WO2010133177A1 - 一种垃圾渗滤液废水处理系统及其工艺 - Google Patents
一种垃圾渗滤液废水处理系统及其工艺 Download PDFInfo
- Publication number
- WO2010133177A1 WO2010133177A1 PCT/CN2010/073031 CN2010073031W WO2010133177A1 WO 2010133177 A1 WO2010133177 A1 WO 2010133177A1 CN 2010073031 W CN2010073031 W CN 2010073031W WO 2010133177 A1 WO2010133177 A1 WO 2010133177A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anoxic
- stage
- treatment system
- filter
- landfill leachate
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/001—Processes for the treatment of water whereby the filtration technique is of importance
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/725—Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/06—Contaminated groundwater or leachate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/22—Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof
- C02F2103/24—Nature of the water, waste water, sewage or sludge to be treated from the processing of animals, e.g. poultry, fish, or parts thereof from tanneries
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2203/00—Apparatus and plants for the biological treatment of water, waste water or sewage
- C02F2203/002—Apparatus and plants for the biological treatment of water, waste water or sewage comprising an initial buffer container
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/06—Aerobic processes using submerged filters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/105—Characterized by the chemical composition
- C02F3/106—Carbonaceous materials
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1236—Particular type of activated sludge installations
- C02F3/1268—Membrane bioreactor systems
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the invention relates to a landfill leachate wastewater treatment system and a process thereof, which are used for treating landfill leachate waste water and other high ammonia nitrogen organic wastewater, belonging to the fields of environmental protection and wastewater treatment devices and process technologies. Background technique
- Landfills and waste incineration power plants generate large amounts of landfill leachate wastewater. These wastewaters have high B0D and COD concentrations and high ammonia nitrogen content, making them a major difficulty in the wastewater treatment industry.
- a prominent problem in landfill leachate treatment is the degradation of refractory organics and high ammonia nitrogen. Physical, physicochemical and biochemical methods are commonly used at home and abroad to treat such wastewaters, but they are difficult to promote due to the difficulty in degradation of organic matter, high treatment costs, poor nitrogen removal, and secondary pollution.
- the improvement of people's living standards and the improvement of national environmental protection standards it is difficult to meet the current effluent requirements by using conventional wastewater treatment processes. Summary of the invention
- the object of the present invention is to provide a stable and efficient landfill leachate wastewater treatment system and a process thereof, thereby achieving the purpose of reducing environmental pollution caused by high ammonia nitrogen organic wastewater discharge.
- the technical solution of the present invention provides a landfill leachate wastewater treatment system, which is characterized in that it comprises a water collecting well, and the water collecting well is connected to the water inlet of the regulating tank through a pipeline and a lifting pump disposed therein.
- the outlet of the regulating tank is connected to the inlet of the filter through the pipeline and the water pump, and the outlet of the filter passes through the pipeline and the multi-stage anoxic/aerobic tank and membrane bioreactor integrated treatment system (hereinafter referred to as multi-stage A/0 (
- the inlet of the MBR) tank is connected, and the outlet of the multi-stage anoxic/aerobic tank and membrane bioreactor integrated treatment system is connected to the inlet of the catalytic oxidation tower through a pipeline, and the outlet of the catalytic oxidation tower passes through the pipeline and the biochar filter.
- the inlet is connected, and the outlet of the biochar filter is connected to the discharge pipe, and the discharge pipe is connected to the sewer.
- the technical solution of the method of the present invention provides a process for a landfill leachate wastewater treatment system, characterized in that the steps are: Step 1. The raw waste water is adjusted by the water pump in the regulating tank, and then the filter is lifted through the filter to filter out the fibers, small-sized particles and suspended matter in the waste water, and the filter precision of the filter is 0 ⁇ 1000 ⁇ m;
- Step 2 After filtration, the wastewater is metered into the anoxic sections of the multi-stage anoxic/aerobic tank (hereinafter referred to as the multi-stage A/0 pool), and the aerobic sections of each stage are adjusted according to the needs, and In the last stage of aerobic section (hereinafter referred to as section 0), methanol is added to supplement the carbon source;
- Step 3 After biochemical treatment, the wastewater enters the membrane bioreactor (hereinafter referred to as MBR). If an external membrane bioreactor is used, the concentrate is refluxed to the first stage anoxic section of the multi-stage anoxic/aerobic tank ( Hereinafter referred to as section A), if a built-in membrane bioreactor is used, the concentrate is returned from the pump to the first stage anoxic section of the multi-stage anoxic/aerobic tank, and then the supernatant enters the catalytic oxidation tower;
- MBR membrane bioreactor
- Step 4 The wastewater is decomposed by the oxidation of ozone in the catalytic oxidation tower to degrade the organic matter and improve the biodegradability of the wastewater, and then the effluent enters the biochar filter;
- Step 5 The wastewater in the biochar filter further degrades the organic matter and nitrogen under the action of the biofilm, and intercepts and removes a small amount of suspended matter (hereinafter referred to as SS) by the adsorption of activated carbon, and the water can reach the national first-level discharge standard. Or emission standards for related industries.
- SS suspended matter
- the invention adopts an advanced but simple pretreatment process to remove large particles SS in the wastewater, protect subsequent equipment, reduce load, and the landfill leachate wastewater enters the multi-stage A/0 (MBR) pool, and degrades organic by microbial metabolism. Contaminants, and through the action of nitrifying bacteria and denitrifying bacteria, the ammonia nitrogen is removed.
- the A/0 pools of all levels are connected in series, and the A sections of the A/0 pools of each level are respectively filled with water, so that the carbon source in the wastewater can be utilized to the maximum extent, and the nitrifying liquid produced in the 0 section can directly enter the next stage A.
- the A segment of the /0 pool thus theoretically eliminates the internal circulation process of the A/0 process.
- the effluent passes through the MBR, and the high-microbial amount can be maintained in the multi-stage A/0 tank by the reflux of the concentrated solution, and the concentration can reach 8 ⁇ 30g/L.
- the membrane effluent enters the catalytic oxidation tower, and further degrades the organic matter by the strong oxidation of ozone under the action of the catalyst, and the biodegradability of the waste water can be improved.
- the effluent from the catalytic oxidation tower enters the biochar filter tank, and the waste water in the carbon filter tank further removes the pollutants through the synergistic action of the oxidative degradation of the biofilm and the adsorption of the activated carbon, and the effluent can reach the national first-level discharge standard or the discharge standard of the relevant industry.
- the invention has the following advantages: 1.
- the main process of the process has a multi-stage A/0 pool divided into sections A, respectively, and the water inlet quantity can be adjusted and controlled, and the operation mode is more flexible;
- the multi-stage A/0 process of the invention Is active
- the sludge method, the biochar filter in the advanced treatment is a biofilm method, and the two biological treatment methods are located in a wastewater treatment process, which can exert its complementary advantages and have a higher removal effect; 3.
- the process is simple and the land occupation is small.
- FIG. 1 is a schematic structural view of a landfill leachate wastewater treatment system provided by the present invention
- the outlet of 3 is connected to the inlet of the filter 7 through a pipe and a water pump 5, and the outlet of the filter 7 is connected to the inlet of the multi-stage anoxic/aerobic tank and membrane bioreactor integrated treatment system through a pipeline, and the multi-stage anoxic/
- the outlet of the aerobic tank and membrane bioreactor integrated treatment system is connected to the water inlet of the catalytic oxidation tower 18 through a pipe, and the outlet of the catalytic oxidation tower 18 is connected to the inlet of the biochar filter 24 through a pipe, and the outlet of the biochar filter 24
- a standard discharge pipe 26 is connected, and the discharge pipe 26 is connected to the sewer.
- a grid or grid is arranged in the collecting well 1 to intercept large particles, gravel and floating objects in the wastewater, and the effluent enters the regulating tank 3 through the lift pump 2.
- the first submersible mixer 4 is provided in the adjustment tank 3, and the hydraulic stirring action of the mixer can not only make the water quality uniform, but also prevent the fibers and SS in the wastewater from being deposited in the adjustment tank 3.
- the effluent of the conditioning tank 3 is lifted into the filter 7 by the lift pump 5.
- the filter 7 removes most of the SS from the wastewater, avoiding SS damage to the membrane module and effectively reducing the processing load of the multi-stage A/0 pool.
- the multi-level A/0 (MBR) pool is divided into multi-level A/0 pools 10 and MBRs.
- the multi-stage A/0 pool is formed by connecting A/0 pools of 2 to 6 stages in series.
- the level 3 A/0 pools are connected in series.
- a second submersible mixer 8 is arranged in the A section of each stage, and the hydraulic sludge is stirred by the mixer to suspend the return sludge in the water body and can be fully contacted with the wastewater rich in organic matter and ammonia nitrogen;
- the aeration system 9, the aeration system 9 is connected to the aerator 6, and can be a microporous aerator, a dish jet aerator, an MTS jet aerator, a KSrting Ejectors jet, and other high efficiency aerators.
- the anoxic sections of the anoxic/aerobic tanks at all levels are respectively fed with water, and flowmeters are installed on the inlet pipes of each level.
- the lye dosing system is provided at each stage 0.
- the final stage A also has a carbon source dosing system to improve the removal efficiency of total nitrogen by the removal of nitrate nitrogen.
- This process uses multi-stage A/0 process as the main body of biochemical reaction, and has the following advantages: First, multi-stage A/0 process sludge load is low, sludge concentration is high, biomass is large, and relative aeration time is longer Second, the impact load resistance is strong, and the water discharge effect is good.
- the nitrification and denitrification reactions alternate, the denitrification of the wastewater is complete, and the oxygen produced by denitrification denitrification In the nitrification section, it is fully utilized to save energy consumption for oxygen supply.
- the sludge due to the low sludge load and long sludge age, the sludge has a long residence time in the aeration tank, and the self-oxidation is sufficient and the mineralization degree is high. Low mud content, good stability, no need for sludge digestion system, direct concentration and dehydration.
- the MBR is an external roll film, an external plate film, an external tubular film or a built-in hollow fiber membrane.
- the MBR comprises an inlet system 12, a circulation system 13, a cleaning system 14, a reflux system 15 and a serum outflow system 16, wherein the inlet end of the circulation system 13 is connected to the inlet system 12, the outlet of the circulation system 13 The ends are respectively connected to the cleaning system 14 and the reflux system 15, and the inlet end of the cleaning system 14 is connected to the clear liquid outflow system 16, and the inlet end of the liquid inlet system 12 is connected to the last stage of the anoxic/aerobic tank, and the clear liquid outflow system 16 is connected to the catalytic oxidation tower 18, and a feed water pump 11 is provided on the inlet system 12.
- MBR removal capacity for suspended solids such as colloids in water is higher than that of traditional processes, ensuring that the effluent SDI is less than 4. In terms of filtration accuracy, MBR ensures complete removal of colloidal particles, viruses, bacteria, and others when the media passes through the ultrafiltration membrane. Pathogenic microorganisms and some macromolecular substances.
- the microbial concentration in the multi-stage A/0 cell can be maintained in the range of 8 to 30 mg/L by means of the membrane separation system dope reflux.
- the catalytic oxidation tower 18 has an influent water distribution system 17, an intake air distribution system 19 and a catalyst packing layer 20, the influent water distribution system 17 is connected to the clear liquid outflow system 16, and the intake air distribution system 19 is connected to an external ozone generator. 25.
- a catalyst packing layer 20 is provided in the middle of the catalytic oxidation column 18.
- the core of the technology is two-phase catalytic oxidation. The two phases are: ozone generated by the ozone generator 25 and a catalyst packing layer 20 (solid phase) fixed on the carrier, and the catalyst functions to accelerate the reaction rate, increase the utilization ratio of the ozone, reduce the processing cost, and improve the treatment effect.
- the residence time of the wastewater in the tower is shortened.
- the wastewater enters the catalytic oxidation tower.
- the organic pollutants in the water are decomposed by the oxidant under the action of the catalyst.
- the refractory organic matter is opened, broken, and the macromolecule becomes a small molecule, and the small molecule is further oxidized to Carbon dioxide and water, so that the COD value in the wastewater is greatly reduced.
- the biochar filter 24 has an influent water distribution system 21, an air distribution system 22 and a packing layer 23.
- the process fully draws on the design ideas of the sewage treatment contact oxidation method and the feed water treatment quick filter, that is, the characteristics of aeration, high filtration speed, and suspended solids are required.
- the process principle is that the biochar filter 24 is filled with a certain amount of granular filter material having a small particle size to form a filler layer 23, and a highly active biofilm is grown on the surface of the filter material, and the inside of the filter is aerated.
- the sewage When the sewage flows through, the sewage is rapidly purified by utilizing the oxidative degradation ability of the high-concentration biofilm attached to the high specific surface area of the filter material, which is a biological oxidation degradation process; meanwhile, when the sewage flows, the filter material is compacted and filtered.
- the characteristics of the smaller particle size and the bioflocculation of the biofilm can intercept the suspended matter in the sewage, and at the same time ensure that the biofilm that has fallen off will not drift out with the water, which is a trapping effect.
- the landfill leachate wastewater treatment process is:
- Step 1 The raw waste water is adjusted in the regulating tank 3 to adjust the water quality and quantity, and then the pump 5 is lifted through the filter 7, filtering out the fibers, small-sized particles and SS in the waste water, and the filtering precision of the filter is 0 ⁇ 1000 ⁇ m; 2. After filtration, the wastewater is metered into the A section of the multi-stage A/0 pool 10, and the 0 sections of each stage are adjusted according to the needs. The last stage 0 is added with methanol to supplement the carbon source;
- Step 3 after the biochemical treatment, the wastewater enters the MBR, and the MBR concentrate is returned to the first stage A of the multi-stage A/0 pool through the reflux system 13, and the clear liquid enters the catalytic oxidation tower 18 through the liquid discharge system 16;
- Step 4 the catalytic oxidation of the wastewater in the oxidation tower 18 under the catalytic action of the catalyst packing layer 20, through the oxidation of ozone generated by the ozone generator 25, degrading organic matter and improving the biodegradability of the wastewater, the effluent into the biochar filter 24;
- Step 5 The wastewater in the biochar filter tank 24 further degrades the organic matter and nitrogen under the action of the biofilm, and intercepts and removes a small amount of suspended matter through the adsorption of the activated carbon filler layer 23, and the effluent can reach the national first-level discharge standard or related Industry emission standards.
- Example 1 A landfill leachate wastewater treatment project
- Landfill leachate from landfill has high organic matter concentration ((: 00tician15000mg/L, B0D 6 up to 5000mg/L), high ammonia nitrogen concentration (up to 20,000mg/L), high SS concentration (up to 3000mg/L) , the imbalance of nutrients and the large changes in water quality and quantity.
- Example 2 Wastewater treatment project of a leather factory
- the wastewater has high organic pollution concentration, high ammonia nitrogen, and contains many difficult-to-degrade substances.
- the original wastewater treatment process the effluent has not been able to meet the standard. If the invention is used, the original system is modified, and a processing system of primary pretreatment + secondary biochemical treatment + tertiary advanced treatment is completed, which not only has stable system operation, low cost, and the system can reach "leather products" after treatment.
- the water discharge requirements of the Industrial Pollutant Emission Standards are used.
- the invention can obtain excellent effects in the engineering application of the landfill leachate wastewater, and can also achieve good effects in other high ammonia nitrogen organic wastewater treatment, and the effluent can meet the design requirements, social benefits and environmental benefits. Significant.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
- Water Treatment By Sorption (AREA)
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020117012729A KR101246847B1 (ko) | 2009-05-22 | 2010-05-20 | 일종의 쓰레기 삼출액 폐수 처리시스템 및 그 프로세스 |
EP20100777380 EP2433910A4 (en) | 2009-05-22 | 2010-05-20 | SYSTEM FOR TREATING WASTE WATER FROM DISCHARGE LEACH AND CORRESPONDING METHOD |
US13/257,910 US8679339B2 (en) | 2009-05-22 | 2010-05-20 | Refuse landfill leachate wastewater treatment system and technology |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910051803.9 | 2009-05-22 | ||
CN2009100518039A CN101560039B (zh) | 2009-05-22 | 2009-05-22 | 一种垃圾渗滤液废水处理系统及其工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010133177A1 true WO2010133177A1 (zh) | 2010-11-25 |
Family
ID=41219044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/073031 WO2010133177A1 (zh) | 2009-05-22 | 2010-05-20 | 一种垃圾渗滤液废水处理系统及其工艺 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8679339B2 (zh) |
EP (1) | EP2433910A4 (zh) |
KR (1) | KR101246847B1 (zh) |
CN (1) | CN101560039B (zh) |
WO (1) | WO2010133177A1 (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012016308A3 (pt) * | 2010-08-06 | 2012-04-12 | Ferrao Pericles Valdir | Processo de decomposição de matéria orgânica de corpos inanimados em ambiente aeróbico, induzido por calor e pressão negativa e equipamento inativador de gases para processo de decomposição de matéria orgânica de corpos inanimados em ambiente aeróbico, induzido por calor e pressão negativa |
CN102583894A (zh) * | 2012-02-24 | 2012-07-18 | 浙江省农业科学院 | 磁性碳催化臭氧氧化处理垃圾渗滤液尾水的方法 |
CN102826707A (zh) * | 2011-06-16 | 2012-12-19 | 云南大学 | 一种万寿菊废水的三级串联式光催化处理工艺 |
CN102849893A (zh) * | 2012-08-06 | 2013-01-02 | 南京凯盛国际工程有限公司 | 一种高浓度难降解有机废水的处理方法 |
CN106007102A (zh) * | 2016-07-28 | 2016-10-12 | 江苏融汇环境工程有限公司 | 厕所污水自动处理系统 |
CN106745657A (zh) * | 2017-01-20 | 2017-05-31 | 苏州新能环境技术股份有限公司 | 一种连续移动床式催化氧化处理化工废水的方法及装置 |
CN106746356A (zh) * | 2017-01-23 | 2017-05-31 | 同舟纵横(厦门)流体技术有限公司 | 一种农药废水处理系统及处理工艺 |
CN110550820A (zh) * | 2019-09-02 | 2019-12-10 | 武汉万安环保工程技术有限公司 | 一种半地埋式乡镇垃圾压缩站污水处理系统 |
CN111217495A (zh) * | 2020-03-17 | 2020-06-02 | 桂润环境科技股份有限公司 | 一种有机废水深度处理装置和处理方法 |
CN111547848A (zh) * | 2020-05-08 | 2020-08-18 | 管大祥 | 一种分区控制分点进水强化脱氮除磷(a/o/a)-mbr一体化工艺及其系统装置 |
CN111792795A (zh) * | 2020-07-28 | 2020-10-20 | 北京北宇机械设备有限公司 | 一种煤化工废水处理装置 |
CN112093975A (zh) * | 2020-08-07 | 2020-12-18 | 东莞道汇环保科技股份有限公司 | 一种垃圾渗滤液的处理系统及处理方法 |
CN112479377A (zh) * | 2020-11-18 | 2021-03-12 | 南京柯若环境技术有限公司 | 无动力多级旋流充氧a/o交替串联组合生物滤池处理系统及方法 |
CN112679038A (zh) * | 2020-12-08 | 2021-04-20 | 中国恩菲工程技术有限公司 | 废水处理系统和方法 |
CN113233718A (zh) * | 2021-06-15 | 2021-08-10 | 厦门中环水科技股份有限公司 | 一种垃圾渗滤液处理方法及其装置 |
CN114477452A (zh) * | 2022-03-08 | 2022-05-13 | 浙江工业大学 | 一种垃圾渗滤液中四环素类抗生素的去除方法 |
CN115286183A (zh) * | 2022-08-19 | 2022-11-04 | 水艺控股集团股份有限公司 | 一种垃圾渗滤液全量化处理装置 |
CN116081861A (zh) * | 2022-12-09 | 2023-05-09 | 天津市政工程设计研究总院有限公司 | 一种垃圾渗滤液的柔性处理方法 |
Families Citing this family (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101560039B (zh) * | 2009-05-22 | 2011-04-27 | 上海同济建设科技有限公司 | 一种垃圾渗滤液废水处理系统及其工艺 |
CN101786767A (zh) * | 2010-03-05 | 2010-07-28 | 中冶焦耐(大连)工程技术有限公司 | 臭氧氧化法与膜分离技术相结合的焦化废水深度处理工艺 |
CN101973667B (zh) * | 2010-09-29 | 2012-05-23 | 北京市水利科学研究所 | 受污染地表水深度净化组合工艺方法及装置 |
CN102079593B (zh) * | 2010-12-06 | 2013-01-02 | 北京市水利科学研究所 | 受污染地表水组合式循环过滤脱氮除磷杀藻工艺方法及装置 |
RU2555039C2 (ru) * | 2011-04-01 | 2015-07-10 | Актиеболагет Электролюкс | Фильтр и устройство фильтрования воды, содержащее фильтр |
CN103373789B (zh) * | 2012-04-23 | 2016-04-13 | 西安皓海嘉环保工程有限责任公司 | 一种垃圾渗滤液处理方法 |
CN102659270A (zh) * | 2012-05-14 | 2012-09-12 | 上海同济建设科技有限公司 | 一种垃圾渗滤液超滤出水处理方法 |
CN103626353A (zh) * | 2012-08-23 | 2014-03-12 | 宋乾武 | 一种城市生活垃圾渗滤液的处理方法 |
CN103641268B (zh) * | 2013-05-29 | 2015-12-23 | 中钢集团武汉安全环保研究院有限公司 | 两级生物反应器处理垃圾渗滤液设备及工艺 |
CN103319047A (zh) * | 2013-06-29 | 2013-09-25 | 惠州市众惠环保工程有限公司 | 一种垃圾渗滤液处理系统 |
CN103420544B (zh) * | 2013-08-14 | 2015-01-07 | 广西大学 | 应用于清洁化水产养殖水体原位修复的方法 |
CN103739152A (zh) * | 2013-11-15 | 2014-04-23 | 安徽省绿巨人环境技术有限公司 | 一种社区中水回用系统 |
US9909598B1 (en) | 2014-02-24 | 2018-03-06 | Landtec North America, Inc. | Well monitoring and pressure controlled landfill pump |
ES2565000B2 (es) * | 2014-09-26 | 2016-06-30 | Mancar Tecnologías Sl | Procedimiento y sistema de mineralización de lixiviados |
CN104909517A (zh) * | 2015-06-10 | 2015-09-16 | 北京格兰特膜分离设备有限公司 | 工业生产废水深度处理装置 |
CN105129988B (zh) * | 2015-09-08 | 2017-08-11 | 东北大学 | 油页岩干馏废水的分段进水多级a/o‑mbr处理方法 |
CN105217898B (zh) * | 2015-11-12 | 2017-10-17 | 山东省农业科学院农业资源与环境研究所 | 一种适用于中小型养殖场的废水处理系统 |
FR3047002B1 (fr) | 2016-01-21 | 2020-01-31 | Degremont | Procede et dispositif de traitement d'eaux residuaires par oxydation |
CN105565606B (zh) * | 2016-01-30 | 2019-06-04 | 内蒙古久科康瑞环保科技有限公司 | 一种同步去除高含盐工业废水cod和氨氮的装置及其方法 |
CN105693029A (zh) * | 2016-03-21 | 2016-06-22 | 珠海市海宜环境投资有限公司 | 垃圾渗滤液处理工艺 |
CN106348522A (zh) * | 2016-08-25 | 2017-01-25 | 广西壮族自治区环境保护科学研究院 | 一种低能耗强化脱氮一体式反应器 |
CN108947092A (zh) * | 2017-05-17 | 2018-12-07 | 天津科技大学 | 一体化高级氧化槽深度净化城市二级水装置及方法 |
CN107365027A (zh) * | 2017-08-15 | 2017-11-21 | 格丰科技材料有限公司 | 垃圾渗滤液的处理系统及方法 |
CN107500441A (zh) * | 2017-10-13 | 2017-12-22 | 中联环股份有限公司 | 一种垃圾渗滤液浓水处理系统及处理方法 |
CN107974261A (zh) * | 2017-12-27 | 2018-05-01 | 利百川环保科技有限公司 | 一种生活垃圾废水废气处理系统 |
IT201800000496A1 (it) * | 2018-01-03 | 2019-07-03 | Erica S R L | Processo per la rimozione di sostanze fluorurate da percolati di discarica |
CN108218086A (zh) * | 2018-02-09 | 2018-06-29 | 刘肖俊 | 一种结构简单且耗电量少的新型污水处理装置 |
CN108178305B (zh) * | 2018-02-11 | 2023-10-27 | 浙江省环境保护科学设计研究院 | 一种生物多元化处理高浓度化工废水的工艺及装置 |
CN110407398A (zh) * | 2018-04-28 | 2019-11-05 | 吴炎峰 | 一种可移动式垃圾渗滤液处理装置 |
CN108975616A (zh) * | 2018-08-01 | 2018-12-11 | 启迪桑德环境资源股份有限公司 | 处理生物质热解水的系统及方法 |
CN108996836A (zh) * | 2018-08-20 | 2018-12-14 | 朱翠帮 | 一种工业污水处理工艺 |
CN109133514B (zh) * | 2018-09-13 | 2021-07-02 | 东华理工大学 | 一种地下水污染处理装置 |
CN110950488A (zh) * | 2018-09-27 | 2020-04-03 | 上海子征环保科技有限公司 | 一种生活垃圾新鲜渗滤液处理方法 |
CN109231460A (zh) * | 2018-10-30 | 2019-01-18 | 江苏新天鸿集团有限公司 | 基于物联网的智能一体化膜法污水处理工艺 |
CN109574380A (zh) * | 2018-11-22 | 2019-04-05 | 湖州纳琦环保科技有限公司 | 一种污水处理工艺 |
CN109179924B (zh) * | 2018-11-29 | 2024-01-26 | 湖南军信环保股份有限公司 | 一种协同处理垃圾焚烧厂渗滤液和污泥压滤液的方法及系统 |
CN109534620B (zh) * | 2019-01-03 | 2021-01-29 | 清华大学 | 臭氧催化氧化与曝气生物活性炭滤池污水深度处理装置 |
CN110451721B (zh) * | 2019-08-08 | 2021-03-26 | 同济大学 | 一种垃圾焚烧厂渗滤液除碳脱氮处理装置及方法 |
CN110498563A (zh) * | 2019-08-12 | 2019-11-26 | 杭州电子科技大学 | 垃圾中转站渗滤液无膜一体化处理系统及方法 |
CN110668642A (zh) * | 2019-10-16 | 2020-01-10 | 南京万德斯环保科技股份有限公司 | 适用于垃圾渗沥液深度处理的电化学耦合高级氧化工艺及装置 |
CN110818177A (zh) * | 2019-10-29 | 2020-02-21 | 光大环保技术研究院(南京)有限公司 | 一种垃圾渗滤液处理系统 |
CN110759601B (zh) * | 2019-11-20 | 2022-11-11 | 兰州蓝星纤维有限公司 | 一种多用途碳纤维生产废水的处理系统及方法 |
CN110902947A (zh) * | 2019-11-27 | 2020-03-24 | 安徽德邦化工有限公司 | 一种废水末端处理的检测系统 |
CN110803768A (zh) * | 2019-11-29 | 2020-02-18 | 中联环股份有限公司 | 一种污水处理装置及其处理工艺 |
CN111484192A (zh) * | 2020-04-02 | 2020-08-04 | 江苏永冠给排水设备有限公司 | 一种移动式垃圾中转站渗滤液处理装置 |
US11787714B2 (en) | 2020-04-22 | 2023-10-17 | Martlin Distributing, LLC | Method for gelation of a waste water stream |
CN111470731B (zh) * | 2020-04-26 | 2022-11-25 | 厦门嘉戎技术股份有限公司 | 一种垃圾填埋场渗滤液处理方法和系统 |
CN111646636A (zh) * | 2020-05-19 | 2020-09-11 | 深圳能源资源综合开发有限公司 | 含油垃圾渗沥液的预处理方法及系统 |
CN111606457A (zh) * | 2020-06-22 | 2020-09-01 | 南京环美科技股份有限公司 | 一种垃圾渗滤液浓缩液高级氧化处理装置及工艺 |
CN111762968A (zh) * | 2020-06-30 | 2020-10-13 | 北京新林水务科技有限公司 | 一种难降解高浓度废水综合处理方法及系统 |
CN111807620A (zh) * | 2020-07-10 | 2020-10-23 | 自然资源部天津海水淡化与综合利用研究所 | 一种基于综合膜法对乳化液废水处理系统 |
CN111732238A (zh) * | 2020-07-24 | 2020-10-02 | 重庆三峰科技有限公司 | 一种飞灰填埋场渗滤液处理系统及其工艺 |
CN114075000A (zh) * | 2020-08-12 | 2022-02-22 | 河南省力华全环保科技有限公司 | 一种高浓度高盐废水强化处理系统 |
CN111960616A (zh) * | 2020-08-27 | 2020-11-20 | 重庆耐德环境技术有限公司 | 一种老龄化填埋场垃圾渗滤液无浓液处理系统及方法 |
CN112093979A (zh) * | 2020-09-09 | 2020-12-18 | 冀世锋 | 一种生产废水处理装置 |
CN111977917A (zh) * | 2020-09-15 | 2020-11-24 | 苏州复淼智能科技有限公司 | 一种餐厨垃圾酶降解废水处理系统 |
CN112209581A (zh) * | 2020-11-04 | 2021-01-12 | 王宏飞 | 垃圾压缩站废水处理系统及其工作方法 |
CN112759182A (zh) * | 2020-12-17 | 2021-05-07 | 嘉兴天渊环保技术服务有限公司 | 一种餐厨垃圾生化组合处理装置及处理工艺 |
CN112811717A (zh) * | 2020-12-29 | 2021-05-18 | 水清华(天津)环保科技有限公司 | 一种垃圾渗滤液处理工艺 |
CN112960866A (zh) * | 2021-03-08 | 2021-06-15 | 沈阳大学 | 一种复杂农药综合废水的处理工艺 |
CN113443765A (zh) * | 2021-06-03 | 2021-09-28 | 沧州冀环威立雅环境服务有限公司 | 一种危废填埋场渗滤液处理设备及其处理工艺 |
CN113860637A (zh) * | 2021-09-24 | 2021-12-31 | 物产中大公用环境投资有限公司 | 一种南方地区垃圾中转站渗滤液的处理方法及系统 |
CN113929269B (zh) * | 2021-11-25 | 2023-08-01 | 北京绿邦环保工程有限公司 | 一种可降低工业污水中抗生物质的好氧式膜生物反应器 |
CN114291972B (zh) * | 2021-12-30 | 2023-07-14 | 中国电建集团福建工程有限公司 | 一种垃圾焚烧发电厂渗滤液处理系统及处理方法 |
CN114573105A (zh) * | 2022-02-08 | 2022-06-03 | 广东台泉环保科技有限公司 | 一种渗滤液复合生物化组合处理系统及方法 |
CN115108678A (zh) * | 2022-06-10 | 2022-09-27 | 中钢集团武汉安全环保研究院有限公司 | 一种果蔬废水处理工艺 |
CN114956485B (zh) * | 2022-06-27 | 2023-03-24 | 上海交通大学 | 一种基于强化垃圾渗沥液内碳源利用的生物脱氮处理方法 |
CN114873876A (zh) * | 2022-07-07 | 2022-08-09 | 天津高能时代水处理科技有限公司 | 一种垃圾渗滤液无膜法处理系统及方法 |
CN115124196A (zh) * | 2022-07-20 | 2022-09-30 | 普哗环境科技(北京)有限公司 | 一种难降解有机废水处理工艺 |
CN115991550A (zh) * | 2022-10-10 | 2023-04-21 | 杭州科晟能源技术有限公司 | 一种渗滤液产水降总氮去除系统 |
CN116282683B (zh) * | 2023-02-20 | 2023-08-15 | 宝航环境修复有限公司 | 一种sMBR垃圾渗滤液处理系统及其工艺回流方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100381298B1 (en) * | 2002-06-14 | 2003-04-26 | Byung Hun Lee | Apparatus for treating high concentrated nitrogen contained wastewater (landfill site leachate) including membrane separation process |
KR20060039097A (ko) * | 2004-11-02 | 2006-05-08 | 선종재 | 천연자개를 이용한 상품라벨구의 제조방법 및 이를 이용한상품라벨구 |
CN200988816Y (zh) * | 2006-12-11 | 2007-12-12 | 深圳市金达莱环保股份有限公司 | 基于膜生物反应器-纳滤膜技术的垃圾渗滤液处理系统 |
CN101560039A (zh) * | 2009-05-22 | 2009-10-21 | 上海同济建设科技有限公司 | 一种垃圾渗滤液废水处理系统及其工艺 |
CN201406361Y (zh) * | 2009-05-22 | 2010-02-17 | 上海同济建设科技有限公司 | 一种垃圾渗滤液废水处理装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4892658A (en) * | 1988-03-17 | 1990-01-09 | Martin Joseph P | Wastewater treatment system |
DE4434753A1 (de) * | 1994-09-29 | 1996-04-04 | Wedeco Umwelttechnologie Wasser Boden Luft Gmbh | Verfahren und Anlage zum biologischen Abbau von Schadstoffen in wäßrigen Flüssigkeiten |
JP3350353B2 (ja) * | 1996-05-28 | 2002-11-25 | シャープ株式会社 | 排水処理方法および排水処理装置 |
US6283676B1 (en) * | 1999-12-21 | 2001-09-04 | Waste Management, Inc. | Sequential aerobic/anaerobic solid waste landfill operation |
US6517723B1 (en) * | 2000-07-27 | 2003-02-11 | Ch2M Hill, Inc. | Method and apparatus for treating wastewater using membrane filters |
KR100478403B1 (ko) * | 2000-11-13 | 2005-03-23 | 이엔브이이십일(주) | 다층 반응조 개념을 도입한 매립지의 매립구조와 이를이용한 매립지 운용방법 |
JP3883445B2 (ja) * | 2002-02-18 | 2007-02-21 | アタカ大機株式会社 | 汚水処理装置 |
KR20040026404A (ko) * | 2002-09-24 | 2004-03-31 | 정병일 | 축산폐수 처리방법 |
KR20050083097A (ko) * | 2004-02-21 | 2005-08-25 | (주) 태흥테크놀리지 | 혐기-무산소-호기성 여과 시스템을 이용한 소규모하·폐수 처리시스템 |
TWI568687B (zh) * | 2009-06-15 | 2017-02-01 | 沙烏地阿拉伯油品公司 | 包含懸浮系統與多重生物反應器區域的經懸浮介質膜生物反應器系統及方法 |
-
2009
- 2009-05-22 CN CN2009100518039A patent/CN101560039B/zh active Active
-
2010
- 2010-05-20 KR KR1020117012729A patent/KR101246847B1/ko active Active
- 2010-05-20 EP EP20100777380 patent/EP2433910A4/en not_active Withdrawn
- 2010-05-20 WO PCT/CN2010/073031 patent/WO2010133177A1/zh active Application Filing
- 2010-05-20 US US13/257,910 patent/US8679339B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100381298B1 (en) * | 2002-06-14 | 2003-04-26 | Byung Hun Lee | Apparatus for treating high concentrated nitrogen contained wastewater (landfill site leachate) including membrane separation process |
KR20060039097A (ko) * | 2004-11-02 | 2006-05-08 | 선종재 | 천연자개를 이용한 상품라벨구의 제조방법 및 이를 이용한상품라벨구 |
CN200988816Y (zh) * | 2006-12-11 | 2007-12-12 | 深圳市金达莱环保股份有限公司 | 基于膜生物反应器-纳滤膜技术的垃圾渗滤液处理系统 |
CN101560039A (zh) * | 2009-05-22 | 2009-10-21 | 上海同济建设科技有限公司 | 一种垃圾渗滤液废水处理系统及其工艺 |
CN201406361Y (zh) * | 2009-05-22 | 2010-02-17 | 上海同济建设科技有限公司 | 一种垃圾渗滤液废水处理装置 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012016308A3 (pt) * | 2010-08-06 | 2012-04-12 | Ferrao Pericles Valdir | Processo de decomposição de matéria orgânica de corpos inanimados em ambiente aeróbico, induzido por calor e pressão negativa e equipamento inativador de gases para processo de decomposição de matéria orgânica de corpos inanimados em ambiente aeróbico, induzido por calor e pressão negativa |
CN102826707A (zh) * | 2011-06-16 | 2012-12-19 | 云南大学 | 一种万寿菊废水的三级串联式光催化处理工艺 |
CN102583894A (zh) * | 2012-02-24 | 2012-07-18 | 浙江省农业科学院 | 磁性碳催化臭氧氧化处理垃圾渗滤液尾水的方法 |
CN102849893A (zh) * | 2012-08-06 | 2013-01-02 | 南京凯盛国际工程有限公司 | 一种高浓度难降解有机废水的处理方法 |
CN102849893B (zh) * | 2012-08-06 | 2014-08-13 | 南京凯盛国际工程有限公司 | 一种高浓度难降解有机废水的处理方法 |
CN106007102A (zh) * | 2016-07-28 | 2016-10-12 | 江苏融汇环境工程有限公司 | 厕所污水自动处理系统 |
CN106745657A (zh) * | 2017-01-20 | 2017-05-31 | 苏州新能环境技术股份有限公司 | 一种连续移动床式催化氧化处理化工废水的方法及装置 |
CN106746356A (zh) * | 2017-01-23 | 2017-05-31 | 同舟纵横(厦门)流体技术有限公司 | 一种农药废水处理系统及处理工艺 |
CN110550820A (zh) * | 2019-09-02 | 2019-12-10 | 武汉万安环保工程技术有限公司 | 一种半地埋式乡镇垃圾压缩站污水处理系统 |
CN111217495A (zh) * | 2020-03-17 | 2020-06-02 | 桂润环境科技股份有限公司 | 一种有机废水深度处理装置和处理方法 |
CN111547848A (zh) * | 2020-05-08 | 2020-08-18 | 管大祥 | 一种分区控制分点进水强化脱氮除磷(a/o/a)-mbr一体化工艺及其系统装置 |
CN111792795A (zh) * | 2020-07-28 | 2020-10-20 | 北京北宇机械设备有限公司 | 一种煤化工废水处理装置 |
CN112093975A (zh) * | 2020-08-07 | 2020-12-18 | 东莞道汇环保科技股份有限公司 | 一种垃圾渗滤液的处理系统及处理方法 |
CN112479377A (zh) * | 2020-11-18 | 2021-03-12 | 南京柯若环境技术有限公司 | 无动力多级旋流充氧a/o交替串联组合生物滤池处理系统及方法 |
CN112479377B (zh) * | 2020-11-18 | 2022-12-09 | 南京柯若环境技术有限公司 | 无动力多级旋流充氧a/o交替串联组合生物滤池处理系统及方法 |
CN112679038A (zh) * | 2020-12-08 | 2021-04-20 | 中国恩菲工程技术有限公司 | 废水处理系统和方法 |
CN113233718A (zh) * | 2021-06-15 | 2021-08-10 | 厦门中环水科技股份有限公司 | 一种垃圾渗滤液处理方法及其装置 |
CN114477452A (zh) * | 2022-03-08 | 2022-05-13 | 浙江工业大学 | 一种垃圾渗滤液中四环素类抗生素的去除方法 |
CN114477452B (zh) * | 2022-03-08 | 2023-05-30 | 浙江工业大学 | 一种垃圾渗滤液中四环素类抗生素的去除方法 |
CN115286183A (zh) * | 2022-08-19 | 2022-11-04 | 水艺控股集团股份有限公司 | 一种垃圾渗滤液全量化处理装置 |
CN116081861A (zh) * | 2022-12-09 | 2023-05-09 | 天津市政工程设计研究总院有限公司 | 一种垃圾渗滤液的柔性处理方法 |
CN116081861B (zh) * | 2022-12-09 | 2024-05-07 | 天津市政工程设计研究总院有限公司 | 一种垃圾渗滤液的柔性处理方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20110103945A (ko) | 2011-09-21 |
CN101560039B (zh) | 2011-04-27 |
US8679339B2 (en) | 2014-03-25 |
KR101246847B1 (ko) | 2013-03-25 |
US20120012525A1 (en) | 2012-01-19 |
CN101560039A (zh) | 2009-10-21 |
EP2433910A1 (en) | 2012-03-28 |
EP2433910A4 (en) | 2013-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010133177A1 (zh) | 一种垃圾渗滤液废水处理系统及其工艺 | |
CN101708935B (zh) | 集装箱洗箱废水的处理方法 | |
CN101811797B (zh) | 煤气化废水生化处理设备和方法 | |
CN106927628A (zh) | 微电解—芬顿—egsb—a/o—bco—baf—混凝处理制药废水工艺 | |
CN101074141B (zh) | 低浓度有机废水再生回用工艺 | |
CN103880253B (zh) | 一种垃圾渗滤液的深度处理方法及芬顿反应塔 | |
CN111646648B (zh) | 一种模块化铁路列车集便器粪便废水远期处理方法 | |
CN106517516B (zh) | 一种工业废水的提标改造生物处理装置和处理工艺 | |
CN109205954A (zh) | 微电解催化氧化、生化处理高浓度废水工艺 | |
CN103342441B (zh) | 一种硫氰酸红霉素废水处理方法 | |
CN201857327U (zh) | 生活污水处理用复合式生物膜一体型反应器 | |
CN101746931A (zh) | 一种脱氮除磷生物处理与过滤一体化的污水处理系统及其方法 | |
CN111762965A (zh) | 一种石油化工废水深度处理回收利用方法 | |
CN111646649A (zh) | 一种模块化铁路列车集便器粪便废水处理方法 | |
CN110156267A (zh) | 催化氧化-微氧强化净水方法及净水系统 | |
CN101863592B (zh) | 一种城镇小型生活垃圾填埋场渗滤液处理方法 | |
CN102050544B (zh) | 高浓度有机废水的处理方法及其该方法采用的装置 | |
CN103663875B (zh) | 提高丙烯腈废水脱氮率的方法 | |
CN115893750A (zh) | 一种高浓度有机工业废水处理趋零排放系统及方法 | |
AU2021102747A4 (en) | A Municipal Wastewater Treatment Process Applicable to Quasi-Class IV Water Standard | |
CN201406361Y (zh) | 一种垃圾渗滤液废水处理装置 | |
CN113603303A (zh) | 一种焦化废水达标排放的处理方法 | |
CN202038950U (zh) | 酚醛树脂生产工艺废水生物处理装置 | |
CN212222744U (zh) | 高速公路服务区污水再利用装置 | |
CN108516649B (zh) | 提高煤气化制乙二醇污水脱氮率的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10777380 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117012729 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6400/DELNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13257910 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2010777380 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010777380 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |