[go: up one dir, main page]

WO2011110153A1 - Torsionsschwingungsdämpfer - Google Patents

Torsionsschwingungsdämpfer Download PDF

Info

Publication number
WO2011110153A1
WO2011110153A1 PCT/DE2011/000197 DE2011000197W WO2011110153A1 WO 2011110153 A1 WO2011110153 A1 WO 2011110153A1 DE 2011000197 W DE2011000197 W DE 2011000197W WO 2011110153 A1 WO2011110153 A1 WO 2011110153A1
Authority
WO
WIPO (PCT)
Prior art keywords
pendulum
spacer
centrifugal
torsional vibration
vibration damper
Prior art date
Application number
PCT/DE2011/000197
Other languages
English (en)
French (fr)
Inventor
Stefan Jung
David SCHNÄDELBACH
Markus Werner
Christian HÜGEL
Stephan Maienschein
Thorsten Krause
Original Assignee
Schaeffler Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44508103&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011110153(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schaeffler Technologies Gmbh & Co. Kg filed Critical Schaeffler Technologies Gmbh & Co. Kg
Priority to CN201180013403.4A priority Critical patent/CN102792057B/zh
Priority to JP2012556382A priority patent/JP5665890B2/ja
Priority to DE112011100859.7T priority patent/DE112011100859B4/de
Publication of WO2011110153A1 publication Critical patent/WO2011110153A1/de
Priority to US13/602,890 priority patent/US9261165B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/14Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers
    • F16F15/1407Suppression of vibrations in rotating systems by making use of members moving with the system using masses freely rotating with the system, i.e. uninvolved in transmitting driveline torque, e.g. rotative dynamic dampers the rotation being limited with respect to the driving means
    • F16F15/145Masses mounted with play with respect to driving means thus enabling free movement over a limited range
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0263Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means the damper comprising a pendulum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2121Flywheel, motion smoothing-type
    • Y10T74/2128Damping using swinging masses, e.g., pendulum type, etc.

Definitions

  • the present invention relates to a torsional vibration damper according to the preamble of patent claim 1.
  • Such a torsional vibration damper or torsional vibration damper consists of a substantially circular disc-shaped pendulum, to which a number of designed as mass elements centrifugal pendulums are mounted.
  • the centrifugal pendulum pendulum are movable in the radial direction and in the circumferential direction of the pendulum.
  • the pendulum flange is rotated by the drive train in a rotational movement.
  • the centrifugal pendulum be pressed radially outward, wherein the size of the outward centrifugal force is dependent on the speed of the drive train.
  • a non-uniform angular velocity of the drive train such as is caused by the working strokes of an internal combustion engine, causes deflections of the centrifugal pendulum in the circumferential direction of the pendulum, whereby the nonuniformities of the angular velocity of the drive train are attenuated.
  • Such a torsional vibration damper is known for example from DE 10 2009 042 831 A1.
  • centrifugal forces acting on the centrifugal pendulum may not be sufficient to hold the centrifugal pendulum in their radially outer positions.
  • the centrifugal pendulums can instead be shifted in such a way that adjacent centrifugal pendulums collide against each other. This leads to a noise, which is perceived as disturbing and disadvantageous.
  • the object of the present invention is therefore to provide an improved torsional vibration damper.
  • This object is achieved by a torsional vibration damper with the features of claim 1.
  • Preferred developments are specified in the dependent claims.
  • Motor vehicle comprises a substantially circular disc-shaped pendulum and a plurality of centrifugal pendulums.
  • Each centrifugal pendulum in each case comprises a first pendulum mass and a second pendulum mass.
  • the first pendulum mass is arranged above a first surface of the pendulum flange and the second pendulum mass above a second surface of the pendulum flange.
  • the first pendulum mass and the second pendulum mass of each centrifugal pendulum are rigidly connected to each other via at least two spacers.
  • the pendulum has in this case a plurality of recesses in which the spacer bolts are guided, wherein in at least a first recess, a second spacer bolt of a first centrifugal pendulum and a first spacer bolt of a second centrifugal pendulum is guided.
  • a spacer element is arranged in the first recess, which is dimensioned so that the first centrifugal pendulum and the second centrifugal pendulum can not touch each other.
  • the spacer element then prevents a collision of the first centrifugal pendulum and the second centrifugal pendulum. As a result, a disturbing noise is prevented even at low speeds of the drive train.
  • the spacer element is arranged floating in the first recess.
  • the spacer then follow a deflection of the centrifugal pendulum.
  • the spacer element is formed flat and has substantially the same strength as the pendulum flange.
  • the spacer element can then be arranged in the first recess and causes no additional frictional forces between the spacer element and the pendulum masses of the centrifugal pendulum.
  • the first recess essentially has the shape of a circular ring sector and the spacer element likewise essentially the shape of a circular ring sector.
  • this represents a particularly simple embodiment of the spacer element.
  • the spacer element in the form of a clip.
  • this spacer has a particularly low mass.
  • the spacer element has the shape of a clamp open in the direction of the center point of the pendulum flange.
  • the spacer element can then easily slide off at a radially outer boundary edge of the first recess.
  • the spacer element has a first wing, which is arranged between the second spacer bolt of the first centrifugal pendulum and an edge of the first recess, and also a second wing, between the first spacer bolt of the second centrifugal pendulum and an edge of the first Recess is arranged.
  • a first wing which is arranged between the second spacer bolt of the first centrifugal pendulum and an edge of the first recess
  • a second wing between the first spacer bolt of the second centrifugal pendulum and an edge of the first Recess
  • the spacer element is formed circular disk-shaped.
  • the circular disk-shaped spacer element can then roll in the first recess.
  • the spacer element does not completely fill the space between the second spacer pin of the first centrifugal pendulum and the first spacer pin of the second centrifugal pendulum when the first centrifugal pendulum and the second centrifugal pendulum are in a rest position.
  • this allows a certain degree of asynchronicity between the deflections of the multiple centrifugal pendulum in the circumferential direction.
  • the centrifugal pendulum can then move independently and are not coupled, which improves the damping properties of the torsional vibration damper.
  • the standoffs and the spacer do not contact each other at high speeds and low torsional vibrations of the powertrain, so that no friction occurs between the standoffs and the spacer.
  • no friction between the spacer element and the pendulum flange then occurs in this operating state, since the spacer element is not moved in the recess.
  • the torsional vibration damper may be designed as a dual-mass flywheel or as a single-stage or multi-stage torsional vibration damper.
  • the torsional vibration damper is to be arranged in conjunction with a hydrodynamic torque converter or a clutch device. The invention is explained in more detail below with reference to FIGS. Showing:
  • Fig. 1 is a plan view of a known torsional vibration damper
  • Fig. 5 is another view of the known torsional vibration damper
  • FIG. 6 shows a torsional vibration damper according to a first embodiment
  • FIG. 7 shows a torsional vibration damper according to a second embodiment
  • FIG. 10 shows a torsional vibration damper according to a fifth embodiment.
  • the torsional vibration damper 100 comprises a substantially circular disc-shaped first pendulum flange 200 with a centrally located hub 110. Via the hub 110, the pendulum flange 200 can be set in a rotational movement by a drive train of a motor vehicle ,
  • the direction of rotation 120 shown in FIG. 1 corresponds to a viewing direction from a transmission arranged in the drive train of the motor vehicle to an internal combustion engine of the motor vehicle.
  • the torsional vibration damper 100 serves to dampen torsional vibrations of the drive train.
  • the torsional vibration damper 100 has a plurality of centrifugal pendulums 300.
  • four centrifugal pendulum 300 namely a first centrifugal pendulum 301, a second centrifugal pendulum 302, a third centrifugal pendulum 303 and a fourth centrifugal pendulum 304 are present.
  • a different number of centrifugal pendulums 300 may be provided.
  • the centrifugal pendulum 300 are identical to each other.
  • FIGS. 2 to 4 show different sections through the first centrifugal pendulum 301 and the first oscillating flange 200.
  • each of the centrifugal pendulums 300 comprises a first pendulum mass 320 and a second pendulum mass 330.
  • the first pendulum mass 320 of each centrifugal pendulum 300 is arranged above a visible in Fig. 1 first surface 230 of the pendulum flange 200.
  • the second pendulum mass 330 of each centrifugal pendulum 300 is disposed above a not visible in Fig. 1 rear second surface 240 of the pendulum flange 200.
  • the pendulum flange 200 of the torsional vibration damper 100 has a plurality of U-shaped recesses 210, wherein the number of U-shaped recesses 210 corresponds to the number of centrifugal pendulum 300. In the embodiment shown in Fig. 1 therefore four U-shaped recesses 210 are present.
  • Each of the U-shaped recesses 210 forms an opening through the pendulum flange 200 and is arranged so that the open side of the U-shaped recess 200 points in the direction of the hub 110 of the pendulum flange 200, while the closed side of the U-shaped recess 210 radially oriented to the outside.
  • the pendulum flange 200 has a plurality of central recesses 220, the number of which corresponds to the number of centrifugal pendulums 300.
  • the central recesses 220 are formed as a complete breakthrough by the pendulum flange 200.
  • Each central recess 220 is arranged in the circumferential direction of the pendulum flange 200 between two U-shaped recesses 210.
  • the pendulum flange 200 has a plurality of first roller recesses 270.
  • the number of first roller recesses 270 also corresponds to the number of centrifugal pendulums 300.
  • the first roller recesses 270 also represent complete openings through the pendulum flange 200.
  • Each of the first roller recesses 270 is in the circumferential direction of the pendulum flange 200 between a central recess 220 and a U-shaped recess 210 arranged.
  • the first pendulum flange 200 has second roller recesses 280, the number of which corresponds to the number of centrifugal pendulums 300.
  • the second roller recesses 280 are mirror-symmetrical to the first roller recesses 270.
  • Each second roller recess 280 is arranged in the circumferential direction of the pendulum flange 200 between a central recess 220 and a U-shaped recess 210.
  • the first pendulum mass 320 and the second pendulum mass 330 of each centrifugal pendulum 300 are identical to each other.
  • Each pendulum mass 320, 330 is formed in approximately sickle or Vietnamese subunits.
  • the swept through by the circular sector angular range is slightly less than 360 ° divided by the number of centrifugal pendulum 300.
  • the swept by the circular sector pendulum masses 320, 330 angle range for example, slightly less than 90 °. This makes it possible to arrange the individual centrifugal pendulum 300 spaced from each other on the circumference of the pendulum flange 200.
  • Each pendulum mass 320, 330 has a third roller recess 375 and a fourth
  • the third and fourth roller recesses 375, 385 are formed as openings through the respective pendulum mass 320, 330 and arranged symmetrically with respect to an axis of symmetry of the circular sector-shaped pendulum masses 320, 330.
  • FIG. 2 shows a section through a section of the torsional vibration damper 100 along the straight line AA drawn in FIG. 1. It can be seen that the first pendulum mass 320 and the second pendulum mass 330 of the first centrifugal pendulum 301 are rigidly and spaced apart by a first spacer bolt 340. The first spacer bolt 340 is guided through one of the U-shaped recesses 210 of the pendulum flange 200. 4 shows a section through a section of the torsional vibration damper 100 along the straight line CC drawn in FIG. From Fig.
  • first pendulum mass 320 and the second pendulum mass 330 of the first centrifugal pendulum 100 are also rigidly interconnected by a second spacer bolt 350 which is guided through one of the central recesses 220 of the pendulum flange 200.
  • a third spacer pin 360 is present, which connects the first pendulum mass 320 and the second pendulum mass 330 of the first centrifugal pendulum 301 rigidly together and through a further U-shaped recess 210th of the pendulum flange 200 is guided. It can also be seen from FIG.
  • FIG. 3 shows a section through a section of the torsional vibration damper 100 along the straight line BB drawn in FIG. 1. It can be seen from FIG. 3 that a first roller 370 is arranged in the third roller recess 375 of the first centrifugal force pendulum 301 and one of the first roller recesses 270 of the pendulum flange 200. By the first roller 370, the movement of the first centrifugal pendulum 100 relative to the first pendulum flange 200 is limited in the radial direction.
  • a second roller 380 is arranged, whose configuration corresponds to that of the first roller 370.
  • the torsional vibration damper 100 is offset by the drive train of the motor vehicle into a rotation about the axis of rotation formed by the hub 110, then centrifugal force acting on the centrifugal pendulum pendulum 300 300 radially outwardly deflecting the centrifugal pendulum 300 in the radial direction until the pendulum masses 320, 330 of each centrifugal pendulum 300 as shown in FIG. 3 abut the rollers 370, 380.
  • a rotational movement superimposed torsional vibration causes deflections of the centrifugal pendulum 300 in the circumferential direction of the pendulum flange 200.
  • the rollers 370, 380 are rotated and roll at the edges of the recesses 375, 385 of the centrifugal pendulum 300 and the edges of the recesses 270, 280 of the pendulum 200 from ,
  • This deflectability of the centrifugal pendulum pendulum 300 in the circumferential direction of the pendulum flange 200 of the rotational movement superimposed torsional vibrations are damped.
  • the centrifugal pendulums 300 oscillate substantially synchronously, whereby a certain asynchronism is possible.
  • centrifugal pendulum 300 may collide. This is exemplified in Fig. 5, where the second centrifugal pendulum 302 and the third centrifugal pendulum 303 and the third centrifugal pendulum 303 and the fourth centrifugal pendulum 304 in two collision points 400 abut each other.
  • the juxtaposition of the centrifugal pendulum 300 leads to a noise that is bothersome.
  • FIG. 6 shows a detail of a first torsional vibration damper 1100 according to a first embodiment. Shown in Fig. 6 are a section of the first pendulum flange 200 with one of the U-shaped recesses 210, a section of lying behind the pendulum flange 200 second pendulum mass 330 of the first centrifugal pendulum 301, a section of lying behind the pendulum flange 200 second pendulum mass 330 of the second centrifugal pendulum 302, and the third spacer pin 360 of the first centrifugal pendulum 301 and the first spacer bolt 340 of the second centrifugal pendulum 302.
  • a first spacer element 1200 is arranged in the U-shaped recess 210.
  • the first spacer element 1200 like the U-shaped recess 210, is approximately circular-sector-shaped, but covers a smaller angular range than the U-shaped recess 210. In the radial direction, thus limiting the first spacer element 1200 in the direction between the inner and the outer Annular ring, the first spacer element 1200 has a slightly smaller width than the U-shaped recess 210. In the direction perpendicular to the first surface 230 of the pendulum flange 200, the first spacer element 1200 has approximately the same thickness as the pendulum flange 200.
  • the first spacer 1200 is disposed between the third standoff pin 360 of the first centrifugal pendulum 301 and the first standoff pin 340 of the second centrifugal pendulum 302.
  • the angle swept by the first spacer element 1200 is dimensioned so that an inner spacing 1220 is formed between the third spacer bolt 360 of the first centrifugal force pendulum 301 and the first spacer element 1200 and between the first spacer bolt 340 of the second centrifugal force pendulum 302 and the first spacer element 1200. by which the distance bolts 340, 360 and the first spacer element 1200 are spaced apart from each other when the centrifugal pendulums 301, 302 are in their rest position.
  • first centrifugal pendulum 301 and the second centrifugal pendulum 302 approach each other by an asynchronous deflection of the centrifugal pendulum 301, 302 in the circumferential direction of the pendulum flange 200, this approximation is only possible as far as possible until the spacers 340, 360 come into contact with the first spacer 1200. Consequently, the first spacer element 1200 always ensures a minimum pendulum distance 1210 between the third spacer pin 360 of the first centrifugal pendulum 301 and the first spacer pin 340 of the second centrifugal pendulum 302.
  • a centrifugal force 1240 acting on the first spacer element 1200 causes abutment of the first spacer element 1200 on the radially outer edge of the U-shaped recess 210. If the first centrifugal pendulum 301 and the second centrifugal pendulum 302 in the circumferential direction of Pendulum flange 200 deflected, this also causes a displacement of the first spacer element 1200 within the U-shaped recess 210 in the circumferential direction of the pendulum 200. This results in a friction region 1230 at the radially outer edge of the U-shaped recess 210 for the occurrence of a frictional force. This frictional force increases with the rotational speed of the first torsional vibration damper 1100. Studies have shown, however, that this friction has no negative influence on the function and transmissibility of the first torsional vibration damper 1100.
  • the inner distance 1220 can be chosen differently depending on the requirement. If the inner distance 1220 is chosen to be relatively large, asynchronism of the deflections of the centrifugal force pendulum 300 in the circumferential direction of the pendulum flange 200 is possible. The centrifugal pendulum 300 then move independently and are not coupled. At high rotational speeds of the first torsional vibration damper 1100 and small torsional vibrations, the standoffs 340, 360 and the first spacer element 1200 do not touch each other, so that no friction can occur in this area. Likewise, no friction occurs between the spacer element 1200 and the edges of the U-shaped recess 210 in this operating state, since the first spacer element 1200 remains stationary in the U-shaped recess 210.
  • the inner distance 1220 can also be chosen so small that asynchronous lateral deflections of the centrifugal pendulum 300 are not possible and the individual centrifugal pendulum 300 are coupled and synchronously deflected in the circumferential direction of the pendulum flange 200.
  • FIG. 7 shows a detail of a second torsional vibration damper 2100 according to a second embodiment.
  • the section shown corresponds to that of the first torsional vibration damper 1100 of FIG. 6.
  • a second spacer element 2200 is provided in the U-shaped recess 210.
  • the second spacer element 2200 additionally has a first wing 2210 and a second wing 2220.
  • the first wing 2210 extends as a continuation of the radially inner peripheral edge of the second spacer 2200 into between the third spacer 360 of the first centrifugal pendulum 301 and the radially inner edge of the U-shaped recess 210.
  • the second wing 2220 extends as a continuation of the radially inner Outer edge of the second Distanzseiements 2200 in the area between the first standoff bolt 340 of the second centrifugal pendulum 302 and the radially inner edge of the U-shaped recess 210.
  • the wings 2210, 2220 are thus perpendicular to the radial boundary surfaces of the second Distanzseiements 2200 attached.
  • the wings 2210, 2220 of the second Distanzseiements 2200 cause the second spacer 2200 not under the influence of a force acting on the second spacer 2200 centrifugal force against the radially outer edge of the U-shaped recess 210 can be deflected. Instead, the wings 2210, 2220 come under the influence of a radially outwardly acting centrifugal force on the standoffs 340, 360 for conditioning. Consequently, no friction between the second spacer 2200 and the first pendulum flange 200 can occur. Low friction occurs only in a friction region 2230 between the vanes 2210, 2220 and the spacer bolts 340, 360. With regard to the choice of the inner distance 2240 between the annular sector-shaped portion of the second spacer element 2200 and the spacer bolts 340, 360, what has been stated for the first spacer element 1200 of FIG. 6 applies.
  • the third torsional vibration damper 3100 has a third spacer element 3200.
  • the outer contour of the third spacer element 3200 is also circular sector-shaped and corresponds to that of the first spacer element 1200.
  • the third spacer element 3200 over the first spacer element 1200, the radially inner boundary edge and the largest part of the area removed, so that only the radially outer boundary edge and the two radial boundary edges remain.
  • the third spacer element 3200 thus has the shape of a clamp whose open side points in the direction of the center of the pendulum flange 200.
  • the third spacer element 3200 has a reduced mass.
  • the staple-like configuration of the third spacer element 3200 causes an elasticity of the third spacer element 3200. This elasticity can dampen the impact of the spacer bolts 340, 360 on the third spacer element 3200 and thereby cause a further noise reduction.
  • a frictional force may occur in a radially outer friction region 3230 between the third spacer element 3200 and the radially outer edge of the U-shaped recess 210, which, however, has not proved to be disadvantageous.
  • FIG. 9 shows a detail of a fourth torsional vibration damper 4100 according to a fourth embodiment.
  • the fourth torsional vibration damper instead of the first spacer element 1200 of the first torsional vibration damper, the fourth torsional vibration damper has a fourth spacer element 4200 arranged in the U-shaped recess 210.
  • the fourth spacer 4200 is similar to the third spacer 3200 of the third torsional vibration damper 3100, but facing the same as the second spacer 2200 of the second torsional vibration damper 2100 has a third wing 4210 and a fourth wing 4220 on.
  • the third wing 4210 extends from one of the radial side edges of the fourth spacer 4200 into an area of the U-shaped recess 210 between the third spacer yoke 360 of the first centrifugal pendulum 301 and the radially inner edge of the U-shaped recess 210.
  • the fourth wing 4220 extends correspondingly from the opposite radial outer edge of the fourth spacer 4200 in a region of the U-shaped recess 210 which lies between the radially inner boundary edge of the U-shaped recess 210 and the first Abstandsboizen 340 of the second centrifugal pendulum 302.
  • the fourth 4200 distance element thus has a shape reminiscent of the Greek capital letter Omega.
  • the vanes 4210, 4220 of the fourth spacer element 4200 cause the fourth spacer element 4200 not to come into contact with the radially outer edge of the U-shaped recess 210 even under the influence of radially outward centrifugal force There, therefore, no friction can occur. Instead, reduced friction occurs only in friction regions 4230 between the vanes 4210, 4220 and the spacer booms 340, 360.
  • the fifth torsional vibration damper 5100 has, instead of the first pendulum flange 200, a second pendulum flange 5300, which has a widened U-shaped recess 5310 instead of the U-shaped recess 210.
  • the widened U-shaped recess 5100 is wider than the U-shaped recess 210, that is, has a higher difference between the outer radius and the inner radius of the recess.
  • the third distance buoy 360 of the first centrifugal pendulum 301 and the first distance buoy 340 of the second centrifugal force pendulum 302 are guided.
  • a fifth spacer element 5200 is arranged, which in this embodiment is designed as a circular disk.
  • the diameter of the circular disc is slightly smaller than the difference between the outer diameter and the inner diameter of the recess 5310th
  • the fifth spacer 5200 prevents a collision of the first centrifugal pendulum 301 and the second centrifugal pendulum 302, since even before contact of the centrifugal pendulum 301, 302, the Abstandsboizen 340th , 360 come into contact with the fifth spacer 5200.
  • an inner spacing 5220 which is dimensioned such that a contact of the centrifugal force pendulum 301, 302 is prevented, is established between the fifth spacing element 5200 and the spacing booms 340, 360.
  • the circular disk-shaped configuration of the fifth spacer element 5200 has the advantage that the fifth spacer element 5200 can roll off at the edges of the widened U-shaped recess 5110.
  • the fifth spacer element 5200 and the edges of the second pendulum flange 5300 delimiting the widened U-shaped recess 5310 in a friction region 5230 instead of a sliding friction, there is a reduced rolling friction compared to this.
  • spacer elements 1200, 2200, 3200, 4200, 5200 shown in FIGS. 6 to 10 it is also possible to use a spacer element with a different shape.
  • the invention can be used in all torsional vibration dampers, in which the outer spacer bolts of two centrifugal pendulums are guided in a common recess.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Ein Torsionsschwingungsdämpfer (1100) für einen Antriebsstrang eines Kraftfahrzeuges umfasst einen im Wesentlichen kreisscheibenförmigen Pendelflansch (200) und eine Mehrzahl von Fliehkraftpendeln (300). Dabei umfasst jedes Fliehkraftpendel eine erste Pendelmasse (320) und eine zweite Pendelmasse (330). Die erste Pendelmasse ist oberhalb einer ersten Oberfläche (230) des Pendelflansches, die zweite Pendelmasse oberhalb einer zweiten Oberfläche des Pendelflansches angeordnet. Die erste Pendelmasse und die zweite Pendelmasse sind jeweils über mindestens zwei Abstandsbolzen (340) starr miteinander verbunden. Der Pendelflansch weist eine Mehrzahl von Ausnehmungen (210) auf, in denen die Abstandsbolzen geführt sind. Dabei ist in mindestens einer ersten Ausnehmung (210) ein zweiter Abstandsbolzen (360) eines ersten Fliehkraftpendels (300) und ein erster Abstandsbolzen (340) eines zweiten Fliehkraftpendels (300) geführt. Außerdem ist in der ersten Ausnehmung ein Abstandselement (1200) angeordnet, das so bemessen ist, dass das erste Fliehkraftpendel und das zweite Fliehkraftpendel einander nicht berühren können.

Description

Torsionsschwingungsdämpfer
Die vorliegende Erfindung betrifft einen Torsionsschwingungsdämpfer gemäß dem Oberbegriff des Patentanspruchs 1.
In einem Antriebsstrang eines Kraftfahrzeugs können Torsionsschwingungen auftreten. Zur Unterdrückung dieser Torsionsschwingungen ist die Verwendung von im Antriebsstrang angeordneten Torsionsschwingungsdämpfern bekannt. Ein solcher Torsionsschwingungsdämpfer bzw. Drehschwingungsdämpfer besteht aus einem im Wesentlichen kreisscheibenförmigen Pendelflansch, an dem eine Anzahl von als Massenelemente ausgebildeten Fliehkraftpendeln angebracht sind. Die Fliehkraftpendel sind dabei in Radialrichtung und in Umfangsrichtung des Pendelflansches beweglich.
Der Pendelflansch wird durch den Antriebsstrang in eine Drehbewegung versetzt. Dadurch werden die Fliehkraftpendel radial nach außen gedrückt, wobei die Größe der nach außen wirkenden Fliehkraft von der Drehzahl des Antriebsstrangs abhängig ist. Eine ungleichförmige Winkelgeschwindigkeit des Antriebsstrangs, wie sie beispielsweise durch die Arbeitstakte einer Brennkraftmaschine hervorgerufen wird, bewirkt Auslenkungen der Fliehkraftpendel in Umfangsrichtung des Pendelflansches, wodurch die Ungleichförmigkeiten der Winkelgeschwindigkeit des Antriebsstrangs gedämpft werden. Ein solcher Torsionsschwingungsdämpfer ist beispielsweise aus der DE 10 2009 042 831 A1 bekannt.
Bei geringer Drehzahl und Winkelgeschwindigkeit des Antriebsstrangs können die auf die Fliehkraftpendel wirkenden Fliehkräfte unter Umständen nicht ausreichen, um die Fliehkraftpendel in ihren radial äußeren Positionen zu halten. Unter dem Einfluss der Gravitationskraft können die Fliehkraftpendel stattdessen derart verschoben werden, dass einander benachbarte Fliehkraftpendel gegeneinander stoßen. Hierbei kommt es zu einer Geräuschentwicklung, die als störend und nachteilig empfunden wird.
Die Aufgabe der vorliegenden Erfindung besteht daher darin, einen verbesserten Torsionsschwingungsdämpfer bereitzustellen. Diese Aufgabe wird durch einen Torsionsschwingungsdämpfer mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte Weiterbildungen sind in den abhängigen Ansprüchen angegeben. Ein erfindungsgemäßer Torsionsschwingungsdämpfer für einen Antriebsstrang eines
Kraftfahrzeuges umfasst einen im Wesentlichen kreisscheibenförmigen Pendelflansch und eine Mehrzahl von Fliehkraftpendeln. Dabei umfasst jedes Fliehkraftpendel jeweils eine erste Pendelmasse und eine zweite Pendelmasse. Die erste Pendelmasse ist oberhalb einer ersten Oberfläche des Pendelflansches und die zweite Pendelmasse oberhalb einer zweiten Oberfläche des Pendelflansches angeordnet. Außerdem sind die erste Pendelmasse und die zweite Pendelmasse jedes Fliehkraftpendels über jeweils mindestens zwei Abstandsbolzen starr miteinander verbunden. Der Pendelflansch weist dabei eine Mehrzahl von Ausnehmungen auf, in denen die Abstandsbolzen geführt sind, wobei in mindestens einer ersten Ausnehmung ein zweiter Abstandsbolzen eines ersten Fliehkraftpendels und ein erster Abstandsbolzen eines zweiten Fliehkraftpendels geführt ist. Außerdem ist in der ersten Ausnehmung ein Abstandselement angeordnet, das so bemessen ist, dass das erste Fliehkraftpendel und das zweite Fliehkraftpendel einander nicht berühren können. Vorteilhafterweise verhindert das Abstandselement dann ein Aneinanderstoßen des ersten Fliehkraftpendels und des zweiten Fliehkraftpendels. Dadurch wird eine störende Geräuschentwicklung auch bei niedrigen Drehzahlen des Antriebsstrangs verhindert.
Bevorzugt ist das Abstandselement freischwimmend in der ersten Ausnehmung angeordnet. Vorteilhafterweise kann das Abstandselement dann einer Auslenkung der Fliehkraftpendel folgen.
Ebenfalls bevorzugt ist das Abstandselement flach ausgebildet und weist im Wesentlichen dieselbe Stärke auf wie der Pendelflansch. Vorteilhafterweise kann das Abstandselement dann in der ersten Ausnehmung angeordnet werden und bewirkt keine zusätzlichen Reibungskräfte zwischen dem Abstandselement und den Pendelmassen der Fliehkraftpendel.
Gemäß einer Ausführungsform weist die erste Ausnehmung im Wesentlichen die Form eines Kreisringsektors und das Abstandselement ebenfalls im Wesentlichen die Form eines Kreisringsektors auf. Vorteilhafterweise stellt dies eine besonders einfache Ausgestaltung des Abstandselements dar.
Gemäß einer weiteren Ausführungsform weist das Abstandselement die Form einer Klammer auf. Vorteilhafterweise weist dieses Abstandselement eine besonders geringe Masse auf. Besonders bevorzugt weist das Abstandselement die Form einer in Richtung des Mittelpunkts des Pendelflansches geöffneten Klammer auf. Vorteilhafterweise kann das Abstandselement dann leicht an einer radial äußeren Begrenzungskante der ersten Ausnehmung abgleiten.
In einer Weiterbildung der Erfindung weist das Abstandselement einen ersten Flügel auf, der zwischen dem zweiten Abstandsbolzen des ersten Fliehkraftpendels und einem Rand der ersten Ausnehmung angeordnet ist, und außerdem einen zweiten Flügel auf, der zwischen dem ersten Abstandsbolzen des zweiten Fliehkraftpendels und einem Rand der ersten Ausnehmung angeordnet ist. Vorteilhafterweise tritt bei dieser Weiterbildung keine Reibung zwischen dem Abstandselement und dem Pendelflansch auf. Auch zwischen dem Abstandselement und den Abstandsbolzen tritt nur eine geringe Reibung auf.
Gemäß einer weiteren Ausführungsform ist das Abstandselement kreisscheibenförmig ausgebildet. Vorteilhafterweise kann das kreisscheibenförmige Abstandselement dann in der ersten Ausnehmung rollen. Somit tritt in dieser Ausführungsform anstelle einer Gleitreibung nur eine gegenüber der Gleitreibung reduzierte Rollreibung auf.
Ebenfalls bevorzugt füllt das Abstandselement den Raum zwischen dem zweiten Abstandsbolzen des ersten Fliehkraftpendels und dem ersten Abstandsbolzen des zweiten Fliehkraftpendels nicht vollständig aus, wenn sich das erste Fliehkraftpendel und das zweite Fliehkraftpendel in einer Ruhelage befinden. Vorteilhafterweise ermöglicht dies eine gewisse Asynch- ronität zwischen den Auslenkungen der mehreren Fliehkraftpendel in Umfangsrichtung. Die Fliehkraftpendel können sich dann unabhängig voneinander bewegen und sind nicht gekoppelt, was die Dämpfungseigenschaften des Torsionsschwingungsdämpfers verbessert. Außerdem berühren sich die Abstandsbolzen und das Abstandselement in dieser Ausführungsform bei hohen Drehzahlen und geringen Torsionsschwingungen des Antriebsstrangs nicht, so dass keine Reibung zwischen den Abstandsbolzen und dem Abstandselement auftritt. Außerdem tritt dann in diesem Betriebszustand auch keine Reibung zwischen dem Abstandselement und dem Pendelflansch auf, da das Abstandselement in der Ausnehmung nicht bewegt wird. Der Torsionsschwingungsdämpfer kann als Zweimassenschwungrad ausgebildet sein oder als einstufiger oder mehrstufiger Torsionsschwingungsdämpfer. Auch ist der Torsionsschwingungsdämpfer in Verbindung mit einem hydrodynamischen Drehmomentwandler oder einer Kupplungseinrichtung anzuordnen. Die*Erfindung wird nachfolgend anhand von Figuren näher erläutert. Dabei zeigen:
Fig. 1 eine Aufsicht auf einen an sich bekannten Torsionsschwingungsdämpfer;
Fig. 2 bis 4 Schnitte durch diesen Torsionsschwingungsdämpfer;
Fig. 5 eine weitere Ansicht des bekannten Torsionsschwingungsdämpfers;
Fig. 6 einen Torsionsschwingungsdämpfer gemäß einer ersten Ausführungsform;
Fig. 7 einen Torsionsschwingungsdämpfer gemäß einer zweiten Ausführungsform;
Fig. 8 einen Torsionsschwingungsdämpfer gemäß einer dritten Ausführungsform;
Fig. 9 einen Torsionsschwingungsdämpfer gemäß einer vierten Ausführungsform; und
Fig. 10 einen Torsionsschwingungsdämpfer gemäß einer fünften Ausführungsform.
Fig. 1 zeigt eine Aufsicht auf einen an sich bekannten Torsionsschwingungsdämpfer 100. Der Torsionsschwingungsdämpfer 100 umfasst einen im Wesentlichen kreisscheibenförmigen ersten Pendelflansch 200 mit einer zentral angeordneten Nabe 110. Über die Nabe 110 kann der Pendelflansch 200 durch einen Antriebsstrang eines Kraftfahrzeugs in eine Drehbewegung versetzt werden. Die in Fig. 1 eingezeichnete Drehrichtung 120 entspricht dabei einer Blickrichtung von einem im Antriebsstrang des Kraftfahrzeugs angeordneten Getriebe zu einer Brennkraftmaschine des Kraftfahrzeugs.
Der Torsionsschwingungsdämpfer 100 dient dazu, Torsionsschwingungen des Antriebsstrangs zu dämpfen. Zu diesem Zweck weist der Torsionsschwingungsdämpfer 100 eine Mehrzahl von Fliehkraftpendeln 300 auf. In der in Fig. 1 dargestellten Ausgestaltung sind vier Fliehkraftpendel 300, nämlich ein erstes Fliehkraftpendel 301 , ein zweites Fliehkraftpendel 302, ein drittes Fliehkraftpendel 303 und ein viertes Fliehkraftpendel 304 vorhanden. Es kann jedoch auch eine andere Zahl von Fliehkraftpendeln 300 vorgesehen sein. Die Fliehkraftpendel 300 sind zueinander identisch ausgebildet. Figuren 2 bis 4 zeigen-üinterschiedliche Schnitte durch das erste Fliehkraftpendel 301 und den ersten Pendelflansch 200. Aus Figuren 2 bis 4 ist erkennbar, dass jedes der Fliehkraftpendel 300 eine erste Pendelmasse 320 und eine zweite Pendelmasse 330 umfasst. Die erste Pendelmasse 320 jedes Fliehkraftpendels 300 ist dabei oberhalb einer in Fig. 1 sichtbaren ersten Oberfläche 230 des Pendelflansches 200 angeordnet. Die zweite Pendelmasse 330 jedes Fliehkraftpendels 300 ist oberhalb einer in Fig. 1 nicht sichtbaren rückwärtigen zweiten Oberfläche 240 des Pendelflansches 200 angeordnet.
Der Pendelflansch 200 des Torsionsschwingungsdämpfers 100 weist eine Mehrzahl U- förmiger Ausnehmungen 210 auf, wobei die Anzahl der U-förmigen Ausnehmungen 210 der Anzahl der Fliehkraftpendel 300 entspricht. In der in Fig. 1 dargestellten Ausgestaltung sind demnach vier U-förmige Ausnehmungen 210 vorhanden. Jede der U-förmigen Ausnehmungen 210 bildet einen Durchbruch durch den Pendelflansch 200 und ist so angeordnet, dass die offene Seite der U-förmigen Ausnehmung 200 in Richtung der Nabe 110 des Pendelflansches 200 weist, während die geschlossene Seite der U-förmigen Ausnehmung 210 radial nach außen orientiert ist.
Weiter weist der Pendelflansch 200 eine Mehrzahl mittlerer Ausnehmungen 220 auf, deren Anzahl der Zahl der Fliehkraftpendel 300 entspricht. Auch die mittleren Ausnehmungen 220 sind als vollständiger Durchbruch durch den Pendelflansch 200 ausgebildet. Jede mittlere Ausnehmung 220 ist in Umfangsrichtung des Pendelflansches 200 zwischen zwei U-förmigen Ausnehmungen 210 angeordnet.
Weiter weist der Pendelflansch 200 eine Mehrzahl erster Rollenausnehmungen 270 auf. Die Zahl der ersten Rollenausnehmungen 270 entspricht ebenfalls der Zahl der Fliehkraftpendel 300. Auch die ersten Rollenausnehmungen 270 stellen vollständige Durchbrüche durch den Pendelflansch 200 dar. Jede der ersten Rollenausnehmungen 270 ist in Umfangsrichtung des Pendelflansches 200 zwischen einer mittleren Ausnehmung 220 und einer U-förmigen Ausnehmung 210 angeordnet.
Weiter weist der erste Pendelflansch 200 zweite Rollenausnehmungen 280 auf, deren Anzahl der Anzahl der Fliehkraftpendel 300 entspricht. Die zweiten Rollenausnehmungen 280 sind spiegelsymmetrisch zu den ersten Rollenausnehmungen 270 ausgebildet. Jede zweite Rol- lenausnehmung 280 ist in Umfangsrichtung des Pendelflansches 200 zwischen einer mittleren Ausnehmung 220 und einer U-förmigen Ausnehmung 210 angeordnet. Somit folgen in Um- fangsrichtung des Pendelflansches 200 im Uhrzeigersinn aufeinander eine U-förmige Ausnehmung 210, eine erste Rollenausnehmung 270, eine mittlere Ausnehmung 220, eine zweite Rollenausnehmung 280 und wieder eine U-förmige Ausnehmung 210.
Die erste Pendelmasse 320 und die zweite Pendelmasse 330 jedes Fliehkraftpendels 300 sind zueinander identisch ausgebildet. Jede Pendelmasse 320, 330 ist in etwa Sichel- oder kreisnngsektorförmig ausgebildet. Der durch den Kreisringsektor überstrichene Winkelbereich ist dabei etwas geringer als 360° geteilt durch die Anzahl der Fliehkraftpendel 300. Im Beispiel der Fig. 1 ist der durch die kreisringsektorförmigen Pendelmassen 320, 330 überstrichene Winkelbereich beispielsweise etwas geringer als 90°. Dies ermöglicht es, die einzelnen Fliehkraftpendel 300 voneinander beabstandet am Umfang des Pendelflansches 200 anzuordnen.
Jede Pendelmasse 320, 330 weist eine dritte Rollenausnehmung 375 und eine vierte
Rollenausnehmung 385 auf. Die dritten und vierten Rollenausnehmungen 375, 385 sind als Durchbrüche durch die jeweilige Pendelmasse 320, 330 ausgebildet und symmetrisch bezüglich einer Symmetrieachse der kreisringsektorförmigen Pendelmassen 320, 330 angeordnet.
Fig. 2 zeigt einen Schnitt durch einen Abschnitt des Torsionsschwingungsdämpfers 100 entlang der in Fig. 1 eingezeichneten Geraden AA. Es ist erkennbar, dass die erste Pendelmasse 320 und die zweite Pendelmasse 330 des ersten Fliehkraftpendels 301 durch einen ersten Abstandsbolzen 340 starr und beabstandet miteinander verbunden sind. Der erste Abstandsbolzen 340 ist dabei durch eine der U-förmigen Ausnehmungen 210 des Pendelflansches 200 geführt. Fig. 4 zeigt einen Schnitt durch einen Abschnitt des Torsionsschwingungsdämpfers 100 entlang der in Fig. 1 eingezeichneten Geraden CC. Aus Fig. 4 ist erkennbar, dass die erste Pendelmasse 320 und die zweite Pendelmasse 330 des ersten Fliehkraftpendels 100 außerdem durch einen zweiten Abstandsbolzen 350 starr miteinander verbunden sind, der durch eine der mittleren Ausnehmungen 220 des Pendelflansches 200 geführt ist. Aus Fig. 1 ist außerdem erkennbar, dass spiegelsymmetrisch bezüglich der Symmetrieachse des ersten Fliehkraftpendels 301 ein dritter Abstandsbolzen 360 vorhanden ist, der die erste Pendelmasse 320 und die zweite Pendelmasse 330 des ersten Fliehkraftpendels 301 starr miteinander verbindet und durch eine weitere U-förmige Ausnehmung 210 des Pendelflansches 200 geführt ist. Aus Fig. 1 ist außerdem erkennbar, dass in jeder der U-förmigen Ausnehmungen 210 ein erster Abstandsbolzen 340 eines ersten Fliehkraftpendels 300 und ein dritter Abstandsbolzen 360 eines benachbarten zweiten Fliehkraftpendels 300 angeordnet ist. Fig. 3 zeigt einen Schnitt durch einen Abschnitt des Torsionsschwingungsdämpfers 100 entlang der in Fig. 1 eingezeichneten Geraden BB. Aus Fig. 3 ist erkennbar, dass in der dritten Rollenausnehmung 375 des ersten Fliehkraftpendels 301 und einer der ersten Rollenaus- nehmungen 270 des Pendelflansches 200 eine erste Rolle 370 angeordnet ist. Durch die erste Rolle 370 wird die Bewegung des ersten Fliehkraftpendels 100 relativ zum ersten Pendelflansch 200 in radialer Richtung begrenzt. Aus Fig. 1 ist außerdem erkennbar, dass in der vierten Rollenausnehmung 385 des ersten Fliehkraftpendels 301 und einer zweiten Rollen- ausnehmung 280 des Pendelflansches 200 eine zweite Rolle 380 angeordnet ist, deren Ausgestaltung der der ersten Rolle 370 entspricht.
Wird der Torsionsschwingungsdämpfer 100 durch den Antriebsstrang des Kraftfahrzeugs in eine Rotation um die durch die Nabe 110 gebildete Drehachse versetzt, so wirken auf die Fliehkraftpendel 300 radial nach außen weisende Fliehkräfte, die die Fliehkraftpendel 300 in radialer Richtung so weit auslenken, bis die Pendelmassen 320, 330 jedes Fliehkraftpendels 300 entsprechend der Darstellung der Fig. 3 an den Rollen 370, 380 anliegen. Eine der Drehbewegung überlagerte Torsionsschwingung bewirkt Auslenkungen der Fliehkraftpendel 300 in Umfangsrichtung des Pendelflansches 200. Die Rollen 370, 380 werden dabei gedreht und wälzen sich an den Rändern der Ausnehmungen 375, 385 der Fliehkraftpendel 300 und den Rändern der Ausnehmungen 270, 280 des Pendelflansches 200 ab. Durch diese Auslenkbarkeit der Fliehkraftpendel 300 in Umfangsrichtung des Pendelflansches 200 werden der Drehbewegung überlagerte Torsionsschwingungen gedämpft. Die Fliehkraftpendel 300 schwingen dabei im Wesentlichen synchron, wobei eine gewisse Asynchronität möglich ist.
Unterschreitet die Drehzahl des Antriebsstrangs einen gewissen Mindestwert, der
beispielsweise in der Größenordnung von 300 U/min liegen kann, so reichen die auf die Fliehkraftpendel 300 wirkenden Fliehkräfte nicht mehr aus, um die Fliehkraftpendel 300 vollständig in radialer Richtung auszulenken. Unter dem Einfluss der Gravitationskraft kann es zur Kollision einzelner Fliehkraftpendel 300 kommen. Dies ist beispielhaft in Fig. 5 dargestellt, wo das zweite Fliehkraftpendel 302 und das dritte Fliehkraftpendel 303 sowie das dritte Fliehkraftpendel 303 und das vierte Fliehkraftpendel 304 in zwei Kollisionspunkten 400 aneinanderstoßen. Das Aneinanderstoßen der Fliehkraftpendel 300 führt zu einer Geräuschentwicklung, die als störend empfunden wird.
Fig. 6 zeigt einen Ausschnitt eines ersten Torsionsschwingungsdämpfers 1100 gemäß einer ersten Ausführungsform. In Fig. 6 dargestellt sind ein Ausschnitt des ersten Pendelflansches 200 mit einer der U-förmigen Ausnehmungen 210, ein Ausschnitt der hinter dem Pendelflansch 200 liegenden zweiten Pendelmasse 330 des ersten Fliehkraftpendels 301 , ein Ausschnitt der hinter dem Pendelflansch 200 liegenden zweiten Pendelmasse 330 des zweiten Fliehkraftpendels 302, sowie der dritte Abstandsbolzen 360 des ersten Fliehkraftpendels 301 und der erste Abstandsbolzen 340 des zweiten Fliehkraftpendels 302. Außerdem ist in der U- förmigen Ausnehmung 210 ein erstes Abstandselement 1200 angeordnet. Das erste Abstandselement 1200 ist, wie die U-förmige Ausnehmung 210, etwa kreisringsektorförmig ausgebildet, überstreicht dabei jedoch einen geringeren Winkelbereich als die U-förmige Ausnehmung 210. In radialer Richtung, somit in Richtung zwischen dem inneren und dem äußeren das erste Abstandselement 1200 begrenzenden Kreisring, weist das erste Abstandselement 1200 eine etwas geringere Breite als die U-förmige Ausnehmung 210 auf. In Richtung senkrecht zur ersten Oberfläche 230 des Pendelflansches 200 weist das erste Abstandselement 1200 in etwa die gleiche Stärke wie der Pendelflansch 200 auf.
Das erste Abstandselement 1200 ist zwischen dem dritten Abstandsbolzen 360 des ersten Fliehkraftpendels 301 und dem ersten Abstandsbolzen 340 des zweiten Fliehkraftpendels 302 angeordnet. Der durch das erste Abstandselement 1200 überstrichene Winkel ist so bemessen, dass sich zwischen dem dritten Abstandsbolzen 360 des ersten Fliehkraftpendels 301 und dem ersten Abstandselement 1200, sowie zwischen dem ersten Abstandsbolzen 340 des zweiten Fliehkraftpendels 302 und dem ersten Abstandselement 1200 jeweils ein Innenabstand 1220 ausbildet, um den die Abstandsbolzen 340, 360 und das erste Abstandselement 1200 voneinander beabstandet sind, wenn sich die Fliehkraftpendel 301 , 302 in ihrer Ruhelage befinden. Werden das erste Fliehkraftpendel 301 und das zweite Fliehkraftpendel 302 durch eine asynchrone Auslenkung der Fliehkraftpendel 301 , 302 in Umfangsrichtung des Pendelflansches 200 einander angenähert, so ist diese Annäherung nur soweit möglich, bis die Abstandsbolzen 340, 360 mit dem ersten Abstandselement 1200 in Kontakt kommen. Folglich gewährleistet das erste Abstandselement 1200 stets einen minimalen Pendelabstand 1210 zwischen dem dritten Abstandsbolzen 360 des ersten Fliehkraftpendels 301 und dem ersten Abstandsbolzen 340 des zweiten Fliehkraftpendels 302.
Befindet sich der erste Torsionsschwingungsdämpfer 1100 in Drehung, so bewirkt eine auf das erste Abstandselement 1200 wirkende Fliehkraft 1240 eine Anlage des ersten Abstandselements 1200 am radial äußeren Rand der U-förmigen Ausnehmung 210. Werden das erste Fliehkraftpendel 301 und das zweite Fliehkraftpendel 302 in Umfangsrichtung des Pendelflansches 200 ausgelenkt, so bewirkt dies auch eine Verschiebung des ersten Abstandselements 1200 innerhalb der U-förmigen Ausnehmung 210 in Umfangsrichtung des Pendelflansches 200. Dadurch kommt es in einem Reibungsbereich 1230 am radial äußeren Rand der U- förmigen Ausnehmung 210 zum Auftreten einer Reibungskraft. Diese Reibungskraft wächst mit der Drehzahl des ersten Torsionsschwingungsdämpfers 1100. Untersuchungen haben jedoch ergeben, dass diese Reibung keinen negativen Einfluss auf die Funktion und Übertragungsfähigkeit des ersten Torsionsschwingungsdämpfers 1100 hat.
Der Innenabstand 1220 kann, je nach Anforderung, unterschiedlich gewählt werden. Wird der Innenabstand 1220 relativ groß gewählt, so ist eine Asynchronität der Auslenkungen der Fliehkraftpendel 300 in Umfangsrichtung des Pendelflansches 200 möglich. Die Fliehkraftpendel 300 bewegen sich dann unabhängig voneinander und sind nicht gekoppelt. Bei hohen Drehzahlen des ersten Torsionsschwingungsdämpfers 1100 und kleinen Torsionsschwingungen berühren die Abstandsbolzen 340, 360 und das erste Abstandselement 1200 einander nicht, so dass auch keine Reibung in diesem Bereich auftreten kann. Ebenso entsteht in diesem Betriebszustand keine Reibung zwischen dem Abstandselement 1200 und den Rändern der U-förmigen Ausnehmung 210, da das erste Abstandselement 1200 ortsfest in der U- förmigen Ausnehmung 210 verharrt. Der Innenabstand 1220 kann jedoch auch so gering gewählt werden, dass asynchrone seitliche Auslenkungen der Fliehkraftpendel 300 nicht möglich sind und die einzelnen Fliehkraftpendel 300 gekoppelt und synchron zueinander in Umfangsrichtung des Pendelflansches 200 ausgelenkt werden.
Fig. 7 zeigt einen Ausschnitt eines zweiten Torsionsschwingungsdämpfers 2100 gemäß einer zweiten Ausführungsform. Der gezeigte Ausschnitt entspricht dem des ersten Torsionsschwingungsdämpfers 1100 der Fig. 6. Allerdings ist beim zweiten Torsionsschwingungs- dämpfer 2100 anstelle des ersten Abstandselements 1200 ein zweites Abstandselement 2200 in der U-förmigen Ausnehmung 210 vorgesehen. Gegenüber dem ersten Abstandselement 1200 weist das zweite Abstandselement 2200 zusätzlich einen ersten Flügel 2210 und einen zweiten Flügel 2220 auf. Der erste Flügel 2210 erstreckt sich als Fortsetzung der radial inneren Außenkante des zweiten Abstandseiements 2200 in den zwischen dem dritten Abstandsbolzen 360 des ersten Fliehkraftpendels 301 und der radial inneren Kante der U-förmigen Ausnehmung 210. Der zweite Flügel 2220 erstreckt sich als Fortsetzung der radial inneren Außenkante des zweiten Abstandseiements 2200 in den Bereich zwischen dem ersten Abstandsbolzen 340 des zweiten Fliehkraftpendels 302 und der radial inneren Kante der U- förmigen Ausnehmung 210. Die Flügel 2210, 2220 sind somit senkrecht an die radialen Begrenzungsflächen des zweiten Abstandseiements 2200 angesetzt. Die Flügel 2210, 2220 des zweiten Abstandseiements 2200 bewirken, dass das zweite Abstandselement 2200 auch unter dem Einfluss einer auf das zweite Abstandselement 2200 wirkenden Fliehkraft nicht gegen die radial äußere Kante der U-förmigen Ausnehmung 210 abgelenkt werden kann. Stattdessen kommen die Flügel 2210, 2220 unter dem Einfluss einer radial nach außen wirkenden Fliehkraft an den Abstandsbolzen 340, 360 zur Anlage. Folglich kann auch keine Reibung zwischen dem zweiten Abstandselement 2200 und dem ersten Pendelflansch 200 auftreten. Eine geringe Reibung tritt lediglich in einem Reibungsbereich 2230 zwischen den Flügeln 2210, 2220 und den Abstandsbolzen 340, 360 auf. Bezüglich der Wahl des Innenabstands 2240 zwischen dem kreisringsektorförmigen Abschnitt des zweiten Abstandselements 2200 und den Abstandsbolzen 340, 360 gilt das zum ersten Abstandselement 1200 der Fig. 6 Gesagte.
Fig. 8 zeigt einen Ausschnitt eines dritten Torsionsschwingungsdämpfers 3100 gemäß einer dritten Ausführungsform. Anstelle des ersten Abstandselements 1200 des ersten Torsionsschwingungsdämpfers 1100 der Fig. 6 weist der dritte Torsionsschwingungsdämpfer 3100 ein drittes Abstandselement 3200 auf. Die äußere Kontur des dritten Abstandselements 3200 ist ebenfalls kreisringsektorförmig und entspricht der des ersten Abstandselements 1200. Allerdings sind beim dritten Abstandselement 3200 gegenüber dem ersten Abstandselement 1200 die radial innere Begrenzungskante und der größte Teil des flächigen Bereichs entfernt, so dass lediglich die radial äußere Begrenzungskante und die beiden radialen Begrenzungskanten verbleiben. Insgesamt weist das dritte Abstandselement 3200 somit die Form einer Klammer auf, deren offene Seite in Richtung des Zentrums des Pendelflansches 200 weist. Gegenüber dem ersten Abstandselement 1200 weist das dritte Abstandselement 3200 eine reduzierte Masse auf. Außerdem bewirkt die klammerartige Gestaltung des dritten Abstandselements 3200 eine Elastizität des dritten Abstandselements 3200. Diese-Elastizität kann das Auftreffen der Abstandsbolzen 340, 360 auf das dritte Abstandselement 3200 dämpfen und dadurch eine weitere Geräuschreduzierung bewirken. Wie beim ersten Abstandselement 1200 kann in einem radial äußeren Reibungsbereich 3230 zwischen dem dritten Abstandselement 3200 und der radial äußeren Kante der U-förmigen Ausnehmung 210 eine Reibkraft auftreten, die sich jedoch als nicht nachteilig erwiesen hat.
Fig. 9 zeigt einen Ausschnitt eines vierten Torsionsschwingungsdämpfers 4100 gemäß einer vierten Ausführungsform. Anstelle des ersten Abstandselements 1200 des ersten Torsionsschwingungsdämpfers weist der vierte Torsionsschwingungsdämpfer ein in der U-förmigen Ausnehmung 210 angeordnetes viertes Abstandselement 4200 auf. Das vierte Abstandselement 4200 gleicht dem dritten Abstandselement 3200 des dritten Torsionsschwingungsdämpfers 3100, weist gegenüber diesem jedoch wie das zweite Abstandselement 2200 des zweiten Torsionsschwingungsdämpfers 2100 einen dritten Flügel 4210 und einen vierten Flügel 4220 auf. Der dritte Flügel 4210 erstreckt sich von einer der radialen Seitenkanten des vierten Abstandselements 4200 in einen zwischen dem dritten Abstandsboizen 360 des ersten Fliehkraftpendels 301 und der radial inneren Kante der U-förmigen Ausnehmung 210 gelegenen Bereich der U-förmigen Ausnehmung 210. Der vierte Flügel 4220 erstreckt sich entsprechend von der gegenüberliegenden radialen Außenkante des vierten Abstandselements 4200 in einen Bereich der U-förmigen Ausnehmung 210, der zwischen der radial inneren Begrenzungskante der U-förmigen Ausnehmung 210 und dem ersten Abstandsboizen 340 des zweiten Fliehkraftpendels 302 liegt. Insgesamt weist das vierte Abstandselement 4200 damit eine Form auf, die an den griechischen Großbuchstaben Omega erinnert. Wie beim zweiten Abstandselement 2200 des zweiten Torsionsschwingungsdämpfers 2100 bewirken die Flügel 4210, 4220 des vierten Abstandselements 4200, dass das vierte Abstandselement 4200 auch unter dem Einfluss einer radial nach außen wirkenden Fliehkraft nicht am radial äußeren Rand der U-förmigen Ausnehmung 210 zur Anlage kommt und dort somit auch keine Reibung auftreten kann. Stattdessen tritt eine reduzierte Reibung nur in Reibungsbereichen 4230 zwischen den Flügeln 4210, 4220 und den Abstandsboizen 340, 360 auf.
Fig. 10 zeigt einen Ausschnitt eines fünften Torsionsschwingungsdämpfers gemäß einer fünften Ausführungsform. Der fünfte Torsionsschwingungsdämpfer 5100 weist anstelle des ersten Pendelflansches 200 einen zweiten Pendelflansch 5300 auf, der anstelle der U- förmigen Ausnehmung 210 eine geweitete U-förmige Ausnehmung 5310 aufweist. Die geweitete U-förmige Ausnehmung 5100 ist gegenüber der U-förmigen Ausnehmung 210 breiter ausgebildet, weist also eine höhere Differenz zwischen dem Außenradius und dem Innenradius der Ausnehmung auf. In der geweiteten U-förmigen Ausnehmung 5310 werden wiederum der dritte Abstandsboizen 360 des ersten Fliehkraftpendels 301 und der erste Abstandsboizen 340 des zweiten Fliehkraftpendels 302 geführt. Außerdem ist in der geweiteten Ausnehmung 5310 zwischen den Abstandsboizen 340, 360 ein fünftes Abstandselement 5200 angeordnet, das in dieser Ausführungsform als Kreisscheibe ausgebildet ist. Der Durchmesser der Kreisscheibe ist etwas geringer als die Differenz zwischen dem Außendurchmesser und dem Innendurchmesser der Ausnehmung 5310. Das fünfte Abstandselement 5200 verhindert ein Aneinanderschlagen des ersten Fliehkraftpendels 301 und des zweiten Fliehkraftpendels 302, da bereits vor einem Kontakt der Fliehkraftpendel 301 , 302 die Abstandsboizen 340, 360 mit dem fünften Abstandselement 5200 in Kontakt kommen. Befinden sich die Fliehkraftpendel 301 , 302 in Ruhelage, so stellt sich zwischen dem fünften Abstandselement 5200 und den Abstandsboizen 340, 360 jeweils ein Innenabstand 5220 ein, der so bemessen ist, dass ein Kontakt der Fliehkraftpendel 301 , 302 verhindert wird. Durch die Wahl des Durchmessers des kreisscheibenförmigen fünften Abstandselements 5200 und der Innenabstände 5220 kann al- so sichergestellt werden, dass der dritte Abstandsbolzen 360 des ersten Fliehkraftpendels 301 und der erste Abstandsbolzen 340 des zweiten Fliehkraftpendels 302 immer einen minimalen Pendelabstand 5210 einhalten. Die kreisscheibenförmige Ausgestaltung des fünften Abstandselements 5200 hat den Vorteil, dass das fünfte Abstandselement 5200 an den Kanten der geweiteten U-förmigen Ausnehmung 5110 abrollen kann. Somit tritt zwischen dem fünften Abstandselement 5200 und den die geweitete U-förmige Ausnehmung 5310 begrenzenden Kanten des zweiten Pendelflansches 5300 in einem Reibungsbereich 5230 anstelle einer Gleitreibung eine gegenüber dieser reduzierte Rollreibung auf.
Anstelle der in Figuren 6 bis 10 gezeigten Ausführungen der Abstandselemente 1200, 2200, 3200, 4200, 5200 kann auch ein Abstandselement mit anderer Formgebung verwendet werden.
Anstelle der Abstandselemente könnte auch eine Verkürzung der Pendelmassen 320, 330 der Fliehkraftpendel 300 ein Aneinanderschlagen der Fliehkraftpendel 300 verhindern. Dies ginge jedoch mit einer Massenreduzierung der Fliehkraftpendel 300 einher, wodurch sich die Dämpfungseigenschaften des Torsionsschwingungsdämpfers verschlechtern würden. Außerdem würden dann die Abstandsbolzen 340, 360 der Fliehkraftpendel 300 gegen den Pendelflansch 200, 5300 schlagen.
Die Erfindung kann bei allen Torsionsschwingungsdämpfern eingesetzt werden, bei denen die äußeren Abstandsbolzen zweier Fliehkraftpendel in einer gemeinsamen Ausnehmung geführt werden.
Bezugszeichenliste
100 bekannter Torsionsschwingungsdämpfer
110 Nabe
120 Drehrichtung
200 erster Pendelflansch
210 U-förmige Ausnehmung
220 mittlere Ausnehmung
230 erste Oberfläche
240 zweite Oberfläche
270 erste Rollenausnehmung
280 zweite Rollenausnehmung
300 Fliehkraftpendel
301 erstes Fliehkraftpendel
302 zweites Fliehkraftpendel
303 drittes Fliehkraftpendel
304 viertes Fliehkraftpendel
310 Pendelbewegungsrichtung
320 erste Pendelmasse
330 zweite Pendelmasse
340 erster Abstandsbolzen
350 zweiter Abstandsbolzen
360 dritter Abstandsbolzen
370 erste Rolle
375 dritte Rollenausnehmung
380 zweite Rolle
385 vierte Rollenausnehmung
400 Kollisionspunkt
1100 erster Torsionsschwingungsdämpfer
1200 erstes Abstandselement » Pendelabstand
Innenabstand
Reibungsbereich
Fliehkraft zweiter Torsionsschwingungsdämpfer zweites Abstandselement erster Flügel
zweiter Flügel
Reibungsbereich
Innenabstand dritter Torsionsschwingungsdämpfer drittes Abstandselement
Reibungsbereich vierter Torsionsschwingungsdämpfer viertes Abstandselement
dritter Flügel
vierter Flügel
Reibungsbereich fünfter Torsionsschwingungsdämpfer fünftes Abstandselement
Pendelabstand
Innenabstand
Reibungsbereich
zweiter Pendelflansch
geweitete U-förmige Ausnehmung

Claims

Patentansprüche
1. Torsionsschwingungsdämpfer (1100, 2100, 3100, 4100, 5100) für einen Antriebsstrang eines Kraftfahrzeuges,
mit einem im Wesentlichen kreisscheibenförmigen Pendelflansch (200, 5300) und einer Mehrzahl von Fliehkraftpendeln (300),
wobei jedes Fliehkraftpendel (300, 301 , 302, 303, 304) jeweils eine erste Pendelmasse (320) und eine zweite Pendelmasse (330) umfasst,
wobei die erste Pendelmasse (320) an einer ersten Oberfläche (230) des Pendelflansches (200, 5300) und die zweite Pendelmasse (330) an einer zweiten Oberfläche (240) des Pendelflansches (200, 5300) angeordnet ist,
wobei die erste Pendelmasse (320) und die zweite Pendelmasse (330) über jeweils mindestens zwei Abstandsbolzen (340, 360) starr miteinander verbunden sind, wobei der Pendelflansch (200, 5300) eine Mehrzahl von Ausnehmungen (210) aufweist, in denen die Abstandsbolzen (340, 360) geführt sind,
wobei in mindestens einer ersten Ausnehmung (210) ein zweiter Abstandsbolzen (360) eines ersten Fliehkraftpendels (300, 301 ) und ein erster Abstandsbolzen (340) eines zweiten Fliehkraftpendels (300, 302) geführt ist,
dadurch gekennzeichnet, dass
in der ersten Ausnehmung (210) ein Abstandselement (1200, 2200, 3200, 4200, 5200) angeordnet ist,
wobei das Abstandselement (1200, 2200, 3200, 4200, 5200) so bemessen ist, dass das erste Fliehkraftpendel (300, 301 ) und das zweite Fliehkraftpendel (300, 302) einander nicht berühren können.
2. Torsionsschwingungsdämpfer (1100, 2100, 3100, 4100, 5100) gemäß Anspruch 1 , dadurch gekennzeichnet, dass
das Abstandselement (1200, 2200, 3200, 4200, 5200) freischwimmend in der ersten Ausnehmung (210) angeordnet ist.
3. Torsionsschwingungsdämpfer (1100, 2100, 3100, 4100, 5100) gemäß einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass
das Abstandselement (1200, 2200, 3200, 4200, 5200) flach ausgebildet ist und im Wesentlichen dieselbe Stärke aufweist wie der Pendelflansch (200, 5300).
4. Torsionsschwingungsdämpfer (1100, 2100) gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
die erste Ausnehmung (210) im Wesentlichen die Form eines Kreisringsektors aufweist und das Abstandselement (1200, 2200) ebenfalls im Wesentlichen die Form eines Kreisringsektors aufweist.
5. Torsionsschwingungsdämpfer (3100, 4100) gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass
das Abstandselement (3200, 4200) die Form einer Klammer aufweist.
6. Torsionsschwingungsdämpfer (3100, 4100) gemäß Anspruch 5,
dadurch gekennzeichnet, dass
das Abstandselement (3200, 4200) die Form einer in Richtung des Mittelpunkts des Pendelflansches (200, 5300) geöffneten Klammer aufweist.
7. Torsionsschwingungsdämpfer (2100, 4100) gemäß einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass
das Abstandselement (2200, 4200) einen ersten Flügel (2210, 4210) aufweist, der zwischen dem zweiten Abstandsbolzen (360) des ersten Fliehkraftpendels (300, 301 ) und einem Rand der ersten Ausnehmung (210) angeordnet ist,
und das Abstandselement (2200, 4200) einen zweiten Flügel (2220, 4220) aufweist, der zwischen dem ersten Abstandsbolzen (340) des zweiten Fliehkraftpendels (300, 302) und einem Rand der ersten Ausnehmung (210) angeordnet ist.
8. Torsionsschwingungsdämpfer (5100) gemäß einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
das Abstandselement (5200) kreisscheibenförmig ausgebildet ist.
9. Torsionsschwingungsdämpfer (1100, 2100, 3100, 4100, 5100) gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Abstandselement (1200, 2200, 3200, 4200, 5200) den Raum zwischen dem zweiten Abstandsbolzen (360) des ersten Fliehkraftpendels (300, 301 ) und dem ersten Abstandsbolzen (340) des zweiten Fliehkraftpendels (300, 302) nicht vollständig ausfüllt, wenn sich das erste Fliehkraftpendel (300, 301 ) und das zweite Fliehkraftpendel (300, 302) in einer Ruhelage befinden.
PCT/DE2011/000197 2010-03-11 2011-02-28 Torsionsschwingungsdämpfer WO2011110153A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180013403.4A CN102792057B (zh) 2010-03-11 2011-02-28 扭转振动减振器
JP2012556382A JP5665890B2 (ja) 2010-03-11 2011-02-28 トーショナルバイブレーションダンパ
DE112011100859.7T DE112011100859B4 (de) 2010-03-11 2011-02-28 Torsionsschwingungsdämpfer
US13/602,890 US9261165B2 (en) 2010-03-11 2012-09-04 Torsional vibration damper

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE102010011142 2010-03-11
DE102010011142.2 2010-03-11
DE102010027404 2010-07-15
DE102010027404.6 2010-07-15
DE102010031989.9 2010-07-22
DE102010031989 2010-07-22
DE102010051860.3 2010-11-18
DE102010051860 2010-11-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/602,890 Continuation US9261165B2 (en) 2010-03-11 2012-09-04 Torsional vibration damper

Publications (1)

Publication Number Publication Date
WO2011110153A1 true WO2011110153A1 (de) 2011-09-15

Family

ID=44508103

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/DE2011/000197 WO2011110153A1 (de) 2010-03-11 2011-02-28 Torsionsschwingungsdämpfer
PCT/DE2011/000198 WO2011120485A1 (de) 2010-03-11 2011-02-28 Fliehkraftpendeleinrichtung

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/DE2011/000198 WO2011120485A1 (de) 2010-03-11 2011-02-28 Fliehkraftpendeleinrichtung

Country Status (6)

Country Link
US (1) US9261165B2 (de)
JP (1) JP5665890B2 (de)
CN (2) CN103038540B (de)
CA (1) CA2811347C (de)
DE (3) DE112011100859B4 (de)
WO (2) WO2011110153A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012221544A1 (de) 2011-12-05 2013-06-06 Schaeffler Technologies AG & Co. KG Antriebsstrang
WO2013121123A1 (fr) 2012-01-26 2013-08-22 Valeo Embrayages Dispositif de transmission de couple pour vehicule automobile
CN103975177A (zh) * 2011-11-07 2014-08-06 Valeo离合器公司 包括改良型引导系统的摆动振子类型的过滤装置
WO2015036688A1 (fr) 2013-09-10 2015-03-19 Valeo Embrayages Dispositif d'amortissement pendulaire

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011110150A1 (de) * 2010-03-11 2011-09-15 Schaeffler Technologies Gmbh & Co. Kg Fliehkraftpendeleinrichtung
DE102011103471B4 (de) 2010-06-29 2018-09-20 Schaeffler Technologies AG & Co. KG Fliehkraftpendel
DE102011088574A1 (de) * 2010-12-23 2012-06-28 Schaeffler Technologies Gmbh & Co. Kg Fliehkraftpendeleinrichtung
FR2984983B1 (fr) * 2011-12-22 2017-01-13 Valeo Embrayages Dispositif de filtration comportant des moyens d'amortissement par frottement
DE102013213008A1 (de) * 2012-07-06 2014-02-20 Schaeffler Technologies AG & Co. KG Drehschwingungstilger
WO2014079442A1 (de) * 2012-11-22 2014-05-30 Schaeffler Technologies AG & Co. KG Hydrodynamischer drehmomentwandler
DE102012025327B4 (de) 2012-12-22 2017-03-30 Audi Ag Fliehkraftpendeleinrichtung sowie Antriebsstrang eines Kraftfahrzeugs
DE112014002903A5 (de) * 2013-06-21 2016-03-10 Schaeffler Technologies AG & Co. KG Drehmomentübertragungseinrichtung
WO2015113540A1 (de) 2014-01-28 2015-08-06 Schaeffler Technologies AG & Co. KG Fliehkraftpendel
DE102014003574A1 (de) * 2014-03-10 2015-09-10 Süddeutsche Gelenkscheibenfabrik GmbH & Co. KG Drehschwingungstilger
US9546706B2 (en) 2014-04-16 2017-01-17 Ford Global Technologies, Llc Pendulum absorber with sliding joint
DE112015001922A5 (de) 2014-04-23 2016-12-29 Schaeffler Technologies AG & Co. KG Fliehkraftpendel
DE102014211740A1 (de) * 2014-06-18 2015-12-24 Schaeffler Technologies AG & Co. KG Fliehkraftpendeleinrichtung
DE102014220927A1 (de) 2014-10-15 2016-04-21 Schaeffler Technologies AG & Co. KG Drehschwingungsdämpfer
FR3029252B1 (fr) * 2014-11-28 2016-12-09 Valeo Embrayages Dispositif d'amortissement d'oscillations de torsion
DE102016206114A1 (de) 2015-04-22 2016-10-27 Schaeffler Technologies AG & Co. KG Fliehkraftpendel
FR3036762B1 (fr) * 2015-06-01 2017-06-02 Valeo Embrayages Dispositif d'amortissement d'oscillations de torsion
FR3039870B1 (fr) * 2015-08-05 2017-07-28 Valeo Embrayages Dispositif d'amortissement d'oscillations de torsion
KR101694049B1 (ko) 2015-08-24 2017-01-09 현대자동차주식회사 차량용 진동 저감 장치
FR3042006B1 (fr) * 2015-10-05 2017-11-10 Valeo Embrayages Dispositif d'amortissement d'oscillations de torsion
DE102015220234A1 (de) * 2015-10-16 2017-04-20 Zf Friedrichshafen Ag Dämpfungsanordnung für wenigstens eine Tilgermasse
FR3045121A1 (fr) * 2015-12-09 2017-06-16 Valeo Embrayages Dispositif d'amortissement pendulaire
FR3046649A1 (fr) * 2016-01-13 2017-07-14 Valeo Embrayages Dispositif d'amortissement pendulaire
US20170284484A1 (en) * 2016-03-30 2017-10-05 Nlb Corp. Electromagnetic clutch for high-pressure pump
DE102017117951A1 (de) * 2016-08-12 2018-02-15 Schaeffler Technologies AG & Co. KG Fliehkraftpendel und Hydrodynamischer Drehmomentwandler mit diesem
DE102016222383B4 (de) 2016-11-15 2023-06-15 Schaeffler Technologies AG & Co. KG Fliehkraftpendeleinrichtung mit einem Abstandselement für die Pendelmassen
WO2018193185A1 (fr) * 2017-04-18 2018-10-25 Valeo Embrayages Dispositif d'amortissement de torsion
DE102017110022A1 (de) 2017-05-10 2018-11-15 Schaeffler Technologies AG & Co. KG Fliehkraftpendeleinrichtung mit einem Vorspannelement zur Führung der Zylinderrollen
DE102019118888A1 (de) * 2019-07-12 2021-01-14 Schaeffler Technologies AG & Co. KG Befestigung von Anlaufelementen, die Pendelmassen eines Fliehkraftpendels zugeordnet sind
DE102019125506A1 (de) * 2019-09-23 2021-03-25 Schaeffler Technologies AG & Co. KG Drehschwingungsdämpfer mit einem Fliehkraftpendel
USD934764S1 (en) * 2020-02-24 2021-11-02 Action Clutch, Inc. Clutch retainer plate
US11396923B2 (en) * 2020-09-15 2022-07-26 Schaeffler Technologies AG & Co. KG Centrifugal pendulum absorber with radial travel stop
DE102021101608B4 (de) 2021-01-26 2024-04-18 Schaeffler Technologies AG & Co. KG Fliehkraftpendel
US12222016B2 (en) 2022-03-11 2025-02-11 Schaeffler Technologies AG & Co. KG Segmented centrifugal pendulum absorber mass carrier
CN116441065B (zh) * 2023-05-25 2024-05-03 安徽省荣昌新材料科技有限公司 一种分离式离心装置及其在聚酰胺树脂生产中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831156A1 (de) * 1998-07-11 2000-01-13 Freudenberg Carl Fa Drehzahladaptiver Schwingungstilger
DE102004011830A1 (de) * 2003-03-14 2004-09-23 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehschwingungsdämpfer
GB2413614A (en) * 2004-05-01 2005-11-02 Safe Developments Ltd A flywheel with pendulum masses tracking an order of vibration across engine speeds
DE102009042831A1 (de) 2008-10-27 2010-04-29 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Antriebsstrang mit Fliehkraftpendel

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2010957A1 (de) * 1970-03-07 1971-09-23 Ringspann Maurer Kg A Elastische Wellenkupplung mit metallischen Elementen
FR2593252B1 (fr) * 1986-01-22 1990-09-07 Valeo Volant amortisseur pour transmission, notamment pour vehicule automobile
GB2254906B (en) * 1991-01-30 1995-08-16 Automotive Products Plc A twin mass flywheel
DE19609041C2 (de) * 1996-03-08 1998-10-15 Mannesmann Sachs Ag Drehschwingungsdämpfer
DE19615890C1 (de) * 1996-04-22 1998-01-02 Freudenberg Carl Fa Kurbelwelle
DE19631989C1 (de) * 1996-08-08 1997-09-04 Freudenberg Carl Fa Drehzahladaptiver Tilger
DE19831153A1 (de) * 1998-07-11 2000-01-13 Freudenberg Carl Fa Drehzahladaptiver Schwingungstilger
DE19831158A1 (de) * 1998-07-11 2000-01-13 Freudenberg Carl Fa Schwungrad
KR20000025096A (ko) * 1998-10-08 2000-05-06 윤종용 회전체의 동적 흡진장치
JP4797176B2 (ja) * 2001-06-12 2011-10-19 シェフラー テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト トルク伝達装置
JP4364668B2 (ja) * 2004-02-17 2009-11-18 本田技研工業株式会社 遠心クラッチ
EP1744074A3 (de) * 2005-07-11 2008-10-01 LuK Lamellen und Kupplungsbau Beteiligungs KG Drehmomentübertragungseinrichtung
DE102009037481C5 (de) 2008-09-18 2023-08-24 Schaeffler Technologies AG & Co. KG Drehzahladaptiver Tilger, insbesondere Fliehkraftpendeleinrichtung
DE102009042825B4 (de) 2008-10-30 2016-09-15 Schaeffler Technologies AG & Co. KG Drehmomentübertragungseinrichtung
DE102009042836A1 (de) * 2008-11-24 2010-05-27 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Fliehkraftpendel
DE102009053482A1 (de) * 2008-12-11 2010-09-02 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Fliehkraftpendel
WO2010105589A1 (de) * 2009-03-16 2010-09-23 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Fliehkraftpendel
US9032837B2 (en) * 2009-08-05 2015-05-19 Chrysler Group Llc Pendulum absorber system
DE112011104566A5 (de) * 2010-12-23 2013-09-19 Schaeffler Technologies AG & Co. KG Fliehkraftpendeleinrichtung
FR3009853B1 (fr) * 2013-08-23 2015-08-14 Valeo Embrayages Procede de montage d'un dispositif d'amortissement pendulaire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831156A1 (de) * 1998-07-11 2000-01-13 Freudenberg Carl Fa Drehzahladaptiver Schwingungstilger
DE102004011830A1 (de) * 2003-03-14 2004-09-23 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehschwingungsdämpfer
GB2413614A (en) * 2004-05-01 2005-11-02 Safe Developments Ltd A flywheel with pendulum masses tracking an order of vibration across engine speeds
DE102009042831A1 (de) 2008-10-27 2010-04-29 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Antriebsstrang mit Fliehkraftpendel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103975177A (zh) * 2011-11-07 2014-08-06 Valeo离合器公司 包括改良型引导系统的摆动振子类型的过滤装置
DE102012221544A1 (de) 2011-12-05 2013-06-06 Schaeffler Technologies AG & Co. KG Antriebsstrang
WO2013083106A1 (de) 2011-12-05 2013-06-13 Schaeffler Technologies AG & Co. KG Antriebsstrang
DE102012221544B4 (de) * 2011-12-05 2015-11-12 Schaeffler Technologies AG & Co. KG Antriebsstrang
EP2788604B1 (de) 2011-12-05 2017-03-01 Schaeffler Technologies AG & Co. KG Antriebsstrang
US10072727B2 (en) 2011-12-05 2018-09-11 Schaeffler Technologies AG & Co. KG Torsional-vibration damping system for a vehicle drive train
DE102012221544C5 (de) 2011-12-05 2022-04-21 Schaeffler Technologies AG & Co. KG Antriebsstrang
WO2013121123A1 (fr) 2012-01-26 2013-08-22 Valeo Embrayages Dispositif de transmission de couple pour vehicule automobile
WO2015036688A1 (fr) 2013-09-10 2015-03-19 Valeo Embrayages Dispositif d'amortissement pendulaire

Also Published As

Publication number Publication date
JP5665890B2 (ja) 2015-02-04
CN103038540B (zh) 2015-02-11
CN102792057B (zh) 2015-06-24
US9261165B2 (en) 2016-02-16
DE102011012606A1 (de) 2011-09-15
CA2811347A1 (en) 2011-10-06
CN102792057A (zh) 2012-11-21
DE112011100859A5 (de) 2013-02-07
JP2013522548A (ja) 2013-06-13
WO2011120485A1 (de) 2011-10-06
DE102011012607A1 (de) 2011-12-15
CN103038540A (zh) 2013-04-10
DE102011012606B4 (de) 2019-12-05
US20130233125A1 (en) 2013-09-12
DE112011100859B4 (de) 2016-11-10
CA2811347C (en) 2018-01-02

Similar Documents

Publication Publication Date Title
DE112011100859B4 (de) Torsionsschwingungsdämpfer
EP2516887B1 (de) Fliehkraftpendeleinrichtung
EP2652355B1 (de) Fliehkraftpendel und kupplungsscheibe mit demselben
EP2850338B1 (de) Fliehkraftpendel
DE102009042836A1 (de) Fliehkraftpendel
DE102011012276A1 (de) Drehschwingungstilger
DE102016205765A1 (de) Fliehkraftpendel mit verbessertem Endanschlag
DE102014219328A1 (de) Fliehkraftpendel
EP2951463B1 (de) Baueinheit für einen antriebsstrang eines kraftfahrzeugs
DE102017206053A1 (de) Schaltelement für ein Automatikgetriebe
DE102014213681A1 (de) Fliehkraftpendel
WO2016015725A1 (de) Fliehkraftpendel
DE102015202524A1 (de) Fliehkraftpendeleinrichtung mit Blattfeder als Anschlagdämpfer
DE102018131322A1 (de) Mehrflanschtorsionsschwingungsdämpfer mit zumindest zwei gleichteilig ausgebildeten Nabenflanschen und einem Drehmomentbegrenzer
DE102012213472B4 (de) Torsionsschwingungsdämpfer
DE102014214193A1 (de) Drehschwingungsdämpfer
DE202019106783U1 (de) Rutschkupplung mit Mehrflanschtorsionsschwingungsdämpfer
DE102014217007A1 (de) Drehschwingungsdämpfer
DE102015215907A1 (de) Fliehkraftpendel
DE102014208569A1 (de) Drehschwingungsdämpfer
WO2017194053A1 (de) Reibscheibe für einen kupplungsscheibendämpfer
WO2017036473A1 (de) Rollenelement für eine fliehkraftpendeleinrichtung
DE102020112663A1 (de) Fliehkraftpendel
DE202019106788U1 (de) Rutschkupplung mit Mehrflanschtorsionsschwingungsdämpfer für Antriebsstrang eines Kraftfahrzeugs
DE102020110945A1 (de) Fliehkraftpendeleinrichtung mit gemeinsamen Führungskäfig

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180013403.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11718897

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012556382

Country of ref document: JP

Ref document number: 112011100859

Country of ref document: DE

Ref document number: 1120111008597

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112011100859

Country of ref document: DE

Effective date: 20130207

122 Ep: pct application non-entry in european phase

Ref document number: 11718897

Country of ref document: EP

Kind code of ref document: A1