WO2011004561A1 - マイクロ波加熱装置およびマイクロ波加熱制御方法 - Google Patents
マイクロ波加熱装置およびマイクロ波加熱制御方法 Download PDFInfo
- Publication number
- WO2011004561A1 WO2011004561A1 PCT/JP2010/004251 JP2010004251W WO2011004561A1 WO 2011004561 A1 WO2011004561 A1 WO 2011004561A1 JP 2010004251 W JP2010004251 W JP 2010004251W WO 2011004561 A1 WO2011004561 A1 WO 2011004561A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microwave
- heating
- heated
- power
- frequency
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 504
- 238000000034 method Methods 0.000 title claims abstract description 84
- 230000008859 change Effects 0.000 claims abstract description 112
- 238000001514 detection method Methods 0.000 claims abstract description 99
- 230000007423 decrease Effects 0.000 claims description 94
- 230000010355 oscillation Effects 0.000 claims description 65
- 238000009826 distribution Methods 0.000 claims description 29
- 238000010408 sweeping Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 description 53
- 230000002123 temporal effect Effects 0.000 description 22
- 230000003321 amplification Effects 0.000 description 17
- 238000003199 nucleic acid amplification method Methods 0.000 description 17
- 230000009471 action Effects 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 9
- 230000002441 reversible effect Effects 0.000 description 9
- 230000006378 damage Effects 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 230000001360 synchronised effect Effects 0.000 description 7
- 230000010354 integration Effects 0.000 description 5
- 230000036962 time dependent Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/66—Circuits
- H05B6/68—Circuits for monitoring or control
- H05B6/686—Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/70—Feed lines
- H05B6/705—Feed lines using microwave tuning
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/72—Radiators or antennas
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2206/00—Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
- H05B2206/04—Heating using microwaves
- H05B2206/044—Microwave heating devices provided with two or more magnetrons or microwave sources of other kind
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B40/00—Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
Definitions
- the present invention relates to a microwave heating apparatus and a microwave heating control method for heating an object to be heated using a microwave generating means having a frequency variable function.
- a conventional microwave heating apparatus generally uses a vacuum tube called a magnetron as a microwave generating means as represented by a microwave oven.
- a magnetron used in a microwave oven has a structure in which an oscillation frequency is determined by its own structure, and the determined frequency cannot be variably adjusted.
- a technology for attaching a frequency variable function to a magnetron a magnetron attached with such a technology is expensive and difficult to be mounted on a product for the general public.
- Microwave generation means using a semiconductor element has a function that can easily vary the frequency of the microwave in response to a broadband frequency.
- the properties thereof change with the heat treatment.
- the degree of absorption in the object to be heated changes, and a reflection phenomenon of the microwave returning from the heating chamber to the microwave generating means side is exhibited.
- the generation of reflected power due to this reflection phenomenon causes the reflected power to be consumed by heat in the semiconductor element, causing thermal destruction of the semiconductor element. Therefore, in the case of microwave generation means using a semiconductor element, control of the reflected power is an important issue in the sense of preventing thermal destruction of the semiconductor element due to the reflected power.
- the conventional microwave heating apparatus disclosed in Patent Document 1 uses a magnetron as a microwave generating means, and the incident / reflection direction of high-frequency power transmitted in a waveguide that couples the magnetron and the heating chamber. A component is detected, and control is performed to stop the heat treatment when the reflected power changes significantly with the progress of heating in the detected direction component.
- a sensor for measuring incident power and reflected power supplied to the heating chamber and means for detecting the microwave level in the heating chamber are provided.
- the configuration is disclosed in Patent Document 2, for example.
- the conventional microwave heating apparatus disclosed in Patent Document 2 obtains the heat capacity of an object to be heated based on incident power, reflected power, and a detection signal of a microwave level in a heating chamber, and generates a microwave generation means that is a magnetron. The generated power is controlled.
- JP 04-245190 A Japanese Patent Laid-Open No. 55-039632
- the conventional microwave heating apparatus since a magnetron is used as the microwave generating means, it is necessary to provide a special mechanism in order to adjust and control the frequency of the generated microwave. There was a problem of becoming higher. Moreover, in the conventional microwave heating apparatus, since it is the structure which detects reflected electric power in one place of a heating chamber, the information regarding the heating distribution of a to-be-heated material cannot be obtained from the detected reflected electric power, The reflected power detected as a control for heating the entire object to be heated satisfactorily could not be used.
- the present invention provides a microwave heating apparatus and a microwave heating control method in which a plurality of power supply units are provided in a heating chamber, and an object to be heated is uniformly heated to a desired state based on reflected power information from each of the power supply units.
- the purpose is to do.
- the microwave heating apparatus of the first aspect is: A microwave generator having a variable frequency function; A heating chamber for storing an object to be heated; A plurality of power feeding units that supply the microwave generated by the microwave generating unit to the heating chamber; A power detection unit that detects a microwave reflection amount reflected from the heating chamber to the microwave generation unit via the power feeding unit; A control unit for controlling the operation of the microwave generation unit based on a detection signal detected by the power detection unit, The control unit controls the microwave generation unit to operate at a heating frequency for heating the object to be heated to supply microwave power from the power supply unit to the heating chamber, and the detection detected by the power detection unit It is configured to estimate the heating state of the object to be heated based on the increase / decrease change state per unit time in the signal detection level, and to control the microwave power and the heating frequency supplied from the power supply unit to the heating chamber. .
- the object to be heated can be uniformly heated to
- a microwave heating apparatus is the first aspect, A heating distribution state of the object to be heated is estimated based on an increase / decrease change state per unit time in at least one microwave reflection amount from the power detection unit, and a unit time in all microwave reflection amounts from the power detection unit The heating state of the object to be heated is estimated based on the hit increase / decrease change state, and the microwave power and the heating frequency supplied from the power feeding unit to the heating chamber are controlled.
- the microwave heating apparatus configured as described above is configured to detect any change in time of the microwave reflection amount obtained from the power detection unit corresponding to each of the plurality of power feeding units.
- the microwave heating apparatus estimates the heating state of the object to be heated based on the temporal increase / decrease change of the microwave reflection amount, determines the operation end timing of the microwave generation unit, and sets the timing. By stopping the operation when it reaches, overheating can be suppressed and a good heating finish can be executed.
- the microwave heating apparatus wherein the control unit in the second aspect generates the microwave over a predetermined frequency band before the start of the full-scale heating operation on the object to be heated.
- the control unit in the second aspect By sweeping the unit, the oscillation frequency at which the total sum of the microwave reflection amounts exhibits the minimum value is selected as the heating frequency, and the microwave generation unit is operated at the heating frequency to supply the microwave power from the power supply unit. You may comprise so that it may control to supply to the said heating chamber.
- the microwave heating device configured as described above can reliably reduce the amount of microwave reflection and provide a highly reliable heating device.
- the microwave heating apparatus wherein the control unit according to the second aspect generates the microwave over a predetermined frequency band before the start of a full-scale heating operation for an object to be heated.
- the sweeping operation is performed, and the oscillation frequency at which the reflection ratio of the sum of the microwave reflection amounts to the sum of the microwave supply amounts exhibits the minimum value is selected as the heating frequency, and the microwave generation unit is operated at the heating frequency.
- the microwave power may be controlled to be supplied from the power feeding unit to the heating chamber.
- the microwave heating device configured in this manner can reliably reduce the amount of reflected microwaves and provide a more reliable heating device.
- the power detection unit is configured to use the detected microwave supply amount as a configuration for detecting the microwave supply amount, generation of the microwave generation unit It is possible to correct a change in the amount of microwave supply when the oscillation frequency to be changed is changed by an update process or the like, and it is possible to more reliably estimate a state change accompanying heating in the object to be heated.
- each of the power feeding units is point-symmetric about the center of the wall surface on the same wall surface forming the heating chamber. You may arrange in.
- the microwave heating apparatus according to the fifth aspect configured as described above can radiate microwaves from different directions with a plurality of power feeding units arranged symmetrically with respect to an object to be heated placed in the center of the heating chamber. At the same time, the power feeding unit receives reflected waves from different directions.
- the microwave heating apparatus according to the fifth aspect configured in this manner grasps the heating uniformity of the object to be heated by comparing the amount of microwave reflection received by each power feeding unit, and the degree of heating uniformity. Can be performed with higher accuracy.
- the microwave heating apparatus is the microwave heating apparatus according to the second or third aspect, wherein the control unit is configured to reflect any one of a plurality of microwave reflection amounts from the power detection unit. When the amount exceeds a preset specified value, the heating frequency may be selected again.
- the microwave heating apparatus according to the sixth aspect configured as described above can reliably suppress the thermal destruction of the components of the microwave generation unit by the microwave power reflected to the microwave generation unit side. Thus, the amount of microwave power supplied to the object to be heated can be maximized, and the heating time can be shortened and the power can be saved.
- the microwave heating apparatus is the microwave heating apparatus according to the second or third aspect, wherein the control unit increases or decreases a unit time per unit time in a plurality of microwave reflection amounts from the power detection unit.
- the control unit increases or decreases a unit time per unit time in a plurality of microwave reflection amounts from the power detection unit.
- the selection of the heating frequency may be performed again.
- the microwave heating device configured as described above can reliably estimate the uniformity of the heating distribution of the object to be heated.
- the control unit increases or decreases changes per unit time in all microwave reflection amounts from the power detection unit.
- the full-scale heating operation may be continued when all the microwave reflection amount increase / decrease change states show the same tendency.
- the microwave heating apparatus according to the eighth aspect configured in this manner can confirm the uniformity of heating of the object to be heated and can reliably estimate that the physical property of the entire object to be heated has changed.
- the control unit increases or decreases changes per unit time in all microwave reflection amounts from the power detection unit.
- all the microwave reflection amount increase / decrease change states show the same tendency, and the detection level of at least one microwave reflection amount increase / decrease change state is a determination index.
- the temperature of the object to be heated may be estimated to be within the range of 60 ° C. to 70 ° C., and the end time of the full-scale heating operation may be calculated.
- the microwave heating apparatus according to the ninth aspect configured as described above can grasp that the heating of the object to be heated is in the final stage.
- the microwave heating apparatus is the microwave heating apparatus according to the second or third aspect, wherein the control unit selects the microwave at a heating frequency selected before the start of the full-scale heating operation on the object to be heated.
- the control unit selects the microwave at a heating frequency selected before the start of the full-scale heating operation on the object to be heated.
- the microwave heating device can suppress thermal destruction of the components of the microwave generation unit due to the microwave power reflected to the microwave generation unit side, and By maximizing the amount of microwave power supplied to the heated object, it is possible to shorten the heating time and save power.
- the sweeping operation is performed over a predetermined frequency band before the start of the full-scale heating operation for the object to be heated stored in the heating chamber.
- the heating state of the object to be heated is estimated based on the increase / decrease change state per unit time in the detection level of the microwave reflection amount.
- the object to be heated can be uniformly heated to a desired state based on the reflected power information from the plurality of power feeding units.
- the microwave heating control method is based on the above-described eleventh aspect, based on the change in the amount of change per unit time in the detected at least one microwave reflection amount. Estimating a heating distribution state, estimating a heating state of an object to be heated based on an increase / decrease change state per unit time in all microwave reflection amounts, and supplying microwave power to the heating chamber from the power feeding unit and A step of controlling the heating frequency may be included.
- the microwave heating control method according to the twelfth aspect configured as described above is any one of detecting the time increase / decrease change of the microwave reflection amount obtained from the power detection unit corresponding to each of the plurality of power feeding units.
- the microwave heating control method estimates the heating state of the object to be heated based on the temporal increase / decrease change in the amount of reflected microwaves, determines the operation end timing of the microwave generation unit, and determines the timing. By stopping the operation when it reaches, overheating can be suppressed and a good heating finish can be executed.
- the reflection ratio of the sum of the microwave reflection amounts to the sum of the microwave supply amounts is the minimum value. May be selected as the heating frequency.
- any one of the detected microwave reflection amounts has a predetermined value set in advance. If it exceeds, the heating frequency may be selected again.
- the microwave heating control method according to the fourteenth aspect configured as described above can reliably suppress the thermal destruction of the components of the microwave generation unit due to the microwave power reflected to the microwave generation unit side. At the same time, the amount of microwave power supplied to the object to be heated can be maximized, and the heating time can be shortened and power can be saved.
- a microwave heating control method is the method according to the eleventh or twelfth aspect, wherein the object to be heated is based on an increase / decrease change state per unit time in a plurality of detected microwave reflection amounts.
- the heating frequency may be selected again when the increase / decrease change state of at least one microwave reflection amount shows a different tendency from the others.
- the microwave heating control method configured as described above can reliably estimate the uniformity of the heating distribution of the object to be heated.
- the object to be heated is changed based on the increase / decrease change state per unit time in all detected microwave reflection amounts.
- the full-scale heating operation may be continued when the increase / decrease change state of all the microwave reflection amounts shows the same tendency.
- the microwave heating control method according to the sixteenth aspect thus configured can confirm the uniformity of heating of the object to be heated and can reliably estimate that the physical properties of the entire object to be heated have changed. .
- the microwave heating control method is the method according to the eleventh or twelfth aspect, wherein the microwave power is operated by operating at a heating frequency selected before the start of the full-scale heating operation for the object to be heated.
- the sweep operation for selecting the oscillation frequency for heating the object to be heated is performed again in preference to the estimation of the heating distribution state and the heating state of the object to be heated.
- the object to be heated may be heated by updating the oscillation frequency as the heating frequency of the object to be heated.
- the microwave heating control method can suppress thermal destruction of the components of the microwave generation unit due to the microwave power reflected to the microwave generation unit side, By maximizing the amount of microwave power supplied to the object to be heated, it is possible to shorten the heating time and save power.
- a plurality of power feeding units are provided in the heating chamber, and an object to be heated is uniformly brought into a desired state based on at least reflected power information from each power feeding unit. Can be heated.
- the microwave heating apparatus of the present invention is not limited to the configuration of the microwave oven described in the following embodiment, but is equivalent to the technical idea described in the following embodiment and the present invention. It includes a microwave heating device and a microwave heating control method configured based on common technical knowledge in the technical field.
- FIG. 1 is a partially cutaway view of the inside of a heating chamber in the microwave heating apparatus according to the first embodiment of the present invention.
- the open / close door for opening and closing the heating chamber is provided on the front side, but this open / close door is omitted.
- FIG. 2 is a block diagram showing the configuration of the microwave heating apparatus according to the first embodiment of the present invention.
- FIG. 3 is a diagram illustrating a configuration of a plurality of power feeding units provided on the bottom wall surface of the heating chamber in the microwave heating apparatus according to the first embodiment of the present invention.
- the microwave heating apparatus includes a heating chamber 100 having a substantially rectangular parallelepiped structure that accommodates an object to be heated.
- the heating chamber 100 includes a left wall surface 101, a right wall surface 102, a bottom wall surface 103, which are formed of a metal material. It has an upper wall surface 104, a rear wall surface 105, and an open / close door 106 (see FIG. 3) that opens and closes to accommodate an object to be heated, and is configured to confine the supplied microwave inside.
- the four power feeding units 20a, 20b, 20c, and 20d that radiate and supply the microwave formed in the microwave generation unit 10 (see FIG. 2) that is the microwave generation unit into the heating chamber 100 constitute the heating chamber 100.
- the bottom wall surface 103 is arranged. These power feeding portions 20a, 20b, 20c, and 20d are arranged on the bottom wall surface 103 with the substantially center C0 of the bottom wall surface 103 as point symmetry (see FIG. 3).
- the microwave heating apparatus includes a heating chamber 100 covered with a casing, a microwave generator 10 for supplying microwave power to the heating chamber, and a control unit. 21 and power feeding units 20a, 20b, 20c, and 20d.
- the microwave generation unit 10 includes an oscillation unit 11 configured using semiconductor elements, power distribution units 12a, 12b, and 12c that distribute the output of the oscillation unit 11 in a two-stage configuration, and amplification that amplifies the distributed power 13a, 13b, 13c, 13d, 15a, 15b, 15c, 15d, power detectors 18a, 18b, 18c, 18d, and phase variable units 19a, 19b.
- the output of the oscillating unit 11 has a two-stage configuration in which two outputs are distributed by the first-stage power distribution unit 12a and four are distributed by the next-stage power distribution units 12b and 12c.
- the phase variable sections 19a and 19b are provided between the output of the first stage power distribution section 12a and the input of the next stage power distribution sections 12b and 12c, respectively.
- the four outputs distributed by the next-stage power distribution units 12b and 12c are sent to the first-stage amplification units 13a, 13b, 13c, and 13d configured using semiconductor elements via the microwave transmission paths 14a, 14b, 14c, and 14d.
- the outputs of the first stage amplification units 13a, 13b, 13c, and 13d are further amplified in main amplification units 15a, 15b, 15c, and 15d configured using semiconductor elements.
- the outputs of the main amplifying units 15a, 15b, 15c, and 15d are led to the output units 16a, 16b, 16c, and 16d of the microwave generating unit 10 through the respective microwave transmission paths 17a, 17b, 17c, and 17d.
- Power detection units 18a, 18b, 18c, and 18d are inserted into the respective microwave transmission paths 17a, 17b, 17c, and 17d.
- the power detection units 18a, 18b, 18c, and 18d are described as being provided inside the microwave generation unit 10. However, in the present invention, such a configuration is used.
- the power detection units 18a, 18b, 18c, and 18d are independent from the microwave generation unit 10, and are not limited to the microwave generation unit 10 and the power supply units 20a, 20b, 20c, and 20d.
- the provided structure may be sufficient.
- the microwave generator 10 is formed on a dielectric substrate made of a low dielectric loss material.
- the first stage amplifying units 13a, 13b, 13c, and 13d and the main amplifying units 15a, 15b, 15c, and 15d are configured by a circuit having a conductor pattern formed on one surface of a dielectric substrate. In order to operate a certain semiconductor element satisfactorily, matching circuits are provided on the input side and the output side of each semiconductor element.
- the microwave transmission lines 14a, 14b, 14c, 14d, 17a, 17b, 17c, and 17d are formed of transmission circuits having a characteristic impedance of about 50 ⁇ by a conductor pattern provided on one surface of a dielectric substrate.
- the oscillation unit 11 of the microwave generation unit 10 has a frequency variable function for generating a frequency from 2400 MHz to 2500 MHz.
- Each of the power distribution units 12a, 12b, and 12c has a Wilkinson-type power 2 distribution configuration.
- the phases of the microwaves transmitted to the input terminals of the first stage amplification units 13a, 13b, 13c, and 13d are ideally the same phase.
- the phase variable units 19a and 19b provided between the first-stage power distribution unit 12a and the next-stage power distribution units 12b and 12c have a circuit configuration in which a variable capacitance diode is incorporated as a reflection type phase circuit.
- the reflection type phase circuit is configured to cause a phase delay by changing the voltage applied to the variable capacitance diode.
- the phase lag is 180 ° or more at maximum by changing the voltage applied to the variable capacitance diode for transmission at the center frequency of the frequency band used for the microwave heating device. Selection of variable capacitance diode and variable range of applied voltage are set.
- the phase difference between the first output sections 16a and 16b and the second output sections 16c and 16d of the microwave generation section 10 is changed by 360 ° at the maximum. Is possible.
- the power detection units 18a, 18b, 18c, and 18d transmit microwave power (hereinafter referred to as microwave supply amount) from the microwave generation unit 10 to the heating chamber 100 via the power supply units 20a, 20b, 20c, and 20d.
- microwave supply amount microwave power
- a so-called reflected wave power hereinafter referred to as a microwave reflection amount
- the power detection unit in the microwave heating apparatus of the present invention may be configured to detect at least the amount of microwave reflection.
- the power coupling degree is, for example, about 40 dB, and the microwave supply amount that transmits the microwave transmission paths 17a, 17b, 17c, and 17d or the microwave reflection amount is about 1 Extract power of / 10000.
- Each power signal extracted by the power detectors 18a, 18b, 18c, and 18d is rectified by a detection diode (not shown) and smoothed by a capacitor (not shown), and the processed signal is detected information. 23 is input to the control unit 21.
- the control unit 21 includes heating condition information (indicated by an arrow 22 in FIG. 2) relating to an object to be heated that is directly input and set by the user, and detection information (see FIG. 2 and the heating state information (indicated by the arrow 25 in FIG. 2) obtained from various sensors that detect the heating state of the object to be heated during heating.
- the oscillation frequency and oscillation output of the oscillating unit 11 which is a component of the above are controlled, and the voltage applied to the phase variable units 19a and 19b is controlled.
- the microwave heating apparatus according to the first embodiment can heat the object to be heated housed in the heating chamber 100 in an optimum state corresponding to the heating conditions set by the user.
- the microwave generation unit 10 is provided with, for example, a cooling fin as a heat radiating means for radiating heat generated by the semiconductor element.
- a mounting tray 24 made of a low dielectric loss material that covers and feeds power supply units 20 a, 20 b, 20 c, and 20 d provided on the bottom wall surface 103 is disposed. ing.
- the object to be heated is stored in the heating chamber 100, and the user inputs the heating condition information of the object to be heated by an operation unit (not shown) provided in the microwave heating apparatus, and presses the heating start key.
- an operation unit not shown
- a heating start signal is formed and input to the control unit 21.
- the control unit 21 to which the heating start signal is input outputs the control signal to the microwave generation unit 10, and the microwave generation unit 10 starts operation.
- the control unit 21 operates a driving power source (not shown) provided in the microwave heating apparatus to supply power to the first stage amplification units 13a, 13b, 13c, 13d and the main amplification units 15a, 15b, 15c, 15d. To do.
- phase variable sections 19a and 19b are set to have no phase delay according to the name heating condition information or the like, or only one of the phase variable sections is set to a phase delay of about 180 degrees.
- the output of the oscillating unit 11 that has been operated is distributed approximately 1 ⁇ 2 by the first-stage power distribution unit 12a, and is further divided approximately 1 ⁇ 2 by the subsequent next-stage power distributors 12b and 12c.
- four microwave power signals are formed, and are output from the output units 16a, 16b, 16c, and 16d via the subsequent first stage amplifying units 13a, 13b, 13c, and 13d and the main amplifying units 15a, 15b, 15c, and 15d. Is output.
- Outputs from the output units 16 a, 16 b, 16 c, and 16 d are transmitted to the respective power feeding units 20 a, 20 b, 20 c, and 20 d of the heating chamber 100 and radiated into the heating chamber 100.
- phase variable units 19a and 19b have no phase delay
- the phases of the microwave signals radiated from the power feeding units 20a, 20b, 20c, and 20d are the same.
- the microwave radiated into the heating chamber 100 from the first output parts 16a and 16b via the power feeding parts 20a and 20b, and the second output part is determined.
- each main amplification unit 15a, 15b, 15c, and 15d has a microwave power equivalent to 1/10 of the rated output, for example, 20 W, before the actual heating of the object to be heated. It is configured to output microwave power.
- the microwave power supplied into the heating chamber 100 is absorbed 100% by the object to be heated, no reflected power is transmitted from the heating chamber 100 to the microwave generation unit 10 side.
- the electrical characteristics of the heating chamber 100 including the object to be heated are determined by the type, shape, and amount of the object to be heated, all of the supplied microwave power is not absorbed by the object to be heated. Based on the output impedance of the microwave generation unit 10 and the impedance of the heating chamber 100, reflected power transmitted from the heating chamber 100 to the microwave generation unit 10 side is generated.
- the power detection units 18a, 18b, 18c, and 18d combine with the reflected power transmitted from the heating chamber 100 to the microwave generation unit 10 side, and output a detection signal proportional to the microwave reflection amount.
- the control unit 21 performs step variable (synchronous sweep operation) for each predetermined frequency over the entire frequency band (for example, 2400 MHz to 2500 MHz) defined in advance with respect to the oscillation unit 11 in the stage before the start of full-scale heating of the object to be heated.
- a detection signal proportional to the amount of microwave reflection at each predetermined frequency is received from each of the power detection units 18a, 18b, 18c, and 18d, and a preferable oscillation frequency to be used when the object to be heated is fully heated is selected (frequency). Selection action).
- a preferable oscillation frequency is a frequency when the amount of microwave reflection is the smallest.
- the control unit 21 changes the oscillation frequency of the oscillation unit 11 from the initial 2400 MHz to 2500 MHz which is the upper limit of the frequency variable range at a 1 MHz pitch (for example, a variable speed of 1 MHz in 10 milliseconds).
- the frequency indicating the minimum point and the detection signal corresponding to the microwave reflection amount at the frequency are stored.
- the frequency having the smallest microwave reflection amount is selected in the frequency group in which the displacement of the microwave reflection amount indicates the minimum point.
- the control unit 21 controls the oscillation unit 11 to oscillate at the selected frequency, and the micro controls the generation unit 10 to have an output corresponding to the set heating condition information 22.
- the microwave generator 10 controlled in this way outputs, for example, each of the main amplifiers 15a, 15b, 15c, and 15d with a microwave power of around 200 W during a full-scale heating operation on an object to be heated.
- Outputs of the main amplification units 15a, 15b, 15c, and 15d are transmitted to the power feeding units 20a, 20b, 20c, and 20d through the output units 16a, 16b, 16c, and 16d, and are supplied into the heating chamber 100.
- the plurality of power feeding units 20 a, 20 b, 20 c, and 20 d are arranged so that the substantially center C 0 of the bottom wall surface 103 is point-symmetric.
- each of the power feeding units 20a, 20b, 20c, and 20d is applied to the microwave supplied into the heating chamber 100.
- the amount of microwave reflection detected by each of the power detection units 18a, 18b, 18c, and 18d is substantially equal.
- the control unit 21 causes the object to be heated to be above the approximate center C 0 of the bottom wall surface 103. It can be determined that the storage tray 24 is considerably removed from the corresponding mounting tray 24. In this case, the user may be informed to redo the storage arrangement.
- the object to be heated is subjected to the frequency selection operation as described above before the full-scale heating operation, and an appropriate oscillation frequency (heating frequency) is applied to the heated object.
- an appropriate oscillation frequency heating frequency
- the microwave heating apparatus of Embodiment 1 increases / decreases change per unit time of the microwave reflection amount detected by each of the power detection units 18a, 18b, 18c, 18d during the full-scale heating operation of the object to be heated (
- the control unit 21 is configured to recognize a temporal variation characteristic indicating a temporal variation.
- the control unit 21 estimates the heating distribution state of the object to be heated based on the temporal increase / decrease change of the microwave reflection amount of the at least one power detection unit in the temporal increase / decrease change characteristic. Further, the control unit 21 estimates the heating state of the object to be heated based on the temporal increase / decrease change of the microwave reflection amount of all the power detection units 18a, 18b, 18c, 18d, and the oscillation frequency of the microwave generation unit 10 Control of update processing of heating frequency and heating processing (including stop processing) is performed.
- FIG. 4 is a graph illustrating an example of a characteristic curve based on each detection signal detected by the power detection units 18a, 18b, 18c, and 18d in the microwave heating apparatus of the first embodiment.
- the horizontal axis indicates the oscillation frequency [MHz]
- the vertical axis indicates the microwave power (microwave) transmitted from the microwave generation unit 10 to the heating chamber 100 via the power supply units 20a, 20b, 20c, and 20d.
- the reflection ratio (RW / SW) which is the ratio of (RW) is shown.
- the microwave supply amount and the microwave reflection amount are detected by the power detection units 18a, 18b, 18c, and 18d, and the reflection ratio is controlled by the control unit 21 based on the respective detection signals.
- (RW / SW) is configured to be calculated.
- the power detection unit is configured to detect only the microwave reflection amount
- the ratio of the detected microwave reflection amount to the microwave supply amount output from the preset microwave generation unit is set as the reflection ratio. It is good.
- the reflection ratio characteristic curve G110 shown in FIG. 4 shows an example of a case where an object to be heated is stored in the heating chamber 100 in the frequency variable range (2400 MHz to 2500 MHz) of the microwave heating apparatus of the first embodiment. It is.
- the three oscillation frequencies f1, f2, and f3 have the minimum reflection ratio (RW / SW).
- the control unit 21 selects the oscillation frequency (for example, f1) at which the reflection ratio is minimum as the heating frequency in the full-scale heating operation for the object to be heated. .
- step S111 of FIG. 5 when the object to be heated is stored in the heating chamber 100 and placed on the placing plate 24, the heating condition is set in the operation unit, and the heating start key is pressed, Occurs.
- the control unit 21 to which the heating start signal is input generates a control signal, and causes the microwave generation unit 10 to have a first output power, for example, a power of less than 100 W, as a specific example. It sets to 20 W and starts the operation of the microwave generator 10.
- the control unit 21 supplies a predetermined drive voltage to the first stage amplification units 13a, 13b, 13c, 13d and the main amplification units 15a, 15b, 15c, 15d.
- control unit 21 outputs a control signal set to 2400 MHz as the initial oscillation frequency of the oscillation unit 11 to start the oscillation operation of the oscillation unit 11.
- the microwave generation unit 10 outputs microwave power of less than 100 W at 2400 MHz as the first output power in the initial stage.
- step S113 the oscillation frequency of the oscillation unit 11 is changed from the initial oscillation frequency of 2400 MHz to a higher frequency at a 1 MHz pitch (for example, a sweep rate of 1 MHz in 10 milliseconds), and the upper limit of the frequency variable range.
- the frequency is changed to 2500 MHz (synchronous sweep operation in all frequency bands).
- the synchronous sweep operation which is a variable frequency operation, the microwave supply amount and the microwave reflection amount obtained from each of the power detection units 18a, 18b, 18c, and 18d are stored for each 1 MHz pitch, and the process proceeds to step S114.
- step S114 the reflection ratio (RW / SW) that is the ratio of the sum (RW) of the microwave reflection amounts to the sum (SW) of the microwave supply amounts obtained from the power detection units 18a, 18b, 18c, and 18d.
- the oscillation frequency groups f1, f2, and f3 in FIG. 4 are extracted and the process proceeds to step S115.
- step S115 an oscillation frequency having a minimum reflection ratio (RW / SW), for example, the frequency f1 in FIG. 4 is selected, and the process proceeds to step S116.
- step S116 the control unit 21 controls the output of the oscillation unit 11 so that the microwave generation unit 10 generates a second output power, for example, 200 W, which is a rated output or an output set under heating conditions. .
- the control unit 21 sets the second output power according to the specifications of the microwave heating device, according to the specifications of the microwave heating device, the first stage amplification units 13a, 13b, 13c, 13d and the main amplification units 15a, 15b, 15c, 15d. Both drive voltages may be controlled, or only the drive voltages of the main amplifiers 15a, 15b, 15c, and 15d may be controlled.
- step S117 the full-scale heating operation is started by the second output power set in step S116.
- the process proceeds to step S118 (see FIG. 6), the integration of the heating time in the full-scale heating operation is started, and the process proceeds to step S119.
- step S119 the control unit 21 captures detection signals corresponding to the microwave supply amount (sw) and the microwave reflection amount (rw) detected by the power detection units 18a, 18b, 18c, and 18d, and the process proceeds to step S120. .
- step S120 it is determined whether at least one of the microwave reflection amounts (rw) detected by the power detection units 18a, 18b, 18c, and 18d exceeds the specified value. That is, in step S120, it is confirmed that any detected microwave reflection amount (rw) is not more than a specified value.
- the specified value is a value corresponding to a ratio of the microwave reflection amount (rw) to the microwave supply amount (sw) detected by each of the power detection units 18a, 18b, 18c, 18d (for example, 25%). 50W).
- step S121 When each microwave reflection amount (rw) detected by each of the power detection units 18a, 18b, 18c, and 18d is equal to or less than a specified value, the process proceeds to step S121, and when it exceeds the specified value, step S201 (FIG. 6). Go to Reference).
- FIG. 9 is a characteristic curve when a specific object A to be heated is subjected to full-scale heat treatment by the microwave heating apparatus of the first embodiment.
- the horizontal axis indicates the heating time [sec]
- the vertical axis indicates the amount of microwave reflection (rw) detected by each of the power detection units 18a, 18b, 18c, and 18d.
- the characteristic curves detected by the power detection units 18 a, 18 b, 18 c, and 18 d are assigned the numbers of the power feeding units 20 a, 20 b, 20 c, and 20 d corresponding to the characteristic curves.
- the characteristic curves detected by the respective power detection units 18a, 18b, 18c, and 18d are assigned the numbers of the corresponding power supply units 20a, 20b, 20c, and 20d. Has been granted.
- the amount of microwave reflection (rw) received by the power feeding unit 20d is abnormally increased as compared to the other power feeding units 20a, 20b, and 20c, and the heating time is about 60 seconds. It has reached 50 watts (a power corresponding to a ratio of the microwave reflection amount (rw) to the microwave supply amount (sw) of 25%), which is a predetermined value of the microwave reflection amount.
- the control unit 21 determines that any of the microwave reflection amounts exceeds the specified value, the process proceeds to step S200 and subsequent steps (see FIG. 8). The control contents after step S200 will be described later.
- step S120 of FIG. 6 when the amount of microwave reflection (rw) is equal to or less than a specified value due to the above control content, the process proceeds to step S121.
- step S121 the temporal increase / decrease changes of the respective microwave reflection amounts detected by the respective power detection units 18a, 18b, 18c, and 18d are compared to determine the heating progress state of the object to be heated. The determination in step S121 is performed based on a change in increase / decrease amount per unit time of the microwave reflection amount detected by each power detection unit 18a, 18b, 18c, 18d (temporal increase / decrease change amount).
- step S121 it is determined whether the change state of the increase / decrease amount per unit time of the four microwave reflection amounts shows the same tendency or a different tendency (reverse tendency).
- the temporal increase / decrease change amounts of the four microwave reflection amounts are increased or decreased similarly, or any one of them is changed differently from the other. For example, a determination is made as to whether it is increasing differently from others or decreasing differently from others.
- step S121 when the time-varying change state of each microwave reflection amount has the same tendency (state that is not reverse tendency), the process proceeds to step S123 (see FIG. 7), and the different tendency (reverse tendency state). In that case, the process proceeds to step S122.
- step S122 In the case where any one of the changes in the amount of time increase / decrease in the amount of reflected microwaves has a tendency different from the others (in a reverse tendency), in step S122, the integration of the heating time of the full-scale heating operation is stopped. Return to step S112 (see FIG. 5).
- step S112 the above-described synchronous sweep operation is performed to select a new oscillation frequency to be used during the full-scale heating operation, and update processing is performed.
- step S116 the second output power is set in step S116, and a full-scale heating operation is started in step S117 (full-scale heating process).
- step S118 shown in FIG. 6 integration of the heating time of the full-scale heating operation is started, and the process proceeds to step S119.
- FIG. 10 is a time-dependent characteristic curve of the amount of microwave reflection (rw) when a specific object to be heated B as the object to be heated is subjected to full-scale heat treatment by the microwave heating apparatus of the first embodiment.
- the horizontal axis indicates the heating time [sec]
- the vertical axis indicates the microwave reflection amount [W] detected by each of the power detection units 18a, 18b, 18c, and 18d.
- the power supply units 20 a, 20 b, 20 c, and 20 d corresponding to the respective time-varying characteristic curves detected by the respective power detection units 18 a, 18 b, 18 c, and 18 d are given numbers. .
- FIG. 11 corresponds to the time-dependent change characteristic curve of FIG. 10, and is an increase / decrease change characteristic curve showing an increase / decrease change state per unit time of the amount of microwave reflection (rw).
- the horizontal axis indicates the heating time [sec]
- the vertical axis indicates the increase / decrease per unit time of the microwave reflection amount [W] detected by each of the power detection units 18a, 18b, 18c, and 18d.
- the time-varying characteristic curve shown in FIG. 10 there is no state where the microwave reflection amount exceeds the specified value during heating as shown in FIG.
- most characteristic curves show an increasing tendency.
- the detection signal especially heating time is less than 50 second
- the state of ()) shows the characteristic of repeatedly increasing (brass area) and decreasing (minus area).
- the control unit 21 changes the characteristic of the detection signal (20b) in a change state having a different tendency. Without determining that it is (reverse trend), it is temporarily determined that the tendency is not the reverse trend but the same tendency, and the heating operation is continued. Therefore, the control unit 21 proceeds from step S121 to step S123 (see FIG. 7) in the case of the increase / decrease change characteristics as shown in FIG. In step S123, it is determined again whether or not it is possible to reliably determine that the time-varying change state of the microwave reflection amount has the same tendency.
- step S123 If it is determined in step S123 that the time-varying change state of the microwave reflection amount has the same tendency, the process proceeds to step S124. On the other hand, in step S123, when it is not possible to reliably determine that the time-varying change state of the microwave reflection amount is the same tendency, the process returns to step S118 (see FIG. 6).
- the heating process of the article to be heated B is advanced by executing each step of Step S118 ⁇ Step S119 ⁇ Step S120.
- step S123 it is determined in step S123 that the time-varying change state of the microwave reflection amount has the same tendency, and the process proceeds to step S124.
- step S124 whether or not the change in the microwave reflection amount per unit time has changed remarkably, for example, at least one of the changes in the microwave reflection amount over time is equal to or greater than a threshold value serving as a predetermined determination index. It is determined whether or not there is.
- the threshold value serving as a determination index in this case is ⁇ 1W.
- step S124 If it is determined in step S124 that the temporal increase / decrease change of at least one microwave reflection amount exceeds the determination index and has changed significantly, the process proceeds to step S125. On the other hand, in step S124, if it is determined that the time-varying change in the amount of microwave reflection has not changed significantly, for example, less than ⁇ 1 W, the process returns to step S118 (see FIG. 6) again.
- step S121 it is determined that the time-varying change in the amount of microwave reflection is not a reverse trend but a similar tendency (including a state where the increase and decrease are repeated in a short time), and step S123. Proceed to (see FIG. 6).
- step S123 it is determined that the time-varying changes in all the microwave reflection amounts have the same tendency, and the process proceeds to step S124.
- step S124 it is determined that the increase / decrease change amount per unit time of at least one microwave reflection amount is significant (for example, ⁇ 1 W or more), and the process proceeds to step S125.
- step S125 processing of various heating conditions until the heating operation of the article to be heated B is completed is executed.
- the control unit 21 determines whether the heat treatment time set by the user is satisfied, or whether the surface temperature of the article to be heated B has reached approximately 60 ° C. to 70 ° C. Then, based on the integrated value of the heating time up to the present time and the substantial integrated power value of the input microwave power, the end time until reaching the finishing temperature of the object to be heated B is calculated, and the heat treatment Continue. Further, when any one of the microwave reflection amounts detected by the power detection units 18a, 18b, 18c, and 18d exceeds the above-mentioned specified value (for example, 50 W) during the time until the finish temperature is reached. In addition, a condition for terminating the heating at that time is also attached. The heating condition process in step S125 is executed, the process proceeds to step S126, and the full-scale heating operation is completed by satisfying at least one of the above-described heating operation end conditions.
- step S200 the control contents after step S200 (see FIG. 8) when the microwave reflection amount (rw) exceeds the specified value in step S120 will be described.
- step S200 the integration of the heating time of the full-scale heating operation is stopped, and the process proceeds to step S201.
- step S201 the control unit 21 sets the oscillation frequency of the oscillation unit 11 to the initial oscillation frequency of 2400 MHz, and outputs a control signal for setting the microwave power of the microwave generation unit 10 to the first output power.
- step S202 the oscillation frequency of the oscillation unit 11 is changed from the initial oscillation frequency of 2400 MHz to a higher frequency at a 1 MHz pitch (for example, a sweep speed of 1 MHz in 10 milliseconds), and the upper limit of the frequency variable range.
- the frequency is changed to 2500 MHz (synchronous sweep operation for the entire frequency band).
- the microwave supply amount (sw) and the microwave reflection amount (rw) obtained from the power detection units 18a, 18b, 18c, and 18d are stored for each 1 MHz pitch, and step S203 is performed. Proceed to
- step S203 the reflection ratio (RW / SW) that is the ratio of the sum (RW) of the microwave reflection amounts to the sum (SW) of the microwave supply amounts obtained from the power detection units 18a, 18b, 18c, and 18d.
- the oscillation frequency groups f1, f2, and f3 are extracted, and the process proceeds to step S204.
- step S204 the oscillation frequency with the smallest reflection ratio (RW / SW), for example, the frequency f1 in the characteristic curve shown in FIG. 4 is selected, and the heating frequency for full-scale heating is updated, and step S205 is performed. Proceed to
- step S205 the control unit 21 controls the output of the oscillation unit 11 so that the microwave generation unit 10 generates a second output power, for example, 200 W, which is a rated output or an output set under heating conditions.
- a second output power for example, 200 W
- step S206 the full-scale heating operation is started with the second output power at the heating frequency updated in step S204, and the process proceeds to step S207.
- step S207 it is determined whether or not the microwave reflection amount (rw) detected by each of the power detection units 18a, 18b, 18c, and 18d is equal to or less than a specified value.
- the specified value is a value corresponding to a ratio of the microwave reflection amount (rw) to the microwave supply amount (sw) transmitted to each of the power supply units 20a, 20b, 20c, and 20d corresponding to 25%. For example, when the microwave supply amount is 200 W, the specified value is 50 W. Therefore, in step S207, it is determined whether the microwave reflection amount (rw) is 50 W or less. If the detected microwave reflection amount does not exceed the specified value, the process returns to step S118 (see FIG. 6). On the other hand, if the microwave reflection amount exceeds the specified value, the process proceeds to step S208.
- step S208 a process for reducing the output power of the oscillator 11 is performed.
- this output power reduction process for example, when the second output power is 100%, the power corresponding to 90% is set as the third output power, the power corresponding to 75% is set as the fourth output power, and The power corresponding to 50% is set as the fifth output power, and the output of the oscillating unit 11 is sequentially reduced.
- the output of the oscillating unit 11 is sequentially reduced until all the microwave reflection amounts detected by the power detection units 18a, 18b, 18c, and 18d are equal to or less than a preset specified value (for example, 50 W). When it becomes less than the value, the process returns to step S118.
- the output of the oscillating unit 11 is the fifth output power corresponding to 50% of the second output power, and any of the microwave reflection amounts exceeds the specified value, the heating operation is stopped. The heat treatment may be terminated.
- a full-scale heating operation is started with the heating frequency detected and updated by a new synchronous sweep operation.
- the characteristic of the microwave reflection amount is such that the heating time is 60 seconds or later. That is, in the characteristic curve shown in FIG. 9, under the updated heating frequency, the amount of microwave reflection (20d) corresponding to the power feeding unit 20d is greatly reduced.
- the characteristics of all the microwave reflection amounts do not show a decrease, and there may be a power feeding unit in which the characteristics of the microwave reflection amount increase.
- the amount of microwave reflection (20b) corresponding to the power feeding unit 20b increases after the update.
- the microwave reflection amount (20b) is equal to or less than the specified value (50 W)
- the full-scale heating operation is resumed at the heating frequency updated at this time.
- the control unit 21 may control the drive voltages of the first stage amplification units 13a, 13b, 13c, and 13d and the main amplification units 15a, 15b, 15c, and 15d when setting the updated output power. Or it is good also as a structure which controls only the drive voltage of main amplification part 15a, 15b, 15c, 15d, and reduces an output gradually.
- control unit 21 may be used when the output is sequentially reduced from the second output power to the third output power in step S208 (see FIG. 8). That is, the drive power of the first stage amplifiers 13a, 13b, 13c, 13d and / or the main amplifiers 15a, 15b, 15c, 15d is controlled to reduce the output power of the microwave generator 10, and the process returns to step S207.
- the drive voltage reduction adjustment operation is executed until all the microwave reflection amounts detected by the respective power detection units 18a, 18b, 18c, and 18d are equal to or less than a predetermined value, or until the preset minimum output power is reached. And when all the amount of microwave reflections becomes below a regulation value, you may employ
- the microwave heating apparatus according to the second embodiment of the present invention will be described with reference to FIGS.
- the determination in steps S121 and S121 in the flowchart of FIG. 6 described in the first embodiment and the determination in steps S123 and S124 of the flowchart in FIG. This is based on the value of VSWR (voltage standing wave ratio) calculated based on both values of the microwave supply amount and the microwave reflection amount instead of the amount.
- the microwave heating apparatus of the second embodiment is different from the above-described microwave heating apparatus of the first embodiment in the above control content, and the configuration is the same.
- VSWR voltage standing wave ratio
- Judgment processing was performed by detecting the state of increase / decrease in the amount of wave reflection per unit time.
- the above determination process is performed based on both the microwave supply amount (sw) and the microwave reflection amount (rw) to calculate a VSWR (voltage standing wave ratio).
- each of steps S120, S121, S123, and S124 is performed based on the temporal change characteristic of VSWR and the increase / decrease change characteristic per unit time.
- Other steps in the microwave heating apparatus of the second embodiment are the same as those of the microwave heating apparatus of the first embodiment.
- FIGS. 12 and 13 show the time-varying characteristics of VSWR and the unit of VSWR corresponding to the time-varying characteristics of the microwave reflection amount of FIG. 10 and the increase / decrease change characteristics of the microwave reflection amount per unit time of FIG.
- the increase / decrease change characteristic per time is shown.
- the horizontal axis represents the heating time [sec]
- the vertical axis represents the microwave supply amount (sw) and the microwave reflection amount [W] detected by the power detection units 18a, 18b, 18c, and 18d.
- the calculated VSWR (voltage standing wave ratio) is shown.
- FIG. 13 indicates the heating time [sec]
- the vertical axis indicates the increase / decrease in VSWR per unit time.
- the power supply units 20 a, 20 b, 20 c, and 20 d corresponding to the time-varying change characteristic curve and the increase / decrease change characteristic curve of VSWR are assigned, respectively.
- FIGS. 14 to 16 show the control contents in the microwave heating apparatus of the second embodiment, and correspond to the control operations of the flowcharts of FIGS. 6 to 8 described in the first embodiment. It is. The control contents described in the first embodiment with reference to FIG. 5 are similarly executed in the second embodiment. The following description of the control contents will be described using the flowcharts shown in FIGS. 14 to 16 together with the characteristic curves of FIGS. 12 and 13.
- step S118 the control unit 21 captures detection signals corresponding to the microwave supply amount (sw) and the microwave reflection amount (rw) detected by the power detection units 18a, 18b, 18c, and 18d, and the process proceeds to step S120A. .
- each VSWR is calculated based on the microwave supply amount (sw) and the microwave reflection amount (rw) detected by each of the power detection units 18a, 18b, 18c, 18d, and even one of the calculated VSWRs is calculated. It is determined whether the specified value is not exceeded. That is, in step S120A, it is confirmed that any detected VSWR is equal to or less than a specified value. In the second embodiment, the specified value is set to 3.0.
- step S121A If each VSWR is less than or equal to the specified value, the process proceeds to step S121A, and if it exceeds the specified value, the process proceeds to step S200 (see FIG. 16).
- the time-varying characteristic curve of VSWR shown in FIG. 12 there is no state in which the microwave reflection amount exceeds the specified value during heating. Moreover, as shown in FIG. 12, most time-dependent characteristic curves show an increasing tendency.
- the detection signal detected by the power detection unit 18b connected to the power supply unit 20b is increased ( It shows the characteristics of repeating (brass area) and decreasing (minus area).
- the control unit 21 determines the characteristic of the detection signal (20b) in step 121A.
- the heating operation is continued by tentatively determining that the trend is not the reverse trend but the similar trend without determining that the change state is different (reverse trend).
- the process proceeds from step S121A to step S123A (see FIG. 15).
- step S123A it is determined again whether or not it is possible to reliably determine that the increase / decrease change state per unit time of each VSWR has the same tendency.
- step S123A when it is determined that the time-varying change state of the microwave reflection amount has the same tendency, the process proceeds to step S124A.
- step S123A when it cannot be determined with certainty that the temporal increase / decrease change state of each VSWR has the same tendency, the process returns to step S118 (see FIG. 14).
- the heating process of the article to be heated B is advanced by executing the steps of step S118 ⁇ step S119 ⁇ step S120A.
- step S123A determines whether the increase / decrease change per unit time of each VSWR has changed significantly, for example, whether the temporal increase / decrease change of at least one VSWR is greater than or equal to a threshold value serving as a predetermined determination index. Determined.
- the threshold value (saliency) serving as a saliency determination index is ⁇ 0.01.
- step S124A If it is determined in step S124A that the temporal increase / decrease change of at least one VSWR exceeds the determination index and has changed significantly, the process proceeds to step S125. On the other hand, if it is determined in step S124A that the temporal increase / decrease change in VSWR has not changed significantly, for example, less than ⁇ 0.01, the process returns to step S118 (see FIG. 14) again.
- step S120A shown in FIG. 14 the control contents after step S200 when each VSWR exceeds the specified value are shown in the flowchart of FIG.
- step S200A the control contents after step S200 when each VSWR exceeds the specified value are shown in the flowchart of FIG.
- step S206 the operation of each step from step S200 to step 206 is the same as the operation described in the first embodiment with reference to the flowchart of FIG.
- step S206 the full-scale heating operation is started with the second output power at the heating frequency updated in step S204, and the process proceeds to step S207A.
- step S207A it is determined whether or not each calculated VSWR is equal to or less than a specified value (3.0). If each calculated VSWR does not exceed the specified value, the process returns to step S118 (see FIG. 14). On the other hand, if any one of the VSWRs exceeds the specified value, the process proceeds to step S208.
- step S208 as described in the first embodiment, the output power reduction processing operation of the oscillator 11 is performed.
- this output power reduction process for example, when the second output power is 100%, the power corresponding to 90% is set as the third output power, the power corresponding to 75% is set as the fourth output power, and The power corresponding to 50% is set as the fifth output power, and the output of the oscillating unit 11 is sequentially reduced.
- the output of the oscillating unit 11 is sequentially reduced until each VSWR becomes equal to or less than the specified value (3.0).
- the process returns to step S118.
- the output of the oscillating unit 11 is the fifth output power corresponding to 50% of the second output power, and any of the microwave reflection amounts exceeds the specified value, the heating operation is stopped. The heat treatment may be terminated.
- the microwave heating apparatus of the second embodiment since the control operation is performed including the microwave supply amount together with the microwave reflection amount, the frequency generated by the microwave generation unit can be updated by an update process or the like. It is possible to correct the change in the microwave supply amount when it is changed. In the microwave heating apparatus of the second embodiment, since the actual operation for the output power reduction process in step S208 can be confirmed, it is possible to more reliably estimate the state change accompanying the heating of the object to be heated. .
- an object to be heated C is used. Examples of characteristic curves using are shown in FIGS.
- FIG. 17 is an example of a time-dependent change characteristic curve of the amount of microwave reflection when the object to be heated C is subjected to full-scale heat treatment in the microwave heating apparatus of the first embodiment.
- the horizontal axis represents the heating time [sec]
- the vertical axis represents the microwave reflection amount [W] detected by each of the power detection units 18a, 18b, 18c, and 18d.
- step S115 shows that the full-scale heating operation is continued.
- FIG. 18 corresponds to the characteristic curve of FIG. 17, and exemplifies the VSWR time-varying characteristic curve when the object to be heated C is subjected to full-scale heat treatment in the microwave heating apparatus of the second embodiment. It is.
- the horizontal axis represents the heating time [sec]
- the vertical axis represents the VSWR based on the microwave supply amount and the microwave reflection amount detected by each of the power detection units 18a, 18b, 18c, and 18d.
- FIG. 19 is an example of an increase / decrease change characteristic curve showing a change per unit time based on the time change characteristic of VSWR of FIG.
- the horizontal axis is the heating time [sec]
- the vertical axis is the increase / decrease per unit time of VSWR.
- the characteristic curve shown in FIG. 18 indicates that, in step S120A in the flowchart of FIG. 14, each VSWR is equal to or less than the specified value (3.0), and thus the full-scale heating operation is continued at the set heating frequency. .
- FIG. 19 shows an increase / decrease change characteristic curve showing the change of the increase / decrease state per unit time of each VSWR when the object C is fully heated. The tendency of the temporal increase / decrease change is determined by these VSWR increase / decrease change characteristic curves.
- the increase / decrease change characteristics shown in FIG. 19 are used in the determination operations in steps S120A and S121A in the flowchart of FIG. 14 and steps SS123A and S124A in the flowchart of FIG.
- the increase / decrease change state per unit time of VSWR is all decreasing (minus region) when the heating time is about 120 seconds or later.
- step S123A determines that all the increase / decrease change states per unit time of the VSWR are in a decreasing tendency (minus region) (step S123A), then in step S124A, any one time VSWR increase / decrease change occurs. Whether or not it is remarkable (0.01 or more) is determined. If the temporal change of any one of the VSWRs is significant, various heating condition processing up to the end of the heating operation in step S125 is performed, and it is confirmed in step S126 that the heating state of the article C to be heated satisfies the end condition. Then, the heating operation of the article C to be heated ends.
- the microwave heating apparatus of the present invention a change in time of the microwave reflection amount obtained from the power detection unit corresponding to each of the plurality of power feeding units is detected, and any one microwave reflection amount is detected.
- the uniformity of the heating distribution of the object to be heated can be reliably estimated by the process of determining whether or not is different from the temporal change in the amount of reflected microwaves.
- the microwave heating apparatus of the present invention when it is estimated that the heating distribution in the object to be heated is in a non-uniform heating state based on the temporal increase / decrease change of the microwave reflection amount as described above, the microwave is immediately generated. By updating the heating frequency of the part, the microwave distribution in the heating chamber can be changed to promote uniform heating of the object to be heated.
- any one of the microwave reflection amounts is different from the temporal increase / decrease change of the other microwave reflection amounts means that the microwave power received by the target power supply unit is different from the microwave power received by the other power supply unit. It shows that it has increased or decreased significantly. Therefore, it is suggested that the microwave loss around the power supply unit to be reduced is reduced or increased, and the object to be heated is locally heated or compared to the peripheral part of another power supply unit. It is determined that the heating temperature is low.
- the heating state of the object to be heated is estimated based on the temporal change in the amount of all microwave reflections.
- the microwave heating apparatus of the present invention when all the microwave reflection amount increase / decrease states show the same tendency, it is determined that the object to be heated is uniformly heated, and further, the increase / decrease change in the same tendency Is significant, it is determined that the physical property value of the object to be heated has started to change greatly. That is, when the temperature of the object to be heated reaches a temperature range where evaporation of moisture starts to occur actively, the penetration depth of the microwave into the object to be heated increases. As described above, when the penetration depth of the microwave into the heated object increases, the microwave starts to pass through the heated object in the small heated object.
- the reflection on the surface of the heated object Decrease.
- the ratio of directly receiving the microwaves radiated from the other power supply units increases in each power supply unit of the heating chamber, and the reflection on the surface of the object to be heated decreases, so that each power supply The amount of microwave reflection received by the unit is reduced. Therefore, it is estimated that the temperature of the object to be heated has been heated in the range of 60 ° C. to 70 ° C. at the timing when the increase / decrease change state of the amount of microwave reflection detected by each power detection unit becomes noticeable.
- the cooking for the object to be heated is close to an end state. Therefore, receiving this estimation result, it is possible to grasp that the cooking of the object to be heated is in the final stage, and to determine the timing until the end of the heating operation and to suppress overheating of the object to be heated. Become.
- the timing until the end of the heating operation is determined, for example, by calculating the time to continue based on the elapsed time from the start of heating when the temperature of the object to be heated reaches 75 ° C. There is a case. And when heating continuation time passes and the end time is reached
- the heating operation can be terminated when the object to be heated is at an appropriate temperature, wasteful power consumption can be suppressed.
- the microwave heating apparatus since the plurality of power feeding portions are arranged point-symmetrically around the substantially center of the wall surface on the same wall surface forming the heating chamber, Microwaves can be radiated from different directions by a plurality of power supply units arranged symmetrically with respect to the heated object, and the power supply unit receives reflected waves from different directions. Further, in the microwave heating apparatus of the present invention, by comparing the amount of microwave reflection received by each power feeding unit, it is possible to reliably grasp the heating uniformity of the object to be heated, and The uniformity state can be estimated with high accuracy.
- the microwave heating apparatus of the present invention is configured such that the microwave supply amount detected by the power detection unit in the update process of the oscillation frequency generated by the microwave generation unit is the microwave supply amount when the oscillation frequency is changed. This can be used to correct the change in the state, and the state change accompanying the heating of the object to be heated can be estimated more reliably.
- the microwave heating apparatus of the present invention if the microwave reflection amount exceeds the specified value during the heating of the object to be heated by the oscillation frequency selected in the sweep operation before the start of the full-scale heating operation, Prior to the estimation of the heating distribution state and the heating state of the object, the sweep operation for selecting the oscillation frequency for heating the object to be heated is executed again. The newly selected oscillation frequency is updated as the heating frequency of the object to be heated, and the heating operation of the object to be heated is executed.
- the microwave heating apparatus of the present invention since the heating operation is performed at an appropriately selected oscillation frequency, the components of the microwave generation unit are caused by the microwave power reflected to the microwave generation unit side. In addition to suppressing thermal destruction, it is possible to shorten the heating operation and save power by maximizing the amount of microwave power supplied to the object to be heated.
- the microwave heating apparatus includes a plurality of power supply units, and a device that uniformly heats an object to be heated to a desired state based on information about reflected waves received by each of the power supply units. Since it can be provided, it can be applied to various uses such as a heating device using dielectric heating, such as a microwave oven, a garbage disposal machine, a semiconductor manufacturing device, and a drying device.
- a heating device using dielectric heating such as a microwave oven, a garbage disposal machine, a semiconductor manufacturing device, and a drying device.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
Abstract
Description
電子レンジに用いられているマグネトロンは、自身の構造によって発振周波数が決定され、その決定された周波数を故意に可変調整することはできない構造である。マグネトロンに対して周波数可変機能を付帯させる技術は存在するが、そのような技術を付帯したマグネトロンは高価であり、一般大衆向けの製品に搭載することは困難である。
周波数可変機能を有するマイクロ波発生部と、
被加熱物を収納する加熱室と、
前記マイクロ波発生部が発生したマイクロ波を前記加熱室に供給する複数の給電部と、
前記加熱室から前記給電部を介して前記マイクロ波発生部側に反射するマイクロ波反射量を検出する電力検出部と、
前記電力検出部が検出した検出信号に基づいて前記マイクロ波発生部の動作を制御する制御部と、を備え、
前記制御部は、前記被加熱物を加熱する加熱周波数で前記マイクロ波発生部を動作させてマイクロ波電力を前記給電部から前記加熱室に供給するよう制御し、前記電力検出部が検出した検出信号の検出レベルにおける単位時間当たりの増減変化状態に基づいて被加熱物の加熱状態を推定して、前記給電部から前記加熱室に供給するマイクロ波電力および加熱周波数を制御するよう構成されている。このように構成された第1の観点のマイクロ波加熱装置において、複数の給電部からの反射電力情報に基づいて、被加熱物を所望の状態に均一加熱することができる。
前記電力検出部からの少なくとも一つのマイクロ波反射量における単位時間当たりの増減変化状態に基づいて被加熱物の加熱分布状態を推定し、前記電力検出部からの全てのマイクロ波反射量における単位時間当たりの増減変化状態に基づいて被加熱物の加熱状態を推定して、前記給電部から前記加熱室に供給するマイクロ波電力および加熱周波数を制御する。このように構成された第2の観点のマイクロ波加熱装置は、複数の給電部にそれぞれ対応した電力検出部から得られるマイクロ波反射量の時間的増減変化を検出する中で、いずれか一つのマイクロ波反射量が他のマイクロ波反射量の時間増減変化と異なることを検出すると被加熱物が不均一な加熱状態にあると推定してマイクロ波発生部の発振周波数の更新を実行し、被加熱物の均一加熱を促進することが可能となる。また、第2の観点のマイクロ波加熱装置は、マイクロ波反射量の時間的増減変化に基づき、被加熱物の加熱状態を推定し、マイクロ波発生部の動作終了タイミングを判断してそのタイミングに到達すると動作を停止させることにより、過加熱を抑制し、良好な加熱仕上がりを実行させることができる。
検出されたマイクロ波反射量の総和の検出レベルが最小値を示す発振周波数を加熱周波数として選択するステップ、
選択された加熱周波数でマイクロ波電力を前記給電部から前記加熱室に供給する状態において、マイクロ波反射量の検出レベルにおける単位時間当たりの増減変化状態に基づいて被加熱物の加熱状態を推定し、前記給電部から前記加熱室に供給するマイクロ波電力および加熱周波数を制御するステップ、を有する。このように構成された第11の観点のマイクロ波加熱制御方法において、複数の給電部からの反射電力情報に基づいて、被加熱物を所望の状態に均一加熱することができる。
マイクロ波反射量が規定値を超えた場合には、被加熱物の加熱分布状態および加熱状態の推定に優先して、被加熱物を加熱する発振周波数を選択する前記スイープ動作を再度行い、選択した発振周波数を被加熱物の加熱周波数として更新して被加熱物を加熱してもよい。このように構成された第17の観点のマイクロ波加熱制御方法は、マイクロ波発生部側に反射するマイクロ波電力によってマイクロ波発生部の構成部品が熱破壊することを抑制することができるとともに、被加熱物に供給するマイクロ波電力量を最大化させることにより加熱の短時間化および省電力化を図ることができる。
図1は、本発明に係る実施の形態1のマイクロ波加熱装置における加熱室内部を一部切欠いて示した図である。図1において、加熱室の開閉を行う開閉扉は正面側に設けられているが、この開閉扉は省略されている。図2は、本発明に係る実施の形態1のマイクロ波加熱装置の構成を示すブロック図である。図3は、本発明に係る実施の形態1のマイクロ波加熱装置において加熱室の底壁面に設けられた複数の給電部の構成を示す図である。
実施の形態1のマイクロ波加熱装置は、被加熱物を収納する略直方体構造を有する加熱室100を含み、加熱室100は金属材料で形成された左壁面101、右壁面102、底壁面103、上壁面104、奥壁面105および被加熱物を収納するために開閉する開閉扉106(図3参照)を有して、供給されたマイクロ波を内部に閉じ込めるように構成されている。そして、マイクロ波発生手段であるマイクロ波発生部10(図2参照)において形成されたマイクロ波を加熱室100内に放射供給する4つの給電部20a,20b,20c,20dが加熱室100を構成する底壁面103に配置されている。これらの給電部20a,20b,20c,20dは、底壁面103の略中央C0を点対称(図3参照)として底壁面103にそれぞれ配置されている。
マイクロ波発生部10の発振部11は、2400MHzから2500MHzの周波数を発生する周波数可変機能を備えている。
次に、以上のように構成された実施の形態1のマイクロ波加熱装置について、その加熱動作について説明する。
加熱室100内に供給されたマイクロ波電力が被加熱物において100%吸収されると、加熱室100からマイクロ波発生部10側に伝送する反射電力は発生しない。しかし、被加熱物の種類、形状、量により被加熱物を含む加熱室100の電気的特性が決定されるため、供給されたマイクロ波電力の全てが被加熱物に吸収されることはなく、マイクロ波発生部10の出力インピーダンスと加熱室100のインピーダンスとに基づいて、加熱室100からマイクロ波発生部10側に伝送される反射電力が生じる。
まず、以上のように構成された本発明に係る実施の形態1のマイクロ波加熱装置における周波数選択動作について図4を参照して説明する。
図4は、実施の形態1のマイクロ波加熱装置における電力検出部18a,18b,18c,18dにより検出された各検出信号に基づく特性曲線の一例を示すグラフである。図4において、横軸は発振周波数[MHz]を示し、縦軸はマイクロ波発生部10から各給電部20a,20b,20c,20dを介して加熱室100側に伝送するマイクロ波電力(マイクロ波供給量:sw)の総和(SW)に対する、加熱室100から各給電部20a,20b,20c,20dを介してマイクロ波発生部10側に戻るマイクロ波電力(マイクロ波反射量:rw)の総和(RW)の比率である反射比率(RW/SW)を示している。実施の形態1のマイクロ波加熱装置においては、マイクロ波供給量およびマイクロ波反射量が電力検出部18a,18b,18c,18dにより検出されて、それぞれの検出信号に基づいて制御部21において反射比率(RW/SW)が算出されるよう構成されている。
図4に示す反射比率特性曲線G110においては、3つの発振周波数f1,f2,f3が、反射比率(RW/SW)が極小値を示している。制御部21は、反射比率特性曲線G110に示すような反射比率特性を認識した場合、反射比率が最小となる発振周波数(例えば、f1)を当該被加熱物に対する本格加熱動作における加熱周波数として選定する。
次に、ステップS120における制御内容について図9を参照しながらさらに具体的に説明する。図9は、被加熱物として特定の被加熱物Aを実施の形態1のマイクロ波加熱装置により本格加熱処理を行ったときの特性曲線である。図9において、横軸は加熱時間[sec]、縦軸は各電力検出部18a,18b,18c,18dが検出したマイクロ波反射量(rw)を示す。また、図9においては、各電力検出部18a,18b,18c,18dが検出したそれぞれの特性曲線には、それぞれに対応する給電部20a,20b,20c,20dの番号を付与している。なお、図10以降の特性曲線においても同様に、各電力検出部18a,18b,18c,18dが検出したそれぞれの特性曲線には、それぞれに対応する給電部20a,20b,20c,20dの番号を付与している。
それぞれのマイクロ波反射量の時間的増減量変化状態がいずれか一つでも他と異なる傾向(逆傾向の状態)の場合には、ステップS122において、本格加熱動作の加熱時間の積算を停止して、ステップS112(図5参照)に戻る。この場合には、ステップS112からステップS115までの一連のステップにおいて、前述の同期スイープ動作を行って本格加熱動作時に使用するべき新たな発振周波数を選択して更新処理を行う。この更新処理を行った後、ステップS116において第2の出力電力に設定され、ステップS117において本格加熱動作が開始される(本格加熱処理)。図6に示すステップS118においては、本格加熱動作の加熱時間の積算が開始されて、ステップS119に進む。
次に、ステップS121において実行される比較および判定の具体的な動作について、具体的な特性曲線の一例を示す図10および図11を用いて詳細に説明する。
図10は、被加熱物として特定の被加熱物Bを実施の形態1のマイクロ波加熱装置により本格加熱処理を行ったときのマイクロ波反射量(rw)の経時変化特性曲線である。図10において、横軸は加熱時間[sec]を示し、縦軸は各電力検出部18a,18b,18c,18dが検出したマイクロ波反射量[W]を示す。また、図10においては、各電力検出部18a,18b,18c,18dが検出したそれぞれの経時変化特性曲線には、それぞれに対応する給電部20a,20b,20c,20dの番号を付与している。
ステップS125における加熱条件処理が実行されて、ステップS126に進み、前述の加熱動作終了の条件をひとつでも満たすことにより本格加熱動作は終了する。
次に、ステップS120においてマイクロ波反射量(rw)が規定値を超えた場合のステップS200以降(図8参照)の制御内容について説明する。
図8に示すフローチャートにおいて、ステップS200では本格加熱動作の加熱時間の積算を停止し、ステップS201に進む。ステップS201では、制御部21が発振部11の発振周波数を初期発振周波数の2400MHzに設定し、またマイクロ波発生部10のマイクロ波電力を第1の出力電力に設定する制御信号を出力する。次に、ステップS202においては、発振部11の発振周波数を初期発振周波数の2400MHzから1MHzピッチ(例えば、10ミリ秒で1MHzのスイープ速度)で高い周波数の方へ変化させ、周波数可変範囲の上限である2500MHzまで変化させる(全周波数帯域に対する同期スイープ動作)。この周波数可変動作である同期スイープ動作において、1MHzピッチ毎に電力検出部18a,18b,18c,18dから得られるマイクロ波供給量(sw)とマイクロ波反射量(rw)をそれぞれ記憶し、ステップS203に進む。
ステップS206においては、ステップS204で更新された加熱周波数により第2の出力電力で本格加熱動作が開始され、ステップS207に進む。
以下、本発明に係る実施の形態2のマイクロ波加熱装置について添付の図12から図19を用いて説明する。実施の形態2のマイクロ波加熱装置においては、前述の実施の形態1において説明した図6のフローチャートにおけるステップS121とステップS121、および図7のフローチャートのステップS123とステップS124における判定が、マイクロ波反射量の代わりにマイクロ波供給量とマイクロ波反射量の両方の値に基づいて算出したVSWR(電圧定在波比)の値に基づいて行うものである。実施の形態2のマイクロ波加熱装置において前述の実施の形態1のマイクロ波加熱装置と異なる点は、上記の制御内容であり、構成に関しては同じである。したがって、実施の形態2においては、実施の形態1と異なる制御内容についてのみ説明し、その他の動作および構成に関しては実施の形態1における説明を援用し、実施の形態2の説明において前述の実施の形態1と同じ機能、構成を有するものには同じ符号を付して、その説明は実施の形態1における説明を適用する。
前述の実施の形態1のマイクロ波加熱装置においては、図6に示したフローチャートにおけるステップS120とステップS121、および図7のフローチャートのステップS123とステップS124では、マイクロ波反射量(rw)およびこのマイクロ波反射量の単位時間当たりの増減変化状態を検知して判定処理を行っていた。実施の形態2のマイクロ波加熱装置においては、上記の判定処理をマイクロ波供給量(sw)とマイクロ波反射量(rw)の両方の値に基づき、VSWR(電圧定在波比)を算出して、このVSWRの経時変化特性および単位時間当たりの増減変化特性に基づいて、それぞれのステップS120,S121,S123,S124の判定処理を行うものである。実施の形態2のマイクロ波加熱装置におけるその他のステップは、実施の形態1のマイクロ波加熱装置と同じである。
図12に示すVSWRの経時変化特性曲線において、加熱途中でマイクロ波反射量が規定値を越えるような状態は生じていない。また、図12に示すように、殆どの経時変化特性曲線が増加傾向を示している。図13に示すVSWRの単位時間当たりの増減変化特性曲線において、給電部20bに接続された電力検出部18bにより検出された検出信号(特に、加熱時間が50秒未満の状態)に関しては、増加(ブラス領域)と減少(マイナス領域)を繰り返す特性を示している。このように、短時間で増減を繰り返して、時間的に継続して増加あるいは減少の傾向を示していない特性の場合には、制御部21は、ステップ121Aにおいて、検出信号(20b)の特性を傾向が異なる変化状態(逆傾向)であるとは判定せずに、逆傾向ではなく同様の傾向であると仮判定して加熱動作を継続する。そして、ステップS121AからステップS123A(図15参照)に進む。ステップS123Aにおいては、各VSWRの単位時間当たりの増減変化状態が同一傾向にあると確実に判断できるか否かを再度判定する。ステップS123Aにおいて、マイクロ波反射量の時間的増減変化状態が同一傾向であると判定された場合には、ステップS124Aに進む。一方、ステップS123Aにおいて、各VSWRの時間的増減変化状態が同一傾向であると確実に判定できない場合には、ステップS118(図14参照)に戻る。
図16において、ステップS200からステップ206における各ステップの動作は、前述の実施の形態1において図8のフローチャートを用いて説明した動作と同じである。
ステップS207Aにおいては、算出された各VSWRが規定値(3.0)以下であるか否かが判定される。算出された各VSWRが規定値を越えていない場合には、ステップS118(図14参照)に戻る。一方、各VSWRにおいていずれか一つでも規定値を越えている場合には、ステップS208に進む。
11 発振部
12a 初段電力分配部
12b,12c 次段電力分配部
13a,13b,13c,13d 初段増幅部
14a,14b,14c,14d マイクロ波送信路
15a,15b,15c,15d 主増幅部
16a,16b,16c,16d 出力部
17a,17b,17c,17d マイクロ波伝送路
18a,18b,18c,18d 電力検出部
20a,20b,20c,20d 給電部
21 制御部
24 載置皿
100 加熱室
101 左壁面
102 右壁面
103 底壁面
104 上壁面
105 奥壁面
106 開閉扉
Claims (17)
- 周波数可変機能を有するマイクロ波発生部と、
被加熱物を収納する加熱室と、
前記マイクロ波発生部が発生したマイクロ波を前記加熱室に供給する複数の給電部と、
前記加熱室から前記給電部を介して前記マイクロ波発生部側に反射するマイクロ波反射量を検出する電力検出部と、
前記電力検出部が検出した検出信号に基づいて前記マイクロ波発生部の動作を制御する制御部と、を備え、
前記制御部は、前記被加熱物を加熱する加熱周波数で前記マイクロ波発生部を動作させてマイクロ波電力を前記給電部から前記加熱室に供給するよう制御し、前記電力検出部が検出した検出信号の検出レベルにおける単位時間当たりの増減変化状態に基づいて被加熱物の加熱状態を推定して、前記給電部から前記加熱室に供給するマイクロ波電力および加熱周波数を制御するよう構成されたマイクロ波加熱装置。 - 前記電力検出部からの少なくとも一つのマイクロ波反射量における単位時間当たりの増減変化状態に基づいて被加熱物の加熱分布状態を推定し、前記電力検出部からの全てのマイクロ波反射量における単位時間当たりの増減変化状態に基づいて被加熱物の加熱状態を推定して、前記給電部から前記加熱室に供給するマイクロ波電力および加熱周波数を制御するよう構成された請求項1に記載のマイクロ波加熱装置。
- 前記制御部は、被加熱物に対する本格加熱動作の開始前において、所定の周波数帯域に亘って前記マイクロ波発生部をスイープ動作させることにより、前記マイクロ波反射量の総和が最小値を示す発振周波数を加熱周波数として選択し、前記加熱周波数で前記マイクロ波発生部を動作させてマイクロ波電力を前記給電部から前記加熱室に供給するよう制御するよう構成された請求項2に記載のマイクロ波加熱装置。
- 前記制御部は、被加熱物に対する本格加熱動作の開始前において、所定の周波数帯域に亘って前記マイクロ波発生部をスイープ動作して、前記マイクロ波供給量の総和に対する前記マイクロ波反射量の総和の反射比率が最小値を示す発振周波数を加熱周波数として選択し、前記加熱周波数で前記マイクロ波発生部を動作させてマイクロ波電力を前記給電部から前記加熱室に供給するよう制御するよう構成された請求項2に記載のマイクロ波加熱装置。
- 前記給電部のそれぞれは、加熱室を形成する同一壁面においてその壁面の中央を中心として点対称に配置された請求項2または3に記載のマイクロ波加熱装置。
- 前記制御部が、前記電力検出部からの複数のマイクロ波反射量におけるいずれかのマイクロ波反射量が予め設定した規定値を超えた場合には、加熱周波数の選択を再度行うよう構成された請求項2または3に記載のマイクロ波加熱装置。
- 前記制御部が、前記電力検出部からの複数のマイクロ波反射量における単位時間当たりの増減変化状態に基づいて被加熱物の加熱状態を推定する場合において、少なくとも一つのマイクロ波反射量の増減変化状態が他と異なる傾向を示したとき、加熱周波数の選択を再度行うよう構成された請求項2または3に記載のマイクロ波加熱装置。
- 前記制御部が、前記電力検出部からの全てのマイクロ波反射量における単位時間当たりの増減変化状態に基づいて被加熱物の加熱状態を推定する場合において、全てのマイクロ波反射量の増減変化状態が同一傾向を示したとき本格加熱動作を継続するよう構成された請求項2または3に記載のマイクロ波加熱装置。
- 前記制御部が、前記電力検出部からの全てのマイクロ波反射量における単位時間当たりの増減変化状態に基づいて被加熱物の加熱状態を推定する場合において、全てのマイクロ波反射量の増減変化状態が同一傾向を示し、かつ少なくとも一つのマイクロ波反射量の増減変化状態の検出レベルが判定指標となる閾値を越えたとき、当該被加熱物の温度が60℃~70℃の範囲内にあると推定して、本格加熱動作の終了時間を算出するよう構成された請求項2または3に記載のマイクロ波加熱装置。
- 前記制御部が、被加熱物に対する本格加熱動作の開始前において選択した加熱周波数で前記マイクロ波発生部を動作させてマイクロ波電力を前記給電部から前記加熱室に供給するよう制御し、マイクロ波反射量が規定値を超えた場合には、被加熱物の加熱分布状態および加熱状態の推定に優先して、被加熱物を加熱する発振周波数を選択する前記スイープ動作を再度行い、選択した発振周波数を被加熱物の加熱周波数として更新して被加熱物を加熱するよう構成された請求項2または3に記載のマイクロ波加熱装置。
- 加熱室内に収納された被加熱物に対する本格加熱動作の開始前において、所定の周波数帯域に亘ってスイープ動作することにより、加熱室から複数の給電部を介してマイクロ波発生部側に反射するマイクロ波反射量を検出するステップ、
検出されたマイクロ波反射量の総和の検出レベルが最小値を示す発振周波数を加熱周波数として選択するステップ、
選択された加熱周波数でマイクロ波電力を前記給電部から前記加熱室に供給する状態において、マイクロ波反射量の検出レベルにおける単位時間当たりの増減変化状態に基づいて被加熱物の加熱状態を推定し、前記給電部から前記加熱室に供給するマイクロ波電力および加熱周波数を制御するステップ、を有するマイクロ波加熱制御方法。 - 検出された少なくとも一つのマイクロ波反射量における単位時間当たりの増減変化状態に基づいて、被加熱物の加熱分布状態を推定し、全てのマイクロ波反射量における単位時間当たりの増減変化状態に基づいて、被加熱物の加熱状態を推定して、前記給電部から前記加熱室に供給するマイクロ波電力および加熱周波数を制御するステップを含む請求項11に記載のマイクロ波加熱制御方法。
- 加熱周波数として選択するステップにおいて、マイクロ波供給量の総和に対するマイクロ波反射量の総和の反射比率が最小値を示す発振周波数を加熱周波数として選択する請求項11に記載のマイクロ波加熱制御方法。
- 検出された複数のマイクロ波反射量におけるいずれかのマイクロ波反射量が予め設定した規定値を超えた場合には、加熱周波数の選択を再度行う請求項11または12に記載のマイクロ波加熱制御方法。
- 検出された複数のマイクロ波反射量における単位時間当たりの増減変化状態に基づいて被加熱物の加熱状態を推定する場合において、少なくとも一つのマイクロ波反射量の増減変化状態が他と異なる傾向を示したとき、加熱周波数の選択を再度行う請求項11または12に記載のマイクロ波加熱制御方法。
- 検出された全てのマイクロ波反射量における単位時間当たりの増減変化状態に基づいて被加熱物の加熱状態を推定する場合において、全てのマイクロ波反射量の増減変化状態が同一傾向を示したとき本格加熱動作を継続する請求項11または12に記載のマイクロ波加熱制御方法。
- 被加熱物に対する本格加熱動作の開始前において選択した加熱周波数で動作させてマイクロ波電力を前記給電部から前記加熱室に供給する本格加熱動作において、
マイクロ波反射量が規定値を超えた場合には、被加熱物の加熱分布状態および加熱状態の推定に優先して、被加熱物を加熱する発振周波数を選択する前記スイープ動作を再度行い、選択した発振周波数を被加熱物の加熱周波数として更新して被加熱物を加熱する請求項11または12に記載のマイクロ波加熱制御方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011521804A JP5400885B2 (ja) | 2009-07-10 | 2010-06-28 | マイクロ波加熱装置 |
RU2012104702/07A RU2012104702A (ru) | 2009-07-10 | 2010-06-28 | Устройство для микроволнового нагрева и способ управления микроволновым нагревом |
EP10796875.2A EP2453716B1 (en) | 2009-07-10 | 2010-06-28 | Microwave heating device and microwave heating control method |
US13/382,760 US9398646B2 (en) | 2009-07-10 | 2010-06-28 | Microwave heating device and microwave heating control method |
CN201080030892XA CN102474925B (zh) | 2009-07-10 | 2010-06-28 | 微波加热装置以及微波加热控制方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009163544 | 2009-07-10 | ||
JP2009-163544 | 2009-07-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011004561A1 true WO2011004561A1 (ja) | 2011-01-13 |
Family
ID=43428993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/004251 WO2011004561A1 (ja) | 2009-07-10 | 2010-06-28 | マイクロ波加熱装置およびマイクロ波加熱制御方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9398646B2 (ja) |
EP (1) | EP2453716B1 (ja) |
JP (1) | JP5400885B2 (ja) |
CN (1) | CN102474925B (ja) |
RU (1) | RU2012104702A (ja) |
WO (1) | WO2011004561A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013038715A1 (ja) * | 2011-09-16 | 2013-03-21 | パナソニック株式会社 | マイクロ波処理装置 |
KR101527265B1 (ko) * | 2012-11-29 | 2015-06-08 | 주식회사 포스코아이씨티 | 유도가열 시스템 및 그의 전력분배 방법 |
JP2017525121A (ja) * | 2014-05-28 | 2017-08-31 | グァンドン ミデア キッチン アプライアンシズ マニュファクチュアリング カンパニー リミテッド | 半導体電子レンジ及びその半導体マイクロ波源 |
WO2017163964A1 (ja) * | 2016-03-23 | 2017-09-28 | パナソニックIpマネジメント株式会社 | マイクロ波処理装置 |
JP2017220461A (ja) * | 2017-08-30 | 2017-12-14 | 光洋サーモシステム株式会社 | マイクロ波加熱に関する被加熱物の負荷推定装置、マイクロ波加熱装置、および、マイクロ波加熱に関する被加熱物の負荷推定方法 |
WO2017217438A1 (ja) * | 2016-06-14 | 2017-12-21 | イマジニアリング株式会社 | 電磁波発振装置 |
EP3503680B1 (en) | 2011-08-31 | 2022-01-19 | Goji Limited | Object processing state sensing using rf radiation |
WO2022163554A1 (ja) * | 2021-01-29 | 2022-08-04 | パナソニックIpマネジメント株式会社 | マイクロ波処理装置 |
JP2022167075A (ja) * | 2021-04-22 | 2022-11-04 | 株式会社 クリスタル電器 | 半導体発振電子レンジ |
JP2024507478A (ja) * | 2021-02-09 | 2024-02-20 | 深▲せん▼麦克韋爾科技有限公司 | 電子霧化装置及びそのマイクロ波制御方法 |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8653482B2 (en) | 2006-02-21 | 2014-02-18 | Goji Limited | RF controlled freezing |
US20100224623A1 (en) * | 2007-10-18 | 2010-09-09 | Kenji Yasui | Microwave heating apparatus |
EP2589262B1 (en) | 2010-07-01 | 2015-08-19 | Goji Limited | Processing objects by radio frequency (rf) energy |
US9992824B2 (en) | 2010-10-29 | 2018-06-05 | Goji Limited | Time estimation for energy application in an RF energy transfer device |
US9699835B2 (en) * | 2010-11-17 | 2017-07-04 | Goji Limited | Machine readable element and optical indicium for authenticating an item before processing |
US9804104B2 (en) | 2012-03-19 | 2017-10-31 | Goji Limited | Applying RF energy according to time variations in EM feedback |
CN103533690A (zh) * | 2012-07-05 | 2014-01-22 | Nxp股份有限公司 | 自动调整工作频率的微波功率源和方法 |
WO2015037004A1 (en) * | 2013-09-12 | 2015-03-19 | Goji Limited | Temperature measurement arrangement |
CN104869679B (zh) * | 2015-06-09 | 2017-08-04 | 内蒙古科技大学 | 一种实现变频微波加热的装置和方法 |
US11284742B2 (en) | 2015-09-01 | 2022-03-29 | Illinois Tool Works, Inc. | Multi-functional RF capacitive heating food preparation device |
US10368692B2 (en) | 2015-09-01 | 2019-08-06 | Husqvarna Ab | Dynamic capacitive RF food heating tunnel |
CN106402957A (zh) * | 2016-08-31 | 2017-02-15 | 广东美的厨房电器制造有限公司 | 微波炉控制设备、方法及微波炉 |
US11246191B2 (en) | 2016-09-22 | 2022-02-08 | Whirlpool Corporation | Method and system for radio frequency electromagnetic energy delivery |
US11032878B2 (en) | 2016-09-26 | 2021-06-08 | Illinois Tool Works Inc. | Method for managing a microwave heating device and microwave heating device |
EP3529536B1 (en) | 2016-10-19 | 2021-07-14 | Whirlpool Corporation | System and method for food preparation utilizing a multi-layer model |
WO2018075026A1 (en) | 2016-10-19 | 2018-04-26 | Whirlpool Corporation | Method and device for electromagnetic cooking using closed loop control |
US10993294B2 (en) | 2016-10-19 | 2021-04-27 | Whirlpool Corporation | Food load cooking time modulation |
US10602573B2 (en) * | 2016-11-18 | 2020-03-24 | Nxp Usa, Inc. | Establishing RF excitation signal parameters in a solid-state heating apparatus |
US10728962B2 (en) | 2016-11-30 | 2020-07-28 | Illinois Tool Works, Inc. | RF oven energy application control |
WO2018118066A1 (en) | 2016-12-22 | 2018-06-28 | Whirlpool Corporation | Method and device for electromagnetic cooking using non-centered loads management through spectromodal axis rotation |
US11197355B2 (en) | 2016-12-22 | 2021-12-07 | Whirlpool Corporation | Method and device for electromagnetic cooking using non-centered loads |
WO2018125129A1 (en) | 2016-12-29 | 2018-07-05 | Whirlpool Corporation | Electromagnetic cooking device with automatic popcorn popping feature and method of controlling cooking in the electromagnetic device |
EP3563631B1 (en) | 2016-12-29 | 2022-07-27 | Whirlpool Corporation | Detecting changes in food load characteristics using q-factor |
EP3563630B1 (en) | 2016-12-29 | 2021-09-08 | Whirlpool Corporation | System and method for controlling a heating distribution in an electromagnetic cooking device |
CN109792810B (zh) | 2016-12-29 | 2021-07-20 | 松下电器产业株式会社 | 电磁烹饪装置及控制烹饪的方法 |
US11917743B2 (en) | 2016-12-29 | 2024-02-27 | Whirlpool Corporation | Electromagnetic cooking device with automatic melt operation and method of controlling cooking in the electromagnetic cooking device |
WO2018125147A1 (en) | 2016-12-29 | 2018-07-05 | Whirlpool Corporation | Electromagnetic cooking device with automatic liquid heating and method of controlling cooking in the electromagnetic cooking device |
US11184960B2 (en) | 2016-12-29 | 2021-11-23 | Whirlpool Corporation | System and method for controlling power for a cooking device |
WO2018125144A1 (en) | 2016-12-29 | 2018-07-05 | Whirlpool Corporation | System and method for detecting cooking level of food load |
US11412585B2 (en) | 2016-12-29 | 2022-08-09 | Whirlpool Corporation | Electromagnetic cooking device with automatic anti-splatter operation |
WO2018125137A1 (en) | 2016-12-29 | 2018-07-05 | Whirlpool Corporation | System and method for analyzing a frequency response of an electromagnetic cooking device |
JP6830151B2 (ja) * | 2016-12-29 | 2021-02-17 | パナソニック株式会社 | 自動沸騰検出を備えた電磁調理装置および電磁調理装置の調理を制御する方法 |
US10412795B2 (en) * | 2017-04-28 | 2019-09-10 | Nxp Usa, Inc. | Power measurement via bond wire coupling |
DE102017210261A1 (de) * | 2017-06-20 | 2018-12-20 | Homag Gmbh | Verfahren und Vorrichtung zum thermischen Aktivieren einer Funktionsschicht eines Beschichtungsmaterials |
US20200205248A1 (en) * | 2017-08-15 | 2020-06-25 | Goji Limited | Controlling microwave heating by moving radiators |
CN107479591B (zh) * | 2017-09-07 | 2020-02-14 | 广东美的厨房电器制造有限公司 | 一种食物的加热控制方法、装置、加热设备和计算机存储介质 |
CN108333585B (zh) * | 2018-01-31 | 2021-03-16 | 广东美的厨房电器制造有限公司 | 射频探测装置、探测方法和微波炉 |
US11639225B2 (en) * | 2018-04-05 | 2023-05-02 | Koninklifke Fabriek Inventum B.V. | Solid state radio frequency (SSRF) water heater device |
US10939511B2 (en) * | 2018-04-05 | 2021-03-02 | Rockwell Collins, Inc. | Solid state radio frequency (SSRF) microwave oven for aircraft galley |
EP3784003B1 (en) * | 2018-04-20 | 2022-05-18 | Panasonic Intellectual Property Management Co., Ltd. | Microwave heating device |
US12177956B2 (en) * | 2019-02-15 | 2024-12-24 | Panasonic Intellectual Property Management Co., Ltd. | Microwave treatment device |
CN111918436A (zh) * | 2019-05-09 | 2020-11-10 | 青岛海尔智能技术研发有限公司 | 功率输出电路及微波加热设备 |
JP7637855B2 (ja) * | 2019-07-31 | 2025-03-03 | パナソニックIpマネジメント株式会社 | マイクロ波処理装置 |
CN110708778B (zh) * | 2019-10-28 | 2022-02-08 | 西华师范大学 | 一种智能微波加热方法及装置 |
CN111023176B (zh) * | 2019-12-31 | 2022-12-09 | 广东美的厨房电器制造有限公司 | 微波烹饪设备及其控制装置 |
CN114903216A (zh) * | 2021-02-09 | 2022-08-16 | 深圳麦克韦尔科技有限公司 | 电子雾化装置及其微波控制方法 |
CN113124649B (zh) * | 2021-03-31 | 2022-09-23 | 北京印刷学院 | 用于微波烘干系统中的微波发射阵列的控制方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5549632A (en) | 1978-10-05 | 1980-04-10 | Tdk Corp | Electronic oven |
JPS56159087A (en) * | 1980-05-13 | 1981-12-08 | Matsushita Electric Ind Co Ltd | High frequency heater |
JPH04245190A (ja) | 1991-01-31 | 1992-09-01 | Hitachi Home Tec Ltd | 高周波加熱装置 |
JPH0541279A (ja) * | 1991-08-02 | 1993-02-19 | Hitachi Home Tec Ltd | 高周波加熱装置 |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3439431A (en) * | 1967-12-15 | 1969-04-22 | Gen Electric | Microwave dryer control circuit |
US3670133A (en) * | 1971-06-03 | 1972-06-13 | Mac Millan Bloedel Ltd | Microwave drying apparatus and method |
JPS5813816B2 (ja) * | 1977-07-15 | 1983-03-16 | 松下電器産業株式会社 | 高周波加熱装置 |
US4245143A (en) * | 1978-04-28 | 1981-01-13 | Hitachi Heating Appliances Co., Ltd. | Microwave oven |
JPS5759850Y2 (ja) * | 1978-07-13 | 1982-12-21 | ||
US4210795A (en) * | 1978-11-30 | 1980-07-01 | Litton Systems, Inc. | System and method for regulating power output in a microwave oven |
US4415789A (en) * | 1980-12-10 | 1983-11-15 | Matsushita Electric Industrial Co. Ltd. | Microwave oven having controllable frequency microwave power source |
US4434342A (en) * | 1982-01-11 | 1984-02-28 | General Motors Corporation | Microwave heating control and calorimetric analysis |
US4507530A (en) * | 1983-08-15 | 1985-03-26 | General Electric Company | Automatic defrost sensing arrangement for microwave oven |
JPS6139481A (ja) * | 1984-07-31 | 1986-02-25 | 丸山 悠司 | マイクロ波加熱装置 |
JPS6137259A (ja) * | 1984-07-31 | 1986-02-22 | 菊地 真 | ハイパ−サ−ミア用加温装置 |
JPS6137264A (ja) * | 1984-07-31 | 1986-02-22 | 菊地 真 | ハイパ−サ−ミア用加温装置 |
US4714812A (en) * | 1985-05-08 | 1987-12-22 | John F. Woodhead, III | Apparatus and method for processing dielectric materials with microwave energy |
JPH0795111B2 (ja) * | 1985-10-01 | 1995-10-11 | 動力炉・核燃料開発事業団 | マイクロ波加熱脱硝方法および装置 |
JPS62175525A (ja) * | 1986-01-28 | 1987-08-01 | Sharp Corp | 電子レンジ |
JPS62195892A (ja) * | 1986-02-21 | 1987-08-28 | 株式会社豊田中央研究所 | セラミツクスの加熱制御装置 |
JPH0697096B2 (ja) * | 1986-03-20 | 1994-11-30 | 松下電器産業株式会社 | 加熱装置 |
KR890001959B1 (ko) * | 1986-05-31 | 1989-06-03 | 주식회사 금성사 | 마이크로 웨이브 오븐의 전원릴레이 개폐제어장치 |
US4795871A (en) * | 1986-10-20 | 1989-01-03 | Micro Dry, Inc. | Method and apparatus for heating and drying fabrics in a drying chamber having dryness sensing devices |
CA1283461C (en) * | 1986-10-22 | 1991-04-23 | Shigeki Ueda | Automatic heating appliance with ultrasonic sensor |
EP0268329B1 (en) * | 1986-11-13 | 1994-01-26 | Koninklijke Philips Electronics N.V. | Microwave oven |
JPH0781715B2 (ja) * | 1986-12-17 | 1995-09-06 | 松下電器産業株式会社 | 加熱装置 |
JPS63106096U (ja) * | 1986-12-27 | 1988-07-08 | ||
EP0281263B1 (en) * | 1987-03-06 | 1994-08-24 | Microwave Ovens Limited | Microwave ovens and methods of cooking food |
DE3802231A1 (de) * | 1988-02-08 | 1989-07-27 | Jurij Alekseevic Spiridonov | Einrichtung zum regeln der magnetronleistung eines hhf-haushaltsofens |
US5179264A (en) * | 1989-12-13 | 1993-01-12 | International Business Machines Corporation | Solid state microwave powered material and plasma processing systems |
US6097019A (en) * | 1990-07-11 | 2000-08-01 | International Business Machines Corporation | Radiation control system |
US6150645A (en) * | 1990-07-11 | 2000-11-21 | International Business Machines Corporation | Radiation control system |
US5961871A (en) * | 1991-11-14 | 1999-10-05 | Lockheed Martin Energy Research Corporation | Variable frequency microwave heating apparatus |
US5721286A (en) * | 1991-11-14 | 1998-02-24 | Lockheed Martin Energy Systems, Inc. | Method for curing polymers using variable-frequency microwave heating |
US5321222A (en) * | 1991-11-14 | 1994-06-14 | Martin Marietta Energy Systems, Inc. | Variable frequency microwave furnace system |
US5521360A (en) * | 1994-09-14 | 1996-05-28 | Martin Marietta Energy Systems, Inc. | Apparatus and method for microwave processing of materials |
US5378875A (en) * | 1991-12-25 | 1995-01-03 | Mitsubishi Materials Corporation | Microwave oven with power detecting device |
CA2087638C (en) * | 1992-01-23 | 1997-02-25 | Masatugu Fukui | Microwave oven having a function for matching impedance |
US5798395A (en) * | 1994-03-31 | 1998-08-25 | Lambda Technologies Inc. | Adhesive bonding using variable frequency microwave energy |
KR0129239B1 (ko) * | 1994-06-11 | 1998-04-09 | 구자홍 | 마이크로웨이브 오븐의 조리상태 검출장치 |
JP3106385B2 (ja) * | 1994-11-28 | 2000-11-06 | 株式会社村田製作所 | 高周波検出素子とそれを用いた高周波加熱装置 |
KR0152151B1 (ko) * | 1995-07-19 | 1998-10-01 | 김광호 | 전자 렌지 및 그 제어 방법 |
KR100234735B1 (ko) * | 1996-07-11 | 2000-01-15 | 구자홍 | 전자레인지의 균일가열방법 및 그 장치 |
US5756975A (en) * | 1996-11-21 | 1998-05-26 | Ewes Enterprises | Apparatus and method for microwave curing of resins in engineered wood products |
US6242726B1 (en) * | 1996-11-21 | 2001-06-05 | George M. Harris | Adjustable microwave field stop |
US5869817A (en) * | 1997-03-06 | 1999-02-09 | General Mills, Inc. | Tunable cavity microwave applicator |
US6469286B1 (en) * | 1997-11-13 | 2002-10-22 | Matsushita Electric Industrial Co., Ltd. | Variable-impedance unit, microwave device using the unit, and microwave heater |
US6132084A (en) * | 1998-11-30 | 2000-10-17 | General Electric Company | Infrared non-contact temperature measurement for household appliances |
CN1146305C (zh) * | 1998-12-17 | 2004-04-14 | 个人化学第-乌普萨拉有限公司 | 进行化学反应的微波装置和方法 |
KR100389005B1 (ko) * | 1999-01-14 | 2003-06-25 | 삼성전자주식회사 | 전자렌지 |
US6166362A (en) * | 1999-01-14 | 2000-12-26 | Samsung Electronics Co., Ltd. | Automatic cooking control method for a microwave oven |
US6166363A (en) * | 1999-01-14 | 2000-12-26 | Samsung Electronics Co., Ltd. | Defrosting method for a microwave oven |
US6093921A (en) * | 1999-03-04 | 2000-07-25 | Mt Systems, Llc | Microwave heating apparatus for gas chromatographic columns |
EP1166603A4 (en) * | 1999-03-04 | 2009-08-05 | Mt Systems Llc | MICROWAVE HEATING APPARATUS FOR GAS CHROMATOGRAPHIC COLUMNS |
EP1201104A1 (en) * | 1999-07-07 | 2002-05-02 | Corning Incorporated | Method for microwave drying of ceramics |
US6222170B1 (en) * | 1999-08-24 | 2001-04-24 | Ut-Battelle, Llc | Apparatus and method for microwave processing of materials using field-perturbing tool |
CN1248778C (zh) * | 2000-02-25 | 2006-04-05 | 私人化学乌普萨拉股份公司 | 微波加热装置 |
SE521313C2 (sv) * | 2000-09-15 | 2003-10-21 | Whirlpool Co | Mikrovågsugn samt förfarande vid sådan |
US6452141B1 (en) * | 2001-06-30 | 2002-09-17 | Samsung Electronics Co., Ltd. | Microwave oven with magnetic field detecting device |
CN1324114C (zh) * | 2002-05-08 | 2007-07-04 | 达纳公司 | 等离子体辅助掺杂 |
JP4133252B2 (ja) * | 2002-11-19 | 2008-08-13 | 株式会社デンソー | セラミック成形体の乾燥方法及び乾燥装置 |
EP1726268B1 (en) * | 2002-11-27 | 2008-06-25 | Medical Device Innovations Limited | Coaxial tissue ablation probe and method of making a balun therefor |
JP2005283384A (ja) * | 2004-03-30 | 2005-10-13 | Optex Co Ltd | マイクロウエーブセンサ、およびマイクロウエーブセンサの相互干渉防止システム |
JP2006128075A (ja) * | 2004-10-01 | 2006-05-18 | Seiko Epson Corp | 高周波加熱装置、半導体製造装置および光源装置 |
US7569800B2 (en) * | 2004-11-15 | 2009-08-04 | Yonglai Tian | Method and apparatus for rapid thermal processing and bonding of materials using RF and microwaves |
US7354504B2 (en) * | 2005-05-18 | 2008-04-08 | Frontier Engineering Llc | Dielectric profile controlled microwave sterilization system |
JP2009183312A (ja) * | 2006-07-14 | 2009-08-20 | Katsutoshi Tabuse | マイクロ波誘電加熱装置 |
JP5064924B2 (ja) * | 2006-08-08 | 2012-10-31 | パナソニック株式会社 | マイクロ波処理装置 |
CN101743778B (zh) * | 2007-07-13 | 2012-11-28 | 松下电器产业株式会社 | 微波加热装置 |
US20100224623A1 (en) * | 2007-10-18 | 2010-09-09 | Kenji Yasui | Microwave heating apparatus |
US8927913B2 (en) * | 2008-06-30 | 2015-01-06 | The Invention Science Fund I, Llc | Microwave processing systems and methods |
US8020314B2 (en) * | 2008-10-31 | 2011-09-20 | Corning Incorporated | Methods and apparatus for drying ceramic green bodies with microwaves |
-
2010
- 2010-06-28 EP EP10796875.2A patent/EP2453716B1/en active Active
- 2010-06-28 RU RU2012104702/07A patent/RU2012104702A/ru not_active Application Discontinuation
- 2010-06-28 JP JP2011521804A patent/JP5400885B2/ja active Active
- 2010-06-28 CN CN201080030892XA patent/CN102474925B/zh active Active
- 2010-06-28 WO PCT/JP2010/004251 patent/WO2011004561A1/ja active Application Filing
- 2010-06-28 US US13/382,760 patent/US9398646B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5549632A (en) | 1978-10-05 | 1980-04-10 | Tdk Corp | Electronic oven |
JPS56159087A (en) * | 1980-05-13 | 1981-12-08 | Matsushita Electric Ind Co Ltd | High frequency heater |
JPH04245190A (ja) | 1991-01-31 | 1992-09-01 | Hitachi Home Tec Ltd | 高周波加熱装置 |
JPH0541279A (ja) * | 1991-08-02 | 1993-02-19 | Hitachi Home Tec Ltd | 高周波加熱装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2453716A4 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3503680B1 (en) | 2011-08-31 | 2022-01-19 | Goji Limited | Object processing state sensing using rf radiation |
US10285224B2 (en) | 2011-09-16 | 2019-05-07 | Panasonic Intellectual Property Management Co., Ltd. | Microwave treatment device |
JPWO2013038715A1 (ja) * | 2011-09-16 | 2015-03-23 | パナソニックIpマネジメント株式会社 | マイクロ波処理装置 |
CN103797895B (zh) * | 2011-09-16 | 2015-11-25 | 松下电器产业株式会社 | 微波处理装置 |
WO2013038715A1 (ja) * | 2011-09-16 | 2013-03-21 | パナソニック株式会社 | マイクロ波処理装置 |
KR101527265B1 (ko) * | 2012-11-29 | 2015-06-08 | 주식회사 포스코아이씨티 | 유도가열 시스템 및 그의 전력분배 방법 |
JP2017525121A (ja) * | 2014-05-28 | 2017-08-31 | グァンドン ミデア キッチン アプライアンシズ マニュファクチュアリング カンパニー リミテッド | 半導体電子レンジ及びその半導体マイクロ波源 |
US10588182B2 (en) | 2014-05-28 | 2020-03-10 | Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd. | Semiconductor microwave oven and semiconductor microwave source thereof |
WO2017163964A1 (ja) * | 2016-03-23 | 2017-09-28 | パナソニックIpマネジメント株式会社 | マイクロ波処理装置 |
WO2017217438A1 (ja) * | 2016-06-14 | 2017-12-21 | イマジニアリング株式会社 | 電磁波発振装置 |
JPWO2017217438A1 (ja) * | 2016-06-14 | 2019-11-21 | イマジニアリング株式会社 | 電磁波発振装置 |
JP2017220461A (ja) * | 2017-08-30 | 2017-12-14 | 光洋サーモシステム株式会社 | マイクロ波加熱に関する被加熱物の負荷推定装置、マイクロ波加熱装置、および、マイクロ波加熱に関する被加熱物の負荷推定方法 |
WO2022163554A1 (ja) * | 2021-01-29 | 2022-08-04 | パナソニックIpマネジメント株式会社 | マイクロ波処理装置 |
JP2024507478A (ja) * | 2021-02-09 | 2024-02-20 | 深▲せん▼麦克韋爾科技有限公司 | 電子霧化装置及びそのマイクロ波制御方法 |
JP2022167075A (ja) * | 2021-04-22 | 2022-11-04 | 株式会社 クリスタル電器 | 半導体発振電子レンジ |
JP7680015B2 (ja) | 2021-04-22 | 2025-05-20 | 株式会社 クリスタル電器 | 半導体発振電子レンジ |
Also Published As
Publication number | Publication date |
---|---|
EP2453716A4 (en) | 2012-05-16 |
EP2453716B1 (en) | 2016-08-24 |
CN102474925B (zh) | 2013-11-06 |
RU2012104702A (ru) | 2013-08-20 |
EP2453716A1 (en) | 2012-05-16 |
JP5400885B2 (ja) | 2014-01-29 |
US20120111856A1 (en) | 2012-05-10 |
US9398646B2 (en) | 2016-07-19 |
JPWO2011004561A1 (ja) | 2012-12-13 |
CN102474925A (zh) | 2012-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5400885B2 (ja) | マイクロ波加熱装置 | |
JP5167678B2 (ja) | マイクロ波処理装置 | |
CN102428751A (zh) | 微波加热装置以及微波加热方法 | |
US8680446B2 (en) | Microwave heating apparatus | |
JP4935188B2 (ja) | マイクロ波利用装置 | |
JP5142364B2 (ja) | マイクロ波処理装置 | |
JP5104048B2 (ja) | マイクロ波処理装置 | |
EP2677839A1 (en) | Microwave heating apparatus with multi-feeding points | |
JP5127038B2 (ja) | 高周波処理装置 | |
JP4839994B2 (ja) | マイクロ波利用装置 | |
JP2014049276A (ja) | マイクロ波処理装置 | |
JP2009238402A (ja) | マイクロ波処理装置 | |
JP2009181728A (ja) | マイクロ波処理装置 | |
JP2008146966A (ja) | マイクロ波発生装置およびマイクロ波加熱装置 | |
JP5286898B2 (ja) | マイクロ波処理装置 | |
JP5286899B2 (ja) | マイクロ波処理装置 | |
JP2011129341A (ja) | マイクロ波処理装置源 | |
JP5444734B2 (ja) | マイクロ波処理装置 | |
JP2010272216A (ja) | マイクロ波処理装置 | |
JP2008060016A (ja) | マイクロ波利用装置 | |
JP2010073382A (ja) | マイクロ波処理装置 | |
JP2009272273A (ja) | マイクロ波処理装置 | |
JP7607203B2 (ja) | マイクロ波処理装置 | |
JP2011060530A (ja) | マイクロ波処理装置 | |
WO2022163332A1 (ja) | マイクロ波処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080030892.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10796875 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2010796875 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 92/CHENP/2012 Country of ref document: IN Ref document number: 2010796875 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13382760 Country of ref document: US Ref document number: 2011521804 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012104702 Country of ref document: RU |