通信区間として用いる、
ことを含む、通信区間設定方法。 - 前記第1期間を、中継局が接続する移動局との間の信号の送受信を制限する共通の通信制限期間に割り当てる、
請求項1に記載された通信区間設定方法。 - 前記通信制限期間は、中継局と移動局の間の通信周波数とは異なる周波数の無線信号の移動局による測定のための測定期間、に相当する、
請求項2に記載された通信区間設定方法。 - 前記通信制限期間は、移動局が無線信号の受信を要しない間欠受信期間、に相当する、
請求項2に記載された通信区間設定方法。 - 前記通信制限期間の間の移動局による参照信号の測定結果を、中継局での移動局に関する処理を行うための基礎とする測定結果から除外すること、をさらに含む、
請求項1~4のいずれかに記載された通信区間設定方法。 - 基地局と移動局の間の無線通信を中継する移動可能な中継局を備えた移動通信システムにおける通信区間設定方法であって、
中継局から移動局への信号の送信を制限することにより中継局で基地局からの送信信号を受信する下り通信区間と、移動局から中継局への信号の送信を制限することにより中継局で基地局への送信信号を送信する上り通信区間と、の少なくともいずれかの通信区間を設定し、
中継局でのハンドオーバの際に、ハンドオーバ先の基地局から、中継局とハンドオーバ先の基地局との間で前記通信区間を設定するための情報を取得し、前記情報を用いて前記通信区間を設定する、
ことを含む、通信区間設定方法。 - 前記通信区間を設定するための情報から特定される、前記中継局と前記ハンドオーバ先の基地局との間で前記通信区間を設定可能な区間の中のいずれかに、前記中継局と前記ハンドオーバ先の基地局との間の前記通信区間を設定する、
ことを含む、請求項6に記載された通信区間設定方法。 - 前記通信区間を設定するための情報に基づき、中継局とハンドオーバ元の基地局との間で設定されている前記通信区間を変更する場合には、前記情報を含む報知情報が変更されることを、中継局から接続する各移動局に対して予め通知すること、をさらに含む、
請求項6または7に記載された通信区間設定方法。 - 前記報知情報が適用されるタイミングで前記中継局でのハンドオーバを完了させること、をさらに含む、
請求項8に記載された通信区間設定方法。 - 前記通信区間を設定するための情報を取得した後、前記通信区間を設定するための情報を含む報知情報が適用されるまでの第1期間の間、中継局とハンドオーバ元の基地局との間で設定されている第1の前記通信区間に加えて、前記情報から特定される、前記中継局と前記ハンドオーバ先の基地局との間で前記通信区間を設定可能な区間の中のいずれかを、第2の前記通信区間として設定すること、をさらに含む、
請求項6~9のいずれかに記載された通信区間設定方法。 - 基地局と移動局の間の無線通信を中継する移動可能な中継局であって、
基地局との間でデータの送受信を行う第1送受信部と、
移動局との間でデータの送受信を行う第2送受信部と、
中継局から移動局への信号の送信を制限することにより中継局で基地局からの送信信号を受信する下り通信区間と、移動局から中継局への信号の送信を制限することにより中継局で基地局への送信信号を送信する上り通信区間と、の少なくともいずれかの通信区間を設定する制御部と、
を備え、
前記制御部は、中継局でのハンドオーバの検出から、中継局とハンドオーバ先の基地局との間で前記通信区間を設定するまでの第1期間、中継局が接続する移動局との間の信号の送受信を制限または停止し、前記第1期間のうちの所望の区間を前記通信区間として用いる、
中継局。 - 前記制御部は、前記第1期間を、中継局が接続する移動局との間の信号の送受信を制限する共通の通信制限期間に割り当てる、
請求項11に記載された中継局。 - 前記通信制限期間は、中継局と移動局の間の通信周波数とは異なる周波数の無線信号の移動局による測定のための測定期間、に相当する、
請求項12に記載された中継局。 - 前記通信制限期間は、移動局が無線信号の受信を要しない間欠受信期間、に相当する、
請求項12に記載された中継局。 - 前記通信制限期間の間の移動局による参照信号の測定結果を、中継局での移動局に関する処理を行うための基礎とする測定結果から除外する、
請求項11~14のいずれかに記載された中継局。 - 基地局と移動局の間の無線通信を中継する移動可能な中継局であって、
基地局との間でデータの送受信を行う第1送受信部と、
移動局との間でデータの送受信を行う第2送受信部と、
中継局から移動局への信号の送信を制限することにより中継局で基地局からの送信信号を受信する下り通信区間と、移動局から中継局への信号の送信を制限することにより中継局で基地局への送信信号を送信する上り通信区間と、の少なくともいずれかの通信区間を設定する制御部と、
を備え、
前記制御部は、中継局でのハンドオーバの際に、ハンドオーバ先の基地局から、中継局とハンドオーバ先の基地局との間で前記通信区間を設定するための情報を取得し、前記情報を用いて前記通信区間を設定する、
中継局。 - 前記制御部は、前記通信区間を設定するための情報から特定される、中継局と前記ハンドオーバ先の基地局との間で前記通信区間を設定可能な区間の中のいずれかに、中継局と前記ハンドオーバ先の基地局との間の前記通信区間を設定する、
請求項16に記載された中継局。 - 前記通信区間を設定するための情報に基づき、中継局とハンドオーバ元の基地局との間で設定されている前記通信区間を変更する場合には、前記情報を含む報知情報が変更されることを、中継局と接続する各移動局に対して予め通知する、
請求項16または17に記載された中継局。 - 前記報知情報が適用されるタイミングでハンドオーバを完了させる、
請求項18に記載された中継局。 - 前記通信区間を設定するための情報を取得した後、前記制御部は、前記通信区間を設定するための情報を含む報知情報が適用されるまでの第1期間の間、中継局とハンドオーバ元の基地局との間で設定されている第1の前記通信区間に加えて、前記情報から特定される、中継局と前記ハンドオーバ先の基地局との間で前記通信区間を設定可能な区間の中のいずれかを、第2の前記通信区間として設定する、
請求項16~19のいずれかに記載された中継局。 - 基地局と、移動局と、基地局と移動局との間の無線通信を中継する移動可能な中継局と、を備える移動通信システムであって、
前記中継局は、
中継局から移動局への信号の送信を制限することにより中継局で基地局からの送信信号を受信する下り通信区間と、移動局から中継局への信号の送信を制限することにより中継局で基地局への送信信号を送信する上り通信区間と、の少なくともいずれかの通信区間を設定する制御部を備え、
前記制御部は、中継局でのハンドオーバの検出から、中継局とハンドオーバ先の基地局との間で前記通信区間を設定するまでの第1期間、中継局が接続する移動局との間の信号の送受信を制限または停止し、前記第1期間のうちの所望の区間を前記通信区間として用い、
前記基地局は、前記通信区間に基づいて前記中継局との間で信号の送受信を行う送受信部を備え、
前記移動局は、前記通信区間に基づいて前記中継局との間で信号の送受信を行う送受信部を備える、
移動通信システム。 - 基地局と、移動局と、基地局と移動局との間の無線通信を中継する移動可能な中継局と、を備える移動通信システムであって、
前記中継局は、
中継局から移動局への信号の送信を制限することにより中継局で基地局からの送信信号を受信する下り通信区間と、移動局から中継局への信号の送信を制限することにより中継局で基地局への送信信号を送信する上り通信区間と、の少なくともいずれかの通信区間を設定する制御部を備え、
前記制御部は、中継局でのハンドオーバの際に、ハンドオーバ先の基地局から、中継局とハンドオーバ先の基地局との間で前記通信区間を設定するための情報を取得し、前記情報を用いて前記通信区間を設定し、
前記基地局は、前記通信区間に基づいて前記中継局との間で信号の送受信を行う送受信部を備え、
前記移動局は、前記通信区間に基づいて前記中継局との間で信号の送受信を行う送受信部を備える、
移動通信システム。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012504153A JP5365738B2 (ja) | 2010-03-12 | 2010-03-12 | 通信区間設定方法、中継局、移動通信システム |
PCT/JP2010/001774 WO2011111111A1 (ja) | 2010-03-12 | 2010-03-12 | 通信区間設定方法、中継局、移動通信システム |
EP10847345.5A EP2547137B1 (en) | 2010-03-12 | 2010-03-12 | Communication section setting method, relay station and mobile communication system |
CA2792527A CA2792527C (en) | 2010-03-12 | 2010-03-12 | Communication duration configuring method, relay station, and mobile communication system |
CN201080065273.4A CN102812738B (zh) | 2010-03-12 | 2010-03-12 | 通信区间设定方法、中继站及移动通信系统 |
KR1020127026153A KR101404287B1 (ko) | 2010-03-12 | 2010-03-12 | 통신 구간 설정 방법, 중계국, 이동 통신 시스템 |
US13/607,030 US10051669B2 (en) | 2010-03-12 | 2012-09-07 | Communication duration configuring method, relay station, and mobile communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/001774 WO2011111111A1 (ja) | 2010-03-12 | 2010-03-12 | 通信区間設定方法、中継局、移動通信システム |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/607,030 Continuation US10051669B2 (en) | 2010-03-12 | 2012-09-07 | Communication duration configuring method, relay station, and mobile communication system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011111111A1 true WO2011111111A1 (ja) | 2011-09-15 |
Family
ID=44562960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/001774 WO2011111111A1 (ja) | 2010-03-12 | 2010-03-12 | 通信区間設定方法、中継局、移動通信システム |
Country Status (7)
Country | Link |
---|---|
US (1) | US10051669B2 (ja) |
EP (1) | EP2547137B1 (ja) |
JP (1) | JP5365738B2 (ja) |
KR (1) | KR101404287B1 (ja) |
CN (1) | CN102812738B (ja) |
CA (1) | CA2792527C (ja) |
WO (1) | WO2011111111A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013054850A1 (ja) * | 2011-10-14 | 2013-04-18 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局及び通信制御方法 |
WO2013065824A1 (ja) * | 2011-11-04 | 2013-05-10 | 三菱電機株式会社 | 移動体通信システム |
WO2013120530A1 (en) * | 2012-02-16 | 2013-08-22 | Nokia Siemens Networks Oy | Measures in case of handover problems in case of relaying |
US20140204830A1 (en) * | 2011-09-30 | 2014-07-24 | Fujitsu Limited | Method for carrying out multimedia broadcast multicast service, home base station and user equipment |
WO2018198178A1 (ja) * | 2017-04-25 | 2018-11-01 | 富士通株式会社 | 基地局装置、無線通信システム、及び無線部切替方法 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10911961B2 (en) * | 2010-03-31 | 2021-02-02 | Qualcomm Incorporated | Method and apparatus to facilitate support for multi-radio coexistence |
CN102238722B (zh) * | 2010-04-30 | 2015-03-11 | 华为技术有限公司 | Un子帧配置处理方法、基站和中继站 |
US9923624B2 (en) | 2012-09-21 | 2018-03-20 | University Of South Australia | Communication system and method |
WO2014146725A1 (en) * | 2013-03-22 | 2014-09-25 | Nokia Solutions And Networks Oy | Guaranteed periods of inactivity for network listening modes |
CN107852704A (zh) * | 2015-07-17 | 2018-03-27 | 华为技术有限公司 | 配置信息获取的方法和装置 |
JP6532807B2 (ja) * | 2015-11-13 | 2019-06-19 | 京セラ株式会社 | 中継局およびその制御方法 |
WO2017155291A2 (en) * | 2016-03-08 | 2017-09-14 | Lg Electronics Inc. | Method for providing system information to remote ue in wireless communication system and apparatus therefor |
WO2017206057A1 (zh) * | 2016-05-31 | 2017-12-07 | 华为技术有限公司 | 资源分配方法和装置 |
US10531459B2 (en) * | 2016-07-15 | 2020-01-07 | Qualcomm Incorporated | Methods and apparatus for IOT operation in unlicensed spectrum |
CN111557110A (zh) * | 2018-01-08 | 2020-08-18 | 联想(北京)有限公司 | 用于ue切换的方法和装置 |
US10419077B1 (en) * | 2018-03-28 | 2019-09-17 | Google Llc | Wireless communication via a mobile relay |
JP2020099032A (ja) * | 2018-12-19 | 2020-06-25 | シャープ株式会社 | リレー局装置、通信システム、通信方法、およびプログラム |
CN111586744B (zh) * | 2019-02-15 | 2022-04-29 | 华为技术有限公司 | 一种iab节点的切换方法及装置 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004236001A (ja) * | 2003-01-30 | 2004-08-19 | Ntt Docomo Inc | 移動通信システム、位置情報管理装置、ルーティング情報管理装置 |
EP1613003A1 (en) * | 2004-06-30 | 2006-01-04 | Alcatel | Air interface protocols for a radio access network with ad-hoc extension |
GB2422272A (en) * | 2005-01-14 | 2006-07-19 | King S College London | Network mobility |
KR100824239B1 (ko) * | 2005-11-07 | 2008-04-24 | 삼성전자주식회사 | 다중 홉 릴레이 방식을 사용하는 광대역 무선 접속 통신시스템에서 이동 중계국의 핸드오버를 처리하기 위한 장치및 방법 |
US8660035B2 (en) * | 2005-11-10 | 2014-02-25 | Apple, Inc. | Wireless relay network media access control layer control plane system and method |
US8165073B2 (en) * | 2006-08-04 | 2012-04-24 | Nokia Corporation | Relay-station assignment/re-assignment and frequency re-use |
CN101175304B (zh) * | 2006-11-02 | 2010-08-11 | 华为技术有限公司 | 基于中继系统的切换方法 |
US8095160B2 (en) * | 2006-11-07 | 2012-01-10 | Motorola Solutions, Inc. | Intermediate station and method for facilitating handover in a multi-hop communication system |
US20080107091A1 (en) * | 2006-11-07 | 2008-05-08 | Motorola, Inc. | Broadcast efficiency in a multihop network |
KR101386212B1 (ko) * | 2006-11-14 | 2014-04-21 | 한국전자통신연구원 | 이동 중계기를 고려한 핸드오버 방법 |
US7894388B2 (en) * | 2007-01-05 | 2011-02-22 | Motorola Solutions, Inc. | Method and apparatus for relay zone bandwidth allocation |
EP2119128A2 (en) * | 2007-03-05 | 2009-11-18 | Nokia Corporation | Apparatus, method and computer program product providing neighbor discovery, handover procedure and relay zone configuration for relay stations in a multi-hop network |
US8380196B2 (en) * | 2007-04-27 | 2013-02-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Handover using dedicated resources reserved for a limited time interval |
US8284754B2 (en) * | 2007-09-08 | 2012-10-09 | Samsung Electronics Co., Ltd. | Apparatus and method for determining time to response of retransmission in a multihop relay wireless communication system |
FI20085194A0 (fi) * | 2008-02-29 | 2008-02-29 | Nokia Siemens Networks Oy | Menetelmä ja laite kanavanvaihtoproseduuria varten jatkolähetyslaajennuksen sisältävässä tietoliikenneverkossa |
KR101344760B1 (ko) * | 2008-04-30 | 2013-12-24 | 삼성전자주식회사 | 광대역 무선통신 시스템에서 시스템 정보 블럭 송수신 방법및 장치 |
US20090290554A1 (en) * | 2008-05-13 | 2009-11-26 | Nokia Siemens Networks Oy | System, method and computer accessible medium for determining action time in a communication network |
WO2009148232A2 (en) * | 2008-06-04 | 2009-12-10 | Samsung Electronics Co., Ltd. | Apparatus and method for processing preamble change of relay station in broadband wireless access communication system using multihop relay |
US8706068B2 (en) * | 2008-06-23 | 2014-04-22 | Telefonaktiebolaget L M Ericsson (Publ) | Adaptive signal power measurement methods and apparatus |
KR101429672B1 (ko) * | 2008-08-05 | 2014-08-13 | 삼성전자주식회사 | 이동 중계국을 지원하는 광대역 무선통신 시스템의핸드오버 장치 및 방법 |
US8873522B2 (en) * | 2008-08-11 | 2014-10-28 | Qualcomm Incorporated | Processing measurement gaps in a wireless communication system |
KR101524607B1 (ko) * | 2008-11-14 | 2015-06-02 | 삼성전자주식회사 | 무선 통신 시스템의 이동 릴레이 셀 선택 장치 및 방법 |
US9155012B2 (en) * | 2009-04-24 | 2015-10-06 | Nokia Solutions And Networks Oy | Method, apparatus, and related computer program product for load balancing in a relay network |
US8059586B2 (en) * | 2009-06-04 | 2011-11-15 | Motorola Mobility, Inc. | Mobility management entity tracking for group mobility in wireless communication network |
EP2445258A4 (en) * | 2009-06-16 | 2014-06-18 | Fujitsu Ltd | WIRELESS COMMUNICATION SYSTEM |
WO2010148341A1 (en) * | 2009-06-19 | 2010-12-23 | Research In Motion Limited | Mechanisms for data handling during a relay handover with s1 termination at relay |
US8611333B2 (en) * | 2009-08-12 | 2013-12-17 | Qualcomm Incorporated | Systems and methods of mobile relay mobility in asynchronous networks |
US8300588B2 (en) * | 2009-10-05 | 2012-10-30 | Futurewei Technologies, Inc. | System and method for user equipment measurement timing in a relay cell |
WO2011066853A1 (en) * | 2009-12-02 | 2011-06-09 | Nokia Siemens Networks Oy | Handing over relayed connections in mobile environment |
JP2013513988A (ja) * | 2009-12-10 | 2013-04-22 | 富士通株式会社 | 中継ハンドオーバ制御 |
US20120282932A1 (en) * | 2009-12-16 | 2012-11-08 | Nokia Siemens Networks Oy | Apparatus and Method |
WO2011107154A1 (en) * | 2010-03-05 | 2011-09-09 | Nokia Siemens Networks Oy | A method and apparatus for use in a mobile communications system comprising a relay node |
WO2011111113A1 (ja) * | 2010-03-12 | 2011-09-15 | 富士通株式会社 | 通信区間設定方法、中継局、基地局、移動通信システム |
JP5598535B2 (ja) * | 2010-03-30 | 2014-10-01 | 富士通株式会社 | 移動通信システム、無線中継装置、移動通信装置および無線通信方法 |
EP2605571B1 (en) * | 2010-08-13 | 2019-01-23 | Fujitsu Connected Technologies Limited | Wireless communication system, base station, relay station and wireless communication method |
WO2012059994A1 (ja) * | 2010-11-04 | 2012-05-10 | 富士通株式会社 | 無線通信方法、中継局、移動局および移動通信システム |
WO2012059995A1 (ja) * | 2010-11-04 | 2012-05-10 | 富士通株式会社 | 無線通信方法、中継局、移動局および移動通信システム |
-
2010
- 2010-03-12 WO PCT/JP2010/001774 patent/WO2011111111A1/ja active Application Filing
- 2010-03-12 CN CN201080065273.4A patent/CN102812738B/zh not_active Expired - Fee Related
- 2010-03-12 KR KR1020127026153A patent/KR101404287B1/ko not_active Expired - Fee Related
- 2010-03-12 JP JP2012504153A patent/JP5365738B2/ja active Active
- 2010-03-12 EP EP10847345.5A patent/EP2547137B1/en active Active
- 2010-03-12 CA CA2792527A patent/CA2792527C/en not_active Expired - Fee Related
-
2012
- 2012-09-07 US US13/607,030 patent/US10051669B2/en active Active
Non-Patent Citations (9)
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140204830A1 (en) * | 2011-09-30 | 2014-07-24 | Fujitsu Limited | Method for carrying out multimedia broadcast multicast service, home base station and user equipment |
US9699764B2 (en) * | 2011-09-30 | 2017-07-04 | Fujitsu Limited | Method for carrying out multimedia broadcast multicast service, home base station and user equipment |
WO2013054850A1 (ja) * | 2011-10-14 | 2013-04-18 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局及び通信制御方法 |
JP2013090058A (ja) * | 2011-10-14 | 2013-05-13 | Ntt Docomo Inc | 基地局及び通信制御方法 |
WO2013065824A1 (ja) * | 2011-11-04 | 2013-05-10 | 三菱電機株式会社 | 移動体通信システム |
US9603060B2 (en) | 2011-11-04 | 2017-03-21 | Mitsubishi Electric Corporation | Mobile communication system |
US10609602B2 (en) | 2011-11-04 | 2020-03-31 | Mitsubishi Electric Corporation | Mobile communication system |
WO2013120530A1 (en) * | 2012-02-16 | 2013-08-22 | Nokia Siemens Networks Oy | Measures in case of handover problems in case of relaying |
WO2018198178A1 (ja) * | 2017-04-25 | 2018-11-01 | 富士通株式会社 | 基地局装置、無線通信システム、及び無線部切替方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2792527C (en) | 2016-07-19 |
CA2792527A1 (en) | 2011-09-15 |
CN102812738A (zh) | 2012-12-05 |
KR101404287B1 (ko) | 2014-06-05 |
KR20120139781A (ko) | 2012-12-27 |
EP2547137A1 (en) | 2013-01-16 |
EP2547137B1 (en) | 2021-04-14 |
US20130250773A1 (en) | 2013-09-26 |
JP5365738B2 (ja) | 2013-12-11 |
CN102812738B (zh) | 2015-10-14 |
EP2547137A4 (en) | 2014-11-05 |
JPWO2011111111A1 (ja) | 2013-06-27 |
US10051669B2 (en) | 2018-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5365738B2 (ja) | 通信区間設定方法、中継局、移動通信システム | |
JP5365739B2 (ja) | 通信区間設定方法、中継局、基地局、移動通信システム | |
JP6848305B2 (ja) | 通信装置及び通信方法 | |
US8885543B2 (en) | Mobile communication method and relay node | |
KR20130021352A (ko) | 무선 통신 시스템에서 신호 처리 방법 및 이를 위한 장치 | |
GB2498750A (en) | Control channel design for relay node backhaul | |
US9118479B2 (en) | Mobile communication system | |
RU2560937C1 (ru) | Способ конфигурирования продолжительности связи, ретрансляционная станция, мобильная станция и система мобильной связи | |
WO2012165411A1 (ja) | 移動通信方法、リレーノード及び無線基地局 | |
CN105391531B (zh) | 通信区间设定方法、中继站、移动站、移动通信系统 | |
JP5713130B2 (ja) | 通信区間設定方法、中継局、移動局、移動通信システム | |
JP2015104052A (ja) | 通信制御方法、リレー装置及び基地局 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080065273.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10847345 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012504153 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2792527 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010847345 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127026153 Country of ref document: KR Kind code of ref document: A |