WO2011033740A1 - マイクロ波加熱装置 - Google Patents
マイクロ波加熱装置 Download PDFInfo
- Publication number
- WO2011033740A1 WO2011033740A1 PCT/JP2010/005495 JP2010005495W WO2011033740A1 WO 2011033740 A1 WO2011033740 A1 WO 2011033740A1 JP 2010005495 W JP2010005495 W JP 2010005495W WO 2011033740 A1 WO2011033740 A1 WO 2011033740A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microwave
- radiating
- phase
- unit
- points
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/66—Circuits
- H05B6/68—Circuits for monitoring or control
- H05B6/686—Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
- H05B6/705—Feed lines using microwave tuning
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/72—Radiators or antennas
Definitions
- the present invention relates to a microwave heating apparatus including a plurality of radiating portions that radiate microwaves from microwave generation means.
- Conventional microwave heating apparatuses of this type are generally configured to have a rectangular parallelepiped heating chamber, and the heating chamber includes one or a plurality of radiating portions.
- the radiating units are provided on the upper wall surface and the bottom wall surface of the heating chamber, and the microwaves from the dedicated microwave generating means are supplied to each radiating unit, and the radiating units are heated.
- the microwave received by the radiating unit in association with the microwave interference in the heating chamber space is obtained by operating the selected microwave generating means in a time-sharing manner. Therefore, the microwave generating means connected to the radiation portion is prevented from being destroyed, and a plurality of microwave generating means can be operated substantially simultaneously.
- the radiation part arranged on the orthogonal wall surface in the heating chamber suppresses the interference of microwaves radiated from each other radiation part by appropriately selecting the coupling between the heating chamber and the microwave generating means. And simultaneous generation of the microwave generating means becomes possible.
- the conventional microwave heating apparatus a plurality of radiating units are provided, and the amount of microwave power supplied to each radiating unit can be changed by controlling a phase shifter provided in the microwave generating means (for example, Patent Document 3).
- the phase shifter is configured to switch the length of the microwave pass line depending on the on / off characteristics of the diode.
- the synthesizing unit is configured using 90-degree and 180-degree hybrids, and controls the phase shifter to change the power ratio of the two outputs from the synthesizing unit, or to change the phase between the two outputs in phase or It has changed to the reverse phase.
- the conventional microwave heating apparatus has a configuration in which one or a plurality of radiating portions are arranged, and the radiating portion has a configuration specialized for the radiating function. Further, the conventional microwave heating apparatus described above has a configuration in which the microwave to be emitted radiates either a linearly polarized wave or a circularly polarized wave.
- the present invention solves the above-described problems in the conventional microwave heating apparatus, and the radiation unit that radiates microwaves has a function that can radiate both linearly polarized waves and circularly polarized waves, and a power combining function.
- An object of the present invention is to provide a microwave heating apparatus that has an added new radiation function and can optimally control a microwave signal supplied to the radiation section.
- a microwave heating apparatus includes a microwave oscillating unit having a plurality of outputs configured to include a plurality of phase-locked loops connected to one reference signal oscillator, A plurality of amplifying units for amplifying respective outputs of the microwave oscillating unit; A plurality of radiating units that are supplied with output from the amplification unit and radiate microwaves into the heating chamber; A control unit for controlling the microwave oscillation unit, Each of the radiation units has a plurality of microwave feed points, and each output from the amplification unit is supplied to each of the microwave feed points.
- the microwaves of the same frequency supplied to each microwave feeding point can be combined with each other and radiated into the heating chamber.
- the microwave heating apparatus of the first aspect can supply a large amount of power into the heating chamber using a plurality of amplifying units that generate a relatively small amount of power without increasing the number of radiating units.
- the microwave oscillating unit according to the first aspect is configured to change the phase of the oscillation signal output from the reference signal oscillator. 12d), and may be configured such that the phases of the microwaves supplied to the plurality of microwave feeding points in the respective radiation units are set to a predetermined phase difference and supplied.
- the microwave heating apparatus according to the second aspect of the present invention configured as described above changes the radiation form of the microwave generated by the synthesis of the microwave signal having the phase difference of the microwave feeding point in each radiation unit. Thus, heating can be promoted so that the object to be heated is in a desired state.
- the second microwave feeding point 20b of the first radiating unit 20 and the feeding phase of the first microwave feeding point 20a of the first radiating unit 20 and The feeding phase of the second microwave feeding point 21b of the second radiating unit 21 is fed with a delay of 90 degrees, and the feeding phase of the first microwave feeding point 21a of the second radiating unit 21 is 180 degrees. Power is supplied with a delay.
- the arrangement configuration of the microwave feeding points 20a, 20b, 21a and 21b and the phase difference of the microwaves supplied to the respective microwave feeding points 20a, 20b, 21a and 21b are 90 degrees.
- the radiating units 20 and 21 perform circularly polarized radiation.
- the microwave electric fields in the same direction are generated by the microwaves at the first microwave feeding points 20a and 21a.
- the phase of the microwaves fed to the second microwave feeding points 20b and 21b is 0 degrees, no microwave electric field is generated.
- the phases of the microwaves fed to the first microwave feed points 20a and 21a are 270 degrees and 90 degrees, respectively, and are fed to the second microwave feed points 20b and 21b.
- FIG. 6 is a diagram for explaining a third radiation pattern by the radiation sections 20 and 21 in the microwave heating apparatus according to the first embodiment of the present invention.
- the amount of microwave power supplied to the first microwave feed points 20a and 21a of the radiating units 20 and 21 is supplied to the second microwave feed points 20b and 21b. More than microwave power.
- the feed phases for the microwave feed points 20a, 20b, 21a, and 21b are the same as those in the first radiation form shown in FIG. That is, in each of the radiating units 20 and 21, the power supply phase of the second microwave power supply points 20b and 21b is supplied with a delay of 90 degrees with respect to the power supply phase of the first microwave power supply points 20a and 21a.
- phase (absolute phase) of the microwaves fed to the first microwave feed points 20a and 21a is 90 degrees, the power is fed to the second microwave feed points 20b and 21b at this time.
- the phase of the microwave (absolute phase) is 0 degrees because it is delayed by 90 degrees from the feeding phase of the first microwave feeding points 20a and 21a.
- the microwave electric field generated by the microwaves from the first microwave power supply points 20a and 21a is proportional to the amount of microwave power supplied, in the third radiation mode. This is larger than the microwave electric field generated by the microwaves from the second microwave feed points 20b and 21b. Therefore, in FIG. 6, the arrow indicating the microwave electric field excited by the first microwave feeding points 20a and 21a is changed from the arrow indicating the microwave electric field excited by the second microwave feeding points 20b and 21b. Show long.
- a microwave electric field (a microwave electric field indicated by arrows 20A and 21A in FIG. 6) is generated by the microwaves from the first microwave feeding points 20a and 21a.
- the two microwave feed points 20a and 20b in the first radiating unit 20 are supplied to the respective microwave feed points 20a and 20b in a configuration in which they are orthogonally arranged. Microwaves are combined in power and radiated into the heating chamber.
- the microwaves supplied to the microwave feeding points 21a and 21b are combined and radiated into the heating chamber. ing.
- a plurality of microwave generating means for generating a relatively small amount of power is provided, and a plurality of microwave feeding points are provided in each radiating portion.
- the other microwave By changing the phase of the microwave supplied to the wave feed point to 90 degrees or -90 degrees (or -90 degrees or -270 degrees), the turning direction of the circularly polarized wave can be changed.
- the first radiating unit 20 has a second microwave with respect to the feeding phase of the first microwave feeding point 20a.
- the feeding phase of the wave feeding point 20b is delayed by 90 degrees, and in the second radiating unit 21, the feeding phase of the second microwave feeding point 21b is delayed by 90 degrees with respect to the feeding phase of the first microwave feeding point 21a.
- the phase difference between the first microwave feeding point 20a of the first radiating unit 20 and the first microwave feeding point 21a of the second radiating unit 21 may be arbitrarily changed.
- Heating operation The heating operation for the object to be heated in the microwave heating apparatus of the first embodiment configured as described above will be described.
- the phase variable units 12a to 12d When the microwave generation unit 10 starts operating, the phase variable units 12a to 12d have initial conditions such that the first microwave feeding point 20a of the first radiating unit 20 and the first radiating unit 21 of the first radiating unit 21 are the first conditions.
- the phase delay amount (relative phase) of the phase variable unit 12a and the phase variable unit 12c corresponding to the microwave feed point 21a is set to 0 degree.
- the phase delay amount (relative phase) of the phase variable units 12b and 12d corresponding to the second microwave feeding point 20b of the first radiating unit 20 and the second microwave feeding point 21b of the second radiating unit 21. Is 90 degrees.
- the control unit 22 operates the drive power supply to supply power and control signals to the crystal oscillator 11, the phase variable units 12a to 12b, and the phase synchronization circuits 13a to 13d that constitute the microwave oscillation unit 10a.
- the crystal oscillator 11 oscillates at a reference frequency of, for example, 10 MHz, and a signal for setting the output frequency of the phase synchronization circuits 13a to 13d to, for example, 2400 MHz is supplied, and the oscillation of the microwave oscillating unit 10a starts. To do.
- each main amplification section 16a to 16d has a microwave power equivalent to 1/10 of the rated output, for example, less than 50 W. Specifically, it is configured to output microwave power of 20 W.
- This calculation is executed for all frequencies (pitch is 1 MHz, for example) within the frequency band used in the microwave heating apparatus. Based on the result of this calculation, the frequency at which the sum of the signals corresponding to the reflected power is a minimum value with respect to the frequency is extracted, and the frequency indicating the minimum value is selected from the minimum value group having a plurality of minimum values. It selects (frequency selection operation
- the two radiating portions 20 and 21 are arranged in a line-symmetrical position with respect to the center line in the front-rear direction of the apparatus on the bottom wall surface (line indicated by Y in FIG. 3).
- the apparatus it is also possible to arrange the apparatus at positions symmetrical with respect to the center line in the left-right direction of the apparatus (a line indicated by a symbol X in FIG. 3).
- FIG. 7 is a perspective view showing the inside of the heating chamber 100 in the microwave oven as the microwave heating apparatus of the second embodiment.
- a part (mounting plate 25) inside the heating chamber 100 is cut away, and an opening / closing door for opening and closing the heating chamber 100 is omitted.
- FIG. 8 is a block diagram illustrating a configuration of the microwave heating apparatus according to the second embodiment.
- FIG. 9 is a plan view showing radiating portions 61 and 62 arranged on the bottom wall surface in the microwave heating apparatus of the second embodiment.
- the microwave heating apparatus stores a left wall surface 101, a right wall surface 102, a bottom wall surface 103, an upper wall surface 104, a back wall surface 105, and an object to be heated that are made of a metal material.
- the heating chamber 100 constituted by an open / close door (not shown) that opens and closes at the bottom, two radiating portions 61 and 62 are provided on the bottom wall surface 103.
- the microwave generation unit 50 which is a microwave generation unit, includes a microwave oscillation unit 50a, and six outputs from the microwave oscillation unit 50a are microwave transmission paths 54a, 54b, 54c, 54d, 54a and 54f (in the following description, they are indicated as 54a to 54f and omitted in the same manner in the other plural constituent elements) and are connected to the first stage amplifiers 55a to 55f and the first stage amplifiers 55a to 55f.
- Main amplification units 56a to 56f for further amplifying the respective outputs, and power detection units 58a to 58f inserted in microwave transmission paths 57a to 57f for guiding the outputs of the main amplification units 56a to 56f to the output units 59a to 59f. ing.
- the first stage amplification units 55a to 55f and the main amplification units 56a to 56f in the microwave generation unit 50 are each configured using a semiconductor element.
- a plurality of (two in the second embodiment) radiating portions 61 and 62 for radiating microwaves into the heating chamber 100 are arranged on the bottom wall surface 103 constituting the heating chamber 100. ing.
- the two radiating portions (first radiating portion 61 and second radiating portion 62) in the second embodiment pass through the substantially center point (C0) of the bottom wall surface 103, and the center line in the front-rear direction of the apparatus (FIG. 9).
- FIG. 5 is a line symmetric position with respect to a line indicated by a symbol Y).
- the first radiating unit 61 has three microwave feeding points 61a, 61b, and 61c, and outputs from the microwave generating unit 50 are guided to the respective microwave feeding points 61a, 61b, and 61c. .
- the second radiating unit 62 has three microwave feed points 62a, 62b, and 62c, and outputs from the microwave generation unit 50 are guided to the respective microwave feed points 62a, 62b, and 62c. It is.
- These microwave feed points 61 a, 61 b, 61 c and 62 a, 62 b, 62 c are symmetrical with respect to a center line in the front-rear direction of the apparatus (a line indicated by a symbol Y in FIG. 9) that passes through a substantially center point of the bottom wall surface 103. It is arranged at the position.
- the first radiating section 61 and the second radiating section 62 are antennas having a substantially circular shape, and each of the first micro part is formed on a line (a line indicated by a symbol X in FIG. 9) connecting the center points C1 and C2.
- Wave feed points 61a and 62a and third microwave feed points 61c and 62c are arranged.
- the microwave feed points 61a, 61b, 61c and 62a, 62b, 62c are arranged at a predetermined distance from the center points C1, C2 of the radiating portions 61, 62 in order to achieve impedance matching.
- the microwave transmission paths 54a to 54f from the output of the microwave oscillating unit 50a to the first stage amplifying units 55a to 55f are composed of coaxial cables. Further, the microwave transmission paths 57a to 57f from the main amplification sections 56a to 56f to the output sections 59a to 59f are formed by a transmission circuit having a characteristic impedance of about 50 ⁇ by a conductor pattern provided on one side of the dielectric substrate. Yes.
- the phase variable sections 52a to 52f have a circuit configuration in which a variable capacitance diode is incorporated between the signal line and the ground plane. By changing the voltage applied to the variable capacitance diode, the phase of the reference frequency is delayed. For this reason, the phase-delayed reference frequency is input to each of the phase synchronization circuits 53a to 53f.
- phase variable units 52a to 52f By incorporating the phase variable units 52a to 52f in the transmission path of the reference frequency, it is possible to use a variable capacitance diode that can be used under a low power level and low frequency environment, and to change the phase of the microwave output signal of the microwave oscillating unit 50a. It becomes possible to set large.
- the phase synchronization circuits 53a to 53f of the microwave generation unit 50 use a frequency divider to compare frequency having a frequency division performance of 0.5 MHz with respect to the crystal oscillator 11 that is a reference signal oscillator that generates a reference frequency of 10 MHz, for example. Forming.
- the frequency of the microwave signal input to the subsequent amplifying unit is 2400.0 MHz to 2500.0 MHz.
- the phase variable amount in the phase variable units 52a to 52f is controlled so as to change the phase of the microwave by 360 degrees.
- the phases of the output sections 59a to 59f of the microwave generating section 50 can be controlled. That is, the phase delay of the microwave feed points 61a, 61b, 61c of the first radiating unit 61 and the microwave feed points 62a, 62b, 62c of the second radiating unit 62 can be delayed by 360 degrees at the maximum. .
- the microwave signal is output by applying a voltage, and the output of the microwave signal is stopped by cutting off the voltage. Can be made.
- the power detection units 58a to 58f are microwave power (amount of microwave supply) transmitted from the microwave generation unit 50 to the heating chamber 100 side, and so-called reflected wave power transmitted from the heating chamber 100 to the microwave generation unit 50 side ( Microwave reflection amount) is detected.
- the power detectors 58a to 58f may be configured to detect at least the microwave reflection amount.
- the power coupling degree is set to, for example, about 40 dB, and the amount of microwaves supplied through the microwave transmission paths 57a to 57f and / or the amount of power about 1/10000 of the amount of reflected microwaves is set. Extract.
- the thus extracted power signal is rectified by a detection diode (not shown), smoothed by a capacitor (not shown), and the smoothed signal is input to the control unit 63.
- the control unit 63 includes heating conditions (an arrow Q in FIG. 8) of an object to be heated that are directly input by the user, detection information from the respective power detection units 58a to 58f (an arrow P in FIG. 8), and an object to be heated during heating. Based on heating information (arrow R in FIG. 8) obtained from various sensors that detect the heating state of the heated object, the phase synchronization circuits 53a to 53f that are components of the microwave generation unit 50 are controlled to generate microwave oscillation. The oscillation frequency and oscillation output of the unit 10a are controlled, and the phase variable units 52a to 52f are controlled to control the phase delay amount of the oscillation signal.
- the object to be heated accommodated in the heating chamber 100 is heated by the heating condition (Q) set by the user, the heating information (R) indicating the heating state of the object to be heated, or the power detectors 58a ⁇ It is heated optimally based on the detection information (P) from 58f.
- the microwave generation unit 50 is provided with heat radiating means for radiating heat generated in the semiconductor element, for example, a cooling fin (not shown).
- a mounting plate 25 made of a low dielectric loss material is provided in the heating chamber 100 so as to cover the radiating portions 61 and 62 provided on the bottom wall surface 103 and store and mount the object to be heated. Yes.
- the microwave feeding points are arranged so as to have the same arrangement configuration as in the first embodiment, and the microwave feeding points are arranged at the microwave feeding points. If it is controlled to supply power, circularly polarized radiation can be generated.
- the microwave feeding is cut off by the control of the corresponding phase synchronization circuits 53c and 53f in the third microwave feeding points 61c and 62c, the above-described embodiment. 1 and the microwave radiation of the 3rd radiation form from the above-mentioned 1st radiation form is attained.
- FIG. 10 is a diagram illustrating a fourth radiation form by the radiation units 61 and 62 in the microwave heating apparatus of the second embodiment.
- the feeding phases of the third microwave feeding points 61c and 62c are different from the feeding phases of the first microwave feeding points 61a and 62a of the radiation units 61 and 62, respectively.
- the power is set to be delayed by 180 degrees.
- the power supply to the second microwave power supply points 61b and 62b is cut off.
- the microwave feeding points (61a, 61c, 62a, 62c) that are fed are indicated by black circles, and the microwave feeding points (61b, 61b) that are not fed are indicated by white circles.
- the 180-degree phase delay is expressed as a characteristic value at the center frequency (for example, 2450 MHz) of the frequency band used by the microwave heating apparatus.
- the microwave feeding points 61a, 61b, 61c, 62a, 62b, and 62c are arranged in the radiating portions 61 and 62, and supply microwaves to the specific microwave feeding points 61a, 61c, 62a, and 62c.
- each of the microwave feeding points 61a and 61c, and the phase difference of the microwaves supplied to 62a and 62c is 180 degrees, and that the radiation is supplied at each of the radiating units 61 and 62 by adopting a fourth radiation form to be described later.
- the two microwave powers thus generated are combined and a linearly polarized microwave is emitted.
- phase (absolute phase) of the microwaves fed to the first microwave feed points 61a and 62a is 90 degrees
- the power is fed to the third microwave feed points 61c and 62c at this time.
- the phase of the microwave (absolute phase) is -90 degrees (270 degrees) because it is delayed 180 degrees from the power feeding phase of the first microwave feeding points 61a and 62a.
- a microwave electric field indicated by arrows 61A and 62A is generated.
- the phase of the microwaves fed to the first microwave feed points 61a and 62a is 360 degrees (0 degrees), and the power is fed to the third microwave feed points 61c and 62c.
- FIG. 11 is a diagram for explaining a fifth radiation mode by the radiation units 61 and 62 in the microwave heating apparatus of the second embodiment.
- the third microwave feeding point 61 c of the first radiating unit 61 and the feeding phase of the first microwave feeding point 61 a of the first radiating unit 61 and The feeding phase of the first microwave feeding point 62a of the second radiating unit 62 is fed with a delay of 180 degrees, and the feeding phase of the third microwave feeding point 62c of the second radiating unit 62 is the same phase. Is set.
- the power supply to the second microwave power supply points 61b and 62b is cut off.
- the microwave feeding points (61a, 61c, 62a, 62c) that are fed are indicated by black circles, and the microwave feeding points (61b, 62b) that are not fed are indicated by white circles.
- the 180-degree phase delay is expressed as a characteristic value at the center frequency (for example, 2450 MHz) of the frequency band used by the microwave heating apparatus.
- the microwave feeding points 61a, 61b, 61c, 62a, 62b, and 62c are arranged in the radiating portions 61 and 62, and supply microwaves to the specific microwave feeding points 61a, 61c, 62a, and 62c.
- a fifth radiation mode in which the phase difference of the microwaves supplied to the respective microwave feed points 61a and 61c and 62a and 62c is 180 degrees, the 2 supplied in the respective radiation units 61 and 62 Two microwave powers are combined, and linearly polarized microwaves are radiated.
- the mechanism of power synthesis and generation of linearly polarized waves in the fifth radiation mode will be described with reference to FIG.
- the phase (absolute phase) of the microwaves fed to the first microwave feeding point 61a of the first radiating unit 61 is 90 degrees
- the third micro wave of the first radiating unit 61 is The phase (absolute phase) of the microwaves fed to the wave feeding point 61c and the first microwave feeding point 62a of the second radiating unit 62 is delayed by 180 degrees from the feeding phase of the first microwave feeding point 61a. Therefore, it is -90 degrees (270 degrees).
- the phase of the microwave feeding point 62c of the second radiating unit 62 is 90 degrees.
- the phase of the microwaves fed to the first microwave feeding point 61a of the first radiating unit 61 and the third microwave feeding point 62c of the second radiating unit 62 is 270.
- the phase of the microwaves fed to the first microwave feed point 61a of the first radiating unit 61 and the third microwave feed point 62c of the second radiating unit 62 is 360.
- the phase of the microwaves fed to the third microwave feeding point 61c of the first radiating unit 61 and the first microwave feeding point 62a of the second radiating unit 62 is 180 degrees. Become. For this reason, the magnitude
- size of a microwave electric field is zero like time t t0 + T / 4.
- a microwave electric field (a synthesized microwave electric field indicated by 61 (A + C) and 62 (A + C) in FIG. 11) is generated.
- linearly polarized waves generated in the first radiating unit 61 and the second radiating unit 62 have the same direction of the microwave electric field at the same time.
- the microwave heating apparatus has at least one microwave feeding point at each of the microwave feeding points 61a, 61b, 61c, 62a, 62b, and 62c of the radiating units 61 and 62. Therefore, it can be controlled not to feed microwaves.
- circular radiation and vertical polarization radiation can be selected in one radiation section (61 or 62), and the object to be heated is heated as a heating condition. And can be heated in a desired state according to the heating state and the like.
- the two microwave feeding points (61a, 61c or 62a, 62c) in each radiating section (61 or 62) are such that the straight line connecting the respective microwave feeding points is the center point (C1) of the radiating section (61 or 62).
- the phase difference between the microwaves fed to the respective microwave feed points is set to 180 degrees at the center frequency of the microwave frequency band to be used. In this way, by placing microwave feed points at predetermined positions in the respective radiation units and supplying microwaves having a predetermined phase difference, the two microwave powers supplied to the microwave feed points are synthesized. Thus, vertically polarized waves can be radiated from each radiating section.
- Heating operation The heating operation for the object to be heated in the microwave heating apparatus of the second embodiment configured as described above will be described.
- the configuration of the microwave heating apparatus of the second embodiment is different from the microwave heating apparatus of the first embodiment described above in that the microwave feeding points 61a, 61b, 61c, 62a in the radiating portions 61, 62 are different. , 62b, 62c can be controlled to supply or stop microwaves.
- the microwave heating apparatus of the second embodiment in the stage before the heating of the object to be heated, corresponding to the heating conditions set by the user, the radiation unit 61 that supplies microwaves before the heating starts,
- the microwave feed point at 62 can be selected.
- a frequency selection operation is performed to select an optimum oscillation frequency for the object to be heated under the heating conditions of the selected microwave feed point, and the oscillation frequency during heating is selected. decide. Since the control content in the frequency selection operation at this time conforms to the procedure described in the first embodiment, the description thereof is omitted in the second embodiment.
- control unit 63 operates a driving power source (not shown) provided in the microwave heating apparatus to supply power to the microwave oscillation unit 50a, the first stage amplification units 55a to 55f, the main amplification units 56a to 56f, and the like. Supply.
- the left and right side wall surfaces 101 and 102 face each other.
- the microwaves radiated from the two radiation portions 61 and 62 are aligned in the direction of the right wall surface 102.
- the selection of the microwave feeding point that does not supply microwaves in each radiating unit is zero at the minimum, This is the microwave feed point.
- the number of microwave feeding points provided in one radiating section 80 or 81 may be three or more. Further, the number of microwave feed points arranged in each radiation portion may be different.
- the phases of the microwave signals supplied to the microwave feed points 90a, 90c and 91a, 91c are 360 degrees (0 degrees), and the microwave feed points 90b, 90d and 91b, 91d
- the magnitude (scalar amount) of this circularly polarized electric field vector is approximately twice that of the first radiation form in the first embodiment shown in FIG. 4 described above by combining two microwave feed points.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
Abstract
Description
前記マイクロ波発振部のそれぞれの出力を増幅する複数の増幅部と、
前記増幅部からの出力が供給され、加熱室にマイクロ波を放射する複数の放射部と、
前記マイクロ波発振部を制御する制御部と、を備え、
前記放射部のそれぞれが複数のマイクロ波給電点を有し、前記増幅部からのそれぞれの出力が前記マイクロ波給電点のそれぞれに供給されるよう構成されている。このように構成された本発明に係る第1の態様のマイクロ波加熱装置においては、各マイクロ波給電点に供給された同一周波数のマイクロ波を電力合成して加熱室内に放射させることができる。また、第1の態様のマイクロ波加熱装置は、比較的小さい電力量を発生させる増幅部を複数用いて、放射部の数を増やすことなく加熱室内に大電力を供給することができる。
図1は、本発明に係る実施の形態1のマイクロ波加熱装置としての電子レンジにおける加熱室100内部を示す斜視図である。図1においては、加熱室100内部の一部を切り欠いており、加熱室100を開閉するための開閉扉は省略されている。図2は、実施の形態1のマイクロ波加熱装置の構成を示すブロック図である。図3は、実施の形態1のマイクロ波加熱装置における底壁面に配置された放射部20,21を示す平面図である。
次に、上記のように構成された実施の形態1のマイクロ波加熱装置における放射部20,21の放射形態とその動作について説明する。
図4は、実施の形態1のマイクロ波加熱装置における放射部20,21による一放射形態を説明する図であり、第1の放射形態を示している。
時間t=t0において、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相(絶対位相)を90度とすると、この時の第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相(絶対位相)は、第1のマイクロ波給電点20a,21aの給電位相から90度遅れているため、0度である。
図5は、本発明に係る実施の形態1のマイクロ波加熱装置における放射部20,21による第2の放射形態を説明する図である。
時間t=t0において、第1の放射部20の第1のマイクロ波給電点20aに給電されるマイクロ波の位相(絶対位相)を90度とすると、この時の第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相(絶対位相)は、第1のマイクロ波給電点20aの給電位相から90度遅れているため0度であり、第2の放射部21の第1のマイクロ波給電点21aに給電されるマイクロ波の位相(絶対位相)は-90度(270度)である。
図6は、本発明に係る実施の形態1のマイクロ波加熱装置における放射部20,21による第3の放射形態を説明する図である。
時間t=t0において、第1のマイクロ波給電点20a,21aに給電されるマイクロ波の位相(絶対位相)を90度とすると、この時の第2のマイクロ波給電点20b,21bに給電されるマイクロ波の位相(絶対位相)は、第1のマイクロ波給電点20a,21aの給電位相から90度遅れているため0度である。
以上のように構成された実施の形態1のマイクロ波加熱装置における被加熱物に対する加熱動作について説明する。
また、実施の形態1のマイクロ波加熱装置においては2つの放射部20,21を用いた例について説明したが、マイクロ波加熱装置の仕様などに応じて2つ以上の放射部を設けた構成でも適用可能である。
次に、本発明に係る実施の形態2のマイクロ波加熱装置について添付の図7から図11を参照して説明する。実施の形態2のマイクロ波加熱装置において前述の実施の形態1のマイクロ波加熱装置と異なる点は、各放射部が3つのマイクロ波給電点を有する点であり、その他の点は実施の形態1のマイクロ波加熱装置と同じである。したがって、実施の形態2の説明において前述の実施の形態1と同じ機能、構成を有するものには同じ符号を付して、その説明は実施の形態1における説明を適用する。
なお、実施の形態2における位相同期回路53a~53f、およびその周辺に係る構成および動作については、前述の実施の形態1において説明した構成および動作と同じであるため、実施の形態2においては省略する。
次に、上記のように構成された実施の形態2のマイクロ波加熱装置における放射部61,62の放射形態とその動作について説明する。なお、実施の形態2における放射部61,62の放射形態においても、前述の実施の形態1と同様の配置構成となるようにマイクロ波給電点を配置し、それらのマイクロ波給電点にマイクロ波電力を給電するよう制御すれば、円偏波放射ができる。即ち、実施の形態2における放射部61,62においては、第3のマイクロ波給電点61c,62cを対応する位相同期回路53c,53fの制御によりマイクロ波給電を遮断すれば、前述の実施の形態1と同様の配置構成となり、前述の第1の放射形態から第3の放射形態のマイクロ波放射が可能となる。
図10は、実施の形態2のマイクロ波加熱装置における放射部61,62による第4の放射形態を説明する図である。
時間t=t0において、第1のマイクロ波給電点61a,62aに給電されるマイクロ波の位相(絶対位相)を90度とすると、この時の第3のマイクロ波給電点61c,62cに給電されるマイクロ波の位相(絶対位相)は、第1のマイクロ波給電点61a,62aの給電位相から180度遅れているため、-90度(270度)である。
図11は、実施の形態2のマイクロ波加熱装置における放射部61,62による第5の放射形態を説明する図である。
時間t=t0において、第1の放射部61の第1のマイクロ波給電点61aに給電されるマイクロ波の位相(絶対位相)を90度とすると、第1の放射部61の第3のマイクロ波給電点61cおよび第2の放射部62の第1のマイクロ波給電点62aに給電されるマイクロ波の位相(絶対位相)は、第1のマイクロ波給電点61aの給電位相から180度遅れているため、-90度(270度)である。また、第2の放射部62のマイクロ波給電点62cの位相は90度である。
以上のように構成された実施の形態2のマイクロ波加熱装置における被加熱物に対する加熱動作について説明する。
まず、開閉扉の開閉を行って、被加熱物を加熱室100内に収納し、加熱室100を密閉状態とする、使用者は当該被加熱物の加熱条件を操作部(図示なし)により入力し、加熱開始キーを押す。加熱開始キーが押されることにより加熱開始信号が形成され、制御部63に入力される。加熱開始信号が入力された制御部63は、制御信号をマイクロ波発生部50に出力し、マイクロ波発生部50は動作を開始する。このとき、制御部63は、被加熱物の加熱条件Qなどの各種情報に基づいてマイクロ波発生部50を駆動制御する。また、制御部63は、マイクロ波加熱装置に設けられている駆動電源(図示なし)を動作させて、マイクロ波発振部50a、初段増幅部55a~55fおよび主増幅部56a~56fなどに電力を供給する。
次に、本発明に係る実施の形態3のマイクロ波加熱装置について添付の図12を参照して説明する。実施の形態3のマイクロ波加熱装置において前述の実施の形態1のマイクロ波加熱装置と異なる点は、加熱室内における放射部の配置位置であり、その他の点は実施の形態1のマイクロ波加熱装置と同じである。したがって、実施の形態3の説明において前述の実施の形態1と同じ機能、構成を有するものには同じ符号を付して、その説明は実施の形態1における説明を適用する。
次に、本発明に係る実施の形態4のマイクロ波加熱装置について添付の図13および図14を参照して説明する。実施の形態4のマイクロ波加熱装置において前述の実施の形態1のマイクロ波加熱装置と異なる点は、放射部が4つのマイクロ波給電点を有する点であり、その他の点は実施の形態1のマイクロ波加熱装置と同じである。したがって、実施の形態4の説明において前述の実施の形態1と同じ機能、構成を有するものには同じ符号を付して、その説明は実施の形態1における説明を適用する。
第6の放射形態における電力合成と円偏波発生のメカニズムについて、図14を用いて説明する。図14は、実施の形態4のマイクロ波加熱装置における放射部90,91による第6の放射形態を説明する図である。
時間t=t0において、マイクロ波給電点90a,90cおよび91a、91cに給電される位相(絶対位相)を90度とすると、マイクロ波給電点90b,90dおよび91b,91dに供給されるマイクロ波信号の位相(絶対位相)は、マイクロ波給電点90a,90cおよび91a,91cの給電位相から90度遅れているため、0度である。
10a マイクロ波発振部
11 基準信号発振器(水晶発振器)
12a~12d 位相可変部
13a~13d 位相同期回路
14a~14d,17a~17d マイクロ波伝送路
15a~15d 初段増幅部
16a~16d 主増幅部
18a~18d 電力検出部
19a~19d 出力部
20,21 放射部
20a,20b,21a,21b マイクロ波給電点
22 制御部
100 加熱室
101 左壁面
102 右壁面
103 底壁面
104 上壁面
105 奥壁面
Claims (11)
- 1つの基準信号発振器に接続された複数の位相同期回路を有して構成された複数出力を持つマイクロ波発振部と、
前記マイクロ波発振部のそれぞれの出力を増幅する複数の増幅部と、
前記増幅部からの出力が供給され、加熱室にマイクロ波を放射する複数の放射部と、
前記マイクロ波発振部を制御する制御部と、を備え、
前記放射部のそれぞれが複数のマイクロ波給電点を有し、前記増幅部からのそれぞれの出力が前記マイクロ波給電点のそれぞれに供給されるよう構成されたマイクロ波加熱装置。 - 前記マイクロ波発振部は、前記基準信号発振器から出力された発振信号の位相を可変する位相可変部を備え、それぞれの放射部における複数のマイクロ波給電点に供給するマイクロ波の位相を所定の位相差に設定して供給するよう構成された請求項1に記載のマイクロ波加熱装置。
- 前記マイクロ波発振部は、前記基準信号発振器から出力された発振信号の位相を可変する位相可変部を備え、それぞれの放射部における少なくとも2つの放射部から放射されるマイクロ波の位相差を可変するよう構成された請求項1に記載のマイクロ波加熱装置。
- 前記それぞれの放射部における少なくとも2つのマイクロ波給電点は、当該放射部の中央点とそれぞれのマイクロ波給電点とを結ぶそれぞれの線の交差角度が90度となり、それぞれのマイクロ波給電点に給電するマイクロ波の位相差が、使用するマイクロ波周波数帯域の中央周波数において90度となるよう構成されている請求項1または2に記載のマイクロ波加熱装置。
- 前記それぞれの放射部における少なくとも2つのマイクロ波給電点は、当該放射部の中央点とそれぞれのマイクロ波給電点とを結ぶそれぞれの線の交差角度が90度であるとともに、使用するマイクロ波周波数帯域の中央周波数において、一方のマイクロ波給電点に給電するマイクロ波の位相を基準とした時に、他方のマイクロ波給電点に給電するマイクロ波の位相を90度と-90度とに切り替るよう構成した請求項1または2に記載のマイクロ波加熱装置。
- 前記それぞれの放射部における少なくとも2つのマイクロ波給電点は、当該放射部におけるそれぞれのマイクロ波給電点を結ぶ直線が当該放射部の中央点を通るように配設するとともに、前記少なくとも2つのマイクロ波給電点に給電するマイクロ波の位相差が、使用するマイクロ波周波数帯域の中央周波数において180度となるよう構成した請求項1または2に記載のマイクロ波加熱装置。
- 前記制御部は、前記マイクロ波発振部の出力を制御する機能を有し、前記それぞれの放射部における複数のマイクロ波給電点における少なくとも1つのマイクロ波給電点に対してマイクロ波の給電を停止する制御を行うよう構成した請求項1に記載のマイクロ波加熱装置。
- 前記複数の放射部は前記加熱室の同一壁面に配設され、前記放射部および前記放射部のマイクロ波給電点は壁面の略中央を通る直線を線対称として配設された請求項1に記載のマイクロ波加熱装置。
- 前記複数の放射部は前記加熱室の対向壁面に配設され、前記放射部および前記放射部のマイクロ波給電点は対向配置された請求項1に記載のマイクロ波加熱装置。
- 前記複数の放射部は、それぞれの放射部の励振方向が加熱室の幅方向および奥行き方向に一致するように加熱室内に配設された請求項8または9に記載のマイクロ波加熱装置。
- 前記複数の放射部は、それぞれの放射部の励振方向が加熱室の幅方向および奥行き方向に一致するように加熱室内に配設するとともに、前記それぞれの放射部における前記複数のマイクロ波給電点へのそれぞれのマイクロ波給電レベルを前記加熱室の幅方向寸法と奥行き寸法の比率に応じて変化させるよう構成した請求項8または9に記載のマイクロ波加熱装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/392,683 US9648670B2 (en) | 2009-09-16 | 2010-09-08 | Microwave heating device |
EP10816855.0A EP2480047B1 (en) | 2009-09-16 | 2010-09-08 | Microwave heating device |
JP2011531778A JP5588989B2 (ja) | 2009-09-16 | 2010-09-08 | マイクロ波加熱装置 |
CN201080040058.9A CN102484910B (zh) | 2009-09-16 | 2010-09-08 | 微波加热装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-213955 | 2009-09-16 | ||
JP2009213955 | 2009-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011033740A1 true WO2011033740A1 (ja) | 2011-03-24 |
Family
ID=43758355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/005495 WO2011033740A1 (ja) | 2009-09-16 | 2010-09-08 | マイクロ波加熱装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9648670B2 (ja) |
EP (1) | EP2480047B1 (ja) |
JP (1) | JP5588989B2 (ja) |
CN (1) | CN102484910B (ja) |
WO (1) | WO2011033740A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105142253A (zh) * | 2015-07-24 | 2015-12-09 | 石铁峰 | 一种微波发生装置、微波加热装置以及加热方法 |
JP2017525121A (ja) * | 2014-05-28 | 2017-08-31 | グァンドン ミデア キッチン アプライアンシズ マニュファクチュアリング カンパニー リミテッド | 半導体電子レンジ及びその半導体マイクロ波源 |
US10911051B2 (en) | 2016-12-21 | 2021-02-02 | Whirlpool Corporation | Method, system and device for radio frequency electromagnetic energy delivery |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10560986B2 (en) | 2013-08-20 | 2020-02-11 | Whirlpool Corporation | Method for detecting the status of popcorn in a microwave |
JP6368371B2 (ja) | 2013-12-23 | 2018-08-01 | ワールプール コーポレイション | 無線周波数発生器用の遮断回路 |
US10368404B2 (en) | 2014-03-21 | 2019-07-30 | Whirlpool Corporation | Solid-state microwave device |
EP2953425B1 (en) * | 2014-06-03 | 2019-08-21 | Ampleon Netherlands B.V. | Radio frequency heating apparatus |
US11191133B2 (en) | 2014-09-17 | 2021-11-30 | Whirlpool Corporation | Direct heating through patch antennas |
DE102015103246A1 (de) * | 2015-03-05 | 2016-09-08 | Topinox Sarl | Gargerät sowie Verfahren zum Betreiben eines Gargeräts |
US10904961B2 (en) | 2015-03-06 | 2021-01-26 | Whirlpool Corporation | Method of calibrating a high power amplifier for a radio frequency power measurement system |
JP7027891B2 (ja) | 2015-06-03 | 2022-03-02 | ワールプール コーポレイション | 電磁調理のための方法および装置 |
US10674571B2 (en) * | 2015-09-09 | 2020-06-02 | Illinois Tool Works, Inc. | Apparatus for providing RF stirring with solid state components |
KR102402039B1 (ko) | 2015-11-16 | 2022-05-26 | 삼성전자주식회사 | 조리 장치 및 이의 제어 방법 |
US11483905B2 (en) | 2016-01-08 | 2022-10-25 | Whirlpool Corporation | Method and apparatus for determining heating strategies |
EP3400756B8 (en) | 2016-01-08 | 2020-02-26 | Whirlpool Corporation | Multiple cavity microwave oven insulated divider |
CN108605391B (zh) | 2016-01-28 | 2020-11-17 | 松下电器产业株式会社 | 用于传送射频电磁能量以烹饪食品的方法和设备 |
WO2017142503A1 (en) | 2016-02-15 | 2017-08-24 | Whirlpool Corporation | Method and apparatus for delivering radio frequency electromagnetic energy to cook foodstuff |
US10327289B2 (en) * | 2016-04-01 | 2019-06-18 | Illinois Tool Works Inc. | Microwave heating device and method for operating a microwave heating device |
US20170333258A1 (en) * | 2016-05-19 | 2017-11-23 | The Procter & Gamble Company | Method and apparatus for circularly polarized microwave product treatment |
US10728962B2 (en) | 2016-11-30 | 2020-07-28 | Illinois Tool Works, Inc. | RF oven energy application control |
EP3451794A1 (en) | 2017-09-01 | 2019-03-06 | Whirlpool Corporation | Crispness and browning in full flat microwave oven |
US11039510B2 (en) | 2017-09-27 | 2021-06-15 | Whirlpool Corporation | Method and device for electromagnetic cooking using asynchronous sensing strategy for resonant modes real-time tracking |
US10772165B2 (en) | 2018-03-02 | 2020-09-08 | Whirlpool Corporation | System and method for zone cooking according to spectromodal theory in an electromagnetic cooking device |
US11404758B2 (en) | 2018-05-04 | 2022-08-02 | Whirlpool Corporation | In line e-probe waveguide transition |
US10912160B2 (en) | 2018-07-19 | 2021-02-02 | Whirlpool Corporation | Cooking appliance |
CN109587861B (zh) * | 2018-12-29 | 2021-11-12 | 京信网络系统股份有限公司 | 一种多频固态微波炉及使用多频固态微波炉的加热方法 |
CN111417227A (zh) * | 2019-01-04 | 2020-07-14 | 海尔智家股份有限公司 | 加热装置 |
JP2022553005A (ja) | 2019-10-18 | 2022-12-21 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 二つの電極を含む加熱ユニットを有するシーシャシステム |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS535445A (en) | 1976-07-05 | 1978-01-19 | Hitachi Ltd | High frequency heating equipment |
JPS56132793A (en) | 1980-03-19 | 1981-10-17 | Hitachi Netsu Kigu Kk | High frequency heater |
JPH04233188A (ja) | 1990-09-21 | 1992-08-21 | Whirlpool Internatl Bv | マイクロ波オーブン、マイクロ波オーブンのキャビティの励起方法、及びこの方法を実施するウェーブガイド装置 |
JPH08337887A (ja) * | 1995-06-12 | 1996-12-24 | Hitachi Ltd | プラズマ処理装置 |
JP2002061847A (ja) | 2000-08-23 | 2002-02-28 | Lg Electronics Inc | 電子レンジの均一加熱構造 |
WO2003077299A1 (fr) * | 2002-03-08 | 2003-09-18 | Tokyo Electron Limited | Dispositif a plasma |
JP2008269794A (ja) * | 2007-04-16 | 2008-11-06 | Matsushita Electric Ind Co Ltd | マイクロ波処理装置 |
JP2009170335A (ja) * | 2008-01-18 | 2009-07-30 | Mitsubishi Electric Corp | 高周波加熱装置 |
JP2009187856A (ja) * | 2008-02-08 | 2009-08-20 | Mitsubishi Electric Corp | 加熱調理器 |
JP2009230881A (ja) * | 2008-03-19 | 2009-10-08 | Mitsubishi Electric Corp | 高周波加熱装置 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60193292A (ja) | 1984-03-15 | 1985-10-01 | 富士通株式会社 | 電子レンジ |
US4720688A (en) * | 1985-05-15 | 1988-01-19 | Matsushita Electric Industrial Co., Ltd. | Frequency synthesizer |
DE68921050T2 (de) | 1988-12-14 | 1995-09-21 | Mitsubishi Electric Corp | Mikrowellenheizgerät. |
JP3106273B2 (ja) | 1993-10-22 | 2000-11-06 | 松下電器産業株式会社 | 高周波加熱装置 |
JP3102235B2 (ja) | 1993-11-15 | 2000-10-23 | 松下電器産業株式会社 | 高周波加熱装置 |
JPH08171986A (ja) | 1994-12-19 | 1996-07-02 | Hitachi Ltd | マイクロ波加熱装置 |
US5558800A (en) | 1995-06-19 | 1996-09-24 | Northrop Grumman | Microwave power radiator for microwave heating applications |
KR19990026281A (ko) * | 1997-09-23 | 1999-04-15 | 윤종용 | 전자렌지의 마이크로파 분산장치 |
AU3066400A (en) * | 1999-01-22 | 2000-08-07 | Multigig Limited | Electronic circuitry |
JP2000357583A (ja) | 1999-06-15 | 2000-12-26 | Mitsubishi Electric Corp | 電子レンジ |
SE521313C2 (sv) | 2000-09-15 | 2003-10-21 | Whirlpool Co | Mikrovågsugn samt förfarande vid sådan |
JP2003257614A (ja) | 2001-12-27 | 2003-09-12 | Sanyo Electric Co Ltd | 高周波加熱装置 |
JP2003249345A (ja) | 2002-02-25 | 2003-09-05 | Matsushita Electric Ind Co Ltd | 高周波加熱装置 |
JP3925281B2 (ja) | 2002-04-16 | 2007-06-06 | 松下電器産業株式会社 | 高周波加熱装置 |
US7445690B2 (en) | 2002-10-07 | 2008-11-04 | Tokyo Electron Limited | Plasma processing apparatus |
US20060289526A1 (en) | 2003-04-25 | 2006-12-28 | Matsushita Electric Industrial Co., Ltd. | High-frequency heating device and method for controlling same |
JP2005315487A (ja) | 2004-04-28 | 2005-11-10 | Matsushita Electric Ind Co Ltd | マイクロ波加熱方法及びその装置 |
US20060021980A1 (en) | 2004-07-30 | 2006-02-02 | Lee Sang H | System and method for controlling a power distribution within a microwave cavity |
JP5064924B2 (ja) | 2006-08-08 | 2012-10-31 | パナソニック株式会社 | マイクロ波処理装置 |
JP2008146966A (ja) | 2006-12-08 | 2008-06-26 | Matsushita Electric Ind Co Ltd | マイクロ波発生装置およびマイクロ波加熱装置 |
JP4940922B2 (ja) | 2006-12-08 | 2012-05-30 | パナソニック株式会社 | マイクロ波処理装置 |
US7435931B1 (en) | 2007-05-15 | 2008-10-14 | Appliance Scientific, Inc. | High-speed cooking oven with optimized cooking efficiency |
US20100176123A1 (en) * | 2007-07-13 | 2010-07-15 | Makoto Mihara | Microwave heating apparatus |
US20090038369A1 (en) * | 2007-08-06 | 2009-02-12 | Petroleum Analyzer Company, Lp | Microwave system generator and controller for gas and liquid chromatography and methods for making and using same |
KR101495378B1 (ko) | 2007-10-18 | 2015-02-24 | 파나소닉 주식회사 | 마이크로파 가열 장치 |
KR20110057134A (ko) | 2008-09-17 | 2011-05-31 | 파나소닉 주식회사 | 마이크로파 가열 장치 |
-
2010
- 2010-09-08 WO PCT/JP2010/005495 patent/WO2011033740A1/ja active Application Filing
- 2010-09-08 US US13/392,683 patent/US9648670B2/en active Active
- 2010-09-08 JP JP2011531778A patent/JP5588989B2/ja active Active
- 2010-09-08 CN CN201080040058.9A patent/CN102484910B/zh active Active
- 2010-09-08 EP EP10816855.0A patent/EP2480047B1/en not_active Not-in-force
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS535445A (en) | 1976-07-05 | 1978-01-19 | Hitachi Ltd | High frequency heating equipment |
JPS56132793A (en) | 1980-03-19 | 1981-10-17 | Hitachi Netsu Kigu Kk | High frequency heater |
JPH04233188A (ja) | 1990-09-21 | 1992-08-21 | Whirlpool Internatl Bv | マイクロ波オーブン、マイクロ波オーブンのキャビティの励起方法、及びこの方法を実施するウェーブガイド装置 |
JPH08337887A (ja) * | 1995-06-12 | 1996-12-24 | Hitachi Ltd | プラズマ処理装置 |
JP2002061847A (ja) | 2000-08-23 | 2002-02-28 | Lg Electronics Inc | 電子レンジの均一加熱構造 |
WO2003077299A1 (fr) * | 2002-03-08 | 2003-09-18 | Tokyo Electron Limited | Dispositif a plasma |
JP2008269794A (ja) * | 2007-04-16 | 2008-11-06 | Matsushita Electric Ind Co Ltd | マイクロ波処理装置 |
JP2009170335A (ja) * | 2008-01-18 | 2009-07-30 | Mitsubishi Electric Corp | 高周波加熱装置 |
JP2009187856A (ja) * | 2008-02-08 | 2009-08-20 | Mitsubishi Electric Corp | 加熱調理器 |
JP2009230881A (ja) * | 2008-03-19 | 2009-10-08 | Mitsubishi Electric Corp | 高周波加熱装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2480047A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017525121A (ja) * | 2014-05-28 | 2017-08-31 | グァンドン ミデア キッチン アプライアンシズ マニュファクチュアリング カンパニー リミテッド | 半導体電子レンジ及びその半導体マイクロ波源 |
US10588182B2 (en) | 2014-05-28 | 2020-03-10 | Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd. | Semiconductor microwave oven and semiconductor microwave source thereof |
CN105142253A (zh) * | 2015-07-24 | 2015-12-09 | 石铁峰 | 一种微波发生装置、微波加热装置以及加热方法 |
US10911051B2 (en) | 2016-12-21 | 2021-02-02 | Whirlpool Corporation | Method, system and device for radio frequency electromagnetic energy delivery |
Also Published As
Publication number | Publication date |
---|---|
EP2480047A1 (en) | 2012-07-25 |
CN102484910A (zh) | 2012-05-30 |
JPWO2011033740A1 (ja) | 2013-02-07 |
EP2480047A4 (en) | 2012-08-22 |
CN102484910B (zh) | 2014-07-09 |
US9648670B2 (en) | 2017-05-09 |
US20120152939A1 (en) | 2012-06-21 |
JP5588989B2 (ja) | 2014-09-10 |
EP2480047B1 (en) | 2014-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5588989B2 (ja) | マイクロ波加熱装置 | |
US8901470B2 (en) | Microwave heating apparatus | |
JP5645168B2 (ja) | マイクロ波加熱装置 | |
JP5280372B2 (ja) | マイクロ波加熱装置 | |
JP4992525B2 (ja) | マイクロ波処理装置 | |
WO2016006249A1 (ja) | マイクロ波加熱装置 | |
JP5217882B2 (ja) | マイクロ波処理装置 | |
JP5127038B2 (ja) | 高周波処理装置 | |
JP2014049276A (ja) | マイクロ波処理装置 | |
EP3852496A1 (en) | Microwave processing apparatus | |
JP2010140696A (ja) | マイクロ波処理装置 | |
JP5169254B2 (ja) | マイクロ波処理装置 | |
WO2018037801A1 (ja) | 高周波加熱装置 | |
JP5217881B2 (ja) | マイクロ波処理装置 | |
JP2010073383A (ja) | マイクロ波加熱装置 | |
JP5142368B2 (ja) | 高周波処理装置 | |
JP7329736B2 (ja) | 高周波加熱装置 | |
RU2060598C1 (ru) | Свч-печь |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080040058.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10816855 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2011531778 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010816855 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13392683 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |