[go: up one dir, main page]

WO2011080256A1 - Fungicide hydroximoyl-tetrazole derivatives - Google Patents

Fungicide hydroximoyl-tetrazole derivatives Download PDF

Info

Publication number
WO2011080256A1
WO2011080256A1 PCT/EP2010/070773 EP2010070773W WO2011080256A1 WO 2011080256 A1 WO2011080256 A1 WO 2011080256A1 EP 2010070773 W EP2010070773 W EP 2010070773W WO 2011080256 A1 WO2011080256 A1 WO 2011080256A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
alkyl
halogen atoms
atom
Prior art date
Application number
PCT/EP2010/070773
Other languages
English (en)
French (fr)
Inventor
Christian Beier
Jürgen BENTING
David Bernier
Pierre-Yves Coqueron
Philippe Desbordes
Christophe Dubost
Stéphanie Gary
Pierre Genix
Daniela Portz
Ulrike Wachendorff-Neumann
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Priority to JP2012545355A priority Critical patent/JP5782658B2/ja
Priority to EP10799052.5A priority patent/EP2519103B1/en
Priority to US13/519,293 priority patent/US8796463B2/en
Priority to MX2012007539A priority patent/MX2012007539A/es
Priority to CN201080060444.4A priority patent/CN102724879B/zh
Priority to BR112012012107-3A priority patent/BR112012012107B1/pt
Publication of WO2011080256A1 publication Critical patent/WO2011080256A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/713Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with four or more nitrogen atoms as the only ring hetero atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the present invention relates to hydroximoyl-tetrazole derivatives, their process of preparation, their use as fungicide active agents, particularly in the form of fungicide compositions and methods for the control of phytopathogenic fungi, notably of plants, using these compounds or compositions.
  • A represents a tetrazolyl group
  • Het represents either a particular pyridinyl group or a particular thiazolyl group.
  • Q can be selected in a list of 15 various heterocycle groups.
  • Q can be selected among a pyridinyl group or a thiazolyl group.
  • the present invention provides a tetrazoyloxime derivative of formula (I)
  • X represents a hydrogen atom, a halogen atom, substituted or non-substituted Ci-C 8 -alkyl, a substituted or non-substituted C-rC 8 -alkoxy, a cyano group, a methanesulfonyl group, a nitro group, a trifluoromethyl group or an aryl group ;
  • A represents a tetrazoyl group of formula (A 1 ) or (A 2 ):
  • Y represents substituted or non-substituted Ci-C 8 -alkyl
  • Het represents a pyridyl group of formula (Het 1 ) or a thiazolyl group of formula (Het 2 ) ;
  • o R represents a hydrogen atom or a halogen atom
  • o Q represents a group of formula Z
  • R a represents a hydrogen atom, a halogen atom or substituted or non-substituted C-
  • o L represents a divalent group of formula -(CR R 2 ) n - wherein
  • o n 1 or 2;
  • R and R 2 independently represent a hydrogen atom, a halogen atom, a cyano group, substituted or non-substituted Ci-C 8 -alkyl, substituted or non-substituted C 3 -C 8 - cycloalkyl, substituted or non-substituted Ci-C 8 -halogenoalkyl having 1 to 5 halogen atoms, substituted or non-substituted Ci-C 8 -halogenocycloalkyl having 1 to 5 halogen atoms, a substituted or non-substituted C 2 -C 8 -alkenyl, substituted or non-substituted C 2 -C 8 -alkynyl, substituted or non-substituted Ci-C 8 -alkoxy, substituted or non- substituted Ci-C 8 -halogenoalkoxy having 1 to 5 halogen atoms, substituted or non- substituted C 2 -C 8 -
  • o L 2 represents an oxygen atom, a sulphur atom, a divalent group of formula -CH 2 - or a carbonyl group;
  • o L 3 represents an oxygen atom or a sulphur atom
  • o K , K 2 , K 3 and K 4 independently represent a hydrogen atom, a halogen atom, a nitro group, a hydroxy group, a cyano group, an isonitrile group, an amino group, a sulphanyl group, a formyl group, a substituted or non-substituted carbaldehyde 0-(Ci-C 8 -alkyl)oxime, a formyloxy group, a formylamino group, a carbamoyl group, a N-hydroxycarbamoyl group, a pentafluoro-A 6 -sulphanyl group, a formylamino group, substituted or non-substituted Ci-C 8 - alkyl, substituted or non-substituted C 3 -C 8 -cycloalkyl, substituted or non-substituted Ci-C 8 - halogenoalkyl having 1 to 5 halogen atom
  • o Q represents a group of formula Z1 ;
  • o Q represents also a group of formula Z 3 ;
  • any of the compounds according to the invention can exist as one or more stereoisomers depending on the number of stereogenic units (as defined by the lUPAC rules) in the compound.
  • the invention thus relates equally to all the stereoisomers, and to the mixtures of all the possible stereoisomers, in all proportions.
  • the stereoisomers can be separated according to the methods which are known per se by the man ordinary skilled in the art.
  • stereostructure of the oxime moiety present in the heterocyclyloxime derivative of formula (I) includes (E) or (Z) isomer, and these stereoisomers form part of the present invention.
  • halogen means fluorine, chlorine, bromine or iodine ;
  • heteroatom can be nitrogen, oxygen or sulphur ;
  • a group or a substituent that is substituted according to the invention can be substituted by one or more of the following groups or atoms: a halogen atom, a nitro group, a hydroxy group, a cyano group, an isocyano group, an amino group, a sulphenyl group, a pentafluoro ⁇ 6 -sulphenyl group, a formyl group, a substituted or non- substituted carbaldehyde 0-(Ci-C 8 -alkyl)oxime, a formyloxy group, a formylamino group, a carbamoyl group, a N-hydroxycarbamoyl group, a formylamino group, a (hydroxyimino)-Ci-C 6 - alkyl group, a Ci-C 8 -alkyl, a tri(Ci-C 8 -alkyl)silyl-Ci-C 8 -alkyl
  • aryl means phenyl or naphthyl
  • heterocyclyl means saturated or unsaturated 4-, 5-, 6-, 7-, 8-, 9-, or 10- membered ring comprising up to 4 heteroatoms selected in the list consisting of N, O, S .
  • Preferred compounds of formula (I) according to the invention are those wherein the substitution position of X is not specifically limited.
  • X represents a hydrogen atom, a halogen atom, substituted or non-substituted Ci-C 8 -alkyl, a substituted or non- substituted Ci-C 8 -alkoxy, a cyano group, a methanesulfonyl group, a nitro group, a trifluoromethyl group or an aryl group.
  • halogen atom for X examples include a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom. Among these halogen atoms, a chlorine atom or a fluorine atom is particularly preferred.
  • the substituted or non-substituted Ci-C 8 -alkyl group represented for X is preferably an alkyi group having 1 to 4 carbon atoms and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert- butyl group.
  • the alkoxy group for X is preferably a substituted or non-substituted Ci-C 8 -alkoxy group having 1 to 3 carbon atoms and specific examples thereof include a methoxy group, an ethoxy group, a propoxy group, and an isopropoxy group.
  • a methoxy group or an ethoxy group is particularly preferred.
  • Y represents a substituted or non-substituted Ci-C 8 -alkyl group.
  • alkyi groups an alkyi group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, an n-propyl group or an isopropyl group is preferable.
  • a methyl group or an ethyl group is particularly preferred.
  • R in the pyridyl group of formula (Het 1 ) represents a hydrogen atom or a halogen atom such as a chlorine atom, a bromine atom, an iodine atom or a fluorine atom.
  • R in the pyridyl group of formula (Het 1 ) represents a hydrogen atom or a halogen atom such as a chlorine atom, a bromine atom, an iodine atom or a fluorine atom.
  • a hydrogen atom or a chlorine atom is particularly preferred.
  • R a in the group of formula Q represents a hydrogen atom, a fluorine atom or a methyl group.
  • R n in the group of formula Q represents 1.
  • R and R 2 in the group of formula Q independently represent a hydrogen atom, a halogen atom, substituted or non- substituted Ci-C 8 -alkyl.
  • R and R 2 in the group of formula Q independently represent a hydrogen atom, a fluorine atom, or a methyl group.
  • K , K 2 , K 3 and K 4 in the group of formula Q independently represent a hydrogen atom, a halogen atom, a cyano group, substituted or non-substituted Ci-C 8 -alkyl, substituted or non-substituted C 3 -C 8 -cycloalkyl, substituted or non-substituted Ci-C 8 -halogenoalkyl having 1 to 5 halogen atoms, substituted or non- substituted Ci-C 8 -alkoxy, substituted or non-substituted Ci-C 8 -halogenoalkoxy having 1 to 5 halogen atoms, substituted or non-substituted C 2 -C 8 -alkenyloxy, substituted or non-substituted C 3 -C 8 - alkynyloxy, substituted or non-substituted (Ci-C 6 -alkoxyi
  • K , K 2 , K 3 and K 4 in the group of formula Q independently represent a hydrogen atom, a halogen atom, a cyano group, substituted or non-substituted Ci-C 8 -alkyl, substituted or non-substituted Ci-C 8 -halogenoalkyl having 1 to 5 halogen atoms, substituted or non-substituted Ci-C 8 -alkoxy.
  • K , K 2 , K 3 and K 4 in the group of formula Q independently represent a hydrogen atom, a halogen atom, a cyano group, Ci-C 2 -alkyl, Ci-C 2 -halogenoalkyl having 1 to 5 halogen atoms, Ci-C 2 -alkoxy.
  • the said preferred features can also be selected among the more preferred features of each of X, A 1 , A 2 , Y, Het 1 , Het 2 , R and Q ; so as to form most preferred subclasses of compounds according to the invention.
  • the present invention also relates to a process for the preparation of compounds of formula (I).
  • process P1 for the preparation of compounds of formula (I) as herein-defined, as illustrated by the following reaction scheme:
  • LG represents a leaving group.
  • Suitable leaving groups can be selected in the list consisting of a halogen atom or other customary nucleofugal groups such as triflate, mesylate or tosylate.
  • process P1 according to the invention can be completed by a further step comprising the additional modification of this group, notably by a reaction of acylation or alkoxycarbonylation to yield to a compound of formula (lb), according to known methods.
  • a process P2 according to the invention and such a process P2 can be illustrated by the following reaction scheme :
  • Het' represents a pyridyl group of formula (Het' 1 ) or a thiazolyl group of formula (Het' 2 )
  • R is as herein-defined.
  • Suitable leaving groups can be selected in the list consisting of a halogen atom or other customary nucleofugal groups such as 440, 44, 46, 47, 48, 49, 50, 51, 52, 52, 53, 52, 53, 52, 53, 52, 53, 52, 53, 54, 55, 56, 55, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 57, 59, 58, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 60, 60, 60, 60, 60, 60, 60, 60, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61,
  • processes P1 and P2 can be performed if appropriate in the presence of a solvent and if appropriate in the presence of a base.
  • processes P1 and P2 can be performed if appropriate in the presence of a catalyst.
  • Suitable catalyst can be selected in the list consisting of 4-dimethyl-aminopyridine, 1-hydroxy- benzotriazole or dimethylformamide.
  • process P2 can be performed in the presence of condensing agent.
  • Suitable condensing agent can be selected in the list consisting of acid halide former, such as phosgene, phosphorous tri-bro-mide, phosphorous trichloride, phosphorous pentachloride, phosphorous trichloride oxide or thionyl chloride; anhydride former, such as ethyl chloroformate, methyl chloroformate, isopropyl chloroformate, isobutyl chloroformate or methanesulfonyl chloride; carbodiimides, such as ⁇ , ⁇ '-dicyclohexylcarbodiimide (DCC) or other customary condensing agents, such as phosphorous pentoxide, polyphosphoric acid, N,N'-carbonyl- diimidazole, 2-ethoxy-N-ethoxycarbonyl-1 ,2-dihydro
  • acid halide former such as phosgen
  • Suitable solvents for carrying out processes P1 and P2 according to the invention are customary inert organic solvents. Preference is given to using optionally halogenated aliphatic, alicyclic or aromatic hydrocarbons, such as petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decalin ; chlorobenzene, dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichlorethane or trichlorethane ; ethers, such as diethyl ether, diisopropyl ether, methyl tert-butyl ether, methyl tert-amyl ether, dioxane, tetrahydrofuran, 1 ,2-dimethoxyethane, 1 ,2- diethoxyethane or anisole ; nitriles, such as
  • Suitable bases for carrying out processes P1 and P2 according to the invention are inorganic and organic bases which are customary for such reactions.
  • alkaline earth metal alkali metal hydride, alkali metal hydroxides or alkali metal alkoxides, such as sodium hydroxide, sodium hydride, calcium hydroxide, potassium hydroxide, potassium tert-butoxide or other ammonium hydroxide
  • alkali metal carbonates such as sodium carbonate, potassium carbonate, potassium bicarbonate, sodium bicarbonate, cesium carbonate
  • alkali metal or alkaline earth metal acetates such as sodium acetate, potassium acetate, calcium acetate
  • tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, tributylamine, A/,A/-dimethylaniline, pyridine, /V-methylpiperidine, A/,A/-dimethylaminopyridine, 1
  • reaction temperature can independently be varied within a relatively wide range.
  • process P1 according to the invention is carried out at temperatures between -20°C and
  • Processes P1 and P2 according to the invention are generally independently carried out under atmospheric pressure. However, it is also possible to operate under elevated or reduced pressure.
  • process P1 according to the invention generally 1 mol or an excess of derivative of formula Het-CH 2 -LG and from 1 to 3 mol of base are employed per mole of hydroximoyi tetrazole of formula (II). It is also possible to employ the reaction components in other ratios.
  • reaction mixture is treated with water and the organic phase is separated off and, after drying, concentrated under reduced pressure. If appropriate, the remaining residue can be freed by customary methods, such as chromatography or recrystallization, from any impurities that can still be present.
  • the compounds of formula (II), useful as a starting material can be prepared, for example, by reacting hydroxylamine with the corresponding ketones that can be prepared, for example, according to the method described by R. Raap (Can. J. Chem. 1971 , 49, 2139) by addition of a tetrazolyl lithium species to esters of formula or any of their suitable synthetic equivalents like, for example :
  • the compounds of general formula (II) useful as a starting material can be prepared, for example, from oximes of formula and 5-substituted tetrazole according to the method described by J. Plenkiewicz et al. (Bull. Soc. Chim. Belg. 1987, 96, 675).
  • the present invention also relates to a fungicide composition
  • a fungicide composition comprising an effective and non-phytotoxic amount of an active compound of formula (I).
  • an effective and non-phytotoxic amount means an amount of composition according to the invention which is sufficient to control or destroy the fungi present or liable to appear on the crops and which does not entail any appreciable symptom of phytotoxicity for the said crops.
  • Such an amount can vary within a wide range depending on the fungus to be controlled, the type of crop, the climatic conditions and the compounds included in the fungicide composition according to the invention. This amount can be determined by systematic field trials, which are within the capabilities of a person skilled in the art.
  • fungicide composition comprising, as an active ingredient, an effective amount of a compound of formula (I) as herein defined and an agriculturally acceptable support, carrier or filler.
  • the term "support” denotes a natural or synthetic organic or inorganic compound with which the active compound of formula (I) is combined or associated to make it easier to apply, notably to the parts of the plant.
  • This support is thus generally inert and should be agriculturally acceptable.
  • the support can be a solid or a liquid.
  • suitable supports include clays, natural or synthetic silicates, silica, resins, waxes, solid fertilisers, water, alcohols, in particular butanol organic solvents, mineral and plant oils and derivatives thereof. Mixtures of such supports can also be used.
  • composition according to the invention can also comprise additional components.
  • the composition can further comprise a surfactant.
  • the surfactant can be an emulsifier, a dispersing agent or a wetting agent of ionic or non-ionic type or a mixture of such surfactants.
  • polyacrylic acid salts lignosulphonic acid salts, phenolsulphonic or naphthalenesulphonic acid salts
  • polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines substituted phenols (in particular alkylphenols or ary
  • surfactant content can be comprised from 5% to 40% by weight of the composition.
  • additional components can also be included, e.g. protective colloids, adhesives, thickeners, thixotropic agents, penetration agents, stabilisers, sequestering agents.
  • the active compounds can be combined with any solid or liquid additive, which complies with the usual formulation techniques.
  • composition according to the invention can contain from 0.05 to 99% by weight of active compound, preferably 10 to 70% by weight.
  • compositions according to the invention can be used in various forms such as aerosol dispenser, capsule suspension, cold fogging concentrate, dustable powder, emulsifiable concentrate, emulsion oil in water, emulsion water in oil, encapsulated granule, fine granule, flowable concentrate for seed treatment, gas (under pressure),gas generating product, granule, hot fogging concentrate, macrogranule, microgranule, oil dispersible powder, oil miscible flowable concentrate, oil miscible liquid, paste, plant rodlet, powder for dry seed treatment, seed coated with a pesticide, soluble concentrate, soluble powder, solution for seed treatment, suspension concentrate (flowable concentrate), ultra low volume (ULV) liquid, ultra low volume (ULV) suspension, water dispersible granules or tablets, water dispersible powder for slurry treatment, water soluble granules or tablets, water soluble powder for seed treatment and wettable powder.
  • These compositions include not only compositions which are ready to be applied to the plant or seed to
  • the compounds according to the invention can also be mixed with one or more insecticide, fungicide, bactericide, attractant, acaricide or pheromone active substance or other compounds with biological activity.
  • the mixtures thus obtained have a broadened spectrum of activity.
  • the mixtures with other fungicide compounds are particularly advantageous.
  • the composition according to the invention comprising a mixture of a compound of formula (I) with a bactericide compound can also be particularly advantageous.
  • fungicide mixing partners can be selected in the following lists:
  • Inhibitors of the nucleic acid synthesis for example benalaxyl, benalaxyl-M, bupirimate, clozylacon, dimethirimol, ethirimol, furalaxyl, hymexazol, metalaxyl, metalaxyl-M, ofurace, oxadixyl and oxolinic acid.
  • Inhibitors of the mitosis and cell division for example benomyl, carbendazim, chlorfenazole, diethofencarb, ethaboxam, fuberidazole, pencycuron, thiabendazole, thiophanate, thiophanate-methyl and zoxamide.
  • Inhibitors of the respiration for example diflumetorim as Cl-respiration inhibitor; bixafen, boscalid, carboxin, fenfuram, flutolanil, fluopyram, furametpyr, furmecyclox, isopyrazam (mixture of syn-epimeric racemate 1 RS,4SR,9RS and anti-epimeric racemate 1 RS,4SR,9SR), isopyrazam (syn epimeric racemate 1 RS,4SR,9RS), isopyrazam (syn-epimeric enantiomer 1 R,4S,9R), isopyrazam (syn-epimeric enantiomer 1S,4R,9S), isopyrazam (anti-epimeric racemate 1 RS,4SR,9SR), isopyrazam (anti-epimeric enantiomer 1 R,4S,9S), isopyrazam (anti-epimeric racemate 1
  • Inhibitors of the ATP production for example fentin acetate, fentin chloride, fentin hydroxide, and silthiofam.
  • Inhibitors of the amino acid and/or protein biosynthesis for example andoprim, blasticidin-S, cyprodinil, kasugamycin, kasugamycin hydrochloride hydrate, mepanipyrim and pyrimethanil.
  • Inhibitors of the signal transduction for example fenpiclonil, fludioxonil and quinoxyfen.
  • Inhibitors of the lipid and membrane synthesis for example biphenyl, chlozolinate, edifenphos, etridiazole, iodocarb, iprobenfos, iprodione, isoprothiolane, procymidone, propamocarb, propamocarb hydrochloride, pyrazophos, tolclofos-methyl and vinclozolin.
  • Inhibitors of the ergosterol biosynthesis for example aldimorph, azaconazole, bitertanol, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, diniconazole, diniconazole-M, dodemorph, dodemorph acetate, epoxiconazole, etaconazole, fenarimol, fenbuconazole, fenhexamid, fenpropidin, fenpropimorph, fluquinconazole, flurprimidol, flusilazole, flutriafol, furconazole, furconazole-cis, hexaconazole, imazalil, imazalil sulfate, imibenconazole, ipconazole, metconazole, myclobutanil, naftifine, nuarimol, oxpoconazole, paclobutra
  • Inhibitors of the cell wall synthesis for example benthiavalicarb, dimethomorph, flumorph, iprovalicarb, mandipropamid, polyoxins, polyoxorim, prothiocarb, validamycin A, and valifenalate.
  • Inhibitors of the melanine biosynthesis for example carpropamid, diclocymet, fenoxanil, phthalide, pyroquilon and tricyclazole.
  • thiazole-4-carboxamide N-methyl-2-(1- ⁇ [5-methyl-3-(trifluoromethyl)-1 H-pyrazol-1-yl]acetyl ⁇ piperidin-4- yl)-N-(1 ,2,3,4-tetrahydronaphthalen-1-yl)-1 ,3-thiazole-4-carboxamide, 3-(difluoromethyl)-N-[4-fluoro-2- (1 , 1 ,2,3,3,3-hexafluoropropoxy)phenyl]-1-methyl-1 H-pyrazole-4-carboxamide and pentyl ⁇ 6-[( ⁇ [(1- methyl-1 H-tetrazol-5-yl)(phenyl)methylidene]amino ⁇ oxy)methyl]pyridin-2-yl ⁇ carbamate.
  • a method for controlling the phytopathogenic fungi of plants, crops or seeds characterized in that an agronomically effective and substantially non-phytotoxic quantity of a pesticide composition according to the invention is applied as seed treatment, foliar application, stem application, drench or drip application (chemigation) to the seed, the plant or to the fruit of the plant or to soil or to inert substrate (e.g. inorganic substrates like sand, rockwool, glasswool; expanded minerals like perlite, vermiculite, zeolite or expanded clay), Pumice, Pyroclastic materials or stuff, synthetic organic substrates (e.g. polyurethane) organic substrates (e.g.
  • a liquid substrate e.g. floating hydroponic systems, Nutrient Film Technique, Aeroponics
  • insects to be treated are understood to mean, for the purposes of the present invention, that the pesticide composition which is the subject of the invention can be applied by means of various methods of treatment such as: • spraying onto the aerial parts of the said plants a liquid comprising one of the said compositions,
  • the method according to the invention can either be a curing, preventing or eradicating method.
  • a composition used can be prepared beforehand by mixing the two or more active compounds according to the invention.
  • a lower dose can offer adequate protection.
  • Certain climatic conditions, resistance or other factors like the nature of the phytopathogenic fungi or the degree of infestation, for example, of the plants with these fungi, can require higher doses of combined active ingredients.
  • the optimum dose usually depends on several factors, for example on the type of phytopathogenic fungus to be treated, on the type or level of development of the infested plant, on the density of vegetation or alternatively on the method of application.
  • the crop treated with the pesticide composition or combination according to the invention is, for example, grapevine, but this could be cereals, vegetables, lucerne, soybean, market garden crops, turf, wood, tree or horticultural plants.
  • the method of treatment according to the invention can also be useful to treat propagation material such as tubers or rhizomes, but also seeds, seedlings or seedlings pricking out and plants or plants pricking out. This method of treatment can also be useful to treat roots.
  • the method of treatment according to the invention can also be useful to treat the over-ground parts of the plant such as trunks, stems or stalks, leaves, flowers and fruit of the concerned plant.
  • Solanaceae sp. for instance tomatoes
  • Liliaceae sp. for instance lettuces
  • Umbelliferae sp. for instance lettuces
  • Umbelliferae sp. for instance lettuces
  • Cilionaceae sp. for instance peas
  • Rosaceae sp. for instance strawberries
  • major crops such as Graminae sp. (for instance maize, lawn or cereals such as wheat, rice, barley and triticale), Asteraceae sp. (for instance sunflower), Cruciferae sp. (for instance colza), Fabacae sp.
  • composition according to the invention can also be used in the treatment of genetically modified organisms with the compounds according to the invention or the agrochemical compositions according to the invention.
  • Genetically modified plants are plants into genome of which a heterologous gene encoding a protein of interest has been stably integrated.
  • the expression "heterologous gene encoding a protein of interest” essentially means genes which give the transformed plant new agronomic properties or genes for improving the agronomic quality of the modified plant.
  • the composition according to the invention can also be used against fungal diseases liable to grow on or inside timber.
  • the term "timber" means all types of species of wood and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood and plywood.
  • the method for treating timber according to the invention mainly consists in contacting one or more compounds according to the invention or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.
  • Powdery mildew diseases such as :
  • Blumeria diseases caused for example by Blumeria graminis ;
  • Podosphaera diseases caused for example by Podosphaera leucotricha ;
  • Sphaerotheca diseases caused for example by Sphaerotheca fuliginea ;
  • Uncinula diseases caused for example by Uncinula necator ;
  • Rust diseases such as :
  • Gymnosporangium diseases caused for example by Gymnosporangium sabinae ;
  • Hemileia diseases caused for example by Hemileia vastatrix ;
  • Phakopsora diseases caused for example by Phakopsora pachyrhizi or Phakopsora meibomiae ;
  • Puccinia diseases caused for example by Puccinia recondita ;
  • Uromyces diseases caused for example by Uromyces appendiculatus ;
  • Oomycete diseases such as :
  • Bremia diseases caused for example by Bremia lactucae ;
  • Peronospora diseases caused for example by Peronospora pisi or P. brassicae ;
  • Phytophthora diseases caused for example by Phytophthora infestans ;
  • Plasmopara diseases caused for example by Plasmopara viticola ;
  • Pseudoperonospora diseases caused for example by Pseudoperonospora humuli or
  • Pythium diseases caused for example by Pythium ultimum ;
  • Leafspot, leaf blotch and leaf blight diseases such as :
  • Alternaria diseases caused for example by Alternaria solani ;
  • Cercospora diseases caused for example by Cercospora beticola ;
  • Cladiosporum diseases caused for example by Cladiosporium cucumerinum ;
  • Cochliobolus diseases caused for example by Cochliobolus sativus ;
  • Colletotrichum diseases caused for example by Colletotrichum lindemuthanium ;
  • Cycloconium diseases caused for example by Cycloconium oleaginum ;
  • Diaporthe diseases caused for example by Diaporthe citri ;
  • Elsinoe diseases caused for example by Elsinoe fawcettii ;
  • Gloeosporium diseases caused for example by Gloeosporium laeticolor ;
  • Glomerella diseases caused for example by Glomerella cingulata ;
  • Guignardia diseases caused for example by Guignardia bidwelli ;
  • Leptosphaeria diseases caused for example by Leptosphaeria maculans ; Leptosphaeria nodorum ; Magnaporthe diseases, caused for example by Magnaporthe grisea ;
  • Mycosphaerella diseases caused for example by Mycosphaerella graminicola ; Mycosphaerella arachidicola ; Mycosphaerella fijiensis ;
  • Phaeosphaeria diseases caused for example by Phaeosphaeria nodorum ;
  • Pyrenophora diseases caused for example by Pyrenophora teres ;
  • Ramularia diseases caused for example by Ramularia collo-cygni ;
  • Rhynchosporium diseases caused for example by Rhynchosporium secalis ;
  • Septoria diseases caused for example by Septoria apii or Septoria lycopercisi ;
  • Typhula diseases caused for example by Typhula incarnata ;
  • Venturia diseases caused for example by Venturia inaequalis ;
  • Root and stem diseases such as :
  • Corticium diseases caused for example by Corticium graminearum ;
  • Fusarium diseases caused for example by Fusarium oxysporum ;
  • Gaeumannomyces diseases caused for example by Gaeumannomyces graminis ;
  • Rhizoctonia diseases caused for example by Rhizoctonia solani ;
  • Tapesia diseases caused for example by Tapesia acuformis ;
  • Thielaviopsis diseases caused for example by Thielaviopsis basicola ;
  • Ear and panicle diseases such as : Alternaria diseases, caused for example by Alternaria spp. ;
  • Aspergillus diseases caused for example by Aspergillus flavus ;
  • Cladosporium diseases caused for example by Cladosporium spp. ;
  • Claviceps diseases caused for example by Claviceps purpurea ;
  • Fusarium diseases caused for example by Fusarium culmorum ;
  • Gibberella diseases caused for example by Gibberella zeae ;
  • Monographella diseases caused for example by Monographella nivalis ; Smut and bunt diseases such as :
  • Sphacelotheca diseases caused for example by Sphacelotheca reiliana ;
  • Tilletia diseases caused for example by Tilletia caries ;
  • Urocystis diseases caused for example by Urocystis occulta ;
  • Ustilago diseases caused for example by Ustilago nuda ;
  • Aspergillus diseases caused for example by Aspergillus flavus ;
  • Botrytis diseases caused for example by Botrytis cinerea ;
  • Penicillium diseases caused for example by Penicillium expansum ;
  • Sclerotinia diseases caused for example by Sclerotinia sclerotiorum ;
  • Verticilium diseases caused for example by Verticilium alboatrum ;
  • Seed and soilborne decay, mould, wilt, rot and dam ping-off diseases Seed and soilborne decay, mould, wilt, rot and dam ping-off diseases :
  • Aphanomyces diseases caused for example by Aphanomyces euteiches
  • Ascochyta diseases caused for example by Ascochyta lentis
  • Cladosporium diseases caused for example by Cladosporium herbarum
  • Cochliobolus diseases caused for example by Cochliobolus sativus
  • Colletotrichum diseases caused for example by Colletotrichum coccodes
  • Fusarium diseases caused for example by Fusarium culmorum
  • Gibberella diseases caused for example by Gibberella zeae
  • Macrophomina diseases caused for example by Macrophomina phaseolina
  • Monographella diseases caused for example by Monographella nivalis
  • Penicillium diseases caused for example by Penicillium expansum
  • Phoma diseases caused for example by Phoma lingam
  • Phomopsis diseases caused for example by Phomopsis sojae
  • Phytophthora diseases caused for example by Phytophthora cactorum
  • Pyrenophora diseases caused for example by Pyrenophora graminea
  • Pyricularia diseases caused for example by Pyricularia oryzae
  • Pythium diseases caused for example by Pythium ultimum
  • Rhizoctonia diseases caused for example by Rhizoctonia solani;
  • Rhizopus diseases caused for example by Rhizopus oryzae Sclerotium diseases, caused for example by Sclerotium rolfsii;
  • Septoria diseases caused for example by Septoria nodorum
  • Typhula diseases caused for example by Typhula incarnata
  • Verticillium diseases caused for example by Verticillium dahliae ;
  • Canker, broom and dieback diseases such as :
  • Nectria diseases caused for example by Nectria galligena ;
  • Blight diseases such as :
  • Monilinia diseases caused for example by Monilinia laxa ;
  • Leaf blister or leaf curl diseases such as :
  • Taphrina diseases caused for example by Taphrina deformans ;
  • Esca diseases caused for example by Phaemoniella clamydospora ;
  • Eutypa dyeback caused for example by Eutypa lata ;
  • Botrytis diseases caused for example by Botrytis cinerea ;
  • Rhizoctonia diseases caused for example by Rhizoctonia solani
  • Helminthosporium diseases caused for example by Helminthosporium solani.
  • the method of treatment according to the invention can be used in the treatment of genetically modified organisms (GMOs), e.g. plants or seeds.
  • GMOs genetically modified organisms
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • the expression "heterologous gene” essentially means a gene which is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomic or other properties by expressing a protein or polypeptide of interest or by downregulating or silencing other gene(s) which are present in the plant (using for example, antisense technology, co suppression technology or RNA interference - RNAi - technology).
  • a heterologous gene that is located in the genome is also called a transgene.
  • a transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.
  • the treatment according to the invention may also result in superadditive (“synergistic") effects.
  • superadditive for example, reduced application rates and/or a widening of the activity spectrum and/or an increase in the activity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, accelerated maturation, higher harvest yields, bigger fruits, larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritional value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processability of the harvested products are possible, which exceed the effects which were actually to be expected.
  • the active compound combinations according to the invention may also have a strengthening effect in plants. Accordingly, they are also suitable for mobilizing the defense system of the plant against attack by unwanted phytopathogenic fungi and/ or microorganisms and/or viruses. This may, if appropriate, be one of the reasons of the enhanced activity of the combinations according to the invention, for example against fungi.
  • Plant-strengthening (resistance-inducing) substances are to be understood as meaning, in the present context, those substances or combinations of substances which are capable of stimulating the defense system of plants in such a way that, when subsequently inoculated with unwanted phytopathogenic fungi and/ or microorganisms and/or viruses, the treated plants display a substantial degree of resistance to these unwanted phytopathogenic fungi and/ or microorganisms and/or viruses.
  • unwanted phytopathogenic fungi and/ or microorganisms and/or viruses are to be understood as meaning phytopathogenic fungi, bacteria and viruses.
  • the substances according to the invention can be employed for protecting plants against attack by the abovementioned pathogens within a certain period of time after the treatment.
  • the period of time within which protection is effected generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.
  • Plants and plant cultivars which are preferably to be treated according to the invention include all plants which have genetic material which impart particularly advantageous, useful traits to these plants (whether obtained by breeding and/or biotechnological means).
  • Plants and plant cultivars which are also preferably to be treated according to the invention are resistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or viroids.
  • Plants and plant cultivars which may also be treated according to the invention are those plants which are resistant to one or more abiotic stresses.
  • Abiotic stress conditions may include, for example, drought, cold temperature exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased mineral exposure, ozon exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.
  • Plants and plant cultivars which may also be treated according to the invention are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the result of, for example, improved plant physiology, growth and development, such as water use efficiency, water retention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthesis, increased germination efficiency and accelerated maturation.
  • Yield can furthermore be affected by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid seed production, seedling vigor, plant size, internode number and distance, root growth, seed size, fruit size, pod size, pod or ear number, seed number per pod or ear, seed mass, enhanced seed filling, reduced seed dispersal, reduced pod dehiscence and lodging resistance.
  • Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in anti-nutritional compounds, improved processability and better storage stability.
  • Plants that may be treated according to the invention are hybrid plants that already express the characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and resistance towards biotic and abiotic stress factors. Such plants are typically made by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from the male sterile plants and sold to growers. Male sterile plants can sometimes (e.g. in corn) be produced by detasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the result of genetic determinants in the plant genome.
  • cytoplasmic male sterility were for instance described in Brassica species (WO 1992/005251 , WO 1995/009910, WO 1998/27806, WO
  • male sterile plants can also be obtained by plant biotechnology methods such as genetic engineering.
  • a particularly useful means of obtaining male- sterile plants is described in WO 1989/10396 in which, for example, a ribonuclease such as barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expression in the tapetum cells of a ribonuclease inhibitor such as barstar (e.g. WO 1991/002069).
  • Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may be treated according to the invention are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by selection of plants containing a mutation imparting such herbicide tolerance.
  • Herbicide-tolerant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means.
  • glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., Science (1983), 221 , 370-371 ), the CP4 gene of the bacterium Agrobacterium sp.
  • Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme as described in US 5,776,760 and US 5,463,175.
  • Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate acetyl transferase enzyme as described in for example WO 2002/036782, WO 2003/092360, WO 2005/012515 and WO 2007/024782.
  • Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above- mentioned genes, as described in for example WO 2001/024615 or WO 2003/013226.
  • herbicide resistant plants are for example plants that are made tolerant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate.
  • Such plants can be obtained by expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is resistant to inhibition.
  • One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces species).
  • Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in US 5,561 ,236; US 5,648,477; US 5,646,024; US 5,273,894; US 5,637,489; US 5,276,268; US 5,739,082; US 5,908,810 and US 7, 1 12,665.
  • hydroxyphenylpyruvatedioxygenase HPPD
  • Hydroxyphenylpyruvatedioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate.
  • Plants tolerant to HPPD-inhibitors can be transformed with a gene encoding a naturally-occurring resistant HPPD enzyme, or a gene encoding a mutated HPPD enzyme as described in WO 1996/038567, WO 1999/024585 and WO 1999/024586.
  • Tolerance to HPPD- inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD- inhibitor. Such plants and genes are described in WO 1999/034008 and WO 2002/36787. Tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme prephenate dehydrogenase in addition to a gene encoding an HPPD-tolerant enzyme, as described in WO 2004/024928.
  • Still further herbicide resistant plants are plants that are made tolerant to acetolactate synthase (ALS) inhibitors.
  • ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy(thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicides.
  • Different mutations in the ALS enzyme also known as acetohydroxyacid synthase, AHAS
  • AHAS acetohydroxyacid synthase
  • plants tolerant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in US 5,084,082, for rice in WO 1997/41218, for sugar beet in US 5,773,702 and WO 1999/057965 , for lettuce in US 5,198,599, or for sunflower in WO 2001/065922.
  • Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which may also be treated according to the invention are insect-resistant transgenic plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.
  • An "insect-resistant transgenic plant”, as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:
  • an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof such as the insecticidal crystal proteins listed by Crickmore et al., Microbiology and Molecular Biology Reviews (1998), 62, 807-813, updated by Crickmore et al. (2005) at the Bacillus thuringiensis toxin nomenclature, online at:
  • insecticidal portions thereof e.g., proteins of the Cry protein classes CrylAb, CrylAc, Cryl F, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof; or
  • a crystal protein from Bacillus thuringiensis or a portion thereof which is insecticidal in the presence of a second other crystal protein from Bacillus thuringiensis or a portion thereof, such as the binary toxin made up of the Cry34 and Cry35 crystal proteins (Moellenbeck et al., Nat. Biotechnol. (2001 ), 19, 668-72; Schnepf et al., Applied Environm. Microbiol. (2006), 71 , 1765-1774); or
  • a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of the proteins of 1 ) above or a hybrid of the proteins of 2) above, e.g., the Cry1A.105 protein produced by corn event MON98034 (WO
  • VIP vegetative insecticidal
  • a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin made up of the VIPIA and VIP2A proteins (WO 1994/21795); or 7) a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins in 1 ) above or a hybrid of the proteins in 2) above; or
  • 8) a protein of any one of 1 ) to 3) above wherein some, particularly 1 to 10, amino acids have been replaced by another amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand the range of target insect species affected, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton event COT102.
  • an insect-resistant transgenic plant also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 8.
  • any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 8.
  • an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes 1 to 8, to expand the range of target insect species affected when using different proteins directed at different target insect species, or to delay insect resistance development to the plants by using different proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect.
  • Plants or plant cultivars which may also be treated according to the invention are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance. Particularly useful stress tolerance plants include: a. plants which contain a transgene capable of reducing the expression and/or the activity of poly(ADP-ribose)polymerase (PARP) gene in the plant cells or plants as described in WO 2000/004173 or WO2006/045633 or PCT/EP07/004142. b.
  • PARP poly(ADP-ribose)polymerase
  • plants which contain a stress tolerance enhancing transgene capable of reducing the expression and/or the activity of the PARG encoding genes of the plants or plants cells as described e.g. in WO 2004/090140.
  • plants which contain a stress tolerance enhancing transgene coding for a plant- functional enzyme of the nicotinamide adenine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyl transferase, nicotinamide adenine dinucleotide synthetase or nicotine amide phosphoribosyltransferase as described e.g.
  • Plants or plant cultivars which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of specific ingredients of the harvested product such as : 1 ) transgenic plants which synthesize a modified starch, which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with the synthesised starch in wild type plant cells or plants, so that this is better suited for special applications.
  • a modified starch which in its physical-chemical characteristics, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the side chain distribution, the viscosity behaviour, the gelling strength, the starch grain size and/or the starch grain morphology, is changed in comparison with
  • transgenic plants synthesizing a modified starch are disclosed, for example, in EP 0571427, WO 1995/004826, EP 0719338, WO 1996/15248, WO 1996/19581 , WO 1996/27674, WO 1997/1 1 188, WO 1997/26362, WO 1997/32985, WO 1997/42328, WO 1997/44472, WO 1997/45545, WO 1998/27212, WO 1998/40503,
  • transgenic plants which synthesize non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altered properties in comparison to wild type plants without genetic modification.
  • Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP 0663956, WO 1996/001904, WO 1996/021023, WO 1998/039460, and WO 1999/024593, plants producing alpha 1 ,4 glucans as disclosed in WO 1995/031553, US 2002/031826, US 6,284,479, US 5,712, 107, WO 1997/047806, WO 1997/047807, WO 1997/047808 and WO 2000/014249, plants producing alpha-1 ,6 branched alpha-1 ,4-glucans, as disclosed in WO 2000/73422, plants producing alternan, as disclosed in WO 2000/047727, EP 06077301.7, US 5,908,975 and EP 0728213,
  • transgenic plants which produce hyaluronan, as for example disclosed in WO 2006/032538, WO 2007/039314, WO 2007/039315, WO 2007/039316, JP 2006/304779, and WO
  • Plants or plant cultivars which may also be treated according to the invention are plants, such as cotton plants, with altered fiber characteristics.
  • plants can be obtained by genetic transformation, or by selection of plants contain a mutation imparting such altered fiber characteristics and include:
  • Plants such as cotton plants, containing an altered form of cellulose synthase genes as described in WO 1998/000549
  • Plants such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in WO2004/053219
  • Plants such as cotton plants, having fibers with altered reactivity, e.g. through the expression of N-acteylglucosaminetransferase gene including nodC and chitinsynthase genes as described in WO2006/136351
  • Plants or plant cultivars which may also be treated according to the invention are plants, such as oilseed rape or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic transformation or by selection of plants contain a mutation imparting such altered oil characteristics and include:
  • transgenic plants which may be treated according to the invention are plants which comprise one or more genes which encode one or more toxins, such as the following which are sold under the trade names YIELD GARD 3 (for example maize, cotton, soya beans), KnockOut 3 (for example maize), BiteGard 3 (for example maize), Bt-Xtra 3 (for example maize), Starl_ink 3 (for example maize), Bollgard 3 (cotton), Nucotn 3 (cotton), Nucotn 33B®(cotton), NatureGard 3 (for example maize), Protecta 3 and NewLeaf 3 (potato).
  • YIELD GARD 3 for example maize, cotton, soya beans
  • KnockOut 3 for example maize
  • BiteGard 3 for example maize
  • Bt-Xtra 3 for example maize
  • Starl_ink 3 for example maize
  • Bollgard 3 cotton
  • Nucotn 3 cotton
  • Nucotn 33B® cotton
  • NatureGard 3 for example maize
  • herbicide-tolerant plants examples include maize varieties, cotton varieties and soya bean varieties which are sold under the trade names Roundup Ready 3 (tolerance to glyphosate, for example maize, cotton, soya bean), Liberty Link 3 (tolerance to phosphinotricin, for example oilseed rape), IMI 3 (tolerance to imidazolinones) and STS 3 (tolerance to sulphonylureas, for example maize).
  • Herbicide-resistant plants plants bred in a conventional manner for herbicide tolerance
  • Clearfield 3 for example maize.
  • transgenic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are listed for example in the databases from various national or regional regulatory agencies (see for example http://qmoinfo.irc.it qmp browse. aspx and http://www.agbios.com/dbase.php).
  • the compounds according to the invention can also be used for the preparation of composition useful to curatively or preventively treat human or animal fungal diseases such as, for example, mycoses, dermatoses, trichophyton diseases and candidiases or diseases caused by Aspergillus spp., for example Aspergillus fumigatus.
  • fungal diseases such as, for example, mycoses, dermatoses, trichophyton diseases and candidiases or diseases caused by Aspergillus spp., for example Aspergillus fumigatus.
  • MeO methoxy
  • CI chloro
  • F fluoro
  • Br bromo
  • tBu tert-butyl
  • Measurement of logP values was performed according EEC directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on reversed phase columns with the following method: measurement of LC-MS was done at pH 2,7 with 0,1 % formic acid in water and with acetonitrile (contains 0,1 % formic acid) as eluent with a linear gradient from 10 % acetonitrle to 95 % acetonitrile.
  • M+H means the molecular ion peak, plus or minus 1 a.m.u. (atomic mass unit) respectively, as observed in mass spectroscopy and M (Apcl+) means the molecular ion peak as it was found via positive atmospheric pressure chemical ionisation in mass spectroscopy.
  • the cartridge After one night at room temperature, the cartridge was eluted with 1 ml_ of dimethylformamide. The filtrated solution was then poured on a cartridge filled with 1.5g of basic alumina. After 2 hours of reaction a room temperature, the cartridge was rinsed twice with 10ml_ of ethyl acetate. The combined filtrated solutions were evaporated in vacuo to yield a yellow oil.
  • Emulsifier 1 part by weight of Alkylarylpolyglycolether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • the test is evaluated 7 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of Plasmopara viticola and then remain for 1 day in an incubation cabinet at approximately 20°C and a relative atmospheric humidity of 100 %. The plant is subsequently placed for 4 days in a greenhouse at approximately 21 °C and a relative atmospheric humidity of approximately 90 %. The plants are then misted and placed for 1 day in an incubation cabinet.
  • the test is evaluated 6 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.
  • the test is performed under greenhouse conditions.
  • Perlite was incubated with mycelium fragments of Pythium ultimum. 1 ml of infected perlite was scattered between the treated cotton seeds. Seeds were then covered by light expanded clay aggregate. Pots were incubated in the greenhouse 7 days at 20°C and 80% relative humidity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
PCT/EP2010/070773 2009-12-28 2010-12-28 Fungicide hydroximoyl-tetrazole derivatives WO2011080256A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012545355A JP5782658B2 (ja) 2009-12-28 2010-12-28 殺菌剤ヒドロキシモイル−テトラゾール誘導体
EP10799052.5A EP2519103B1 (en) 2009-12-28 2010-12-28 Fungicide hydroximoyl-tetrazole derivatives
US13/519,293 US8796463B2 (en) 2009-12-28 2010-12-28 Fungicide hydroximoyl-tetrazole derivatives
MX2012007539A MX2012007539A (es) 2009-12-28 2010-12-28 Derivados de hidroximoil-tetrazol fungicidas.
CN201080060444.4A CN102724879B (zh) 2009-12-28 2010-12-28 杀真菌剂肟基-四唑衍生物
BR112012012107-3A BR112012012107B1 (pt) 2009-12-28 2010-12-28 Composto, composição fungicida e método para controlar fungos fitopatogênico de culturas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09356070.4 2009-12-28
EP09356070 2009-12-28

Publications (1)

Publication Number Publication Date
WO2011080256A1 true WO2011080256A1 (en) 2011-07-07

Family

ID=42199588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/070773 WO2011080256A1 (en) 2009-12-28 2010-12-28 Fungicide hydroximoyl-tetrazole derivatives

Country Status (9)

Country Link
US (1) US8796463B2 (zh)
EP (1) EP2519103B1 (zh)
JP (1) JP5782658B2 (zh)
KR (1) KR20120102133A (zh)
CN (1) CN102724879B (zh)
BR (1) BR112012012107B1 (zh)
MX (1) MX2012007539A (zh)
TW (1) TW201138624A (zh)
WO (1) WO2011080256A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135479A1 (en) * 2013-03-04 2014-09-12 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-oxadiazolone derivatives
US9000012B2 (en) 2009-12-28 2015-04-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
US9156816B2 (en) 2010-02-26 2015-10-13 Nippon Soda Co., Ltd. Tetrazolyloxime derivative or salt thereof and fungicide
CN105431431A (zh) * 2013-03-04 2016-03-23 拜耳作物科学股份公司 杀真菌的3-{杂环基[(杂环基甲氧基)亚氨基]甲基}-噁二唑酮衍生物
CN111788199A (zh) * 2018-02-28 2020-10-16 拜耳公司 除草活性的双环苯甲酰胺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013023502A2 (pt) * 2011-03-14 2016-08-02 Bayer Ip Gmbh composto fórmula (i), composição fungicida, método para o controle de fungos fitopatogênicos de culturas, utilização dos compostos de fórmula (i) e processo para a produção das composições
JP6002225B2 (ja) * 2011-09-12 2016-10-05 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 殺菌性4−置換−3−{フェニル[(ヘテロシクリルメトキシ)イミノ]メチル}−1,2,4−オキサジアゾール−5(4h)−オン誘導体
KR20200040348A (ko) * 2018-10-08 2020-04-20 한국화학연구원 티오펜 카르복사미드계 유도체 및 이를 함유하는 식물 병해 방제제

Citations (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761373A (en) 1984-03-06 1988-08-02 Molecular Genetics, Inc. Herbicide resistance in plants
WO1989010396A1 (en) 1988-04-28 1989-11-02 Plant Genetic Systems N.V. Plants with modified stamen cells
WO1991002069A1 (en) 1989-08-10 1991-02-21 Plant Genetic Systems N.V. Plants with modified flowers
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
WO1992005251A1 (fr) 1990-09-21 1992-04-02 Institut National De La Recherche Agronomique Sequence d'adn conferant une sterilite male cytoplasmique, genome mitochondrial, genome nucleaire, mitochondrie et plante contenant cette sequence, et procede de preparation d'hybrides
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
EP0571427A1 (en) 1991-02-13 1993-12-01 Hoechst Schering AgrEvo GmbH Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
US5273894A (en) 1986-08-23 1993-12-28 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5276268A (en) 1986-08-23 1994-01-04 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
WO1994004693A2 (en) 1992-08-26 1994-03-03 Zeneca Limited Novel plants and processes for obtaining them
US5304732A (en) 1984-03-06 1994-04-19 Mgi Pharma, Inc. Herbicide resistance in plants
WO1994009144A1 (en) 1992-10-14 1994-04-28 Zeneca Limited Novel plants and processes for obtaining them
WO1994011520A2 (en) 1992-11-09 1994-05-26 Zeneca Limited Novel plants and processes for obtaining them
US5331107A (en) 1984-03-06 1994-07-19 Mgi Pharma, Inc. Herbicide resistance in plants
EP0607730A1 (en) 1992-12-24 1994-07-27 International Business Machines Corporation Method of direct transferring of electrically conductive elements into a substrate
EP0609013A2 (en) 1993-01-21 1994-08-03 Matsushita Electric Industrial Co., Ltd. Recording and reproducing apparatus
EP0609022A2 (en) 1993-01-25 1994-08-03 Matsushita Electric Industrial Co., Ltd. Image encoding apparatus
WO1994021795A1 (en) 1993-03-25 1994-09-29 Ciba-Geigy Ag Novel pesticidal proteins and strains
US5378824A (en) 1986-08-26 1995-01-03 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
WO1995004826A1 (en) 1993-08-09 1995-02-16 Institut Für Genbiologische Forschung Berlin Gmbh Debranching enzymes and dna sequences coding them, suitable for changing the degree of branching of amylopectin starch in plants
WO1995009910A1 (fr) 1993-10-01 1995-04-13 Mitsubishi Corporation Gene identifiant un cytoplasme vegetal sterile et procede pour preparer un vegetal hybride a l'aide de celui-ci
US5434283A (en) 1990-04-04 1995-07-18 Pioneer Hi-Bred International, Inc. Edible endogenous vegetable oil extracted from rapeseeds of reduced stearic and palmitic saturated fatty acid content
EP0663956A1 (en) 1992-08-12 1995-07-26 Hoechst Schering AgrEvo GmbH Dna sequences which lead to the formation of polyfructans (levans), plasmids containing these sequences as well as a process for preparing transgenic plants
WO1995026407A1 (en) 1994-03-25 1995-10-05 National Starch And Chemical Investment Holding Corporation Method for producing altered starch from potato plants
US5463175A (en) 1990-06-25 1995-10-31 Monsanto Company Glyphosate tolerant plants
WO1995031553A1 (en) 1994-05-18 1995-11-23 Institut Für Genbiologische Forschung Berlin Gmbh DNA SEQUENCES CODING FOR ENZYMES CAPABLE OF FACILITATING THE SYNTHESIS OF LINEAR α-1,4 GLUCANS IN PLANTS, FUNGI AND MICROORGANISMS
WO1995035026A1 (en) 1994-06-21 1995-12-28 Zeneca Limited Novel plants and processes for obtaining them
WO1996001904A1 (en) 1994-07-08 1996-01-25 Stichting Scheikundig Onderzoek In Nederland Production of oligosaccharides in transgenic plants
EP0709000A1 (de) 1993-07-15 1996-05-01 Siemens Ag Verfahren und vorrichtung zur steuerung einer m-pulsigen wechselrichteranordnung, bestehend aus einem master-wechselrichter und wenigstens einem slave-wechselrichter
WO1996015248A1 (de) 1994-11-10 1996-05-23 Hoechst Schering Agrevo Gmbh Dna-moleküle codierend enzyme, die an der stärkesynthese beteiligt sind, vektoren, bakterien, transgene pflanzenzellen und pflanzen enthaltend diese moleküle
WO1996019581A1 (en) 1994-12-22 1996-06-27 Hoechst Schering Agrevo Gmbh Dna molecules coding for debranching enzymes derived from plants
EP0719338A1 (en) 1993-09-09 1996-07-03 Hoechst Schering AgrEvo GmbH Combination of dna sequences which enable the formation of modified starch in plant cells and plants, processes for the production of these plants and the modified starch obtainable therefrom
WO1996021023A1 (en) 1995-01-06 1996-07-11 Centrum Voor Plantenveredelings- En Reproduktieonderzoek (Cpro - Dlo) Dna sequences encoding carbohydrate polymer synthesizing enzymes and method for producing transgenic plants
EP0728213A1 (en) 1993-11-09 1996-08-28 E.I. Du Pont De Nemours And Company Transgenic fructan accumulating crops and methods for their production
WO1996027674A1 (de) 1995-03-08 1996-09-12 Hoechst Schering Agrevo Gmbh Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung
US5561236A (en) 1986-03-11 1996-10-01 Plant Genetic Systems Genetically engineered plant cells and plants exhibiting resistance to glutamine synthetase inhibitors, DNA fragments and recombinants for use in the production of said cells and plants
WO1996033270A1 (en) 1995-04-20 1996-10-24 American Cyanamid Company Structure-based designed herbicide resistant products
WO1996034968A2 (en) 1995-05-05 1996-11-07 National Starch And Chemical Investment Holding Corporation Improvements in or relating to plant starch composition
WO1996038567A2 (fr) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
US5605011A (en) 1986-08-26 1997-02-25 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
WO1997011188A1 (de) 1995-09-19 1997-03-27 Planttec Biotechnologie Gmbh Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
US5637489A (en) 1986-08-23 1997-06-10 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
WO1997020936A1 (en) 1995-12-06 1997-06-12 Zeneca Limited Modification of starch synthesis in plants
WO1997026362A1 (de) 1996-01-16 1997-07-24 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
WO1997032985A1 (de) 1996-03-07 1997-09-12 Planttec Biotechnologie Gmbh Forschung & Entwicklung Nucleinsäuremoleküle, codierend debranching-enzyme aus mais
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997042328A1 (de) 1996-05-06 1997-11-13 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren
WO1997044472A1 (de) 1996-05-17 1997-11-27 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais
WO1997045545A1 (en) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Nucleic acid molecules encoding enzymes from wheat which are involved in starch synthesis
WO1997047808A1 (en) 1996-06-12 1997-12-18 Pioneer Hi-Bred International, Inc. Substitutes for modified starch in paper manufacture
WO1997047806A1 (en) 1996-06-12 1997-12-18 Pioneer Hi-Bred International, Inc. Substitutes for modified starch in paper manufacture
WO1997047807A1 (en) 1996-06-12 1997-12-18 Pioneer Hi-Bred International, Inc. Substitutes for modified starch in paper manufacture
WO1998000549A1 (en) 1996-06-27 1998-01-08 The Australian National University MANIPULATION OF CELLULOSE AND/OR β-1,4-GLUCAN
US5712107A (en) 1995-06-07 1998-01-27 Pioneer Hi-Bred International, Inc. Substitutes for modified starch and latexes in paper manufacture
US5731180A (en) 1991-07-31 1998-03-24 American Cyanamid Company Imidazolinone resistant AHAS mutants
US5739082A (en) 1990-02-02 1998-04-14 Hoechst Schering Agrevo Gmbh Method of improving the yield of herbicide-resistant crop plants
EP0837944A2 (fr) 1995-07-19 1998-04-29 Rhone-Poulenc Agrochimie 5-enol pyruvylshikimate-3-phosphate synthase mutee, gene codant pour cette proteine et plantes transformees contenant ce gene
WO1998020145A2 (en) 1996-11-05 1998-05-14 National Starch And Chemical Investment Holding Corporation Improvements in or relating to starch content of plants
WO1998022604A1 (en) 1996-11-20 1998-05-28 Pioneer Hi-Bred International, Inc. Methods of producing high-oil seed by modification of starch levels
WO1998027212A1 (en) 1996-12-19 1998-06-25 Planttec Biotechnologie Gmbh Novel nucleic acid molecules from maize and their use for the production of modified starch
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998027806A1 (en) 1996-12-24 1998-07-02 Pioneer Hi-Bred International, Inc. Oilseed brassica containing an improved fertility restorer gene for ogura cytoplasmic male sterility
WO1998032326A2 (en) 1997-01-24 1998-07-30 Pioneer Hi-Bred International, Inc. Methods for $i(agrobacterium)-mediated transformation
WO1998039460A1 (en) 1997-03-04 1998-09-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Nucleic acid molecules from artichoke ($i(cynara scolymus)) encoding enzymes having fructosyl polymerase activity
WO1998040503A1 (en) 1997-03-10 1998-09-17 Planttec Biotechnologie Gmbh Nucleic acid molecules encoding starch phosphorylase from maize
US5824790A (en) 1994-06-21 1998-10-20 Zeneca Limited Modification of starch synthesis in plants
US5840946A (en) 1987-12-31 1998-11-24 Pioneer Hi-Bred International, Inc. Vegetable oil extracted from rapeseeds having a genetically controlled unusually high oleic acid content
WO1999012950A2 (en) 1997-09-06 1999-03-18 National Starch And Chemical Investment Holding Corporation Improvements in or relating to stability of plant starches
WO1999024593A1 (en) 1997-11-06 1999-05-20 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Nucleic acid molecules which encode proteins having fructosyl transferase activity and methods for producing long-chain inulin
WO1999024585A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase mutee, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
US5908810A (en) 1990-02-02 1999-06-01 Hoechst Schering Agrevo Gmbh Method of improving the growth of crop plants which are resistant to glutamine synthetase inhibitors
WO1999034008A1 (fr) 1997-12-24 1999-07-08 Aventis Cropscience S.A. Procede de preparation enzymatique d'homogentisate
US5928937A (en) 1995-04-20 1999-07-27 American Cyanamid Company Structure-based designed herbicide resistant products
US5965755A (en) 1993-10-12 1999-10-12 Agrigenetics, Inc. Oil produced from the Brassica napus
US5969169A (en) 1993-04-27 1999-10-19 Cargill, Incorporated Non-hydrogenated canola oil for food applications
WO1999053072A1 (en) 1998-04-09 1999-10-21 E.I. Du Pont De Nemours And Company Starch r1 phosphorylation protein homologs
WO1999058688A2 (de) 1998-05-08 1999-11-18 Aventis Cropscience Gmbh Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
WO1999057965A1 (de) 1998-05-14 1999-11-18 Aventis Cropscience Gmbh Sulfonylharnstoff-tolerante zuckerrübenmutanten
WO1999058690A2 (de) 1998-05-08 1999-11-18 Aventis Cropscience Gmbh Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
WO1999058654A2 (de) 1998-05-13 1999-11-18 Planttec Biotechnologie Gmbh Forschung & Entwicklung Transgene pflanzen mit veränderter aktivität eines plastidären adp/atp - translokators
WO1999066050A1 (en) 1998-06-15 1999-12-23 National Starch And Chemical Investment Holding Corporation Improvements in or relating to plants and plant products
US6013861A (en) 1989-05-26 2000-01-11 Zeneca Limited Plants and processes for obtaining them
WO2000004173A1 (en) 1998-07-17 2000-01-27 Aventis Cropscience N.V. Methods and means to modulate programmed cell death in eukaryotic cells
WO2000008185A1 (de) 1998-07-31 2000-02-17 Aventis Cropscience Gmbh Nukleinsäuremoleküle kodierend für beta-amylase, pflanzen, die eine modifizierte stärke synthetisieren, herstellungsverfahren und verwendungen
WO2000008175A2 (de) 1998-07-31 2000-02-17 Aventis Cropscience Gmbh NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE α-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE
WO2000008184A1 (de) 1998-07-31 2000-02-17 Aventis Cropscience Gmbh Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zur herstellung der pflanzen, ihre verwendung sowie die modifizierte stärke
WO2000011192A2 (en) 1998-08-25 2000-03-02 Pioneer Hi-Bred International, Inc. Plant glutamine: fructose-6-phosphate amidotransferase nucleic acids
WO2000014249A1 (en) 1998-09-02 2000-03-16 Planttec Biotechnologie Gmbh Nucleic acid molecules encoding an amylosucrase
WO2000022140A1 (de) 1998-10-09 2000-04-20 Planttec Biotechnologie Gmbh Forschung & Entwicklung NUCLEINSÄUREMOLEKÜLE CODIEREND EIN VERZWEIGUNGSENZYM AUS BAKTERIEN DER GATTUNG NEISSERIA SOWIE VERFAHREN ZUR HERSTELLUNG VON α-1,6-VERZWEIGTEN α-1,4-GLUCANEN
US6063947A (en) 1996-07-03 2000-05-16 Cargill, Incorporated Canola oil having increased oleic acid and decreased linolenic acid content
WO2000028052A2 (en) 1998-11-09 2000-05-18 Planttec Biotechnologie Gmbh Nucleic acid molecules from rice encoding an r1 protein and their use for the production of modified starch
WO2000047727A2 (en) 1999-02-08 2000-08-17 Planttec Biotechnologie Gmbh Forschung & Entwicklung Nucleic acid molecules encoding alternansucrase
WO2000066746A1 (en) 1999-04-29 2000-11-09 Syngenta Limited Herbicide resistant plants
WO2000066747A1 (en) 1999-04-29 2000-11-09 Syngenta Limited Herbicide resistant plants
WO2000073422A1 (en) 1999-05-27 2000-12-07 Planttec Biotechnologie Gmbh Genetically modified plant cells and plants with an increased activity of an amylosucrase protein and a branching enzyme
WO2000077229A2 (en) 1999-06-11 2000-12-21 Aventis Cropscience Gmbh R1 protein from wheat and the use thereof for the production of modified strach
WO2001012826A2 (de) 1999-08-11 2001-02-22 Aventis Cropscience Gmbh Nukleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
WO2001012782A2 (de) 1999-08-12 2001-02-22 Aventis Cropscience Gmbh Transgene pflanzenzellen und pflanzen mit veränderter aktivität des gbssi- und des be-proteins
WO2001014569A2 (de) 1999-08-20 2001-03-01 Basf Plant Science Gmbh Erhöhung des polysaccharidgehaltes in pflanzen
WO2001017333A1 (en) 1999-09-10 2001-03-15 Texas Tech University Transgenic fiber producing plants with increased expression of sucrose phosphate synthase
WO2001019975A2 (en) 1999-09-15 2001-03-22 National Starch And Chemical Investment Holding Corporation Plants having reduced activity in two or more starch-modifying enzymes
WO2001024615A1 (en) 1999-10-07 2001-04-12 Valigen (Us), Inc. Non-transgenic herbicide resistant plants
US6229072B1 (en) 1995-07-07 2001-05-08 Adventa Technology Ltd Cytoplasmic male sterility system production canola hybrids
US6270828B1 (en) 1993-11-12 2001-08-07 Cargrill Incorporated Canola variety producing a seed with reduced glucosinolates and linolenic acid yielding an oil with low sulfur, improved sensory characteristics and increased oxidative stability
US6284479B1 (en) 1995-06-07 2001-09-04 Pioneer Hi-Bred International, Inc. Substitutes for modified starch and latexes in paper manufacture
WO2001066704A2 (en) 2000-03-09 2001-09-13 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
WO2001065922A2 (en) 2000-03-09 2001-09-13 E. I. Du Pont De Nemours And Company Sulfonylurea-tolerant sunflower plants
US6323392B1 (en) 1999-03-01 2001-11-27 Pioneer Hi-Bred International, Inc. Formation of brassica napus F1 hybrid seeds which exhibit a highly elevated oleic acid content and a reduced linolenic acid content in the endogenously formed oil of the seeds
WO2001098509A2 (en) 2000-06-21 2001-12-27 Syngenta Participations Ag Grain processing method and transgenic plants useful therein
WO2002026995A1 (en) 2000-09-29 2002-04-04 Syngenta Limited Herbicide resistant plants
WO2002034923A2 (en) 2000-10-23 2002-05-02 Bayer Cropscience Gmbh Monocotyledon plant cells and plants which synthesise modified starch
WO2002036782A2 (en) 2000-10-30 2002-05-10 Maxygen, Inc. Novel glyphosate n-acetyltransferase (gat) genes
WO2002036787A2 (fr) 2000-10-30 2002-05-10 Bayer Cropscience S.A. Plantes tolerantes aux herbicides par contournement de voie metabolique
WO2002045485A1 (en) 2000-12-08 2002-06-13 Commonwealth Scienctific And Industrial Research Organisation Modification of sucrose synthase gene expression in plant tissue and uses therefor
WO2002079410A2 (en) 2001-03-30 2002-10-10 Basf Plant Science Gmbh Glucan chain length domains
WO2002101059A2 (en) 2001-06-12 2002-12-19 Bayer Cropscience Gmbh Transgenic plants synthesising high amylose starch
WO2003013226A2 (en) 2001-08-09 2003-02-20 Cibus Genetics Non-transgenic herbicide resistant plants
WO2003033540A2 (en) 2001-10-17 2003-04-24 Basf Plant Science Gmbh Starch
WO2003071860A2 (en) 2002-02-26 2003-09-04 Bayer Cropscience Gmbh Method for generating maize plants with an increased leaf starch content, and their use for making maize silage
WO2003092360A2 (en) 2002-04-30 2003-11-13 Verdia, Inc. Novel glyphosate-n-acetyltransferase (gat) genes
WO2004024928A2 (fr) 2002-09-11 2004-03-25 Bayer Cropscience S.A. Plantes transformees a biosynthese de prenylquinones amelioree
JP2004131392A (ja) 2002-10-08 2004-04-30 Sumitomo Chem Co Ltd テトラゾール化合物およびその用途
US6734341B2 (en) 1999-09-02 2004-05-11 Pioneer Hi-Bred International, Inc. Starch synthase polynucleotides and their use in the production of new starches
WO2004040012A2 (en) 2002-10-29 2004-05-13 Basf Plant Science Gmbh Compositions and methods for identifying plants having increased tolerance to imidazolinone herbicides
EP1426371A1 (en) 2001-08-20 2004-06-09 Dainippon Ink And Chemicals, Inc. Tetrazoyl oxime derivative and agricultural chemical containing the same as active ingredient
WO2004053219A2 (en) 2002-12-05 2004-06-24 Jentex Corporation Abrasive webs and methods of making the same
WO2004056999A1 (en) 2002-12-19 2004-07-08 Bayer Cropscience Gmbh Plant cells and plants which synthesize a starch with an increased final viscosity
WO2004078983A2 (en) 2003-03-07 2004-09-16 Basf Plant Science Gmbh Enhanced amylose production in plants
WO2004090140A2 (en) 2003-04-09 2004-10-21 Bayer Bioscience N.V. Methods and means for increasing the tolerance of plants to stress conditions
WO2004106529A2 (en) 2003-05-28 2004-12-09 Basf Aktiengesellschaft Wheat plants having increased tolerance to imidazolinone herbicides
WO2005002324A2 (en) 2003-07-04 2005-01-13 Institut National De La Recherche Agronomique Method of producing double low restorer lines of brassica napus having a good agronomic value
WO2005002359A2 (en) 2003-05-22 2005-01-13 Syngenta Participations Ag Modified starch, uses, methods for production thereof
WO2005012529A1 (ja) 2003-07-31 2005-02-10 Toyo Boseki Kabushiki Kaisha ヒアルロン酸生産植物
WO2005012515A2 (en) 2003-04-29 2005-02-10 Pioneer Hi-Bred International, Inc. Novel glyphosate-n-acetyltransferase (gat) genes
WO2005017157A1 (en) 2003-08-15 2005-02-24 Commonwealth Scientific And Industrial Research Organisation (Csiro) Methods and means for altering fiber characteristics in fiber-producing plants
WO2005020673A1 (en) 2003-08-29 2005-03-10 Instituto Nacional De Technologia Agropecuaria Rice plants having increased tolerance to imidazolinone herbicides
WO2005030941A1 (en) 2003-09-30 2005-04-07 Bayer Cropscience Gmbh Plants with increased activity of a class 3 branching enzyme
WO2005030942A1 (en) 2003-09-30 2005-04-07 Bayer Cropscience Gmbh Plants with reduced activity of a class 3 branching enzyme
WO2005093093A2 (en) 2004-03-22 2005-10-06 Basf Aktiengesellschaft Methods and compositions for analyzing ahasl genes
WO2005095618A2 (en) 2004-03-05 2005-10-13 Bayer Cropscience Gmbh Plants with reduced activity of the starch phosphorylating enzyme phosphoglucan, water dikinase
WO2005095617A2 (en) 2004-03-05 2005-10-13 Bayer Cropscience Gmbh Plants with increased activity of a starch phosphorylating enzyme
WO2005095632A2 (en) 2004-03-05 2005-10-13 Bayer Cropscience Gmbh Methods for identifying proteins with starch phosphorylating enzymatic activity
WO2005095619A1 (en) 2004-03-05 2005-10-13 Bayer Cropscience Gmbh Plants with increased activity of multiple starch phosphorylating enzymes
WO2005123927A1 (en) 2004-06-21 2005-12-29 Bayer Cropscience Gmbh Plants that produce amylopectin starch with novel properties
WO2006007373A2 (en) 2004-06-16 2006-01-19 Basf Plant Science Gmbh Polynucleotides encoding mature ahasl proteins for creating imidazolinone-tolerant plants
WO2006015376A2 (en) 2004-08-04 2006-02-09 Basf Plant Science Gmbh Monocot ahass sequences and methods of use
WO2006018319A1 (en) 2004-08-18 2006-02-23 Bayer Cropscience Gmbh Plants with increased plastidic activity of r3 starch-phosphorylating enzyme
WO2006021972A1 (en) 2004-08-26 2006-03-02 Dhara Vegetable Oil And Foods Company Limited A novel cytoplasmic male sterility system for brassica species and its use for hybrid seed production in indian oilseed mustard brassica juncea
WO2006024351A1 (en) 2004-07-30 2006-03-09 Basf Agrochemical Products B.V. Herbicide-resistant sunflower plants, plynucleotides encoding herbicide-resistant acetohydroxy acid synthase large subunit proteins, and methods of use
WO2006032538A1 (en) 2004-09-23 2006-03-30 Bayer Cropscience Gmbh Methods and means for producing hyaluronan
WO2006032469A2 (en) 2004-09-24 2006-03-30 Bayer Bioscience N.V. Stress resistant plants
WO2006045633A1 (en) 2004-10-29 2006-05-04 Bayer Bioscience N.V. Stress tolerant cotton plants
WO2006060634A2 (en) 2004-12-01 2006-06-08 Basf Agrochemical Products, B.V. Novel mutation involved in increased tolerance to imidazolinone herbicides in plants
WO2006063862A1 (en) 2004-12-17 2006-06-22 Bayer Cropscience Ag Transformed plant expressing a dextransucrase and synthesizing a modified starch
WO2006072603A2 (en) 2005-01-10 2006-07-13 Bayer Cropscience Ag Transformed plant expressing a mutansucrase and synthesizing a modified starch
WO2006103107A1 (en) 2005-04-01 2006-10-05 Bayer Cropscience Ag Phosphorylated waxy potato starch
WO2006108702A1 (en) 2005-04-08 2006-10-19 Bayer Cropscience Ag High-phosphate starch
JP2006304779A (ja) 2005-03-30 2006-11-09 Toyobo Co Ltd ヘキソサミン高生産植物
WO2006133827A2 (en) 2005-06-15 2006-12-21 Bayer Bioscience N.V. Methods for increasing the resistance of plants to hypoxic conditions
WO2006136351A2 (en) 2005-06-24 2006-12-28 Bayer Bioscience N.V. Methods for altering the reactivity of plant cell walls
WO2007009823A1 (en) 2005-07-22 2007-01-25 Bayer Cropscience Ag Overexpression of starch synthase in plants
WO2007024782A2 (en) 2005-08-24 2007-03-01 Pioneer Hi-Bred International, Inc. Compositions providing tolerance to multiple herbicides and methods of use thereof
WO2007027777A2 (en) 2005-08-31 2007-03-08 Monsanto Technology Llc Nucleotide sequences encoding insecticidal proteins
WO2007039314A2 (en) 2005-10-05 2007-04-12 Bayer Cropscience Ag Plants with increased hyaluronan production
WO2007039315A1 (de) 2005-10-05 2007-04-12 Bayer Cropscience Ag Pflanzen mit gesteigerter produktion von hyaluronan ii
WO2007039316A1 (en) 2005-10-05 2007-04-12 Bayer Cropscience Ag Improved methods and means for producings hyaluronan
JP2009130900A (ja) 2007-11-28 2009-06-11 Hitachi Ltd 中継サーバ、署名検証システム、文書データ中継方法、およびプログラム
WO2009090237A2 (en) * 2008-01-16 2009-07-23 Bayer Cropscience Sa Fungicide hydroximoyl-tetrazole derivatives

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461049A (en) * 1994-05-27 1995-10-24 Warner-Lambert Company Amide tetrazole ACAT inhibitors
US8129415B2 (en) * 2006-07-13 2012-03-06 Bayer Cropscience Ag Fungicide hydroximoyl-tetrazole derivatives
BRPI0906023A2 (pt) * 2008-03-19 2015-06-30 Bayer Cropscience Ag "composto derivado de hidroximoiltetrazol, compostos e método de controle dos fungos fitopatogênicos ou insetos daninhos de plantas, safras ou sementes"
MX2012007540A (es) 2009-12-28 2012-07-23 Bayer Cropscience Ag Derivados de hidroximoil-tetrazol fungicidas.
US9000012B2 (en) 2009-12-28 2015-04-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives

Patent Citations (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304732A (en) 1984-03-06 1994-04-19 Mgi Pharma, Inc. Herbicide resistance in plants
US5331107A (en) 1984-03-06 1994-07-19 Mgi Pharma, Inc. Herbicide resistance in plants
US4761373A (en) 1984-03-06 1988-08-02 Molecular Genetics, Inc. Herbicide resistance in plants
US5646024A (en) 1986-03-11 1997-07-08 Plant Genetic Systems, N.V. Genetically engineered plant cells and plants exhibiting resistance to glutamine synthetase inhibitors, DNA fragments and recombinants for use in the production of said cells and plants
US7112665B1 (en) 1986-03-11 2006-09-26 Bayer Bioscience N.V. Genetically engineered plant cells and plants exhibiting resistance to glutamine synthetase inhibitors, DNA fragments and recombinants for use in the production of said cells and plants
US5561236A (en) 1986-03-11 1996-10-01 Plant Genetic Systems Genetically engineered plant cells and plants exhibiting resistance to glutamine synthetase inhibitors, DNA fragments and recombinants for use in the production of said cells and plants
US5648477A (en) 1986-03-11 1997-07-15 Plant Genetic Systems, N.V. Genetically engineered plant cells and plants exhibiting resistance to glutamine synthetase inhibitors, DNA fragments and recombinants for use in the production of said cells and plants
US5276268A (en) 1986-08-23 1994-01-04 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5273894A (en) 1986-08-23 1993-12-28 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5637489A (en) 1986-08-23 1997-06-10 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5378824A (en) 1986-08-26 1995-01-03 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5605011A (en) 1986-08-26 1997-02-25 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5141870A (en) 1987-07-27 1992-08-25 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5840946A (en) 1987-12-31 1998-11-24 Pioneer Hi-Bred International, Inc. Vegetable oil extracted from rapeseeds having a genetically controlled unusually high oleic acid content
WO1989010396A1 (en) 1988-04-28 1989-11-02 Plant Genetic Systems N.V. Plants with modified stamen cells
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
US6013861A (en) 1989-05-26 2000-01-11 Zeneca Limited Plants and processes for obtaining them
WO1991002069A1 (en) 1989-08-10 1991-02-21 Plant Genetic Systems N.V. Plants with modified flowers
US5739082A (en) 1990-02-02 1998-04-14 Hoechst Schering Agrevo Gmbh Method of improving the yield of herbicide-resistant crop plants
US5908810A (en) 1990-02-02 1999-06-01 Hoechst Schering Agrevo Gmbh Method of improving the growth of crop plants which are resistant to glutamine synthetase inhibitors
US5434283A (en) 1990-04-04 1995-07-18 Pioneer Hi-Bred International, Inc. Edible endogenous vegetable oil extracted from rapeseeds of reduced stearic and palmitic saturated fatty acid content
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
US5776760A (en) 1990-06-25 1998-07-07 Monsanto Company Glyphosate tolerant plants
US5463175A (en) 1990-06-25 1995-10-31 Monsanto Company Glyphosate tolerant plants
WO1992005251A1 (fr) 1990-09-21 1992-04-02 Institut National De La Recherche Agronomique Sequence d'adn conferant une sterilite male cytoplasmique, genome mitochondrial, genome nucleaire, mitochondrie et plante contenant cette sequence, et procede de preparation d'hybrides
EP0571427A1 (en) 1991-02-13 1993-12-01 Hoechst Schering AgrEvo GmbH Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
US5767361A (en) 1991-07-31 1998-06-16 American Cyanamid Company Imidazolinone resistant AHAS mutants
US5731180A (en) 1991-07-31 1998-03-24 American Cyanamid Company Imidazolinone resistant AHAS mutants
EP0663956A1 (en) 1992-08-12 1995-07-26 Hoechst Schering AgrEvo GmbH Dna sequences which lead to the formation of polyfructans (levans), plasmids containing these sequences as well as a process for preparing transgenic plants
WO1994004693A2 (en) 1992-08-26 1994-03-03 Zeneca Limited Novel plants and processes for obtaining them
WO1994009144A1 (en) 1992-10-14 1994-04-28 Zeneca Limited Novel plants and processes for obtaining them
WO1994011520A2 (en) 1992-11-09 1994-05-26 Zeneca Limited Novel plants and processes for obtaining them
EP0607730A1 (en) 1992-12-24 1994-07-27 International Business Machines Corporation Method of direct transferring of electrically conductive elements into a substrate
EP0609013A2 (en) 1993-01-21 1994-08-03 Matsushita Electric Industrial Co., Ltd. Recording and reproducing apparatus
EP0609022A2 (en) 1993-01-25 1994-08-03 Matsushita Electric Industrial Co., Ltd. Image encoding apparatus
WO1994021795A1 (en) 1993-03-25 1994-09-29 Ciba-Geigy Ag Novel pesticidal proteins and strains
US5969169A (en) 1993-04-27 1999-10-19 Cargill, Incorporated Non-hydrogenated canola oil for food applications
EP0709000A1 (de) 1993-07-15 1996-05-01 Siemens Ag Verfahren und vorrichtung zur steuerung einer m-pulsigen wechselrichteranordnung, bestehend aus einem master-wechselrichter und wenigstens einem slave-wechselrichter
WO1995004826A1 (en) 1993-08-09 1995-02-16 Institut Für Genbiologische Forschung Berlin Gmbh Debranching enzymes and dna sequences coding them, suitable for changing the degree of branching of amylopectin starch in plants
EP0719338A1 (en) 1993-09-09 1996-07-03 Hoechst Schering AgrEvo GmbH Combination of dna sequences which enable the formation of modified starch in plant cells and plants, processes for the production of these plants and the modified starch obtainable therefrom
WO1995009910A1 (fr) 1993-10-01 1995-04-13 Mitsubishi Corporation Gene identifiant un cytoplasme vegetal sterile et procede pour preparer un vegetal hybride a l'aide de celui-ci
US6169190B1 (en) 1993-10-12 2001-01-02 Agrigenetics Inc Oil of Brassica napus
US5965755A (en) 1993-10-12 1999-10-12 Agrigenetics, Inc. Oil produced from the Brassica napus
EP0728213A1 (en) 1993-11-09 1996-08-28 E.I. Du Pont De Nemours And Company Transgenic fructan accumulating crops and methods for their production
US5908975A (en) 1993-11-09 1999-06-01 E. I. Du Pont De Nemours And Company Accumulation of fructans in plants by targeted expression of bacterial levansucrase
US6270828B1 (en) 1993-11-12 2001-08-07 Cargrill Incorporated Canola variety producing a seed with reduced glucosinolates and linolenic acid yielding an oil with low sulfur, improved sensory characteristics and increased oxidative stability
WO1995026407A1 (en) 1994-03-25 1995-10-05 National Starch And Chemical Investment Holding Corporation Method for producing altered starch from potato plants
WO1995031553A1 (en) 1994-05-18 1995-11-23 Institut Für Genbiologische Forschung Berlin Gmbh DNA SEQUENCES CODING FOR ENZYMES CAPABLE OF FACILITATING THE SYNTHESIS OF LINEAR α-1,4 GLUCANS IN PLANTS, FUNGI AND MICROORGANISMS
WO1995035026A1 (en) 1994-06-21 1995-12-28 Zeneca Limited Novel plants and processes for obtaining them
US5824790A (en) 1994-06-21 1998-10-20 Zeneca Limited Modification of starch synthesis in plants
WO1996001904A1 (en) 1994-07-08 1996-01-25 Stichting Scheikundig Onderzoek In Nederland Production of oligosaccharides in transgenic plants
WO1996015248A1 (de) 1994-11-10 1996-05-23 Hoechst Schering Agrevo Gmbh Dna-moleküle codierend enzyme, die an der stärkesynthese beteiligt sind, vektoren, bakterien, transgene pflanzenzellen und pflanzen enthaltend diese moleküle
WO1996019581A1 (en) 1994-12-22 1996-06-27 Hoechst Schering Agrevo Gmbh Dna molecules coding for debranching enzymes derived from plants
WO1996021023A1 (en) 1995-01-06 1996-07-11 Centrum Voor Plantenveredelings- En Reproduktieonderzoek (Cpro - Dlo) Dna sequences encoding carbohydrate polymer synthesizing enzymes and method for producing transgenic plants
WO1996027674A1 (de) 1995-03-08 1996-09-12 Hoechst Schering Agrevo Gmbh Modifizierte stärke aus pflanzen, pflanzen, die diese synthetisieren, sowie verfahren zu ihrer herstellung
US5928937A (en) 1995-04-20 1999-07-27 American Cyanamid Company Structure-based designed herbicide resistant products
WO1996033270A1 (en) 1995-04-20 1996-10-24 American Cyanamid Company Structure-based designed herbicide resistant products
WO1996034968A2 (en) 1995-05-05 1996-11-07 National Starch And Chemical Investment Holding Corporation Improvements in or relating to plant starch composition
WO1996038567A2 (fr) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
US5712107A (en) 1995-06-07 1998-01-27 Pioneer Hi-Bred International, Inc. Substitutes for modified starch and latexes in paper manufacture
US20020031826A1 (en) 1995-06-07 2002-03-14 Nichols Scott E. Glucan-containing compositions and paper
US6284479B1 (en) 1995-06-07 2001-09-04 Pioneer Hi-Bred International, Inc. Substitutes for modified starch and latexes in paper manufacture
US6229072B1 (en) 1995-07-07 2001-05-08 Adventa Technology Ltd Cytoplasmic male sterility system production canola hybrids
EP0837944A2 (fr) 1995-07-19 1998-04-29 Rhone-Poulenc Agrochimie 5-enol pyruvylshikimate-3-phosphate synthase mutee, gene codant pour cette proteine et plantes transformees contenant ce gene
WO1997011188A1 (de) 1995-09-19 1997-03-27 Planttec Biotechnologie Gmbh Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zu ihrer herstellung sowie modifizierte stärke
WO1997020936A1 (en) 1995-12-06 1997-06-12 Zeneca Limited Modification of starch synthesis in plants
WO1997026362A1 (de) 1996-01-16 1997-07-24 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
WO1997032985A1 (de) 1996-03-07 1997-09-12 Planttec Biotechnologie Gmbh Forschung & Entwicklung Nucleinsäuremoleküle, codierend debranching-enzyme aus mais
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997042328A1 (de) 1996-05-06 1997-11-13 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle, die debranching-enzyme aus kartoffel codieren
WO1997044472A1 (de) 1996-05-17 1997-11-27 Planttec Biotechnologie Gmbh Nucleinsäuremoleküle codierend lösliche stärkesynthasen aus mais
WO1997045545A1 (en) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Nucleic acid molecules encoding enzymes from wheat which are involved in starch synthesis
WO1997047806A1 (en) 1996-06-12 1997-12-18 Pioneer Hi-Bred International, Inc. Substitutes for modified starch in paper manufacture
WO1997047808A1 (en) 1996-06-12 1997-12-18 Pioneer Hi-Bred International, Inc. Substitutes for modified starch in paper manufacture
WO1997047807A1 (en) 1996-06-12 1997-12-18 Pioneer Hi-Bred International, Inc. Substitutes for modified starch in paper manufacture
WO1998000549A1 (en) 1996-06-27 1998-01-08 The Australian National University MANIPULATION OF CELLULOSE AND/OR β-1,4-GLUCAN
US6063947A (en) 1996-07-03 2000-05-16 Cargill, Incorporated Canola oil having increased oleic acid and decreased linolenic acid content
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998020145A2 (en) 1996-11-05 1998-05-14 National Starch And Chemical Investment Holding Corporation Improvements in or relating to starch content of plants
WO1998022604A1 (en) 1996-11-20 1998-05-28 Pioneer Hi-Bred International, Inc. Methods of producing high-oil seed by modification of starch levels
WO1998027212A1 (en) 1996-12-19 1998-06-25 Planttec Biotechnologie Gmbh Novel nucleic acid molecules from maize and their use for the production of modified starch
WO1998027806A1 (en) 1996-12-24 1998-07-02 Pioneer Hi-Bred International, Inc. Oilseed brassica containing an improved fertility restorer gene for ogura cytoplasmic male sterility
WO1998032326A2 (en) 1997-01-24 1998-07-30 Pioneer Hi-Bred International, Inc. Methods for $i(agrobacterium)-mediated transformation
WO1998039460A1 (en) 1997-03-04 1998-09-11 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Nucleic acid molecules from artichoke ($i(cynara scolymus)) encoding enzymes having fructosyl polymerase activity
WO1998040503A1 (en) 1997-03-10 1998-09-17 Planttec Biotechnologie Gmbh Nucleic acid molecules encoding starch phosphorylase from maize
WO1999012950A2 (en) 1997-09-06 1999-03-18 National Starch And Chemical Investment Holding Corporation Improvements in or relating to stability of plant starches
WO1999024593A1 (en) 1997-11-06 1999-05-20 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Nucleic acid molecules which encode proteins having fructosyl transferase activity and methods for producing long-chain inulin
WO1999024586A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase chimere, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO1999024585A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase mutee, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO1999034008A1 (fr) 1997-12-24 1999-07-08 Aventis Cropscience S.A. Procede de preparation enzymatique d'homogentisate
WO1999053072A1 (en) 1998-04-09 1999-10-21 E.I. Du Pont De Nemours And Company Starch r1 phosphorylation protein homologs
WO1999058690A2 (de) 1998-05-08 1999-11-18 Aventis Cropscience Gmbh Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
WO1999058688A2 (de) 1998-05-08 1999-11-18 Aventis Cropscience Gmbh Nucleinsäuremoleküle codierend enzyme aus weizen, die an der stärkesynthese beteiligt sind
WO1999058654A2 (de) 1998-05-13 1999-11-18 Planttec Biotechnologie Gmbh Forschung & Entwicklung Transgene pflanzen mit veränderter aktivität eines plastidären adp/atp - translokators
WO1999057965A1 (de) 1998-05-14 1999-11-18 Aventis Cropscience Gmbh Sulfonylharnstoff-tolerante zuckerrübenmutanten
WO1999066050A1 (en) 1998-06-15 1999-12-23 National Starch And Chemical Investment Holding Corporation Improvements in or relating to plants and plant products
WO2000004173A1 (en) 1998-07-17 2000-01-27 Aventis Cropscience N.V. Methods and means to modulate programmed cell death in eukaryotic cells
WO2000008175A2 (de) 1998-07-31 2000-02-17 Aventis Cropscience Gmbh NUKLEINSÄUREMOLEKÜLE KODIEREND FÜR EINE α-GLUKOSIDASE, PFLANZEN, DIE EINE MODIFIZIERTE STÄRKE SYNTHETISIEREN, VERFAHREN ZUR HERSTELLUNG DER PFLANZEN, IHRE VERWENDUNG SOWIE DIE MODIFIZIERTE STÄRKE
WO2000008185A1 (de) 1998-07-31 2000-02-17 Aventis Cropscience Gmbh Nukleinsäuremoleküle kodierend für beta-amylase, pflanzen, die eine modifizierte stärke synthetisieren, herstellungsverfahren und verwendungen
WO2000008184A1 (de) 1998-07-31 2000-02-17 Aventis Cropscience Gmbh Pflanzen, die eine modifizierte stärke synthetisieren, verfahren zur herstellung der pflanzen, ihre verwendung sowie die modifizierte stärke
WO2000011192A2 (en) 1998-08-25 2000-03-02 Pioneer Hi-Bred International, Inc. Plant glutamine: fructose-6-phosphate amidotransferase nucleic acids
WO2000014249A1 (en) 1998-09-02 2000-03-16 Planttec Biotechnologie Gmbh Nucleic acid molecules encoding an amylosucrase
WO2000022140A1 (de) 1998-10-09 2000-04-20 Planttec Biotechnologie Gmbh Forschung & Entwicklung NUCLEINSÄUREMOLEKÜLE CODIEREND EIN VERZWEIGUNGSENZYM AUS BAKTERIEN DER GATTUNG NEISSERIA SOWIE VERFAHREN ZUR HERSTELLUNG VON α-1,6-VERZWEIGTEN α-1,4-GLUCANEN
WO2000028052A2 (en) 1998-11-09 2000-05-18 Planttec Biotechnologie Gmbh Nucleic acid molecules from rice encoding an r1 protein and their use for the production of modified starch
WO2000047727A2 (en) 1999-02-08 2000-08-17 Planttec Biotechnologie Gmbh Forschung & Entwicklung Nucleic acid molecules encoding alternansucrase
US6323392B1 (en) 1999-03-01 2001-11-27 Pioneer Hi-Bred International, Inc. Formation of brassica napus F1 hybrid seeds which exhibit a highly elevated oleic acid content and a reduced linolenic acid content in the endogenously formed oil of the seeds
WO2000066747A1 (en) 1999-04-29 2000-11-09 Syngenta Limited Herbicide resistant plants
WO2000066746A1 (en) 1999-04-29 2000-11-09 Syngenta Limited Herbicide resistant plants
WO2000073422A1 (en) 1999-05-27 2000-12-07 Planttec Biotechnologie Gmbh Genetically modified plant cells and plants with an increased activity of an amylosucrase protein and a branching enzyme
WO2000077229A2 (en) 1999-06-11 2000-12-21 Aventis Cropscience Gmbh R1 protein from wheat and the use thereof for the production of modified strach
WO2001012826A2 (de) 1999-08-11 2001-02-22 Aventis Cropscience Gmbh Nukleinsäuremoleküle aus pflanzen codierend enzyme, die an der stärkesynthese beteiligt sind
WO2001012782A2 (de) 1999-08-12 2001-02-22 Aventis Cropscience Gmbh Transgene pflanzenzellen und pflanzen mit veränderter aktivität des gbssi- und des be-proteins
WO2001014569A2 (de) 1999-08-20 2001-03-01 Basf Plant Science Gmbh Erhöhung des polysaccharidgehaltes in pflanzen
US6734341B2 (en) 1999-09-02 2004-05-11 Pioneer Hi-Bred International, Inc. Starch synthase polynucleotides and their use in the production of new starches
WO2001017333A1 (en) 1999-09-10 2001-03-15 Texas Tech University Transgenic fiber producing plants with increased expression of sucrose phosphate synthase
WO2001019975A2 (en) 1999-09-15 2001-03-22 National Starch And Chemical Investment Holding Corporation Plants having reduced activity in two or more starch-modifying enzymes
WO2001024615A1 (en) 1999-10-07 2001-04-12 Valigen (Us), Inc. Non-transgenic herbicide resistant plants
WO2001065922A2 (en) 2000-03-09 2001-09-13 E. I. Du Pont De Nemours And Company Sulfonylurea-tolerant sunflower plants
WO2001066704A2 (en) 2000-03-09 2001-09-13 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
WO2001098509A2 (en) 2000-06-21 2001-12-27 Syngenta Participations Ag Grain processing method and transgenic plants useful therein
WO2002026995A1 (en) 2000-09-29 2002-04-04 Syngenta Limited Herbicide resistant plants
WO2002034923A2 (en) 2000-10-23 2002-05-02 Bayer Cropscience Gmbh Monocotyledon plant cells and plants which synthesise modified starch
WO2002036782A2 (en) 2000-10-30 2002-05-10 Maxygen, Inc. Novel glyphosate n-acetyltransferase (gat) genes
WO2002036787A2 (fr) 2000-10-30 2002-05-10 Bayer Cropscience S.A. Plantes tolerantes aux herbicides par contournement de voie metabolique
WO2002045485A1 (en) 2000-12-08 2002-06-13 Commonwealth Scienctific And Industrial Research Organisation Modification of sucrose synthase gene expression in plant tissue and uses therefor
WO2002079410A2 (en) 2001-03-30 2002-10-10 Basf Plant Science Gmbh Glucan chain length domains
WO2002101059A2 (en) 2001-06-12 2002-12-19 Bayer Cropscience Gmbh Transgenic plants synthesising high amylose starch
WO2003013226A2 (en) 2001-08-09 2003-02-20 Cibus Genetics Non-transgenic herbicide resistant plants
EP1426371A1 (en) 2001-08-20 2004-06-09 Dainippon Ink And Chemicals, Inc. Tetrazoyl oxime derivative and agricultural chemical containing the same as active ingredient
WO2003033540A2 (en) 2001-10-17 2003-04-24 Basf Plant Science Gmbh Starch
WO2003071860A2 (en) 2002-02-26 2003-09-04 Bayer Cropscience Gmbh Method for generating maize plants with an increased leaf starch content, and their use for making maize silage
WO2003092360A2 (en) 2002-04-30 2003-11-13 Verdia, Inc. Novel glyphosate-n-acetyltransferase (gat) genes
WO2004024928A2 (fr) 2002-09-11 2004-03-25 Bayer Cropscience S.A. Plantes transformees a biosynthese de prenylquinones amelioree
JP2004131392A (ja) 2002-10-08 2004-04-30 Sumitomo Chem Co Ltd テトラゾール化合物およびその用途
WO2004040012A2 (en) 2002-10-29 2004-05-13 Basf Plant Science Gmbh Compositions and methods for identifying plants having increased tolerance to imidazolinone herbicides
WO2004053219A2 (en) 2002-12-05 2004-06-24 Jentex Corporation Abrasive webs and methods of making the same
WO2004056999A1 (en) 2002-12-19 2004-07-08 Bayer Cropscience Gmbh Plant cells and plants which synthesize a starch with an increased final viscosity
WO2004078983A2 (en) 2003-03-07 2004-09-16 Basf Plant Science Gmbh Enhanced amylose production in plants
WO2004090140A2 (en) 2003-04-09 2004-10-21 Bayer Bioscience N.V. Methods and means for increasing the tolerance of plants to stress conditions
WO2005012515A2 (en) 2003-04-29 2005-02-10 Pioneer Hi-Bred International, Inc. Novel glyphosate-n-acetyltransferase (gat) genes
WO2005002359A2 (en) 2003-05-22 2005-01-13 Syngenta Participations Ag Modified starch, uses, methods for production thereof
WO2004106529A2 (en) 2003-05-28 2004-12-09 Basf Aktiengesellschaft Wheat plants having increased tolerance to imidazolinone herbicides
WO2005002324A2 (en) 2003-07-04 2005-01-13 Institut National De La Recherche Agronomique Method of producing double low restorer lines of brassica napus having a good agronomic value
WO2005012529A1 (ja) 2003-07-31 2005-02-10 Toyo Boseki Kabushiki Kaisha ヒアルロン酸生産植物
WO2005017157A1 (en) 2003-08-15 2005-02-24 Commonwealth Scientific And Industrial Research Organisation (Csiro) Methods and means for altering fiber characteristics in fiber-producing plants
WO2005020673A1 (en) 2003-08-29 2005-03-10 Instituto Nacional De Technologia Agropecuaria Rice plants having increased tolerance to imidazolinone herbicides
WO2005030941A1 (en) 2003-09-30 2005-04-07 Bayer Cropscience Gmbh Plants with increased activity of a class 3 branching enzyme
WO2005030942A1 (en) 2003-09-30 2005-04-07 Bayer Cropscience Gmbh Plants with reduced activity of a class 3 branching enzyme
WO2005095618A2 (en) 2004-03-05 2005-10-13 Bayer Cropscience Gmbh Plants with reduced activity of the starch phosphorylating enzyme phosphoglucan, water dikinase
WO2005095617A2 (en) 2004-03-05 2005-10-13 Bayer Cropscience Gmbh Plants with increased activity of a starch phosphorylating enzyme
WO2005095632A2 (en) 2004-03-05 2005-10-13 Bayer Cropscience Gmbh Methods for identifying proteins with starch phosphorylating enzymatic activity
WO2005095619A1 (en) 2004-03-05 2005-10-13 Bayer Cropscience Gmbh Plants with increased activity of multiple starch phosphorylating enzymes
WO2005093093A2 (en) 2004-03-22 2005-10-06 Basf Aktiengesellschaft Methods and compositions for analyzing ahasl genes
WO2006007373A2 (en) 2004-06-16 2006-01-19 Basf Plant Science Gmbh Polynucleotides encoding mature ahasl proteins for creating imidazolinone-tolerant plants
WO2005123927A1 (en) 2004-06-21 2005-12-29 Bayer Cropscience Gmbh Plants that produce amylopectin starch with novel properties
WO2006024351A1 (en) 2004-07-30 2006-03-09 Basf Agrochemical Products B.V. Herbicide-resistant sunflower plants, plynucleotides encoding herbicide-resistant acetohydroxy acid synthase large subunit proteins, and methods of use
WO2006015376A2 (en) 2004-08-04 2006-02-09 Basf Plant Science Gmbh Monocot ahass sequences and methods of use
WO2006018319A1 (en) 2004-08-18 2006-02-23 Bayer Cropscience Gmbh Plants with increased plastidic activity of r3 starch-phosphorylating enzyme
WO2006021972A1 (en) 2004-08-26 2006-03-02 Dhara Vegetable Oil And Foods Company Limited A novel cytoplasmic male sterility system for brassica species and its use for hybrid seed production in indian oilseed mustard brassica juncea
WO2006032538A1 (en) 2004-09-23 2006-03-30 Bayer Cropscience Gmbh Methods and means for producing hyaluronan
WO2006032469A2 (en) 2004-09-24 2006-03-30 Bayer Bioscience N.V. Stress resistant plants
WO2006045633A1 (en) 2004-10-29 2006-05-04 Bayer Bioscience N.V. Stress tolerant cotton plants
WO2006060634A2 (en) 2004-12-01 2006-06-08 Basf Agrochemical Products, B.V. Novel mutation involved in increased tolerance to imidazolinone herbicides in plants
WO2006063862A1 (en) 2004-12-17 2006-06-22 Bayer Cropscience Ag Transformed plant expressing a dextransucrase and synthesizing a modified starch
WO2006072603A2 (en) 2005-01-10 2006-07-13 Bayer Cropscience Ag Transformed plant expressing a mutansucrase and synthesizing a modified starch
JP2006304779A (ja) 2005-03-30 2006-11-09 Toyobo Co Ltd ヘキソサミン高生産植物
WO2006103107A1 (en) 2005-04-01 2006-10-05 Bayer Cropscience Ag Phosphorylated waxy potato starch
WO2006108702A1 (en) 2005-04-08 2006-10-19 Bayer Cropscience Ag High-phosphate starch
WO2006133827A2 (en) 2005-06-15 2006-12-21 Bayer Bioscience N.V. Methods for increasing the resistance of plants to hypoxic conditions
WO2006136351A2 (en) 2005-06-24 2006-12-28 Bayer Bioscience N.V. Methods for altering the reactivity of plant cell walls
WO2007009823A1 (en) 2005-07-22 2007-01-25 Bayer Cropscience Ag Overexpression of starch synthase in plants
WO2007024782A2 (en) 2005-08-24 2007-03-01 Pioneer Hi-Bred International, Inc. Compositions providing tolerance to multiple herbicides and methods of use thereof
WO2007027777A2 (en) 2005-08-31 2007-03-08 Monsanto Technology Llc Nucleotide sequences encoding insecticidal proteins
WO2007039314A2 (en) 2005-10-05 2007-04-12 Bayer Cropscience Ag Plants with increased hyaluronan production
WO2007039315A1 (de) 2005-10-05 2007-04-12 Bayer Cropscience Ag Pflanzen mit gesteigerter produktion von hyaluronan ii
WO2007039316A1 (en) 2005-10-05 2007-04-12 Bayer Cropscience Ag Improved methods and means for producings hyaluronan
JP2009130900A (ja) 2007-11-28 2009-06-11 Hitachi Ltd 中継サーバ、署名検証システム、文書データ中継方法、およびプログラム
WO2009090237A2 (en) * 2008-01-16 2009-07-23 Bayer Cropscience Sa Fungicide hydroximoyl-tetrazole derivatives

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BARRY ET AL., CURR. TOPICS PLANT PHYSIOL., vol. 7, 1992, pages 139 - 145
COMAI ET AL., SCIENCE, vol. 221, 1983, pages 370 - 371
CRICKMORE ET AL., MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, vol. 62, 1998, pages 807 - 813
GASSER ET AL., J. BIOL. CHEM., vol. 263, 1988, pages 4280 - 4289
J. PLENKIEWICZ ET AL., BULL. SOC. CHIM. BELG., vol. 96, 1987, pages 675
MOELLENBECK ET AL., NAT. BIOTECHNOL., vol. 19, 2001, pages 668 - 72
R. RAAP, CAN. J. CHEM., vol. 49, 1971, pages 2139
SCHNEPF ET AL., APPLIED ENVIRONM. MICROBIOL., vol. 71, 2006, pages 1765 - 1774
SHAH ET AL., SCIENCE, vol. 233, 1986, pages 478 - 481
TRANEL; WRIGHT; WEED, SCIENCE, vol. 50, 2002, pages 700 - 712

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000012B2 (en) 2009-12-28 2015-04-07 Bayer Cropscience Ag Fungicide hydroximoyl-heterocycles derivatives
US9156816B2 (en) 2010-02-26 2015-10-13 Nippon Soda Co., Ltd. Tetrazolyloxime derivative or salt thereof and fungicide
WO2014135479A1 (en) * 2013-03-04 2014-09-12 Bayer Cropscience Ag Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-oxadiazolone derivatives
CN105431431A (zh) * 2013-03-04 2016-03-23 拜耳作物科学股份公司 杀真菌的3-{杂环基[(杂环基甲氧基)亚氨基]甲基}-噁二唑酮衍生物
US9375010B2 (en) 2013-03-04 2016-06-28 Bayer Cropscience Aktiengesellschaft Fungicidal 3-{phenyl[(heterocyclylmethoxy)imino]methyl}-oxadiazolone derivatives
CN111788199A (zh) * 2018-02-28 2020-10-16 拜耳公司 除草活性的双环苯甲酰胺
CN111788199B (zh) * 2018-02-28 2024-05-03 拜耳公司 除草活性的双环苯甲酰胺

Also Published As

Publication number Publication date
BR112012012107A2 (pt) 2016-04-05
EP2519103B1 (en) 2014-08-13
BR112012012107B1 (pt) 2019-08-20
JP2013515702A (ja) 2013-05-09
KR20120102133A (ko) 2012-09-17
CN102724879B (zh) 2015-10-21
CN102724879A (zh) 2012-10-10
TW201138624A (en) 2011-11-16
EP2519103A1 (en) 2012-11-07
MX2012007539A (es) 2012-07-23
US8796463B2 (en) 2014-08-05
JP5782658B2 (ja) 2015-09-24
US20130123305A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
EP2391608B1 (en) Fungicide n-cycloalkyl-n-bicyclicmethylene-carboxamide derivatives
US9320277B2 (en) Fungicide N-cycloalkyl-N-biphenylmethyl-carboxamide derivatives
US8841332B2 (en) Fungicidal N-(2-phenoxyethyl)carboxamide derivatives and their aza, thia and sila analogues
EP2519103B1 (en) Fungicide hydroximoyl-tetrazole derivatives
EP2324011B1 (en) Fungicidal n-(2-pyridylpropyl)carboxamide derivatives and their oxa, aza and thia analogues
US20130012546A1 (en) Fungicide hydroximoyl-tetrazole derivatives
EP2218717A1 (en) Fungicidal N-((HET)Arylethyl)thiocarboxamide derivatives
WO2010015680A1 (en) Fungicide oxyalkylamide derivatives
CA2739037A1 (en) Fungicide heterocyclyl-triazinyl-amino derivatives

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080060444.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010799052

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12097647

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 2012545355

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/007539

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5766/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127019179

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13519293

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012012107

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012012107

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120521