[go: up one dir, main page]

WO2011102297A1 - ハロゲン化ポリカーボネートからなる光学フィルム - Google Patents

ハロゲン化ポリカーボネートからなる光学フィルム Download PDF

Info

Publication number
WO2011102297A1
WO2011102297A1 PCT/JP2011/052902 JP2011052902W WO2011102297A1 WO 2011102297 A1 WO2011102297 A1 WO 2011102297A1 JP 2011052902 W JP2011052902 W JP 2011052902W WO 2011102297 A1 WO2011102297 A1 WO 2011102297A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
group
film
less
halogenated
Prior art date
Application number
PCT/JP2011/052902
Other languages
English (en)
French (fr)
Inventor
幸紀 池田
明香 木下
祥一 前川
Original Assignee
帝人化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人化成株式会社 filed Critical 帝人化成株式会社
Priority to KR1020127020789A priority Critical patent/KR20130006434A/ko
Priority to CN201180010030.5A priority patent/CN102753607B/zh
Priority to JP2012500575A priority patent/JP5896893B2/ja
Publication of WO2011102297A1 publication Critical patent/WO2011102297A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/08Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
    • C08G64/10Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen containing halogens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Definitions

  • the present invention relates to an optical film made of a halogenated polycarbonate. Specifically, the present invention relates to an optical film made of a halogenated polycarbonate, having little coloration, having high heat resistance, high thermal dimensional stability and flame retardancy, and having sufficient mechanical properties.
  • an electrode is arranged on a transparent substrate and a display element, a light emitting element, or a light receiving element is formed thereon, such as a liquid crystal display, an organic EL display, an organic EL illumination, a thin film solar cell, an organic solar cell, Glass is generally used as the substrate.
  • a resin By replacing this glass with a resin, new functions difficult to achieve with a glass substrate, such as flexibility, lightness, and impact resistance, can be imparted. Therefore, various developments for replacing this glass with resin have been carried out.
  • Polycarbonate is well known as a resin for optical films used for displays and the like because of its high heat resistance and high transparency.
  • a polycarbonate film having a thickness of 0.5 mm or less has insufficient flame retardancy even when a flame retardant is added.
  • a general polycarbonate having bisphenol A as a monomer has a low glass transition temperature, which is an index of heat resistance, as low as about 150 ° C., and a linear expansion coefficient, which is an index of thermal dimensional stability, is as high as 80 ppm / ° C. . Therefore, in general polycarbonate, higher heat resistance and dimensional stability have been demanded.
  • a halogen-substituted polycarbonate oligomer having a halogen-substituted dihydric phenol as a monomer has a high flame retardancy, and is well known as an additive for imparting flame retardancy to a resin.
  • these halogen-substituted polycarbonate oligomers are formed into films, they are mechanically fragile as optical films and are difficult to use.
  • Patent Document 1 A high molecular weight halogenated polycarbonate obtained by increasing the molecular weight of such a halogen-substituted polycarbonate oligomer has been proposed (Patent Document 1).
  • Patent Document 1 A high molecular weight halogenated polycarbonate obtained by increasing the molecular weight of such a halogen-substituted polycarbonate oligomer has been proposed (Patent Document 1).
  • Patent Document 1 A high molecular weight halogenated polycarbonate obtained by increasing the molecular weight of such a halogen-substituted polycarbonate oligomer.
  • An object of the present invention is to provide an optical film with little coloring, high heat resistance, high thermal dimensional stability, flame retardancy, and sufficient mechanical properties.
  • the present inventors have unexpectedly found that the above object can be achieved by molding a halogenated polycarbonate having specific characteristics by a casting method, and reached the present invention. did. That is, the present inventors formed a halogenated polycarbonate having a high glass transition temperature and a large molecular weight and a small amount of oligomers by molding, thereby providing a mechanical strength due to a large molecular weight and a high heat resistance due to a high glass transition temperature.
  • the present invention has been conceived by finding that an optical film having a combination of heat resistance and thermal dimensional stability, a cast method and at least a small coloration due to the oligomer content, and flame retardancy due to a halogenated polycarbonate can be obtained.
  • the present invention is as follows: ⁇ 1> Obtained by producing a halogenated polycarbonate by a solution casting method, and the halogenated polycarbonate has a glass transition temperature of 230 ° C. or more, a weight average molecular weight of more than 50,000, and an oligomer content of 0.6% by weight or less.
  • Is Optical film.
  • ⁇ 2> The optical film according to ⁇ 1>, wherein the chromaticness index b * value of the L * a * b * color system is ⁇ 1.0 to 3.0.
  • ⁇ 3> The optical film according to ⁇ 1> or ⁇ 2>, wherein the linear expansion coefficient is 60 ppm / ° C. or less.
  • ⁇ 4> The optical film according to any one of ⁇ 1> to ⁇ 3>, wherein the tensile elongation is 2.5% or more.
  • ⁇ 5> The molecular weight distribution (Mw / Mn) obtained by dividing the weight molecular weight (Mw) by the number average molecular weight (Mn) is 4.5 or less, according to any one of the above ⁇ 1> to ⁇ 4> Optical film.
  • ⁇ 6> The optical film according to any one of ⁇ 1> to ⁇ 5>, wherein the amount of residual solvent contained in the optical film is 0.1% by weight or less.
  • ⁇ 7> The optical film according to any one of ⁇ 1> to ⁇ 6>, wherein the total light transmittance is 85% or more and the haze is 2% or less.
  • halogenated polycarbonate has a structural unit represented by the following general formula (1) as a main repeating unit:
  • Z is any of the following (A) to (C):
  • (A) (i) a linear, branched, cyclic or bicyclic divalent group, (ii) an aliphatic or aromatic divalent group, and (iii) a saturated or unsaturated divalent group A divalent group selected from the group consisting of up to 5 sulfur and / or halogen atoms and 1 to 15 carbon atoms;
  • each X is hydrogen or a methyl group, and a and b are each 2 or more and 4 or less.
  • an optical film that is less colored and has high heat resistance, high thermal dimensional stability, good flame retardancy, and sufficient mechanical properties.
  • the optical film of the present invention has little coloration and has high heat resistance, high thermal dimensional stability, high flame retardancy, and sufficient mechanical properties, so that the display, organic EL lighting, It can be suitably used as a transparent electrode substrate for electronic devices such as solar cells.
  • it since it has good optical characteristics and heat resistance, it can be used for electrode formation and element formation. Furthermore, warpage of the substrate after electrode and element formation, wiring disconnection, pixel dot misalignment, etc. This problem is less likely to occur.
  • the flame retardancy is high, it is possible to suppress ignition due to an electrical short circuit. Furthermore, since it has sufficient mechanical characteristics when used as an electronic device, the handling property at the time of manufacturing an electronic device is also improved.
  • the halogenated polycarbonate in the present invention has, for example, a structural unit represented by the following general formula (1) as a main repeating unit.
  • the main in the present invention means 70 mol% or more, preferably 80 mol% or more, particularly preferably 90 mol% or more, based on the number of moles of repeating units.
  • (I) Z is any one of the following (A) to (C): (A) (i) a linear, branched, cyclic or bicyclic divalent group, (ii) an aliphatic or aromatic divalent group, and (iii) a saturated or unsaturated divalent group A divalent group selected from the group consisting of up to 5 sulfur and / or halogen atoms and 1 to 15 carbon atoms; (B) —S— group, —S 2 — group, —SO— group, —SO 2 — group, —O— group or —CO— group; (C) Single bond.
  • each X is independently hydrogen, a C 1 to C 12 linear or cyclic alkyl group, an alkoxy group, an aryl group, or an aryloxy group.
  • each X is independently hydrogen or a methyl group.
  • each X is independently hydrogen or a methyl group.
  • the flame retardance of a film expresses favorably.
  • the halogen atom is, for example, a fluorine atom, an iodine atom, a chlorine atom or a bromine atom
  • the halogen group is, for example, a fluoro group, a chloro group, a bromo group or an iodo group.
  • halogenated polycarbonate-dihydric phenol is synthesized by a method of reacting a halogen-substituted dihydric phenol component with a carbonate precursor such as phosgene or carbonic acid diester.
  • halogen-substituted dihydric phenol examples include 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane (commonly known as tetrabromobisphenol A), 2,2-bis (3,5-dichloro- 4-hydroxyphenyl) propane, 1,1-bis (3,5-dibromo-4-hydroxyphenyl) ethane, 1,1-bis (3,5-dichloro-4-hydroxyphenyl) ethane, 1,1-bis (3,5-dibromo-4-hydroxyphenyl) methane, 1,1-bis (3,5-dichloro-4-hydroxyphenyl) methane, bis (3,5-dibromo-4-hydroxyphenyl) sulfone, bis ( 3,5-dichloro-4-hydroxyphenyl) sulfone and the like.
  • Tetrabromobisphenol A is particularly preferable. These can be used alone or in admixture of two or more.
  • a general dihydric phenol can be introduced as long as the heat resistance, thermal dimensional stability and flame retardancy of the film are not impaired.
  • dihydric phenols include resorcinol, hydroquinone, 4,4′-dihydroxybiphenyl, 1,6-dihydroxynaphthalene, bis (4-hydroxyphenyl) methane, bis (4-hydroxyphenyl) diphenylmethane, 1 , 1-bis (4-hydroxyphenyl) ethane, 1,2-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4- Hydroxyphenyl) propane (ie, “bisphenol A”), 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) isobutane, 1,1-bis (4-hydroxyphenyl) Cyclohexane, 1,1-bis (4-hydroxyphenyl) cyclodode
  • carbonate precursor carbonyl halide, carbonate ester, haloformate or the like is used, and specific examples include phosgene, diphenyl carbonate, dihaloformate of dihydric phenol, and the like.
  • a catalyst, a terminal stopper, a dihydric phenol antioxidant, etc. may be used as necessary. Good.
  • the reaction by the interfacial polymerization method is usually a reaction between a halogenated dihydric phenol and phosgene, and is reacted in the presence of an acid binder and an organic solvent.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, or amine compounds such as pyridine are used.
  • organic solvent halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • an amine catalyst or a phosphonium catalyst can be used for promoting the reaction.
  • amine catalysts include trimethylamine, triethylamine, tripropylamine, tributylamine, trihexylamine, trioctylamine, tridecylamine, dimethyl-n-propylamine, diethyl-n-propylamine, N, N-dimethylcyclohexyl.
  • Tertiary amines such as amine, pyridine, N, N-dimethylaniline, N, N-dimethyl-4-aminopyridine, N, N-diethyl-4-aminopyridine, trimethyldodecylammonium chloride, triethyldodecylammonium chloride, dimethylbenzyl Phenylammonium chloride, diethylbenzylphenylammonium chloride, trimethyldodecylbenzylammonium hydroxide, triethyldodecylbenzylammonium hydroxide, trime Le benzyl ammonium chloride, triethylbenzylammonium chloride, tetramethylammonium chloride, quaternary ammonium compounds such as tetraethylammonium chloride.
  • a quaternary phosphonium salt such as triphenyl-n-butylphosphonium bromide or triphenylmethylphosphonium bromide may be used.
  • triethylamine is preferred.
  • These catalysts can also be present during the phosgenation reaction.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is about 10 minutes to 5 hours
  • the pH during the reaction is preferably kept at 9 or more.
  • halogenated polycarbonate-Detailed production example> As a halogen-substituted dihydric phenol, a structure in which a large halogen element is bonded to the 1,5-position of a hydroxyl group such as tetrabromobisphenol A has a reactivity with a carbonate precursor due to steric hindrance of the halogen element. In order to obtain a carbonate having a high molecular weight and a very small amount of oligomer, it is preferable to use a production method by the following interfacial polymerization method.
  • a monochloroformate body is generated as a main reactant, and the decomposition reaction of the generated oligomer can be suppressed, so that the subsequent polymerization reaction can proceed efficiently.
  • the amount of the alkali compound used is less than 1.0 mole, the production of chloroformate is reduced in the phosgenation reaction, and the unreacted halogenated dihydric phenol is increased.
  • the total amount of alkali used is more than 2.0 times the mole of the halogenated dihydric phenol, the decomposition reaction of the resulting oligomer is promoted, so a sufficient amount of monochloroformate required for the subsequent polymerization reaction. The body cannot be obtained.
  • the amount of amine catalyst used is in the range of 0.01 to 0.1-fold mol with respect to the dihydric phenol. If the amount of the amine catalyst used is larger than the above range, the chloroformate group and the amine catalyst react through a series of reactions to form urethane bonds (carbamoyl), which deteriorates the thermal stability of the reaction product. . If the amount of amine catalyst used is less than the above range, the reaction does not proceed.
  • This method suppresses decomposition due to excess alkali, allows polymerization to proceed efficiently even with a small amount of phosgene used, and also suppresses the decomposition reaction of the generated oligomer. Can be obtained.
  • monofunctional phenols usually used as a terminal terminator can be used in the polymerization reaction.
  • monofunctional phenols are generally used as end-capping agents for molecular weight control, and the polymers obtained are based on groups based on monofunctional phenols. Since it is blocked by, it is superior in thermal stability compared to other cases.
  • Such monofunctional phenols may be those usually used as an end stopper for aromatic polycarbonate resins, and are generally phenols or lower alkyl-substituted phenols, and are monofunctional phenols represented by the following general formula: Can be preferably shown.
  • A represents a hydrogen atom, a linear or branched alkyl group having 1 to 9 carbon atoms or an arylalkyl group, and r represents an integer of 1 to 5, preferably 1 to 3.
  • monofunctional phenols include phenol, p-tert-butylphenol, p-cumylphenol and isooctylphenol.
  • phenols or benzoic acid chlorides having a long chain alkyl group or aliphatic ester group as a substituent may be used.
  • decylphenol dodecylphenol, tetradecylphenol, hexadecylphenol, octadecylphenol, eicosylphenol, docosylphenol, triacontylphenol, decyl hydroxybenzoate, dodecyl hydroxybenzoate, hydroxybenzoic acid
  • decyl hydroxybenzoate dodecyl hydroxybenzoate
  • hydroxybenzoic acid examples include tetradecyl, hexadecyl hydroxybenzoate, eicosyl hydroxybenzoate, docosyl hydroxybenzoate, and triacontyl hydroxybenzoate.
  • Monofunctional phenols are preferably introduced at least 5 mol%, preferably at least 10 mol%, based on the number of moles of all terminals of the obtained halogenated polycarbonate. Moreover, you may use monofunctional phenols individually or in mixture of 2 or more types.
  • ⁇ Halogenated polycarbonate-additive> at least one phosphorus compound selected from the group consisting of phosphoric acid, phosphorous acid, phosphonic acid, phosphonous acid and esters thereof is 0.0001 with respect to the copolymer. It is preferably blended at a ratio of ⁇ 0.05% by weight. By blending this phosphorus compound, the thermal stability of the halogenated polycarbonate is improved, and the molecular weight and hue are prevented from being deteriorated during molding.
  • the amount of such a phosphorus compound may be 0.0001 to 0.05% by weight, preferably 0.0005 to 0.02% by weight, preferably 0.001 to 0.01% by weight, based on the halogenated polycarbonate. Is particularly preferred. If the amount is too small, it is difficult to obtain the above effect. If the amount is too large, the thermal stability of the halogenated polycarbonate is adversely affected, and the hydrolysis resistance tends to decrease.
  • an antioxidant generally known for the purpose of preventing oxidation can be added.
  • examples thereof include phenolic antioxidants and lactone antioxidants.
  • the range of preferable addition amount of these antioxidants is 0.0001 to 0.05% by weight based on the weight of the composition with the halogenated polycarbonate.
  • the halogenated polycarbonate in the present invention can be added with a higher fatty acid ester of a monohydric or polyhydric alcohol as necessary.
  • a higher fatty acid ester of mono- or polyhydric alcohol By blending this higher fatty acid ester of mono- or polyhydric alcohol, the release property from the mold or belt during the molding of the halogenated polycarbonate is improved, and in the molding of the optical film, the release load is small. Deformation of the film due to mold failure can be prevented.
  • Such higher fatty acid esters are preferably partial esters or total esters of mono- or polyhydric alcohols having 1 to 20 carbon atoms and saturated fatty acids having 10 to 30 carbon atoms.
  • the halogenated polycarbonate in the present invention further includes a light stabilizer, a light absorber, a light diffusing agent, a filler, a colorant, an antistatic agent, for the purpose of improving the stability of the resin and imparting functionality to the film.
  • Additives such as lubricants can be added as long as the heat resistance is not impaired.
  • the halogenated polycarbonate in the present invention has high heat resistance due to the thermally stable and bulky halogen group introduced into the aromatic group suppressing the thermal motion of the polymer chain, and thereby has a high glass transition temperature. .
  • the halogenated polycarbonate in the present invention has a glass transition temperature of 230 ° C. or higher, preferably 250 ° C. or higher. More preferably, it is 260 degreeC or more. When the glass transition temperature is low, the heat resistance of the film is not sufficient, and for example, it is difficult to adapt to a high temperature process such as TFT formation on a display substrate.
  • the glass transition temperature is measured using a differential scanning calorimeter (DSC) at a rate of temperature increase of 20 ° C./min, and the inflection point of the temperature-differential heat curve is evaluated as the glass transition temperature. To do.
  • DSC differential scanning calorimeter
  • the halogenated polycarbonate in the present invention has a weight average molecular weight (Mw) of more than 50,000, preferably Mw is more than 50,000 and not more than 500,000, more preferably Mw is 70,000. In the range of 300,000 or less.
  • Mw weight average molecular weight
  • Mw is low, the mechanical properties as a film are low, and the film becomes very brittle.
  • Mw is too high, the viscosity of the solution at the time of solution casting becomes too high, and it may be difficult to form a film having a good thickness or surface property.
  • the halogenated polycarbonate in the present invention preferably has a molecular weight distribution (Mw / Mn) represented by a ratio of Mw and number average molecular weight (Mn) of 4.5 or less in order to improve thermal stability. .
  • Mw and Mn were measured by dissolving 40 mg of a dried sample in 5 ml of chloroform and introducing 200 ⁇ l into a GPC (gel permeation chromatography) apparatus under the following conditions.
  • the halogenated polycarbonate in the present invention has an oligomer amount of 0.6% by weight or less, preferably 0.5% by weight or less, more preferably 0.45% by weight or less based on the weight of the halogenated polycarbonate. Since the oligomer is likely to be deteriorated by heat and the film is colored, the amount of the oligomer needs to be not more than the above upper limit.
  • the oligomer in the present invention refers to a low molecular weight carbonate from a monomer dimer to a tetramer, which has no end-capping agent bonded thereto, or a single molecule or bimolecular bonded one.
  • the oligomer in the present invention includes an unreacted monomer, a terminal blocking agent, a monomer in which a terminal blocking agent is bonded to one molecule or two molecules, and a low molecular weight monomer such as a dimer of the terminal blocking agent. included.
  • the amount of oligomer in the present invention indicates the proportion (% by weight) of the oligomer contained in the sample.
  • the oligomer in the present invention is measured by dissolving 50 mg of a dried sample in 5 ml of chloroform and introducing 20 ⁇ l into a GPC (gel permeation chromatography) apparatus under the following conditions.
  • the oligomer amount in the present invention corresponds to the ratio (%) of the peak area of the oligomer component observed after the retention time of the GPC chart obtained by the previous measurement method after 19 min to the total peak area.
  • the peak area of the oligomer component is obtained by connecting adjacent valleys sandwiched between the respective peaks with a straight line and converting it into the weight percent as the area between the straight line and the peak.
  • Apparatus GPC system (Waters 2695) manufactured by Waters Co., Ltd.
  • Detector Waters 2487
  • the extrusion molding method is a technique in which a resin is melted by heat in an extruder, flows out from a T die into a film shape, is cooled using a cooling roll or the like, and is continuously wound.
  • the solution casting method is a method in which a dope is prepared by dissolving a resin in a solvent, cast onto a mirror belt from a T die, and after removing the solvent to some extent, the film is peeled off from the belt, and then the film is dried. And then winding it up.
  • the optical film of the present invention has a high glass transition temperature, a high molecular weight, and a high melt viscosity, it is necessary to obtain an optical film with little coloring by performing a solution casting method instead of an extrusion molding method.
  • the solvent for forming a halogenated polycarbonate into a film by a solution casting method is not particularly limited as long as it is a solvent capable of dissolving the halogenated polycarbonate.
  • methylene chloride, chloroform, 1,2-dichloroethane, 1,1-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, dichlorobenzene, tetrahydrofuran, toluene, isophorone and the like can be mentioned.
  • Methylene chloride and chloroform are particularly preferable from the viewpoint that the boiling point is relatively low and the film can be easily dried.
  • the optical film of the present invention is prepared by a casting method, some solvent remains in the film.
  • the residual solvent amount is constant because it causes a reduction in the degree of vacuum during device formation in a vacuum process and also causes corrosion of the formed metal wiring. Desirably less than the amount.
  • the residual solvent amount of the optical film of the present invention is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and particularly preferably 0.03% by weight or less, based on the weight of the film. .
  • the halogenated polycarbonate of the present invention has high heat resistance, it can be easily dried at a high temperature, and the residual solvent amount can be lowered more easily than general polycarbonate by drying in a short time.
  • the residual solvent amount of the film can be measured by 1 H-NMR measurement or gas chromatograph.
  • the thickness of the optical film of the present invention is preferably 10 ⁇ m or more and 300 ⁇ m or less in view of mechanical properties and film productivity. More preferably, the thickness of the optical film of the present invention is 20 ⁇ m or more and 250 ⁇ m or less. More preferably, the thickness of the optical film of the present invention is 30 ⁇ m or more and 200 ⁇ m or less.
  • the film is too thin, it is difficult to produce the film, and mechanical properties such as the strength of the film tend to be low.
  • the film is too thick, the characteristics of the resin base material that is lightweight are lost, and a long time is required in the production by the casting method described above.
  • a highly transparent film that does not use a filler such as a light diffusing agent can be produced.
  • a highly transparent film is preferably used as a transparent substrate for displays, organic EL lighting, thin film solar cells and the like.
  • the total light transmittance of a film having a thickness of 10 to 300 ⁇ m is preferably 85% or more, more preferably 87% or more, and particularly preferably 88% or more.
  • the haze of such a highly transparent optical film is preferably 2% or less, more preferably 1.5% or less, and particularly preferably 1% or less.
  • optical film-b * value> In the optical film of the present invention, coloring can be extremely reduced by forming a halogenated polycarbonate with a small amount of oligomers by molding.
  • the optical film of the present invention can exhibit an excellent hue with a chromaticness index b * value of -1.0 to 3.0 in the L * a * b * color system.
  • Preferred b * values are 0 to 2.0, more particularly 0 to 1.5. These values can be obtained particularly when the film is a transparent film having a transmittance of 85% or more without adding a diffusing agent or the like and without providing an optical interference layer or the like.
  • the b * value is the chromaticness index b * value of the L * a * b * color system defined by JIS Z8729, and is measured in the transmission mode according to JIS Z8722. Value.
  • standard light D65 defined in Japanese Industrial Standard Z8720 is adopted as the light source, and the measurement is performed under the condition of a two-degree field of view.
  • the linear expansion coefficient of the optical film of the present invention is preferably 60 ppm / ° C. or less, more preferably 55 ppm / ° C. or less, and particularly preferably 50 ppm / ° C. or less.
  • the linear expansion coefficient is large, for example, when used as a display substrate, it is likely to be difficult to align the optical film.
  • the linear expansion coefficient is large, when a metal film or an inorganic film having a low linear expansion coefficient is laminated to form a laminated body, a change in warpage of the laminated body due to temperature tends to be large.
  • the linear expansion coefficient ( ⁇ T ) of the optical film was determined by placing a 4 mm wide ⁇ 30 mm sample at 25 ° C. and a relative humidity (RH) of 50% for 24 hours, and then measuring the thermal / stress-strain measuring device (SII nanotechnology). The temperature is measured at a rate of temperature rise of 5 ° C./minute using SS6100 manufactured by the company, and is calculated for a temperature range of 50 ° C. to 150 ° C.
  • a linear expansion coefficient ((alpha) T ) is calculated
  • a measurement is performed twice about each of the longitudinal direction of a film, and its perpendicular direction, and an average value is taken.
  • ⁇ T (L 150 ⁇ L 50 ) / (L 50 ⁇ 100) (ppm / ° C.)
  • L 150 film length at 150 ° C.
  • L 50 film length at 50 ° C.
  • the optical film of the present invention has a high flame retardance because a halogen-containing monomer having a high flame retardancy is polymerized.
  • a highly transparent optical film having a total light transmittance of 85% or more and a haze of 2% or less formed as one embodiment of the optical film of the present invention can achieve both transparency and flame retardancy.
  • Such an optical film having high transparency is preferably used as a transparent substrate for displays, organic EL lighting, thin film solar cells and the like.
  • the halogenated polycarbonate of the present invention is filled with a diffusing agent or a reflective agent and used as a diffusing film / reflective film, or when a reflective film is formed on a transparent film and used as a reflective film, it is similarly difficult It can be used as a flammable optical film.
  • the flame retardance of a film is evaluated by performing a vertical combustion test according to UL standard 94 using the prepared film. Based on the results of the test, the grade is rated as either V-0, V-1, or V-2out (not-V). Since the optical film of the present invention has high flame retardancy, it can have a V-0 or V-1 rating, preferably a V-0 rating.
  • the halogen contained in the halogenated polycarbonate is particularly preferably bromine.
  • the structural unit constituting the halogenated polycarbonate is preferably 2,2-bis (3,5-dihalogeno-4-hydroxyphenyl) propane.
  • the optical film of the present invention is composed of a halogenated polycarbonate having a weight average molecular weight exceeding the above-mentioned lower limit, and has high mechanical properties, and therefore has a high tensile elongation.
  • the tensile elongation of the film of the present invention is preferably 2.5% or more, more preferably 3.0% or more, and particularly preferably 3.5% or more.
  • the tensile elongation is measured under the following conditions using an automatic film strength measuring device “Tensilon RTC-1210A” manufactured by Orientec Co., Ltd. Sample size: width 10mm, length 140mm Distance between chucks 100mm Tensile speed: 5 mm / min Measurement environment: 25 ° C., relative humidity (RH) 50%, under atmospheric pressure
  • the tensile elongation is obtained by multiplying the length obtained by subtracting the distance between chucks from the length at the time of film break by the distance between chucks and multiplying by 100.
  • the measurement is performed 5 times for each of the longitudinal direction and the vertical direction of the film, and an average value is taken.
  • various functional layers such as a hard coat layer, a gas barrier layer, a transparent conductive layer, and a reflective film can be laminated in order to impart functions depending on the application.
  • the optical film of the present invention may further have one or a plurality of hard coat layers as long as the characteristics are not lost for the purpose of imparting the hardness and abrasion resistance of the film surface.
  • the hard coat layer can be formed of a thermosetting resin, an active energy ray curable resin, or the like.
  • the ultraviolet curable resin which used the ultraviolet-ray for the active energy ray is excellent in productivity and economical efficiency, and is suitable.
  • the optical film of the present invention may further have a single or a plurality of gas barrier layers that prevent permeation of gases such as oxygen and water vapor as long as the characteristics are not lost.
  • the barrier material is a polyvinyl alcohol polymer such as polyvinyl alcohol or polyvinyl alcohol-ethylene copolymer; a polyacrylonitrile, a polyacrylonitrile-styrene copolymer or the like
  • Known coating materials such as acrylonitrile polymers; polysilazane resins and polyvinylidene chloride can be used.
  • the coating method is not particularly limited, but a known method such as a reverse roll coating method, a gravure roll coating method, or a die coating method can be used.
  • a known method such as a reverse roll coating method, a gravure roll coating method, or a die coating method can be used.
  • an easy adhesion treatment such as a primer treatment can be appropriately performed.
  • An oxide, nitride, or oxynitride thin film of a metal mixture can be formed by a known method.
  • the film thickness of these gas barrier layers may be set to such a thickness that the desired performance can be exhibited.
  • Two or more layers such as dry / wet, dry / dry, and wet / wet may be appropriately combined and stacked.
  • the optical film of the present invention, the optical film with a hard coat layer, and the optical film with a gas barrier layer are provided in such a range that the characteristics are not lost for the purpose of imparting conductivity and antistatic function to the film surface depending on the application. Further, it may further have one or a plurality of transparent conductive layers.
  • the transparent conductive layer is not particularly limited, and examples thereof include a thin film made of a crystalline metal layer or a crystalline metal compound layer, and a coating layer such as a conductive polymer, carbon nanotube, graphene, and metal nanofiber. .
  • examples of the metal compound component constituting the transparent conductive layer include metal oxide layers such as silicon oxide, aluminum oxide, titanium oxide, magnesium oxide, zinc oxide, indium oxide, and tin oxide.
  • the metal oxide layer constituting the transparent conductive layer is preferably a crystalline layer mainly composed of indium oxide, and a layer made of crystalline ITO (Indium Tin Oxide) is particularly preferably used.
  • the transparent conductive layer can be formed by a known method according to the characteristics and composition of the transparent conductive layer to be used.
  • a method for forming the transparent conductive layer for example, a DC magnetron sputtering method, an RF magnetron sputtering method, an ion plating method, a vacuum deposition method, a pulsed laser deposition method or the like, a chemical vapor deposition method (Chemical Vapor Deposition method). (Hereinafter referred to as “CVD”)), a sol-gel method, a chemical formation method, or a wet coating of a conductive component can also be used.
  • CVD chemical Vapor Deposition method
  • the transparent conductive laminate thus obtained is used as a transparent electrode for a display element such as a liquid crystal display, an organic EL display, and electronic paper, a transparent electrode for organic EL lighting, and a thin film solar cell.
  • the surface resistance value of the transparent conductive layer is preferably 1 to 50 ⁇ / ⁇ ( ⁇ / sq), more preferably 1 to 30 ⁇ / ⁇ ( ⁇ / sq).
  • the optical film of the present invention is separately provided with a functional layer as long as the characteristics as a film, hard coat film, gas barrier film, or transparent conductive film are not impaired. can do.
  • the functional layer referred to here is a layer intended to express some function chemically, optically, electrically, and physically, and is not particularly limited. For example, antireflection, antiglare properties, etc. And a layer capable of exhibiting functions such as light emission, polarization, light scattering, light collection, light refraction, antifouling property, chemical resistance, slipperiness, and insulation.
  • Tg Glass transition temperature
  • the film sample was pulverized, 50 mg of the dried sample was dissolved in 5 ml of chloroform, and 20 ⁇ l was introduced into a GPC (gel permeation chromatography) apparatus under the following conditions for measurement.
  • the ratio (%) of the peak area of the oligomer component observed with the retention time of the GPC chart obtained by the above measuring method after 19 min or more to the total peak area was determined and converted to wt%.
  • the peak area of the oligomer component was obtained by connecting adjacent valleys sandwiched between peaks with a straight line and converting it into an area between the straight line and the peak.
  • Apparatus GPC system (Waters 2695) manufactured by Waters Co., Ltd. Detector: Waters 2487 Column: TSKgel G2000H XL + G3000H XL Standard substance: TSK standard polystyrene Eluent: Chloroform, 40 ° C., 0.7 ml / min
  • the residual solvent in the film was determined by dissolving 30 mg of polymer in 0.6 ml of deuterated chloroform and measuring the number of integrations 256 times using 1 H-NMR of JNM-AL400 manufactured by JEOL. Specifically, when using methylene chloride as the solvent for the polymer component (peak (7.45 ppm) due to the aromatic moiety of tetrabromobisphenol A), it is due to the peak (5.34 ppm) due to methylene chloride. It was obtained from the integral ratio of the peak to be obtained.
  • Total light transmittance of film was measured according to JIS K7361-1 using a Nippon Denshoku Co., Ltd. haze meter (MDH2000).
  • ⁇ Linear expansion coefficient> The linear expansion coefficient of the film was measured by placing a 4 mm wide ⁇ 30 mm sample at 25 ° C. and relative humidity (RH) 50% for 24 hours, and then using a thermal / stress-strain measuring device (SS6100 manufactured by SII Nanotechnology). The temperature was increased at a rate of 5 ° C./minute, and the average linear expansion coefficient in the temperature range of 50 ° C. to 150 ° C. was calculated. The measurement was performed twice for each of the longitudinal direction of the film and the direction orthogonal to the thickness direction, and the average value of these four points was taken.
  • RH relative humidity
  • the separated methylene chloride phase was washed with acid and water until inorganic salts and amines disappeared, and then methylene chloride was removed to obtain a halogenated polycarbonate A1.
  • the weight average molecular weight was 214,000 and the glass transition temperature was 265 ° C.
  • Example 2 ⁇ Synthesis of Halogenated Polycarbonate A2 (Halogenated PC-A2)> The procedure in Example 1 was repeated except that the amount of p-tert-butylphenol after completion of the phosgenation reaction was changed to 0.46 g (0.0030 mol). At this time, a halogenated polycarbonate A2 having a weight average molecular weight of 75,000 and a glass transition temperature of 263 ° C. was obtained.
  • Example 3 ⁇ Creation of film> A film was prepared in the same manner as in Example 1 except that the clearance of the doctor blade was 0.27 mm. The physical properties of the obtained film are summarized in Table 1.
  • Example 4 ⁇ Creation of film>
  • Example 2 the same operation was repeated except that the concentration when dissolved in methylene chloride was changed to 25% by weight and the clearance of the doctor blade was changed to 1.5 mm.
  • the physical properties of the obtained film are summarized in Table 1.
  • PC-A Panlite C-1400
  • Example 2 Synthesis of Halogenated Polycarbonate A3 (Halogenated PC-A3)> The procedure in Example 1 was repeated except that the amount of p-tert-butylphenol after completion of the phosgenation reaction was changed to 0.73 g (0.0048 mol). The weight average molecular weight obtained was 30,000, and the glass transition temperature was 254 ° C.
  • halogenated polycarbonate PC-A4 A halogenated polycarbonate having a weight average molecular weight of 41,000 was obtained.
  • a halogenated polycarbonate PC-A5 having a weight average molecular weight of 201,000, a dispersion of 4.9, and an oligomer amount of 0.62% was obtained.
  • the film of the present invention is a transparent substrate for an electronic device in which an electrode is arranged on a transparent substrate and a display element, a light emitting element or a light receiving element is formed thereon.
  • a liquid crystal display, an organic EL thin display, an organic EL illumination It is preferably used as a transparent substrate for thin film solar cells or organic solar cells.
  • new functions such as flexibility, weight reduction, and impact resistance are imparted. Is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明では、高い耐熱性及び高い熱寸法安定性を有しかつ難燃性であるハロゲン化ポリカーボネート製光学フィルムを提供する。本発明の光学フィルムは、ハロゲン化ポリカーボネートを溶液キャスト法により製造することにより得られ、かつハロゲン化ポリカーボネートが、ガラス転移温度230℃以上、重量平均分子量50,000超、かつオリゴマー含有量0.6重量%以下である。

Description

ハロゲン化ポリカーボネートからなる光学フィルム
 本発明は、ハロゲン化ポリカーボネートからなる光学フィルムに関する。詳しくは、本発明は、ハロゲン化ポリカーボネートからなり、かつ着色が少なく、高い耐熱性、高い熱寸法安定性及び難燃性を有し、しかも十分な機械的特性を持つ、光学フィルムに関する。
 透明基板上に電極を配し、その上に表示素子、発光素子、又は受光素子を形成されている電子機器、例えば液晶ディスプレイ、有機ELディスプレイ、有機EL照明、薄膜太陽電池、有機太陽電池では、その基板として、一般的にガラスが用いられている。このガラスを、樹脂で置き換えることにより、ガラス基板では達成困難な新たな機能、例えばフレキシブル性、軽量性、耐衝撃性を付与することが可能となる。したがって、このガラスを樹脂で置き換えるための様々な開発が行われている。
 しかしながら、樹脂は、ガラスと比較して耐熱性や熱寸法安定性が低いため、樹脂基板上への電極形成や素子形成は大きな制約を受ける。また樹脂基板は、透明性と難燃性を両立させることが困難である。したがって、これらの特性をもった樹脂製の光学フィルムが求められていた。
 ポリカーボネートは耐熱性が高く、また高い透明性を有するため、ディスプレイなどに使用される光学フィルム用の樹脂としてよく知られている。しかしながら、厚さ0.5mm以下のポリカーボネートフィルムは、難燃剤を添加したとしても難燃性が十分でなかった。更に、ビスフェノールAをモノマーとする一般的なポリカーボネートは、耐熱性の指標となるガラス転移温度が、150℃前後と低く、また熱寸法安定性の指標となる線膨張係数が、80ppm/℃と高い。したがって、一般的なポリカーボネートでは、より高い耐熱性と寸法安定性が求められていた。
 一方、ハロゲン置換二価フェノールをモノマーとするハロゲン置換ポリカーボネートオリゴマーは、高い難燃性を有することから、樹脂に難燃性を付与する添加剤としてよく知られている。しかし、これらのハロゲン置換ポリカーボネートオリゴマーをフィルム化しても、光学フィルムとしては機械的に脆く、使用することは困難である。
 このようなハロゲン置換ポリカーボネートオリゴマーを高分子量化した高分子量ハロゲン化ポリカーボネートが提案されている(特許文献1)。しかし、このような高分子量ハロゲン化ポリカーボネートを単純に押出成形によるフィルム成形によりフィルム化した場合には、フィルムの着色が大きいこと等から、高分子量ハロゲン化ポリカーボネート自体を、光学用途向けのフィルムとして用いることは考慮されていなかった。
特表平6-502216号公報
 本発明は、着色が少なく、高い耐熱性、高い熱寸法安定性、及び難燃性を有し、しかも十分な機械的特性を持つ光学フィルムを提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、思いがけず特定の特性を持つハロゲン化ポリカーボネートをキャスト法により成形することにより上記目的を達成できることを見出し、本発明に到達した。すなわち、本発明者らは、高いガラス転移温度及び大きい分子量を有し、かつオリゴマー量が少ないハロゲン化ポリカーボネートをキャスト法により成形することにより、大きい分子量による機械的強度、高いガラス転移温度による高い耐熱性及び熱寸法安定性、キャスト法及び少なくともオリゴマー含有量による少ない着色、並びにハロゲン化ポリカーボネートによる難燃性を併せて有する光学フィルムが得られることを見出して、本発明に想到した。
 すなわち、本発明は、下記のようなものである:
 〈1〉ハロゲン化ポリカーボネートを溶液キャスト法により製造することにより得られ、かつ
 上記ハロゲン化ポリカーボネートが、ガラス転移温度230℃以上、重量平均分子量50,000超、かつオリゴマー含有量0.6重量%以下である、
光学フィルム。
 〈2〉L表色系のクロマティクネス指数b値が-1.0~3.0である、上記〈1〉項に記載の光学フィルム。
 〈3〉線膨張係数が60ppm/℃以下である、上記〈1〉又は〈2〉項に記載の光学フィルム。
 〈4〉引張伸度が2.5%以上である、上記〈1〉~〈3〉項のいずれか一項に記載の光学フィルム。
 〈5〉重量分子量(Mw)を数平均分子量(Mn)で割った分子量分布(Mw/Mn)が4.5以下である、上記〈1〉~〈4〉項のいずれか一項に記載の光学フィルム。
 〈6〉光学フィルム中に含まれる残存溶媒量が0.1重量%以下である、上記〈1〉~〈5〉項のいずれか一項に記載の光学フィルム。
 〈7〉全光線透過率が85%以上であり、且つヘーズが2%以下である、上記〈1〉~〈6〉項のいずれか一項に記載の光学フィルム。
 〈8〉上記ハロゲン化ポリカーボネートが、下記一般式(1)で示される構造単位を主たる繰り返し単位として有する、上記〈1〉~〈7〉項のいずれか一項に記載の光学フィルム:
Figure JPOXMLDOC01-appb-C000002
 式中、
 (I)Zは、下記の(A)~(C)のいずれかであり:
  (A)(i)直鎖状、分岐状、環状又は二環式の二価の基、(ii)脂肪族又は芳香族の二価の基、及び(iii)飽和又は不飽和の二価の基から選択される二価の基であって、5個以下の硫黄及び/又はハロゲン原子、及び1~15個の炭素原子より成る二価の基;
  (B)-S-基、-S-基、-SO-基、-SO-基、-O-基又は-CO-基;
  (C)単結合;
 (II)各Xは独立的に、水素、C~C12の直鎖状又は環状のアルキル基、アルコキシ基、アリール基、又はアリールオキシ基であり;
 (III)D及びDは、同一か又は異なるハロゲン基であり;
 (IV)1≦a≦4及び1≦b≦4;かつc=4-a及びd=4-bである)。
 〈9〉上記の一般式(1)において、各Xは、それぞれに、水素又はメチル基であり、a及びbがそれぞれ2以上4以下である、上記〈8〉項に記載の光学フィルム。
 〈10〉上記一般式(1)で示される構造単位が、2,2-ビス(3,5-ジハロゲノ,4-ヒドロキシフェニル)プロパンである、上記〈8〉項に記載の光学フィルム。
 本発明によれば、着色が少なく、かつ高い耐熱性、高い熱寸法安定性、良好な難燃性、及び十分な機械的特性を持つ光学フィルムが提供される。
 より具体的には、本発明の光学フィルムは、着色が少なく、かつ高い耐熱性、高い熱寸法安定性、高い難燃性、及び十分な機械的特性を持つことから、ディスプレイ、有機EL照明、太陽電池などの電子機器の透明電極基板として好適に使用できる。しかも、良好な光学特性と耐熱性とを有することから、電極形成や素子形成への対応が可能となり、更には電極や素子形成後の基板の反りや、配線の断線、画素ドットの位置ずれなどの問題も生じにくい。また、難燃性が高いことから、電気的短絡を原因とした発火を抑制することが可能になる。さらに、電子機器として使用する際に十分な機械的特性を持つことから、電子デバイスの製造時の取り扱い性も向上する。
 以下、本発明を説明する。
 〈ハロゲン化ポリカーボネート-繰り返し単位〉
 本発明におけるハロゲン化ポリカーボネートは例えば、下記一般式(1)で示される構造単位を主たる繰り返し単位とする。本発明における主たるとは、繰り返し単位のモル数を基準として、70モル%以上、好ましくは80モル%以上、特に好ましくは90モル%以上を意味する。
Figure JPOXMLDOC01-appb-C000003
 上記式中、(I)Zは、下記の(A)~(C)のいずれかである:
  (A)(i)直鎖状、分岐状、環状又は二環式の二価の基、(ii)脂肪族又は芳香族の二価の基、及び(iii)飽和又は不飽和の二価の基から選択される二価の基であって、5個以下の硫黄及び/又はハロゲン原子、及び1~15個の炭素原子より成る二価の基;
  (B)-S-基、-S-基、-SO-基、-SO-基、-O-基又は-CO-基;
  (C)単結合。
 また、上記式中、(II)各Xは独立的に、水素、C~C12の直鎖状又は環状のアルキル基、アルコキシ基、アリール基、又はアリールオキシ基である。
 また、上記式中、(III)D及びDは、同一か又は異なるハロゲン基である。
 また、上記式中、(IV)1≦a≦4及び1≦b≦4;かつc=4-a及びd=4-bである。
 より好ましくは、(II)について、各Xは独立的に、水素又はメチル基である。また、(IV)について、2≦a≦4及び2≦b≦4;かつc=4-a及びd=4-bであることが好ましい。この範囲を満たす場合、フィルムの難燃性が良好に発現する。
 なお、上記式(1)において、ハロゲン原子は、例えばフッ素原子、ヨウ素原子、塩素原子又は臭素原子であり、またハロゲン基は、例えばフルオロ基、クロロ基、ブロモ基又はヨード基である。
 〈ハロゲン化ポリカーボネート-二価フェノール〉
 本発明におけるハロゲン化ポリカーボネートは、ハロゲン置換二価フェノール成分にホスゲンや炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により合成される。
 ハロゲン置換二価フェノールとしては、具体的には2,2-ビス(3,5-ジブロム-4-ヒドロキシフェニル)プロパン(通称テトラブロムビスフェノールA)、2,2-ビス(3,5-ジクロル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3,5-ジブロム-4-ヒドロキシフェニル)エタン、1,1-ビス(3,5-ジクロル-4-ヒドロキシフェニル)エタン、1,1-ビス(3,5-ジブロム-4-ヒドロキシフェニル)メタン、1,1-ビス(3,5-ジクロル-4-ヒドロキシフェニル)メタン、ビス(3,5-ジブロム-4-ヒドロキシフェニル)スルホン、ビス(3,5-ジクロル-4-ヒドロキシフェニル)スルホン等が挙げられる。特にテトラブロムビスフェノールAが好ましい。これらは、単独で、又は2種以上を混合して使用できる。
 また、必要に応じて、フィルムの耐熱性や熱寸法安定性、難燃性を損なわない範囲で、一般的な二価フェノールを導入することもできる。かかる二価フェノールとしては、具体的には、レゾルシノール、ヒドロキノン、4,4′‐ジヒドロキシビフェニル、1,6‐ジヒドロキシナフタレン、ビス(4‐ヒドロキシフェニル)メタン、ビス(4‐ヒドロキシフェニル)ジフェニルメタン、1,1‐ビス(4‐ヒドロキシフェニル)エタン、1,2‐ビス(4‐ヒドロキシフェニル)エタン、1,1‐ビス(4‐ヒドロキシフェニル)‐1‐フェニルエタン、2,2‐ビス(4‐ヒドロキシフェニル)プロパン(すなわち、「ビスフェノールA」)、2,2‐ビス(4‐ヒドロキシフェニル)ブタン、1,1‐ビス(4‐ヒドロキシフェニル)イソブタン、1,1‐ビス(4‐ヒドロキシフェニル)シクロヘキサン、1,1‐ビス(4‐ヒドロキシフェニル)シクロドデカン、2,2‐ビス(4‐ヒドロキシフェニル)アダマンタン、2,2‐ビス(3‐メチル‐4‐ヒドロキシフェニル)プロパン、2,2‐ビス(3‐n‐プロピル‐4‐ヒドロキシフェニル)プロパン、2,2‐ビス(3‐イソプロピル‐4‐ヒドロキシフェニル)プロパン、2,2‐ビス(3‐sec‐ブチル‐4‐ヒドロキシフェニル)プロパン、2,2‐ビス(3‐tert‐ブチル‐4‐ヒドロキシフェニル)プロパン、2,2‐ビス(3‐シクロヘキシル‐4‐ヒドロキシフェニル)プロパン、2,2‐ビス(4‐ヒドロキシフェニル)ヘキサフルオロプロパン、4,4′‐ジヒドロキシベンゾフェノン、3,3‐ビス(4‐ヒドロキシフェニル)‐2‐ブタノン、ビス(4‐ヒドロキシフェニル)エーテル、ビス(4‐ヒドロキシフェニル)スルフィド、ビス(4‐ヒドロキシフェニル)スルホキシド、ビス(4‐ヒドロキシフェニル)スルホン、9,9‐ビス(4‐ヒドロキシフェニル)フルオレン等が挙げられる。これらの共重合成分の割合は、繰り返し単位モル数を基準として30モル%以下であり、20モル%以下が好ましく、特に10モル以下が好ましい。
 〈ハロゲン化ポリカーボネート-製造方法〉
 次に、ハロゲン化ポリカーボネートの製造方法について基本的な手段を簡単に説明する。
 カーボネート前駆体としてはカルボニルハライド、カーボネートエステル又はハロホルメート等が使用され、具体的にはホスゲン、ジフェニルカーボネート又は二価フェノールのジハロホルメート等が挙げられる。
 上記二価フェノールとカーボネート前駆体とを界面重合法によって反応させてポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールの酸化防止剤等を使用してもよい。
 〈ハロゲン化ポリカーボネート-界面重合法による製造方法〉
 界面重合法による反応は、通常、ハロゲン化された二価フェノールとホスゲンとの反応であり、酸結合剤及び有機溶媒の存在下にて反応させる。
 酸結合剤としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、又はピリジン等のアミン化合物が用いられる。有機溶媒としては、塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。
 また、界面重合法による反応では、反応促進のために例えばアミン類触媒やホスホニウム類触媒を用いることもできる。アミン類触媒としては、例えばトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリへキシルアミン、トリオクチルアミン、トリデシルアミン、ジメチル-n-プロピルアミン、ジエチル-n-プロピルアミン、N,N-ジメチルシクロヘキシルアミン、ピリジン、N,N-ジメチルアニリン、N,N-ジメチル-4-アミノピリジン、N,N-ジエチル-4-アミノピリジン等の三級アミン、トリメチルドデシルアンモニウムクロリド、トリエチルドデシルアンモニウムクロリド、ジメチルベンジルフェニルアンモニウムクロリド、ジエチルベンジルフェニルアンモニウムクロリド、トリメチルドデシルベンジルアンモニウムヒドロキシド、トリエチルドデシルベンジルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムクロリド、トリエチルベンジルアンモニウムクロリド、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド等の四級アンモニウム化合物が挙げられる。また、ホスホニウム類触媒としては、トリフェニル-n-ブチルホスホニウムブロマイド、トリフェニルメチルホスホニウムブロマイド等の四級ホスホニウム塩を使用してもよい。これらの触媒のなかでも、トリエチルアミンが好ましい。これら触媒はホスゲン化反応時に存在させることも可能である。その際、反応温度は通常0~40℃であり、反応時間は10分~5時間程度であり、反応中のpHは9以上に保つのが好ましい。
 〈ハロゲン化ポリカーボネート-詳細な製造例〉
 ハロゲン置換二価フェノールとして、テトラブロムビスフェノールAのようなヒドロキシル基の1,5位に大きなハロゲン元素が結合している構造のものは、ハロゲン元素の立体障害により、カーボネート前駆物質との反応性が低くなり易いことから、高分子量で且つオリゴマーの非常に少ないカーボネートを得るためには、以下のような界面重合法による製造方法とすることが好ましい。
 すなわち、ハロゲン置換二価フェノールのアルカリ水溶液とホスゲンとを有機溶媒の存在下反応させてハロゲン化カーボネートを製造するに当り、以下(a)~(c)の条件を満たしていることが好ましい。
 (a)ホスゲン化反応終了時まで、アルカリの総使用量を、ハロゲン化二価フェノールに対して2.0倍モル以下に抑えた上で、続く重合反応に移行させること。
 この方法により、モノクロロホーメート体を主反応物として生成させ、しかも生成したオリゴマーの分解反応が抑制できるため、後に続く重合反応を効率よく進行させることが出来る。但し、アルカリ化合物の使用量が1.0倍モルより少ないと、ホスゲン化反応においてクロロホーメートの生成が少なくなり、未反応のハロゲン化二価フェノールが多くなる。アルカリの総使用量がハロゲン化二価フェノールに対し、2.0倍モルより多い場合は、出来たオリゴマーの分解反応が促進されるため、続く重合反応に必要となる十分な量のモノクロロホーメート体が得られなくなる。
 (b)アミン類触媒を一連の反応を通して使用すること。
 アミン類触媒の使用量は、二価フェノールに対して0.01~0.1倍モルの範囲で反応させることが必須である。アミン類触媒の使用量が上記範囲より多いと一連の反応を通してクロロホーメート基とアミン類触媒が反応してウレタン結合(カルバモイル)が生成し、反応生成物の熱安定性が悪化することとなる。また、アミン類触媒の使用量が上記範囲より少ないと反応が進行しない。
 (c)重合反応中、アルカリ化合物を逐次添加すること。
 この方法により、過剰のアルカリによる分解を抑制し、少ないホスゲン使用量からでも効率よく重合を進行させることが出来き、しかも生成したオリゴマーの分解反応が抑制できるため、オリゴマーの非常に少ない高分子量体を得ることができる。
 本発明では、その重合反応において、末端停止剤として通常使用される単官能フェノール類を使用することができる。殊にカーボネート前駆物質としてホスゲンを使用する反応の場合、単官能フェノール類は末端停止剤として分子量調節のために一般的に使用され、また得られたポリマーは、末端が単官能フェノール類に基づく基によって封鎖されているので、そうでないものと比べて熱安定性に優れている。
 かかる単官能フェノール類としては、通常芳香族ポリカーボネート樹脂の末端停止剤として使用されるものであればよく、一般にはフェノール又は低級アルキル置換フェノールであって、下記一般式で表される単官能フェノール類を好ましく示すことができる。
Figure JPOXMLDOC01-appb-C000004
 式中、Aは、水素原子又は炭素数1~9の直鎖又は分岐のアルキル基あるいはアリールアルキル基を示し、かつrは、1~5、好ましくは1~3の整数を示す。
 単官能フェノール類の具体例としては、例えばフェノール、p-tert-ブチルフェノール、p-クミルフェノール及びイソオクチルフェノールが挙げられる。
 また、他の単官能フェノール類としては、長鎖のアルキル基若しくは脂肪族エステル基を置換基として有するフェノール類又は安息香酸クロライド類、又は長鎖のアルキルカルボン酸クロライド類を使用することもできる。
 その具体例としては、例えばデシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノール、トリアコンチルフェノール、ヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシル及びヒドロキシ安息香酸トリアコンチルなどが挙げられる。
 単官能フェノール類は、得られたハロゲン化ポリカーボネートの全末端のモル数を基準として少なくとも5モル%、好ましくは少なくとも10モル%に導入されることが好ましい。また、単官能フェノール類は、単独で又は2種以上混合して使用してもよい。
 〈ハロゲン化ポリカーボネート-添加剤〉
 本発明におけるハロゲン化ポリカーボネートは、リン酸、亜リン酸、ホスホン酸、亜ホスホン酸及びこれらのエステルよりなる群から選択された少なくとも1種のリン化合物が、その共重合体に対して0.0001~0.05重量%の割合で配合されていることが好ましい。このリン化合物を配合することにより、かかるハロゲン化ポリカーボネートの熱安定性が向上し、成形時における分子量の低下や色相の悪化が防止される。
 かかるリン化合物の配合量は、ハロゲン化ポリカーボネートに対して、0.0001~0.05重量%であってよく、0.0005~0.02重量%が好ましく、0.001~0.01重量%が特に好ましい。配合量が少なすぎると上記効果が得られ難く、多すぎると、逆に該ハロゲン化ポリカーボネートの熱安定性に悪影響を与え、また耐加水分解性も低下し易い。
 本発明におけるハロゲン化ポリカーボネートには、酸化防止の目的で通常知られた酸化防止剤を添加することができる。その例としてはフェノール系酸化防止剤やラクトン系酸化防止剤を示すことができる。これら酸化防止剤の好ましい添加量の範囲はハロゲン化ポリカーボネートとの組成物の重量を基準として0.0001~0.05重量%である。
 さらに本発明におけるハロゲン化ポリカーボネートは、必要に応じて一価又は多価アルコールの高級脂肪酸エステルを加えることもできる。この一価又は多価アルコールの高級脂肪酸エステルを配合することにより、ハロゲン化ポリカーボネートの成形時の金型やベルトからの離型性が改良され、光学フィルムの成形においては、離型荷重が少なく離型不良によるフィルムの変形を防止できる。かかる高級脂肪酸エステルとしては、炭素原子数1~20の一価又は多価アルコールと炭素原子数10~30の飽和脂肪酸との部分エステル又は全エステルであるのが好ましい。
 本発明におけるハロゲン化ポリカーボネートには、樹脂の安定性向上やフィルムへの機能性付与の目的のために、さらに光安定剤、光吸収剤、光拡散剤、充填剤、着色剤、帯電防止剤、滑剤などの添加剤を、耐熱性を損なわない範囲で加えることができる。
 〈ハロゲン化ポリカーボネート-ガラス転移温度〉
 本発明におけるハロゲン化ポリカーボネートは、芳香族に導入された熱的に安定で嵩高いハロゲン基が高分子鎖の熱運動を抑制することによって高い耐熱性を有し、またそれによってガラス転移温度が高い。本発明におけるハロゲン化ポリカーボネートは、ガラス転移温度が、230℃以上、好ましくは250℃以上である。より好ましくは260℃以上である。ガラス転移温度が低い場合、フィルムの耐熱性が十分でなく、例えばディスプレイ基板におけるTFT形成など高温プロセスへの適合が困難となるため好ましくない。
 なお、本発明に関して、ガラス転移温度は、示差走査熱量分析装置(DSC)を用いて、昇温速度20℃/分にて測定し、温度-示差熱曲線の変局点をガラス転移温度として評価するものである。
 〈ハロゲン化ポリカーボネート-重量平均分子量、数平均分子量及び分子量分布〉
 本発明におけるハロゲン化ポリカーボネートは、重量平均分子量(Mw)が50,000より大きく、好ましくはMwが50,000を超えて、500,000以下の範囲で、より好ましくは、Mwが70,000を超えて、300,000以下の範囲である。Mwが低い場合、フィルムとしての機械的物性が低く、非常に割れやすい脆いフィルムとなってしまう。一方、Mwが高すぎる場合、溶液キャスト時の溶液の粘度が高くなりすぎるため、良好な厚みや表面性のフィルムを形成することが困難となることがある。
 また、本発明におけるハロゲン化ポリカーボネートは、Mw及び数平均分子量(Mn)の比で表わされる分子量分布(Mw/Mn)が4.5以下であることが、熱安定性を良好にするために好ましい。
 なお、Mw及びMnは、乾燥した試料40mgをクロロホルム5mlに溶解し、下記条件としたGPC(ゲル浸透クロマトグラフィー)装置に、200μlを導入して測定したものである。
   装置:島津製作所(株)製GPCシステム(LC-10A)
   検出器:RID-10A
   カラム:Shodex KF-801+KF-802+KF805L
   標準物質:TSK標準ポリスチレン
   溶離液:クロロホルム、40℃、1ml/min
 〈ハロゲン化ポリカーボネート-オリゴマー量〉
 本発明におけるハロゲン化ポリカーボネートは、オリゴマー量が、ハロゲン化ポリカーボネートの重量を基準として、0.6重量%以下、好ましくは0.5重量%以下、より好ましくは0.45重量%以下である。オリゴマーは熱による劣化を生じやすく、それによってフィルムの着色が生じてしまうため、オリゴマー量が上記上限以下であることが必要である。
 本発明におけるオリゴマーとは、モノマー2量体から4量体までの低分子量カーボネートであって、末端封止剤が結合していないもの、一分子又は二分子結合したものを差す。また、本発明におけるオリゴマーには、未反応のモノマー、末端封止剤、モノマーに末端封止剤が一分子又は二分子結合したもの、末端封止剤の二量体などの低分子量体についても含まれる。
 本発明におけるオリゴマー量とは、試料中に含まれるオリゴマーの割合(重量%)を示す。
 なお、本発明におけるオリゴマーは、乾燥した試料50mgをクロロホルム5mlに溶解し、下記条件としたGPC(ゲル浸透クロマトグラフィー)装置に、20μlを導入して測定する。本発明におけるオリゴマー量は、先測定方法で求めたGPCチャートのリテンションタイムが19min以降に観測されるオリゴマー成分のピーク面積の、全ピーク面積に対する割合(%)が該当する。
 なお、オリゴマー成分のピーク面積は、夫々のピークに挟まれた隣接する谷部を直線で結び該直線とピークとの間の面積とし重量%に換算して求める。
   装置:Waters(株)製GPCシステム(Waters2695)
   検出器:Waters2487
   カラム:TSKgel G2000HXL+G3000H
   標準物質:TSK標準ポリスチレン
   溶離液:クロロホルム、40℃、0.7ml/min
 〈フィルム-製造方法〉
 一般的な光学フィルムの製造方法としては、押出成形法と溶液キャスト法が挙げられる。押出成形法とは、樹脂を押出機中で熱溶融させ、Tダイからフィルム状に流出させ、冷却ロールなどを用いて冷却し連続的に巻き取る手法である。一方、溶液キャスト法とは、樹脂を溶剤により溶解したドープを作成し、これをTダイから鏡面のベルト上にキャストし、溶剤をある程度乾燥除去したのちフィルムをベルトから剥がし、その後にフィルムを乾燥して巻き取る方法である。
 本発明の光学フィルムはガラス転移温度が高く、また高分子量であり溶融粘度が高いため、押出成形法ではなく、溶液キャスト法により行うことが、着色の少ない光学フィルムを得るために必要である。
 ハロゲン化ポリカーボネートを溶液キャスト法によりフィルム化する際の溶媒としては、ハロゲン化ポリカーボネートを溶解させる溶剤であれば特に限定するものではない。好ましくは、塩化メチレン、クロロホルム、1,2-ジクロロエタン、1,1-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、ジクロロベンゼン、テトラヒドロフラン、トルエン、イソホロンなどを挙げることができる。沸点が比較的低く、それによってフィルムの乾燥が容易である観点から、特に塩化メチレン、クロロホルムが好ましい。
 〈光学フィルム-残存溶媒量〉
 本発明の光学フィルムはキャスト法にて作成することから、フィルム中にいくらかの溶媒が残存する。光学フィルムをディスプレイなどのデバイスの基板として使用した場合、真空プロセスでのデバイス形成の際の真空度低下を起こしたり、また形成した金属配線などの腐食を引き起こしたりすることから、残存溶媒量は一定量以下であることが望ましい。このため、本発明の光学フィルムの残存溶媒量はフィルムの重量を基準として、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、特に好ましくは0.03重量%以下である。
 本発明のハロゲン化ポリカーボネートは高い耐熱性を有することから、高温での乾燥を行うことが容易であり、短時間の乾燥により残存溶媒量を一般のポリカーボネートよりも容易に下げることが可能である。
 尚、フィルムの残存溶媒量は、H-NMR測定やガスクロマトグラフなどにより測定することが可能である。
 〈光学フィルム-厚さ〉
 本発明の光学フィルムの厚さは、機械的特性及びフィルムの生産性から、10μm以上、300μm以下であることが好ましい。より好ましくは本発明の光学フィルムの厚さは、20μm以上、250μm以下である。さらに好ましくは本発明の光学フィルムの厚さは、30μm以上、200μm以下である。フィルムが薄すぎる場合、フィルムの製造が困難となると共に、フィルムの強度などの機械的特性が低くなり易い。一方、フィルムが厚すぎる場合、軽量であるという樹脂基材の特徴が失われ、上述のキャスト法による製造において、長時間が必要となる。
 〈光学フィルム-全光線透過率、ヘーズ〉
 本発明の光学フィルムの一態様として、光拡散剤などの充填剤を使用しない、透明度の高いフィルムを作成することができる。このような透明度の高いフィルムは、ディスプレイ、有機EL照明、薄膜太陽電池等のための透明基板として、好ましく用いられる。このような透明度の要求される用途に用いる場合、厚さ10~300μmフィルムの全光線透過率は、好ましくは85%以上、より好ましくは87%以上、特に好ましくは88%以上である。
 また、このような透明度の高い光学フィルムのヘーズは、好ましくは2%以下、より好ましくは1.5%以下、特に好ましくは1%以下である。
 〈光学フィルム-b値〉
 本発明の光学フィルムは、オリゴマーの少ないハロゲン化ポリカーボネートをキャスト法により成形して得ることによって、着色を極めて少なくすることができる。
 したがって、本発明の光学フィルムは、L表色系のクロマティクネス指数b値が-1.0~3.0という優れた色相を発現できる。好ましいb値は、0~2.0、より特に0~1.5である。これらの値は、特に拡散剤などを添加しておらず、また光学干渉層などを付与していない透過率が85%以上の透明なフィルムである場合に得ることができる。
 ここで、本発明に関してb値は、JIS Z8729にて定義されるL表色系のクロマティクネス指数b値であり、JIS Z8722号に準じて、透過モードにより計測される値である。なお、b値の測定においては、光源として日本工業規格Z8720に規定される標準の光D65を採用し、2度視野の条件で測定を行う。
 〈光学フィルム-線膨張係数〉
 本発明の光学フィルムは、主たる繰り返し単位が、特定の構造単位からなるポリカーボネートを用いているので、温度によるフィルムの膨張・収縮が小さく、ディスプレイ基板として好ましい特性を有する。
 本発明の光学フィルムの線膨張係数は、好ましくは60ppm/℃以下、更に好ましくは55ppm/℃以下、特に好ましくは50ppm/℃以下である。線膨張係数が大きい場合、例えばディスプレイ基板として使用した場合に、光学フィルムの貼り合わせなどでの位置合わせが困難となり易い。また、線膨張係数が大きい場合、線膨張係数の低い金属膜や無機膜を積層して積層体としたときに、温度による積層体の反り変化が大きくなり易い。
 なお、光学フィルムの線膨張係数(α)は、4mm幅×30mmのサンプルを25℃、相対湿度(RH)50%にて24時間置いた後に、熱・応力-歪測定装置(SIIナノテクノロジー社製SS6100)を用いて、昇温速度5℃/分にて測定し、温度範囲50℃~150℃について算出する。
 線膨張係数(α)は、以下の式により求められる。なお、測定は、フィルムの長手方向とその垂直方向それぞれについて2回行い、平均値をとる。
   αT=(L150-L50)/(L50×100) (ppm/℃)
   L150:150℃におけるフィルム長さ
   L50:50℃におけるフィルム長さ
〈光学フィルム-難燃性〉
 本発明の光学フィルムは、難燃性の高いハロゲン含有モノマーをポリマー化しているため、高い難燃性を有する。また本発明の光学フィルムの一態様として形成される全光線透過率が85%以上であり、且つヘーズが2%以下である透明度の高い光学フィルムは、透明度と難燃性を両立させることができる。このような透明度の高い光学フィルムは、ディスプレイ、有機EL照明、薄膜太陽電池などのための透明基板として、好ましく用いられる。一方、本発明のハロゲン化ポリカーボネートに拡散剤や反射剤を充填して拡散フィルム・反射フィルムとして使用する場合、及び透明フィルムに反射膜を形成して反射フィルムとして使用する場合にも、同様に難燃性を有する光学フィルムとして使用することができる。
 なお、フィルムの難燃性は、作成したフィルムを用いて、UL規格94に従って垂直燃焼試験を行って評価する。試験の結果に基づいて、V-0、V-1、又はV-2out(not-V)のいずれかの等級に評価する。本発明の光学フィルムは、高い難燃性を有するため、V-0又はV-1の等級、好ましくはV-0の等級を具備することができる。なお、難燃性の点からは、ハロゲン化ポリカーボネートに含まれるハロゲンは臭素であることが特に好ましい。難燃性の点からは、ハロゲン化ポリカーボネートを構成する構造単位が、2,2-ビス(3,5-ジハロゲノ-4-ヒドロキシフェニル)プロパンであることが好ましい。
 〈フィルム-引張破断伸度〉
 本発明の光学フィルムは、重量平均分子量が前述の下限を越えたハロゲン化ポリカーボネートからなり、高い機械的特性を有するため、引張伸度が高い。
 本発明のフィルムの引張伸度は、好ましくは2.5%以上であり、より好ましくは3.0%以上であり、特に好ましくは3.5%以上である。
 なお、引張伸度は(株)オリエンテック製のフィルム強伸度自動測定装置“テンシロンRTC-1210A”を用いて、次の条件で測定する。
   試料サイズ:幅10mm、長さ140mm
   チャック間距離100mm
   引張速度:5mm/分
   測定環境:25℃、相対湿度(RH)50%、大気圧下
 フィルム破断時の長さからチャック間距離を減じたものをチャック間距離で除したものに100を乗じて引張伸度とする。測定はフィルムの長手方向とその垂直方向それぞれについて5回行い、平均値をとる。
 〈フィルム-機能層〉
 本発明の光学フィルムには、用途に応じて、機能を付与するために、ハードコート層、ガスバリア層、透明導電層、反射膜などの様々な機能層を積層することができる。
 本発明の光学フィルムには、フィルム表面の硬度及び耐摩耗性を付与する目的で、特性を失わない範囲で、単独又は複数のハードコート層を更に有することができる。ハードコート層は、熱硬化樹脂、活性エネルギー線硬化樹脂などで形成することができる。なかでも、活性エネルギー線に紫外線を用いた紫外線硬化型樹脂は、生産性や経済性に優れており、好適である。
 本発明の光学フィルムには、ガスバリア性を付与する目的で、特性を失わない範囲で、酸素、水蒸気などのガスの透過を防ぐ単独又は複数のガスバリア層を更に有することができる。
 例えば湿式のコーティング法でガスバリア層を形成する場合には、バリア材料としてはポリビニルアルコール、ポリビニルアルコール-エチレン共重合体等のポリビニルアルコール系重合体;ポリアクリロニトリル、ポリアクリロニトリル-スチレン共重合体等のポリアクリロニトリル系重合体;ポリシラザン系樹脂、ポリビニリデンクロリド等の公知のコーティング材料を用いることができる。
 コーティング法に関しても特に制限はないが、リバースロールコーティング法、グラビアロールコーティング法、ダイコーティング法等の公知の方法を用いることができる。また、基板又は基材表面との接着性、濡れ性等が不良の場合には、適宜、プライマー処理等の易接着処理を行うこともできる。
 また、スパッタリング又は真空蒸着等のドライプロセスでガスバリア層を形成する場合には、公知のバリア材であるSi、Al、Ti、Mg及びZr等から選ばれた少なくとも1種の金属又は2種以上の金属混合物の酸化物、窒化物又は酸窒化物の薄膜を、公知の方法で形成することができる。
 これらのガスバリア層の膜厚は、目的とする性能が発現できる厚さに設定すればよい。なおドライ/湿式、ドライ/ドライ、及び湿式/湿式等の2種以上の層を適宜組み合わせて積層してもよい。
 本発明の光学フィルム、ハードコート層付きの光学フィルム、及びガスバリア層付きの光学フィルムには、用途に応じて、フィルム表面に導電性や帯電防止機能を付与する目的で、特性を失わない範囲で、単独又は複数の透明導電層を更に有することができる。透明導電層は、特に制限はないが、例えば結晶質の金属層又は結晶質の金属化合物層による薄膜や、導電性高分子、カーボンナノチューブ、グラフェン、金属ナノファイバーなどのコーティング層を挙げることができる。このうち、透明導電層を構成する金属化合物成分としては、例えば酸化ケイ素、酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化錫等の金属酸化物の層が挙げられる。透明導電層を構成する金属酸化物の層は、酸化インジウムを主成分とした結晶質の層であることが好ましく、特に結晶質のITO(Indium Tin Oxide)からなる層が、好ましく用いられる。
 透明導電層は、使用する透明導電層の特性や組成に応じて、公知の手法にて形成することが可能である。透明導電層の形成方法としては、例えばDCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、イオンプレーティング法、真空蒸着法、パルスレーザーデポジション法等の物理的形成法、化学気相堆積法(Chemical Vapor Deposition(以下では「CVD」とする))、ゾルゲル法、化学的形成法、更には導電性成分のウェットコーティングなどの手法を用いることもできる。
 このようにして得られた透明導電性積層体を、液晶ディスプレイや有機ELディスプレイ、電子ペーパーなどの表示素子のための透明電極、有機EL照明用のための透明電極、薄膜系太陽電池のための透明電極として用いる場合、透明導電層の表面抵抗値は、好ましくは1~50Ω/□(Ω/sq)、より好ましくは1~30Ω/□(Ω/sq)である。
 本発明の光学フィルムには、ハードコート層、ガスバリア層、及び透明導電層以外に、フィルム、ハードコートフィルム、ガスバリアフィルム又は透明導電性フィルムとしての特性を損なわない範囲で、別途、機能層を付与することができる。ここでいう機能層とは、化学的、光学的、電気的、物理的に何らかの機能を発現することを目的とした層であり、特に限定するものではないが、例えば、反射防止性、アンチグレア性、発光、偏光、光散乱、集光、光の屈折、防汚性、耐薬品性、易滑性、絶縁性などの機能を発現させうる層を挙げることができる。
 以下、実施例を挙げ、本発明をさらに具体的に説明するが、本発明はかかる実施例に限定されるものではない。なお、実施例中、「部」及び「%」は、特に断らない限り重量基準である。また、実施例中における各種の測定は、下記のとおり行った。
 〈ガラス転移温度(Tg)〉
 フィルムサンプルを粉砕して、TAインスツルメント社製の熱分析システムDSC-2910を使用して、JIS K7121に従い窒素雰囲気下(窒素流量:40ml/min)、昇温速度:20℃/minの条件下で測定した。
 〈重量平均分子量(Mw)、数平均分子量(Mn)〉
 フィルムサンプルを粉砕して、乾燥した試料40mgをクロロホルム5mlに溶解し、下記条件としたGPC(ゲル浸透クロマトグラフィー)装置に、200μlを導入して測定した。上記測定方法によりポリスチレン換算で重量平均分子量(Mw)と数平均分子量(Mn)を夫々算出した。
  装置:島津製作所(株)製GPCシステム(LC-10A)
  検出器:RID-10A
  カラム:Shodex KF-801+KF-802+KF805L
  標準物質:TSK標準ポリスチレン
  溶離液:クロロホルム、40℃、1ml/min
 〈オリゴマー量〉
 フィルムサンプルを粉砕して、乾燥した試料50mgをクロロホルム5mlに溶解し、下記条件としたGPC(ゲル浸透クロマトグラフィー)装置に、20μlを導入して測定した。上記測定方法で求めたGPCチャートのリテンションタイムが19min以降に観測されるオリゴマー成分のピーク面積の全ピーク面積に対する割合(%)を求め重量%に換算して求めた。この際オリゴマー成分のピーク面積は、ピークに挟まれた隣接する谷部を直線で結び該直線とピークとの間の面積とし重量%に換算して求めた。
   装置:Waters(株)製GPCシステム(Waters2695)
   検出器:Waters2487
   カラム:TSKgel G2000HXL+G3000HXL
   標準物質:TSK標準ポリスチレン
   溶離液:クロロホルム、40℃、0.7ml/min
 〈フィルムの厚さ〉
 アンリツ社製の電子マイクロ膜厚計で測定した。
 〈フィルムの残存溶媒量〉
 フィルム中の残存溶媒は、ポリマー30mgを重クロロホルム0.6mlに溶解し、日本電子社製JNM-AL400のH-NMRを用いて、積算回数256回で測定して求めた。具体的には、ポリマー成分(テトラブロムビスフェノールAの芳香族部位に起因するピーク(7.45ppm))に対する溶媒、塩化メチレンを使用する場合は、塩化メチレンに起因するピーク(5.34ppm)に起因するピークの積分比より求めた。
 〈フィルムの全光線透過率〉
 日本電色(株)製ヘーズメーター(MDH2000)を用いてJIS K7361-1に準じてフィルムの全光線透過率を測定した。
 〈フィルムのヘーズ〉
 JIS K7136に準じ、日本電色(株)製ヘーズメーター(MDH2000)を用いてフィルムのヘーズを測定した。
 〈フィルムのb値〉
 JIS Z8722に準じ、JIS Z8729にて定義されるL表色系のクロマティクネス指数b値を透過モードにより計測した。なお、光源として日本工業規格Z8720に規定される標準の光D65を採用し、2度視野の条件で測定を行った。
 〈線膨張係数〉
 フィルムの線膨張係数は、4mm幅×30mmのサンプルを25℃、相対湿度(RH)50%にて24時間置いた後に、熱・応力-歪測定装置(SIIナノテクノロジー社製SS6100)を用いて、昇温速度5℃/分にて測定し、温度範囲50℃~150℃における線膨張係数の平均を算出した。測定はフィルムの長手方向と、厚み方向に直交する方向についてそれぞれ2回行い、これら4点の平均値をとった。
 〈難燃性〉
 フィルムの難燃性は、作成したフィルムを用いて、UL規格94に従って垂直燃焼試験を行った。試験の結果に基づいて、V-0、V-1、又はV-2out(not-V)のいずれかの等級に評価した。
 〈フィルムの引張破断伸度〉
 (株)オリエンテック製のフィルム強伸度自動測定装置“テンシロンRTC-1210A”を用いて、次の条件で測定した。
   試料サイズ:幅10mm、長さ140mm
   チャック間距離100mm
   引張速度:5mm/分
   測定環境:25℃、相対湿度(RH)50%、大気圧下
 フィルム破断時の長さからチャック間距離を減じたものをチャック間距離で除したものに100を乗じて引張伸度とした。測定はフィルムの長手方向と、厚み方向に直交する方向についてそれぞれ5回行い、これら10点の平均値をとった。
 [実施例1]
 <ハロゲン化ポリカーボネートA1(ハロゲン化PC-A1)の合成>
 ホスゲン吹込管、温度計及び攪拌機を備えたフラスコに、テトラブロムビスフェノールA130g(0.239モル)、7.0%水酸化ナトリウム水溶液161ml(水酸化ナトリウム0.299モル)、塩化メチレン393ml、及びトリエチルアミン0.2ml(0.002モル)を仕込んで溶解し、攪拌下20~25℃に保持し、ホスゲン28.5g(0.289モル)を60分要して吹込んだ。ホスゲン吹き込み終盤には、25%水酸化ナトリウム水溶液5ml(水酸化ナトリウム0.041モル)を加えながら、反応混合液のpHを10.5~11.0に維持して、ホスゲン化反応させた。
 ホスゲン化反応終了後、p-tert-ブチルフェノール0.20g(0.0013モル)を加え、そしてトリエチルアミン0.8ml(0.008モル)及び25%水酸化ナトリウム水溶液44ml(水酸化ナトリウム0.363モル)を、約60分かけて反応混合液に加え、35~40℃の温度で、90分間反応させた。
 分離した塩化メチレン相を、無機塩類及びアミン類がなくなるまで酸洗浄及び水洗した後、塩化メチレンを除去して、ハロゲン化ポリカーボネートA1を得た。この際、重量平均分子量は214,000、ガラス転移温度は265℃であった。
 <フィルムの作成>
 このハロゲン化PC-A1を塩化メチレンに溶解して22重量%の溶液を作成した。作成した溶液をガラス基板上に流し、0.9mmのクリアランスのドクターブレードを用いてフィルムを流延した。続いて40℃にて1時間予備乾燥を行った後、200℃まで徐々に昇温し、更に200℃にて1時間乾燥した。得られたフィルムの物性を表1にまとめる。
 [実施例2]
 <ハロゲン化ポリカーボネートA2(ハロゲン化PC-A2)の合成>
 ホスゲン化反応終了後のp-tert-ブチルフェノール量を0.46g(0.0030モル)に変更した以外は、実施例1における手順を繰り返した。この際、重量平均分子量は75,000、ガラス転移温度は263℃であるハロゲン化ポリカーボネートA2を得た。
 <フィルムの作成>
 溶解させる樹脂をハロゲン化PC-A2とした以外は実施例1と同様にしてフィルムを作成した。得られたフィルムの物性を表1にまとめる。
 [実施例3]
 <フィルムの作成>
 ドクターブレードのクリアランスを0.27mmとする以外は実施例1と同様にしてフィルムを作成した。得られたフィルムの物性を表1にまとめる。
 [実施例4]
 <フィルムの作成>
 実施例2において塩化メチレンに溶解したときの濃度を25重量%に変更し、ドクターブレードのクリアランスを1.5mmに変更したほかは同様な操作を繰り返した。得られたフィルムの物性を表1にまとめる。
 [比較例1]
 二価フェノールとしてビスフェノールAを用いた一般的なポリカーボネート樹脂として、帝人化成(株)パンライトC-1400(以下PC-Aと称する。)を使用した。このPC-Aの重量平均分子量は120,000、ガラス転移温度は155℃であった。
 <フィルムの作成>
 このPC-Aを塩化メチレンに溶解して22重量%の溶液を作成した。作成した溶液をガラス基板上に流し、0.6mmのクリアランスのドクターブレードを用いてフィルムを流延した。続いて40℃にて1時間予備乾燥を行った後、130℃まで徐々に昇温し、更に130℃にて1時間乾燥した。得られたフィルムの物性を表1にまとめる。
 [比較例2]
 <ハロゲン化ポリカーボネートA3(ハロゲン化PC-A3)の合成>
 ホスゲン化反応終了後のp-tert-ブチルフェノール量を0.73g(0.0048モル)に変更した以外は、実施例1における手順を繰り返した。得られた重量平均分子量が30,000、ガラス転移温度が254℃であった。
 <フィルムの作成>
 ハロゲン化PC-A1の代わりにハロゲン化PC-A3とした以外は実施例1と同様にしてフィルムを作成した。得られたフィルムの物性を表1にまとめる。
 [比較例3]
 <ハロゲン化ポリカーボネートA4(ハロゲン化PC-A4)の合成>
 ホスゲン吹込管、温度計及び攪拌機を備えたフラスコに、テトラブロムビスフェノールA130g(0.239モル)、7.0%水酸化ナトリウム水溶液322ml(水酸化ナトリウム0.478モル)、塩化メチレン640ml、及びトリエチルアミン1.03ml(0.01モル)を仕込んで溶解し、攪拌下20~25℃に保持し、ホスゲン30.4g(0.301モル)を約60分を要して吹込んだ。ホスゲン吹き込み中に、適宜、25%水酸化ナトリウム水溶液29ml(水酸化ナトリウム0.239モル)を加えながら、反応混合液のpHを9~10に維持して、ホスゲン化反応させた。
 ホスゲン化反応終了後、p-tert-ブチルフェノール0.20g(0.0013モル)を加え、そして25%水酸化ナトリウム水溶液44ml(水酸化ナトリウム0.363モル)を約60分かけて加え、35~40℃の温度で90分間反応させた。
 分離した塩化メチレン相を、無機塩類及びアミン類がなくなるまで酸洗浄及び水洗した後、塩化メチレンを除去して、ハロゲン化ポリカーボネートPC-A4を得た。重量平均分子量41,000であるハロゲン化ポリカーボネートを得た。
 <フィルムの作成>
 ハロゲン化PC-A1をハロゲン化PC-A4とした以外は実施例1と同様にしてフィルムを作成した。得られたフィルムの物性を表1にまとめる。
 [比較例4]
 <ハロゲン化ポリカーボネートA5(ハロゲン化PC-A5)の合成>
 米国特許第4,794,156号公報を参考にハロゲン化ポリカーボネートの製造方法を追試した。
 具体的には、ホスゲン吹込管、温度計及び攪拌機を備えたフラスコに、テトラブロムビスフェノールA130g(0.239モル)、50%水酸化ナトリウム水溶液37.9g(水酸化ナトリウム0.474モル)、水480ml、塩化メチレン320ml、及びp-tert-ブチルフェノール0.20g(0.0013モル)を仕込んで溶解し、攪拌下22~28℃に保持し、ホスゲン34.8g(0.352モル)を約30分要して吹込んだ。ホスゲン吹き込み中に、適宜、50%水酸化ナトリウム水溶液4.7g(水酸化ナトリウム0.059モル)を加えながら、反応混合液のpHを10に維持して、ホスゲン化反応させた。
 ホスゲン化反応終了後、塩化メチレン630ml及びN,N-ジメチルアミノピリジン65mg(0.00053モル)を加えて撹拌を開始し、pH10を維持するように50%水酸化ナトリウム水溶液37.5g(水酸化ナトリウム0.468モル)を約30分かけて加えた後、ホスゲン3.2g(0.032モル)を加えpH7にして撹拌を停止した。35~40℃の温度で90分間反応させた。
 分離した塩化メチレン相を、無機塩類及びアミン類がなくなるまで酸洗浄及び水洗した後、塩化メチレンを除去して、ハロゲン化ポリカーボネートPC-A5を得た。
 重量平均分子量201,000、分散4.9、オリゴマー量0.62%であるハロゲン化ポリカーボネートPC-A5を得た。
 <フィルムの作成>
 ハロゲン化PC-A1をハロゲン化PC-A5とした以外は実施例1と同様にしてフィルムを作成した。得られたフィルムの物性を表1にまとめる。
 [比較例5]
 実施例2にて合成したハロゲン化PC-A2のパウダーを200℃で1時間乾燥後、該ペレットを直径30mmのスクリューを有するTダイ付単軸押出機を用いて、樹脂温度380℃でTダイから溶融押出して、冷却ドラムを経て連続的に巻き取ることにより溶融押出フィルムを得た。得られたフィルムの物性を表1にまとめる。
Figure JPOXMLDOC01-appb-T000005
 表1から明らかなように、実施例の光学フィルムはいずれも、耐熱性が高く、着色の指標であるb値が低く、またフィルムの機械的強度の指標である引張破断伸度が高く、光学フィルムとして良好な難燃性のフィルムであった。これに対して、表1から明らかなように、比較例のフィルムは、耐熱性、着色、フィルムの機械的強度の少なくともいずれかの指標について不良であった。
 本発明のフィルムは、透明基板上に電極を配し、その上に表示素子、発光素子又は受光素子を形成する電子機器のための透明基板として、例えば液晶ディスプレイ、有機EL薄型ディスプレイ、有機EL照明、薄膜太陽電池、又は有機太陽電池の透明基板として、好ましく使用される。このような用途において、通常ガラスが用いられている部分を、本発明のフィルムに置き換えることで、ガラス基板の達成困難な、フレキシブル性や軽量化、耐衝撃性などの新たな機能を付与することが可能となる。

Claims (10)

  1.  ハロゲン化ポリカーボネートを溶液キャスト法により製造することにより得られ、かつ
     前記ハロゲン化ポリカーボネートが、ガラス転移温度230℃以上、重量平均分子量50,000超、かつオリゴマー含有量0.6重量%以下である、
    光学フィルム。
  2.  L表色系のクロマティクネス指数b値が-1.0~3.0である、請求項1に記載の光学フィルム。
  3.  線膨張係数が60ppm/℃以下である、請求項1又は2に記載の光学フィルム。
  4.  引張伸度が2.5%以上である、請求項1~3のいずれか一項に記載の光学フィルム。
  5.  重量分子量(Mw)を数平均分子量(Mn)で割った分子量分布(Mw/Mn)が4.5以下である、請求項1~4のいずれか一項に記載の光学フィルム。
  6.  光学フィルム中に含まれる残存溶媒量が0.1重量%以下である、請求項1~5のいずれか一項に記載の光学フィルム。
  7.  全光線透過率が85%以上であり、且つヘーズが2%以下である、請求項1~6のいずれか一項に記載の光学フィルム。
  8.  前記ハロゲン化ポリカーボネートが、下記一般式(1)で示される構造単位を主たる繰り返し単位として有する、請求項1~7のいずれか一項に記載の光学フィルム:
    Figure JPOXMLDOC01-appb-C000001
     式中、
     (I)Zは、下記の(A)~(C)のいずれかであり:
      (A)(i)直鎖状、分岐状、環状又は二環式の二価の基、(ii)脂肪族又は芳香族の二価の基、及び(iii)飽和又は不飽和の二価の基から選択される二価の基であって、5個以下の硫黄及び/又はハロゲン原子、及び1~15個の炭素原子より成る二価の基;
      (B)-S-基、-S-基、-SO-基、-SO-基、-O-基又は-CO-基;
      (C)単結合;
     (II)各Xは独立的に、水素、C~C12の直鎖状又は環状のアルキル基、アルコキシ基、アリール基、又はアリールオキシ基であり;
     (III)D及びDは、同一か又は異なるハロゲン基であり;
     (IV)1≦a≦4及び1≦b≦4;かつc=4-a及びd=4-bである)。
  9.  前記の一般式(1)において、各Xは、それぞれに、水素又はメチル基であり、a及びbがそれぞれ2以上4以下である、請求項8に記載の光学フィルム。
  10.  前記一般式(1)で示される構造単位が、2,2-ビス(3,5-ジハロゲノ,4-ヒドロキシフェニル)プロパンである、請求項8に記載の光学フィルム。
PCT/JP2011/052902 2010-02-18 2011-02-10 ハロゲン化ポリカーボネートからなる光学フィルム WO2011102297A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127020789A KR20130006434A (ko) 2010-02-18 2011-02-10 할로겐화 폴리카보네이트로 이루어지는 광학 필름
CN201180010030.5A CN102753607B (zh) 2010-02-18 2011-02-10 由卤化聚碳酸酯制成的光学膜
JP2012500575A JP5896893B2 (ja) 2010-02-18 2011-02-10 ハロゲン化ポリカーボネートからなる光学フィルムの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010033355 2010-02-18
JP2010-033355 2010-02-18

Publications (1)

Publication Number Publication Date
WO2011102297A1 true WO2011102297A1 (ja) 2011-08-25

Family

ID=44482884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052902 WO2011102297A1 (ja) 2010-02-18 2011-02-10 ハロゲン化ポリカーボネートからなる光学フィルム

Country Status (5)

Country Link
JP (1) JP5896893B2 (ja)
KR (1) KR20130006434A (ja)
CN (1) CN102753607B (ja)
TW (1) TWI517960B (ja)
WO (1) WO2011102297A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107669378A (zh) * 2017-09-01 2018-02-09 太仓新宏电子科技有限公司 一种心脏光学膜支架

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170416A (ja) * 1980-01-07 1988-07-14 モベイ・コーポレーシヨン コポリカーボネートおよびその製造方法
JPH04227628A (ja) * 1990-02-08 1992-08-17 Dow Chem Co:The ハロゲン化コポリカーボネートを含む組成物
JPH05262043A (ja) * 1992-03-17 1993-10-12 Nippon G Ii Plast Kk 光学用ポリカーボネート系樹脂組成物
JP2001264534A (ja) * 2000-03-14 2001-09-26 Kanegafuchi Chem Ind Co Ltd 光学フィルム及びその製造方法
JP2007079561A (ja) * 2005-08-17 2007-03-29 Fujifilm Corp 光学フィルム、これを用いた光学補償フィルム、偏光板および液晶表示装置
JP2007310128A (ja) * 2006-05-18 2007-11-29 Fujifilm Corp 光学フィルム、光学フィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
WO2008016161A1 (fr) * 2006-08-02 2008-02-07 Mitsubishi Gas Chemical Company, Inc. Résine polycarbonate et corps photosensible électrophotographique l'utilisant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475981B2 (ja) * 1995-06-02 2003-12-10 三菱瓦斯化学株式会社 光学用ポリカーボネート樹脂の連続製造法
US7541074B2 (en) * 2005-08-17 2009-06-02 Fujifilm Corporation Optical film and optical compensatory film, polarizing plate and liquid crystal display using same
JP2009053684A (ja) * 2007-07-30 2009-03-12 Fujifilm Corp 位相差フィルム、偏光板、及びそれを用いた液晶表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170416A (ja) * 1980-01-07 1988-07-14 モベイ・コーポレーシヨン コポリカーボネートおよびその製造方法
JPH04227628A (ja) * 1990-02-08 1992-08-17 Dow Chem Co:The ハロゲン化コポリカーボネートを含む組成物
JPH05262043A (ja) * 1992-03-17 1993-10-12 Nippon G Ii Plast Kk 光学用ポリカーボネート系樹脂組成物
JP2001264534A (ja) * 2000-03-14 2001-09-26 Kanegafuchi Chem Ind Co Ltd 光学フィルム及びその製造方法
JP2007079561A (ja) * 2005-08-17 2007-03-29 Fujifilm Corp 光学フィルム、これを用いた光学補償フィルム、偏光板および液晶表示装置
JP2007310128A (ja) * 2006-05-18 2007-11-29 Fujifilm Corp 光学フィルム、光学フィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
WO2008016161A1 (fr) * 2006-08-02 2008-02-07 Mitsubishi Gas Chemical Company, Inc. Résine polycarbonate et corps photosensible électrophotographique l'utilisant

Also Published As

Publication number Publication date
CN102753607A (zh) 2012-10-24
TW201136737A (en) 2011-11-01
KR20130006434A (ko) 2013-01-16
TWI517960B (zh) 2016-01-21
JPWO2011102297A1 (ja) 2013-06-17
CN102753607B (zh) 2017-09-22
JP5896893B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
US10754065B2 (en) Retardation film, circularly-polarizing plate, and image-displaying device
US10670773B2 (en) Retardation film, circularly-polarizing plate, and image-displaying device
JP4759518B2 (ja) 光弾性定数の低いポリカーボネート及びそれからなるフィルム
JP6189355B2 (ja) 位相差フィルム、円偏光板及び画像表示装置
JP6820661B2 (ja) ポリアリレート樹脂およびそれからなるフィルム
JP5283442B2 (ja) オルガノシロキサン共重合ポリエステルアミド樹脂
JP3349173B2 (ja) 位相差補償フィルム
US9365673B2 (en) Polyarylate resin, and resin solution and film using same
TW201819460A (zh) 聚芳酯樹脂、由其構成之薄膜及積層體
JP5558741B2 (ja) 高屈折率かつ耐熱性に優れたポリカーボネート共重合体
JP5571297B2 (ja) オルガノシロキサン共重合ポリエステル樹脂
JP5896893B2 (ja) ハロゲン化ポリカーボネートからなる光学フィルムの製造方法
JP5583987B2 (ja) 光弾性定数が低いポリカーボネート樹脂および光学フィルム
JP2011162632A (ja) 耐熱性ポリエステル樹脂
JP2012077128A (ja) オルガノシロキサン共重合樹脂
TWI641487B (zh) Coating liquid, laminate, optical machine and electronic machine
JP5296452B2 (ja) 末端変性ポリカーボネートおよびその製造方法
JP3905634B2 (ja) ポリアリレート及びそのフィルム
JP3233734B2 (ja) 位相差補償フィルム
JP3535864B2 (ja) 位相差補償フィルム
WO2021054300A1 (ja) ポリカーボネート樹脂の製造方法、及び、成形体
JP6495591B2 (ja) 光学フィルム
JP3218109B2 (ja) 芳香族ポリカーボネート
WO2025005014A1 (ja) 熱可塑性樹脂、成形体、及び光学部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010030.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500575

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127020789

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11744584

Country of ref document: EP

Kind code of ref document: A1