[go: up one dir, main page]

WO2010139914A1 - Test d'etancheite d'un reservoir multi-membrane - Google Patents

Test d'etancheite d'un reservoir multi-membrane Download PDF

Info

Publication number
WO2010139914A1
WO2010139914A1 PCT/FR2010/051113 FR2010051113W WO2010139914A1 WO 2010139914 A1 WO2010139914 A1 WO 2010139914A1 FR 2010051113 W FR2010051113 W FR 2010051113W WO 2010139914 A1 WO2010139914 A1 WO 2010139914A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary
membrane
space
gas
temperature
Prior art date
Application number
PCT/FR2010/051113
Other languages
English (en)
Inventor
Julien Glory
Jean Marc Quenez
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Priority to SG2011086063A priority Critical patent/SG176195A1/en
Priority to JP2012513665A priority patent/JP5658241B2/ja
Priority to KR1020127000267A priority patent/KR101378455B1/ko
Priority to CN201080024340.8A priority patent/CN102460103B/zh
Publication of WO2010139914A1 publication Critical patent/WO2010139914A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/002Investigating fluid-tightness of structures by using thermal means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/226Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for containers, e.g. radiators

Definitions

  • the present invention relates to the leak test of a multi-membrane reservoir.
  • the present invention relates to a method for testing the tightness of the secondary membrane of a multi-membrane reservoir, without having to dismantle the primary membrane.
  • STATE OF THE ART Multi-diaphragm tanks are used industrially in various fields to contain gaseous, liquid or solid materials of different types.
  • This type of reservoir comprises a support structure which provides the mechanical rigidity, a primary membrane intended to be in contact with the product contained in the reservoir, and a secondary membrane arranged between the primary membrane and the carrier structure.
  • the secondary membrane is intended to retain the product in case of leakage into the primary membrane.
  • FR 2,531,516 describes a method for detecting leaks in the secondary membrane of a liquefied gas tank, in which carbon dioxide ice cubes solidified on the outer face of the primary membrane at-160 ° C. are detected as points. cold during heating of the primary membrane due to their thermal inertia.
  • an object of the invention is to locate a nonconformity of the secondary membrane, without requiring disassembly of the primary membrane or the carrier structure.
  • Another object of the invention is to make it possible to locate a nonconformity of the secondary membrane with a simple structure, in particular without requiring numerous channels.
  • the solution proposed by one embodiment of the invention is a leaktightness test method of a reservoir, said reservoir comprising a carrier structure, a primary membrane intended to be in contact with a product contained in the reservoir, and a secondary membrane arranged between the primary membrane and the supporting structure, in which the space between the primary membrane and the secondary membrane is called primary space and the space between the secondary membrane and the supporting structure is called secondary space, the space primary containing a first incondensable gas or having a condensing temperature lower than the average temperature of the primary membrane.
  • This method comprises the steps of:
  • the second gas in case of non-compliance of the secondary membrane, the second gas escapes into the primary space and comes into contact with the primary membrane, close to the leak. Since it has a condensation temperature higher than the average temperature of the primary membrane, the second gas condenses and. in doing so, it transfers energy in the form of heat, corresponding to its latent heat of change of state, to the membrane primary. A hot spot is generated on the primary membrane. The detection of this hot point from the inside of the tank allows the location of the nonconformity of the secondary membrane.
  • the detection is carried out during a detection period which is substantially simultaneous with the generation of overpressure in the secondary space or immediately after this generation, but before the temperatures are fully equilibrated between the different zones of the membrane.
  • the second gas may be selected to condense in a solid or liquid form.
  • the formation of a liquid phase has the advantage of allowing a flow of the condensed gas deposit as the formation of the deposit to the right of the leak.
  • the condensation reaction can be more easily maintained by maintaining the pressure in the secondary space for a significant time, for example one or more minutes.
  • the ability to maintain absi over time the hot spot resulting from the condensation reaction greatly facilitates the detection of this hot spot, especially if it has a limited contrast.
  • the overpressure is maintained in the secondary space for a duration greater than 10 minutes.
  • the method comprises cooling the primary membrane to an average temperature below room temperature.
  • the process is carried out at an average membrane temperature above -5 ° C. preferably greater than 0 ° C.
  • the second gas is a mixture, the process comprising generating the mixture according to a composition which depends on the average temperature of the primary membrane. This makes it possible to adapt the condensation temperature as a function, for example, of the ambient temperature or the average temperature of the primary membrane.
  • the condensation temperature of second gas thus obtained is between the average temperature and the ambient temperature.
  • the second gas is a mixture of pentane and / or perfluoropentane and nitrogen. These gases are particularly suitable for a test in which, initially, the secondary space is at ambient temperature and where it is desired to obtain a liquid phase in contact with the primary membrane.
  • the possible hot spots or spots of the primary membrane are detected using at least one temperature sensor and / or at least one infrared detector, arranged inside the tank.
  • the surface of the primary membrane inside the tank is temporarily covered with a coating capable of substantially eliminating the specular reflectivity of the surface, and the hot spots are detected using a thermal camera. .
  • the coating may include water droplets.
  • the method comprises the steps of evacuating the first gas from the primary space and the second gas from the secondary space, and heating the primary membrane to room temperature. This allows, after the test, to repair the tank or put it into operation, if no nonconformity has been detected.
  • the invention also proposes a reservoir comprising a supporting structure, a primary membrane intended to be in contact with a product contained in the reservoir, and a secondary membrane arranged between the primary membrane and the supporting structure, in which the space between the membrane primary and the secondary membrane is called primary space and the space between the secondary membrane and the supporting structure is called secondary space, characterized in that it comprises:
  • a first injector capable of injecting a first incondensable gas or having a condensation temperature lower than the average temperature of the primary membrane in the primary space
  • a second injector capable of injecting a second gas having a condensation temperature higher than the average temperature of the primary membrane in the secondary space
  • a pressurization device capable of generating an overpressure in the secondary space with respect to the primary space
  • This reservoir is suitable for putting a work of the test method according to one embodiment of the invention.
  • said second gas is a mixture, said second injector being capable of producing said mixture according to a composition determined as a function of the average temperature of the primary membrane.
  • said primary space and said secondary space contain a thermally insulating material, said reservoir being able to contain liquefied natural gas.
  • the tank may be for example a land tank or a tank integrated with a ship, Brief description of the figures
  • FIG. 1 is a diagram illustrating the principle of forced condensation
  • FIG. 2 is a graph illustrating the condensation temperature of a gas as a function of its concentration in a gaseous mixture
  • FIG. 3 is a sectional view of a tank wall whose tightness is tested
  • FIG. 4 is a diagram of a tank suitable for implementing the test method according to one embodiment of the invention.
  • FIG. 5 schematically shows one of the components of Figure 4.
  • FIG. 1 represents a wall 1 whose average temperature is Tm.
  • a gas at the pressure P is brought into contact with the wall 1, as shown by arrow 2. If the condensation temperature Tc of FIG. The gas will be condensed in the form of a liquid or solid deposit 3. In doing so, the gas transfers energy in the form of heat, corresponding to its latent heat of condensation, to the wall. 1. This heat transfer is represented by the arrows 4.
  • the wall I has a temperature T greater than Tm. It is called forced condensation when the temperature Tm, the pressure P and the nature of the gas are controlled.
  • the gas can be:
  • the reservoir 5 comprises a carrier structure 6 which provides the mechanical rigidity, a primary membrane 8 intended to be in contact with the product contained in the reservoir 5, and a secondary membrane 7 arranged between the primary membrane 8 and the supporting structure 6.
  • the space between the primary membrane 8 and the secondary membrane 7 is called the primary space 10.
  • the space between the secondary membrane 7 and the carrier structure 6 is called the secondary space 9.
  • the construction of the tank 5 will not be described in detail because several possibilities are known to those skilled in the art.
  • This may be, for example, a tank for LNG made according to a known technique.
  • thermally insulating material is present in the primary space 10 and in the secondary space 9.
  • the reservoir 5 also comprises an injector 11 connected to the primary space 10 by a pipe 12, an injector 13 connected to the secondary space 14 via a pipe 14, a cooling device 15 connected to the inside of the tank 5 by a pipe 16, and pipes 17 respectively connecting the interior of the tank, the primary space 10 and the secondary space 9 to an exhaust and pressure management device.
  • the aforementioned components can detect and locate a leak 18 in the secondary membrane 7, as described below.
  • the sealing test method according to one embodiment of the invention successively involves the conditioning of the tank for the test, the actual test, then the deconditioning of the tank,
  • the tank conditioning for the test includes: - Set the temperature of the primary membrane to reach a desired temperature. This can be achieved by cooling devices or by injecting a coolant into the reservoir 5. For example, the cooling device 15 injects the liquid nitrogen in the tank 5. Ideally "after this step, the membrane temperature primary is uniform. However, due to various thermal stresses, the primary membrane may have a slightly non-uniform temperature. Thus, below, we speak of the average temperature Tm of the primary membrane.
  • neutral gas is meant a gas that does not condense at the temperature Tm, either because it is an incondensable gas or because its condensation temperature is less than Tm. This can be achieved by the injector 11 or, in the case of ambient air, by placing the primary space in communication with the atmosphere. - Inject a reactive gas into the secondary space 9.
  • Reactive gas means a gas that condenses at a temperature above Tm. As explained above, it may be a pure gas or a mixed. This can be achieved by means of the injector 13.
  • the above three steps can be performed simultaneously or consecutively, in any order.
  • the actual test comprises placing the reactive gas in overpressure in the secondary space 9 and detecting any hot spots on the primary membrane 8, advantageously from the inside of the tank.
  • the reactive gas escapes into the primary space 10, due to the pressure difference between the secondary space 9 and the primary space 10. This is symbolized by the cloud 19 and the arrow 20.
  • the reactive gas comes into contact with the primary membrane 8 and forms condensation 21.
  • the reactive gas transfers heat to the primary membrane 8, which is therefore locally warmer than the temperature Tm.
  • the hot spot detection 22 can be performed for example by temperature sensor or by detecting the infrared radiation emitted, arranged inside the tank.
  • the deconditioning of the reservoir for the test includes:
  • the neutral gas is nitrogen and the reactive gas is a mixture of 50% by volume of nitrogen and 50% by volume of pentane.
  • Pentane is liquid at atmospheric pressure and ambient temperature. Its vaporization temperature is 36 ° C. In the aforementioned mixture, its condensation temperature in the liquid phase drops to about 18 0 C.
  • the tank 5 to be tested is for example a tank of LNG tanker whose primary membrane 8 is at ambient temperature of 25 ° C.
  • the inside of the tank is cooled so that. the primary membrane has a mean temperature of a Tm of 10 ° C.
  • the temperature in the secondary space 9 is greater than 20 ° C.
  • the nitrogen / pentane mixture can be injected into space secondary 9 without risk of condensation.
  • an overpressure of a few millibars is generated.
  • the nitrogen / pentane mixture passes into the primary space 10 at the level of the leak 18 and condenses in contact with the primary membrane 8, generating a hot spot.
  • the dilution rate of pentane in nitrogen can be modified to adapt the condensing temperature of pentane.
  • the ambient temperature is, for example, 35 ° C. or 10 ° C., it is possible to carry out the test by adapting the temperature Tm and the pentane dilution ratio.
  • the injector 13 allows a mixture to be produced according to a desired rate.
  • the injector 13 comprises a reservoir 23 intended to contain the carrier gas (nitrogen in the abovementioned example) and a reservoir 24 intended to contain, in liquid form, the condensable gas ( pentane in the above example).
  • These two tanks are connected, respectively via a pipe 25 and a pipe 26, to an evaporator 30 in which the mixing is carried out.
  • the evaporator 30 is connected to the secondary space 9 via the pipe 14.
  • a control device 29 makes it possible to control the dilution ratio of the pentane by acting on the evaporator 30 and on two flow meters 27 and 28 respectively arranged on the pipes 25 and 26.
  • Many other gases can be selected depending on the desired condensation temperatures. For example perfluoropentane may at least partially replace pentane in the above example and proves safer because of its poor flammability.
  • the primary membrane is at a positive temperature and an infrared camera is used to detect hot spots
  • a diffusing or opacifying coating can improve the measurement of the local emissivity of the membrane surface by means of an infrared camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Procédé de test d'étanchéité d'un réservoir, ledit réservoir comprenant une structure porteuse (6), une membrane primaire (8) destinée à être en contact avec un produit contenu dans le réservoir, et une membrane secondaire (7) agencée entre la membrane primaire et la structure porteuse, dans lequel l'espace entre la membrane primaire et la membrane secondaire est appelé espace primaire (10) et l'espace entre la membrane secondaire et la structure porteuse est appelé espace secondaire (9), caractérisé par le fait qu'il comprend les étapes consistant à : - injecter un premier gaz incondensable ou ayant une température de condensation inférieure à la température moyenne de la membrane primaire dans l'espace primaire, - injecter un deuxième gaz ayant une température de condensation supérieure à la température moyenne de la membrane primaire dans l'espace secondaire, - générer une surpression dans l'espace secondaire par rapport à l'espace primaire, - détecter un ou des éventuels points chauds (22) de Ia membrane primaire.

Description

TEST D'ETANCHEITE D'UN RESERVOIR MULTIMEMBRANE
Domaine technique de T invention
La présente invention se rapporte au test d'étanchéité d'un réservoir multi-membranes. En particulier, la présente invention se rapporte à un procédé permettant de tester l'étanchéité de la membrane secondaire d'un réservoir multi-membranes, sans devoir démonter la membrane primaire. Etat de la technique Les réservoirs multi-membranes sont utilisés industriellement dans différents domaines, pour contenir des matériaux gazeux, liquides ou solides de différentes natures. Ce type de réservoir comprend une structure porteuse qui apporte la rigidité mécanique, une membrane primaire destinée à être en contact avec le produit contenu dans le réservoir, et une membrane secondaire agencée entre la membrane primaire et la structure porteuse. La membrane secondaire est destinée à retenir le produit en cas de fuite dans la membrane primaire.
Il existe différentes méthodes pour diagnostiquer l'étanchéité de la membrane secondaire. En cas de non-conformité de la membrane secondaire aux tests, il est nécessaire de réparer cette membrane. Or la localisation de la non-conformité sans démontage de la membrane primaire n'est pas aisée et peu précise.
Par exemple, dans les documents FR 2 517 802 et WO 2007/144458, une non-conformité est détectée par analyse de la composition d'un gaz. Pour localiser une non-conformité, il est nécessaire de prévoir une multitude de canalisations prélevant le gaz à analyser à différents endroits. Cela implique donc une structure complexe et coûteuse, et dont la précision est limitée.
FR 2 531 516 décrit un procédé de détection des fuites de la membrane secondaire d'un réservoir de gaz liquéfié, dans lequel des glaçons de dioxyde de carbone solidifiés sur la face externe de la membrane primaire à - 160 0C sont détectés comme des points froids au cours du réchauffage de la membrane primaire du fait de leur inertie thermique. Toutefois, il est difficile de faire fonctionner une caméra optique ou un thermographe aux températures très basses employées dans ce procédé. Résumé de T invention
Un problème que la présente invention propose de résoudre est de fournir un procédé de test qui ne présente pas au moins certains des inconvénients précités de l'art antérieur. En particulier, un but de l'invention est de permettre de localiser une non-conformité de la membrane secondaire, sans nécessiter un démontage de la membrane primaire ou de la structure porteuse. Un autre but de l'invention est de permettre de localiser une non-conformité de la membrane secondaire avec une structure simple, notamment sans nécessiter de nombreuses canalisations.
La solution proposée par un mode de réalisation de l'invention est un procédé de test d'étanchéité d'un réservoir, ledit réservoir comprenant une structure porteuse, une membrane primaire destinée à être en contact avec un produit contenu dans le réservoir, et une membrane secondaire agencée entre la membrane primaire et la structure porteuse, dans lequel l'espace entre la membrane primaire et la membrane secondaire est appelé, espace primaire et l'espace entre la membrane secondaire et la structure porteuse est appelé espace secondaire, l'espace primaire contenant un premier gaz incondensable ou ayant une température de condensation inférieure à Ia température moyenne de la membrane primaire. Ce procédé comprend les étapes consistant à :
- injecter un deuxième gaz ayant une température de condensation supérieure à la température moyenne de la membrane primaire dans l'espace secondaire, - générer une surpression dans l'espace secondaire par rapport à l'espace primaire,
- détecter un ou des éventuels points chauds de la membrane primaire correspondant à un dépôt du deuxième gaz condensé au contact de la membrane primaire. Grâce à ces caractéristiques, en cas de non-conformité de la membrane secondaire, le deuxième gaz s'échappe dans l'espace primaire et entre en contact avec la membrane primaire, à proximité de la fuite. Comme il présente une température de condensation supérieure à la température moyenne de la membrane primaire, le deuxième gaz se condense et. ce faisant, il transfert de l'énergie sous forme de chaleur, correspondant à sa chaleur latente de changement d'état, à la membrane primaire. Un point chaud est donc généré sur la membrane primaire. La détection de ce point chaud de l'intérieur du réservoir permet la localisation de la non-conformité de Ia membrane secondaire.
Avantageusement, la détection est réalisée pendant une période de détection qui est sensiblement simultanée avec la génération de surpression dans l'espace secondaire ou immédiatement après cette génération, mais avant que les températures ne soient équilibrées totalement entre les différentes zones de la membrane.
Le deuxième gaz peut être choisi de manière à se condenser sous une forme solide ou liquide. La formation d'une phase liquide présente toutefois l'avantage de permettre un écoulement du dépôt de gaz condensé au fur et à mesure de la formation de ce dépôt au droit de la fuite. Ainsi, la réaction de condensation peut être plus facilement entretenue en maintenant la pression dans l'espace secondaire pendant une durée significative, par exemple d'une ou plusieurs minutes. La possibilité de maintenir absi dans le temps le point chaud résultant de la réaction de condensation facilite grandement la détection de ce point chaud, en particulier s'il présente un contraste limité.
Selon un mode de réalisation, on entretient la surpression dans l'espace secondaire pendant une durée supérieure à 10 minutes.
De préférence, le procédé comprend le fait de refroidir la membrane primaire à une température moyenne inférieure à la température ambiante. Cela permet de bien contrôler les conditions de condensation. Dans un mode de réalisation avantageux, le procédé est effectué à une température moyenne de la membrane supérieure à - 5°C. de préférence supérieure à O0C. Ainsi le procédé peut être effectué dans des conditions pratiques, peu contraignantes et avec un© dépense d'énergie limitée. Avantageusement, le deuxième gaz est un mélange, le procédé comprenant le fait de générer le mélange selon une composition qui dépend de la température moyenne de la membrane primaire. Cela permet d'adapter la température de condensation en fonction par exemple de la température ambiante ou de la température moyenne de la membrane primaire. De préférence, la température de condensation du deuxième gaz ainsi obtenu est comprise entre la température moyenne et la température ambiante.
Selon un mode de réalisation, Ie deuxième gaz est un mélange de pentane et/ou perfluoropentane et d'azote. Ces gaz conviennent en particulier pour un test dans lequel, au départ, l'espace secondaire est à température ambiante et où l'on cherche à obtenir une phase liquide au contact de la membrane primaire.
De préférence, le ou les éventuels points chauds de la membrane primaire sont détectés à T aide d'au moins un capteur de température et/ou d'au moins un détecteur d'infrarouges, agencé(s) à l'intérieur du réservoir.
Selon un mode de réalisation, on recouvre temporairement la surface de la membrane primaire à l'intérieur du réservoir d'un revêtement apte à éliminer sensiblement la réflectivité spéculaire de la surface et on détecte les points chauds à l'aide d'une caméra thermique.
Par exemple, le revêtement peut comporter des gouttelettes d'eau.
Avantageusement, le procédé comprend les étapes consistant à évacuer le premier gaz de l'espace primaire et le deuxième gaz de l'espace secondaire, et à réchauffer la membrane primaire à la température ambiante. Cela permet, après le test, de réparer le réservoir ou de le mettre en fonctionnement, si aucune non-conformité n*a été détectée.
L'invention propose aussi un réservoir comprenant une structure porteuse, une membrane primaire destinée à être en contact avec un produit contenu dans le réservoir, et une membrane secondaire agencée entre la membrane primaire et la structure porteuse, dans lequel l'espace entre la membrane primaire et la membrane secondaire est appelé espace primaire et l'espace entre la membrane secondaire et la structure porteuse est appelé espace secondaire, caractérisé par le fait qu'il comprend :
- un premier injecteur apte à injecter un premier gaz incondensable ou ayant une température de condensation inférieure à la température moyenne de la membrane primaire dans l'espace primaire,
- un deuxième injecteur apte à injecter un deuxième gaz ayant une température de condensation supérieure à la température moyenne de la membrane primaire dans l'espace secondaire, - un dispositif de pressurisation apte à générer une surpression dans l'espace secondaire par rapport à l'espace primaire, et
- un délecteur apte à détecter un ou des éventuels points chauds de la membrane primaire. Ce réservoir convient pour mettre un œuvre le procédé de test selon un mode de réalisation de l'invention.
Selon un mode de réalisation, ledit deuxième gaz est un mélange, ledit deuxième injecteur étant apte à réaliser ledit mélange selon une composition déterminée en fonction de la température moyenne de la membrane primaire.
Selon un mode de réalisation, ledit espace primaire et ledit espace secondaire contiennent un matériau thermiquement isolant, ledit réservoir étant apte à contenir du gaz naturel liquéfié. Le réservoir peut être par exemple un réservoir terrestre ou une cuve intégrée à un navire, Brève description des figures
L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante d'un mode de réalisation particulier de l'invention, donné uniquement à titre illustratif et non limitatif, en référence aux dessins annexés. Sur ces dessins :
- la figure 1 est un schéma illustrant le principe de la condensation forcée,
- Ia figure 2 est un graphe illustrant la température de condensation d'un gaz en fonction de sa concentration dans un mélange gazeux,
- la figure 3 est une vue en coupe d'une paroi de réservoir dont l'étanchéité est testée,
- la figure 4 est un schéma d'un réservoir convenant pour mettre en œuvre la procédé de test selon un mode de réalisation de l'invention, et
- la figure 5 représente schématiquement un des composants de la figure 4.
Description détaillée d*un mode de réalisation de l'invention
La figure 1 représente une paroi 1 dont Ia température moyenne est Tm. Un gaz à la pression P est amené au contact de la paroi 1, comme le représente la flèche 2. Si la température de condensation Tc du gaz est supérieure à la température Tm, Ie gaz va se condenser sous forme d'un dépôt liquide ou solide 3. Ce faisant, le gaz transfert de l'énergie sous forme de chaleur, correspondant à sa chaleur latente de condensation, à la paroi 1. Ce transfert de chaleur est représenté par les flèches 4. Ainsi, localement, la paroi I présente une température T supérieure à Tm. On parle de condensation forcée lorsque la température Tm, la pression P et la nature du gaz sont contrôlées. Le gaz peut être :
- Un gaz pur dont les caractéristiques physiques intrinsèques correspondent à Ia température de condensation souhaitée.
- Un mélange d'un gaz incondensable et d*un gaz condensable dont on contrôle la concentration pour adapter la température de condensation. En effet, comme le montre le graphe de la figure 2, un gaz pur qui présente une température de condensation Tp aura, une fois dilué à la concentration X% dans un gaz incondensable, une température de condensation Tc inférieure à Tp.
- Un mélange de plusieurs gaz condensahles qui, une fois associés, présentent une température de condensation Tc désirée.
En référence aux figures 3 à 5, on explique maintenant comment le principe de la condensation forcée permet de détecter une fuite dans la membrane secondaire d'un réservoir multi-membrane.
Le réservoir 5 comprend une structure porteuse 6 qui apporte la rigidité mécanique, une membrane primaire 8 destinée à être en contact avec le produit contenu dans le réservoir 5, et une membrane secondaire 7 agencée entre Ia membrane primaire 8 et la structure porteuse 6. L'espace situé entre la membrane primaire 8 et la membrane secondaire 7 est appelé espace primaire 10. L'espace situé entre la membrane secondaire 7 et Ia structure porteuse 6 est appelé espace secondaire 9.
La réalisation du réservoir 5 ne fera pas l'objet d'une description détaillée car plusieurs possibilités sont connues de l'homme du métier. Il peut s'agir, par exemple, d'un réservoir pour GNL réalisé selon une technique connue. Dans ce cas, du matériau thermiquement isolant est présent dans l'espace primaire 10 et dans l'espace secondaire 9. Le réservoir 5 comprend également un injecteur 11 relié à l'espace primaire IO par une canalisation 12, un injecteur 13 relié à l'espace secondaire 14 par une canalisation 14, un dispositif de refroidissement 15 relié à l'intérieur du réservoir 5 par une canalisation 16, et des canalisations 17 reliant respectivement l'intérieur du réservoir, l'espace primaire 10 et l'espace secondaire 9 à un dispositif d'échappement et de gestion des pressions. Les composants précités permettent de détecter et localiser une fuite 18 dans la membrane secondaire 7, comme décrit ci- dessous. Le procédé de test d'étanchéité selon un mode de réalisation de l'invention implique successivement le conditionnement du réservoir pour le test, le test proprement dit, puis le déconditionnement du réservoir,
Le conditionnement du réservoir pour le test comprend : - Régler la température de la membrane primaire pour atteindre une température désirée. Ceci peut être réalisé par des dispositifs de climatisation ou en injectant un liquide réfrigérant dans le réservoir 5. Par exemple, le dispositif de refroidissement 15 injecte de l'azote liquide dans le réservoir 5. Idéalement» après cette étape, la température de la membrane primaire est uniforme. Cependant, en raison de sollicitations thermiques diverses, la membrane primaire peut présenter une température légèrement non-uniforme. Ainsi, ci-dessous, on parle de la température moyenne Tm de la membrane primaire.
Injecter un gaz neutre dans l'espace primaire 10. Par gaz neutre, on entend un gaz qui ne se condense pas à la température Tm, soit parce qu'il s'agit d'un gaz incondensable soit parce que sa température de condensation est inférieure à Tm. Ceci peut être réalisé grâce à l'injecteur 11 ou, s'il s'agit de l'air ambiant, par mise en communication de l'espace primaire avec l' atmosphère. - Injecter un gaz réactif dans l'espace secondaire 9. Par gaz réactif, on entend un gaz qui se condense à une température supérieure à Tm. Comme expliqué ci-dessus, il peut s'agit d'un gaz pur ou d'un mélange. Ceci peut être réalisé grâce à Pinjecteur 13.
Les trois étapes précitées peuvent être réalisées simultanément ou consécutivement, dans un ordre quelconque. Le test proprement dit comprend la mise en surpression du gaz réactif dans l'espace secondaire 9, et la détection d'éventuels points chauds sur la membrane primaire 8, avantageusement à partir de l'intérieur du réservoir. En effet, comme le montre de manière plus détaillée la figure 3, si la membrane secondaire 7 présente une fuite 18, du gaz réactif s'échappe dans l'espace primaire 10, en raison de la différence de pression entre l'espace secondaire 9 et l'espace primaire 10. Ceci est symbolisé par le nuage 19 et la flèche 20. Ainsi, au niveau de Ia fuite 18, du gaz réactif entre en contact de la membrane primaire 8 et forme de la condensation 21. Ce faisant, comme expliqué ci-dessus, le gaz réactif transfert de la chaleur à la membrane primaire 8 qui est donc localement plus chaude que la température Tm. En détectant ce point chaud 22, il est possible de localiser la fuite 18. La détection du point chaud 22 peut être réalisée par exemple par capteur de température ou par détection du rayonnement infrarouge émis, agencé à l'intérieur du réservoir.
Le déconditionnement du réservoir pour le test comprend :
- Evacuation des gaz de l'espace primaire 10. Ceci peut être réalisé en utilisant notamment une des canalisations 17, soit par mise sous vide de cet espace, puis remplissage si nécessaire, soit par balayage avec le gaz prévu lors du fonctionnement
- Evacuation du gaz réactif de l'espace secondaire 9. Ceci peut être aussi réalisé en utilisant notamment une des canalisations 17, soit par mise sous vide de cet espace, puis remplissage si nécessaire, soit par balayage avec le gaz prévu lors du fonctionnement.
- Remontée en température de la membrane primaire. Ceci peut être réalisé soit par des dispositifs de climatisation, soit par convection d'air à température ambiante.
Les trois étapes précitées peuvent être réalisées simultanément ou consécutivement, dans un ordre quelconque.
Dans un exemple de mise en œuvre, le gaz neutre est de l'azote et le gaz réactif est un mélange de 50% en volume d'azote et de 50% en volume de pentane. Le pentane est liquide à pression atmosphérique et température ambiante. Sa température de vaporisation est de 36°C. Dans le mélange précité, sa température de condensation en phase liquide baisse à environ 180C.
Le réservoir 5 à tester est par exemple une cuve de méthanier dont la membrane primaire 8 est à la température ambiante de 25°C. L'intérieur de la cuve est refroidi de sorte que. la membrane primaire ait pour température moyenne une Tm de 100C. En raison de l'isolation thermique, la température dans l'espace secondaire 9 est supérieure à 200C. On peut donc injecter le mélange azote/pentane dans l'espace secondaire 9 sans risque de condensation. Puis, une surpression de quelques millibars est générée. Le mélange azote/pentane passe dans l'espace primaire 10 au niveau de la fuite 18 et se condense au contact de la membrane primaire 8, générant un point chaud.
Par ailleurs, le taux de dilution du pentane dans l'azote peut être modifié pour adapter la température de condensation du pentane. Ainsi, si la température ambiante est par exemple de 350C ou de 1O0C, il est possible de réaliser le test en adaptant Ia température Tm et le taux de dilution de pentane.
Pour cela, avantageusement, l'injecteur 13 permet de réaliser un mélange selon un taux désiré. Par exemple, comme le montre la figure 5, l'injecteur 13 comprend un réservoir 23 destiné à contenir le gaz porteur (l'azote dans l'exemple précité) et un réservoir 24 destiné à contenir, sous forme liquide, le gaz condensable (le pentane dans l'exemple précité). Ces deux réservoirs sont reliés, respectivement par l'intermédiaire d'une canalisation 25 et d'une canalisation 26, à un évaporateur 30 dans lequel est réalisé le mélange. L'évaporateur 30 est relié à l'espace secondaire 9 par la conduite 14. Un dispositif de commande 29 permet de commander le taux de dilution du pentane en agissant sur l'évaporateur 30 et sur deux débitmètres 27 et 28 agencés respectivement sur les canalisations 25 et 26. Bien d'autres gaz peuvent être choisis, selon les températures de condensation qui sont souhaitées. Par exemple le perfluoropentane peut remplacer au moins partiellement le pentane dans l'exemple précité et s'avère plus sûr du fait de sa mauvaise inflammabilité.
Dans un mode de réalisation où Ia membrane primaire est à une température positive et où l'on utilise une caméra infrarouge pour détecter les points chauds, il est avantageux dans la phase de conditionnement du réservoir, de revêtir l'intérieur de la membrane de gouttelettes d'eau, par exemple en balayant sa surface avec un flux de vapeur, pour former une couche diffusante qui réduit considérablement la réflectivité spéculaire de la surface. Un tel revêtement diffusant ou opacifiant peut améliorer Ia mesure de l'émissivité locale de la surface de la membrane à l'aide d'une caméra infrarouge.
Bien que l'invention ait été décrite en liaison avec un mode de réalisation particulier, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.

Claims

REVENDICATIONS
1. Procédé de test d'étanchéité d'un réservoir (5). ledit réservoir comprenant une structure porteuse (6), une membrane primaire (8) destinée à être en contact avec un produit contenu dans le réservoir, et une membrane secondaire (7) agencée entre la membrane primaire et la structure porteuse, dans lequel l'espace entre la membrane primaire et la membrane secondaire est appelé espace primaire (10) et l'espace entre la membrane secondaire et la structure porteuse est appelé espace secondaire (9), l'espace primaire contenant un premier gaz incondensable ou ayant une température de condensation inférieure à la température moyenne de la membrane primaire, ledit procédé comprenant les étapes consistant à :
- injecter un deuxième gaz ayant une température de condensation supérieure à la température moyenne de la membrane primaire dans l' espace secondaire,
- générer une surpression dans l'espace secondaire par rapport à l'espace primaire, et
- détecter un ou des éventuels points chauds (22) de la membrane primaire correspondant à un dépôt du deuxième gaz condensé au contact de la membrane primaire.
2. Procédé de test d'étanchéité selon la revendication 1, caractérisé par le fait que le deuxième gaz se condense sous une forme liquide au contact de la membrane primaire.
3. Procédé de test d'étanchéité selon la revendication 1 ou 2, caractérisé par le fait que la détection est réalisée pendant une période de détection qui est sensiblement simultanée avec la génération de surpression dans l'espace secondaire.
4. Procédé de test d'étanchéité selon la revendication 3, dans lequel on entretient la surpression dans l'espace secondaire pendant une durée supérieure à 10 minutes.
5. Procédé de test selon la revendication 1, comprenant le fait de refroidir la membrane primaire à une température moyenne inférieure à la température ambiante,
6. Procédé de test d'étanchéité selon Ia revendication 5, dans lequel la température moyenne de la membrane primaire est supérieure à
-5 0C, de préférence supérieure à 0 0C.
7. Procédé de test selon l'une des revendications 5 et 6, dans lequel le deuxième gaz est un mélange, le procédé comprenant le fait de générer le mélange selon une composition qui dépend de la température moyenne de la membrane primaire, de manière que la température de condensation du deuxième gaz est comprise entre la température moyenne et la température ambiante.
8. Procédé de test selon l'une des revendications précédentes,, dans lequel le deuxième gaz est un mélange de pentane et/ou perfluoropentane et d'azote.
9. Procédé de test selon l'une des revendications précédentes, dans lequel le ou les éventuels points chauds de la membrane primaire sont détectés à l'aide d'au moins un capteur de température et/ou d'au moins un détecteur d' infrarouges , agencé(s) à l'intérieur du réservoir.
10. Procédé de test d'étanchéité selon l'une des revendications 1 à 9, dans lequel on recouvre temporairement la surface de la membrane primaire à l'intérieur du réservoir d'un revêtement apte à éliminer sensiblement la réflectivité spéculaire de la surface et on détecte les points chauds à l'aide d'une caméra thermique.
11. Procédé de test d'étanchéité selon la revendicationlO, dans lequel le revêtement comporte des gouttelettes d'eau.
12. Procédé de test selon l'une des revendications précédentes, comprenant les étapes consistant à :
- évacuer le premier gaz de l'espace primaire et le deuxième gaz de l'espace secondaire, - réchauffer la membrane primaire à la température ambiante.
13. Réservoir (5) comprenant une structure porteuse (6), une membrane primaire (8) destinée à être en contact avec un produit contenu dans le réservoir, et une membrane secondaire (7) agencée entre la membrane primaire et la structure porteuse, dans lequel l'espace entre la membrane primaire et la membrane secondaire est appelé espace primaire (10) et l'espace entre la membrane secondaire et la structure porteuse est appelé espace secondaire (9), caractérisé par le fait qu'il comprend :
- un premier injecteur (11) apte à injecter un premier gaz rncondensable ou ayant une température de condensation inférieure à la température moyenne de la membrane primaire dans l'espace primaire. - un deuxième injecteur (13) apte à injecter un deuxième gaz ayant une température de condensation supérieure à Ia température moyenne de la membrane primaire dans l'espace secondaire,
- un dispositif de pressurisation apte à générer une surpression dans l'espace secondaire par rapport à l 'espace primaire, et
- un détecteur apte à détecter un ou des éventuels points chauds (22) de la membrane primaire correspondant à un dépôt du deuxième gaz condensé au contact de la membrane primaire.
14. Réservoir selon la revendication précédente, dans lequel ledit deuxième gaz est un mélange, ledit deuxième injecteur étant apte à réaliser ledit mélange selon une composition déterminée en fonction de la température moyenne de la membrane primaire, de manière que la température de condensation du deuxième gaz est comprise entre la température moyenne et la température ambiante.
15. Réservoir selon l'une des revendications 13 et 14, dans lequel ledit espace primaire et ledit espace secondaire contiennent un matériau thermiquement isolant, ledit réservoir étant apte à contenir du gaz naturel liquéfié.
PCT/FR2010/051113 2009-06-05 2010-06-04 Test d'etancheite d'un reservoir multi-membrane WO2010139914A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG2011086063A SG176195A1 (en) 2009-06-05 2010-06-04 Leak testing of a multi-membrane tank
JP2012513665A JP5658241B2 (ja) 2009-06-05 2010-06-04 多層タンクの漏れ試験
KR1020127000267A KR101378455B1 (ko) 2009-06-05 2010-06-04 다중-멤브레인 탱크의 누출 테스트
CN201080024340.8A CN102460103B (zh) 2009-06-05 2010-06-04 一种多膜舱体的泄漏检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0953715A FR2946428B1 (fr) 2009-06-05 2009-06-05 Test d'etancheite d'un reservoir multi-membrane
FR0953715 2009-06-05

Publications (1)

Publication Number Publication Date
WO2010139914A1 true WO2010139914A1 (fr) 2010-12-09

Family

ID=41571560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051113 WO2010139914A1 (fr) 2009-06-05 2010-06-04 Test d'etancheite d'un reservoir multi-membrane

Country Status (9)

Country Link
JP (1) JP5658241B2 (fr)
KR (1) KR101378455B1 (fr)
CN (1) CN102460103B (fr)
ES (1) ES2389088B2 (fr)
FR (1) FR2946428B1 (fr)
MY (1) MY161967A (fr)
SG (1) SG176195A1 (fr)
TW (1) TWI436046B (fr)
WO (1) WO2010139914A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207180A (zh) * 2013-03-15 2013-07-17 大连海事大学 一种观察lng 水域爆发沸腾发生过程的观察系统
WO2016128696A1 (fr) 2015-02-13 2016-08-18 Gaztransport Et Technigaz Gestion des fluides dans une cuve etanche et thermiquement isolante
USD800591S1 (en) 2016-03-31 2017-10-24 Homeserve Plc Flowmeter
WO2019092331A1 (fr) * 2017-11-10 2019-05-16 Gaztransport Et Technigaz Méthode de détermination d'une valeur optimale d'au moins un paramètre de mise en oeuvre d'un procédé de mise en froid d'une cuve étanche et thermiquement isolante
US10508966B2 (en) 2015-02-05 2019-12-17 Homeserve Plc Water flow analysis
US10704979B2 (en) 2015-01-07 2020-07-07 Homeserve Plc Flow detection device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101915021B1 (ko) * 2016-07-28 2018-11-06 삼성중공업(주) 액화가스 저장탱크의 균열 검출 장치
FR3079301B1 (fr) * 2018-03-21 2020-10-30 Gaztransport Et Technigaz Procede de diffusion d'un gaz traceur et procede de test de l'etancheite d'une membrane
FR3090872B1 (fr) 2018-12-21 2021-04-23 Gaztransport Et Technigaz Procédé de contrôle de l’étanchéité d’une cuve étanche et thermiquement isolante de stockage d’un fluide
CN110056769B (zh) * 2019-04-19 2021-04-30 兰州理工大学 高含硫天然气埋地集输管道泄漏模拟实验装置及测试方法
CN109974950B (zh) * 2019-05-10 2021-02-05 青岛理工大学 一种建筑空气渗透部位快速检测方法及系统
CN112498582B (zh) * 2020-10-30 2021-09-03 沪东中华造船(集团)有限公司 一种lng船及其薄膜型围护系统
CN115283773A (zh) * 2022-07-21 2022-11-04 瑞泰精密科技(沭阳)有限公司 一种均温板腔体密封工艺及均温板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1101544A (en) * 1966-06-15 1968-01-31 Air Reduction Method of detecting leaks
FR2294439A1 (fr) * 1974-12-13 1976-07-09 Technigaz Procede de controle de l'etancheite aux fluides d'une paroi
FR2515347A1 (fr) * 1981-10-26 1983-04-29 Nguyen Tan Chuong Procede de detection et de localisation de micro-fuites dans une paroi et notamment dans la barriere secondaire des cuves de methaniers
FR2517802A1 (fr) 1981-12-04 1983-06-10 Gaz Transport Cuve destinee au stockage d'un gaz liquefie comportant une detection de fuite et procede de detection de fuite correspondant
FR2531516A1 (fr) 1982-08-03 1984-02-10 Applied Thermodynamics Lng Ser Reservoir de gaz liquefie a basse temperature comprenant une barriere secondaire et procede de detection des fuites eventuelles de la barriere secondaire
US20060137525A1 (en) * 2004-11-30 2006-06-29 Rae Ian F Method and system for testing the integrity of green plugged honeycomb structure
WO2007144458A2 (fr) 2006-06-16 2007-12-21 Aker Mtw Werft Gmbh Procédé et agencement destinés à surveiller et détecter les fuites d'un récipient
EP1939606A1 (fr) * 2006-12-27 2008-07-02 Aker Yards S.A. Procédé de mesure de la porosité réelle de la barrière d'étanchéité d'une cuve de confinement de fluide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2502289A1 (fr) * 1981-03-19 1982-09-24 Applied Thermodynamics Lonog S Reservoir de gaz naturel liquefie, notamment de methane
JPH0440334A (ja) * 1990-06-05 1992-02-10 Nkk Corp Lngタンクの欠陥検知方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1101544A (en) * 1966-06-15 1968-01-31 Air Reduction Method of detecting leaks
FR2294439A1 (fr) * 1974-12-13 1976-07-09 Technigaz Procede de controle de l'etancheite aux fluides d'une paroi
FR2515347A1 (fr) * 1981-10-26 1983-04-29 Nguyen Tan Chuong Procede de detection et de localisation de micro-fuites dans une paroi et notamment dans la barriere secondaire des cuves de methaniers
FR2517802A1 (fr) 1981-12-04 1983-06-10 Gaz Transport Cuve destinee au stockage d'un gaz liquefie comportant une detection de fuite et procede de detection de fuite correspondant
FR2531516A1 (fr) 1982-08-03 1984-02-10 Applied Thermodynamics Lng Ser Reservoir de gaz liquefie a basse temperature comprenant une barriere secondaire et procede de detection des fuites eventuelles de la barriere secondaire
US20060137525A1 (en) * 2004-11-30 2006-06-29 Rae Ian F Method and system for testing the integrity of green plugged honeycomb structure
WO2007144458A2 (fr) 2006-06-16 2007-12-21 Aker Mtw Werft Gmbh Procédé et agencement destinés à surveiller et détecter les fuites d'un récipient
EP1939606A1 (fr) * 2006-12-27 2008-07-02 Aker Yards S.A. Procédé de mesure de la porosité réelle de la barrière d'étanchéité d'une cuve de confinement de fluide

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207180A (zh) * 2013-03-15 2013-07-17 大连海事大学 一种观察lng 水域爆发沸腾发生过程的观察系统
US10704979B2 (en) 2015-01-07 2020-07-07 Homeserve Plc Flow detection device
US10942080B2 (en) 2015-01-07 2021-03-09 Homeserve Plc Fluid flow detection apparatus
US11209333B2 (en) 2015-01-07 2021-12-28 Homeserve Plc Flow detection device
US10508966B2 (en) 2015-02-05 2019-12-17 Homeserve Plc Water flow analysis
WO2016128696A1 (fr) 2015-02-13 2016-08-18 Gaztransport Et Technigaz Gestion des fluides dans une cuve etanche et thermiquement isolante
FR3032776A1 (fr) * 2015-02-13 2016-08-19 Gaztransport Et Technigaz Gestion des fluides dans une cuve etanche et thermiquement isolante
USD800591S1 (en) 2016-03-31 2017-10-24 Homeserve Plc Flowmeter
WO2019092331A1 (fr) * 2017-11-10 2019-05-16 Gaztransport Et Technigaz Méthode de détermination d'une valeur optimale d'au moins un paramètre de mise en oeuvre d'un procédé de mise en froid d'une cuve étanche et thermiquement isolante
FR3073602A1 (fr) * 2017-11-10 2019-05-17 Gaztransport Et Technigaz Methode de determination d'une valeur optimale d'au moins un parametre de mise en oeuvre d'un procede de mise en froid d'une cuve etanche et themiquement isolante
US11879598B2 (en) 2017-11-10 2024-01-23 Gaztransport Et Technigaz Method for determining an optimal value of at least one parameter for implementing a method for cooling a watertight and thermally insulating tank
AU2018363236B2 (en) * 2017-11-10 2024-09-26 Gaztransport Et Technigaz Method for determining an optimal value of at least one parameter for implementing a method for cooling a watertight and thermally insulating tank

Also Published As

Publication number Publication date
FR2946428A1 (fr) 2010-12-10
CN102460103A (zh) 2012-05-16
ES2389088B2 (es) 2014-06-05
KR20120027464A (ko) 2012-03-21
TW201104235A (en) 2011-02-01
JP2012529026A (ja) 2012-11-15
JP5658241B2 (ja) 2015-01-21
TWI436046B (zh) 2014-05-01
MY161967A (en) 2017-05-15
SG176195A1 (en) 2012-01-30
FR2946428B1 (fr) 2011-08-05
KR101378455B1 (ko) 2014-04-04
CN102460103B (zh) 2015-09-30
ES2389088A1 (es) 2012-10-23

Similar Documents

Publication Publication Date Title
WO2010139914A1 (fr) Test d'etancheite d'un reservoir multi-membrane
JP2012529026A6 (ja) 多層タンクの漏れ試験
EP2642267B1 (fr) Appareil de dépôt sous vide à cellules à vanne comportant un dispositif de détection de fuite et procédé de détection d'une fuite dans un appareil de dépôt sous vide
Isokoski et al. Porosity and thermal collapse measurements of H 2 O, CH 3 OH, CO 2, and H 2 O: CO 2 ices
EP3329172B1 (fr) Procédé de pilotage d'un dispositif de pompage raccorde à une barrière thermiquement isolante d'une cuve de stockage d'un gaz liquéfié
EP2360355B1 (fr) Dispositif de contrôle d'un fluide de travail à bas point de congélation circulant dans un circuit fermé fonctionnant selon un cycle de Rankine et procédé utilisant un tel dispositif
WO2016128696A1 (fr) Gestion des fluides dans une cuve etanche et thermiquement isolante
EP3899472A1 (fr) Procede de controle de l'etancheite d'une cuve etanche et thermiquement isolante de stockage d'un fluide
EP0102865B1 (fr) Réservoir de gaz liquéfié muni d'un dispositif de détection des fuites de sa barrière secondaire et procédé correspondant de détection des fuites
FR2945327A1 (fr) Procede et equipement de transmission d'energie mecanique par compression et/ou detente quasi-isotherme d'un gaz
WO2020128273A1 (fr) Procede de detection de fuite sur une cuve etanche et thermiquement isolante
FR3045775A1 (fr) Procede et systeme pour calculer en temps reel la duree d'autonomie d'une cuve non refrigeree contenant du gnl
FR2876183A1 (fr) Procede et dispositif de controle d'etancheite d'une enceinte contenant un gaz sous pression
FR2967695A1 (fr) Dispositif formant un joint d'etancheite entre deux espaces de gaz reactifs entre eux, application aux electrolyseurs de vapeur d'eau a haute temperature (evht) et aux piles a combustible de type sofc
Kulev et al. Drop tower experiments on non-isothermal reorientation of cryogenic liquids
CN211877581U (zh) 一种低沸点样品轻气炮加载试验的制备系统
WO2011151564A1 (fr) Epreuve d'etancheite d'un reservoir par rapport a un gaz presentant une signature infrarouge
EP2979020B1 (fr) Procédé et dispositif d'isolation thermique d'un équipement
FR2973483A1 (fr) Systeme solaire permettant de reproduire l'effet d'une flamme de combustion
WO2022078950A1 (fr) Procédé de contrôle de l'étanchéité d'une cuve étanche et thermiquement isolante de stockage d'un fluide
FR2840971A1 (fr) Procede de stockage en phase gazeuse d'un fluide compressible et dispositif de stockage correspondant
FR3025254B1 (fr) Moteur a pressions d'evaporation differentielles
FR2460863A1 (fr) Procede pour rendre etanche la paroi interne d'un conteneur a double paroi constitue en beton arme ou en beton precontraint, et conteneur rendu etanche au moyen de ce procede
FR3153414A1 (fr) Procédé et système de détermination de la teneur en au moins une impureté dans un liquide cryogénique
FR2554762A1 (fr) Procede de controle de l'uniformite des proprietes d'une mousse de matiere plastique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024340.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10734240

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: P201190069

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 2012513665

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127000267

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10734240

Country of ref document: EP

Kind code of ref document: A1