WO2011039835A1 - データ判定/位相比較回路 - Google Patents
データ判定/位相比較回路 Download PDFInfo
- Publication number
- WO2011039835A1 WO2011039835A1 PCT/JP2009/066936 JP2009066936W WO2011039835A1 WO 2011039835 A1 WO2011039835 A1 WO 2011039835A1 JP 2009066936 W JP2009066936 W JP 2009066936W WO 2011039835 A1 WO2011039835 A1 WO 2011039835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data determination
- circuit
- data
- output
- phase comparison
- Prior art date
Links
- 230000003111 delayed effect Effects 0.000 claims description 7
- 238000012790 confirmation Methods 0.000 claims description 6
- 238000013479 data entry Methods 0.000 claims 1
- 238000011084 recovery Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 22
- 230000001360 synchronised effect Effects 0.000 description 18
- 230000007704 transition Effects 0.000 description 14
- 238000012935 Averaging Methods 0.000 description 13
- 230000009977 dual effect Effects 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 238000004891 communication Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- PBGKNXWGYQPUJK-UHFFFAOYSA-N 4-chloro-2-nitroaniline Chemical compound NC1=CC=C(Cl)C=C1[N+]([O-])=O PBGKNXWGYQPUJK-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 102100029469 WD repeat and HMG-box DNA-binding protein 1 Human genes 0.000 description 3
- 101710097421 WD repeat and HMG-box DNA-binding protein 1 Proteins 0.000 description 3
- 102100038026 DNA fragmentation factor subunit alpha Human genes 0.000 description 2
- 102100038023 DNA fragmentation factor subunit beta Human genes 0.000 description 2
- 101100277639 Homo sapiens DFFB gene Proteins 0.000 description 2
- 101000950906 Homo sapiens DNA fragmentation factor subunit alpha Proteins 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- HCUOEKSZWPGJIM-YBRHCDHNSA-N (e,2e)-2-hydroxyimino-6-methoxy-4-methyl-5-nitrohex-3-enamide Chemical compound COCC([N+]([O-])=O)\C(C)=C\C(=N/O)\C(N)=O HCUOEKSZWPGJIM-YBRHCDHNSA-N 0.000 description 1
- 101100020619 Arabidopsis thaliana LATE gene Proteins 0.000 description 1
- 101001109689 Homo sapiens Nuclear receptor subfamily 4 group A member 3 Proteins 0.000 description 1
- 101000598778 Homo sapiens Protein OSCP1 Proteins 0.000 description 1
- 101001067395 Mus musculus Phospholipid scramblase 1 Proteins 0.000 description 1
- 102100022673 Nuclear receptor subfamily 4 group A member 3 Human genes 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K5/00—Manipulating of pulses not covered by one of the other main groups of this subclass
- H03K5/22—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral
- H03K5/26—Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral the characteristic being duration, interval, position, frequency, or sequence
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/081—Details of the phase-locked loop provided with an additional controlled phase shifter
- H03L7/0812—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/091—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector using a sampling device
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/02—Speed or phase control by the received code signals, the signals containing no special synchronisation information
- H04L7/033—Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0016—Arrangements for synchronising receiver with transmitter correction of synchronization errors
- H04L7/002—Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
- H04L7/0025—Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of clock signal
Definitions
- the present invention relates to a clock generation circuit and a signal reproduction circuit including the clock generation circuit, and more particularly to a data determination / phase comparison circuit capable of performing both data determination and phase comparison with a single-phase clock, and a CDR including the data determination / phase comparison circuit (Clock Data Recovery) circuit.
- FIG. 1 shows a signal regeneration circuit studied as a premise of the present invention.
- the signal reproduction circuit CDR_C illustrated in FIG. 1 has a configuration example similar to that of Patent Document 1.
- the signal reproduction circuit CDR_C includes a data determination / phase comparison circuit DD / PD, an averaging circuit AV, a phase pointer control circuit PCON, a phase interpolation circuit PI, and an N-phase clock generation circuit NPG.
- the data determination / phase comparison circuit DD / PD determines the data input Din in synchronization with the data acquisition clock phase of the n-phase clock CLKn, and outputs the determination result to the data output Dout.
- the data determination / phase comparison circuit DD / PD uses a plurality of clock phases of the n-phase clock CLKn to compare the phases of the data input Din and the n-phase clock CLKn, and the phase of the n-phase clock CLKn is the data.
- An Early signal is output when it is earlier than the input Din, and a Late signal is output when the phase of the n-phase clock CLKn is later than the data input Din.
- the averaging circuit AV integrates the phase comparison result output from the data decision / phase comparison circuit DD / PD, that is, the Early and Late signals for a certain period, thereby averaging the phases of the n-phase clock CLKn and the data input Din. The total deviation is calculated.
- the averaging circuit AV integrates the phase comparison result output from the data decision / phase comparison circuit DD / PD, that is, the Early and Late signals for a certain period, thereby averaging the phases of the n-phase clock CLKn and the data input Din. The total deviation is calculated.
- the Up signal is obtained when the phase of the n-phase clock CLKn is earlier than the phase of the data input Din on the average.
- the Down signal is obtained.
- the processing by the averaging circuit AV is substantially equivalent to applying a low-pass filter, and an analog low-pass filter may be used instead of the averaging circuit AV.
- the phase pointer control circuit PCON outputs a phase control signal Sph for controlling the output phase of the phase interpolation circuit PI based on the Up signal and the Down signal.
- averaging circuit AV outputs the Up signal
- the phase of the output clock of the phase interpolation circuit is advanced, and conversely, when the averaging circuit AV outputs the Down signal, the phase of the output clock of the phase interpolation circuit is changed. Control to delay.
- the phase interpolation circuit PI typically operates by changing the phase of the reference clock CLKref input from the outside based on the phase control signal Sph.
- the essential function of the phase interpolation circuit PI is to change the phase of the clock CLK output based on the phase control signal Sph.
- the phase interpolation circuit PI outputs based on the phase control signal Sph without using the reference clock.
- a method of incorporating a source oscillator capable of changing the phase in the phase interpolation circuit PI is also conceivable.
- the N-phase clock generation circuit NPG is a circuit that generates an n-phase clock required by the data determination / phase comparison circuit DD / PD from the single-phase clock CLK output from the phase interpolation circuit PI. At this time, a specific clock phase of the n-phase clock is output to the outside of the signal recovery circuit CDR_C as the recovery clock CLKout.
- the data acquisition clock of the n-phase clock CLKn always follows the phase of the data input Din, and correct data determination is possible.
- FIG. 2A and FIG. 2B each show a configuration example of the data determination / phase comparison circuit DD / PD examined as a premise of the present invention.
- these drawings depict only essential parts of the entire circuit, and circuits for retiming between signals are omitted.
- FIG. 2A shows the configuration of the Alexander type data determination / phase comparison circuit DD / PD disclosed in Non-Patent Document 1.
- the data determination / phase comparison circuit DD / PD shown in FIG. 2A receives the data input Din and the two-phase clocks clkD and clkE which are shifted from each other by a half of one symbol period, and the data output Dout, The phase comparison signals Early and Late are output. At this time, of the two-phase clocks, the result of determining the data input Din in synchronization with clkD is output as Dout.
- FIG. 2B shows the configuration of the eye tracking type data determination / phase comparison circuit DD / PD disclosed in Patent Document 1.
- the data decision / phase comparison circuit DD / PD shown in FIG. 2B inputs the data input Din and the three-phase clocks clkD, clkE, and clkL that are typically shifted from each other by 1 ⁇ 4 of one symbol period. Then, the data output Dout and the phase comparison signals Early and Late are output. At this time, among the three-phase clocks, the result of determining the data input Din in synchronization with clkD is output as Dout.
- the data determination / phase comparison circuit DD / PD shown in FIGS. 2A and 2B is different in phase from clkD in order to output the phase comparison signals Early and Late in addition to the clock clkD necessary for the data output Dout. Requires a clock. Therefore, a two-phase or three-phase clock CLKn is required for the operation of the data determination / phase comparison circuit DD / PD instead of a single-phase clock. For this reason, in the signal reproduction circuit CDR_C shown in FIG. 1, the two-phase or three-phase clock CLKn is generated by the N-phase clock generation circuit NPG from the single-phase clock CLK output from the phase interpolation circuit PI.
- the data determination / phase comparison circuit DD / PD requires a high-frequency clock in order to perform data determination and phase comparison of the high-speed data input Din. For this reason, the circuit scale and power consumption required for generating and distributing the multiphase clocks are large. Further, in recent years, in order to improve the transmission speed, the frequency of the data input Din and the clock has been further increased, and the circuit and power consumption used for generating and distributing the multi-phase clock are the circuit scale and consumption of the entire signal reproduction circuit. It has come to occupy a considerable part of electric power.
- the present invention has been made in view of the above, and one of its purposes is to enable both data determination and phase comparison using only a single-phase clock without using a multi-phase clock.
- the object is to provide a data decision / phase comparison circuit.
- the data decision / phase comparison circuit includes two data decision circuits that operate in synchronization with a single clock CLK, a flip-flop connected to the subsequent stage, and a logic composed of a logical product and an exclusive logical sum. And a circuit.
- Two data determination circuits operating in synchronization with a single clock CLK have different data determination periods (necessary setup time and required hold time) necessary for correct data determination.
- the data output Dout of the data determination / phase comparison circuit is connected to the output of the data determination circuit having a shorter data determination period (sum of required setup time and required hold time) necessary for correct data determination. As long as the signal reproduction circuit is in the locked state, the data output Dout is considered to output substantially correct data.
- the phase comparison signals Early and Late are output as follows. If two data determination circuits having different data determination periods (sum of necessary setup time and required hold time) necessary for correct data determination output the same determination result, neither Early nor Late is output. In this case, it is considered that the data input Din has a sufficient fixed time with respect to the clock CLK because the data determination circuit having a long required data determination period also correctly determines the data.
- the data determination period required by the data determination circuit having the longer required data determination period is the data determination period for the CLK of the input data Din. It is considered that the data determination circuit having a shorter required data determination period has made a wrong determination, that is, the edge of the data input Din is approaching CLK. In this case, it is possible to determine whether the phase of the clock is too early (Early) or too late (Late) by considering the data one symbol before and the data after one symbol of the symbol (target symbol).
- the data determination result for the shorter required data determination period is the same as the symbol of interest and the previous symbol, it is determined as Late, and the symbol of interest and the next symbol are the same Is judged to be Early.
- the procedure for determining whether the phase of the clock is too early (Early) or too late (Late) will be described in more detail in the description of the embodiment.
- the data determination / phase comparison circuit can operate with only a single-phase clock, and can generate and distribute multi-phase clock signals.
- the circuit scale and power consumption required for this can be reduced.
- FIG. 5 is a block diagram showing a detailed configuration of a single-phase clock data determination / phase comparison circuit in FIG. 4. It is a figure which shows the detailed structural example of Early / Late decision logic EL_LOGIC in FIG.
- FIG. 5A It is a figure which shows the structural example of Early / Late decision logic EL_LOGIC which further refine
- FIG. 6B is a waveform diagram showing an operation principle of the Early / Late decision logic EL_LOGIC of FIG. 6A. It is a circuit diagram of Early / Late decision logic EL_LOGIC 'employed in the single-phase clock phase comparison circuit according to the second embodiment of the present invention.
- FIG. 7B is a waveform diagram illustrating the principle of Early / Late decision logic EL_LOGIC ′ of FIG. 7A. It is a circuit diagram which shows the single phase clock dual data determination device SPC_DC '(substitute of SPD_CD of FIG.
- FIG. 8B is a block diagram of a configuration example of a data determiner C_BAD in FIG. 8A.
- FIG. 8B is a block diagram of another configuration example of the data determiner C_BAD in FIG. 8A.
- It is a circuit diagram which shows the detailed structure of the data determination device C_BAD of FIG. 9B.
- 6 is a circuit diagram showing a single-phase clock dual data determination unit SPC_DC ′′ (another alternative of SPD_CD in FIG. 5A) according to the fifth embodiment of the present invention.
- each functional block of the embodiment are not particularly limited, but are formed on a semiconductor substrate such as single crystal silicon by a known integrated circuit technology such as a CMOS (complementary MOS transistor).
- CMOS complementary MOS transistor
- MOS Metal Oxide Semiconductor
- MISFET Metal Insulator, Semiconductor, Field, Effect Transistor
- PMOS transistor P-channel MOS transistor
- NMOS transistor N-channel MOS transistor
- FIG. 3 is a block diagram showing a configuration example of an optical communication system including the signal regeneration circuit according to the first embodiment of the present invention.
- the optical communication system shown in FIG. 3 includes an optical / electrical conversion block OFE_BLK, a serial / parallel conversion block (SerDes: SERializer / DESerializer) SD_BLK, and an upper layer logical block PU.
- OFE_BLK is, for example, an optical / electrical conversion circuit OEC that converts an optical input data signal IN_OP into an electrical signal via a photodiode or the like, and an electrical / optical conversion that converts an electrical signal into an optical output data signal OUT_OP via a semiconductor laser or the like.
- a circuit EOC is provided.
- SD_BLK is an input circuit IF_I that amplifies a minute data signal from the OEC to a data signal of a predetermined voltage level as an input system circuit, and signal reproduction that reproduces the data signal Dout and the clock signal CLKout from the output data signal Din.
- a circuit CDR and a serial / parallel conversion circuit SPC for converting Dout as serial data into a parallel data signal DATo using CLKout are provided.
- the upper layer logical block PU receives the CLKout and DATo and performs predetermined information processing.
- SD_BLK is a parallel / serial conversion circuit PSC that converts the parallel data signal DATi from the PU into a serial data signal using the clock signal CLKin from the PU as an output system circuit, and a predetermined based on the serial data signal.
- An output circuit IF_O that drives the electrical / optical conversion circuit EOC by an electrical signal is provided.
- FIG. 4 is a block diagram showing a configuration example of the signal regeneration circuit CDR in the optical communication system of FIG.
- the signal reproduction circuit CDR shown in FIG. 4 includes a single-phase clock data determination / phase comparison circuit SPC_DD / PD, an averaging circuit AV, a phase pointer control circuit PCON, and a phase interpolation circuit PI.
- the signal reproduction circuit CDR shown in FIG. 4 is characterized in that the N-phase clock generation circuit NPG is eliminated compared to the signal reproduction circuit CDR_C shown in FIG. That is, the data input Din and the single-phase clock CLK are input to the single-phase clock data determination / phase comparison circuit SPC_DD / PD.
- the single-phase clock data determination / phase comparison circuit SPC_DD / PD determines the data input Din in synchronization with the single-phase clock CLK, and outputs the determination result to the data output Dout. At the same time, the phase of the data input Din and the clock CLK are compared, and an Early signal is output when the phase of the clock CLK is earlier than the data input Din, and a Late signal is output when the phase of the clock CLK is later than the data input Din. To do.
- the averaging circuit AV integrates the phase comparison result output from the single-layer clock data determination / phase comparison circuit SPC_DD / PD, that is, the Early and Late signals for a certain period, thereby obtaining the phase of the clock CLK and the data input Din.
- the average deviation is calculated.
- an Up signal is output when the phase of the clock CLK is averagely slower than the phase of the data input Din
- a Down signal is output when the phase of the clock CLK is averagely earlier than the phase of the data input Din.
- the processing by the averaging circuit AV is substantially equivalent to applying a low-pass filter, and a configuration using an analog low-pass filter instead of the averaging circuit AV is also possible.
- the phase pointer control circuit PCON outputs a phase control signal Sph for controlling the output phase of the phase interpolation circuit PI based on the Up signal and the Down signal.
- averaging circuit AV outputs the Up signal
- the phase of the output clock of the phase interpolation circuit is advanced, and conversely, when the averaging circuit AV outputs the Down signal, the phase of the output clock of the phase interpolation circuit is changed. Control to delay.
- the phase interpolation circuit PI typically operates by changing the phase of the reference clock CLKref input from the outside based on the phase control signal Sph. This can be realized by a known means such as a phase interpolation circuit that uses a four-phase clock whose phase is shifted by 90 degrees as a reference clock and adds these four-phase clocks by applying appropriate coefficients.
- the essential function of the phase interpolation circuit PI is to change the phase of the clock CLK output based on the phase control signal Sph.
- the phase interpolation circuit PI outputs based on the phase control signal Sph without using the reference clock.
- a method of incorporating a source oscillator capable of changing the phase in the phase interpolation circuit PI is also conceivable.
- a configuration for directly changing the phase of the output clock CLK based on the phase control signal Sph or a configuration for changing the phase of the output clock CLK indirectly by changing the frequency of the output clock CLK based on the phase control signal Sph.
- Well-known means such as can be used.
- FIG. 5A is a diagram showing a detailed configuration example of the single-phase clock data determination / phase comparison circuit SPC_DD / PD in FIG.
- a single-phase clock data determination / phase comparison circuit SPC_DD / PD shown in FIG. 5A has a short data determination period (sum of required setup time and required hold time) necessary for correct data determination, that is, a clock synchronous data determination device with good performance.
- C_GOOD and the data determination period (sum of required setup time and required hold time) required for correct data determination are long, that is, the clock synchronous data determiner C_BAD having poor performance and the outputs of the two clock synchronous data determiners are exclusive. It is composed of an exclusive OR circuit EOR1 that outputs a logical sum and an Early / Late decision logic EL_LOGIC.
- the data synchronization period (sum of required setup time and required hold time) necessary for correct data determination is short, that is, the clock synchronous data determination unit C_GOOD with good performance determines the result of determining the data input Din in synchronization with the clock CLK. Output as data output Dout.
- a data determination period (sum of required setup time and required hold time) necessary for correct data determination is short, that is, a clock synchronous data determination device C_GOOD with good performance, and a data determination period (required setup time required for correct data determination).
- a combination of the clock synchronous data determiner C_BAD having a long time (sum of required time and required hold time), that is, poor performance is referred to as a single-phase clock dual data determiner SPC_DC.
- the determination result Dout of the clock synchronous data determination unit C_GOOD with a short data determination period (sum of required setup time and required hold time) necessary for correct data determination, that is, good performance, remains as it is, single phase clock data determination / phase It is output as the data output Dout of the comparison circuit SPC_DD / PD.
- the output of the data decision unit C_GOOD is delayed by a delay circuit or a shift register using a flip-flop, etc.
- the data output Dout of the determination / phase comparison circuit SPC_DD / PD is also possible.
- the exclusive OR circuit EOR1 calculates an exclusive OR of the output Dout of the data determiner C_GOOD and the output Dout_bad of the data determiner C_BAD, and outputs the result as the phase error signal Pherr.
- the phase of the clock CLK is controlled so that the data decision period of the two data determination units C_GOOD and C_BAD is maximized with respect to the data input Din. Therefore, in a state where the CDR phase adjustment mechanism is locked, the data synchronization period (sum of required setup time and required hold time) required for correct data determination is short, that is, the clock synchronous data determination device C_GOOD with good performance is It is considered that data is almost always judged correctly. Therefore, if the output Dout of the data determiner C_GOOD and the output Dout_bad of the data determiner C_BAD are different, it is considered that the data determiner C_GOOD correctly determined the data and the C_BAD erroneously determined the data.
- the phase error signal Pherr is a precondition for the single-phase clock data determination / phase comparison circuit SPC_DD / PD to output the phase comparison signal Early or Late.
- the Early / Late decision logic EL_LOGIC receives the output Dout of the high-performance data determination unit C_GOOD and the phase error signal Pherr, and indicates that the phase of the clock CLK is too early with respect to the data input Din (Early). And a signal (Late) indicating that the phase of the clock CLK is too late with respect to the data input Din.
- FIG. 5B shows a more detailed configuration example of the Early / Late decision logic EL_LOGIC.
- the Early / Late decision logic EL_LOGIC shown in FIG. 5B includes the internal Early / Late decision logic EL_Logic1 for calculating Early1 and Late1 from the data output Dout of the data determiner C_GOOD with good performance and the phase error signal Pherr, and the phase error.
- a shift register SR1 that delays the signal Pherr by a necessary clock cycle, a logical product AND1 that calculates a logical product of Early1 and the phase error signal Pherr, and a logical product that calculates a logical product of Late1 and the phase error signal Pherr. Circuit AND2.
- the phase error signal Pherr is a precondition for the single-phase clock data determination / phase comparison circuit SPC_DD / PD to output the phase comparison signal Early or Late. Therefore, logically, an AND circuit with the phase error signal Pherr is inserted into the Early output and Late output of the Early / Late determination logic EL_LOGIC. At this time, since it is necessary to delay the phase error signal Pherr by the delay in the internal Early / Late determination logic EL_Logic1, the shift register SR1 is inserted. The specific delay amount of the shift register SR1 is determined according to the delay amount generated in the internal Early / Late determination logic EL_Logic1, and can take various values depending on the implementation details of the internal Early / Late determination logic EL_Logic1.
- the logical product AND1 that calculates the logical product of Early1 and the phase error signal Pherr and the logical product AND2 that calculates the logical product of Late1 and the phase error signal Pherr are logically EARLY / Late determination logic. Although expressed in the form of a logical product circuit that enters the final stage of EL_LOGIC, as a result of performing an equivalent logical transformation of logic such as logical compression in an actual circuit, a logical product circuit may not necessarily enter the final stage. .
- FIG. 6A shows a configuration example of the entire Early / Late determination logic EL_LOGIC including the detailed configuration of the internal Early / Late determination logic EL_Logic 1 in FIG. 5B.
- FIG. 6B shows a waveform diagram representing the operation principle of FIG. 6A.
- FIG. 6B shows waveform diagrams in the case of four types, and each waveform is drawn with time on the horizontal axis and data input Din on the vertical axis.
- the crosses in the figure represent the determination positions of the clock synchronization data determination unit, and are placed every symbol time.
- a data synchronization period (sum of required setup time and required hold time) required for correct data determination is short, that is, a clock synchronous data determination device C_GOOD with good performance, and a data determination period (required setup time and required for correct data determination)
- the clock synchronization data determiner C_BAD having a long sum of hold times, that is, poor performance, determines the same data input Din in synchronization with the same clock CLK.
- FIG. 6B Case 1 and Case 2 correspond to the case where the transition of the data input Din is immediately before the central determination position and the phase of the clock CLK is too early.
- Case 3 and Case 4 correspond to the case where the transition of the data input Din is immediately after the central determination position and the phase of the clock CLK is too early.
- the data determination period necessary for correct data determination (sum of required setup time and required hold time)
- the clock synchronization data determination unit C_BAD having a long period of time, that is, poor performance, may make a determination error.
- the determination results of the two clock synchronization data determination units C_GOOD and C_BAD are different, and the phase error signal Pherr is output.
- a circle surrounded by a dotted line around the x mark indicating the determination position indicates that the phase error signal Pherr may be output at this determination position.
- the case where the clock phase is too early, that is, the case 1 or 2 and the case where the clock phase is too late, that is, the case 3 or 4 is identified as follows. It is possible. In case 1 and case 2 in which the clock phase is too early, the data input Din is different between the determination position in the center where Pherr is output and the determination position one symbol before (left side), while the center determination position where Pherr is output. The data input Din is the same at the determination position and the determination position one symbol later (right side). On the other hand, in cases 3 and 4 where the clock phase is too slow, the data input Din is the same at the central determination position where Pherr is output and the determination position one symbol before (left side), while Pherr is output.
- the data input Din differs between the central determination position and the determination position one symbol later (right side). Therefore, the data input Din in the symbol from which the phase error signal Pherr is output, that is, the determination result of the clock synchronous data determiner C_GOOD with good performance, and the data input Din in the symbol before and after that, that is, the determination of the clock synchronous data determiner C_GOOD with high performance.
- the exclusive OR of the result and whether the transition of the data input Din occurs before or after it is possible to discriminate between when the clock phase is too early and when the clock phase is too late It is.
- the internal Early / Late decision logic EL_Logic 1 shown in FIG. 6A is a configuration example of a circuit based on this concept.
- the data output Dout that is, the output of the clock synchronous data determination unit C_GOOD with good performance is delayed by the two D-type flip-flops DFF1 and DFF2, thereby storing the data output Dout for three symbols in total. .
- the two exclusive OR circuits EOR2 and EOR3 when the phase error signal Pherr is input, the phase of the clock CLK is changed to the data input Din. And a signal (Late) indicating that the phase of the clock CLK is too late with respect to the data input Din.
- a shift register circuit SR1 for delaying one symbol is inserted also on the phase error signal Pherr side.
- the single-phase clock data determination / phase comparison circuit according to the first embodiment and the signal reproduction circuit including the same, it is possible to reduce the required clock phase from the conventional two or more phases to a single phase. Thus, the circuit scale and power consumption can be reduced.
- the single-phase clock data determination / phase comparison circuit is the same as the configuration of the first embodiment shown in FIG. 5A.
- the Early / Late determination logic EL_LOGIC ′ in FIG. 7A is used instead of the EL_LOGIC in FIG. 6A.
- phase error signal Pherr when the phase error signal Pherr is output, it is discriminated whether the clock phase is too early or too late by examining which symbol before and after the transition of the data input Din occurs. Is possible. However, in the determination method according to the first embodiment described with reference to FIG. 6B, there is a possibility that the clock phase is too early or the clock phase is too late.
- FIG. 7B shows a waveform diagram for explaining this situation.
- the transition of the data input Din occurs immediately before or immediately after the determination position at the central determination position and the determination position one symbol after (right side), and a data determination period (necessary for correct data determination)
- the sum of the setup time and the necessary hold time is short, that is, the determination result of the clock synchronous data determiner C_GOOD with good performance and the data determination period (sum of the necessary setup time and the necessary hold time) necessary for correct data determination are long. That is, there is a possibility that the judgment result of the clock synchronization data judgment unit C_BAD having a poor performance is different, that is, the phase error signal Pherr is output.
- FIG. 7B the transition of the data input Din occurs immediately before or immediately after the determination position at the central determination position and the determination position one symbol after (right side), and a data determination period (necessary for correct data determination)
- the sum of the setup time and the necessary hold time is short, that is, the determination result of the clock synchronous data determiner C_GOOD with good performance and the data determination
- the transition of the data input Din is before the determination position at the center determination position, and the transition of the data input Din is after the determination position at the determination position one symbol later (right side).
- the state of FIG. 7B may be caused as a result of the clock phase being delayed. obtain.
- the data output Dout at the central determination position and the determination position immediately before (on the left) is different, while the data output Dout at the determination position in the center and the determination position immediately after (on the right) is output. Therefore, the Early / Late decision logic EL_LOGIC having the configuration shown in FIG.
- FIG. 7A is an improvement of the above-mentioned drawbacks of the EARLY / LATE decision logic EL_LOGIC in FIG. 6A.
- the phase error signal Pherr is delayed by two D-type flip-flops DFF3 and DFF4, and a phase error signal Pherr for three symbols is stored in total.
- the phase error signals for these three symbols are input to the NOR circuit NOR1 and the AND circuit AND3.
- the phase error signal Pherr is output only at the central determination position, and the phase error signal Pherr is not output in the symbols before and after that, that is, as shown in FIG.
- phase error signal Pherr is input to the AND circuits AND1 and AND2 that enter the final stage of the Early / Late decision logic EL_LOGIC ′ only in the case of the four types.
- the Early / Late determination logic EL_LOGIC ′ generates the Early signal and the Late signal. None of these will be output. Therefore, the Early signal or the Late signal is not erroneously output.
- the phase comparator does not output an erroneous phase comparison result, and the reproduction error of the signal reproduction circuit The occurrence of is reduced.
- FIG. 8B is a conceptual diagram showing the basic operation of the single-phase clock dual data determiner SPC_DC ′ of FIG. 8A.
- time is taken on the horizontal axis, and the clock CLK and the data synchronization period (sum of required setup time and required hold time) necessary for correct data determination are short, that is, the clock synchronous data determiner C_GOOD with good performance is erroneous.
- a period during which there is a possibility of determination, and a period during which a data determination period (sum of required setup time and required hold time) required for correct data determination is long, that is, a period when the clock synchronous data determination unit C_BAD with poor performance makes an erroneous determination is the data determination / phase comparison circuit according to the present invention.
- the phase comparison signal may be output. Among these, as shown in FIG.
- the period before the clock rise is called the eye track window period 1 or TW1
- the period after the clock rise is called the eye track window period 2 or TW2.
- the Early signal may be output
- the Late signal may be output.
- the time widths of TW1 and TW2 are approximately the same.
- the time width of TW1 is longer than the time width of TW2 because the signal reproduction circuit CDR applies feedback for controlling the phase of the clock signal CLK so that the appearance probability of the Early signal and the Late signal have the same frequency.
- the phase of the clock CLK is fixed at a position that is too early with respect to the originally optimal position.
- the clocks input to the two data determiners C_GOOD and C_BAD are respectively Variable delay circuits VD1 and VD2 are inserted.
- VD1 the delay of the variable delay circuit
- VD2 the delay of the variable delay circuit
- the delay of the variable delay circuit VD1 is increased, the period during which C_GOOD in FIG. 8B may be erroneously determined is delayed.
- the time width of the front eye track window TW1 increases, and the rear side The time width of the eye track window TW2 is reduced.
- the delay of the variable delay circuit VD2 is increased, the period during which C_BAD in FIG.
- the time width of the front eye track window TW1 decreases, and the rear side
- the time width of the eye track window TW2 increases. Therefore, by adjusting the delay amounts of the two variable delay circuits VD1 and VD2 to appropriate values, the time widths of the front and rear eye track windows TW1 and TW2 can be adjusted to be approximately the same.
- variable delay circuits VD1 and VD2 instead of inserting the two variable delay circuits VD1 and VD2 into the clock inputs of the two data determiners C_GOOD and C_BAD, for example, a fixed delay is inserted before C_GOOD and inserted before C_BAD.
- a configuration is also possible in which the balance between the time widths of TW1 and TW2 is adjusted only by the variable delay circuit VD2.
- the fixed delay inserted before C_GOOD does not necessarily appear explicitly on the circuit diagram, and a delay unavoidably present in the data determination unit C_GOOD can be used.
- a configuration in which a variable delay is input to the data input input to each data determination unit is also conceivable. In this case, for example, if the delay amount inserted in the data input of C_GOOD is increased, the time width of the front eye track window TW1 is decreased and the time width of the rear eye track window TW2 is increased.
- the ratio between the Early and Late frequencies in the feedback loop of the signal reproduction circuit CDR is set to a specific value that is not the same. It is also possible to adopt a configuration in which the phase of the clock CLK is adjusted to an optimal position by adjusting.
- TW1 and TW2 In order to improve the performance of the signal reproduction circuit CDR, it is necessary to consider the absolute amount of the time widths of TW1 and TW2 in addition to the balance of the time widths of TW1 and TW2. In general, when the amount of jitter included in the data input Din is small, the performance is improved by increasing the time width of TW1 and TW2, and when the amount of jitter included in the data input Din is large, the time width of TW1 and TW2 is increased. Shortening improves performance.
- the amount of jitter included in the data input Din mainly depends on the wiring loss for transmitting the signal
- the amount of jitter included in the data input Din varies depending on the situation in which the transceiver is used, and is assumed in the design stage in advance. Difficult to do. Therefore, it is desirable that the absolute amount of the time width of TW1 and TW2 can be adjusted in accordance with the use situation.
- FIG. 8B shows that the adjustment of the absolute amount of the time width of TW1 and TW2 can be realized by making it possible to adjust the period during which C_BAD may make an erroneous determination.
- the data confirmation period (sum of required setup time and required hold time) required for correct data determination is long, that is, the clock synchronous data determiner C_BAD having poor performance
- the necessary data determination period (necessary setup time and necessary hold time) can be controlled by an external control signal SHcont.
- FIG. 9A shows a configuration example of the data determiner C_BAD in FIG. 8A.
- FIG. 9B is a diagram illustrating another configuration example of the data determiner C_BAD.
- Both the data determiner of FIG. 9A and the data determiner of FIG. 9B include two D-type latch circuits (level trigger latch circuits) D1_BAD and D2_BAD that operate in synchronization with the clock CLK having the opposite phase, respectively.
- a D-type flip-flop circuit having a slave configuration is configured.
- the control signal SHcont is input to the D-type latch circuit (level trigger latch circuit) D1_BAD on the master side, and data determination necessary for the D1_BAD to correctly perform the data holding operation is determined.
- the period can be adjusted by the control signal SHcont.
- the data determination period (necessary setup time and necessary hold time) necessary for correct data determination of the entire data determination device C_BAD is made variable by the control signal SHcont, and the absolute amount of the time width of the eye track windows TW1 and TW2 is changed. Can be adjusted.
- the control signal SHcont is input to the D-type latch circuit (level trigger latch circuit) D2_BAD on the slave side, and data determination necessary for the D2_BAD to correctly perform the data holding operation is determined.
- the period can be adjusted by the control signal SHcont.
- the data determination period (necessary setup time and required hold time) necessary for correct data determination of the entire data determination device C_BAD is made variable by the control signal SHcont, and the eye track windows TW1 and TW2 The absolute amount of time width can be adjusted.
- control signal SHcont is not input only to the master-side D-type latch circuit (level trigger latch circuit) D1_BAD or the slave-side D-type latch circuit (level trigger latch circuit) D2_BAD.
- the control signal SHcont is input to both of the D-type latch circuits (level trigger latch circuits), and the data determination period necessary for the two D-type latch circuits (level trigger latch circuits) to correctly hold the data is simultaneously determined. A configuration for adjustment is also possible.
- FIG. 10 is a circuit diagram showing a detailed configuration example of the data determiner C_BAD shown in FIG. 9B.
- the data determination unit C_BAD shown in FIG. 10 is configured by a D-type latch circuit (level trigger latch circuit) having a semi-static configuration using a pass transistor generally used in a CMOS circuit.
- a D-type latch circuit level trigger latch circuit
- CMOS inverter for data determination immediately after the pass transistor A variable resistor was inserted on the source side.
- the resistance value of the variable resistor When the resistance value of the variable resistor is increased, the amount of current of the CMOS inverter is limited, so that the sensitivity to changes in data input is reduced and the required data determination period is lengthened. Conversely, by reducing the resistance value of the variable resistor, the amount of current in the CMOS inverter is increased, and the necessary data determination period is shortened. Therefore, by controlling the resistance value of the variable resistor with the control signal SHcont, the necessary data determination period (necessary setup time and necessary hold time) of the data determiner C_BAD can be varied, and the time width of the eye track windows TW1 and TW2 The absolute amount of can be adjusted.
- variable resistor to be inserted into the CMOS inverter does not necessarily need to be inserted on both the NMOS side and the PMOS side, and can be configured to be inserted only on the NMOS side or only on the PMOS side.
- the operation corresponds to forcibly introducing an offset into the data determiner C_BAD as in the data determiner C_BAD in the fourth embodiment to be described later.
- the balance and absolute time of the eye track windows TW1 and TW2 before and after the phase comparison circuit are adjusted by using the single-phase clock data determination / phase comparison circuit according to the third embodiment and the signal reproduction circuit including the same.
- the signal reproduction circuit can be operated optimally according to the state of the transmission line.
- the data decision unit C_BAD ′ of FIG. 11 includes D-type latch circuits (level trigger latch circuits) D1_BAD ′ and D2_BAD ′ using two fully differential current mode logic circuits (CML circuits), and these D-type latch circuits (levels).
- (Trigger latch circuit) is composed of two variable current sources arranged between D1_BAD ′ and D2_BAD ′. These two variable current sources are similar to a circuit generally used for offset adjustment of a current mode logic circuit (CML circuit).
- an offset can be forcibly introduced into the D-type latch circuit (level trigger latch circuit) D2_BAD ′ on the slave side.
- the offset it is possible to lengthen the data determination period necessary for the data determiner C_BAD to correctly perform the data determination.
- D2_BAD ′ the D-type latch circuit (level trigger latch circuit) D2_BAD ′ on the slave side is more likely to output “0” than “1” by introducing an offset.
- D2_BAD ′ can easily output “0” due to the introduction of the offset. Therefore, the output Dout_bad of D2_BAD ′ is In order to make a transition from “0” to “1”, it is necessary that data input be confirmed for a long time compared to a state where there is no offset.
- the required data input determination period is shorter than in the case where there is no offset.
- the necessary data decision period when viewed as the entire data decision unit C_BAD is defined by a data pattern that makes the most necessary data decision period longer. Therefore, by introducing an offset, the data decision unit C_BAD ′ The data determination period necessary for correctly determining data becomes longer.
- the necessary data determination period (necessary setup time and necessary hold time) of the data determiner C_BAD ′ can be made variable, and the eye track windows TW1 and TW2 It is possible to adjust the absolute amount of the time width.
- an offset may be introduced into the data determination unit C_BAD by a known method such as adding a variable capacitor to each of p and n of the differential signal line. Is possible.
- the lengthening of the required data determination period due to the introduction of the offset works in the same way for the front and rear eye track windows TW1 and TW2, and therefore, the front and rear eye track windows described above in the description of the third embodiment with the introduction of the offset.
- the absolute time of the eye track windows TW1 and TW2 before and after the phase comparator is kept balanced by using the single-phase clock data determination / phase comparison circuit according to the fourth embodiment and the signal reproduction circuit including the same. Therefore, it is possible to adjust the signal reproduction circuit in accordance with the state of the transmission path.
- the single-phase clock dual data determination unit SPC_DC "in FIG. 12 includes three D-type latch circuits (level trigger latch circuits) D3_GOOD, D4_GOOD, and D2_BAD.
- This circuit is a high-performance data determination unit C_GOOD and a low-performance data determination unit C_BAD in the single-phase clock dual data determination unit SPC_DC shown in FIG. 5A, and is a master side D-type latch circuit (level trigger latch circuit).
- the master-side D-type latch circuit (level trigger latch circuit) D3_GOOD is shared by the data determiner C_GOOD with good performance and the data determiner C_BAD with poor performance. For this reason, if the D-type latch circuit (level trigger latch circuit) D2_BAD on the slave side of the data determiner C_BAD with poor performance is replaced with the D-type latch circuit (level trigger latch circuit) on the slave side of the data determiner C_GOOD with high performance If it is exactly the same as D4_GOOD, the two determiners will output exactly the same result.
- the control signal SHcont extends the data determination period necessary for the D-type latch circuit (level trigger latch circuit) D2_BAD on the slave side of the data determiner C_BAD having poor performance to hold data correctly.
- the time width of the eye track windows TW1 and TW2 can be adjusted to a desired amount.
- the data determination necessary for the D-type latch circuit (level trigger latch circuit) D2_BAD on the slave side of the data determiner C_BAD having poor performance to hold data correctly is determined.
- the period is lengthened, the problem that the time width of the front and rear eye track windows TW1 and TW2 unbalanced as described in the third embodiment is not caused by introducing the offset does not occur. Therefore, a circuit for adjusting the balance between the time widths of the front and rear eye track windows TW1 and TW2 becomes unnecessary, and the circuit scale and power consumption can be reduced.
- the D-type latch circuit (level trigger latch circuit) on the master side is shared by two data determiners by using the single-phase clock data determination / phase comparison circuit according to the fifth embodiment and the signal reproduction circuit including the same.
- the circuit scale and power consumption it becomes possible not only to reduce the circuit scale and power consumption, but also to adjust the absolute time of the eye track windows TW1 and TW2 before and after the phase comparator while maintaining the balance thereof, thereby reproducing the signal. It is possible to make the circuit operate optimally according to the state of the transmission path.
- the optical communication apparatus is particularly effective when applied to a circuit of a receiving unit thereof in an optical communication system having a communication speed exceeding several tens of Gbps.
- CDR signal reproduction circuit
- SPC_DD / PD single phase clock data determination / phase comparison circuit
- SPC_DC, SPC_DC ′, SPC_DC ” single phase clock dual data determination unit
- C_GOOD C_BAD: single phase clock data determination unit
- DFF1, DFF2, DFF3, DFF4 D-type flop flop SR1: Shift registers D1_BAD, D2_BAD, D3_GOOD, D4_GOOD: D-type latch circuit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Manipulation Of Pulses (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
図3は、本発明の実施の形態1による信号再生回路において、それを含めた光通信システムの構成例を示すブロック図である。図3に示す光通信システムは、光・電気変換ブロックOFE_BLKと、シリアル・パラレル変換ブロック(SerDes:SERializer/DESerializer)SD_BLKと、上位層論理ブロックPUによって構成される。OFE_BLKは、例えばフォトダイオード等を介して光入力データ信号IN_OPを電気信号に変換する光/電気変換回路OECと、半導体レーザ等を介して電気信号を光出力データ信号OUT_OPに変換する電気/光変換回路EOCを備えている。
実施の形態2では、単相クロックデータ判定/位相比較回路としては図5Aに示した実施の形態1の構成と変わりがない。ただし、Early/Late決定論理は図6AのEL_LOGICに代えて図7AのEarly/Late決定論理EL_LOGIC’を用いる。
実施の形態3は、図5Aで説明した実施の形態1の単相クロックデータ判定/位相比較回路SPC_DD/PDの各構成要素のうち、単相クロックデュアルデータ判定器SPC_DCを図8Bに示すSPC_DC’に置き換えたものである。図8Bは、図8Aの単相クロックデュアルデータ判定器SPC_DC’の原理的な動作を示す概念図である。図8Bは、横軸として時間をとり、クロックCLKと、正しいデータ判定に必要なデータ確定期間(必要セットアップ時間と必要ホールド時間の和)が短い、すなわち性能が良いクロック同期データ判定器C_GOODが誤判定をする可能性がある期間と、正しいデータ判定に必要なデータ確定期間(必要セットアップ時間と必要ホールド時間の和)が長い、すなわち性能が悪いクロック同期データ判定器C_BADが誤判定をする期間と、を図示したものである。ここで、性能が良いクロック同期データ判定器C_GOODは正しくデータ判定する一方で、性能が悪いクロック同期データ判定器C_BADが誤判定をする可能性がある期間は、本発明におけるデータ判定/位相比較回路において、位相比較信号が出る可能性がある期間である。このうち、図8Bに示したように、クロック立ち上がりに対して前側の期間をアイトラックウィンドウ期間1あるいはTW1,クロック立ち上がりに対して後側の期間をアイトラックウィンドウ期間2あるいはTW2、と呼ぶことにする。データ入力Dinの遷移がTW1の期間中に起こるとEarly信号が、データ入力Dinの遷移がTW2の期間中に起こるとLate信号が出力される可能性がある。
実施の形態4では、図8Aに示した単相クロックデュアルデータ判定器の「性能が悪い」方のデータ判定器C_BADとして、図11に示すものを用いる。図11のデータ判定器C_BAD’は、2つの完全差動構成のカレントモードロジック回路(CML回路)によるD型ラッチ回路(レベルトリガラッチ回路)D1_BAD’およびD2_BAD’と、これらD型ラッチ回路(レベルトリガラッチ回路)D1_BAD’およびD2_BAD’の間に配置されている2つの可変電流源と、から構成されている。この2つの可変電流源は、カレントモードロジック回路(CML回路)のオフセット調整用に一般的に使われる回路と同様のものである。この2つの可変電流源を制御信号SHcontによって制御することで、スレーブ側のD型ラッチ回路(レベルトリガラッチ回路)D2_BAD’に強制的にオフセットを導入することができる。オフセットが導入されることで、等価的に、データ判定器C_BADが正しくデータ判定をするのに必要なデータ確定期間を長くすることが可能である。
実施の形態5は、図5Aに示した実施の形態1の単相クロックデータ判定/位相比較回路SPC_DD/PDの各構成要素のうち、単相クロックデュアルデータ判定器SPC_DCを図12に示すSPC_DC”に置き換えたものである。図12の単相クロックデュアルデータ判定器SPC_DC”は、3つのD型ラッチ回路(レベルトリガラッチ回路)D3_GOOD、D4_GOOD、および、D2_BADから構成される。本回路は、図5Aに示した単相クロックデュアルデータ判定器SPC_DCにおける性能の良いデータ判定器C_GOOD、および、性能が悪いデータ判定器C_BADで、マスター側のD型ラッチ回路(レベルトリガラッチ回路)を共有しており、スレーブ側のD型ラッチ回路(レベルトリガラッチ回路)のみを別々にしたものと言える。D型ラッチ回路(レベルトリガラッチ回路)D2_BADが正しくデータ保持するのに必要なデータ確定期間を制御信号SHcontで調整することで、性能の悪いデータ判定器C_BADが正しくデータ判定するのに必要なデータ確定期間、すなわちアイトラックウィンドウTW1およびTW2の時間幅の絶対量を調整することが可能である。この調整には、実施の形態3の説明で述べた方法、もしくは実施の形態4の説明で述べた方法を適用する。
SPC_DD/PD: 単相クロックデータ判定/位相比較回路
SPC_DC、SPC_DC’、SPC_DC”: 単相クロックデュアルデータ判定器
C_GOOD、C_BAD: 単相クロックデータ判定器
EL_LOGIC、EL_LOGIC’: Early/Late決定論理
DFF1、DFF2、DFF3,DFF4: D型フロップフロップ
SR1: シフトレジスタ
D1_BAD、D2_BAD、D3_GOOD、D4_GOOD: D型ラッチ回路
Claims (11)
- データ入力と、単一のクロック信号のみを入力されて、データ判定および位相比較が可能な、データ判定/位相比較回路であって、
前記データ入力を、前記クロック信号に同期してデータ判定する第1のデータ判定回路と、
前記データ入力を、前記クロック信号に同期してデータ判定する第2のデータ判定回路と、
前記第1のデータ判定回路の出力と、前記第2のデータ判定回路の出力と、を入力されて、クロック位相が早すぎることを示す位相比較出力Early、あるいは、クロック位相が遅すぎることを示す位相比較結果Lateを出力する位相比較論理回路と、を備え、
前記第2のデータ判定回路は、正しくデータ判定するのに必要なデータ入力の確定期間(必要セットアップ時間と必要ホールド時間の和)が、前記第1のデータ判定回路が、正しくデータ判定するのに必要なデータ入力の確定期間(必要セットアップ時間と必要ホールド時間の和)よりも長く、
前記第1のデータ判定回路の出力結果、あるいは該出力結果を遅延させたものを、データ判定/位相比較回路全体のデータ判定結果として出力し、
前記位相比較論理回路は、前記第1のデータ判定回路の出力と、前記第2のデータ判定回路の出力と、が異なる場合にのみ、位相比較出力Early、あるいは、Lateを出力する可能性がある論理回路であることを特徴とするデータ判定/位相比較回路。 - 請求項1記載のデータ判定/位相比較回路において、
前記位相比較論理回路は、
前記第1のデータ判定回路の出力と、前記第2のデータ判定回路の出力と、が入力される2入力排他的論理和回路と、前記2入力排他的論理和回路の出力を一方の入力とする2つの2入力論理積の出力が、それぞれ、位相比較出力Early、あるいは、Lateとなっていることを特徴とするデータ判定/位相比較回路。 - 請求項1記載のデータ判定/位相比較回路において、
前記位相比較論理回路は、
前記第1のデータ判定回路の出力と、前記第2のデータ判定回路の出力と、が異なる場合、前記異なる出力のシンボルを注目シンボルとして、前記第1のデータ判定回路の前記注目シンボルと前後のシンボルとを合わせた3シンボル分の出力、および、前記第2のデータ判定回路の前記注目シンボルと前後のシンボルとを合わせた3シンボル分の出力、の、合計6シンボルの出力の組み合わせによって、位相比較出力EarlyとLateを定めることを特徴とするデータ判定/位相比較回路。 - 請求項3記載のデータ判定/位相比較回路において、
前記位相比較論理回路は、
前記第1のデータ判定回路の出力と、前記第2のデータ判定回路の出力と、が異なり、かつ、前記第1のデータ判定回路の現在の出力と、前記第1のデータ判定回路の1シンボル前の出力とが異なる場合に、位相比較出力Earlyを出力し、
前記第1のデータ判定回路の出力と、前記第2のデータ判定回路の出力と、が異なり、かつ、前記第1のデータ判定回路の現在の出力と、前記第1のデータ判定回路の1シンボル後の出力とが異なる場合に、位相比較出力Lateを出力することを特徴とするデータ判定/位相比較回路。 - 請求項3記載のデータ判定/位相比較回路において、
前記位相比較論理回路は、
現在のシンボルにおいて前記第1のデータ判定回路の出力と、前記第2のデータ判定回路の出力とが異なり、かつ、1シンボル前および1シンボル後では、前記第1のデータ判定回路の現在の出力と、前記第1のデータ判定回路の1シンボル前の出力とが同一であり、かつ、前記第1のデータ判定回路の現在の出力と、前記第1のデータ判定回路の1シンボル前の出力とが異なる場合に、位相比較出力Earlyを出力し、
現在のシンボルにおいて前記第1のデータ判定回路の出力と、前記第2のデータ判定回路の出力とが異なり、かつ、1シンボル前および1シンボル後では、前記第1のデータ判定回路の現在の出力と、前記第1のデータ判定回路の1シンボル前の出力とが同一であり、かつ、前記第1のデータ判定回路の現在の出力と、前記第1のデータ判定回路の1シンボル後の出力とが異なる場合に、位相比較出力Lateを出力することを特徴とするデータ判定/位相比較回路。 - 請求項1~5のいずれか1項に記載のデータ判定/位相比較回路において、
前記第1のデータ判定回路が正しくデータ判定するのに必要な必要セットアップ時間と必要ホールド時間の比率、あるいは、前記第2のデータ判定回路が正しくデータ判定するのに必要な必要セットアップ時間と必要ホールド時間の比率、の一方または両方を調整する手段を有していることを特徴とするデータ判定/位相比較回路。 - 請求項1~6のいずれか1項に記載のデータ判定/位相比較回路において、
前記第2のデータ判定回路が、正しくデータ判定するのに必要なデータ入力の確定期間(正しくデータ判定するのに必要な必要セットアップ時間と必要ホールド時間の和)を調整する手段を有していることを特徴とするデータ判定/位相比較回路。 - 請求項7記載のデータ判定/位相比較回路において、
前記第2のデータ判定回路の正しくデータ判定するのに必要なデータ入力の確定期間(正しくデータ判定するのに必要な必要セットアップ時間と必要ホールド時間の和)を調整する手段が、前記第2のデータ判定回路の内部のノードに外部からオフセットを加えること、であることを特徴とするデータ判定/位相比較回路。 - 請求項1~5のいずれか1項に記載のデータ判定/位相比較回路において、
前記第1のデータ判定回路と、前記第2のデータ判定回路は、マスター/スレーブ構成の回路であり、かつ、マスター側の回路は、前記第1のデータ判定回路と前記第2のデータ判定回路とで共有しており、スレーブ側の回路のみが異なることを特徴とするデータ判定/位相比較回路。 - 請求項9記載のデータ判定/位相比較回路において、
前記第2のデータ判定回路のスレーブ側の回路が、正しくデータ判定するのに必要なデータ入力の確定期間(正しくデータ判定するのに必要な必要セットアップ時間と必要ホールド時間の和)を調整する手段を有していることを特徴とするデータ判定/位相比較回路。 - 請求項10記載のデータ判定/位相比較回路において、
前記第2のデータ判定回路のスレーブ側の回路の正しくデータ判定するのに必要なデータ入力の確定期間(正しくデータ判定するのに必要な必要セットアップ時間と必要ホールド時間の和)を調整する手段が、前記第2のデータ判定回路のスレーブ側の回路の内部のノードに外部からオフセットを加えること、であることを特徴とするデータ判定/位相比較回路。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/066936 WO2011039835A1 (ja) | 2009-09-29 | 2009-09-29 | データ判定/位相比較回路 |
JP2011533975A JP5205517B2 (ja) | 2009-09-29 | 2009-09-29 | データ判定/位相比較回路 |
US13/255,902 US8503595B2 (en) | 2009-09-29 | 2009-09-29 | Data judgment/phase comparison circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/066936 WO2011039835A1 (ja) | 2009-09-29 | 2009-09-29 | データ判定/位相比較回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011039835A1 true WO2011039835A1 (ja) | 2011-04-07 |
Family
ID=43825692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/066936 WO2011039835A1 (ja) | 2009-09-29 | 2009-09-29 | データ判定/位相比較回路 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8503595B2 (ja) |
JP (1) | JP5205517B2 (ja) |
WO (1) | WO2011039835A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016066948A (ja) * | 2014-09-25 | 2016-04-28 | 富士通株式会社 | 信号再生回路および信号再生方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012007643A1 (en) * | 2010-07-16 | 2012-01-19 | Aalto University Foundation | Sequential circuit with current mode error detection |
JP6050083B2 (ja) * | 2012-10-18 | 2016-12-21 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
JP6201401B2 (ja) * | 2013-04-26 | 2017-09-27 | 富士通株式会社 | タイミング制御回路 |
US9112655B1 (en) * | 2013-07-30 | 2015-08-18 | Altera Corporation | Clock data recovery circuitry with programmable clock phase selection |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60256227A (ja) * | 1984-05-22 | 1985-12-17 | エヌ・ベー・フイリツプス・フルーイランペンフアブリケン | 位相制御回路を具える電気回路装置 |
JPH11112335A (ja) * | 1997-10-08 | 1999-04-23 | Nec Corp | 位相比較回路並びにこれを用いた位相同期ループ回路及びシリアル―パラレル変換回路 |
JPH11355133A (ja) * | 1998-06-09 | 1999-12-24 | Nec Corp | 位相比較回路 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05129913A (ja) * | 1991-11-01 | 1993-05-25 | Nippon Precision Circuits Kk | 位相比較回路 |
US20040091064A1 (en) * | 2002-11-12 | 2004-05-13 | Broadcom Corporation | Phase detector with delay elements for improved data regeneration |
JP4196657B2 (ja) | 2002-11-29 | 2008-12-17 | 株式会社日立製作所 | データ再生方法およびデジタル制御型クロックデータリカバリ回路 |
JP2005005965A (ja) * | 2003-06-11 | 2005-01-06 | Hitachi Ulsi Systems Co Ltd | 位相比較回路 |
JP5259074B2 (ja) * | 2006-11-10 | 2013-08-07 | 株式会社日立製作所 | 半導体集積回路装置 |
-
2009
- 2009-09-29 JP JP2011533975A patent/JP5205517B2/ja not_active Expired - Fee Related
- 2009-09-29 WO PCT/JP2009/066936 patent/WO2011039835A1/ja active Application Filing
- 2009-09-29 US US13/255,902 patent/US8503595B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60256227A (ja) * | 1984-05-22 | 1985-12-17 | エヌ・ベー・フイリツプス・フルーイランペンフアブリケン | 位相制御回路を具える電気回路装置 |
JPH11112335A (ja) * | 1997-10-08 | 1999-04-23 | Nec Corp | 位相比較回路並びにこれを用いた位相同期ループ回路及びシリアル―パラレル変換回路 |
JPH11355133A (ja) * | 1998-06-09 | 1999-12-24 | Nec Corp | 位相比較回路 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016066948A (ja) * | 2014-09-25 | 2016-04-28 | 富士通株式会社 | 信号再生回路および信号再生方法 |
Also Published As
Publication number | Publication date |
---|---|
US8503595B2 (en) | 2013-08-06 |
JPWO2011039835A1 (ja) | 2013-02-21 |
JP5205517B2 (ja) | 2013-06-05 |
US20120133394A1 (en) | 2012-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11374558B2 (en) | Measurement and correction of multiphase clock duty cycle and skew | |
CN111064473B (zh) | 用于电压模式发射器的高速多相位串行化系统 | |
US7142624B2 (en) | Analog unidirectional serial link architecture | |
US7668277B2 (en) | Apparatus and method for clock data recovery with low lock frequency | |
US8232844B2 (en) | Synchronous oscillator, clock recovery apparatus, clock distribution circuit, and multi-mode injection circuit | |
US7482841B1 (en) | Differential bang-bang phase detector (BBPD) with latency reduction | |
CN110232886B (zh) | 两级判决反馈均衡器和包括两级判决反馈均衡器的显示器 | |
JP2004180188A (ja) | データ再生方法およびデジタル制御型クロックデータリカバリ回路 | |
US8023605B2 (en) | Oversampling circuit and oversampling method | |
JP5205517B2 (ja) | データ判定/位相比較回路 | |
US20120154059A1 (en) | Multi phase clock and data recovery system | |
US9154291B2 (en) | Differential signal skew adjustment method and transmission circuit | |
JP2014140100A (ja) | 位相比較回路及びデータ受信装置 | |
JP2012114566A (ja) | 信号多重化回路 | |
KR101135420B1 (ko) | 이중 보간 방식의 클록 데이터 복원 회로 및 그 방법 | |
JP2004356701A (ja) | ハーフレートcdr回路 | |
JP3973149B2 (ja) | データリカバリ回路とデータリカバリ方法 | |
Jeon et al. | Area efficient 4Gb/s clock data recovery using improved phase interpolator with error monitor | |
JP5149987B2 (ja) | クロック生成回路およびそれを備えた信号再生回路 | |
Zargaran-Yazd et al. | A 25 Gb/s full-rate CDR circuit based on quadrature phase generation in data path | |
JP2015100017A (ja) | 位相比較回路およびクロックデータリカバリ回路 | |
CN100481728C (zh) | 低电压差动信号的时脉数据回复装置及其方法 | |
Lin et al. | Phase interpolation technique based on high-speed SERDES chip CDR | |
Cheng et al. | A phase interpolator for Sub-1V And high frequency for clock and data recovery | |
Yang et al. | A low power 120-to-520Mb/s clock and data recovery circuit for PWM signaling scheme |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09850026 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011533975 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13255902 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09850026 Country of ref document: EP Kind code of ref document: A1 |