WO2011066293A1 - Production d'une solution alcaline à l'aide d'une anode à diffusion gazeuse avec une pression hydrostatique - Google Patents
Production d'une solution alcaline à l'aide d'une anode à diffusion gazeuse avec une pression hydrostatique Download PDFInfo
- Publication number
- WO2011066293A1 WO2011066293A1 PCT/US2010/057821 US2010057821W WO2011066293A1 WO 2011066293 A1 WO2011066293 A1 WO 2011066293A1 US 2010057821 W US2010057821 W US 2010057821W WO 2011066293 A1 WO2011066293 A1 WO 2011066293A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anode
- electrolyte
- cathode
- exchange membrane
- electrochemical
- Prior art date
Links
- 238000009792 diffusion process Methods 0.000 title claims abstract description 50
- 230000002706 hydrostatic effect Effects 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000003792 electrolyte Substances 0.000 claims abstract description 262
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 132
- 239000012528 membrane Substances 0.000 claims abstract description 104
- 238000005341 cation exchange Methods 0.000 claims abstract description 90
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 67
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 63
- 239000012670 alkaline solution Substances 0.000 claims abstract description 30
- 239000003010 cation ion exchange membrane Substances 0.000 claims abstract description 4
- 239000007789 gas Substances 0.000 claims description 97
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 74
- 239000001257 hydrogen Substances 0.000 claims description 50
- 229910052739 hydrogen Inorganic materials 0.000 claims description 50
- -1 hydroxyl ions Chemical class 0.000 claims description 47
- 239000000758 substrate Substances 0.000 claims description 44
- 150000001768 cations Chemical class 0.000 claims description 42
- 239000000243 solution Substances 0.000 claims description 36
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 33
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 26
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 22
- 239000003054 catalyst Substances 0.000 claims description 19
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 16
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 15
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 15
- 235000010755 mineral Nutrition 0.000 claims description 15
- 239000011707 mineral Substances 0.000 claims description 15
- 229910001415 sodium ion Inorganic materials 0.000 claims description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 239000012266 salt solution Substances 0.000 claims description 12
- 239000002912 waste gas Substances 0.000 claims description 12
- 239000004215 Carbon black (E152) Substances 0.000 claims description 10
- 229930195733 hydrocarbon Natural products 0.000 claims description 10
- 150000002430 hydrocarbons Chemical class 0.000 claims description 10
- 230000001590 oxidative effect Effects 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 7
- 229910001424 calcium ion Inorganic materials 0.000 claims description 7
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 7
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 230000002209 hydrophobic effect Effects 0.000 claims description 6
- 229910052741 iridium Inorganic materials 0.000 claims description 6
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 239000010948 rhodium Substances 0.000 claims description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 6
- 229910052707 ruthenium Inorganic materials 0.000 claims description 6
- 239000011780 sodium chloride Substances 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- 239000004568 cement Substances 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 229910001414 potassium ion Inorganic materials 0.000 claims description 5
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 claims description 5
- 229910052939 potassium sulfate Inorganic materials 0.000 claims description 5
- 235000011151 potassium sulphates Nutrition 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000012080 ambient air Substances 0.000 claims description 3
- 238000002848 electrochemical method Methods 0.000 claims 31
- GZUCQIMKDHLSEH-UHFFFAOYSA-N manganese silver Chemical compound [Mn][Ag][Ag] GZUCQIMKDHLSEH-UHFFFAOYSA-N 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 55
- 239000002253 acid Substances 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 12
- 210000002421 cell wall Anatomy 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 150000001450 anions Chemical class 0.000 description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 9
- 230000005012 migration Effects 0.000 description 9
- 238000013508 migration Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- 239000006096 absorbing agent Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 239000004800 polyvinyl chloride Substances 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 239000003014 ion exchange membrane Substances 0.000 description 4
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 4
- 239000001095 magnesium carbonate Substances 0.000 description 4
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 4
- 235000014380 magnesium carbonate Nutrition 0.000 description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000009972 noncorrosive effect Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229920000915 polyvinyl chloride Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 235000010216 calcium carbonate Nutrition 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000009919 sequestration Effects 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 239000001272 nitrous oxide Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000011364 vaporized material Substances 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910002089 NOx Inorganic materials 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 239000003011 anion exchange membrane Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000003843 chloralkali process Methods 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000014824 magnesium bicarbonate Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052815 sulfur oxide Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/60—Preparation of carbonates or bicarbonates in general
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/14—Alkali metal compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/14—Alkali metal compounds
- C25B1/16—Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46152—Electrodes characterised by the shape or form
- C02F2001/46157—Perforated or foraminous electrodes
- C02F2001/46161—Porous electrodes
- C02F2001/46166—Gas diffusion electrodes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/46115—Electrolytic cell with membranes or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4619—Supplying gas to the electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Definitions
- an alkaline solution e.g., an aqueous NaOH solution
- an electrochemical system by reducing water to hydroxyl ions (OH " ) and hydrogen gas (H 2 ) at the cathode, and migrating the OH " into the cathode electrolyte where they combine with cations e.g., Na + from an aqueous salt solution e.g., an NaCI solution to form the alkaline solution.
- H 2 is oxidized to protons (H + ) and electrons (e " ), and the H + are migrated into the anode electrolyte where they combine with anions e.g., CI " from the salt solution to form an acid, e.g., hydrochloric acid.
- the cathode electrolyte comprising the alkaline solution is mixed with carbon dioxide and a divalent cation solution e.g., CaC and/or MgSO 4 to sequester the gas as a carbonate and/or bicarbonate, e.g., CaCO3, and/or MgCO3 and/or Na2CO3 and or NaHCO3.
- a divalent cation solution e.g., CaC and/or MgSO 4 to sequester the gas as a carbonate and/or bicarbonate, e.g., CaCO3, and/or MgCO3 and/or Na2CO3 and or NaHCO3.
- the anode electrolyte comprising the acid is used to dissolve a mineral e.g., olivine to produce the divalent cation solution.
- This invention pertains to an energy efficient system and method of producing an alkaline solution in the cathode electrolyte of an electrochemical system using a gas diffusion anode with an external hydrostatic pressure applied onto the gas diffusion anode.
- the pressure applied on the anode squeezes the components of the anode for good physical and electrical contact and thereby eliminates ohmic voltage spikes at the anode that would otherwise occur due to inadequate contacts. Since a voltage spike at the anode will cause a voltage spike across the anode and cathode, the elimination of voltage spikes at the anode will reduce the energy used in the system.
- the cell voltage is the voltage across the anode and cathode required to produce the alkaline solution, and includes the half-cell voltages for the electrochemical reactions at the anode and cathode, and the voltage required to overcome ohmic resistance in the system e.g., at the electrodes, across the electrolytes, and across ion exchange membranes in the system.
- the external hydrostatic pressure is applied to the anode via a pressure applied to the anode electrolyte.
- a cation exchange membrane is in contact the anode and separates the anode from the anode electrolyte, hence in some embodiments, the hydrostatic pressure on the anode is transmitted to the anode from the anode electrolyte through the cation exchange membrane.
- the alkaline solution is produced in the cathode electrolyte by oxidizing water to OH " and H 2 at the cathode, and migrating the OH " into the cathode electrolyte to combine with cations e.g., Na+ from a salt solution to produce the alkaline solution, e.g., a NaOH solution in the cathode electrolyte.
- cations e.g., Na+ from a salt solution to produce the alkaline solution, e.g., a NaOH solution in the cathode electrolyte.
- H 2 is oxidized to H + and e " , and the H + are migrated into the anode electrolyte where they combine with anions e.g., CI " from the salt solution to produce an acid e.g., hydrochloric acid in the anode electrolyte.
- anions e.g., CI " from the salt solution to produce an acid e.g., hydrochloric acid in the anode electrolyte.
- the cathode electrolyte is the electrolyte that is configured to remove anions formed at the cathode and is usually in direct contact with the cathode; in some embodiments the cathode electrolyte my be separated from cathode by an anion exchange membrane that is configured to transmit the anions from the cathode to the cathode electrolyte. In some embodiments the cathode electrolyte may be referred to herein as the catholyte.
- the anode electrolyte is the electrolyte that is configured to remove cations formed at the cathode and is usually in direct contact with the anode; in some embodiments the anode electrolyte my be separated from anode by an cation exchange membrane that is configured to transmit the cations from the anode to the anode electrolyte. In some embodiments the anode electrolyte may be referred to herein as the anolyte.
- the system comprises a first cation exchange membrane in contact with the gas diffusion anode and configured to separate the gas diffusion anode from the anode electrolyte; a cathode in contact with a cathode electrolyte; and a second cation ion exchange membrane configured to separate the cathode electrolyte from the anode electrolyte.
- an external pressure system is configured to apply a pressure on the anode electrolyte.
- an external pressure system of at least 4 psi is transmitted to the anode via the first cation exchange membrane in contact with the anode.
- the system is configured with a gap of 5 mm or less between the first cation exchange membrane and the second cation exchange membrane.
- the cathode electrolyte comprises added carbon dioxide and in some embodiments, the anode electrolyte comprises a salt solution comprising sodium chloride or potassium sulfate.
- the gas diffusion anode comprises a substrate comprising a catalyst configured to catalyze oxidization of hydrogen gas to protons.
- the substrate comprises a first side in contact with hydrogen and an opposed second side in contact with the first cation exchange membrane.
- the substrate first side in contact with hydrogen is hydrophobic, and the substrate second side in contact with anode electrolyte is hydrophilic.
- the substrate is porous and is configured to diffuse hydrogen from the first side in contact with hydrogen to the second side in contact with the first cation exchange membrane.
- the catalyst comprises platinum, ruthenium, iridium, rhodium, manganese, silver or alloys thereof.
- the first cation exchange membrane comprises a hydrocarbon-based cation exchange membrane; in some embodiments, the first cation exchange membrane comprises a monolayer hydrocarbon-based cation exchange membrane; in some embodiments, the first cation exchange membrane comprises plolytetraflouroethylene; and in some embodiments, the first cation exchange membrane comprises sulfonated plolytetraflouroethylene.
- the first cation exchange membrane is configured to migrate protons from the substrate into the anode electrolyte on application of a voltage across the anode and the cathode.
- the anode electrolyte comprises hydrochloric acid; in some embodiments, the anode electrolyte comprises sulfuric acid.
- the system is configured to produce hydrogen and hydroxyl ions at the cathode on applying the voltage across the anode and cathode. In some embodiments, the system is configured to migrate hydroxide ions from the cathode into the cathode electrolyte.
- the system is configured to migrate cations from the anode electrolyte into the cathode electrolyte through the second cation exchange membrane.
- the cations comprise sodium or potassium ions.
- the system comprises a hydrogen delivery system configured to direct hydrogen to the anode.
- the hydrogen delivery system is configured to direct hydrogen from the cathode to the anode.
- the system is configured to maintain a temperature of 70 °C to 75 °C in the anode electrolyte. In some embodiments, the system is configured to maintain a current density of 150- 200 mA cm 2 at the cathode.
- the system is configured to maintain a pH of 0 or less in the anode electrolyte, and 14 or more in the cathode electrolyte.
- the system comprises a current collector in contact with the gas diffusion layer of the gas diffusion anode; in some embodiments, the current collector comprises titanium or platinum.
- the system is comprised of a cell wall comprising a non- corrosive material.
- the cell wall comprises a polymer e.g., polyvinyl chloride.
- the system is operatively connected to a waste gas system and configured to dissolve carbon dioxide from the waste gas into the cathode electrolyte.
- the system is configured to produce a carbonate and/or bicarbonate product by mixing the cathode electrolyte with a divalent cation solution.
- the divalent cation solution comprises calcium and/or magnesium ions
- the carbonate/bicarbonate product comprises calcium carbonate and/or magnesium carbonate and/or sodium bicarbonate and/or sodium carbonate.
- the system is configured to dissolve a mineral with the anode electrolyte to produce the divalent cation solution.
- the method comprises separating a gas diffusion anode from an anode electrolyte using a first cation exchange membrane in contact with the gas diffusion anode; separating the anode electrolyte from a cathode electrolyte contacting a cathode using a second cation exchange membrane; applying an external hydrostatic pressure on the anode electrolyte; producing an alkaline solution in the cathode electrolyte without producing a gas at the anode by applying a voltage across the gas diffusion anode and cathode.
- the method comprises applying at least 4 psi of hydrostatic pressure to the anode electrolyte and transmitting this pressure to the anode via the first cation exchange membrane.
- the method comprises oxidizing hydrogen to protons at the gas diffusion anode and migrating protons from the gas diffusion anode through the first cation exchange membrane and into the anode electrolyte.
- the anode electrolyte comprises sodium chloride or potassium sulfate.
- the method comprises migrating sodium or potassium ions from the anode electrolyte into the cathode electrolyte through the second cation exchange membrane. In some embodiments, the method comprises producing
- hydrochloric acid or sulfuric acid in the anode electrolyte hydrochloric acid or sulfuric acid in the anode electrolyte.
- the method comprises producing hydroxyl ions and hydrogen at the cathode. In some embodiments, the method comprises migrating hydroxyl ions from the cathode into the cathode electrolyte. In some embodiments, the method comprises directing hydrogen generated at the cathode to the gas diffusion anode and oxidizing the hydrogen to protons and electrons at the anode.
- the gas diffusion anode comprises a substrate comprising a catalyst configured to catalyze oxidation of hydrogen to protons and electrons.
- the method comprising contacting the substrate at a first side with hydrogen and contacting the substrate at an opposed second side with the first cation exchange membrane.
- the substrate first side is hydrophobic and the substrate second side is hydrophilic; in some embodiments, the substrate is porous and is configured to diffuse hydrogen from the first side in contact with hydrogen to the second side in contact with the first cation exchange membrane.
- the catalyst comprises platinum
- the first cation exchange membrane comprises a hydrocarbon-based cation exchange membrane. In some embodiments, the first cation exchange membrane comprises a monolayer hydrocarbon-based cation exchange membrane. In some embodiments, the first cation exchange membrane comprises plolytetraflouroethylene; in some embodiments, the first cation exchange membrane comprises sulfonated plolytetraflouroethylene.
- cations are migrated from the anode electrolyte into the cathode electrolyte through the second cation exchange membrane.
- hydrogen gas is diffused through the substrate to the catalyst.
- the method comprises adding carbon dioxide to the cathode electrolyte and producing carbonates ions and/or bicarbonate ions in the cathode electrolyte.
- the carbon dioxide is obtained from a waste gas; in some embodiments, the waste gas is obtained from an industrial plant.
- the industrial plant is a fossil fuelled electrical power generating plant, a cement production plant or an ore processing facility that generates carbon dioxide.
- carbon dioxide in ambient air is excluded from the cathode electrolyte and thus the cathode electrolyte is devoid of ambient carbon dioxide.
- the ion exchange membranes are configured such that a gap of 5mm or less is maintained between the first and second cation exchange membrane.
- the method comprises contacting the cathode electrolyte with a divalent cation solution to produce a carbonate or bicarbonate product comprising calcium and/or magnesium.
- the divalent cation comprises magnesium ions or calcium ions.
- the method comprises dissolving a mineral with the anode electrolyte to produce the divalent cation solution.
- the method comprises maintaining a pH of 7 or greater in the cathode electrolyte; in some embodiments, the method comprises maintaining a pH of between 7 and 9 in the cathode electrolyte. In some embodiments, the method comprises maintaining a pH of between 8 and 1 1 in the cathode electrolyte. In some embodiments, the method comprises maintaining a pH of less than 7 in the anode electrolyte. In some embodiments, the method comprises maintaining a pH of less than 4 in the anode electrolyte. [0045] In some embodiments, the method comprises oxidizing hydrogen gas to hydrogen ions at the anode and migrating the hydrogen ions through the first cation exchange membrane into the anode electrolyte. In some embodiments, the method comprises producing hydroxide ions and hydrogen gas at the cathode. In some embodiments,
- the method comprises directing hydrogen gas from the cathode to the anode and oxidizing the hydrogen at the anode.
- the method comprises migrating cations ions through the second cation exchange membrane into the cathode electrolyte.
- the cations comprise sodium ions.
- the method comprises producing an acid in the anode electrolyte.
- the method comprises establishing a temperature of 70 °C to 75 °C in the anode electrolyte. In some embodiments, the method comprises establishing a current density of 150- 200 mA cm 2 at the cathode.
- the method comprises maintaining a pH of 0 or less in the anode electrolyte, and 14 or more in the cathode electrolyte.
- the anode and cathode are disposed in an
- the first cation exchange membrane is configured to separate the anode from the anode electrolyte, and as this membrane will migrate H + from the anode into the anode electrolyte while blocking migration of anions e.g., CI " from the anode electrolyte into the anode, therefore by this configuration of the system and method the anode does not come in contact with an acid.
- the catalyst at the anode is protected from contact with an acid that may otherwise form at the anode by a combination of H+ from the anode and anions from the anode electrolyte . Consequently, in the system, the efficiency of the catalyst is sustained, which will lower the voltage required across the anode and cathode, and hence lower the energy used in producing the alkaline solution.
- the alkaline solution produced in the cathode electrolyte is mixed with carbon dioxide and a divalent cation solution to sequester the carbon dioxide as cementitous carbonate and/or bicarbonate as disclosed in commonly assigned US Patent no. 7,735,274 herein incorporated by reference in its entirety.
- the acid produce in the anode electrolyte is used to dissolve a mineral to produce a divalent cation solution used in producing the cementitous carbonate and/or bicarbonate.
- Fig. 1 is an illustration of an embodiment of the present gas diffusion anode.
- FIG. 2 is an illustration of an embodiment of the present electrochemical system comprising a gas diffusion anode.
- FIG. 3 is an illustration of an embodiment of the present electrochemical system comprising a gas diffusion anode.
- Fig. 4 is an illustration an embodiment of the present electrochemical system integrated with a carbon dioxide sequestration system.
- Fig. 5 is an illustration voltage potential across the anode and cathode vs. the pH of the cathode electrolyte.
- the energy used to produce an alkaline solution is correlated to the cell voltage.
- the cell voltage is the voltage across the anode and cathode required to produce the alkaline solution and is the cumulative voltage drops in the system, including: i) the half-cell voltages for the electrochemical reactions at the anode and cathode; ii) ohmic voltage drops due to electrical resistance e.g., at the electrodes, across the ion exchange membranes, across the electrolytes and elsewhere, and iii) the current density at the cathode required to produce a desired rate of OH " in the cathode electrolyte.
- the cell voltage can be reduced by oxidizing H 2 gas to H + and e " at the anode while suppressing production of a gas e.g., oxygen or chlorine at the anode, and while reducing water at the cathode to OH " and H 2 gas.
- a gas e.g., oxygen or chlorine
- This reduction in cell voltage is achieved since in such systems H 2 gas is oxidized to H + and e " at the anode, and therefore in such systems the half-cell voltage at the anode is 0 V and therefore in the system the half-cell voltage at the anode does not contribute to the cell voltage.
- an anode that can be used to oxidize H 2 gas to H + and e " to achieve a 0 V half-cell voltage at the anode is a gas diffusion anode as illustrated
- the gas diffusion anode 100 comprises a conductive substrate 102 comprising a first side 106 that interfaces with the hydrogen 108 and an opposed second side 1 10 that interfaces with the anode electrolyte 1 12.
- the side of the substrate 106 that interfaces with the hydrogen is
- the side of the substrate 106 that interfaces with the anode electrolyte is hydrophilic and porous and will allow the anode electrolyte to diffuse therein.
- the gas diffusion anode includes a current collector 1 14 through which electrons generated at the anode are removed from the anode via the power supply 1 16 and are conducted to the cathode to facilitate the reduction reaction at the cathode.
- the substrate is infused with a catalyst 104 to catalyze the oxidation of hydrogen to protons and electrons.
- the catalyst may comprise platinum, ruthenium, iridium, rhodium, manganese, silver or alloys thereof that promote oxidation of hydrogen to protons and electrons.
- Gas diffusion anodes are commercially available e.g., from E-TEK (USA), or can be assembled from components as described in the publication titled: "Electrochemical Study of Hydrogen Diffusion Anode-membrane assembly for Membrane Electrolysis",
- the problem can be attributed to inadequate physical and electrical contact at the anode possibly caused e.g., by poor assembly of the anode layers and/or by expansion of the anode layers due to temperature changes in the anode from ohmic heating at the anode and/or heat released by the electrochemical reaction at the anode.
- membrane 212 configured to separate the cathode electrolyte from the anode electrolyte.
- the first cation exchange membrane 1 14, 202 comprises a hydrocarbon-based cation exchange membrane.
- cation exchange membranes used in the system are commercially available as discussed above, however it will be appreciated that in some embodiments, depending on the need to restrict or allow migration of a specific cation or an anion species between the electrolytes, a cation exchange membrane that is more restrictive and thus allows migration of one species of cations while restricting the migration of another species of cations may be used as, e.g., a cation exchange membrane that allows migration of sodium ions into the cathode electrolyte from the anode electrolyte while restricting migration of hydrogen ions from the anode electrolyte into the cathode electrolyte, may be used.
- restrictive cation exchange membranes are commercially available and can be selected by one ordinarily skilled in the art.
- the cathode electrolyte 210 comprises carbonate ions and/or bicarbonate ions.
- the system 200 is configured to migrate cations from the anode electrolyte 206 into the cathode electrolyte 210 through the second cation exchange membrane 212.
- the cations comprise sodium where a sodium salt e.g., sodium chloride is used, or potassium ions where a potassium salt e.g., potassium sulfate is used.
- the system 200 is configured to maintain a pH of 0 or less in the anode electrolyte 206, and a pH of 14 or more in the cathode electrolyte 210.
- the waste gas is obtained from an industrial plant, e.g., a power generating plant, a cement plant, or an ore smelting plant.
- the carbon dioxide in the waste gas is greater than the concentration of carbon dioxide in the ambient atmosphere.
- This source of carbon dioxide may also contain other gaseous and non-gaseous components of a combustion process, e.g., nitrogen gas, SO x , NO x. as is described in co-pending and commonly assigned US Provisional Patent application no. 61/223,657, titled “Gas, Liquids, Solids Contacting Methods and Apparatus", filed July 7, 2009 herein fully incorporated by reference.
- the pH of the anode electrolyte is adjusted to a value between 0 and 7, including 0, 0.5, 1 .0, 1 .5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5 and 7, depending on the desired operating voltage across the anode and cathode.
- carbon dioxide can be added to the electrolyte as disclosed herein to achieve a desired pH difference between the anode electrolyte and cathode electrolyte.
- these equivalent systems are within the scope of the present invention.
- the anode electrolyte 206 comprises a salt solution that includes sodium ions and chloride ions and the system 200 is configured to produce the alkaline solution in the cathode electrolyte 210 while also producing hydrogen ions at the anode 202, with less than 1 V across the anode 202 and cathode 208, without producing a gas at the anode; in some embodiments, the system 200 is configured to migrate the hydrogen ions from the anode 204 into the anode electrolyte 206; in some embodiments, the anode electrolyte comprises an acid; in some
- the system 200 is configured to produce bicarbonate ions and/or carbonate ions in the cathode electrolyte 210; in some embodiments, the system is configured to migrate hydroxide ions from the cathode 208 into the cathode electrolyte 210; migrate cations, e.g., sodium ions, from the anode electrolyte 206 into the cathode electrolyte through the second cation exchange membrane 212; in some embodiments, hydrogen gas from the cathode is collected and provided to the anode through and a hydrogen gas delivery system 224.
- the system is configured to produce bicarbonate ions and/or carbonate ions in the cathode electrolyte 210; in some embodiments, the system is configured to migrate hydroxide ions from the cathode 208 into the cathode electrolyte 210; migrate cations, e.g., sodium ions, from the anode electrolyte 206 into the cathode electrolyt
- the system 200, 300 comprises a partition 326 that partitions the cathode electrolyte into a first cathode electrolyte portion 108A and a second cathode electrolyte portion 108B, wherein the second cathode electrolyte portion 108B, comprising added carbon dioxide, contacts the cathode 208; and wherein the first cathode electrolyte portion 108A comprising added carbon dioxide is in contact with the second cathode electrolyte portion 108B under the partition 326.
- the system includes a hydrogen gas supply system 108, 224 configured to provide hydrogen gas to the anode 102, 204.
- the hydrogen may be obtained from the cathode 208 or may be obtained from external source, e.g., from a commercial hydrogen gas supplier, e.g., at start-up of the system when the hydrogen supply from the cathode is insufficient.
- the hydrogen gas is oxidized to protons and electrons; in some embodiments, un-reacted hydrogen gas is recovered and circulated at the anode.
- the system in some embodiments includes a cathode electrolyte circulating system 344 adapted for withdrawing and circulating cathode electrolyte in the system.
- the cathode electrolyte circulating system 344 comprises a carbon dioxide gas/liquid contactor 216 that is adapted for dissolving carbon dioxide in the circulating cathode electrolyte, and for circulating the electrolyte in the system.
- the electrochemical system 200 may be operatively connected to a carbon dioxide sequestration system 400 for sequestering carbon dioxide to produce e.g., a carbonate and/or bicarbonate.
- the sequestration system 400 may comprise carbonate precipitator 402 configured to precipitate carbonates and/or bicarbonates from a solution, wherein in some embodiments the carbonates and/or bicarbonates comprise calcium and/or magnesium carbonate and/or bicarbonate. Also as illustrated in Fig.
- the anode electrolyte of the electrochemical system 200 comprising an acid e.g., hydrochloric acid and a depleted salt solution comprising low amount sodium ions is used in a mineral dissolution system 404 that is configured to dissolve minerals and produce a mineral solution comprising calcium ions and/or magnesium ions, e.g., mafic minerals such as olivine and serpentine.
- the acid may be used for other purposes in addition to or instead of mineral dissolution e.g., use as a reactant in production of cellulosic biofules, use the production of polyvinyl chloride (PVC), and the like.
- System appropriate to such uses may be operatively connected to the electrochemical system 200, 300, or the acid may be transported to the appropriate site for use.
- the method comprises a step of oxidizing hydrogen gas 108, 220 to hydrogen ions at the anode 100, 204 and migrating the hydrogen ions through the first cation exchange membrane 202 into the anode electrolyte 206.
- the method comprises producing hydroxide ions and hydrogen gas at the cathode.
- the method comprises directing hydrogen gas from the cathode 208 to the anode 204 and oxidizing the hydrogen at the anode.
- the method comprises migrating cations ions through the second cation exchange membrane 212 into the cathode electrolyte 210.
- the cations are obtained from a salt solution comprising sodium ions.
- the method comprises producing an acid, hydrochloric acid or sulfuric acid in the anode electrolyte.
- the method comprises establishing a temperature of 70 °C to 75 °C in the anode electrolyte. In some embodiments, the method comprises establishing a current density of 150- 200 mA cm 2 at the cathode.
- the method comprises maintaining a pH of 0 or less in the anode electrolyte, and 14 or more in the cathode electrolyte.
- the anode and cathode are disposed in an
- the electrochemical cell comprising cell walls comprising a non-corrosive material.
- the cell walls comprise a polymer; in some embodiments the cell walls comprise polyvinyl chloride.
- the method comprises maintaining a gap of 5mm or less between the first and second cation exchange membrane.
- the system includes a gas treatment system that removes constituents in the carbon dioxide gas stream before the gas is utilized in the cathode electrolyte.
- a portion of, or the entire amount of, cathode electrolyte comprising bicarbonate ions and/or carbonate ions/ and or hydroxide ions is withdrawn from the system and is contacted with carbon dioxide gas in an exogenous carbon dioxide gas/liquid contactor to increase the absorbed carbon dioxide content in the solution.
- the solution enriched with carbon dioxide is returned to the cathode compartment; in other embodiments, the solution enriched with carbon dioxide is reacted with a solution comprising divalent cations to produce divalent cation hydroxides, carbonates and/or bicarbonates.
- the pH of the cathode electrolyte is adjusted upwards by hydroxide ions that migrate from the cathode, and/or downwards by dissolving carbon dioxide gas in the cathode electrolyte to produce carbonic acid and carbonic ions that react with and remove hydroxide ions.
- the pH of the cathode electrolyte is determined, at least in part, by the balance of these two processes.
- the cathode electrolyte may comprise dissolved and undissolved carbon dioxide gas, and/or carbonic acid, and/ or bicarbonate ions and/or carbonate ions.
- hydroxide ions, carbonate ions and/or bicarbonate ions produced in the cathode electrolyte, and hydrochloric acid produced in the anode electrolyte are removed from the system, while sodium chloride in the salt solution electrolyte is replenished to maintain continuous operation of the system.
- the system can be configured to operate in various production modes including batch mode, semi-batch mode, continuous flow mode, with or without the option to withdraw portions of the hydroxide solution produced in the cathode electrolyte, or withdraw all or a portions of the acid produced in the anode electrolyte, or direct the hydrogen gas produced at the cathode to the anode where it may be oxidized.
- the voltage across the anode and cathode can be adjusted such that gas will form at the anode, e.g., oxygen or chlorine, while hydroxide ions, carbonate ions and bicarbonate ions are produced in the cathode electrolyte and hydrogen gas is generated at the cathode.
- gas e.g., oxygen or chlorine
- hydroxide ions, carbonate ions and bicarbonate ions are produced in the cathode electrolyte and hydrogen gas is generated at the cathode.
- hydrogen gas is not supplied to the anode.
- the voltage across the anode and cathode will be generally higher compared to the embodiment when a gas does not form at the anode.
- the cathode and anode are also operatively connected to an off-peak electrical power-supply system 1 14 that supplies off-peak voltage to the electrodes. Since the cost of off-peak power is lower than the cost of power supplied during peak power-supply times, the system can utilize off-peak power to produce an alkaline solution in the cathode electrolyte at a relatively lower cost.
- alternative reactants can be utilized depending on the ionic species desired in cathode electroyte and/or the anode electolyte.
- a potassium salt such as potassium hydroxide or potassium carbonate
- a potassium salt such as potassium chloride
- sulfuric acid is desired in the anode electrolyte
- a sulfate such as sodium sulfate
- the present system and method are integrated with a carbonate and/or bicarbonate solution disposal system wherein, rather than producing precipitates by contacting a solution of divalent cations with the cathode electrolyte solution to form precipitates as illustrated in Fig. 4, the system produces a solution or a slurry or a suspension comprising carbonates and/or bicarbonates.
- the solution, slurry or suspension is disposed of in a location where it is held stable for an extended periods of time, e.g., the solution/slurry/suspension is disposed in an ocean at a depth where the temperature and pressure are sufficient to keep the slurry stable indefinitely, or in a subterranean site as described in U.S. Patent Application no.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
La présente invention se rapporte à un système électrochimique comprenant une première membrane d'échange de cations en contact avec une anode à diffusion gazeuse et configurée pour séparer l'anode à diffusion gazeuse d'un électrolyte d'anode; une cathode en contact avec un électrolyte de cathode; et une seconde membrane d'échange d'ions cationiques configurée pour séparer l'électrolyte de cathode de l'électrolyte d'anode. Dans le système, un système de pression externe est configuré pour appliquer une pression contre la première membrane d'échange de cations à travers l'électrolyte d'anode et une solution alcaline est produite dans l'électrolyte de cathode par application d'une tension à travers l'anode et la cathode; dans certains modes de réalisation, le dioxyde de carbone est nécessaire par réaction avec l'électrolyte de cathode.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26531309P | 2009-11-30 | 2009-11-30 | |
US61/265,313 | 2009-11-30 | ||
US26608009P | 2009-12-02 | 2009-12-02 | |
US61/266,080 | 2009-12-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011066293A1 true WO2011066293A1 (fr) | 2011-06-03 |
Family
ID=44066884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2010/057821 WO2011066293A1 (fr) | 2009-11-30 | 2010-11-23 | Production d'une solution alcaline à l'aide d'une anode à diffusion gazeuse avec une pression hydrostatique |
Country Status (2)
Country | Link |
---|---|
US (1) | US20110079515A1 (fr) |
WO (1) | WO2011066293A1 (fr) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8006446B2 (en) | 2008-09-30 | 2011-08-30 | Calera Corporation | CO2-sequestering formed building materials |
US8137455B1 (en) | 2009-12-31 | 2012-03-20 | Calera Corporation | Methods and compositions using calcium carbonate |
US8333944B2 (en) | 2007-12-28 | 2012-12-18 | Calera Corporation | Methods of sequestering CO2 |
US8357270B2 (en) | 2008-07-16 | 2013-01-22 | Calera Corporation | CO2 utilization in electrochemical systems |
US8470275B2 (en) | 2008-09-30 | 2013-06-25 | Calera Corporation | Reduced-carbon footprint concrete compositions |
US8491858B2 (en) | 2009-03-02 | 2013-07-23 | Calera Corporation | Gas stream multi-pollutants control systems and methods |
US8691175B2 (en) | 2011-04-28 | 2014-04-08 | Calera Corporation | Calcium sulfate and CO2 sequestration |
US8834688B2 (en) | 2009-02-10 | 2014-09-16 | Calera Corporation | Low-voltage alkaline production using hydrogen and electrocatalytic electrodes |
US8857118B2 (en) | 2007-05-24 | 2014-10-14 | Calera Corporation | Hydraulic cements comprising carbonate compound compositions |
US8869477B2 (en) | 2008-09-30 | 2014-10-28 | Calera Corporation | Formed building materials |
US8906156B2 (en) | 2009-12-31 | 2014-12-09 | Calera Corporation | Cement and concrete with reinforced material |
US8936773B2 (en) | 2011-04-28 | 2015-01-20 | Calera Corporation | Methods and compositions using calcium carbonate and stabilizer |
US8999057B2 (en) | 2011-09-28 | 2015-04-07 | Calera Corporation | Cement and concrete with calcium aluminates |
US9061940B2 (en) | 2008-09-30 | 2015-06-23 | Calera Corporation | Concrete compositions and methods |
US9133581B2 (en) | 2008-10-31 | 2015-09-15 | Calera Corporation | Non-cementitious compositions comprising vaterite and methods thereof |
US9187835B2 (en) | 2011-05-19 | 2015-11-17 | Calera Corporation | Electrochemical systems and methods using metal and ligand |
US9200375B2 (en) | 2011-05-19 | 2015-12-01 | Calera Corporation | Systems and methods for preparation and separation of products |
US9260314B2 (en) | 2007-12-28 | 2016-02-16 | Calera Corporation | Methods and systems for utilizing waste sources of metal oxides |
US9828313B2 (en) | 2013-07-31 | 2017-11-28 | Calera Corporation | Systems and methods for separation and purification of products |
US9880124B2 (en) | 2014-11-10 | 2018-01-30 | Calera Corporation | Measurement of ion concentration in presence of organics |
US9902652B2 (en) | 2014-04-23 | 2018-02-27 | Calera Corporation | Methods and systems for utilizing carbide lime or slag |
US9957621B2 (en) | 2014-09-15 | 2018-05-01 | Calera Corporation | Electrochemical systems and methods using metal halide to form products |
US10161050B2 (en) | 2015-03-16 | 2018-12-25 | Calera Corporation | Ion exchange membranes, electrochemical systems, and methods |
US10236526B2 (en) | 2016-02-25 | 2019-03-19 | Calera Corporation | On-line monitoring of process/system |
US10266954B2 (en) | 2015-10-28 | 2019-04-23 | Calera Corporation | Electrochemical, halogenation, and oxyhalogenation systems and methods |
US10556848B2 (en) | 2017-09-19 | 2020-02-11 | Calera Corporation | Systems and methods using lanthanide halide |
US10590054B2 (en) | 2018-05-30 | 2020-03-17 | Calera Corporation | Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid |
US10619254B2 (en) | 2016-10-28 | 2020-04-14 | Calera Corporation | Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide |
US10847844B2 (en) | 2016-04-26 | 2020-11-24 | Calera Corporation | Intermediate frame, electrochemical systems, and methods |
US11090606B2 (en) | 2013-12-05 | 2021-08-17 | Dionex Corporation | Gas-less electrolytic device and method |
US11377363B2 (en) | 2020-06-30 | 2022-07-05 | Arelac, Inc. | Methods and systems for forming vaterite from calcined limestone using electric kiln |
US11577965B2 (en) | 2020-02-25 | 2023-02-14 | Arelac, Inc. | Methods and systems for treatment of lime to form vaterite |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100313794A1 (en) * | 2007-12-28 | 2010-12-16 | Constantz Brent R | Production of carbonate-containing compositions from material comprising metal silicates |
US20110033239A1 (en) * | 2009-08-07 | 2011-02-10 | Brent Constantz | Utilizing salts for carbon capture and storage |
JP5553581B2 (ja) * | 2009-11-16 | 2014-07-16 | キヤノン株式会社 | 情報処理装置、情報処理装置の制御方法、及びコンピュータプログラム |
CA2895351A1 (fr) | 2012-12-21 | 2014-06-26 | Ee-Terrabon Biofuels Llc | Systemes et procedes pour obtenir des produits a partir d'une biomasse |
CN103173782A (zh) * | 2013-04-12 | 2013-06-26 | 四川大学 | 利用氯化镁矿化co2制取碱式碳酸镁联产盐酸的方法 |
CN103952747A (zh) * | 2014-04-15 | 2014-07-30 | 株洲冶炼集团股份有限公司 | 一种铅炭复合材料电沉积装置 |
DE102018210303A1 (de) * | 2018-06-25 | 2020-01-02 | Siemens Aktiengesellschaft | Elektrochemische Niedertemperatur Reverse-Watergas-Shift Reaktion |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5618392A (en) * | 1991-10-31 | 1997-04-08 | Tanaka Kikinzoku Kogyo K.K. | Gas diffusion electrode |
US5702585A (en) * | 1993-04-08 | 1997-12-30 | Metallgesellschaft Aktiengesellschaft | Process of preparing alkali peroxide solutions |
US5776328A (en) * | 1991-06-27 | 1998-07-07 | De Nora Permelec S.P.A. | Apparatus and process for electrochemically decomposing salt solutions to form the relevant base and acid |
US20060249380A1 (en) * | 2003-07-30 | 2006-11-09 | Fritz Gestermann | Electrochemical cell |
Family Cites Families (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1176747A (en) * | 1915-03-04 | 1916-03-28 | Benjamin M Ferguson | Gas-scrubbing apparatus. |
US1169766A (en) * | 1915-10-02 | 1916-02-01 | Hermann A Brassert | Gas-washer. |
US1172930A (en) * | 1915-12-08 | 1916-02-22 | Hermann A Brassert | Method of and apparatus for gas-washing. |
US1655171A (en) * | 1925-06-17 | 1928-01-03 | Bartlett Hayward Co | Liquid and gas contact apparatus |
GB271852A (en) * | 1926-05-28 | 1927-11-10 | Ig Farbenindustrie Ag | Improvements in and means for the extraction of carbon dioxide from gaseous mixtures |
US1986736A (en) * | 1934-04-09 | 1935-01-01 | James L Mauthe | Gas washer |
US2273795A (en) * | 1936-12-31 | 1942-02-17 | Nat Carbon Co Inc | Electrolytic process |
US2227465A (en) * | 1938-06-11 | 1941-01-07 | Binks Mfg Co | Means for eliminating divided material in industrial processes |
US2458039A (en) * | 1945-10-05 | 1949-01-04 | Bertrand H Wait | Aggregate for improving portland cement concretes |
US2967807A (en) * | 1952-01-23 | 1961-01-10 | Hooker Chemical Corp | Electrolytic decomposition of sodium chloride |
US3120426A (en) * | 1959-06-24 | 1964-02-04 | Kaiser Aluminium Chem Corp | Process for the production of aragonite crystals |
US3165460A (en) * | 1962-04-11 | 1965-01-12 | American Mach & Foundry | Electrolytic acid generator |
DE1233366B (de) * | 1963-06-28 | 1967-02-02 | Ceskoslovenska Akademie Ved | Elektrolyseur fuer die gleichzeitige Herstellung von Chlor und Alkalicarbonaten |
US3558769A (en) * | 1965-09-24 | 1971-01-26 | Guardian Chemical Corp | Compositions for dental prophylaxis |
US3420775A (en) * | 1967-07-05 | 1969-01-07 | Edgar A Cadwallader | Prevention of scale in saline water evaporators using carbon dioxide under special conditions |
US3721621A (en) * | 1969-12-02 | 1973-03-20 | W Hough | Forward-osmosis solvent extraction |
US3861928A (en) * | 1970-10-30 | 1975-01-21 | Flintkote Co | Hydraulic cement and method of producing same |
US3864236A (en) * | 1972-09-29 | 1975-02-04 | Hooker Chemicals Plastics Corp | Apparatus for the electrolytic production of alkali |
US4002721A (en) * | 1974-09-26 | 1977-01-11 | Chevron Research Company | Process improvement in the absorption of acid gas from a feed gas |
AR205953A1 (es) * | 1975-01-22 | 1976-06-15 | Diamond Shamrock Corp | Produccion de carbonatos de metales a calinos en una celula de membrana |
US4000991A (en) * | 1975-03-27 | 1977-01-04 | Krebs Engineers | Method of removing fly ash particulates from flue gases in a closed-loop wet scrubbing system |
DE2626885C2 (de) * | 1976-06-16 | 1978-05-03 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V., 8000 Muenchen | Verfahren zum Aufschluß von Alkali-Erdalkali-silicathaltigem Material zur Gewinnung von Alkalisilicat- oder Alkalicarbonatlösungen und Stoffen mit großer spezifischer Oberfläche |
US4069063A (en) * | 1976-11-24 | 1978-01-17 | Westvaco Corporation | Cement composition |
US4315872A (en) * | 1977-07-29 | 1982-02-16 | Fuji Kasui Engineering Co., Ltd. | Plate column |
US4251236A (en) * | 1977-11-17 | 1981-02-17 | Ciba-Geigy Corporation | Process for purifying the off-gases from industrial furnaces, especially from waste incineration plants |
US4188291A (en) * | 1978-04-06 | 1980-02-12 | Anderson Donald R | Treatment of industrial waste water |
US4253922A (en) * | 1979-02-23 | 1981-03-03 | Ppg Industries, Inc. | Cathode electrocatalysts for solid polymer electrolyte chlor-alkali cells |
US4246075A (en) * | 1979-03-19 | 1981-01-20 | Marine Resources Company | Mineral accretion of large surface structures, building components and elements |
US4370307A (en) * | 1980-02-29 | 1983-01-25 | Martin Marietta Corporation | Preparation of pure magnesian values |
US4377554A (en) * | 1981-08-26 | 1983-03-22 | Becton, Dickinson And Company | Generation of microaerophilic atmosphere |
US4376101A (en) * | 1981-11-13 | 1983-03-08 | Exxon Research And Engineering Co. | Process for removing acid gases using a basic salt activated with a non-sterically hindered diamine |
US4634533A (en) * | 1985-04-26 | 1987-01-06 | Somerville Robert L | Method of converting brines to useful products |
US5100633A (en) * | 1985-11-07 | 1992-03-31 | Passamaquoddy Technology Limited Partnership | Method for scrubbing pollutants from an exhaust gas stream |
US4804449A (en) * | 1986-02-25 | 1989-02-14 | Sweeney Charles T | Electrolytic cell |
US4899544A (en) * | 1987-08-13 | 1990-02-13 | Boyd Randall T | Cogeneration/CO2 production process and plant |
DE4021465A1 (de) * | 1990-07-05 | 1992-01-16 | Kettel Dirk | Verfahren zum nachweis des erdgaspotentials in sedimentbecken und daraus abgeleitet des erdoelpotentials |
FR2665698B1 (fr) * | 1990-08-10 | 1993-09-10 | Conroy Michel | Ciment complemente melange a des granulats selectionnes, pour l'obtention de mortier ou beton sans retrait, auto-lissant et auto-nivelant. |
US5275794A (en) * | 1991-11-20 | 1994-01-04 | Luna Raymundo R | Process for producing sodium bicarbonate from natural soda salts |
US5282935A (en) * | 1992-04-13 | 1994-02-01 | Olin Corporation | Electrodialytic process for producing an alkali solution |
US5855759A (en) * | 1993-11-22 | 1999-01-05 | E. I. Du Pont De Nemours And Company | Electrochemical cell and process for splitting a sulfate solution and producing a hyroxide solution sulfuric acid and a halogen gas |
WO1996038384A1 (fr) * | 1995-06-01 | 1996-12-05 | Upscale Technologies, Inc. | Procede et appareil pour eliminer les nitrates contenus dans l'eau |
FR2740354B1 (fr) * | 1995-10-31 | 1997-11-28 | Rhone Poulenc Chimie | Procede de traitement de fumees a base d'oxydes de soufre |
CN1203570A (zh) * | 1995-12-05 | 1998-12-30 | 派里克累斯有限公司 | 一种可定形组合物及其应用 |
US6190428B1 (en) * | 1996-03-25 | 2001-02-20 | The United States Of America As Represented By The Secretary Of The Navy | Electrochemical process for removing low-valent sulfur from carbon |
US6537456B2 (en) * | 1996-08-12 | 2003-03-25 | Debasish Mukhopadhyay | Method and apparatus for high efficiency reverse osmosis operation |
US5855666A (en) * | 1996-12-24 | 1999-01-05 | Cement-Lock Group, L.L.C. | Process for preparing environmentally stable products by the remediation of contaminated sediments and soils |
US6180012B1 (en) * | 1997-03-19 | 2001-01-30 | Paul I. Rongved | Sea water desalination using CO2 gas from combustion exhaust |
US5879948A (en) * | 1997-05-12 | 1999-03-09 | Tennessee Valley Authority | Determination of total mercury in exhaust gases |
US5885478A (en) * | 1997-10-29 | 1999-03-23 | Fritz Industries, Inc | Concrete mix water |
US6200543B1 (en) * | 1998-02-25 | 2001-03-13 | Mississippi Lime Company | Apparatus and methods for reducing carbon dioxide content of an air stream |
DE19813485A1 (de) * | 1998-03-26 | 1999-09-30 | Sep Tech Studien | Zerkleinerungs- und Zuteilungsvorrichtung für zerstückelbare, pumpbare Stoffe |
US6024848A (en) * | 1998-04-15 | 2000-02-15 | International Fuel Cells, Corporation | Electrochemical cell with a porous support plate |
US6174507B1 (en) * | 1998-06-05 | 2001-01-16 | Texaco Inc. | Acid gas solvent filtration system |
US6334895B1 (en) * | 1998-07-20 | 2002-01-01 | The University Of Wyoming Research Corporation | System for producing manufactured materials from coal combustion ash |
JP3248514B2 (ja) * | 1998-10-29 | 2002-01-21 | 日本鋼管株式会社 | 排出炭酸ガスの削減方法 |
US6841512B1 (en) * | 1999-04-12 | 2005-01-11 | Ovonic Battery Company, Inc. | Finely divided metal catalyst and method for making same |
US6251356B1 (en) * | 1999-07-21 | 2001-06-26 | G. R. International, Inc. | High speed manufacturing process for precipitated calcium carbonate employing sequential perssure carbonation |
US6352576B1 (en) * | 2000-03-30 | 2002-03-05 | The Regents Of The University Of California | Methods of selectively separating CO2 from a multicomponent gaseous stream using CO2 hydrate promoters |
US20090043687A1 (en) * | 2000-11-01 | 2009-02-12 | Van Soestbergen Mark | Method and System for Banking and Exchanging Emission Reduction Credits |
GB2388120B (en) * | 2000-11-30 | 2004-10-20 | Rmg Services Pty Ltd | Electrolytic commercial production of hydrogen from hydrocarbon compounds |
US6855754B2 (en) * | 2000-12-18 | 2005-02-15 | Basf Ag | Asphalt-based formulations and method of making and using the same for paving and coating applications |
DE10104771A1 (de) * | 2001-02-02 | 2002-08-08 | Basf Ag | Verfahren und Vorrichtung zum Entionisieren von Kühlmedien für Brennstoffzellen |
CN1166019C (zh) * | 2001-05-25 | 2004-09-08 | 中国科学院长春应用化学研究所 | 质子交换膜燃料电池纳米电催化剂的制备方法 |
US6712946B2 (en) * | 2001-06-18 | 2004-03-30 | The Electrosynthesis Company, Inc. | Electrodialysis of multivalent metal salts |
CA2352626A1 (fr) * | 2001-07-12 | 2003-01-12 | Co2 Solution Inc. | Couplage d'une pile a hydrogene a un bioreacteur enzymatique de transformation et sequestration du co2 |
US20030017088A1 (en) * | 2001-07-20 | 2003-01-23 | William Downs | Method for simultaneous removal and sequestration of CO2 in a highly energy efficient manner |
AU2002365135A1 (en) * | 2001-10-23 | 2003-07-09 | Anteon Corporation | Integrated oxygen generation and carbon dioxide absorption method, apparatus and systems |
AU2002363073A1 (en) * | 2001-10-24 | 2003-05-06 | Shell Internationale Research Maatschappij B.V. | Method and system for in situ heating a hydrocarbon containing formation by a u-shaped opening |
US7214290B2 (en) * | 2002-09-04 | 2007-05-08 | Shaw Liquid Solutions Llc. | Treatment of spent caustic refinery effluents |
US7090868B2 (en) * | 2002-09-13 | 2006-08-15 | University Of Florida | Materials and methods for drug delivery and uptake |
CA2405635A1 (fr) * | 2002-09-27 | 2004-03-27 | C02 Solution Inc. | Methode et usine de production de produits carbonates utiles et de recyclage des emissions de dioxyde de carbone produites par des centrales electriques |
MXPA02010615A (es) * | 2002-10-25 | 2004-04-29 | Hermosillo Angel Ayala | Sistema para eliminar gases contaminantes producidos por la combustion de hidrocarburos. |
US7067456B2 (en) * | 2003-02-06 | 2006-06-27 | The Ohio State University | Sorbent for separation of carbon dioxide (CO2) from gas mixtures |
AU2003222696A1 (en) * | 2003-04-29 | 2004-11-23 | Consejo Superior De Investigaciones Cientificas | In-situ capture of carbon dioxide and sulphur dioxide in a fluidized bed combustor |
US7604787B2 (en) * | 2003-05-02 | 2009-10-20 | The Penn State Research Foundation | Process for sequestering carbon dioxide and sulfur dioxide |
US20050011770A1 (en) * | 2003-07-18 | 2005-01-20 | Tatenuma Katsuyoshi | Reduction method of atmospheric carbon dioxide, recovery and removal method of carbonate contained in seawater, and disposal method of the recovered carbonate |
US7141093B2 (en) * | 2003-08-04 | 2006-11-28 | Graymont Qc Inc. | Hydrated lime kiln dust recirculation method for gas scrubbing |
WO2005108297A2 (fr) * | 2004-05-04 | 2005-11-17 | The Trustees Of Columbia University In The City Of New York | Capture du dioxyde de carbone et reduction des emissions de dioxyde de carbone |
US20060051274A1 (en) * | 2004-08-23 | 2006-03-09 | Wright Allen B | Removal of carbon dioxide from air |
CN101056693B (zh) * | 2004-09-13 | 2012-04-18 | 南卡罗来纳大学 | 水脱盐工艺和装置 |
US7314847B1 (en) * | 2004-10-21 | 2008-01-01 | The United States Of America As Represented By The United States Department Of Energy | Regenerable sorbents for CO2 capture from moderate and high temperature gas streams |
US8075746B2 (en) * | 2005-08-25 | 2011-12-13 | Ceramatec, Inc. | Electrochemical cell for production of synthesis gas using atmospheric air and water |
ATE481356T1 (de) * | 2005-12-20 | 2010-10-15 | Shell Int Research | Verfahren zur sequestrierung von kohlendioxid |
US20080059206A1 (en) * | 2006-03-14 | 2008-03-06 | Federico Jenkins | Method of distributing the cost of preserving the environment |
US8695360B2 (en) * | 2006-04-05 | 2014-04-15 | Ben M. Enis | Desalination method and system using compressed air energy systems |
US20080035036A1 (en) * | 2006-06-05 | 2008-02-14 | Bassani Dominic T | Environmentally compatible integrated food and energy production system |
KR20100023813A (ko) * | 2007-05-24 | 2010-03-04 | 칼레라 코포레이션 | 탄산염 화합물 조성물을 포함하는 수경 시멘트 |
US7753618B2 (en) * | 2007-06-28 | 2010-07-13 | Calera Corporation | Rocks and aggregate, and methods of making and using the same |
JP2010531732A (ja) * | 2007-06-28 | 2010-09-30 | カレラ コーポレイション | 炭酸塩化合物の沈殿を含む脱塩方法 |
EP2118004A4 (fr) * | 2007-12-28 | 2010-03-31 | Calera Corp | Procédés de séquestration de co2 |
CN101984749B (zh) * | 2008-07-16 | 2015-02-18 | 卡勒拉公司 | 使用二氧化碳气体的低能量4-电池电化学系统 |
EP2384520A1 (fr) * | 2008-12-23 | 2011-11-09 | Calera Corporation | Système et procédé de transfert de protons électrochimique à faible énergie |
US20110042230A1 (en) * | 2009-01-28 | 2011-02-24 | Gilliam Ryan J | Low-energy electrochemical bicarbonate ion solution |
US20110033239A1 (en) * | 2009-08-07 | 2011-02-10 | Brent Constantz | Utilizing salts for carbon capture and storage |
AU2010337357B2 (en) * | 2009-12-31 | 2013-11-28 | Arelac, Inc. | Methods and compositions using calcium carbonate |
-
2010
- 2010-11-23 WO PCT/US2010/057821 patent/WO2011066293A1/fr active Application Filing
- 2010-11-23 US US12/952,665 patent/US20110079515A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5776328A (en) * | 1991-06-27 | 1998-07-07 | De Nora Permelec S.P.A. | Apparatus and process for electrochemically decomposing salt solutions to form the relevant base and acid |
US5618392A (en) * | 1991-10-31 | 1997-04-08 | Tanaka Kikinzoku Kogyo K.K. | Gas diffusion electrode |
US5702585A (en) * | 1993-04-08 | 1997-12-30 | Metallgesellschaft Aktiengesellschaft | Process of preparing alkali peroxide solutions |
US20060249380A1 (en) * | 2003-07-30 | 2006-11-09 | Fritz Gestermann | Electrochemical cell |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8857118B2 (en) | 2007-05-24 | 2014-10-14 | Calera Corporation | Hydraulic cements comprising carbonate compound compositions |
US9260314B2 (en) | 2007-12-28 | 2016-02-16 | Calera Corporation | Methods and systems for utilizing waste sources of metal oxides |
US8333944B2 (en) | 2007-12-28 | 2012-12-18 | Calera Corporation | Methods of sequestering CO2 |
US8894830B2 (en) | 2008-07-16 | 2014-11-25 | Celera Corporation | CO2 utilization in electrochemical systems |
US8357270B2 (en) | 2008-07-16 | 2013-01-22 | Calera Corporation | CO2 utilization in electrochemical systems |
US8869477B2 (en) | 2008-09-30 | 2014-10-28 | Calera Corporation | Formed building materials |
US8006446B2 (en) | 2008-09-30 | 2011-08-30 | Calera Corporation | CO2-sequestering formed building materials |
US8603424B2 (en) | 2008-09-30 | 2013-12-10 | Calera Corporation | CO2-sequestering formed building materials |
US9061940B2 (en) | 2008-09-30 | 2015-06-23 | Calera Corporation | Concrete compositions and methods |
US8470275B2 (en) | 2008-09-30 | 2013-06-25 | Calera Corporation | Reduced-carbon footprint concrete compositions |
US8431100B2 (en) | 2008-09-30 | 2013-04-30 | Calera Corporation | CO2-sequestering formed building materials |
US9133581B2 (en) | 2008-10-31 | 2015-09-15 | Calera Corporation | Non-cementitious compositions comprising vaterite and methods thereof |
US9267211B2 (en) | 2009-02-10 | 2016-02-23 | Calera Corporation | Low-voltage alkaline production using hydrogen and electrocatalytic electrodes |
US8834688B2 (en) | 2009-02-10 | 2014-09-16 | Calera Corporation | Low-voltage alkaline production using hydrogen and electrocatalytic electrodes |
US8883104B2 (en) | 2009-03-02 | 2014-11-11 | Calera Corporation | Gas stream multi-pollutants control systems and methods |
US8491858B2 (en) | 2009-03-02 | 2013-07-23 | Calera Corporation | Gas stream multi-pollutants control systems and methods |
US8177909B2 (en) | 2009-12-31 | 2012-05-15 | Calera Corporation | Methods and compositions using calcium carbonate |
US8906156B2 (en) | 2009-12-31 | 2014-12-09 | Calera Corporation | Cement and concrete with reinforced material |
US8932400B2 (en) | 2009-12-31 | 2015-01-13 | Calera Corporation | Methods and compositions using calcium carbonate |
US9056790B2 (en) | 2009-12-31 | 2015-06-16 | Calera Corporation | Methods and compositions using calcium carbonate |
US8137455B1 (en) | 2009-12-31 | 2012-03-20 | Calera Corporation | Methods and compositions using calcium carbonate |
US8936773B2 (en) | 2011-04-28 | 2015-01-20 | Calera Corporation | Methods and compositions using calcium carbonate and stabilizer |
US8691175B2 (en) | 2011-04-28 | 2014-04-08 | Calera Corporation | Calcium sulfate and CO2 sequestration |
US9139472B2 (en) | 2011-04-28 | 2015-09-22 | Calera Corporation | Methods and compositions using calcium carbonate and stabilizer |
US9187834B2 (en) | 2011-05-19 | 2015-11-17 | Calera Corporation | Electrochemical hydroxide systems and methods using metal oxidation |
US9187835B2 (en) | 2011-05-19 | 2015-11-17 | Calera Corporation | Electrochemical systems and methods using metal and ligand |
US9957623B2 (en) | 2011-05-19 | 2018-05-01 | Calera Corporation | Systems and methods for preparation and separation of products |
US9200375B2 (en) | 2011-05-19 | 2015-12-01 | Calera Corporation | Systems and methods for preparation and separation of products |
US8999057B2 (en) | 2011-09-28 | 2015-04-07 | Calera Corporation | Cement and concrete with calcium aluminates |
US10287223B2 (en) | 2013-07-31 | 2019-05-14 | Calera Corporation | Systems and methods for separation and purification of products |
US9828313B2 (en) | 2013-07-31 | 2017-11-28 | Calera Corporation | Systems and methods for separation and purification of products |
US11090606B2 (en) | 2013-12-05 | 2021-08-17 | Dionex Corporation | Gas-less electrolytic device and method |
US9902652B2 (en) | 2014-04-23 | 2018-02-27 | Calera Corporation | Methods and systems for utilizing carbide lime or slag |
US9957621B2 (en) | 2014-09-15 | 2018-05-01 | Calera Corporation | Electrochemical systems and methods using metal halide to form products |
US9880124B2 (en) | 2014-11-10 | 2018-01-30 | Calera Corporation | Measurement of ion concentration in presence of organics |
US10480085B2 (en) | 2015-03-16 | 2019-11-19 | Calera Corporation | Ion exchange membranes, electrochemical systems, and methods |
US10161050B2 (en) | 2015-03-16 | 2018-12-25 | Calera Corporation | Ion exchange membranes, electrochemical systems, and methods |
US10801117B2 (en) | 2015-03-16 | 2020-10-13 | Calera Corporation | Ion exchange membranes, electrochemical systems, and methods |
US10266954B2 (en) | 2015-10-28 | 2019-04-23 | Calera Corporation | Electrochemical, halogenation, and oxyhalogenation systems and methods |
US10844496B2 (en) | 2015-10-28 | 2020-11-24 | Calera Corporation | Electrochemical, halogenation, and oxyhalogenation systems and methods |
US10236526B2 (en) | 2016-02-25 | 2019-03-19 | Calera Corporation | On-line monitoring of process/system |
US11239503B2 (en) | 2016-04-26 | 2022-02-01 | Calera Corporation | Intermediate frame, electrochemical systems, and methods |
US10847844B2 (en) | 2016-04-26 | 2020-11-24 | Calera Corporation | Intermediate frame, electrochemical systems, and methods |
US10619254B2 (en) | 2016-10-28 | 2020-04-14 | Calera Corporation | Electrochemical, chlorination, and oxychlorination systems and methods to form propylene oxide or ethylene oxide |
US10556848B2 (en) | 2017-09-19 | 2020-02-11 | Calera Corporation | Systems and methods using lanthanide halide |
US10590054B2 (en) | 2018-05-30 | 2020-03-17 | Calera Corporation | Methods and systems to form propylene chlorohydrin from dichloropropane using Lewis acid |
US10807927B2 (en) | 2018-05-30 | 2020-10-20 | Calera Corporation | Methods and systems to form propylene chlorohydrin from dichloropropane using lewis acid |
US11577965B2 (en) | 2020-02-25 | 2023-02-14 | Arelac, Inc. | Methods and systems for treatment of lime to form vaterite |
US12077447B2 (en) | 2020-02-25 | 2024-09-03 | Arelac, Inc. | Methods and systems for treatment of lime to form vaterite |
US12172904B2 (en) | 2020-02-25 | 2024-12-24 | Arelac, Inc. | Methods and systems for treatment of lime to form vaterite |
US11377363B2 (en) | 2020-06-30 | 2022-07-05 | Arelac, Inc. | Methods and systems for forming vaterite from calcined limestone using electric kiln |
Also Published As
Publication number | Publication date |
---|---|
US20110079515A1 (en) | 2011-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110079515A1 (en) | Alkaline production using a gas diffusion anode with a hydrostatic pressure | |
US7993500B2 (en) | Gas diffusion anode and CO2 cathode electrolyte system | |
US7993511B2 (en) | Electrochemical production of an alkaline solution using CO2 | |
CN101984749B (zh) | 使用二氧化碳气体的低能量4-电池电化学系统 | |
US8894830B2 (en) | CO2 utilization in electrochemical systems | |
US20100200419A1 (en) | Low-voltage alkaline production from brines | |
US7790012B2 (en) | Low energy electrochemical hydroxide system and method | |
US20110147227A1 (en) | Acid separation by acid retardation on an ion exchange resin in an electrochemical system | |
US20110083968A1 (en) | Low-voltage alkaline production using hydrogen and electrocatalytic electrodes | |
US20100224503A1 (en) | Low-energy electrochemical hydroxide system and method | |
WO2011097468A2 (fr) | Séparation d'acide par rétention d'acide sur une résine échangeuse d'ions dans un système électrochimique | |
WO2011008223A1 (fr) | Production électrochimique dune solution alcaline à laide de co2 | |
KR20180133688A (ko) | 이산화탄소의 분리 방법 및 이산화탄소 분리 시스템 | |
CA2696086C (fr) | Production electrochimique d'une solution alcaline au moyen de co2 | |
AU2009290161B2 (en) | Electrochemical production of an alkaline solution using CO2 | |
CA2694978C (fr) | Production alcaline a basse tension a partir de saumures | |
CA2696096A1 (fr) | Production alcaline a basse tension au moyen d'hydrogene et d'electrodes electrocatalytiques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10833864 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10833864 Country of ref document: EP Kind code of ref document: A1 |