WO2011034154A1 - ステント - Google Patents
ステント Download PDFInfo
- Publication number
- WO2011034154A1 WO2011034154A1 PCT/JP2010/066100 JP2010066100W WO2011034154A1 WO 2011034154 A1 WO2011034154 A1 WO 2011034154A1 JP 2010066100 W JP2010066100 W JP 2010066100W WO 2011034154 A1 WO2011034154 A1 WO 2011034154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stent
- cells
- cell
- arc
- connecting portion
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 13
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229920002988 biodegradable polymer Polymers 0.000 claims description 6
- 239000004621 biodegradable polymer Substances 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical class [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 239000011777 magnesium Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 4
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 238000005452 bending Methods 0.000 abstract description 38
- 230000000052 comparative effect Effects 0.000 description 20
- 210000004204 blood vessel Anatomy 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 210000001367 artery Anatomy 0.000 description 6
- 238000004904 shortening Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003698 laser cutting Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 208000031481 Pathologic Constriction Diseases 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000002504 physiological saline solution Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000036262 stenosis Effects 0.000 description 3
- 208000037804 stenosis Diseases 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000010952 cobalt-chrome Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000003902 lesion Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- ZMKVBUOZONDYBW-UHFFFAOYSA-N 1,6-dioxecane-2,5-dione Chemical compound O=C1CCC(=O)OCCCCO1 ZMKVBUOZONDYBW-UHFFFAOYSA-N 0.000 description 1
- GQLCSJBRVSWWDV-UHFFFAOYSA-N 2-hydroxyacetic acid oxepan-2-one Chemical compound OCC(O)=O.O=C1CCCCCO1 GQLCSJBRVSWWDV-UHFFFAOYSA-N 0.000 description 1
- XBBVURRQGJPTHH-UHFFFAOYSA-N 2-hydroxyacetic acid;2-hydroxypropanoic acid Chemical compound OCC(O)=O.CC(O)C(O)=O XBBVURRQGJPTHH-UHFFFAOYSA-N 0.000 description 1
- VSKXVGWORBZZDY-UHFFFAOYSA-N 2-hydroxypropanoic acid;oxepan-2-one Chemical compound CC(O)C(O)=O.O=C1CCCCCO1 VSKXVGWORBZZDY-UHFFFAOYSA-N 0.000 description 1
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- -1 SUS316 Inorganic materials 0.000 description 1
- 229910001362 Ta alloys Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000916 dilatatory effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes
- A61F2/915—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheets or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
- A61F2002/9155—Adjacent bands being connected to each other
- A61F2002/91558—Adjacent bands being connected to each other connected peak to peak
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0002—Two-dimensional shapes, e.g. cross-sections
- A61F2230/0004—Rounded shapes, e.g. with rounded corners
- A61F2230/0013—Horseshoe-shaped, e.g. crescent-shaped, C-shaped, U-shaped
Definitions
- the present invention relates to a stent used for improving the narrowing of an opening in a living body such as a blood vessel, and particularly to a stent having excellent durability and bending flexibility.
- the term “stent” means a device formed of a biocompatible material used to expand an opening in a living body such as a blood vessel and maintain the size of the expanded opening.
- the stent is introduced with the inflatable balloon to the desired location on the body, and when the balloon is inflated, the stent expands, thereby expanding the constricted opening.
- FIG. 7 As a conventionally known stent structure, there is a structure shown in FIG. 7 (the structure described in FIG. 1 of Patent Documents 1 and 2).
- a plurality of cells 11 are connected in the circumferential direction, and a plurality of the cells 11 are arranged so as to surround the central axis C1 of the stent 15 to form an annular unit 12, and adjacent to each other.
- the opposing cells 11, 11 'of the matching annular units 12, 12' are connected by a substantially S-shaped connecting portion 14, respectively.
- FIGS. 3 and 5 the structure shown in FIGS. 3 and 5 (the structure described in FIGS. 1 and 3 of Patent Document 3) is known.
- a first annular unit 8 composed of a first cell group in which a plurality of first cells 7 are connected in the circumferential direction, and a second cell in which a plurality of second cells 7 ′ are connected in the circumferential direction.
- a group of second annular units 8 ′ are alternately arranged so as to surround the central axis C1 of the stent 6, and a part of the adjacent cells of the adjacent first and second annular units 8, 8 ′.
- the shapes of the first cell 7 and the second cell 7 ′ are symmetrical with respect to the axial direction of the stent 6 around the connecting portion 9, and the cells of the connecting portion 9 are It is slightly longer than the unconnected cell.
- the cells 16, 16 ′ are partially connected by the connecting portion 17, and the length of the cell is constant.
- the length of the connecting portion 17 is about 0.2 mm.
- the cells 18 and 18 ' are formed by bending a CoCr alloy wire in a zigzag shape, and the connecting portion 19 is partially connected by welding. Yes.
- a stent treatment method has been rapidly popularized to restore blood flow by mechanically dilating an arterial lesion that has been narrowed due to the progression of arteriosclerosis using a balloon catheter, and placing a metal stent in the lumen of the affected area. It has become.
- a stent used for such treatment needs to satisfy the following three requirements. First, the closed stent is placed on a balloon attached to the distal end portion of the balloon catheter, and is passed through the patient's tortuous artery along a guide wire that has been inserted into the artery in advance. Transport to the constriction. Thus, the stent must be flexible in order to pass through the narrow and tortuous artery.
- the expanded stent must be durable enough to withstand repeated bending loads caused by the heartbeat, with sufficient strength to support the arterial wall or keep the stenosis open. .
- the total length of the expanded stent becomes shorter than the length of the closed state. If the length of the expanded stent is shortened, the lesion may not be covered as per the doctor's treatment plan. Therefore, it is desirable that the stent before and after expansion has a small dimensional change.
- the present inventor has found that the stents disclosed in Patent Documents 1 and 2 have uniform flexibility and sufficient strength to maintain the open state of the stenosis.
- the maximum stress is generated at the top of the bending portion 13 constituting the S-shaped connecting portion, and the bending durability is determined as a result of the fatigue durability test. It was found that the bending durability of the top portion of 13 is inferior to the bending durability at the substantially straight portions constituting the opposing cells 11, 11 ′ and the S-shaped connecting portion.
- Patent Document 3 has sufficient bending durability when subjected to a bending load as a result of physical property evaluation.
- the standard expansion pressure during stent expansion is disclosed in Patent Documents 1 and 2. It was found to be higher than 7 stents and difficult to open. Therefore, the stent disclosed in Patent Document 3 has a problem in terms of expandability. Further, the other company stents shown in FIGS. 8 and 9 which are currently on the market also have a difficulty in expandability, similar to the stent disclosed in Patent Document 3.
- the object of the present invention is to have a high flexibility capable of easily transporting through a narrow and slender artery, excellent expandability at the time of stent expansion, and support the artery wall to maintain the open state of the stenosis.
- An object of the present invention is to provide a stent that has sufficient strength to withstand the repeated bending load of an artery caused by the heartbeat.
- the present inventors have found that the maximum stress in the approximately arc portion of the cell is repeated due to the heartbeat after stent expansion by the balloon and after placement of the stent.
- the maximum stress caused by bending load greatly depends on the structure of the cell connection part.
- the optimization of the structure of the connection part between the opposing cells makes a breakthrough in bending durability without impairing expandability. Has been found to improve.
- the inventors have made the radius of curvature of the top of the arc constituting the substantially arc portion of the cell larger than the radius of curvature of the tangential circle formed at the arc-side end of the substantially linear portion of the cell.
- the stress and strain are almost uniformly distributed, the load applied to the cell is reduced most, and the bending durability is excellent, and the standard expansion pressure is lowered and the expansion uniformity is also reduced. It was confirmed that the present invention was excellent and the present invention was reached.
- annular unit formed by connecting a plurality of cells each having a substantially U-shaped shape having a substantially straight portion and a substantially arc portion and opened to one end along the axial direction is provided in the axial direction.
- a tubular body is formed by arranging a plurality of parts and being connected by a connecting portion, and the tubular body is a stent that is radially expandable from the inside thereof,
- a first annular unit consisting of a first cell group connecting a plurality of first cells in the circumferential direction
- a second annular unit consisting of a second cell group connecting a plurality of second cells in the circumferential direction.
- the shapes of the first cell and the second cell are symmetrical with respect to the axial direction of the stent around the connecting portion, and the adjacent first and second cells
- the connecting portion is formed by connecting the substantially arc portions of the opposing cells.
- the radius of curvature of the apex of the arc forming the substantially arc portion of the cell in substantially all cells constituting the stent is 1.1 to 1.5 times the radius of curvature of the tangential circle of the approximately straight portion of the cell. It is the stent characterized by being in the range.
- the curvature radius of the apex of the substantially arc portion of the cell is in a range of 1.2 to 1.4 times the curvature radius of the tangent circle of the substantially straight portion of the cell.
- the lengths of the substantially straight portions of both cells connected by the connecting portion are the same and slightly longer than the length of the substantially straight portion of the cells of the non-connecting portion. .
- the substantially straight line portion of the cells connected by the connecting portion is approximately 10 to 25% longer than the substantially straight line portion of the non-connected portion cell. It is about 1 to 0.3 mm.
- each of the annular units is composed of 6 to 10 cells, and preferably 1 to 3 cells among them form a connecting portion between the cells. .
- the connecting portion may be constituted by a short linear object between the substantially arc portions of the opposing cells, but the substantially arc portions of the opposing cells are directly connected to each other.
- the connecting portion is constituted, and it is particularly preferable that the connecting portion has a structure in which the apexes of the central arcs of the substantially arc portions of the opposing cells share each other. It is preferable that the width and thickness of the cell and the connecting portion are constant.
- the material forming the stent is preferably a cobalt chromium alloy or stainless steel, and a material made of a biodegradable metal or a biodegradable polymer is preferable.
- a material made of a biodegradable metal or a biodegradable polymer is preferable.
- the biodegradable metal pure magnesium, magnesium alloy, pure iron, or iron alloy is preferable.
- the substantially annular S-shaped connecting portion is eliminated and the adjacent annular units face each other. Only a part of the cells are connected to each other, and the curvature radius of the top of the arc forming the substantially arc portion of the cell in substantially all the cells constituting the stent is set to the arc of the substantially straight portion of the cell.
- the present invention by connecting only a part of the opposing cells and making the substantially arc shape of the cell in the connecting portion as described above, the standard expansion pressure is lowered, so that expandability is impaired. In addition, the durability against the bending load can be dramatically improved.
- FIG. 2 is a partially enlarged view of FIG. It is a top view which shows an example of the conventional partial link stent.
- FIG. 4 is an enlarged view of FIG. It is a top view which shows another example of the conventional partial link stent.
- FIG. 6 is an enlarged view of FIG. 5.
- It is a top view of the conventional all link stent.
- It is a schematic plan view which shows the connection between the annular units of another company's stent.
- It is a schematic plan view which shows the connection between the annular units of another company's stent.
- It is a conceptual diagram of the strut which comprises a cell. It is the schematic which shows the sample for a bending test.
- FIG. 1 is a plan view showing an example of the stent 1 of the present invention.
- FIG. 2 is an enlarged view showing a connecting portion of the stent 1 shown in FIG.
- the circumferential direction is such that the cells 2, 2 ′ having a substantially U-shape opened to one end along the axial direction surround the central axis C ⁇ b> 1 of the stent 1.
- a plurality of annular units 3 and 3 ′ are formed by being connected to each other, and a plurality of the annular units 3 and 3 ′ are arranged in the axial direction and connected by a connecting portion 4 to form a tubular body.
- the tubular body can be extended in the radial direction from the inside thereof, and the U-shaped cell is composed of a substantially linear portion and a substantially arc portion 5.
- a first annular unit 3 composed of a first cell group in which a plurality of first cells 2 are connected in the circumferential direction and a second ring unit in which a plurality of second cells 2 ′ are connected in the circumferential direction.
- a tubular body is formed by alternately connecting the second annular units 3 ′ composed of cell groups, and the first cell 2 and the second cell 2 ′ are symmetrical with respect to the connecting portion 4. is doing. Only some of the cells of the annular units 3 and 3 ′ that are opposed to each other are connected by a connecting portion 4 (partial link type). Since only some of the cells are connected to each other, the flexibility of the stent can be obtained compared to the case where all the cells are connected (all link type).
- connection structure in the connection portion 4 may be such that the tops of the substantially arc portions of the opposing cells may be connected with a short linear object of 0.1 to 0.3 mm, but preferably the connection portion 4
- the substantially straight line portions of the connected cells are slightly longer than the substantially straight line portions of the non-connected cells, and the top of the substantially arc portion 5 of one cell is directly connected to the substantially arc portion 5 of the other cell. It is preferable that they are integrated in contact.
- maximum stress may be generated at the center of the linear connecting part, which may be disadvantageous in terms of bending durability.
- the maximum stress is generated at four locations around the connecting portion (see reference numeral 22 in FIG. 2), the level of the maximum stress can be reduced, and the bending durability can be improved.
- a gap is formed between the cells 2 and 2 'between the substantially arc portions of the cells, and the substantially straight portion of the cell of the connecting portion is not a distance corresponding to the gap. It is slightly longer than the substantially straight part of the cell of the connection part. The presence of this slight gap in the unconnected portion prevents cells from overlapping when the stent is bent or contracted, and the opposing cells when the stent is bent. Will not win.
- the substantially straight line portion of the cells connected by the connecting portion is approximately 10 to 25% longer than the substantially straight line portion of the cells of the non-connected portion.
- the gap between the cells 2 and 2 'in the unconnected portion is too small to sufficiently obtain the above effect, and if it exceeds 25%, the space becomes large and blood vessels are uniformly supported.
- it is disadvantageous in terms of expansion uniformity if the length of the cell in the connecting portion is longer than the length of the cell in the non-connecting portion, and stress is easily applied to the connecting portion.
- the radius of curvature of the top of the arc constituting the substantially arc portion 5 of the cell constituting the stent is a tangent circle 21 formed at the arc-side ends of the two substantially straight portions of the cells 2 and 2 ′. , 21 'and 1.1 to 1.5 times the radius of curvature, preferably 1.2 to 1.4 (see FIG. 13).
- the standard expansion pressure is lower than that of the conventional stent, and the safety factor of the expansion operation is improved.
- the radius of curvature is less than 1.1 times, it is difficult to reduce the level of the maximum stress generated at the top of the substantially arc portion, and if the radius of curvature exceeds 1.5 times the radius of curvature, the substantially straight portion and the substantially arc portion of the cell Stress is generated at the boundary, and the effect of improving durability cannot be obtained.
- the ratio exceeds 1.5 times the top of the arc becomes too large, and the arc portions may interfere with each other when crimping the stent, which is not preferable.
- the cells 2 and 2 ' have a greater radial support force when the stent is expanded at an obtuse angle with respect to the central axis C1.
- the angle ⁇ formed by the two substantially linear portions of the expanded cell approaches 120 °, the radial support force of the stent increases. That is, in the design of the stent, when the cell is expanded to at least ⁇ 2.5 mm, the angle ⁇ after cell expansion is preferably designed to be at least 50 ° or more.
- the size of the stent (the length when the stent is not expanded, the diameter when the stent is not expanded) is not particularly limited, and may be the same as a conventionally used stent.
- the diameter is about 9 to 40 mm, and the diameter when not expanded is about 0.8 to 2 mm.
- the length of one annular unit of the stent is preferably about 0.5 to 3.0 mm.
- the length of one connecting part (the length of the gap in the axial direction between cells in the non-connecting part) is preferably about 0.05 to 1 mm, more preferably 0.1 to 0.3 mm.
- the number of cells 2, 2 ′ arranged in the circumferential direction is preferably 4 or more.
- the diameter after expansion is ⁇ 3.0 mm or more, it is preferable to arrange 6 or more, usually 6 to 12 pieces. Further, it is preferable that the annular units 3 and 3 ′ are arranged such that both of the annular units are combined in the stent axial direction with 6 or more, usually 6 to 12. Furthermore, in the stent axial direction, 3 or more per 10 mm, usually 4 to 8 are arranged, and when the target diameter for stent expansion (standard diameter, eg, ⁇ 3.0, ⁇ 4.0) is reached, for example, as described above In addition, the angle ⁇ after cell expansion should be designed to be at least 50 ° or more, usually 60 ° to 120 °.
- Designing the target diameter so as to exceed 120 ° is effective for the radiation supporting force of the stent, but the deformation amount of the substantially circular arc portion 5 becomes large and causes a problem.
- the shortening of the total length (four shortening) of the stent accompanying expansion becomes large, which causes problems such as difficulty in positioning during stent placement, which is not preferable.
- the shape of the struts (two straight portions) of the cells 2 and 2 ' is preferably formed in a radially symmetrical shape as shown in FIG. 10 with respect to the center line C1 in the stent axial direction.
- the thickness of the cell 2 is usually constant.
- the width of the cell 2 is usually 80 to 110 ⁇ m and the thickness is 70 to 90 ⁇ m.
- the width of the cell 2 is usually 80 to 150 ⁇ m and the thickness is 100 to 150 ⁇ m.
- annular unit 3 and the connection part 4 are constant.
- the constant width and thickness make it easy to control the dimensions during processing and polishing, and the constant width and thickness means that the cross-sectional area is constant and the bending moment in the same direction at any position. Tend to be the same, and the flexibility of the stent tends not to be affected by the direction.
- the cells are directly connected to each other, and the vertices of the center arc portions 20 and 20 'of the cells facing each other at the connecting portion overlap to make the thickness and the width constant, thereby enhancing expansion uniformity (see FIG. 2).
- the connecting portion 4 by configuring the connecting portion 4 as described above, since stress is not concentrated on the connecting portion 4, durability can be dramatically improved, and flexibility and expandability can be improved. There is an advantage that there is no decrease.
- the connecting portions 4 are not provided in all of the individual cells 2 and 2 '(partial link type), the cells 2 and 2' are respectively provided even when the diameter of the stent 1 is reduced during delivery to the blood vessel. They do not overlap with each other in the radial direction of the stent.
- the number of connecting portions 4 of the cells 2, 2 ′ constituting each annular unit 3, 3 ′ needs to be formed in the circumferential direction of the stent 1. .
- the number of connecting portions is selected according to the number of cells.
- the diameter of the stent is 3 to 9 mm, and the number of cells is 6 to 10.
- the number of connecting portions in the case of the number is preferably 1 to 3.
- a connecting portion is formed only in a part between a plurality of opposing cells 2 and 2 ′, and the remaining cells 2 and 2 ′ are not connected but form a non-connecting portion. Due to the presence of this unconnected portion, the entire stent 1 becomes more flexible, the delivery performance to the branched blood vessel is improved, and the stress on the arc portion forming the connecting portion is dispersed, so that the connecting portion is continuous without a gap. Thus, the durability is improved as compared with the stent disposed in the same manner.
- the stent of the present invention is manufactured from a metal pipe made of stainless steel such as SUS316, shape memory alloy such as Ni—Ti alloy, Cu—Al—Mn alloy, titanium alloy, tantalum alloy, cobalt chromium alloy or the like.
- the stent of the present invention may be manufactured from a metal (biodegradable metal) that can be decomposed in vivo.
- the biodegradable metal include pure magnesium, magnesium alloy, pure iron, and iron alloy.
- the magnesium alloy contains magnesium as a main component and contains at least one element selected from a biocompatible element group consisting of Zr, Y, Ti, Ta, Nd, Nb, Zn, Ca, Al, Li, and Mn. Those that do are preferred.
- the iron alloy includes iron as a main component, Mn, Co, Ni, Cr, Cu, Cd, Pb, Sn, Th, Zr, Ag, Au, Pd, Pt, Re, Si, Ca, Li, Al, Zn It preferably contains at least one element selected from the group of biocompatible elements consisting of Fe, C and S. Examples include those containing 88-99.8% iron, 0.1-7% chromium and 0-3.5% nickel and less than 5% other metals.
- the stent of the present invention comprises a biodegradable polymer such as polylactic acid, polyglycolic acid, poly (lactic acid-glycolic acid), poly (lactic acid- ⁇ -caprolactone), poly (glycolic acid- ⁇ -caprolactone), poly (A biodegradable high toughness polymer such as butylene succinate) may be made of a composite biodegradable polymer dispersed in a biodegradable matrix polymer such as polylactic acid. These biodegradable polymers may be stretched and oriented. Furthermore, a biodegradable polymer may be coated on a metal that can be decomposed in vivo.
- a biodegradable polymer such as polylactic acid, polyglycolic acid, poly (lactic acid-glycolic acid), poly (lactic acid- ⁇ -caprolactone), poly (glycolic acid- ⁇ -caprolactone), poly ( A biodegradable high toughness polymer such as butylene succinate) may be made of a composite biodegradable
- the stent of the present invention has a characteristic shape as described above, but a stent having such a shape can be integrally manufactured by laser processing.
- the manufacturing process by laser processing will be described.
- a tool path in laser processing is created using CAM based on the shape data of the designed stent.
- the tool path is set in consideration of the fact that the stent shape can be maintained after laser cutting and that no chips remain.
- laser processing is performed on the metal or polymer thin film meat tube. Control the generation of burrs and select machining conditions with the goal of high speed and high quality machining.
- the surface is made glossy using electropolishing, and the edge portion is finished in a smooth shape.
- a post-processing process after laser cutting is important.
- the oxide on the metal cut surface is first dissolved with an acid solution, and then electropolishing is performed.
- electropolishing a metal plate such as a stent or stentless is immersed in an electrolytic solution, and the two metals are connected via a DC power source.
- the stent on the anode side is dissolved to obtain a polishing effect.
- the stent manufactured by the above laser processing method can form a network structure as designed, so that high flexibility and radiation support force are sufficiently secured, vasodilatability is enhanced, and foreshortening and flare phenomenon are suppressed. It is possible to provide a stent that does not cut cells or the like during use.
- the present invention should not be limited by an example.
- the expansion pressure, bending durability time, flexibility, for shortening value, recoil value, and maximum strain are those measured by the following methods.
- a 3.0 mm diameter stent was inserted into a silicon tube having an inner diameter of 3.0 mm and an outer diameter of 4.0 mm, and the expansion pressure was measured when the inner diameter of the stent was expanded to 3 mm with a balloon through physiological saline.
- the stent was inserted into a silicon tube having an inner diameter of 3.0 mm and an outer diameter of 4.0 mm, and the inner diameter of the stent was expanded to 3 mm through physiological saline.
- the length of the stent after expansion was measured, and the reduction ratio with respect to the length of the stent before expansion was calculated to obtain a for shortening value.
- the stent was inserted into a silicon tube having an inner diameter of 3.0 mm and an outer diameter of 4.0 mm, and the inner diameter of the stent was expanded to 3 mm with a balloon through physiological saline. Thereafter, the balloon was removed, the inner diameter of the stent after the balloon was removed, and the recoil value was calculated by the following equation (1).
- the stent (Example 1) shown below was used as the stent of the present invention, and compared with the stents of Comparative Examples 1 to 4 shown below. The results are shown in Table 1 and FIG.
- Each of the stents used in Example 1 and Comparative Examples 1 to 4 has a length of 17.4 mm, an inner diameter of 1.0 mm when contracted, and an inner diameter of 3.0 mm when expanded, and the cells 2 and 2 ′ and the connecting portion 4 are formed.
- the width of the portion to be fixed is 100 ⁇ m and the thickness is constant 70 ⁇ m, both of which are stents made of cobalt chromium alloy.
- Example 1 The curvature radius of the top of the arc constituting the substantially arc portion 5 of all the cells of the connected portion and the unconnected portion of the stent shown in FIG. 1 is set to the radius of curvature R0.15 ⁇ of the tangential arc of the substantially straight portion 2.
- the curvature radius is 1.3 times R0.20 ⁇ (Fig. 2).
- the conventional stent (all link stent) of Comparative Example 1 shown in FIG. 7 includes a first annular unit 12 composed of a first cell group in which a plurality of first cells 11 are connected in the circumferential direction, and the first cell. And second annular units 12 ′ composed of a plurality of second cells 11 ′ having a symmetrical shape when viewed from the radial direction are alternately arranged, and all of the opposing cells are connected to form a substantially tubular body. .
- the adjacent annular units 12, 12 ′ are all connected by a connecting portion 14, can be extended in the circumferential direction from the inside of the tubular body, and connect a plurality of cells 11 in the circumferential direction.
- Comparative Example 4 The stent of Comparative Example 4 shown in FIG. 14 is the same as the conventional stent of Comparative Example 1 shown in FIG. 7, but the opposed cells 11 and 11 ′ of the annular units 12 and 12 ′ are connected by a substantially S-shaped connecting part 14. Instead of the all-link type connecting portion, a partial link type in which every other connecting portion is provided.
- Example 1 As shown in Table 1, as a result of the test, the durability of the partial link stents (Example 1, Comparative Examples 2, 3, and 4) is greater than that of the entire link stent (Comparative Example 1). The reason for this is that the cell space of the partial link is deformed (there are few constraint points and the degree of freedom), so that the load applied to the link is reduced, and it is estimated that the bending durability is superior to that of all link stents. In comparison of the partial link stent groups, the durability of Example 1 is greater than that of other partial link stents. The reason for this is presumed that when Example 1 was subjected to a bending load, the maximum strain was reduced (see FIG.
- Example 12 the load applied to the cell was most reduced, and the bending durability was excellent. Further, it was confirmed that the standard expansion pressure of Example 1 was 8 atm, lower than the standard expansion pressure of Comparative Examples 2 and 3, 9 atm, and the expansion uniformity and flexibility were excellent. Moreover, for shortening, recoil, etc. are equivalent to conventional stents, and are excellent in balance between durability and performance.
- FIG. 2 is an enlarged view of the arc portion 5 and the connecting portion 4 of the cell of the stent according to the first embodiment.
- Such a structure is more durable and provides a stent in which the cells are uniformly deformed and the stress and strain of the arc portion 5 and the connecting portion 4 are substantially uniform when subjected to a bending load.
- the cell arc portion 5 and the connection portion 4 have a relatively low stress / comparison compared to the bent portion between the cells of Comparative Example 1 and the arc portion 10 and the connection portion 9 of Comparative Examples 2 and 3. It has a structure subject to strain. Furthermore, the curvature radius of the top of the arc constituting the cell arc part 5 is 1.1 to 1.5 times the curvature radius of the tangential circle formed at the arc-side end of the substantially straight part of the cells 2 and 2 ′. Since the cell has a radius and the cells are connected by the connecting portion 4, the maximum stress and strain are minimized, resulting in excellent bending fatigue durability, bending flexibility, and expansion. Good uniformity.
- the present invention greatly contributes to the stent manufacturing technology by providing a stent having a structure excellent in durability against bending load and flexibility, the industrial applicability is extremely large. Furthermore, since the stent of the present invention can be manufactured integrally by laser processing, the industrial applicability is great from this point.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Physics & Mathematics (AREA)
- Vascular Medicine (AREA)
- Optics & Photonics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Prostheses (AREA)
Abstract
Description
複数の第一のセルを周方向に連結した第一のセル群からなる第一の環状ユニットと、複数の第二のセルを周方向に連結した第二のセル群からなる第二の環状ユニットがステントの中心軸を取り囲むように交互に配置され、前記第一セルと前記第二セルの形状は前記連結部を中心にして、ステントの軸方向に対称であり、前記隣接する第一及び第二の環状ユニットの複数の相対するセル同士の中の一部のセル同士のみが連結部で連結され、前記連結部は、相対するセルの前記略円弧部同士が接続して形成されたステントにおいて、
前記ステントを構成する実質的に全てのセルにおける、セルの略円弧部を形成する弧の頂部の曲率半径は、前記セルの略直線部の接線円の曲率半径の1.1~1.5倍の範囲内にあることを特徴とするステントである。
以下、本発明のステントの具体的態様について図面を参照しつつ詳細に説明する。図1は、本発明のステント1の一例を示す平面図である。図2は図1に示すステント1の連結部を示す拡大図である。図1に示すように、本発明のステント1においては、軸方向に沿って一端側に開口した略U字型形状を有するセル2、2’がステント1の中心軸C1を取り囲むように周方向に複数連結して環状ユニット3,3’を形成し、この環状ユニット3,3’が軸方向に複数配列し、連結部4で連結されて管状体を構成している。この管状体は、その内部より半径方向に伸張可能であり、上記U字型形状のセルは、略直線部と略円弧部5とから構成されている。
本発明のステントにおいて、ステントを構成するセルの略円弧部5を構成する弧の頂部の曲率半径が、セル2、2’の二つの略直線部の円弧側端部において形成される接線円21、21′の曲率半径の1.1~1.5倍の範囲内、好ましくは1.2~1.4の範囲内にある(図13参照)。このことによって、曲げ負荷により略円弧部の頂部に発生する最大応力のレベルが低下し、繰り返し曲げ負荷に対する耐久性が向上すると共に、拡張時に応力・歪が均一に分散されるため拡張均一性が良くなり、標準拡張圧力が従来ステントより低くなって、拡張操作の安全率が向上することとなる。曲率半径の1.1倍未満では、略円弧部の頂部に発生する最大応力のレベルを低下させることが困難であり、また、曲率半径の1.5倍を超えると、セルの略直線部と略円弧部との境界において応力が発生するようになり、耐久性向上効果が得られなくなる。また、1.5倍を超えると弧の頂部が大きくなりすぎて、ステントをクリンピングする時、円弧部同士が干渉することがあるので好ましくない。セル2,2’は、ステントの拡張後において中心軸C1に対し鈍角になるほうが、ステントの放射支持力が大きくなる。拡張後のセルの二つの略直線部が形成する角度θは120°に近づくほどステントの放射支持力が大きくなる。すなわちステントの設計においては、少なくともφ2.5mmに拡張したときにおいて、セルの拡張後の角度θは、少なくとも50°以上に設計するのが好ましい。
本発明においてステントのサイズ(ステントの非拡張時の長さ、非拡張時の直径)には、特に制約はなく、従来から使用されているステントと同じでよく、非拡張時の長さは、9~40mm程度、非拡張時の直径が0.8~2mm程度であることが好ましい。ステントの1つの環状ユニットの長さは、0.5~3.0mm程度が好ましい。1つの連結部の長さ(非連結部のセルとセル間の軸方向の隙間の長さ)は、0.05~1mm程度が好ましく、より好ましくは、0.1~0.3mmである。
また、セル2,2’の周方向の配置数は、4個以上が好ましい。さらに拡張後の径としてφ3.0mm以上となる場合においては6個以上、通常6~12個配置するのが好ましい。また環状ユニット3,3’は両方の環状ユニットを合わせてステント軸方向においては6個以上、通常6~12個配置するのが好ましい。更にステント軸方向においては10mm当り3個以上、通常4~8個配置し、ステント拡張の目標径(規格径、例えばφ3.0、φ4.0)となった時点において、例えば先に述べたようにセルの拡張後の角度θが、少なくとも50°以上、通常60°~120°に設計するのがよい。目標径において120°を超えるよう設計することは、ステントの放射支持力には有効であるが、略円弧部5の変形量が大きくなり問題が出る。また拡張に伴うステントの全長短縮(フォーショートニング)が大きくなり、ステント留置時の位置決めが困難となる等の問題が起り、好ましくない。
また、本発明のステントは、生体内で分解可能な金属(生分解性金属)で製造されていてもよい。生分解性金属としては、純マグネシウム、マグネシウム合金、純鉄、鉄合金などが挙げられる。マグネシウム合金としては、マグネシウムを主成分とし、Zr、Y、Ti、Ta、Nd、Nb、Zn、Ca、Al、Li、およびMnからなる生体適合性元素群から選択される少なくとも1つの元素を含有するものが好ましい。例えば、マグネシウムが50~98%、リチウム(Li)が0~40%、鉄が0~5%、その他の金属または希土類元素(セリウム、ランタン、ネオジム、プラセオジム等)が0~5%であるものを挙げることができる。鉄合金としては、鉄を主成分として、Mn、Co、Ni、Cr、Cu、Cd、Pb、Sn、Th、Zr、Ag、Au、Pd、Pt、Re、Si、Ca、Li、Al、Zn、Fe、C、Sからなる生体適合性元素群から選択される少なくとも1つの元素を含むものが好ましい。例えば88-99.8%の鉄、0.1-7%のクロムおよび0-3.5%のニッケル並びに5%より少ない他の金属を含むものが例示される。
さらにまた、本発明のステントは、ポリ乳酸、ポリグリコール酸、ポリ(乳酸―グリコール酸)、ポリ(乳酸―ε―カプロラクトン)、ポリ(グリコール酸―ε―カプロラクトン)など生分解性ポリマー、ポリ(コハク酸ブチレン)などの生分解性高靭性ポリマーがポリ乳酸などの生分解性マトリックスポリマー内に分散した複合生分解性ポリマーで製造されてもよい。これらの生分解性ポリマーは、延伸・配向されていてもよい。さらに、生体内で分解可能な金属の上に、生分解性ポリマーが被覆されていてもよい。
径3.0mmステントを内径3.0mm、外径4.0mmのシリコンチューブ内に挿入し、生理食塩水を通して、ステントの内径を3mmまでバルーンで拡張したときの拡張圧力を測定した。
図11に示すようにチューブの両端を固定し、シリコンチューブの左端をステージに固定して、右端をカムに固定し、モーターの回転でカムを作動させ、カムをステント中心部が側方2.0mm屈曲するように往復させて、シリコンチューブの中心部を曲げ、チューブ内に挿入したステントの中心を繰り返して折り曲げるようにして破断するまでの耐久時間を測定した。
4点曲げ法で曲げ強度を測定し、この値により柔軟性を評価した。
ステントを、内径3.0mm、外径4.0mmのシリコンチューブ内に挿入し、生理食塩水を通して、ステントの内径を3mmまでに拡張した。拡張後のステントの長さを測定し、拡張前のステントの長さに対する縮小率を算出して、フォーショートニング値とした。
ステントを、内径3.0mm、外径4.0mmのシリコンチューブ内に挿入し、生理食塩水を通して、バルーンによりステントの内径を3mmまでに拡張した。その後、バルーンを除去し、バルーン除去後のステントの内径を測定して下記の式(1)によりリコイル値を算出した。
ステントをクリンパによる縮径から血管内へのバルーン拡張による留置までの一連の過程で、ステント各部に発生する歪みを材料強度面から評価するため、コンピュータシミュレーションにより分析した。ステント有限要素モデルを構築し、適切な材質特性及び特徴を入力し、ステントを外径1.0mmまで縮径してから内径3.0mmまで拡張して、血管に留置し、一連の過程での発生する最大歪みを算出した。
図1に示した実施例1ステントの連結部および非連結部のすべてのセルの略円弧部5を構成する弧の頂部の曲率半径は、略直線部2の接線円弧の曲率半径R0.15μに対し、1.3倍の曲率半径R0.20μ(図2)である。
(非連結部におけるセルの長さ:1.2mm、連結部における1つのセルの長さ:1.3mm、1つの環状ユニットにおけるセルの数:6 )
図7に示した比較例1の従来ステント(全リンクステント)は、複数の第一のセル11を周方向に連結した第一のセル群からなる第一の環状ユニット12と該第一のセルと径方向から見て対称形状の複数の第二のセル11’ 群からなる第二の環状ユニット12’を交互に配置し、相対するセル同士を全て連結して略管状体を形成している。前記隣り合う環状ユニット12、12’同士はすべて連結部14により連結され、該管状体の内部より円周方向に伸張可能であって、複数のセル11を周方向に連結し、これらをステント15の中心軸C1を取り囲むように複数配列して構成されている。
(1つのセルの長さ:1.2mm、連結部の長さ:0.6mm、1つの環状ユニットにおけるセルの数:6 )
図3に示した比較例2のステントのセル円弧部10を構成する弧の頂部の曲率半径はR0.15μ(図4)である。
(1つのセルの長さ:1.2mm、連結部における1つのセルの長さ:1.3mm、1つの環状ユニットにおけるセルの数:6 )
図5に示した比較例3のステントのセル円弧部10を構成する弧の頂部の曲率半径はR0.20μ(図6)である。
(非連結部における1つのセルの長さ:1.2mm、連結部における1つのセルの長さ:1.3mm、1つの環状ユニットにおけるセルの数:6 )
図14に示した比較例4のステントは、図7に示した比較例1の従来ステントにおいて、環状ユニット12,12'の相対するセル11、11’が略S字状の連結部14で連結された全リンク型の連結部の代わりに、1つおきに連結部を設けた部分リンク型である。
2,2’セル
3,3’,3’’,3’’’ 環状ユニット
4 連結部
5 セル円弧部
6 従来ステント(比較例2、3)
7,7’セル
8,8’環状ユニット
9 連結部
10 円弧部
11,11’セル
12,12’環状ユニット
13 屈曲部
14 連結部
15 従来ステント(比較例1)
16,16’セル
17 連結部
18,18’セル
19 溶接部
20,20’中心円弧
21,21’接線円
22 最大応力発生点
a、a’ 連結部の列
C1・・・ステントの中心軸
Claims (11)
- 略直線部と略円弧部とを備える、軸方向に沿って一端側に開口した略U字型形状を有するセルが複数連結して形成された環状ユニットが軸方向に複数配列して連結部で連結されることにより管状体を形成し、前記管状体は、その内部より半径方向に伸張可能なステントであって、
複数の第一のセルを周方向に連結した第一のセル群からなる第一の環状ユニットと、複数の第二のセルを周方向に連結した第二のセル群からなる第二の環状ユニットがステントの中心軸を取り囲むように交互に配置され、前記第一セルと前記第二セルの形状は前記連結部を中心にして、ステントの軸方向に対称であり、前記隣接する第一及び第二の環状ユニットの複数の相対するセル同士の中の一部のセル同士のみが連結部で連結され、前記連結部は、相対するセルの前記略円弧部同士が接続して形成されたステントにおいて、
前記ステントを構成する実質的に全てのセルにおける、セルの略円弧部を形成する弧の頂部の曲率半径は、前記セルの略直線部の円弧側端部において形成される接線円の曲率半径の1.1~1.5倍の範囲内にあることを特徴とするステント。 - 請求項1において、セルの前記略円弧部を構成する弧の頂部の曲率半径が、セルの前記略直線部の略円弧側端部において形成される接線円の曲率半径の1.2~1.4倍であるステント。
- 請求項1において、前記連結部で連結されているセル同士の双方のセルの略直線部の長さが、同じ長さで、非連結部のセルの略直線部の長さよりも、若干長くなっているステント。
- 請求項3において、前記連結部で連結されているセルの略直線部が、非連結部のセルの略直線部より10~25%長いステント。
- 請求項1において、それぞれの前記環状ユニットは6~10個のセルから構成されており、その中の1~3個のセルが、相対するセルとの間に連結部を形成しているステント。
- 請求項1において、前記連結部は、相対するセルの前記略円弧部同士が直接接続して形成されているステント。
- 請求項6において、前記連結部は、相対するセルの略円弧部同士の中心円弧の頂点を互いに共有しているステント。
- 請求項1において、前記セル及び前記連結部の幅及び厚みが、それぞれ一定であるステント。
- 請求項1において、コバルトクロム合金またはステンレス鋼で形成されたステント。
- 請求項1において、生分解性金属または生分解性ポリマーからなる材料で形成されたステント。
- 請求項10において、生分解性金属が、純マグネシウム、マグネシウム合金、純鉄、または鉄合金であるステント。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800412209A CN102497838A (zh) | 2009-09-17 | 2010-09-16 | 支架 |
US13/395,581 US8882827B2 (en) | 2009-09-17 | 2010-09-16 | Stent |
IN2511DEN2012 IN2012DN02511A (ja) | 2009-09-17 | 2010-09-16 | |
EP10817267.7A EP2478876A4 (en) | 2009-09-17 | 2010-09-16 | STENT |
JP2011531975A JP5684133B2 (ja) | 2009-09-17 | 2010-09-16 | ステント |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-215464 | 2009-09-17 | ||
JP2009215464 | 2009-09-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011034154A1 true WO2011034154A1 (ja) | 2011-03-24 |
Family
ID=43758754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/066100 WO2011034154A1 (ja) | 2009-09-17 | 2010-09-16 | ステント |
Country Status (6)
Country | Link |
---|---|
US (1) | US8882827B2 (ja) |
EP (1) | EP2478876A4 (ja) |
JP (1) | JP5684133B2 (ja) |
CN (1) | CN102497838A (ja) |
IN (1) | IN2012DN02511A (ja) |
WO (1) | WO2011034154A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102813566A (zh) * | 2012-04-24 | 2012-12-12 | 冯海全 | 冠脉支架 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102753119A (zh) * | 2009-10-30 | 2012-10-24 | 科迪斯公司 | 具有改进的柔性和耐用性的脉管内装置 |
US20110282428A1 (en) * | 2010-05-13 | 2011-11-17 | Boston Scientific Scimed, Inc. | Biodegradable composite stent |
AU2013263411B2 (en) | 2012-05-14 | 2017-05-25 | C.R. Bard, Inc. | Uniformly expandable stent |
USD723165S1 (en) | 2013-03-12 | 2015-02-24 | C. R. Bard, Inc. | Stent |
CN103462734A (zh) * | 2013-09-18 | 2013-12-25 | 深圳市金瑞凯利生物科技有限公司 | 冠脉血管支架及其制作方法 |
DE102014016588A1 (de) | 2014-11-11 | 2016-05-12 | medicut Stent Technology GmbH | Stentprothese |
ES2881999T3 (es) * | 2015-11-26 | 2021-11-30 | Japan Medical Device Tech Co Ltd | Endoprótesis bioabsorbible |
CN105902331A (zh) * | 2016-04-08 | 2016-08-31 | 南京永明医疗器械有限公司 | 一种血管支架及其制备方法 |
JP6628263B2 (ja) | 2017-02-01 | 2020-01-08 | 学校法人加計学園 岡山理科大学 | 生体吸収性ステント |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03145720A (ja) | 1989-10-31 | 1991-06-20 | Oki Electric Ind Co Ltd | 化合物半導体の成長方法及びこれに使用するシリコン基板 |
JP3654627B2 (ja) | 2000-04-20 | 2005-06-02 | 川澄化学工業株式会社 | ステント |
JP3663192B2 (ja) | 2001-10-16 | 2005-06-22 | 川澄化学工業株式会社 | ステント |
JP3145720U (ja) * | 2008-08-06 | 2008-10-16 | 株式会社日本ステントテクノロジー | ステント |
WO2008126894A1 (ja) * | 2007-04-12 | 2008-10-23 | Kaneka Corporation | ステント |
JP2009082245A (ja) * | 2007-09-27 | 2009-04-23 | Terumo Corp | 生体内留置用ステントおよび生体器官拡張器具 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE29708879U1 (de) * | 1997-05-20 | 1997-07-31 | Jomed Implantate GmbH, 72414 Rangendingen | Koronarer Stent |
JP3605388B2 (ja) | 2001-10-16 | 2004-12-22 | 川澄化学工業株式会社 | ステント |
CA2484197A1 (en) * | 2002-05-08 | 2003-11-20 | Abbott Laboratories | Endoprosthesis having foot extensions |
US20060121080A1 (en) * | 2002-11-13 | 2006-06-08 | Lye Whye K | Medical devices having nanoporous layers and methods for making the same |
JP4797473B2 (ja) * | 2005-07-11 | 2011-10-19 | ニプロ株式会社 | 拡張性の優れた柔軟なステント |
DE502005006213D1 (de) * | 2005-08-10 | 2009-01-22 | Axetis Ag | Rohrförmige Stützprothese mit sich seitlich überlappenden Krümmungsbögen |
US8388673B2 (en) * | 2008-05-02 | 2013-03-05 | Abbott Cardiovascular Systems Inc. | Polymeric stent |
EP2186492B1 (en) | 2007-09-27 | 2012-08-15 | Terumo Kabushiki Kaisha | Stent and living organ dilator |
WO2009051607A1 (en) * | 2007-10-19 | 2009-04-23 | Medlogics Device Corporation | Implantable and lumen-supporting stents and related methods of manufacture and use |
CN101357089A (zh) * | 2008-09-12 | 2009-02-04 | 西北有色金属研究院 | 一种生物可降解镁合金血管内支架的制作方法 |
JP5597250B2 (ja) * | 2009-04-10 | 2014-10-01 | コヴィディエン リミテッド パートナーシップ | 高い疲労抵抗を有する移植片、移植片送達システム、および使用法 |
-
2010
- 2010-09-16 JP JP2011531975A patent/JP5684133B2/ja not_active Expired - Fee Related
- 2010-09-16 WO PCT/JP2010/066100 patent/WO2011034154A1/ja active Application Filing
- 2010-09-16 CN CN2010800412209A patent/CN102497838A/zh active Pending
- 2010-09-16 IN IN2511DEN2012 patent/IN2012DN02511A/en unknown
- 2010-09-16 EP EP10817267.7A patent/EP2478876A4/en not_active Withdrawn
- 2010-09-16 US US13/395,581 patent/US8882827B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03145720A (ja) | 1989-10-31 | 1991-06-20 | Oki Electric Ind Co Ltd | 化合物半導体の成長方法及びこれに使用するシリコン基板 |
JP3654627B2 (ja) | 2000-04-20 | 2005-06-02 | 川澄化学工業株式会社 | ステント |
JP3663192B2 (ja) | 2001-10-16 | 2005-06-22 | 川澄化学工業株式会社 | ステント |
WO2008126894A1 (ja) * | 2007-04-12 | 2008-10-23 | Kaneka Corporation | ステント |
JP2009082245A (ja) * | 2007-09-27 | 2009-04-23 | Terumo Corp | 生体内留置用ステントおよび生体器官拡張器具 |
JP3145720U (ja) * | 2008-08-06 | 2008-10-16 | 株式会社日本ステントテクノロジー | ステント |
Non-Patent Citations (1)
Title |
---|
See also references of EP2478876A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102813566A (zh) * | 2012-04-24 | 2012-12-12 | 冯海全 | 冠脉支架 |
Also Published As
Publication number | Publication date |
---|---|
US20120172974A1 (en) | 2012-07-05 |
EP2478876A1 (en) | 2012-07-25 |
IN2012DN02511A (ja) | 2015-08-28 |
JP5684133B2 (ja) | 2015-03-11 |
EP2478876A4 (en) | 2014-07-16 |
JPWO2011034154A1 (ja) | 2013-02-14 |
CN102497838A (zh) | 2012-06-13 |
US8882827B2 (en) | 2014-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5684133B2 (ja) | ステント | |
JP4871692B2 (ja) | 生体内留置用ステントおよび生体器官拡張器具 | |
AU2006338440B2 (en) | Endoluminal prosthesis | |
JP5243577B2 (ja) | 生体内留置用ステント | |
US8449596B2 (en) | Stent and stent delivery device | |
JP2007144108A (ja) | 生体内留置用ステント | |
US20130096669A1 (en) | Partially annealed stent | |
JP5573911B2 (ja) | 生体留置用ステント | |
US20080097587A1 (en) | Stent | |
US8157858B2 (en) | Stent and stent delivery device | |
JP4846414B2 (ja) | 生体内留置用ステントおよび生体器官拡張器具 | |
JP3145720U (ja) | ステント | |
JP3146103U (ja) | ステント | |
CN202568545U (zh) | 一种冠脉支架 | |
WO2018143115A1 (ja) | 生体吸収性ステント | |
JP4654361B2 (ja) | ステント | |
JP5267457B2 (ja) | ステント | |
JP2016059506A (ja) | 病変部に正確に留置することができるステント | |
JP2016059504A (ja) | 柔軟性が向上したステント | |
JP2016059505A (ja) | 拡張均一性が向上したステント | |
JP4835113B2 (ja) | ステント | |
JP5612985B2 (ja) | ステント及びそれを備えたステントシステム、並びに、ステント製造方法 | |
JP2017094017A (ja) | ステント | |
EP4212133A1 (en) | Stent and method for producing stent | |
JP2012034896A (ja) | 生体内留置用ステントおよび生体器官拡張器具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080041220.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10817267 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011531975 Country of ref document: JP Ref document number: 13395581 Country of ref document: US Ref document number: 2010817267 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2511/DELNP/2012 Country of ref document: IN |