WO2011042966A1 - 連結車両のスウェイ状態検出装置及び挙動制御装置 - Google Patents
連結車両のスウェイ状態検出装置及び挙動制御装置 Download PDFInfo
- Publication number
- WO2011042966A1 WO2011042966A1 PCT/JP2009/067500 JP2009067500W WO2011042966A1 WO 2011042966 A1 WO2011042966 A1 WO 2011042966A1 JP 2009067500 W JP2009067500 W JP 2009067500W WO 2011042966 A1 WO2011042966 A1 WO 2011042966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration
- tractor
- sway
- yaw rate
- state
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 claims abstract description 92
- 238000005096 rolling process Methods 0.000 abstract description 7
- 230000001629 suppression Effects 0.000 description 30
- 238000001514 detection method Methods 0.000 description 26
- 230000001186 cumulative effect Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000010587 phase diagram Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 241000270295 Serpentes Species 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
- B60T7/20—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger specially for trailers, e.g. in case of uncoupling of or overrunning by trailer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/1701—Braking or traction control means specially adapted for particular types of vehicles
- B60T8/1708—Braking or traction control means specially adapted for particular types of vehicles for lorries or tractor-trailer combinations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2230/00—Monitoring, detecting special vehicle behaviour; Counteracting thereof
- B60T2230/06—Tractor-trailer swaying
Definitions
- the present invention relates to behavior control of a vehicle such as an automobile, and more specifically, detection of a sway state (also referred to as snake motion or trailer pendulum motion) in a connected vehicle in which a tractor pulls a trailer. And a behavior control device for suppressing such a sway state and stabilizing vehicle behavior.
- a sway state also referred to as snake motion or trailer pendulum motion
- a trailer to be pulled by a tractor is pivotally connected by a pin or a coupler provided at a rear portion of the tractor.
- the trailer “sway”, i.e. the trailer against the tractor due to various factors such as sudden steering, excessive vehicle speed, crosswind or imbalance in load distribution, etc.
- a state of swinging or vibrating in the yaw direction around the pin or coupler may be caused (see FIG. 2A).
- the tractor also vibrates in the yaw direction, and the vehicle behavior becomes unstable.
- Patent Document 2 detects the occurrence of the sway state by monitoring whether the yaw rate of the frequency band in the sway state, the lateral acceleration of the vehicle has reached a predetermined value, and It discloses that the sway state is suppressed by generating a yaw moment having a phase opposite to the phase of the yaw rate and / or the lateral acceleration by the braking force distribution control.
- the detection of the sway state of the connected vehicle in the conventional sway state suppression control is based on the magnitude of the component of the sway vibration band of the physical characteristic values (yaw rate, lateral acceleration) reflecting the magnitude and frequency of the vehicle shake. It has been done. Specifically, for example, when the hitch angle reaches a predetermined angle as in Patent Document 1, or as in Patent Document 2, the absolute value at a predetermined time in a predetermined frequency band of yaw rate or lateral acceleration reaches a predetermined value. When this happens, the occurrence of the sway state is determined, and the sway state suppression control is started.
- the threshold of the amplitude of the yaw rate or the lateral acceleration for determining the occurrence of the sway state is increased, or the sway state suppression control is performed. Measures such as increasing the number of times (predetermined number) exceeding the threshold of the yaw rate or the lateral acceleration amplitude until the start of operation are taken. In this case, the start of the sway state suppression control operation may be delayed.
- one object of the present invention is to distinguish and determine the rolling of the vehicle body caused by road disturbance or the like and the sway state of the trailer, so that the sway state suppression control can be started appropriately and as early as possible. Is to do.
- the yaw rate vibration state (vibration frequency, frequency, period, etc.) and the vibration state of the lateral acceleration or the vehicle body slip angular velocity are
- the yaw rate vibration state and the lateral acceleration or vehicle body slip angular velocity vibration state are different. It was found to be. Therefore, in the present invention, using such knowledge, it is attempted to detect the occurrence of the sway state of the trailer and / or execute behavior control for suppressing the sway state appropriately and quickly.
- Another object of the present invention is to provide a connected vehicle sway state detection device or a connected vehicle behavior control device using the above-described knowledge.
- a sway state detection device for a connected vehicle including a tractor and a trailer towed by the tractor, wherein the vibration state amount of the tractor yaw rate and the lateral acceleration of the tractor or
- An apparatus is provided for determining whether or not a sway state has occurred based on a relationship between a vehicle body slip angular velocity and a vibration state amount.
- the “vibration state quantity” may be an arbitrary index value representing the speed of vibration of each physical quantity.
- the detection of the sway state is performed based on the relationship between the vibration state quantity of the tractor yaw rate and the vibration state quantity of the tractor lateral acceleration or the vehicle body slip angular velocity, and more accurately and more accurately.
- the vibration state of the yaw rate in the frequency band of the sway vibration of the trailer is different from the vibration state of the lateral acceleration or the vehicle body slip angular velocity
- the sway state is generated. It has been found that there is a high probability that it has not.
- the vibration state quantity of the tractor yaw rate component and the vibration state quantity of the tractor lateral acceleration or body slip angular velocity component in the frequency band of the trailer sway vibration are substantially different, It may be configured to determine that a state has not occurred ("substantially different" means that there is a significant difference between the two vibration state quantities).
- the sway state detection device of the present invention is configured such that the vibration state quantity of the tractor yaw rate component and the vibration state quantity of the tractor lateral acceleration or vehicle body slip angular velocity component in the frequency band of the sway vibration of the trailer are substantially equal.
- the sway state may be determined to be highly likely to have occurred.
- the “vibration state quantity” may be a vibration period of a corresponding physical quantity. Therefore, the above-described apparatus determines whether the sway state is based on, for example, the difference or ratio of these vibration periods depending on whether the vibration period of the yaw rate of the tractor is substantially equal to the vibration period of the lateral acceleration of the tractor or the vehicle body slip angular velocity. It may be configured to determine whether it has occurred. In this case, even if the yaw rate or lateral acceleration of the tractor or the amplitude of the vehicle body slip angular velocity is increased, when the magnitude of the difference between these vibration cycles reaches a predetermined value, or the vibration cycle ratio is close to 1. When the vehicle deviates from the predetermined range, it may be determined that the sway state has not occurred or that the probability of occurrence of the sway state is low.
- the above “vibration state quantity” may be the number of vibrations exceeding a predetermined magnitude of the corresponding physical quantity. Therefore, the above apparatus determines whether or not a sway condition has occurred based on the difference or ratio between the number of vibrations of the tractor yaw rate and the number of vibrations of the lateral acceleration of the tractor or the vehicle body slip angular velocity in a predetermined time. It may be constituted as follows. In this case, even if the yaw rate or lateral acceleration of the tractor or the amplitude of the vehicle body slip angular velocity increases, the magnitude of the difference in the number of vibrations exceeding the predetermined magnitude at the predetermined time reaches the predetermined magnitude.
- the apparatus is adapted to provide a vibration state quantity of the tractor yaw rate component in the frequency band of the trailer sway vibration and a frequency band of the trailer sway vibration.
- the difference or ratio of the tractor lateral acceleration or body slip angular velocity component with the vibration state quantity is within a predetermined range, and the tractor yaw rate or lateral acceleration or vehicle body slip angular velocity component in the sway vibration frequency band of the trailer. It may be configured to determine that a sway state has occurred when a state where the amplitude of the sway is greater than a predetermined value continues for a predetermined time.
- the “predetermined range” is determined that there is no significant difference in the vibration state quantity of the yaw rate and the lateral acceleration of the tractor or the vehicle body slip angular velocity if the difference or ratio of the vibration state quantity is within the range. To be determined. According to such a configuration, a state where the amplitude of the component of the yaw rate of the tractor in the frequency band of the sway vibration of the trailer or the lateral acceleration or the vehicle body slip angular velocity is larger than the predetermined value continues for a predetermined time.
- the vehicle is simply rolling.
- the behavior control of the connected vehicle may be executed using the knowledge that the vibration state quantity of the yaw rate of the tractor is different from the vibration state quantity of the lateral acceleration of the tractor or the vehicle body slip angular velocity.
- a behavior control apparatus for a connected vehicle including a tractor and a trailer towed by the tractor, wherein the vibration state quantity of the tractor yaw rate and the lateral acceleration of the tractor or the vibration of the vehicle body slip angular velocity.
- An apparatus for attenuating a tractor yaw rate based on a relationship with a state quantity is provided.
- the attenuation of the tractor yaw rate in the behavior control of the present invention is basically executed when a sway state occurs.
- the behavior control apparatus includes, as one aspect, the vibration state quantity of the tractor yaw rate component in the frequency band of the sway vibration of the trailer and the lateral acceleration of the tractor in the frequency band of the sway vibration of the trailer.
- the difference or ratio of the vehicle slip angular velocity component and the vibration state quantity is within a predetermined range, and the tractor yaw rate or lateral acceleration or the vehicle slip angular velocity component amplitude in the trailer sway vibration frequency band is predetermined.
- the tractor yaw rate may be attenuated when a state larger than the value continues for a predetermined time.
- the behavior control device described above includes a vibration state quantity of a tractor yaw rate component in a sway vibration frequency band of a trailer, a lateral acceleration of the tractor in a frequency band of a sway vibration of a trailer, or When the magnitude of the difference between the component of the vehicle body slip angular velocity and the vibration state quantity is larger than a predetermined magnitude, the tractor yaw rate attenuation control is controlled compared to when the magnitude of the difference is smaller than the predetermined magnitude.
- Vibration state quantity of tractor yaw rate component in trailer sway vibration frequency band and vibration of tractor lateral acceleration or vehicle slip angular velocity component in trailer sway vibration frequency band When the ratio with the state quantity is not within the predetermined range, the ratio is greater than when the ratio is within the predetermined range. It may be configured such attenuation control of the yaw rate Kuta has become difficult to perform.
- At least one of the tractor and the trailer is configured to control at least one of the tractor and the trailer so that a yaw moment (anti-moment) is generated in a direction in which the magnitude of the yaw rate between the tractor and the trailer is reduced. It may be performed by controlling the braking / driving force of one wheel or by decelerating the vehicle.
- the occurrence of the sway state is used for the operation of the normal behavior control apparatus without using a dedicated sensor means (for example, a sensor for detecting the hitch angle of the connecting pin).
- a dedicated sensor means for example, a sensor for detecting the hitch angle of the connecting pin.
- FIG. 1A is a schematic side view of a vehicle equipped with a device for detecting a sway state and a behavior control device for suppressing the sway state according to a preferred embodiment of the present invention.
- FIG. 1B is a schematic plan view of the vehicle showing the signal flow of the vehicle braking system and the electronic control unit that controls the braking system.
- FIG. 1C shows the internal configuration of a device that executes sway state detection and / or sway state suppression behavior control, which is a preferred embodiment of the present invention, in the form of a control block.
- FIG. 2A is a schematic plan view of an example of a vehicle when a sway state occurs.
- FIG. 2 (B) shows the time change (a) of the yaw rate and the lateral acceleration in the frequency band of the sway vibration when the sway state occurs, the time change (b) of the yaw rate vibration period and the lateral acceleration vibration period
- FIG. 2C shows a change (c) in the cumulative number of vibrations exceeding a predetermined threshold value of the lateral acceleration.
- FIG. 2C shows the time change in the yaw rate and the lateral acceleration in the frequency band of the sway vibration when the sway state does not occur (a).
- FIGS. 3A, 3B, and 3C are phase diagrams showing a state in which the probability of occurrence of the sway state is high with the vibration state quantity of the yaw rate and the vibration state quantity of the lateral acceleration as variables.
- the probability of occurrence of the sway state is high in the hatched region, behavior control for suppressing the sway state is executed when the amplitude of the yaw rate or the lateral angle is large.
- the probability of occurrence of the sway state is low, and behavior control for suppressing the sway state is not performed or is adjusted to be difficult to execute.
- FIG. 1 (A) of the vehicle 10 to a preferred embodiment of the apparatus for performing the detection and / or suppression behavior control of sway state of the combination vehicle according to the present invention is mounted schematically shown.
- the vehicle 10 is shown in the figure by an arbitrary type of full trailer type connected vehicle, that is, a tractor 10a having a pair of front wheels 12f and a pair of rear wheels 12r, and a connector 14a provided at the rear of the tractor 10a.
- a pair of wheels 16 d having a pair of wheels 12 d pivotably connected in the direction of the arrow, and a pair of pivot pins connected in the direction of the arrow in the figure by a connecting pin 14 b provided on the top of the dolly 16.
- a trailer 10b having a plurality of wheels 12t having a plurality of wheels 12t.
- the vehicle is illustrated as a full trailer type truck as an example.
- the tractor and the trailer are connected to each other so that the sway state is generated.
- the present invention may be applied to any type of truck (which may be a semi-trailer type or a model without a dolly), a bus, a passenger vehicle that pulls a trailer, and such a case also belongs to the scope of the present invention. That should be understood.
- the braking of each wheel of the tractor 10a of the connected vehicle 10 is performed by a braking system device 40 that can independently control the braking force of each wheel, as schematically shown in FIG.
- the braking system device 40 is typically an electronically controlled pneumatic braking system device, an air / hydraulic (combined) braking system device or a hydraulic braking system device, and the front wheel of the tractor 10a.
- a fluid pressure circuit 46 is provided for adjusting the brake pressure in the wheel cylinders 42fl, fr, rl, rr equipped on the 12fl, fr and the rear wheels 12rl, rr, that is, the braking force of each wheel of the tractor.
- the wheel cylinder of each wheel is selectively transferred to an air compressor, an air tank, a braking force booster, an oil pump, an oil reservoir, etc. (not shown) in a normal manner.
- Various valves (a modulator, a fluid pressure holding valve, a pressure reducing valve, etc.) that communicate with each other are provided, and in a normal braking operation, a brake valve (or master cylinder) 45 in response to the depression of the brake pedal 44 by the driver.
- a braking system device for braking each wheel of the dolly 16 and the trailer 10b may be provided.
- the brake system of the dolly 16 and the trailer 10b is, for example, a brake pressure in the wheel cylinders 42dl, dr, tl, tr mounted on the dolly wheels 12dl, 12dr, the trailer wheels 12tl, tr, that is, a brake for each trailer wheel.
- Each wheel includes a fluid pressure circuit 46t for adjusting power, and selectively applies the fluid pressure from the fluid pressure circuit 46 of the tractor 10a to the wheel cylinders 42dl, dr, tl, tr based on the command of the electronic control unit 50. The braking force is adjusted.
- the braking system devices for the dolly 16 and the trailer 10b may be electromagnetic or inertial braking systems.
- the electronic control unit 50 may include a microcomputer having a CPU, a ROM, a RAM, and an input / output port unit connected to each other by a bidirectional common bus and a driving circuit.
- Brake pedal depression amount ⁇ b from a given depression amount sensor (not shown), wheel speed Vwi from a wheel speed sensor (not shown) provided for each wheel, and in the wheel cylinder of each wheel from a wheel cylinder pressure sensor
- the detected values such as the pressure Pbi, the lateral G sensor provided in the tractor, the lateral acceleration Gy from the yaw rate sensor 60, and the tractor yaw rate ⁇ are input.
- various detection signals representing various parameter values necessary for various controls to be executed in the vehicle of the present embodiment, such as longitudinal acceleration, may be input.
- the brake pedal depression amount sensor and the wheel cylinder pressure sensor for each wheel may not be provided.
- FIG. 1C shows the sway state detection / suppression behavior control device of the present invention incorporated in the electronic control device 50 in the form of a block diagram.
- the sway state detection / suppression behavior control device of the present invention in brief, each of the lateral acceleration Gy detected by the lateral G sensor and the yaw rate ⁇ detected by the yaw rate sensor.
- the vibration state quantity (vibration state quantity calculation unit 50d) of ⁇ is compared (comparison / determination unit 50e), and based on the comparison result, the amplitude (amplitude detection) detected from the component obtained by passing through the BPF 50b of yaw rate ⁇
- the section 50f) is large, it is determined whether or not a sway state has occurred (see notes 1 and 2 below).
- the sway state is determined.
- the target deceleration (braking force) or anti-yaw moment (yaw moment generated in the opposite phase to the yaw rate vibration) for suppression is determined (sway suppression behavior control unit 50h), and the target deceleration or anti-yaw moment is determined.
- the braking force distribution is determined (braking force control unit 50i), and a control command is given to each braking device 46 (or 46t).
- the above-described units 50a to 50i are realized by processing operations of the CPU and other elements according to a program stored in advance in a storage device such as a memory in the electronic control unit 50. .
- a component of the vehicle body slip angular velocity ⁇ ′ may be used instead of the component of the lateral acceleration Gy.
- FIG. 2A illustrates the principle of the apparatus due to various factors such as sudden steering, excessive vehicle speed, crosswind, or imbalance in load distribution while the coupled vehicle 10 is traveling as illustrated in FIG.
- the trailer 10b and the dolly 16 may swing or vibrate like a pendulum in the yaw direction with the coupler 14a of the tractor 10a as a fulcrum (sway vibration).
- sway vibration of the trailer causes coupled vibration of the tractor 10a, the amplitudes of the yaw rate ⁇ and the lateral acceleration Gy (or the vehicle body slip angular velocity ⁇ ′) of the tractor 10a are increased, and the stability of the vehicle is deteriorated. .
- the amplitude of the sway vibration frequency band component of the tractor yaw rate ⁇ or lateral acceleration Gy (or vehicle body slip angular velocity ⁇ ′) is monitored, and the amplitude increases.
- a sway state a state in which sway vibration is occurring
- the vehicle is decelerated, or the tractor yaw rate or lateral acceleration Gy (or vehicle body slip angular velocity ⁇ ′) is suppressed in a direction to suppress vibration ( That is, the sway state is suppressed by the generation of the yaw moment (in the opposite phase) (see cited document 2).
- the amplitude of the sway vibration frequency band component of the yaw rate ⁇ or the lateral acceleration Gy (or the vehicle body slip angular velocity ⁇ ′) of the tractor is For example, even if the vehicle body rolls due to road disturbance or the like, it increases when the vehicle body rolls. For example, simply monitoring the amplitude of the yaw rate ⁇ or the lateral acceleration Gy (or the vehicle body slip angular velocity ⁇ ′) makes an erroneous determination. Without it, it was found difficult to detect the occurrence of a sway condition.
- the frequency band of the sway vibration of the tractor yaw rate ⁇ and the lateral acceleration Gy (or the vehicle body slip angular velocity ⁇ ′).
- the vibration speed of the component i.e., frequency, vibration period, etc.
- the vehicle is rolling rather than sway vibration.
- the amplitudes of the yaw rate ⁇ and the lateral acceleration Gy or the vehicle body slip angular velocity ⁇ ′ of the tractor can be increased, but the vibration speeds of the yaw rate ⁇ and the lateral acceleration Gy (or the vehicle body slip angular velocity ⁇ ′) are different from each other (FIG. 2).
- the behavior control for detecting whether or not the sway state of the operation trailer of the apparatus is generated and for suppressing the sway state may be roughly divided into the following processes.
- (Iii) Behavior Control for Sway State Suppression Each process will be described in detail below.
- the vibration state quantity calculation unit measures a time interval in which the value of the input component passes through 0 point, that is, a half cycle of vibration, and outputs the value. Then, when sway vibration is occurring, the vibration period of the lateral acceleration Gy (or the vehicle body slip angular velocity ⁇ ′) and the vibration period of the yaw rate ⁇ are substantially equal as illustrated in FIG.
- the vibration state quantity calculation unit When the number of vibrations within a predetermined time is used as the vibration state quantity, first, similarly to the above, the lateral acceleration value Gy (or the vehicle body slip angular velocity value ⁇ ′) and the yaw rate value ⁇ are respectively passed through the BPFs 50a and 50b. Sway vibration frequency band components are extracted, and the extracted components are given to the vibration state quantity calculation units 50c and 50d, respectively. In the vibration state quantity calculation unit, the cumulative number when the value of the input component exceeds a predetermined threshold (that is, the cumulative number of occurrences of large amplitude) is counted and the cumulative number is output (the cumulative number) Is reset when the value of the component input over a predetermined time does not exceed a predetermined threshold value).
- a predetermined threshold that is, the cumulative number of occurrences of large amplitude
- the vibration state quantities of the yaw rate ⁇ and the lateral acceleration Gy (or the vehicle body slip angular velocity ⁇ ′), that is, the vibration period or frequency are calculated, those values are given to the comparison determination unit 50e.
- the deviation of the vibration state quantity is inspected, and the high possibility of occurrence of the sway state is determined. Specifically, when any of the following conditions is satisfied, it may be determined that the possibility of occurrence of the sway state is high.
- the ratio between the vibration state quantity S ( ⁇ ) of the yaw rate ⁇ and the vibration state quantity S (Gy) of the lateral acceleration Gy (or the vibration state quantity S ( ⁇ ′) of the vehicle body slip angular velocity ⁇ ′) is a predetermined value including 1.
- Spb-Spt that is, Spb ⁇ S ( ⁇ ) / S (Gy) ⁇ Spt (3)
- the conditions (a) to (c) described above are the vibration state quantity S ( ⁇ ) of the yaw rate ⁇ and the vibration state quantity S (Gy) of the lateral acceleration Gy (or the vibration state of the vehicle body slip angular velocity ⁇ ′. This is a condition for determining that the amount S ( ⁇ ′)) is not substantially different.
- the comparison / determination unit 50e which of the above conditions (a) to (c) is to be adopted may be appropriately selected by the designer, and either case belongs to the present invention.
- Each value, Sdo, Spb, Spt is set experimentally or theoretically according to the type and specification of the vehicle.
- the amplitude detection unit 50f instructs execution of behavior control for suppressing the sway state only when a signal indicating that the possibility of occurrence of the sway state is high is issued from the comparison determination unit 50e, or
- the comparison determination unit 50e may be configured to make it difficult to execute the behavior control for suppressing the sway state when a signal indicating that the possibility of the occurrence of the sway state is high is not issued.
- the yaw rate value ⁇ obtained from the yaw rate sensor is passed through the BPF 50b, whereby the frequency band component of the yaw rate sway vibration is extracted and input to the amplitude detecting unit 50f.
- the amplitude detection unit 50f includes a counter that counts the number of times that the magnitude of the input yaw rate component exceeds a predetermined threshold within a predetermined time (that is, the number of occurrences of large amplitude). When the predetermined number of times is reached, that is, when the amplitude of the yaw rate component increases over a predetermined period, a signal indicating the fact is generated.
- behavior control for suppression of the sway state is executed as will be described later.
- the behavior control for suppressing the sway state is executed only when a signal indicating that the possibility of the occurrence of the sway state is high is issued from the comparison determination unit 50e, the amplitude detection unit 50f The increase in the amplitude of the yaw rate component may be detected only when a signal indicating that the possibility is high is received.
- the amplitude detection unit 50f may be changed depending on the presence / absence of a signal indicating that there is a high possibility. That is, when a signal indicating that the possibility of occurrence of a sway state is high is received, the above-mentioned “predetermined threshold” and / or “predetermined number of times” are set lower than when such a signal is not received.
- the comparison determination unit 50e determines that the possibility of occurrence of the sway state is high, the yaw rate component of the frequency band of the sway vibration is more quickly (before the amplitude of the yaw rate component becomes considerably large). An increase in amplitude is detected. Note that when the sway state of the trailer occurs, the amplitude of the lateral acceleration or the vehicle body slip angular velocity also increases. Therefore, instead of detecting the increase in the yaw rate amplitude, the increase in the amplitude of the lateral acceleration Gy or the vehicle body slip angular velocity ⁇ ′ is detected. It may be like this.
- the sway suppression behavior control unit 50h executes behavior control for sway suppression in response to a signal indicating an increase in the yaw rate amplitude from the amplitude detection unit 50f. (However, it is not executed when the vehicle speed is lower than the predetermined speed.) Specifically, the behavior control for suppressing the sway state may be executed by deceleration of the vehicle and / or generation of an anti-yaw moment.
- the sway suppression behavior control unit 50h receives the signal indicating the increase in the yaw rate amplitude from the amplitude detection unit 50f, and then applies the braking force to each wheel to the braking force control unit 50i. Or an accompanying instruction to reduce the engine output (reducing the throttle opening) to the vehicle engine control device (not shown). Such deceleration processing may be continued until the signal indicating the increase in the amplitude of the yaw rate from the amplitude detector disappears.
- the sway suppression behavior control unit 50h When the sway state suppression is executed by the generation of the anti-yaw moment, when the sway suppression behavior control unit 50h receives a signal indicating an increase in the yaw rate amplitude from the amplitude detection unit 50f, the sway suppression behavior control unit 50h converts the sway vibration frequency band component of the yaw rate value ⁇ . Referring to this, a target yaw moment having a phase opposite to that of the component is calculated, and the value is transmitted to the braking force control unit 50i. The braking force control unit 50i determines the braking force distribution of each wheel to achieve the received target yaw moment, and gives a control command to the braking device 46 (or 46t) according to the determined braking force distribution.
- a yaw moment is generated. (The generated anti-yaw moment is also oscillatory.) Such generation of the anti-yaw moment may be continued until the signal indicating the increase in the amplitude of the yaw rate from the amplitude detector disappears.
- the vibration state quantity calculation unit calculates the vibration state quantity based on the vibration state quantity. Therefore, when the number of vibrations reaches a predetermined number, it may be determined that the amplitude of those values has increased. Therefore, in this case, the sway suppression control may be executed when the comparison determination unit 50e issues a signal (in this case, the vibration detection unit 50f is omitted).
- condition for determining the vibration state quantity illustrated in the phase diagram in FIG. 3 (the shape of the phase diagram in FIG. 3) is not limited to the illustrated example, and other conditions may be used. It should be understood that such a case also belongs to the scope of the present invention.
- the most important feature of the present invention is that when the speed or frequency of yaw rate vibration is substantially equal to the speed or frequency of vibration of lateral acceleration or vehicle body slip angular velocity, it is determined that the possibility of occurrence of a sway condition is high.
- the speed of the yaw rate vibration may be a method different from that exemplified in the embodiment. Belongs to the range.
- the determination of the occurrence of the sway state or the control of the sway state suppression behavior is performed based on the homology between the frequency distribution (spectrum) of the yaw rate in the sway vibration frequency band component and the lateral acceleration or the vehicle body slip angular velocity frequency distribution. Good.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Regulating Braking Force (AREA)
Abstract
トラクタとトレーラとを含む連結車両のスウェイ状態の発生時には、ヨーレートと横加速度又は車体スリップ角速度の振動の速さが略等しく、スウェイ状態の非発生時には、ヨーレートと横加速度又は車体スリップ角速度の振動の速さが実質的に異なるとの知見を用いたスウェイ状態検出装置又は挙動制御装置が提供される。本発明の装置は、トラクタのヨーレートの振動状態量とトラクタの横加速度又は車体スリップ角速度の振動状態量との関係に基づいて、連結車両のトレーラのスウェイ状態と路面外乱等に起因する車体の横揺れとを区別しながら、適切に且つできるだけ早期にスウェイ状態が発生しているか否かの判定又はスウェイ状態抑制のための挙動制御を実行する。
Description
本発明は、自動車等の車両の挙動制御に係り、より詳細には、トラクタがトレーラを牽引する形式の連結車両に於けるスウェイ状態(スネーキング運動、トレーラの振り子運動とも称される。)の検出を行う装置並びにそのようなスウェイ状態の抑制並びに車両挙動安定化のための挙動制御装置に係る。
フルトレーラ又はセミトレーラの形式の連結車両では、一般に、トラクタに牽引されるトレーラが、トラクタの後部に設けられたピン又はカプラにより枢動可能に連結されている。このような形式の連結車両の走行中に於いて、急操舵、車速過大、横風或いは積載物の配分の不均衡等の種々の要因により、トレーラの「スウェイ状態」、即ち、トレーラがトラクタに対してピン又はカプラ(枢動軸)周りにヨー方向に揺動又は振動した状態、が惹起されることがある(図2(A)参照)。かかるトレーラのスウェイ状態が発生すると、トラクタもヨー方向に振動することとなり、車両挙動が不安定となる。そこで、そのようなスウェイ状態の抑制のための車両挙動安定化制御装置が種々提案され、実用化されている。例えば、特許文献1に於いては、トラクタとトレーラとの連結角(ヒッチ角)が所定角度に達するとトレーラブレーキを作動し、これにより、トレーラの制動力によってトレーラに於いてヒッチ角を低減する方向にヨーモーメントを発生する制御装置が開示されている。また、特許文献2は、スウェイ状態に於ける周波数帯域のヨーレート、車両の横加速度の大きさが所定値に達したか否かを監視することによりにスウェイ状態の発生を検出すること、そして、制動力配分制御によりヨーレート及び/又は横加速度の位相と逆位相のヨーモーメントを生成することによりスウェイ状態を抑制することを開示している。
特開平10-236289号公報
国際公開2001/002227
従前のスウェイ状態抑制制御に於ける連結車両のスウェイ状態の検出は、車両の揺れの大きさ及び頻度が反映される物理特性値(ヨーレート、横加速度)のスウェイ振動帯域の成分の大きさに基づいて為されている。具体的には、例えば、特許文献1の如くヒッチ角が所定角度に達したとき、或いは、特許文献2の如くヨーレート又は横加速度の所定周波数帯域の所定時間に於ける絶対値が所定値に到達したとき、スウェイ状態の発生が判定され、スウェイ状態抑制制御が開始される。しかしながら、ヨーレートや横加速度などの物理特性値に於いて、スウェイ振動が発生しなくても、路面外乱等に起因して車体が揺れるだけでスウェイ振動帯域の成分の振幅が増大し、このことにより、誤ってスウェイ状態が発生したとの検出が為されることがある。そこで、スウェイ状態抑制制御の作動が不要に又は時期尚早に開始されることを回避するために、スウェイ状態の発生判定のためのヨーレート若しくは横加速度の振幅の閾値を高くしたり、スウェイ状態抑制制御作動開始までのヨーレート若しくは横加速度の振幅の閾値を超える回数(所定回数)を増大するなどの措置が取られるが、その場合、スウェイ状態抑制制御作動開始が遅れることと成り得る。
かくして、本発明の一つの課題は、路面外乱等に起因する車体の横揺れとトレーラのスウェイ状態とを区別して判定し、これにより、適切に且つできるだけ早期にスウェイ状態抑制制御を作動開始できるようにすることである。
この点に関し、本発明の発明者の開発研究によれば、トレーラのスウェイ状態が発生したときには、ヨーレートの振動状態(振動の頻度、周波数、周期など)と横加速度又は車体スリップ角速度の振動状態が略同じとなるのに対し、トレーラのスウェイ状態が発生しておらず路面外乱等により単に車体の横揺れが発生したときには、ヨーレートの振動状態と横加速度又は車体スリップ角速度の振動状態とが相異することが見出された。そこで、本発明に於いては、かかる知見を利用して、適確に且つ迅速にトレーラのスウェイ状態の発生の検出及び/又はスウェイ状態を抑制する挙動制御の実行が試みられる。
従って、本発明のもう一つの課題は、上記の知見を利用して、連結車両のスウェイ状態検出装置或いは連結車両の挙動制御装置を提供することである。
上記の課題を解決すべく、本発明によれば、トラクタと該トラクタにより牽引されるトレーラとを含む連結車両のスウェイ状態検出装置であって、トラクタのヨーレートの振動状態量とトラクタの横加速度又は車体スリップ角速度の振動状態量との関係に基づいてスウェイ状態が発生しているか否かを判定する装置が提供される。ここに於いて、「振動状態量」とは、各々の物理量の振動の速さを表す任意の指標値であってよい。既に触れた如く、連結車両のスウェイ状態の有無は、ヨーレートの振動状態と、横加速度又は車体スリップ角速度の振動状態との関係に反映されることが見出されている。そこで、本発明の装置では、かかる知見に従い、スウェイ状態の検出をトラクタのヨーレートの振動状態量とトラクタの横加速度又は車体スリップ角速度の振動状態量との関係に基づいて行い、より正確に且つより迅速に、路面外乱等に起因する車体の横揺れとトレーラのスウェイ状態とを区別して、スウェイ状態の発生を捉えることが試みられる。なお、上記の本発明の発明者の知見によれば、トレーラのスウェイ振動の周波数帯域に於けるヨーレートの振動状態と横加速度又は車体スリップ角速度の振動状態とが相異するときには、スウェイ状態が発生していない可能性が高いことが見出されている。従って、上記の装置は、トレーラのスウェイ振動の周波数帯域に於けるトラクタのヨーレートの成分の振動状態量とトラクタの横加速度又は車体スリップ角速度の成分の振動状態量とが実質的に異なるときには、スウェイ状態が発生していないと判定するよう構成されていてよい(「実質的に異なる」とは、二つの振動状態量に於いて有意な差があることを意味する。)。即ち、本発明のスウェイ状態検出装置は、トレーラのスウェイ振動の周波数帯域に於けるトラクタのヨーレートの成分の振動状態量とトラクタの横加速度又は車体スリップ角速度の成分の振動状態量とが略等しいときには、スウェイ状態が発生した可能性が高いと判定するよう構成されていてよい。
本発明の装置の一つの実施の態様に於いて、上記の「振動状態量」は、対応する物理量の振動周期であってよい。従って、上記の装置は、トラクタのヨーレートの振動周期とトラクタの横加速度又は車体スリップ角速度の振動周期とが略等しいか否かによって、例えば、これらの振動周期の差又は比に基づいてスウェイ状態が発生しているか否かを判定するよう構成されていてよい。この場合、トラクタのヨーレート又は横加速度若しくは車体スリップ角速度の振幅が大きくなったとしても、これらの振動周期の差の大きさが所定値に達したとき、或いは、振動周期の比が1の近傍にて定められる所定の範囲から逸脱したときには、スウェイ状態が発生していない、或いは、スウェイ状態発生の確率が低いと判定されるようになっていてよい。
また、別の実施の態様に於いて、上記の「振動状態量」は、対応する物理量の所定の大きさを超える振動回数であってよい。従って、上記の装置は、所定時間に於けるトラクタのヨーレートの振動回数とトラクタの横加速度又は車体スリップ角速度の振動回数との差又は比に基づいてスウェイ状態が発生しているか否かを判定するよう構成されていてよい。この場合、トラクタのヨーレート又は横加速度若しくは車体スリップ角速度の振幅が大きくなったとしても、これらの所定時間に於ける所定の大きさを超える振動の回数の差の大きさが所定の大きさに達したとき、或いは、所定時間に於ける振動の回数の比が1の近傍にて定められる所定の範囲から逸脱したときには、スウェイ状態が発生していない、或いは、スウェイ状態発生の確率が低いと判定されるようになっていてよい。
かくして、上記の本発明の一連の実施形態に於いては、装置は、トレーラのスウェイ振動の周波数帯域に於けるトラクタのヨーレートの成分の振動状態量と、トレーラのスウェイ振動の周波数帯域に於けるトラクタの横加速度又は車体スリップ角速度の成分の振動状態量との差又は比が所定範囲内にあり、且つ、トレーラのスウェイ振動の周波数帯域に於けるトラクタのヨーレート又は横加速度若しくは車体スリップ角速度の成分の振幅が所定値より大きい状態が所定時間継続したときにスウェイ状態が発生していると判定するよう構成されていてよい。ここで、「所定の範囲」とは、振動状態量の差又は比がその範囲にあれば、ヨーレート及びトラクタの横加速度若しくは車体スリップ角速度の振動状態量に於いて有意な差異がないと判断される範囲に定められる。かかる構成によれば、トレーラのスウェイ振動の周波数帯域に於けるトラクタのヨーレート又は横加速度若しくは車体スリップ角速度の成分の振幅が所定値より大きい状態が所定時間継続し、従前ではスウェイ状態の発生が疑われる場合であっても、かかるヨーレート又は横加速度若しくは車体スリップ角速度の大きな振幅が、路面外乱等に起因する車体の横揺れによるものか、トレーラのスウェイ状態の発生によるものかを精度よく見分けることが可能となる。
また、上記の知見、即ち、スウェイ状態の発生時には、トラクタのヨーレートの振動状態量とトラクタの横加速度又は車体スリップ角速度の振動状態量とが略等しいが、車両が単に横揺れしているだけのときには、トラクタのヨーレートの振動状態量とトラクタの横加速度又は車体スリップ角速度の振動状態量とが異なるとの知見を用いて、連結車両の挙動制御が実行されるようになっていてよい。従って、本発明によれば、更に、トラクタと該トラクタにより牽引されるトレーラとを含む連結車両の挙動制御装置であって、トラクタのヨーレートの振動状態量とトラクタの横加速度又は車体スリップ角速度の振動状態量との関係に基づいてトラクタのヨーレートを減衰させる装置が提供される。トラクタのヨーレートの振動状態量とトラクタの横加速度又は車体スリップ角速度の振動状態量との関係に基づいてヨーレートの減衰制御が実行されることによれば、スウェイ状態の発生の有無に応じて適切に挙動制御を実行することが可能となる。
なお、かかる本発明の挙動制御に於けるトラクタのヨーレートの減衰は、基本的には、スウェイ状態が発生したときに実行される。従って、上記の挙動制御装置は、一つの態様にとして、トレーラのスウェイ振動の周波数帯域に於けるトラクタのヨーレートの成分の振動状態量と、トレーラのスウェイ振動の周波数帯域に於けるトラクタの横加速度又は車体スリップ角速度の成分の振動状態量との差又は比が所定範囲内にあり、且つ、トレーラのスウェイ振動の周波数帯域に於けるトラクタのヨーレート又は横加速度若しくは車体スリップ角速度の成分の振幅が所定値より大きい状態が所定時間継続したときにトラクタのヨーレートの減衰を実行するようになっていてよい。また、別の態様として、上記の挙動制御装置は、トレーラのスウェイ振動の周波数帯域に於けるトラクタのヨーレートの成分の振動状態量と、トレーラのスウェイ振動の周波数帯域に於けるトラクタの横加速度若しくは車体スリップ角速度の成分の振動状態量との差の大きさが所定の大きさより大きいとき、前記の差の大きさが前記の所定の大きさより小さいときに比して、トラクタのヨーレートの減衰制御が実行されにくくなっているか、トレーラのスウェイ振動の周波数帯域に於けるトラクタのヨーレートの成分の振動状態量と、トレーラのスウェイ振動の周波数帯域に於けるトラクタの横加速度若しくは車体スリップ角速度の成分の振動状態量との比が所定の範囲内にないとき、前記の比が前記の所定の範囲内にあるときに比して、トラクタのヨーレートの減衰制御が実行されにくくなっているように構成されていてもよい。
ヨーレートの減衰制御は、例えば、トラクタ及びトレーラのうちの少なくとも一方に於いてトラクタとトレーラとのヨーレートの大きさが低減する方向にヨーモーメント(アンチモーメント)が発生するようトラクタ及びトレーラのうちの少なくとも一方の車輪の制駆動力を制御することにより行われるか、車両の減速により行われるようになっていてよい。
かくして、上記の本発明の装置によれば、ヨーレートの振動状態と横加速度又は車体スリップ角速度の振動状態との関係を参照しながら、路面外乱等に起因する車体の横揺れとトレーラのスウェイ状態とを区別することにより、より精度のよいスウェイ状態の発生の検出及び/又はスウェイ状態の抑制のための挙動制御が可能となる。かかる本発明の装置によれば、スウェイ状態発生の誤判定を防止することができるとともに、スウェイ状態抑制制御の不要な又は時期尚早の実行の回避のための措置に起因した制御開始の遅れも解消され、連結車両の挙動安定性・安全性が改善されることが期待される。また、本発明の装置によれば、スウェイ状態の発生は、専用のセンサ手段(例えば、連結ピンのヒッチ角を検出するセンサなど)を用いずに、通常の挙動制御装置の作動のために使用されるセンサ群から検出されるパラメータを用いて検出されるので、コストの増大が抑えられる点で有利である。
本発明のその他の目的及び利点は、以下に於いて、部分的に明らかになり、指摘される。
10…車両
10a…トラクタ
10b…トレーラ
12fl、fr…トラクタ前輪
12rl、rr…トラクタ後輪
12dl、dr…ドーリ車輪
12tl、tr…トレーラ車輪
16…ドーリ
14a、14b…連結ピン
40…制動系装置
42fl、fr、rl、rr、tl、tr…ホイールシリンダ
44…ブレーキペダル
45…ブレーキバルブ又はマスタシリンダ
46…制動装置(トラクタ)
46t…制動装置(トレーラ)
50…電子制御装置
60…横加減速度センサ、ヨーレートセンサ(トラクタ)
10a…トラクタ
10b…トレーラ
12fl、fr…トラクタ前輪
12rl、rr…トラクタ後輪
12dl、dr…ドーリ車輪
12tl、tr…トレーラ車輪
16…ドーリ
14a、14b…連結ピン
40…制動系装置
42fl、fr、rl、rr、tl、tr…ホイールシリンダ
44…ブレーキペダル
45…ブレーキバルブ又はマスタシリンダ
46…制動装置(トラクタ)
46t…制動装置(トレーラ)
50…電子制御装置
60…横加減速度センサ、ヨーレートセンサ(トラクタ)
以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。図中、同一の符号は、同一の部位を示す。
装置の構成
図1(A)は、本発明による連結車両のスウェイ状態の検出及び/又は抑制挙動制御を実行する装置の好ましい実施形態が搭載される車両10を概略的に示している。車両10は、例えば、任意の形式のフルトレーラ型の連結車両、即ち、一対の前輪12f及び一対の後輪12rを有するトラクタ10aと、トラクタ10aの後部に設けられた連結器14aにて図中の矢印の方向に枢動可能に連結された一対の車輪12dを有するドーリ16と、ドーリ16の上部に設けられた連結ピン14bにて図中の矢印の方向に枢動可能に連結された一対の車輪12tを有するトレーラ10bとから成る連結車両であってよい。なお、図では、車両は、一つの例として、フルトレーラ型のトラックとして描かれているが、本発明の装置は、トラクタとトレーラとが互い枢動可能に連結され、従って、スウェイ状態が発生し得る任意の形式のトラック(セミトレーラ型又はドーリのない型式であってもよい。)、バス、トレーラを牽引する乗用車等の車両に適用されてよく、そのような場合も本発明の範囲に属することは理解されるべきである。
図1(A)は、本発明による連結車両のスウェイ状態の検出及び/又は抑制挙動制御を実行する装置の好ましい実施形態が搭載される車両10を概略的に示している。車両10は、例えば、任意の形式のフルトレーラ型の連結車両、即ち、一対の前輪12f及び一対の後輪12rを有するトラクタ10aと、トラクタ10aの後部に設けられた連結器14aにて図中の矢印の方向に枢動可能に連結された一対の車輪12dを有するドーリ16と、ドーリ16の上部に設けられた連結ピン14bにて図中の矢印の方向に枢動可能に連結された一対の車輪12tを有するトレーラ10bとから成る連結車両であってよい。なお、図では、車両は、一つの例として、フルトレーラ型のトラックとして描かれているが、本発明の装置は、トラクタとトレーラとが互い枢動可能に連結され、従って、スウェイ状態が発生し得る任意の形式のトラック(セミトレーラ型又はドーリのない型式であってもよい。)、バス、トレーラを牽引する乗用車等の車両に適用されてよく、そのような場合も本発明の範囲に属することは理解されるべきである。
連結車両10のトラクタ10aの各輪の制動は、図1(B)に模式的に示されている如き、各輪の制動力を独立に制御することのできる制動系装置40により行われる。端的に述べれば、制動系装置40は、典型的には、電子制御式の空気圧式制動系装置、空気・油圧式(複合式)制動系装置又は油圧式制動系装置であり、トラクタ10aの前輪12fl、fr及び後輪12rl、rrに装備をされたホイールシリンダ42fl、fr、rl、rr内のブレーキ圧、即ち、トラクタ各輪の制動力、を調節する流体圧回路46を含む。トラクタ10aの流体圧回路46には、通常の態様にて、各輪のホイールシリンダを、選択的に、エアコンプレッサ、エアタンク、制動力倍力装置、オイルポンプ、オイルリザーバ等(図示せず)へ連通する種々の弁(モジュレータ、流体圧保持弁、減圧弁等)が設けられ、通常の制動作動に於いては、運転者によるブレーキペダル44の踏込みに応答してブレーキバルブ(又はマスタシリンダ)45が作動し、エアタンク、制動倍力装置又はマスタシリンダの圧力がそれぞれのホイールシリンダ42i(i=fl、fr、rl、rr、tl、tr 以下同様)へ供給され、各輪に一斉に制動力が発生される。しかしながら、ABS制御、VSC等の運動制御、本発明の挙動制御装置によるスウェイ状態を抑制するための制御(スウェイ抑制挙動制御)又はその他の任意の制動力配分制御を実行するべく、各輪の制動力を個別に又は独立に調節する場合には、電子制御装置50の指令に基づいて、前記の種々の弁が作動され、各輪のホイールシリンダ内のブレーキ圧がそれぞれの目標圧に合致するよう個別に制御される。
また、任意に、ドーリ16及びトレーラ10bの各輪を制動するための制動系装置が設けられていてよい。ドーリ16及びトレーラ10bの制動系装置は、例えば、ドーリ車輪12dl、12dr、トレーラ車輪12tl、trに装備をされたホイールシリンダ42dl、dr、tl、tr内のブレーキ圧、即ち、トレーラ各輪の制動力を調節する流体圧回路46tを含み、電子制御装置50の指令に基づいて、トラクタ10aの流体圧回路46からの流体圧を選択的にホイールシリンダ42dl、dr、tl、trへ与えて各輪の制動力が調節される。なお、ドーリ16及びトレーラ10bの制動系装置は、電磁式、慣性式の制動系装置であってもよい。
電子制御装置50は、通常の形式の、双方向コモン・バスにより相互に連結されたCPU、ROM、RAM及び入出力ポート装置を有するマイクロコンピュータ及び駆動回路を含んでいてよく、ブレーキペダル44に設けられた踏込量センサ(図示せず)からのブレーキペダル踏込量θb、各輪に設けられた車輪速センサ(図示せず)からの車輪速度Vwi、ホイールシリンダ圧力センサからの各輪のホイールシリンダ内の圧力Pbi、トラクタに設けられた横Gセンサ及びヨーレートセンサ60からの横加速度Gy、トラクタヨーレートγ等の検出値が入力される。なお、図示されているものの他、前後加速度等の本実施形態の車両に於いて実行されるべき各種制御に必要な種々のパラメータの値を表す各種検出信号が入力されてよい。(ブレーキペダル踏込量センサ及び各輪ホイールシリンダ圧力センサは設けられていなくてもよい。)
図1(C)は、電子制御装置50に組み込まれる本発明のスウェイ状態検出/抑制挙動制御装置をブロック図の形式にて表したものである。同図を参照して、本発明のスウェイ状態検出/抑制挙動制御装置に於いては、端的に述べれば、横Gセンサにより検出された横加速度Gy及びヨーレートセンサにより検出されたヨーレートγのそれぞれを、スウェイ振動の周波数帯域の信号を透過するバンドパスフィルター(BPF)50a、50bに通すことにより得られる成分の各々から算出される横加速度Gyの振動状態量(振動状態量算出部50c)とヨーレートγの振動状態量(振動状態量算出部50d)とが比較され(比較判定部50e)、その比較結果に基づいて、ヨーレートγのBPF50bに通すことにより得られる成分から検出される振幅(振幅検出部50f)が大きいときにスウェイ状態が発生しているか否かが判定される(下記注1、2参照)。そして、スウェイ状態が発生していると判定され、且つ、車速(各輪の車輪速値から任意の方法で決定されてよい。車速決定部50g)が所定速度を超えているとき、スウェイ状態を抑制するための目標減速度(制動力)又はアンチヨーモーメント(ヨーレートの振動に対して逆位相に発生するヨーモーメント)が決定され(スウェイ抑制挙動制御部50h)、目標減速度又はアンチヨーモーメントを達成すべく、制動力配分が決定されて(制動力制御部50i)、各制動装置46(又は46t)に制御指令が与えられる。なお、上記の各部50a~iは、電子制御装置50内のメモリ等の記憶装置に予め記憶されたプログラムに従ったCPU及びその他の要素の処理作動により実現されることは理解されるべきである。
(注1)スウェイ振動の周波数帯域は、積載物の重量及び配置、車速、加減速度等により変化する(通常、0.1~2Hz)。従って、BPFの透過帯域は、発生する可能性のある周波数を網羅するよう設定されてよい。
(注2)スウェイ状態発生の検出に於いて、横加速度Gyの成分に代えて、車体スリップ角速度β’の成分が用いられてよい。車体スリップ角速度β’は、β’=Gy/V-γにより算出される。
(注1)スウェイ振動の周波数帯域は、積載物の重量及び配置、車速、加減速度等により変化する(通常、0.1~2Hz)。従って、BPFの透過帯域は、発生する可能性のある周波数を網羅するよう設定されてよい。
(注2)スウェイ状態発生の検出に於いて、横加速度Gyの成分に代えて、車体スリップ角速度β’の成分が用いられてよい。車体スリップ角速度β’は、β’=Gy/V-γにより算出される。
装置の原理
図1(A)に例示されている如き連結車両10の走行中、急操舵、車速過大、横風或いは積載物の配分の不均衡等の種々の要因によって、図2(A)に例示されている如く、トレーラ10b及びドーリ16が、トラクタ10aの連結器14aを支点として、ヨー方向に振り子の如く揺動若しくは振動する状態となる場合がある(スウェイ振動)。かかるトレーラのスウェイ振動は、トラクタ10aの連成振動を惹起し、トラクタ10aのヨーレートγと横加速度Gy(若しくは車体スリップ角速度β’)の振幅が増大し、車両の安定性が悪化することとなる。そこで、一般に、スウェイ状態抑制挙動制御装置に於いては、トラクタのヨーレートγ又は横加速度Gy(若しくは車体スリップ角速度β’)のスウェイ振動の周波数帯域の成分の振幅を監視し、かかる振幅が増大したときには、スウェイ状態(スウェイ振動が起きている状態)が発生したと判断し、車両の減速、或いは、トラクタのヨーレート又は横加速度Gy(若しくは車体スリップ角速度β’)の振動を抑制する方向への(即ち、逆位相に)ヨーモーメントの発生により、スウェイ状態の抑制が図られる(引用文献2参照)。
図1(A)に例示されている如き連結車両10の走行中、急操舵、車速過大、横風或いは積載物の配分の不均衡等の種々の要因によって、図2(A)に例示されている如く、トレーラ10b及びドーリ16が、トラクタ10aの連結器14aを支点として、ヨー方向に振り子の如く揺動若しくは振動する状態となる場合がある(スウェイ振動)。かかるトレーラのスウェイ振動は、トラクタ10aの連成振動を惹起し、トラクタ10aのヨーレートγと横加速度Gy(若しくは車体スリップ角速度β’)の振幅が増大し、車両の安定性が悪化することとなる。そこで、一般に、スウェイ状態抑制挙動制御装置に於いては、トラクタのヨーレートγ又は横加速度Gy(若しくは車体スリップ角速度β’)のスウェイ振動の周波数帯域の成分の振幅を監視し、かかる振幅が増大したときには、スウェイ状態(スウェイ振動が起きている状態)が発生したと判断し、車両の減速、或いは、トラクタのヨーレート又は横加速度Gy(若しくは車体スリップ角速度β’)の振動を抑制する方向への(即ち、逆位相に)ヨーモーメントの発生により、スウェイ状態の抑制が図られる(引用文献2参照)。
しかしながら、かかるスウェイ状態の検出に関し、本発明の発明者の研究によれば、トラクタのヨーレートγ又は横加速度Gy(若しくは車体スリップ角速度β’)のスウェイ振動の周波数帯域の成分の振幅は、スウェイ状態が発生していなくても、例えば、路面外乱等により車体が横揺れした場合にも増大するので、ヨーレートγ又は横加速度Gy(若しくは車体スリップ角速度β’)の振幅を監視するだけでは、誤判定することなく、スウェイ状態の発生を検知することが困難であることが見出された。また、更なる本発明の発明者の研究によれば、スウェイ状態の発生している車両に於いては、トラクタのヨーレートγと横加速度Gy(若しくは車体スリップ角速度β’)のスウェイ振動の周波数帯域の成分の振動の速さ、即ち、振動数、振動周期等が略等しくなるのに対し(図2(B)a参照)、車両に於いてスウェイ振動ではない横揺れが起きている場合には、トラクタのヨーレートγと横加速度Gy若しくは車体スリップ角速度β’の振幅は増大し得るが、ヨーレートγと横加速度Gy(若しくは車体スリップ角速度β’)の振動の速さは互いに相異する(図2(C)a参照)ことが見出された。そこで、本発明に於いては、かかる知見を利用して、ヨーレートγと横加速度Gy(若しくは車体スリップ角速度β’)の振動の速さを表す指標値(振動状態量)との関係に基づいて、トレーラのスウェイ状態の発生の有無の検出及び/又はスウェイ状態の抑制のための挙動制御を実行することが試みられる。
装置の作動
トレーラのスウェイ状態の発生の有無の検出及びスウェイ状態の抑制のための挙動制御は、大別すると、次の処理から構成されてよい。
(i)ヨーレートγと横加速度Gy又は車体スリップ角速度β’の振動状態量の算出と比較
(ii)スウェイ状態発生の判定(ヨーレートの振幅検出)
(iii)スウェイ状態抑制のための挙動制御
各処理は、以下に於いて詳細に説明される。
トレーラのスウェイ状態の発生の有無の検出及びスウェイ状態の抑制のための挙動制御は、大別すると、次の処理から構成されてよい。
(i)ヨーレートγと横加速度Gy又は車体スリップ角速度β’の振動状態量の算出と比較
(ii)スウェイ状態発生の判定(ヨーレートの振幅検出)
(iii)スウェイ状態抑制のための挙動制御
各処理は、以下に於いて詳細に説明される。
(i)ヨーレートγと横加速度Gy(又は車体スリップ角速度β’)の振動状態量の算出と比較
上記の如く、スウェイ振動の周波数帯域に於けるヨーレートγの振動の速さと横加速度Gy若しくは車体スリップ角速度β’の振動の速さとが略一致しているとき、トレーラのスウェイ状態が発生している可能性が高い(図2(B)a参照)。そこで、本発明の装置では、ヨーレート値γと横加速度値Gy(若しくは車体スリップ角速度値β’)からスウェイ振動の周波数帯域に於ける各々の振動の速さを表す振動状態量が算出及び比較され、トレーラのスウェイ状態の発生の可能性が高いか否かが判定される。振動状態量としては、各々の成分の振動周期又は所定時間内の振動回数が用いられてよい。
上記の如く、スウェイ振動の周波数帯域に於けるヨーレートγの振動の速さと横加速度Gy若しくは車体スリップ角速度β’の振動の速さとが略一致しているとき、トレーラのスウェイ状態が発生している可能性が高い(図2(B)a参照)。そこで、本発明の装置では、ヨーレート値γと横加速度値Gy(若しくは車体スリップ角速度値β’)からスウェイ振動の周波数帯域に於ける各々の振動の速さを表す振動状態量が算出及び比較され、トレーラのスウェイ状態の発生の可能性が高いか否かが判定される。振動状態量としては、各々の成分の振動周期又は所定時間内の振動回数が用いられてよい。
振動状態量として振動周期を用いる場合、まず、横加速度値Gy(若しくは車体スリップ角速度値β’)とヨーレート値γは、それぞれ、BPF50a、50bに通され、各々のスウェイ振動の周波数帯域成分が抽出され、抽出された成分は、それぞれ、振動状態量算出部50c、50dに与えられる。振動状態量算出部では、入力された成分の値が0点を通過する時間間隔、即ち、振動の半周期が計測され、その値が出力される。そうすると、スウェイ振動が起きている場合には、図2(B)bに例示されている如く、横加速度Gy(若しくは車体スリップ角速度β’)の振動周期と、ヨーレートγの振動周期は、略等しく推移する。他方、スウェイ振動が起きていない場合には、図2(C)bに例示されている如く、横加速度Gy(若しくは車体スリップ角速度β’)の振動周期と、ヨーレートγの振動周期は、実質的に異なる。従って、後に説明される如く、これらの振動周期の比較結果を参照することにより、後述の(ii)の処理に於いて検出されるヨーレート振幅の増大がスウェイ振動に起因するか否かが判定できることとなる。
振動状態量として所定時間内の振動回数を用いる場合、まず、上記と同様に、横加速度値Gy(若しくは車体スリップ角速度値β’)とヨーレート値γは、それぞれ、BPF50a、50bに通され、各々のスウェイ振動の周波数帯域成分が抽出され、抽出された成分は、それぞれ、振動状態量算出部50c、50dに与えられる。振動状態量算出部では、入力された成分の値が所定の閾値を超えたときの累積数(即ち、大きな振幅の発生の累積数)が計数され、その累積数が出力される(かかる累積数は、所定の時間に亙って入力された成分の値の所定の閾値超えが無いときにはリセットされる。)。そうすると、スウェイ振動が起きている場合には、図2(B)cに例示されている如く、横加速度Gy(若しくは車体スリップ角速度β’)の振動数(閾値超えの累積数)と、ヨーレートγの振動数(閾値超えの累積数)は、略等しく上昇していくに対し、スウェイ振動が起きていない場合には、図2(C)cに例示されている如く、両者の振動数の上昇に、実質的なずれが生ずる。従って、後に説明される如く、これらの振動数を比較することにより、後述の(ii)の処理に於いて検出されるヨーレート振幅の増大がスウェイ振動に起因するか否かが判定できることとなる。
かくして、ヨーレートγと横加速度Gy(若しくは車体スリップ角速度β’)の振動状態量、即ち、振動周期又は振動数が算出されると、それらの値は、比較判定部50eに与えられる。比較判定部50eに於いては、振動状態量のずれが検査され、スウェイ状態発生の可能性の高さが判定される。具体的には、下記の条件のいずれかが成立するとき、スウェイ状態発生の可能性が高いと判定されるようになっていてよい。
(a)ヨーレートγの振動状態量S(γ)と横加速度Gyの振動状態量S(Gy)(若しくは車体スリップ角速度β’の振動状態量S(β’))の差の大きさが所定の大きさSdoを下回るとき、即ち、
|S(γ)-S(Gy)|<Sdo …(1)
又は、
|S(γ)-S(β’)|<Sdo …(1a)
が成立するとき(状態が図3(A)の斜線領域に入るとき)
(b)ヨーレートγの振動状態量S(γ)と横加速度Gyの振動状態量S(Gy)(若しくは車体スリップ角速度β’の振動状態量S(β’))の差が所定値Sdoを下回るとき、即ち、
S(γ)-S(Gy)<Sdo …(2)
又は、
S(γ)-S(β’)<Sdo …(2a)
が成立するとき(状態が図3(B)の斜線領域に入るとき)
(c)ヨーレートγの振動状態量S(γ)と横加速度Gyの振動状態量S(Gy)(若しくは車体スリップ角速度β’の振動状態量S(β’))の比が1を含む所定の範囲Spb~Spt内にあるとき、即ち、
Spb<S(γ)/S(Gy)<Spt …(3)
又は、
Spb<S(γ)/S(β’)<Spt …(3a)
[ここで、0<Spb<1<Spt]
が成立するとき(状態が図3(C)の斜線領域に入るとき)
上記の(a)~(c)の条件は、いずれの場合も、ヨーレートγの振動状態量S(γ)と横加速度Gyの振動状態量S(Gy)(若しくは車体スリップ角速度β’の振動状態量S(β’))が実質的に異ならないと判断される条件である。比較判定部50eに於いて、上記の(a)~(c)の条件のいずれを採用するかは、設計者により適宜選択されてよく、いすれの場合も本発明に属する。各値、Sdo、Spb、Sptは、車両の形式、仕様によって、実験的に又は理論的に設定される。
(a)ヨーレートγの振動状態量S(γ)と横加速度Gyの振動状態量S(Gy)(若しくは車体スリップ角速度β’の振動状態量S(β’))の差の大きさが所定の大きさSdoを下回るとき、即ち、
|S(γ)-S(Gy)|<Sdo …(1)
又は、
|S(γ)-S(β’)|<Sdo …(1a)
が成立するとき(状態が図3(A)の斜線領域に入るとき)
(b)ヨーレートγの振動状態量S(γ)と横加速度Gyの振動状態量S(Gy)(若しくは車体スリップ角速度β’の振動状態量S(β’))の差が所定値Sdoを下回るとき、即ち、
S(γ)-S(Gy)<Sdo …(2)
又は、
S(γ)-S(β’)<Sdo …(2a)
が成立するとき(状態が図3(B)の斜線領域に入るとき)
(c)ヨーレートγの振動状態量S(γ)と横加速度Gyの振動状態量S(Gy)(若しくは車体スリップ角速度β’の振動状態量S(β’))の比が1を含む所定の範囲Spb~Spt内にあるとき、即ち、
Spb<S(γ)/S(Gy)<Spt …(3)
又は、
Spb<S(γ)/S(β’)<Spt …(3a)
[ここで、0<Spb<1<Spt]
が成立するとき(状態が図3(C)の斜線領域に入るとき)
上記の(a)~(c)の条件は、いずれの場合も、ヨーレートγの振動状態量S(γ)と横加速度Gyの振動状態量S(Gy)(若しくは車体スリップ角速度β’の振動状態量S(β’))が実質的に異ならないと判断される条件である。比較判定部50eに於いて、上記の(a)~(c)の条件のいずれを採用するかは、設計者により適宜選択されてよく、いすれの場合も本発明に属する。各値、Sdo、Spb、Sptは、車両の形式、仕様によって、実験的に又は理論的に設定される。
かくして、比較判定部50eに於いて、スウェイ状態発生の可能性が高いとの判定が為されると、そのことを示す信号が振幅検出部50fへ与えられる。
(ii)スウェイ状態発生の判定(ヨーレートの振幅検出)
上記の比較判定部50eがスウェイ状態発生の可能性が高いことを示す信号を発している状態で、トラクタのヨーレートのスウェイ振動の周波数帯域成分の振幅が増大したときには、トレーラのスウェイ状態が発生したと判定することができる。従って、本発明の装置は、比較判定部50eからの信号を参照しつつ、振幅検出部50fに於いて、検出されたヨーレート値のスウェイ振動の周波数帯域成分の振幅の大きさを監視し、振幅検出部50fが振幅の増大を検出したときに、後述の如きスウェイ状態抑制の挙動制御の実行が指示されるようになっていてよい。より詳細には、振幅検出部50fは、比較判定部50eからスウェイ状態発生の可能性が高いことを示す信号が発せられたときにのみスウェイ状態抑制の挙動制御の実行を指示するか、或いは、比較判定部50eからスウェイ状態発生の可能性が高いことを示す信号が発せられていないときにスウェイ状態抑制の挙動制御を実行し難くするよう構成されていてよい。
上記の比較判定部50eがスウェイ状態発生の可能性が高いことを示す信号を発している状態で、トラクタのヨーレートのスウェイ振動の周波数帯域成分の振幅が増大したときには、トレーラのスウェイ状態が発生したと判定することができる。従って、本発明の装置は、比較判定部50eからの信号を参照しつつ、振幅検出部50fに於いて、検出されたヨーレート値のスウェイ振動の周波数帯域成分の振幅の大きさを監視し、振幅検出部50fが振幅の増大を検出したときに、後述の如きスウェイ状態抑制の挙動制御の実行が指示されるようになっていてよい。より詳細には、振幅検出部50fは、比較判定部50eからスウェイ状態発生の可能性が高いことを示す信号が発せられたときにのみスウェイ状態抑制の挙動制御の実行を指示するか、或いは、比較判定部50eからスウェイ状態発生の可能性が高いことを示す信号が発せられていないときにスウェイ状態抑制の挙動制御を実行し難くするよう構成されていてよい。
ヨーレートの振幅の増大の検出に於いては、まず、ヨーレートセンサから得られるヨーレート値γをBPF50bに通過させることにより、ヨーレートのスウェイ振動の周波数帯域成分が抽出され、振幅検出部50fに入力される。振幅検出部50fは、入力されたヨーレート成分の大きさが所定の時間内に於いて所定閾値を超えた回数(即ち、大きな振幅の発生回数)を計数する計数器を含み、計数器の回数が所定回数に達したとき、つまり、ヨーレート成分の振幅が所定期間に亙って増大したとき、そのことを示す信号を発するよう構成される。そして、かかる信号がスウェイ抑制挙動制御部50hへ与えられると、後に説明される如く、スウェイ状態の抑制のための挙動制御が実行される。ここで、比較判定部50eからスウェイ状態発生の可能性が高いことを示す信号が発せられたときにのみスウェイ状態抑制の挙動制御を実行する場合には、振幅検出部50fは、スウェイ状態発生の可能性が高いことを示す信号を受信したときにのみヨーレート成分の振幅の増大を検出するようになっていてよい。また、比較判定部50eからスウェイ状態発生の可能性が高いことを示す信号が発せられていないときにスウェイ状態抑制の挙動制御を実行し難くする場合には、振幅検出部50fは、スウェイ状態発生の可能性が高いことを示す信号の有無により、上記の「所定の閾値」及び/又は「所定回数」を変更するようになっていてよい。即ち、スウェイ状態発生の可能性が高いことを示す信号を受信しているときには、上記の「所定の閾値」及び/又は「所定回数」は、かかる信号が受信されていないときよりも低く設定される。かかる構成により、比較判定部50eがスウェイ状態発生の可能性が高いことを判定しているときには、より速やかに(ヨーレート成分の振幅が相当に大きくなる前に)スウェイ振動の周波数帯域のヨーレート成分の振幅の増大が検出される。なお、トレーラのスウェイ状態の発生時には、横加速度又は車体スリップ角速度の振幅も増大するので、ヨーレート振幅の増大の検出に代えて、横加速度Gy又は車体スリップ角速度β’の振幅の増大が検出されるようになっていてもよい。
(iii)スウェイ状態抑制のための挙動制御
スウェイ抑制挙動制御部50hは、振幅検出部50fからのヨーレートの振幅の増大を示す信号に応答して、スウェイ抑制のための挙動制御を実行する。(ただし、車速が所定速度より低い場合には、実行しない。)スウェイ状態の抑制のための挙動制御は、具体的には、車両の減速及び/又はアンチヨーモーメントの発生により実行されてよい。
スウェイ抑制挙動制御部50hは、振幅検出部50fからのヨーレートの振幅の増大を示す信号に応答して、スウェイ抑制のための挙動制御を実行する。(ただし、車速が所定速度より低い場合には、実行しない。)スウェイ状態の抑制のための挙動制御は、具体的には、車両の減速及び/又はアンチヨーモーメントの発生により実行されてよい。
車両の減速によりスウェイ状態抑制を実行する場合、スウェイ抑制挙動制御部50hは、振幅検出部50fからのヨーレートの振幅の増大を示す信号を受信すると、制動力制御部50iに対して各輪制動力の増大を指示し、或いは、これと伴に、車両のエンジン制御装置(図示せず)に対してエンジン出力の低減(スロットル開度の低減)を指示する。かかる減速処理は、振幅検出部からのヨーレートの振幅の増大を示す信号が消滅するまで継続されてよい。
アンチヨーモーメントの発生によりスウェイ状態抑制を実行する場合、スウェイ抑制挙動制御部50hは、振幅検出部50fからのヨーレートの振幅の増大を示す信号を受信すると、ヨーレート値γのスウェイ振動周波数帯域成分を参照して、その成分と逆位相となる目標ヨーモーメントを算出し、その値は、制動力制御部50iへ送信される。制動力制御部50iは、受信された目標ヨーモーメントを達成するべく各輪の制動力配分を決定し、決定された制動力配分に従って制動装置46(又は46t)に対して制御指令を与え、アンチヨーモーメントが発生される。(発生されるアンチヨーモーメントも振動的である。)。かかるアンチヨーモーメントの生成は、振幅検出部からのヨーレートの振幅の増大を示す信号が消滅するまで継続されてよい。
かくして、上記の本発明の装置によれば、ヨーレートの振幅の大きさだけでなく、ヨーレートγと横加速度Gy若しくは車体スリップ角速度の振動状態量の関係を参照して、スウェイ状態発生の可能性の高さを判断する処理を行うことにより、路面外乱等に起因する車体の横揺れとトレーラのスウェイ状態とを区別して判定し、適切に且つできるだけ早期にスウェイ状態抑制制御を実行することが可能となる。
以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。
例えば、振動状態量として所定時間内の振動回数を用いる場合、振動状態量算出部に於いて、ヨーレートγ又は横加速度Gy若しくは車体スリップ角速度β’の閾値を超えた振動回数が計数される。そこで、かかる振動回数が所定回数に達したことにより、それらの値の振幅が増大した判定されるようになっていてもよい。従って、その場合、比較判定部50eが信号を発したときに、スウェイ抑制制御が実行されるようになっていてもよい(その場合、振動検出部50fは省略される。)。
また、図3に相図にて例示された振動状態量の判定の条件(図3の相図の形状)は、図示の例に限定されることなく、その他の条件が用いられてもよく、そのような場合も本発明の範囲に属すると理解されるべきである。
更に、本発明の最も重要な特徴は、ヨーレートの振動の速さ又は頻度と横加速度若しくは車体スリップ角速度の振動の速さ又は頻度が略等しいとき、スウェイ状態の発生の可能性が高いと判定し、或いは、ヨーレートの振動の速さ又は頻度と横加速度若しくは車体スリップ角速度の振動の速さ又は頻度との関係に基づいて、スウェイ状態抑制挙動制御を実行することであるので、ヨーレートの振動の速さ又は頻度と横加速度若しくは車体スリップ角速度の振動の速さ又は頻度が略等しいか否かの判定方法は、実施形態に例示したものと異なる方法であってもよく、そのような場合も本発明の範囲に属する。例えば、スウェイ振動周波数帯域成分に於けるヨーレートの周波数分布(スペクトル)と横加速度若しくは車体スリップ角速度周波数分布の相同性に基づいてスウェイ状態発生の判定又はスウェイ状態抑制挙動制御の実行が為されてもよい。
Claims (9)
- トラクタと該トラクタにより牽引されるトレーラとを含む連結車両のスウェイ状態検出装置であって、前記トラクタのヨーレートの振動状態量と前記トラクタの横加速度又は車体スリップ角速度の振動状態量との関係に基づいて前記スウェイ状態が発生しているか否かを判定する装置。
- 請求項1の装置であって、前記トレーラのスウェイ振動の周波数帯域に於ける前記トラクタのヨーレートの成分の振動状態量と前記トラクタの横加速度又は車体スリップ角速度の成分の振動状態量とが実質的に異なるとき、前記スウェイ状態が発生していないと判定する装置。
- 請求項1又は2の装置であって、前記振動状態量の各々が対応する物理量の振動周期であり、前記トラクタのヨーレートの振動周期と前記トラクタの横加速度又は車体スリップ角速度の振動周期との差又は比に基づいて前記スウェイ状態が発生しているか否かを判定する装置。
- 請求項1又は2の装置であって、前記振動状態量の各々が、対応する物理量の所定の大きさを超える振動回数であり、所定時間に於ける前記トラクタのヨーレートの振動回数と前記トラクタの横加速度又は車体スリップ角速度の振動回数との差又は比に基づいて前記スウェイ状態が発生しているか否かを判定する装置。
- 請求項1又は2の装置であって、前記トレーラのスウェイ振動の周波数帯域に於ける前記トラクタのヨーレートの成分の振動状態量と、前記トレーラのスウェイ振動の周波数帯域に於ける前記トラクタの横加速度又は車体スリップ角速度の成分の振動状態量との差又は比が所定範囲内にあり、且つ、前記トレーラのスウェイ振動の周波数帯域に於ける前記トラクタのヨーレート又は横加速度若しくは車体スリップ角速度の成分の振幅が所定値より大きい状態が所定時間継続したときに前記スウェイ状態が発生していると判定する装置。
- トラクタと該トラクタにより牽引されるトレーラとを含む連結車両の挙動制御装置であって、前記トラクタのヨーレートの振動状態量と前記トラクタの横加速度又は車体スリップ角速度の振動状態量との関係に基づいて前記トラクタのヨーレートを減衰させる装置。
- 請求項6の装置であって、前記トレーラのスウェイ振動の周波数帯域に於ける前記トラクタのヨーレートの成分の振動状態量と、前記トレーラのスウェイ振動の周波数帯域に於ける前記トラクタの横加速度又は車体スリップ角速度の成分の振動状態量との差又は比が所定範囲内にあり、且つ、前記トレーラのスウェイ振動の周波数帯域に於ける前記トラクタのヨーレート又は横加速度若しくは車体スリップ角速度の成分の振幅が所定値より大きい状態が所定時間継続したときに前記トラクタのヨーレートを減衰させる装置。
- 請求項6の装置であって、前記トレーラのスウェイ振動の周波数帯域に於ける前記トラクタのヨーレートの成分の振動状態量と、前記トレーラのスウェイ振動の周波数帯域に於ける前記トラクタの横加速度若しくは車体スリップ角速度の成分の振動状態量との差の大きさが所定の大きさより大きいとき、前記差の大きさが前記所定の大きさより小さいときに比して、前記トラクタのヨーレートの減衰制御が実行されにくくなっている装置。
- 請求項6の装置であって、前記トレーラのスウェイ振動の周波数帯域に於ける前記トラクタのヨーレートの成分の振動状態量と、前記トレーラのスウェイ振動の周波数帯域に於ける前記トラクタの横加速度若しくは車体スリップ角速度の成分の振動状態量との比が所定の範囲内にないとき、前記比が前記所定の範囲内にあるときに比して、前記トラクタのヨーレートの減衰制御が実行されにくくなっている装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/067500 WO2011042966A1 (ja) | 2009-10-07 | 2009-10-07 | 連結車両のスウェイ状態検出装置及び挙動制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/067500 WO2011042966A1 (ja) | 2009-10-07 | 2009-10-07 | 連結車両のスウェイ状態検出装置及び挙動制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011042966A1 true WO2011042966A1 (ja) | 2011-04-14 |
Family
ID=43856462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/067500 WO2011042966A1 (ja) | 2009-10-07 | 2009-10-07 | 連結車両のスウェイ状態検出装置及び挙動制御装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011042966A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013015389A1 (ja) * | 2011-07-28 | 2013-01-31 | 株式会社アドヴィックス | 車両の揺動検出方法および車両 |
DE102016206077A1 (de) | 2016-04-12 | 2017-10-12 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Bestimmen einer sicherheitskritischen Gierbewegung eines Fahrzeugs |
US10328917B2 (en) | 2017-06-30 | 2019-06-25 | Veoneer Nissin Brake Systems Japan Co. Ltd. | Method and system for mitigating sway of a vehicle trailer by braking the towing vehicle during the correct phase of the sway |
WO2019146594A1 (ja) * | 2018-01-23 | 2019-08-01 | マツダ株式会社 | 車両の制御装置 |
CN112061178A (zh) * | 2020-09-18 | 2020-12-11 | 北京世纪东方通讯设备有限公司 | 一种列尾设备脱落状态检测方法及装置 |
US20230286492A1 (en) * | 2022-03-09 | 2023-09-14 | Robert Bosch Gmbh | Trailer sway mitigation with steering systems |
US20250018926A1 (en) * | 2023-07-14 | 2025-01-16 | GM Global Technology Operations LLC | System and method for trailer instability advanced warning based on hitch load measurement |
WO2025038181A1 (en) * | 2023-08-11 | 2025-02-20 | Bendix Commercial Vehicle Systems Llc | Trailer sway detection and mitigation using a camera mirror system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003503276A (ja) * | 1999-06-30 | 2003-01-28 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 自動車の安定化方法および装置 |
JP2006505442A (ja) * | 2002-11-08 | 2006-02-16 | コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト | 車の牽引形態を安定化させるための方法及び装置 |
-
2009
- 2009-10-07 WO PCT/JP2009/067500 patent/WO2011042966A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003503276A (ja) * | 1999-06-30 | 2003-01-28 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 自動車の安定化方法および装置 |
JP2006505442A (ja) * | 2002-11-08 | 2006-02-16 | コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト | 車の牽引形態を安定化させるための方法及び装置 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2013015389A1 (ja) * | 2011-07-28 | 2015-02-23 | 株式会社アドヴィックス | 車両の揺動検出方法および車両 |
JP5674942B2 (ja) * | 2011-07-28 | 2015-02-25 | 株式会社アドヴィックス | 車両の揺動検出方法および車両 |
WO2013015389A1 (ja) * | 2011-07-28 | 2013-01-31 | 株式会社アドヴィックス | 車両の揺動検出方法および車両 |
US10730528B2 (en) | 2016-04-12 | 2020-08-04 | Robert Bosch Gmbh | Method and device for determining a safety-critical yawing motion of a vehicle |
DE102016206077A1 (de) | 2016-04-12 | 2017-10-12 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Bestimmen einer sicherheitskritischen Gierbewegung eines Fahrzeugs |
WO2017178187A1 (de) | 2016-04-12 | 2017-10-19 | Robert Bosch Gmbh | Verfahren und vorrichtung zum bestimmen einer sicherheitskritischen gierbewegung eines fahrzeugs |
US10328917B2 (en) | 2017-06-30 | 2019-06-25 | Veoneer Nissin Brake Systems Japan Co. Ltd. | Method and system for mitigating sway of a vehicle trailer by braking the towing vehicle during the correct phase of the sway |
WO2019146594A1 (ja) * | 2018-01-23 | 2019-08-01 | マツダ株式会社 | 車両の制御装置 |
CN112061178A (zh) * | 2020-09-18 | 2020-12-11 | 北京世纪东方通讯设备有限公司 | 一种列尾设备脱落状态检测方法及装置 |
US20230286492A1 (en) * | 2022-03-09 | 2023-09-14 | Robert Bosch Gmbh | Trailer sway mitigation with steering systems |
US12194985B2 (en) * | 2022-03-09 | 2025-01-14 | Robert Bosch Gmbh | Trailer sway mitigation with steering systems |
US20250018926A1 (en) * | 2023-07-14 | 2025-01-16 | GM Global Technology Operations LLC | System and method for trailer instability advanced warning based on hitch load measurement |
WO2025038181A1 (en) * | 2023-08-11 | 2025-02-20 | Bendix Commercial Vehicle Systems Llc | Trailer sway detection and mitigation using a camera mirror system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011042966A1 (ja) | 連結車両のスウェイ状態検出装置及び挙動制御装置 | |
JP4758102B2 (ja) | 車の牽引形態を安定化させるための方法及び装置 | |
WO2011070645A1 (ja) | 連結車両のスウェイ状態抑制のための挙動制御装置 | |
KR100681961B1 (ko) | 자동차의 안정화를 위한 방법 및 장치 | |
JP3997086B2 (ja) | 自動車の安定化方法および装置 | |
US6957873B2 (en) | Method for regulating the driving stability of a vehicle | |
JP5287131B2 (ja) | トレーラ牽引車両の制御方法および車両の揺動検出方法 | |
JP5159769B2 (ja) | トラクタにおけるトレーラ運転の検出方法および制御装置 | |
JP5674942B2 (ja) | 車両の揺動検出方法および車両 | |
JP5167351B2 (ja) | 衝突の場合における車両内ブレーキ装置の調節方法 | |
JP4908720B2 (ja) | 道路車両の安定化方法および装置 | |
US8494747B2 (en) | Method and device for stabilizing a single-track motor vehicle | |
US20060158031A1 (en) | Method and system for controlling the driving stability of a vehicle and use of said system | |
KR100615486B1 (ko) | 차량의 전복 억제 제어 장치 | |
JP2004509005A (ja) | 車両の転倒の危険を評価する方法 | |
KR100614990B1 (ko) | 차량의 롤 오버 억제 제어 장치 | |
US8768594B2 (en) | Vehicle stability control method | |
US20090099718A1 (en) | Device And Method For Determining the Center of Gravity Of A Vehicle | |
JP2011079470A (ja) | 連結車両の挙動制御装置 | |
JP2008502527A (ja) | トレーラが横揺れしているときの自動車のドライバの支援方法および装置 | |
JPS6216856B2 (ja) | ||
JP4986860B2 (ja) | 自動二輪車の転倒防止方法 | |
KR20140053858A (ko) | 사행하는 트레일러의 주행 안정화 방법 및 그 장치 | |
JP7373532B2 (ja) | 鞍乗り型車両 | |
JPH0624913B2 (ja) | アンチスキッド制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09850237 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09850237 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |