[go: up one dir, main page]

WO2010055189A1 - Sistema de control de presión y temperatura de al menos un reactor químico - Google Patents

Sistema de control de presión y temperatura de al menos un reactor químico Download PDF

Info

Publication number
WO2010055189A1
WO2010055189A1 PCT/ES2009/070502 ES2009070502W WO2010055189A1 WO 2010055189 A1 WO2010055189 A1 WO 2010055189A1 ES 2009070502 W ES2009070502 W ES 2009070502W WO 2010055189 A1 WO2010055189 A1 WO 2010055189A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
pressure
biomass
control system
temperature
Prior art date
Application number
PCT/ES2009/070502
Other languages
English (en)
French (fr)
Inventor
Martin Hitzl
Original Assignee
Ingelia, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42169665&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010055189(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from ES200803271A external-priority patent/ES2339320B1/es
Priority claimed from ES200803272A external-priority patent/ES2339321B1/es
Application filed by Ingelia, S.L. filed Critical Ingelia, S.L.
Priority to BRPI0920395A priority Critical patent/BRPI0920395A2/pt
Priority to MX2011003823A priority patent/MX2011003823A/es
Priority to EP09825797.5A priority patent/EP2366757B1/en
Priority to RU2011114832/05A priority patent/RU2530114C2/ru
Priority to CA2740225A priority patent/CA2740225C/en
Priority to ES09825797.5T priority patent/ES2564184T3/es
Publication of WO2010055189A1 publication Critical patent/WO2010055189A1/es
Priority to US13/081,555 priority patent/US8475727B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/008Controlling or regulating of liquefaction processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/086Hydrothermal carbonization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00065Pressure measurement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00128Controlling the temperature by direct heating or cooling by evaporation of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/0013Controlling the temperature by direct heating or cooling by condensation of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00182Controlling or regulating processes controlling the level of reactants in the reactor vessel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/805Water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the scope of the present invention is a new system for controlling pressure and temperature of a reactor or a set of chemical reactors that contain an aqueous solution in its interior at a temperature close to its evaporation temperature at the pressure of the process .
  • Said control system is based, fundamentally, on a set of equipment in which the process water itself is used for the cooling and stabilization of the temperature along the reactor or set of reactors of the system.
  • a preferred embodiment of this invention is directed to the process of hydrothermal carbonization, hereinafter referred to as the HTC process (from English, Hydrothermal Carbonization).
  • biomass is understood as the biodegradable organic fraction present in products of diverse origins such as, for example, municipal waste or derived from agricultural or forestry industries.
  • main alternatives that exist for its energy use include its use as a starting material for the production of fuels for transport, as well as its use as a source of heat and electricity.
  • This HTC process basically consists of submitting to an aqueous solution of biomass, in the presence of a catalyst, at temperatures of about 180 0 C to 210 0 C and pressures of 10 to 19 bar obtained, after about 4 to 24 hours, a product with a structure similar to coal. Once activated, it is a spontaneous and exothermic process that releases, taking advantage of the high thermodynamic stability of water, up to a third of the energy stored in the biomass in the form of carbohydrates.
  • the biomass is introduced in an autoclave where it is subjected to a pressure treatment and high temperatures, in the presence of water. Once the time required for its transformation has elapsed, the reactor is allowed to cool and is opened to extract the final product of the reaction.
  • the present invention is mainly directed to a new system for controlling the pressure and temperature of a reactor or a set of chemical reactors based, fundamentally, on a set of equipment in which the process water itself is used for the cooling of the system.
  • This system very simple, it is possible to control the temperature and pressure of the reactor or reactors without the need to use mobile devices or heat exchange surfaces inside, which often have the disadvantage of accumulating unwanted deposits on their surface. after a certain time of operation.
  • the elimination of said mobile devices will represent an important saving in terms of the cost and time required for cleaning and maintenance.
  • the fact of having heat exchange surfaces inside the reactor or reactors of the system implies that temperature gradients are generated between the refrigerant and the reaction medium, thereby making it difficult to control the temperature of the reactor. process.
  • the present invention allows solving this problem, thanks to the use of the process water itself to reduce the temperature of the reactor or reactors, thus achieving to keep the temperature of the aqueous solution in its interior uniform.
  • by offering the possibility of taking advantage of the latent heat of water evaporation it allows to achieve a large cooling capacity of the system, as well as a good stability of the required pressure and temperature conditions.
  • a further advantage of the present invention is the possibility of recovering part of the enthalpy of the steam generated during the reaction, preferably by using a steam turbine and / or by condensing it in a heat exchanger, thus being able to take advantage of the heat released in said equipment for its use in other processes or thermal applications.
  • an additional part of the generated steam can be used to preheat the raw material fed to the process, both by direct injection to said raw material, and indirectly through a heat exchanger.
  • the control system presented can be applied to various types of reactors and processes, it is preferably directed to the HTC process, whether it is carried out in continuous type reactors or if it is carried out in discontinuous type reactors. It will be, therefore, a further object of this invention a pressure and temperature control system especially suitable for application in an HTC process, as well as the use of this system for the control of the pressure and temperature of an HTC process .
  • the present invention relates to a system for controlling temperature and pressure of at least one chemical reactor, characterized in that it comprises at least the following devices: a) a tank with at least one regulating device pressure (hereinafter, pressure regulation tank); b) a connecting conduit between the reactor or the chemical reactors and the pressure regulating tank; c) a device for injecting condensates into the reactor or reactors of the system.
  • a regulating device pressure hereinafter, pressure regulation tank
  • the pressure regulating tank (a) consists of a tank (1) independent of the reactor which comprises at least one gas and / or vapor inlet (2) located, preferably, in the lower part of the tank, immersed in the tank. condensate zone. Also, the tank comprises at least one inlet (3) and at least one outlet (4) of condensates as well as, located in its upper part, at least one outlet of steam and / or gases (5) with at least one pressure regulation device.
  • This pressure regulating device consists, in its preferred embodiment, in a pressure regulation valve, which is responsible for controlling the pressure of the tank continuously, depending on the value indicated by a pressure sensor located in the same tank or in your exit conduit.
  • the pressure of said pressure regulating device will be adjusted according to the pressure required for the process and, in turn, its set value will be adjusted to the value resulting from subtracting the pressure required for the process, the pressure of the water column corresponding to the condensate level inside the pressure regulating tank.
  • This setpoint value can be adjusted electronically, in the case of incorporating an electronic regulator, or manually, in the case of being a mechanical device.
  • the tank in a preferred embodiment of the tank, it will be equipped, at its top, with at least one device selected from a group consisting of: an additional pressure regulating valve, a pressure probe, a temperature probe, a level probe, a deaerator, a vacuum breaker and a safety valve, as well as any combination of the above. Also, you can have, in the condensate area, an additional temperature probe.
  • the temperature in the condenser or condensers will be at least 20 0 C and preferably 50 0 C lower than the process temperature.
  • At least one steam turbine (8) can be used to take advantage of part of the enthalpy of the steam and / or gases generated during the process in the generation of electric power.
  • the operating temperature of the condenser or condensers will be as close as possible to the ambient temperature, thus achieving a better performance of the turbine or steam turbines.
  • part of the excess steam generated during the reaction may be used in the initial phase of heating the process.
  • the steam will be injected directly and preferably in that reactor which is in its initial heating phase. If, in another way, the process is carried out continuously, the steam may be used for heating the aqueous mixture of biomass fed to the reactor, preferably through a heat exchange surface.
  • the condensed steam is directed to at least one storage tank (9), pressurized or atmospheric, from where the condensates are transported and reinjected to the pressure regulation tank (1) at the moment when in this the predetermined minimum level of said condensates is reached.
  • the condensate purge valve in the case of exceeding its maximum level, it will proceed to the evacuation of the same, through a condensate purge valve, until achieving again a value that is within the range of level that has been established. .
  • it will be possible to always maintain the volume of condensates in the deposit between a minimum level and a level maximum, approximately between 50 and 90% and, preferably, between 60 and 80% of its total volume.
  • One of the main objects of the pressure regulation tank presented (1) will be, precisely, the control of the pressure of the reactor or reactors of the installation (10), (11) and
  • This connecting conduit (13) will be designed to be of sufficient size to evacuate the maximum amount of gases and / or water vapor from the top of the reactor or reactors to the pressure regulating tank (1).
  • said connecting conduit (13) will be additionally equipped with at least one shut-off valve designed to open slowly once the minimum pressure required for the process has been reached.
  • Said valve can suppose a considerable saving of the energy consumed in the system by allowing the use of part of the generated steam to facilitate the starting of the process carried out in a single reaction equipment.
  • it will be necessary to have a cut-off valve between each reactor and said regulating tank (1), so that disconnection is possible individual of each one of them.
  • this temperature will be between 170 0 C and 230 0 C, preferably between 179.8 and 219, 6 0 C and more preferably between 191.6 and 209.8 0 C, thus favoring the continuity of the carbonization to avoid undesired interruptions in the process as a result of the need to adjust the lower temperature of the water injected into the reactor.
  • the injection to the reactor or reactors of the condensates coming from the regulating tank (1) is carried out through the condensate injection device (c), located around the side wall and in the lower part of each reactor.
  • This injection device can comprise one or more injection ports, through which the condensates coming from the pressure regulation tank (1) are introduced at different points of the equipment.
  • the amount of condensates fed to the reactor or reactors will be a function of the level control of the reactor itself (s), being at least that necessary to maintain a stable amount of aqueous solution therein.
  • the reactor or reactors will be further equipped, at its top, with at least one device selected from a group consisting of: a safety valve, a pressure probe, a probe temperature, a filling level probe, an air and gas eliminator and a vacuum breaker, as well as any combination of the above.
  • the reactor or set of reactors (10), (11) and (12), the connecting duct (13) and the regulating tank of pressure (1) will be thermally insulated from the outside, preferably by rock wool and aluminum sheet.
  • a steam injection device which consists of one or more inputs to carry out the steam injection to the reactor or reactors, preferably, during its cold start.
  • the steam used can come either from an external source, preferably a steam boiler (15), or from the same pressure regulating tank (1) in case the system is running at rated speed and the tank is being fed by other reactors so that their pressure is higher than that of the reactor in the start phase.
  • the amount injected will be necessary to reach a temperature of at least 170 0 C, preferably 180 0 C and more preferably at least 195 ° C.
  • Figure 1 shows a diagram of the control and pressure system applied to a set of reactors.
  • Figure 2 represents the application of the temperature and pressure control system to a continuously operating reactor of the HTC process.
  • Reactor 2 12.
  • Reactor 3 Connecting duct between the reactor and the pressure regulation equipment
  • said system will additionally comprise at least one of the following equipment:
  • the pressurization equipment consists of a device to compress the mixture of at least biomass, catalyst and process water (16), until reaching the necessary pressure to, on the one hand, overcome the pressure inside the reactor and the back pressure created in the supply pipe to the reactor and, on the other hand, to avoid the recoil of the material and possible leaks of the process water.
  • This equipment consists, preferably, of at least one gate valve and / or a pressure pump and, more preferably, at least one piston-type pump or membrane, designed to work both continuously and at short intervals of time. time, thereby allowing the carbonization operation to be carried out continuously.
  • the preheating equipment (17) consists of at least one heat exchanger, preferably a double-walled pressurized tube, in whose inner part the mixture of at least biomass, catalyst and process water is transported and, on the outside, the fluid for the supply of heat.
  • This fluid will preferably consist of thermal oil, water or water vapor, more preferably, of water vapor.
  • the source of said steam can be both an external source, preferably a boiler (19), and the steam from the process itself fed through a compressor.
  • the transport speed of the mixture of biomass and process water along the preheating tube is controlled by the pressurization equipment and its diameter is designed in such a way that the residence time of the mixture in the same is about 20 to 60 minutes, preferably 30 to 40 minutes, and the resulting temperature at its output rises at least 170 0 C, preferably above 175 ° C and more preferably 0 to 180 C. over
  • said reactor preferably consists of a pressurized deposit where part or all of the chemical process of carbonization takes place.
  • Said reactor is characterized by allowing a continuous supply or at regular intervals of biomass, as well as a continuous extraction, or at regular intervals, of the transformed material without, on the other hand, changing the temperature or the pressure of its interior.
  • the reactor consists of at least four different zones: a rising tube, a gas zone, a polymerization zone and a maturation zone: i.
  • the rising tube is the extension of the preheating tube and occupies the central area of the reactor from the bottom to approximately 50 to 80% of the height of the reactor, preferably from 60 to 70%. ii.
  • the reactor has a tube, in its upper part, which allows it to communicate with the pressure regulation tank (21), reservoir through which the reactor pressure is controlled. Through this connecting tube it is possible to evacuate the steam generated by the exothermic nature of the HTC process, together with the air dissolved in the process water or the gases released by the decomposition of the biomass.
  • the reactor may be equipped, at its top, with at least one device selected from a group consisting of: a safety valve, a pressure probe, a temperature probe, a fill level probe, a scavenger of air and gases and a vacuum breaker, as well as any combination of the above.
  • a safety valve a pressure probe, a temperature probe, a fill level probe, a scavenger of air and gases and a vacuum breaker, as well as any combination of the above.
  • the residence time of the biomass in this area depends only on its density and thermal activity and, therefore, on the state of progress of the HTC process. In this way, a certain variation is allowed for the different compounds of the mixture, which, after this time, will descend towards the maturation zone, v.
  • the maturation zone is located in the lower part of the cylindrical reactor, after the polymerization zone and around the riser tube. Optionally, it could also be located in external areas of the reactor, in case of facilitating the same conditions of thermal stability as in said equipment. saw.
  • one or more inputs are located to carry out steam injection (20) during cold start or in case of possible thermal deficiencies inside. vii.
  • One or several inputs for the condensate injection are also distributed on the side wall of the reactor. Their purpose is to homogenize the temperature of the reactor, as well as to compensate the evaporated water due to the exothermic character of the HTC process. viii.
  • the reactor in order to control the operating temperature and to avoid uncontrolled losses of heat towards the outside, the reactor will be thermally insulated, preferably by means of rock wool and external finishing of aluminum sheet.
  • the cooling equipment is located behind the reactor, which preferably comprises one or more tubes in parallel that contain inside the hot and pressurized mixture coming from the reactor and, on the outside, a cooling fluid that can be thermal oil or pressurized water, preferably thermal oil, which is responsible for cooling said mixture to the set temperature as an objective
  • This equipment comprises, preferably, two gates or valves arranged in series, which must be able to operate in the conditions to which the process is carried out. Additionally, a 'flash' deposit can be placed in the middle of the two gates or valves, in order to better absorb the blows of opening them.
  • a method of controlling pressure and temperature of a reactor where an HTC process is carried out characterized by comprising at least the following steps: a) pressurization of an aqueous mixture of biomass and catalyst up to a pressure of at least 10 bar; b) the preheating of the aqueous mixture of biomass and catalyst, in order to reach a temperature between
  • this method may also comprise a stage of pretreatment of the biomass, prior to feeding it to the system, in order to achieve adequate conditions for its processing as well as facilitating the subsequent carbonization process.
  • a Preferential embodiment of this additional pretreatment phase will comprise, at least, a grinding step and a washing step of the biomass: a) In the first stage, the biomass will be crushed until a maximum particle size is obtained that allows its subsequent passage through the pressurization equipment.
  • the final size will be less than 30 cm and, preferably, less than 15 cm; b) then, in order to eliminate the contaminants present in the biomass, such as sands, stones, crystals, metals or other elements of higher density than water, the biomass will be introduced in a pool with water, or a mixing water with acid, for a time of 5 to 120 minutes, preferably 10 to 30 minutes. By means of this washing, the pollutants will be separated from the biomass and will descend to the bottom of the pool, while the biomass will remain floating on the surface until it increases its density above that of the water due to the absorption of it.
  • Said mixture will further contain at least one means of accelerating the chemical reaction, which may be an organic or inorganic catalyst, preferably an acid and more preferably citric acid or sulfuric acid.
  • the acid is added in an amount sufficient to obtain a pH inside the reactor of between 4.5 and 6.5, preferably between 5 and 6.
  • This aqueous mixture of biomass and catalyst is then subjected to a pressurization step up to a pressure which is at least that necessary to be able to introduce it to the preheating tube (17) and, from there, to the reactor.
  • This pressure will be greater than 10 bar and, preferably, higher than 13 bar.
  • the aqueous mixture of biomass and catalyst is preheated, in order to reach the start temperature of the HTC process in its monomerization phase.
  • This preheating stage can be carried out in a heat exchanger, preferably a preheating tube (17), in which the mixture will be heated thanks to the supply of heat received through the walls of the pipe, until reaching temperatures of 170 0 C to 210 0 C, more preferably 180 0 C to 200 0 C.
  • the preheating tube there is the possibility of directly injecting steam into the aqueous mixture of biomass and catalyst at a pressure higher than that of the preheating tube itself, until the previously mentioned temperatures are reached. Once said temperatures are reached, the aqueous mixture of biomass and catalyst is fed to a vertical inverted flow reactor (20) through a riser tube, in which the monomerization or hydrolysis of the biomass is initiated. At the same time, the formation of oils begins, as well as the evolution of gases, such as methane or CO2, from the natural decomposition of biomass.
  • gases such as methane or CO2
  • this conduit In this way, and under normal conditions, at the exit of this conduit the HTC process has already begun, and the components resulting from the first monomerization phase enter a second stage, polymerization.
  • this new phase oils and other components that have formed during monomerization, polymerize and form a kind of resin or previous state of carbon.
  • this phase lasts between 1 and 6 hours, preferably between 2 and 4 hours.
  • the preferred temperature range must be between 170 0 C and 230 0 C, preferably between 179.9 and 219, 6 ° C and most preferably between 191.6 and 209.8 0 C; whereas, in the case of pressure, the preferred range should be 8 to 28 bar absolute pressure, preferably 10 to 23 bar, and more preferably between 13 and 19 bar.
  • the density of the solid compounds formed increases while, at the same time, the thermal activity decreases. As a consequence of these effects, there is a decrease of the compounds, within the process water, towards the maturation zone.
  • the main carbon formations have already been developed, although H20 molecules can still be detached from the carbon structures formed.
  • the thermal activity will have dropped to practically zero.
  • the mixture of carbonized biomass together with, at least, process water is directed to a cooling tube, in which its temperature is reduced to values lower than the evaporation temperature at atmospheric pressure. say, less than 100 ° C. In this way, possible instantaneous evaporations are avoided in the depressurization equipment, located below, through which the aqueous mixture of carbonized biomass is extracted in a controlled manner.
  • the solid particles of said mixture will be deposited in the bottom of the outlet container or they will be separated from the liquid phase by means of a mechanical separation operation, preferably by centrifugation or filtration, being useful depending on their purity as solid fuel or as raw material for other processes.
  • the coal will be used as solid fuel, preferably compressed in the form of pellets or briquettes.
  • the coal obtained may be used as raw material for other industrial processes, preferably in the production of liquid fuel hydrocarbons.
  • the final product will be a kind of peat that can be used as fertilizer.
  • part of the heat evolved in the cooling stage of the carbonized biomass mixture together with at least process water, resulting from the hydrothermal carbonization process may be recovered in at least one of the heat demanding stages of the system, preferably, in the preheating stage of the mixture of biomass, catalyst and process water fed to the system, which step is carried out, preferably, in the preheating equipment (17) previously described .
  • an aqueous mixture of biomass, to which a catalyst such as, for example, citric acid or sulfuric acid is added, adjusting its concentration until a pH value of 5.5 (16) is obtained is fed to a vertical reactor of continuous operation (18), once it has been preheated in the preheating tube (17) to a temperature of about 180 0 C.
  • a catalyst such as, for example, citric acid or sulfuric acid
  • valve gas, together with water vapor, are removed and sent to a condenser equipment (25), where they are cooled to a temperature of about 90 0 C. Those gases that do not condense at this temperature open they are evacuated to the environment by means of the device for eliminating air and gases of which said equipment is available.
  • part of the steam generated is used in the preheating tube (17) to preheat the aqueous mixture of biomass fed to the reactor (18). ).
  • the condensates are sent to the open storage tank (26), occupying 20 to 90% of their capacity. From there, they will be reinjected into the pressure regulation tank (21), when reached in said equipment a level of condensates less than 60% of its volume. Moreover, a certain amount of these condensates of the buffer reservoir (21) will be fed to the reactor (18), at a temperature of about 190 0 C, if on that computer a minimum volume is reached approximately 70 %. In this way it is possible to recover part of the evaporated water during the exothermic process of carbonization, at the same time that the temperature is homogenized in different points of the interior of the reactor. In turn, thanks to this control system, it is possible to carry out the process continuously and, at the same time, maintain adequate and stable pressure and temperature conditions throughout the operation without the need for additional equipment mobile or heat exchange surfaces inside the reactor.
  • this preferred embodiment of the invention will allow recovering part of the heat evolved in the cooling stage of the carbonized biomass mixture together with, at least, process water, resulting from the carbonization process in the preheating stage of the mixture of biomass, catalyst and process water fed to the system, stage that is carried out in the preheating equipment (17).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

La presente invención se refiere a un nuevo sistema de control de temperatura y presión de, al menos, un reactor químico, caracterizado por comprender, al menos, los siguientes dispositivos: a) un depósito con al menos un dispositivo de regulación de presión; b) un conducto de unión entre dicho depósito y el reactor; c) un dispositivo de inyección de condensados al reactor. Asimismo, la invención se refiere al uso de dicho sistema de control para el control de la presión y temperatura de al menos un reactor químico, siendo de especial aplicación para un reactor químico en el que tenga lugar una reacción de carbonización hidrotermal de biomasa.

Description

Sistema de control de presión y temperatura de al menos un reactor quimico
Campo Técnico El ámbito de la presente invención es un nuevo sistema de control de presión y temperatura de un reactor o de un conjunto de reactores químicos que contienen en su interior una solución acuosa a una temperatura cercana a su temperatura de evaporación a la presión del proceso. Dicho sistema de control se basa, fundamentalmente, en un conjunto de equipos en los cuales el propio agua de proceso es utilizada para la refrigeración y estabilización de la temperatura a lo largo del reactor o conjunto de reactores del sistema.
Asimismo, una realización preferente de esta invención se encuentra dirigida al proceso de carbonización hidrotermal, en adelante proceso HTC (del inglés, Hydrothermal Carbonization) .
Estado de la técnica anterior a la invención
En los últimos años, debido a la necesidad creciente de satisfacer la demanda energética de los países industrializados, numerosos estudios han sido desarrollados dirigidos al fomento de nuevas fuentes de energía, de naturaleza renovable, con objeto de disminuir los efectos ambientales adversos asociados al continuo desarrollo industrial.
De entre estas fuentes de energía, una de las más estudiadas ha sido, sin duda, la biomasa. En general, se entiende por biomasa la fracción orgánica biodegradable presente en productos de orígenes diversos como, por ejemplo, residuos municipales o derivados de industrias agrícolas o forestales. Entre las principales alternativas que existen para su aprovechamiento energético cabe destacar su utilización como materia de partida para la elaboración de combustibles para el transporte, asi como su uso como fuente de calor y electricidad. Si bien han sido muchas las tecnologías desarrolladas en este campo en los últimos años, recientemente el equipo del Profesor Markus Antonietti del Instituto Max Planck ha presentado un nuevo método de aprovechamiento de la biomasa, de gran eficacia, basado en la carbonización hidrotermal de la misma (Elton Jacquot, J., "Back in Black: Using hydrothermal Carbonization to clean Emissions", 2007, Science&Technology) . Este proceso HTC consiste, básicamente, en someter a una solución acuosa de biomasa, en presencia de un catalizador, a temperaturas de unos 1800C a 2100C y a presiones de 10 a 19 bar obteniéndose, al cabo de unas 4 a 24h, un producto de estructura similar al carbón. Una vez activado, es un proceso espontáneo y exotérmico que libera, aprovechando la alta estabilidad termodinámica del agua, hasta un tercio de la energía almacenada en la biomasa en forma de carbohidratos.
Su principal ventaja, frente a otros métodos anteriormente descritos en la bibliografía, es su gran sencillez. Al contrario que en otros procesos de carbonización, en los cuales es necesario llevar a cabo una etapa de alto consumo energético para el acondicionamiento y secado previo de la biomasa (WO 2003/002690), la carbonización hidrotérmica permite la utilización como materia prima de biomasa húmeda, lo cual supone un importante ahorro en los costes de operación.
Ya en el año 1943, en ES 0160612, se describía un proceso de carbonización de la biomasa en presencia de agua, en el cual la biomasa, en este caso residuos vegetales, era colocada en unas retortas previamente humedecidas a las que se inyectaba vapor recalentado hasta alcanzar temperaturas de 1800C a 2200C y presiones de 2 a 10 atm. Este proceso se prolongaba de unas 6 a 2Oh hasta alcanzarse las condiciones deseadas del producto final, siendo su principal inconveniente, frente a la presente invención, la necesidad del mismo de operar de manera discontinua .
Años más tarde, en US 4579562, se presentaba una nueva alternativa para llevar a cabo el proceso de carbonización. En este caso, la reacción se llevaba a cabo en continuo, en un reactor de flujo en contracorriente, en el cual el sólido entraba en contacto con un liquido a temperaturas de 2040C a 343°C y presiones suficientemente elevadas como para impedir la ebullición del agua.
A diferencia del sistema anterior, en JP 2002/059118, la biomasa es introducida en un autoclave donde es sometida a un tratamiento a presión y altas temperaturas, en presencia de agua. Una vez transcurrido el tiempo requerido para su transformación, el reactor se deja enfriar y es abierto para extraer el producto final de la reacción.
Una caracteristica común a todos los métodos anteriormente descritos es la importancia de trabajar bajo unas condiciones estables y adecuadas de operación. Por ello, la presente invención se dirige principalmente a un nuevo sistema de control de la presión y temperatura de un reactor o de un conjunto de reactores químicos basado, fundamentalmente, en un conjunto de equipos en los cuales el propio agua de proceso es utilizada para la refrigeración del sistema. Mediante este sistema, de gran sencillez, es posible controlar la temperatura y presión del reactor o reactores sin necesidad de utilizar dispositivos móviles o superficies de intercambio de calor en su interior, los cuales presentan a menudo el inconveniente de acumular depósitos indeseados en su superficie al cabo de un cierto tiempo de operación. La eliminación de dichos dispositivos móviles supondrá un ahorro importante en cuanto al coste y el tiempo requeridos para su limpieza y mantenimiento.
De manera adicional, el hecho de disponer de superficies de intercambio de calor en el interior del reactor o reactores del sistema implica el que se generen gradientes de temperatura entre el refrigerante y el medio de reacción, dificultando de ese modo el control de la temperatura del proceso. La presente invención permite dar solución a este problema, gracias a la utilización del propio agua de proceso para disminuir la temperatura del reactor o reactores, logrando así mantener uniforme la temperatura de la solución acuosa de su interior. Además, al ofrecer la posibilidad de aprovechar el calor latente de evaporación del agua, permite lograr una gran capacidad de refrigeración del sistema, así como una buena estabilidad de las condiciones requeridas de presión y temperatura .
Por otra parte, una ventaja adicional de la presente invención es la posibilidad que presenta de recuperar parte de la entalpia del vapor generado durante la reacción, preferentemente mediante el uso de una turbina de vapor y/o mediante su condensación en un intercambiador de calor, pudiéndose aprovechar así el calor liberado en dicho equipo para su uso en otros procesos o aplicaciones térmicas. Asimismo, una parte adicional del vapor generado podrá utilizarse para precalentar la materia prima alimentada al proceso, tanto mediante su inyección directa a dicha materia prima, como de manera indirecta a través de un intercambiador de calor. Si bien el sistema de control presentado puede ser aplicado a diversos tipos de reactores y procesos, se encuentra preferentemente dirigido al proceso HTC, tanto si el mismo se lleva a cabo en reactores de tipo continuo, como si se desarrolla en reactores de tipo discontinuo. Será, por tanto, un objeto adicional de esta invención un sistema de control de presión y temperatura especialmente adecuado para su aplicación en un proceso de HTC, así como el uso de este sistema para el control de la presión y temperatura de un proceso de HTC.
Descripción de la invención
La presente invención se refiere a un sistema de control de temperatura y presión de al menos un reactor químico, caracterizado por comprender, al menos, los siguientes dispositivos : a) un depósito con al menos un dispositivo de regulación de presión (en adelante, depósito de regulación de presión) ; b)un conducto de unión entre el reactor o los reactores químicos y el depósito de regulación de presión; c)un dispositivo de inyección de condensados al reactor o reactores del sistema.
Gracias a estos dispositivos, es posible mantener el reactor o conjunto de reactores bajo unas condiciones adecuadas de presión y de temperatura durante todo el tiempo que dura el proceso . El depósito de regulación de presión (a) consiste en un depósito (1) independiente del reactor que comprende al menos una entrada de gases y/o vapor (2) situada, de manera preferente, en la parte inferior del depósito, sumergida en la zona de condensados. Asimismo, el depósito comprende al menos una entrada (3) y, al menos, una salida (4) de condensados asi como, situada en su parte superior, al menos una salida de vapor y/o gases (5) con al menos un dispositivo de regulación de presión. Este dispositivo de regulación de presión consiste, en su realización preferente, en una válvula de regulación de presión, la cual se encarga de controlar la presión del depósito de manera continua, en función del valor indicado por un sensor de presión ubicado en el mismo depósito o en su conducto de salida. Asi, la presión de dicho dispositivo de regulación de presión se ajustará en función de la presión requerida para el proceso y, a su vez, su valor de consigna se ajustará al valor resultante de restar a dicha presión requerida para el proceso, la presión de la columna de agua correspondiente al nivel de condensados del interior del depósito de regulación de presión. Este valor de consigna podrá ajustase electrónicamente, en el caso de incorporar un regulador electrónico, o bien de manera manual, en el caso de tratarse de un dispositivo mecánico.
De manera adicional, en una realización preferente del depósito, éste estará equipado, en su parte superior, con al menos un dispositivo seleccionado de un grupo que consiste en: una válvula adicional de regulación de presión, una sonda de presión, una sonda de temperatura, una sonda de nivel, un desaireador, un rompedor de vacio y una válvula de seguridad, asi como cualquier combinación de los anteriores. Asimismo, podrá disponer, en la zona de condensados, de una sonda adicional de temperatura.
Una vez se alcanza el valor de consigna de la válvula de regulación de presión, dicha válvula comienza poco a poco a abrirse dejando paso al vapor y/o gases acumulados en el interior del depósito (1) . De este modo, se consigue mantener siempre un valor estable de presión, comprendido dentro del intervalo de control de la válvula de regulación. Por otra parte, y como consecuencia de la apertura de la válvula, se produce un gradiente de presión entre el reactor o reactores y el depósito de regulación de presión (1), favoreciéndose de este modo el flujo de vapor y/o gases entre estos equipos a través de su conducto de unión (13) .
Tras la evacuación del vapor y/o gases del depósito (1) a través de su válvula de regulación, estos son dirigidos a continuación a, al menos, un equipo de recuperación de vapor, preferentemente, a uno o varios condensadores (6) y (7), los cuales están diseñados para trabajar a una temperatura suficientemente inferior a la del proceso. En una realización preferida en la que le proceso consista en el proceso HTC, la temperatura en el condensador o condensadores será como minimo 200C y, preferentemente, 500C inferior a la temperatura del proceso .
Opcionalmente, de manera previa a la etapa de condensación, podrá utilizarse a su vez al menos una turbina de vapor (8) para aprovechar parte de la entalpia del vapor y/o gases generados durante el proceso en la generación de energia eléctrica. En este caso, la temperatura de operación del condensador o condensadores será lo más próxima posible a la temperatura ambiente, lográndose asi un mejor rendimiento de la turbina o turbinas de vapor. Asimismo, en una realización preferente de la invención aplicada al proceso HTC, parte del excedente de vapor generado durante la reacción podrá ser utilizado en la fase inicial de calentamiento del proceso. Asi, en una realización particular en la que el proceso HTC se lleve a cabo de manera discontinua en múltiples reactores tipo autoclave, el vapor será inyectado directamente y de manera preferente en aquel reactor que se encuentre en su fase inicial de calentamiento. Si, de otra forma, el proceso se llevase a cabo de manera continua, el vapor podrá aprovecharse para el calentamiento de la mezcla acuosa de biomasa alimentada al reactor, preferentemente, a través de una superficie de intercambio de calor.
Por otra parte, durante el proceso quimico de reacción, es posible que se desprendan de manera adicional al vapor de agua, otros gases de proceso como, por ejemplo, metano y/o CO2. Debido a que la temperatura de condensación de estos gases es muy inferior a la temperatura de condensación del vapor de agua, una acumulación de los mismos puede tener efectos negativos en el funcionamiento del condensador (es) , asi como del intercambiador (es) de calor. Por tanto, con objeto de evitar una posible disminución en la capacidad térmica de dichos equipos, estos serán equipados con al menos un dispositivo de evacuación de aire y gases.
Tras la etapa de condensación, el vapor condensado se dirige a, al menos, un depósito de almacenamiento (9), presurizado o atmosférico, desde donde los condensados son transportados y reinyectados al depósito de regulación de presión (1) en el momento en que en éste se alcanza el nivel minimo predeterminado de dichos condensados. Por el contrario, en el caso de superarse su nivel máximo, se procederá a la evacuación de los mismos, a través de una válvula de purga de condensados, hasta lograr de nuevo un valor que se encuentre dentro del intervalo de nivel que haya sido establecido. De esta forma, se conseguirá mantener siempre el volumen de condensados del depósito entre un nivel minimo y un nivel máximo, aproximadamente entre un 50 y un 90% y, de manera preferente, entre un 60 y un 80% de su volumen total.
Uno de los objetos principales del depósito de regulación de presión presentado (1) será, precisamente, el control de la presión del reactor o reactores de la instalación (10), (11) y
(12), con los cuales se comunica a través del conducto de unión
(b) . Este conducto de unión (13) será diseñado de manera que posea el tamaño suficiente para evacuar la máxima cantidad de gases y/o vapor de agua desde la parte superior del reactor o reactores hacia el depósito de regulación de presión (1) .
A su vez, en una realización particular de la invención, dicho conducto de unión (13) estará equipado, de manera adicional, con al menos una válvula de corte diseñada para abrirse lentamente una vez se haya alcanzado la presión mínima requerida para el proceso. Dicha válvula puede suponer un ahorro considerable de la energía consumida en el sistema al permitir la utilización de parte del vapor generado para facilitar el arranque del proceso llevado a cabo en un único equipo de reacción. En el caso de tratarse de un conjunto de reactores conectados a un único depósito de regulación de presión (1), será necesario disponer de una válvula de corte entre cada reactor y dicho depósito de regulación (1), de manera que sea posible la desconexión individual de cada uno de ellos. Una vez el flujo de vapor saturado y/o gases procedentes del reactor o reactores alcanza el depósito de regulación de presión (1) y debido a que la desembocadura del conducto de entrada al depósito se encuentra, preferentemente, sumergida en la zona de condensados, se produce un efecto de calentamiento de dichos condensados siempre y cuando estos se encuentren a una temperatura inferior a la del vapor y/o gases de entrada y exista por tanto un gradiente de temperaturas entre ambas fases. De esta forma, se consigue alcanzar en el interior del depósito (1) una temperatura aproximadamente estable, lo más cercana posible a las condiciones de temperatura del proceso. En el caso concreto del proceso HTC, esta temperatura estará comprendida entre 1700C y 2300C, preferentemente entre 179,8 y 219, 60C y más preferentemente entre 191,6 y 209,80C, favoreciéndose asi la continuidad de la carbonización al evitarse interrupciones indeseadas en el proceso como consecuencia de la necesidad de ajuste de la temperatura inferior del agua inyectada al reactor.
Por su parte, la inyección al reactor o reactores de los condensados procedentes del depósito de regulación (1) se lleva a cabo a través del dispositivo de inyección de condensados (c) , situado alrededor de la pared lateral y en la parte inferior de cada reactor. Este dispositivo de inyección puede comprender una o más bocas de inyección, a través de las cuales se introducen, en distintos puntos del equipo, los condensados procedentes del depósito de regulación de presión (1) .
La cantidad de condensados alimentada al reactor o reactores será función del control de nivel del propio reactor (es), siendo por lo menos la necesaria para mantener una cantidad estable de solución acuosa en su interior. Asimismo, en una realización preferente de la invención, el reactor o reactores se encontrará equipado además, en su parte superior, con al menos un dispositivo seleccionado de un grupo que consiste en: una válvula de seguridad, una sonda de presión, una sonda de temperatura, una sonda de nivel de llenado, un eliminador de aire y gases y un rompedor de vacio, asi como cualquier combinación de los anteriores. Del mismo modo, para controlar la temperatura del proceso y evitar pérdidas indeseadas de calor hacia el ambiente, el reactor o conjunto de reactores (10), (11) y (12), el conducto de unión (13) y el depósito de regulación de presión (1) se encontrarán aislados térmicamente del exterior, preferentemente mediante lana de roca y chapa de aluminio.
Por último, en la parte lateral y/o inferior del reactor o reactores se dispone de un dispositivo de inyección de vapor (14), el cual consta de una o más entradas para llevar a cabo la inyección de vapor al reactor o reactores, preferentemente, durante su arranque en frió. El vapor utilizado puede proceder tanto de una fuente externa, preferentemente una caldera de vapor (15), como del mismo depósito de regulación de presión (1) en caso de que el sistema se encuentre funcionando en régimen nominal y el depósito esté siendo alimentado por otros reactores de forma que su presión sea superior a la del reactor en fase de arranque. En el caso concreto del proceso HTC, la cantidad inyectada será la necesaria para alcanzar una temperatura de, al menos, 1700C, preferentemente, 1800C y, más preferentemente, de al menos 195°C.
Breve descripción de las figuras
La figura 1 muestra un diagrama del sistema de control y presión aplicado a un conjunto de reactores.
La figura 2 representa la aplicación del sistema de control de temperatura y presión a un reactor en funcionamiento continuo del proceso HTC.
Lista de referencias utilizadas en las figuras
Figura 1
I. Depósito de regulación de presión 2. Entrada de gases y/o vapor 3. Entrada de condensados
4. Salida de condensados
5. Salida de vapor y/o gases
6. Condensador 1 7. Condensador 2 8. Turbina de vapor
9. Depósito de almacenamiento de condensados 1
10. Reactor 1
II . Reactor 2 12. Reactor 3 13. Conducto de unión entre el reactor y el equipo de regulación de presión
14. Dispositivo de inyección de vapor
15. Caldera de vapor 1 Corrientes
A. Fluido refrigerante
Figura 2
16. Mezcla acuosa de biomasa y catalizador 17. Equipo de precalentamiento
18. Reactor vertical
19. Caldera de vapor 2
20. Inyector de vapor
21. Depósito de regulación de presión 2 22. Inyector de condensados 1
23. Inyector de condensados 2
24. Inyector de condensados 3
25. Condensador 3
26. Depósito de almacenamiento de condensados 2 27. Producto final
Realización preferente de la invención
Seguidamente, se presenta de manera detallada la descripción de una realización preferida de la invención, dirigida de manera particular al control de las condiciones de operación de un proceso de HTC, haciendo referencia a la numeración adoptada en la figura 2.
En el caso de la aplicación del sistema de control de presión y temperatura anteriormente descrito a un proceso de HTC, dicho sistema comprenderá de manera adicional, al menos uno de los siguientes equipos:
• un equipo de presurización;
• un equipo de precalentamiento;
• un reactor vertical con inversión de flujo; • un equipo de enfriamiento y • un equipo de despresurización
El equipo de presurización consiste en un dispositivo para comprimir la mezcla de, al menos, biomasa, catalizador y agua de proceso (16) , hasta alcanzar la presión necesaria para, por un lado, superar la presión en el interior del reactor y la contrapresión creada en la tubería de aporte al reactor y, por otro lado, evitar el retroceso del material y posibles fugas del agua de proceso. Este equipo consiste, de manera preferente, en al menos una válvula de compuertas y/o una bomba de presión y, de manera más preferente, en al menos una bomba tipo pistón o membrana, diseñada para trabajar tanto en continuo como a intervalos cortos de tiempo, permitiendo de ese modo llevar a cabo la operación de carbonización de manera continua . Por su parte, el equipo de precalentamiento (17) consiste en al menos un intercambiador de calor, preferentemente un tubo presurizado de doble pared, en cuya parte interior se transporta la mezcla de, al menos, biomasa, catalizador y agua de proceso y, en la parte exterior, el fluido para el aporte de calor. Este fluido consistirá, preferentemente, en aceite térmico, agua o vapor de agua, más preferentemente, en vapor de agua .
Opcionalmente, tal y como se indicó anteriormente, existe la posibilidad de inyectar directamente vapor a la mezcla acuosa de biomasa y catalizador a una presión superior a la del propio tubo de precalentamiento y, por lo tanto, superior a la presión del proceso. La fuente de dicho vapor puede ser tanto una fuente externa, preferentemente una caldera (19) , como el vapor del propio proceso alimentado a través de un compresor. Por otra parte, la velocidad de transporte de la mezcla de biomasa y agua de proceso a lo largo del tubo de precalentamiento se encuentra controlada por el equipo de presurización y su diámetro está diseñado de tal forma que el tiempo de permanencia de la mezcla en el mismo es de unos 20 a 60 minutos, preferentemente de 30 a 40 minutos, y la temperatura resultante a su salida, asciende, al menos, a 1700C, preferentemente a más de 175°C y, más preferentemente, a más de 1800C.
Respecto al reactor del sistema (18) , dicho reactor consiste preferentemente en un depósito presurizado donde tiene lugar parte o la totalidad del proceso químico de carbonización. Dicho reactor se caracteriza por permitir un aporte continuo o a intervalos regulares de biomasa, asi como una extracción continua, o a intervalos regulares, de la materia transformada sin que, por otra parte, se modifique la temperatura ni la presión de su interior. A su vez, el reactor consta de, al menos, cuatro zonas diferentes: un tubo de ascenso, una zona de gases, una zona de polimerización y una zona de maduración: i. El tubo de ascenso es la prolongación del tubo de precalentamiento y ocupa la zona central del reactor desde el fondo hasta, aproximadamente, de un 50 a un 80% de la altura del reactor, preferentemente de un 60 a un 70%. ii. A su vez, el reactor dispone de un tubo, en su parte superior, que le permite comunicarse con el depósito de regulación de presión (21), depósito mediante el cual se controla la presión del reactor. A través de este tubo de unión se consigue evacuar el vapor generado por el carácter exotérmico del proceso de HTC, junto con el aire disuelto en el agua de proceso o los gases desprendidos por la descomposición de la biomasa. iii. Adicionalmente, el reactor puede estar equipado, en su parte superior, con al menos un dispositivo seleccionado de un grupo que consiste en: una válvula de seguridad, una sonda de presión, una sonda de temperatura, una sonda de nivel de llenado, un eliminador de aire y gases y un rompedor de vacio, asi como cualquier combinación de los anteriores . iv. Alrededor de la desembocadura del tubo de ascenso y en la mitad superior del reactor, se encuentra la zona de polimerización. El tiempo de permanencia de la biomasa en esta zona depende únicamente de su densidad y actividad térmica y, por lo tanto, del estado de progreso del proceso de HTC. De esta forma, se permite una cierta variación para los distintos compuestos de la mezcla, los cuales, pasado este tiempo, descenderán hacia la zona de maduración, v. La zona de maduración se encuentra situada en la parte baja del reactor cilindrico, a continuación de la zona de polimerización y alrededor del tubo de ascenso. Opcionalmente, podría ubicarse también en zonas exteriores del reactor, en caso de facilitarse las mismas condiciones de estabilidad térmica que en dicho equipo. vi. A su vez, en el lateral y en la parte inferior del reactor y del tubo de ascenso, se encuentran ubicadas una o varias entradas para llevar a cabo la inyección de vapor (20) durante su arranque en frió o en caso de posibles deficiencias térmicas en su interior. vii. También se encuentran distribuidas, sobre la pared lateral del reactor, una o varias entradas para la inyección de condensados. El aporte de los mismos tiene como objeto homogeneizar la temperatura del reactor, asi como compensar el agua evaporada debido al carácter exotérmico del proceso HTC. viii. Del mismo modo, para controlar la temperatura de operación y evitar pérdidas incontroladas de calor hacia el exterior, el reactor se encontrará aislado térmicamente, preferentemente mediante lana de roca y acabado exterior de chapa de aluminio.
Tras el reactor se encuentra ubicado el equipo de enfriamiento, el cual comprende, preferentemente, uno o varios tubos en paralelo que contienen en su interior la mezcla caliente y presurizada proveniente del reactor y, en su exterior, un fluido refrigerante que puede ser aceite térmico o agua presurizada, preferentemente aceite térmico, que se encarga de enfriar dicha mezcla hasta la temperatura fijada como objetivo.
Finalmente, se halla situado el equipo de despresurización . Este equipo comprende, de manera preferente, dos compuertas o válvulas dispuestas en serie, las cuales han de ser aptas para operar en las condiciones a las que se lleva a cabo el proceso. Adicionalmente, podrá situarse un depósito 'flash', en medio de las dos compuertas o válvulas, con el objeto de absorber mejor los golpes de apertura de las mismas.
Es, asimismo, un objeto adicional de esta invención el uso de un sistema de control de presión y temperatura según ha sido anteriormente descrito para el control de un reactor donde se lleva a cabo un proceso de HTC.
Por último, será un objeto adicional de la invención, un método de control de presión y temperatura de un reactor donde se lleva a cabo un proceso de HTC, caracterizado por comprender al menos las siguientes etapas: a) la presurización de una mezcla acuosa de biomasa y catalizador hasta una presión de, al menos, 10 bar; b) el precalentamiento de la mezcla acuosa de biomasa y catalizador, con objeto de alcanzar una temperatura de entre
1700C a 2100C; c) la alimentación de la mezcla acuosa de biomasa y catalizador a un reactor vertical de flujo invertido (20) donde tiene lugar el proceso de carbonización; d) el enfriamiento de la mezcla de biomasa carbonizada junto con, al menos, agua de proceso, en un tubo de enfriamiento hasta valores inferiores a la temperatura de evaporación a presión atmosférica, es decir, inferiores a 1000C; e) la despresurización y extracción de la mezcla acuosa de biomasa carbonizada.
De manera adicional, este método podrá comprender asimismo una etapa de pretratamiento de la biomasa, previa a su alimentación al sistema, con el objeto de lograr unas condiciones adecuadas para su procesamiento además de facilitar el proceso posterior de carbonización. En concreto, una realización preferente de esta fase adicional de pretratamiento comprenderá, al menos, una etapa de triturado y una etapa de lavado de la biomasa: a) En la primera etapa, la biomasa será triturada hasta conseguir un tamaño máximo de partícula que permita su paso posterior por el equipo de presurización . En el caso de tratarse, por ejemplo, de biomasa procedente de explotaciones agrarias o forestales, el tamaño final será inferior a 30 cm y, preferentemente, inferior a 15 cm; b) a continuación, con objeto de eliminar los contaminantes presentes en la biomasa, como pueden ser arenas, piedras, cristales, metales u otros elementos de mayor densidad que el agua, la biomasa será introducida en una piscina de lavado con agua, o una mezcla de agua con ácido, durante un tiempo de 5 a 120 minutos, preferentemente de 10 a 30 minutos. Mediante este lavado, los contaminantes serán separados de la biomasa y descenderán hasta el fondo de la piscina, mientras que la biomasa quedará flotando en la superficie hasta incrementar su densidad por encima de la del agua debido a la absorción de la misma. Otros contaminantes no aptos para el proceso HTC, como son los plásticos, y con tendencia a flotar también sobre el agua, habrán de eliminarse mediante otros procesos de selección y separación, tanto de manera natural, como a través de centrifugas o sistemas de aire a presión. Tras esta etapa previa de pretratamiento, la biomasa será almacenada en una tolva o recipiente desde donde se alimentará al proceso HTC. Una ventaja de este proceso es que es aplicable a cualquier tipo de biomasa, pudiendo consistir, por ejemplo, en residuos forestales, agrícolas, de jardinería, lodos de depuradora, algas, residuos de industrias agrícolas, residuos urbanos, etc. En el caso de que la biomasa consista en lodos de depuradora o residuos domésticos previamente seleccionados, esta etapa de pretratamiento no es necesaria, por lo que la biomasa puede ser alimentada directamente al proceso HTC. Dicho proceso comienza con la mezcla de la biomasa seleccionada como materia prima con una cierta cantidad de agua de proceso. Dicha mezcla contendrá, además, al menos un medio de aceleración de la reacción química, el cual puede ser un catalizador orgánico o inorgánico, preferentemente un ácido y más preferentemente ácido cítrico o ácido sulfúrico. En dicho caso, el ácido es añadido en una cantidad suficiente para obtener un pH en el interior del reactor de entre 4,5 y 6,5, preferentemente, entre 5 y 6.
Esta mezcla acuosa de biomasa y catalizador es entonces sometida a una etapa de presurización hasta una presión que es, al menos, la necesaria para poder introducirla al tubo de precalentamiento (17) y, desde allí, al reactor. Esta presión será superior a 10 bar y, de manera preferente, superior a 13 bar. A continuación, la mezcla acuosa de biomasa y catalizador es precalentada, con objeto de alcanzar la temperatura de inicio del proceso de HTC en su fase de monomerización . Esta etapa de precalentamiento puede llevarse a cabo en un intercambiador de calor, preferentemente un tubo de precalentamiento (17), en el cual la mezcla será calentada gracias al aporte de calor que reciba a través de las paredes de la tubería, hasta alcanzar temperaturas de 1700C a 2100C, más preferentemente de 1800C a 2000C. De manera adicional, como alternativa o complemento al intercambio indirecto de calor llevado a cabo en el tubo de precalentamiento, existe la posibilidad de inyectar directamente vapor a la mezcla acuosa de biomasa y catalizador a una presión superior a la del propio tubo de precalentamiento, hasta alcanzarse las temperaturas previamente mencionadas. Una vez alcanzadas dichas temperaturas, la mezcla acuosa de biomasa y catalizador es alimentada a un reactor vertical de flujo invertido (20) a través de un tubo de ascenso, tubo en el que se inicia la monomerización o hidrólisis de la biomasa. Al mismo tiempo, comienza la formación de aceites, así como el desprendimiento de gases, como por ejemplo metano o CO2, procedentes de la descomposición natural de la biomasa. Estos gases ascienden a continuación por el interior del tubo de ascenso hasta acumularse en la parte superior del reactor, desde donde son evacuados, conjuntamente con el vapor saturado, hacia el depósito de control de presión. En condiciones normales, el reactor es alimentado con la mezcla de biomasa y agua de proceso hasta alcanzar de un 60% a un 90%, preferentemente, de un 70% a un 80%, del volumen del reactor. Aunque la densidad de la biomasa puede variar y ser menor o mayor que la del agua, una vez iniciada la etapa de monomerización, los componentes derivados de la misma tienden a ascender y a flotar sobre la superficie. Este efecto permite a dichos compuestos mantenerse cerca de la linea de flotación, una vez han alcanzado la desembocadura del tubo de ascenso.
De esta forma, y en condiciones normales, a la salida de este conducto el proceso de HTC ya ha comenzado, y los componentes resultantes de la primera fase de monomerización entran en una segunda etapa, de polimerización. En esta nueva fase, los aceites y otros componentes que se hayan formado durante la monomerización, polimerizan y forman una especie de resina o estado previo de carbón. Según el tipo de biomasa y las condiciones del proceso, esta fase tiene una duración de entre 1 y 6 horas, preferentemente entre 2 y 4 horas.
Por otra parte, al tratarse de un proceso de naturaleza exotérmica, es importante controlar las condiciones de presión y temperatura, preferentemente dentro de los limites de proceso establecidos por el Max Planck Institut. En concreto, el intervalo de temperaturas preferente ha de estar comprendido entre 1700C y 2300C, preferentemente entre 179,9 y 219, 6°C y más preferentemente entre 191,6 y 209,80C; mientras que, en el caso de la presión, el intervalo de preferencia ha de ser de 8 a 28 bar de presión absoluta, preferentemente de 10 a 23 bar, y más preferentemente entre 13 y 19 bar. Estos valores serán función tanto del tipo de biomasa, como del producto que se quiera obtener. El motivo por el que es necesario conseguir un buen control de las condiciones de proceso es el evitar alcanzar temperaturas excesivas de operación a las cuales pueden surgir procesos químicos adicionales al de HTC que pueden dar lugar a, por ejemplo, un exceso de C02, el cual, en caso de no ser evacuado adecuadamente, podría a su vez provocar una subida indeseada de la presión del interior del reactor.
Según avanza el proceso de HTC, la densidad de los compuestos sólidos formados va aumentando mientras que, al mismo tiempo, la actividad térmica va disminuyendo. Como consecuencia de estos efectos se produce un descenso de los compuestos, dentro del agua de proceso, hacia la zona de maduración .
Al inicio de esta tercera fase, las principales formaciones de carbono ya se han desarrollado, aunque todavía se pueden desprender moléculas de H20 de las estructuras de carbono formadas. Al cabo de unas 2 a 12 horas, dependiendo del tipo de biomasa y de las condiciones de proceso, la actividad térmica habrá descendido prácticamente a cero. Una vez finalizado el proceso de carbonización la mezcla de biomasa carbonizada junto con, al menos, agua de proceso, es dirigida a un tubo de enfriamiento, en el cual su temperatura es reducida hasta valores inferiores a la temperatura de evaporación a presión atmosférica, es decir, inferiores a 1000C. De esta forma, se evitan posibles evaporaciones instantáneas en el equipo de despresurización, situado a continuación, a través del cual se extrae, de manera controlada, la mezcla acuosa de biomasa carbonizada. Al cabo de un cierto tiempo, las partículas sólidas de dicha mezcla se depositarán en el fondo del recipiente de salida o bien serán separadas de la fase liquida mediante una operación mecánica de separación, preferentemente mediante centrifugación o filtración, pudiéndose aprovechar en función de su pureza como combustible sólido o bien como materia prima para otros procesos . En una realización particular de la invención el carbón se utilizará como combustible sólido, de manera preferente, comprimido en forma de pellets o briquetas. Como alternativa, el carbón obtenido podrá ser utilizado como materia prima de otros procesos industriales, preferentemente, en la elaboración combustible liquido de hidrocarburos. Por último, existe también la posibilidad de recortar el tiempo necesario para la maduración. En este caso, el producto final será una especie de turba que podrá ser utilizada como fertilizante. Finalmente, en una realización preferida de la invención, parte del calor desprendido en la etapa de enfriamiento de la mezcla de biomasa carbonizada junto con, al menos, agua de proceso, resultante del proceso de carbonización hidrotérmica podrá ser recuperado en al menos una de las etapas demandantes de calor del sistema, preferentemente, en la etapa de precalentamiento de la mezcla de biomasa, catalizador y agua de proceso alimentada al sistema, etapa que se lleva a cabo, de manera preferida, en el equipo de precalentamiento (17) descrito previamente.
Ejemplo 1
A continuación se recoge, a modo de ejemplo y con carácter no limitante, la aplicación del sistema de control de presión y temperatura al proceso de HTC anteriormente descrito, de acuerdo a la numeración adoptada en las figuras :
De este modo, una mezcla acuosa de biomasa, a la que se añade un catalizador como por ejemplo, ácido cítrico o ácido sulfúrico, ajustando su concentración hasta conseguir un valor de pH de 5,5 (16) es alimentada a un reactor vertical de funcionamiento continuo (18), una vez ha sido precalentada en el tubo de precalentamiento (17) hasta una temperatura de unos 1800C.
A continuación, durante el arranque en frió del proceso, una cierta cantidad de vapor a una temperatura de unos 195°C, es inyectada al reactor a través de las bocas de inyección (20) . Una vez se alcanza la temperatura y presión del proceso, aproximadamente unos 191°C y 13 bar de presión, la carbonización entra en sus fases de monomerización y polimerización, y se inicia entonces una etapa de liberación de energía al medio de reacción por la naturaleza exotérmica del propio proceso. Como consecuencia de la generación de calor a nivel molecular de la biomasa, y debido a su contacto directo con el medio acuoso, parte del agua comienza a evaporar, ascendiendo por el interior del reactor, hasta acumularse en la parte superior del mismo. Desde allí será transportado al depósito de regulación de presión (21), junto con el resto de gases desprendidos durante el proceso, entre los que se encuentran, por ejemplo, metano, CO2 o aire.
De este modo, según avanza el proceso, el vapor de agua generado va acumulándose, junto con el resto de gases, en la parte superior del depósito de regulación (21) . Como consecuencia de ello, la presión de su interior va poco a poco incrementándose hasta alcanzarse un valor de unos 13 bar, equivalente al valor de consigna de apertura de la válvula de control de la que dispone el depósito (21) .
Una vez abierta la válvula, los gases, junto con el vapor de agua, son evacuados y enviados a un equipo condensador (25) , donde son enfriados hasta una temperatura de, aproximadamente, 900C. Aquellos gases que no condensan a esta temperatura son evacuados al ambiente mediante el dispositivo de eliminación de aire y gases del cual dispone dicho equipo.
A su vez, parte del vapor generado, entre el 20% y el 50% en función de la dilución de la biomasa con agua, es aprovechado en el tubo de precalentamiento (17) para precalentar la mezcla acuosa de biomasa alimentada al reactor (18) .
Tras la etapa de condensación, los condensados son enviados al depósito abierto de almacenamiento (26), ocupando de un 20 a un 90% de su capacidad. Desde allí, serán reinyectados al depósito de regulación de presión (21), al alcanzarse en dicho equipo un nivel de condensados inferior a un 60% de su volumen. Por otra parte, una cierta cantidad de estos condensados del depósito de regulación (21) serán alimentados al reactor (18), a una temperatura de unos 1900C, en caso de que en dicho equipo se alcance un volumen mínimo de aproximadamente un 70%. De este modo es posible recuperar parte del agua evaporada durante el proceso exotérmico de carbonización, al mismo tiempo que se consigue homogeneizar la temperatura en diferentes puntos del interior del reactor. A su vez, gracias a este sistema de control, es posible llevar a cabo el proceso de manera continua y, al mismo tiempo, se logran mantener unas condiciones de presión y temperatura adecuadas y estables durante toda la operación sin necesidad de disponer de equipos adicionales móviles o de superficies de intercambio de calor en el interior del reactor.
Asimismo, y de manera adicional, esta realización preferida de la invención permitirá recuperar parte del calor desprendido en la etapa de enfriamiento de la mezcla de biomasa carbonizada junto con, al menos, agua de proceso, resultante del proceso de carbonización en la etapa de precalentamiento de la mezcla de biomasa, catalizador y agua de proceso alimentada al sistema, etapa que se lleva a cabo en el equipo de precalentamiento (17) .

Claims

Reivindicaciones
1. Sistema de control de temperatura y presión de, al menos, un reactor químico, caracterizado por comprender, al menos, los siguientes dispositivos: a) un depósito con al menos un dispositivo de regulación de presión; b) un conducto de unión entre dicho depósito y el reactor; c) un dispositivo de inyección de condensados al reactor.
2. Sistema de control, según la reivindicación 1, caracterizado por comprender además, al menos un sistema de recuperación de la entalpia del vapor y/o gases generados en el reactor .
3. Sistema de control, según la reivindicación 2, caracterizado porque el sistema de recuperación de la entalpia del vapor y/o gases generados en el reactor es una turbina.
4. Sistema de control de presión, según la reivindicación 1, caracterizado por comprender, además, al menos un equipo de refrigeración del vapor y/o gases generados en el reactor.
5. Sistema de control, según la reivindicación 4, caracterizado porque el equipo de refrigeración es un condensador .
6. Sistema de control, según la reivindicación 1, caracterizado por comprender, además, al menos un depósito de almacenamiento de condensados.
7. Sistema de control, según la reivindicación 1, caracterizado porque el depósito (a) comprende, además, al menos una entrada y al, menos, una salida de condensados, asi como al menos una salida de vapor y/o gases situada en la parte superior de dicho depósito.
8. Sistema de control, según la reivindicación 1, caracterizado porque el depósito (a) comprende, además, al menos un dispositivo seleccionado de un grupo que consiste en: una válvula de regulación de presión, una sonda de presión, una sonda de temperatura, una sonda de nivel, un desaireador, un rompedor de vacio y una válvula de seguridad, asi como cualquier combinación de los anteriores.
9. Sistema de control, según la reivindicación 1, caracterizado porque el conducto de unión (b) entre el reactor y el depósito (a) desemboca a dicho depósito por debajo de su superficie de condensados .
10. Sistema de control, según la reivindicación 1, caracterizado porque comprende, además, un sistema de inyección de vapor al reactor.
11. Sistema de control, según la reivindicación 1, caracterizado porque comprende, además, al menos un dispositivo externo generador de vapor.
12. Sistema de control, según la reivindicación 11, caracterizado porque el dispositivo externo generador de vapor es una caldera o un compresor de vapor.
13. Sistema de control, según una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende, de manera adicional, al menos uno de los siguientes equipos: a) un equipo de presurización; b) un equipo de precalentamiento; c) un reactor vertical con inversión de flujo; d) un equipo de enfriamiento y e) un equipo de despresurización
14. Uso de un sistema de control, según una cualquiera de las reivindicaciones anteriores, para el control de la presión y temperatura de al menos un reactor químico.
15. Uso de un sistema de control, según la reivindicación 14, donde en el reactor químico tiene lugar una reacción de carbonización hidrotermal de biomasa.
16. Método de control de presión y temperatura caracterizado por llevarse a cabo en un sistema de acuerdo a una cualquiera de las reivindicaciones 1 a 13, y donde dicho método comprende las siguientes etapas: a) presurizar una mezcla acuosa de biomasa y catalizador hasta una presión de, al menos, 10 bar; b) precalentar la mezcla acuosa de biomasa y catalizador hasta una temperatura de entre 1700C a 2100C; c) alimentar la mezcla acuosa de biomasa y catalizador a un reactor vertical de flujo invertido donde tiene una reacción de carbonización hidrotérmica dando lugar a una mezcla de biomasa carbonizada junto, al menos, agua de proceso; d) enfriar la mezcla de biomasa carbonizada junto con, al menos, agua de proceso, en un tubo de enfriamiento hasta valores inferiores a su temperatura de evaporación a presión atmosférica; e) despresurizar y extraer la mezcla acuosa de biomasa carbonizada .
17. Método de control de presión y temperatura, de acuerdo a la reivindicación 16, donde dicho método comprende además una etapa adicional de pretratamiento de la biomasa.
18. Método de control de presión y temperatura, de acuerdo a la reivindicación 17, donde dicha etapa de pretratamiento comprende, a su vez, al menos una etapa de triturado y al menos una etapa de lavado de la biomasa.
19. Método de control de presión y temperatura de acuerdo a una cualquiera de las reivindicaciones 16 a 18, donde dicho método comprende una etapa adicional de recuperación de parte del calor desprendido en la etapa (d) de enfriamiento de la mezcla de biomasa carbonizada junto con, al menos, agua de proceso resultante del proceso de carbonización hidrotérmica en la etapa (b) de precalentamiento de la mezcla acuosa de biomasa y catalizador alimentada al sistema.
20. Reactor vertical de flujo invertido caracterizado por estar controlado por un sistema de presión y temperatura de acuerdo a una cualquiera de las reivindicaciones 1 a 13.
21. Reactor vertical de flujo invertido de acuerdo a la reivindicación 20, donde dicho reactor comprende en su interior un tubo de ascenso que ocupa la zona central del reactor desde el fondo hasta de un 50 a un 80% de la altura del reactor.
22. Reactor vertical de flujo invertido de acuerdo a una cualquiera de las reivindicaciones 20 o 21, donde dicho reactor comprende asimismo al menos un dispositivo seleccionado de un grupo que consiste en una válvula de seguridad, una sonda de presión, una sonda de temperatura, una sonda de nivel de llenado, un eliminador de aire y gases y un rompedor de vacio, asi como cualquier combinación de los anteriores.
23. Reactor vertical de flujo invertido de acuerdo a una cualquiera de las reivindicaciones 21 o 22, donde dicho reactor comprende a su vez en el lateral y en la parte inferior del mismo y del tubo de ascenso, al menos una entrada para la inyección de vapor.
24. Reactor vertical de flujo invertido de acuerdo a una cualquiera de las reivindicaciones 21, 22 o 23, donde dicho reactor comprende a su vez en el lateral, al menos una entrada para la inyección de condensados .
PCT/ES2009/070502 2008-11-17 2009-11-16 Sistema de control de presión y temperatura de al menos un reactor químico WO2010055189A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0920395A BRPI0920395A2 (pt) 2008-11-17 2009-11-16 sistema de controle de temperatura e pressão de pelo menos um reator químico
MX2011003823A MX2011003823A (es) 2008-11-17 2009-11-16 Sistema de control de presion y temperatura de al menos un reactor quimico.
EP09825797.5A EP2366757B1 (en) 2008-11-17 2009-11-16 Pressure and temperature control system for at least one chemical reactor for treating biomass
RU2011114832/05A RU2530114C2 (ru) 2008-11-17 2009-11-16 Система управления давлением и температурой для по меньшей мере одного химического реактора
CA2740225A CA2740225C (en) 2008-11-17 2009-11-16 Pressure and temperature control system for at least one chemical reactor
ES09825797.5T ES2564184T3 (es) 2008-11-17 2009-11-16 Sistema de control de presión y temperatura de al menos un reactor químico para tratar biomasa
US13/081,555 US8475727B2 (en) 2008-11-17 2011-04-07 Pressure and temperature control system for at least one chemical reactor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESP200803271 2008-11-17
ES200803271A ES2339320B1 (es) 2008-11-17 2008-11-17 Metodo de carbonizacion hidrotermal con reactor de flujo invertido,eninstalacion.
ESP200803272 2008-11-17
ES200803272A ES2339321B1 (es) 2008-11-17 2008-11-17 Sistema de control de la presion y temperatura de un reactor o conjunto de reactores quimicos.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/081,555 Continuation US8475727B2 (en) 2008-11-17 2011-04-07 Pressure and temperature control system for at least one chemical reactor

Publications (1)

Publication Number Publication Date
WO2010055189A1 true WO2010055189A1 (es) 2010-05-20

Family

ID=42169665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070502 WO2010055189A1 (es) 2008-11-17 2009-11-16 Sistema de control de presión y temperatura de al menos un reactor químico

Country Status (8)

Country Link
US (1) US8475727B2 (es)
EP (2) EP2366757B1 (es)
BR (1) BRPI0920395A2 (es)
CA (1) CA2740225C (es)
ES (1) ES2564184T3 (es)
MX (1) MX2011003823A (es)
RU (1) RU2530114C2 (es)
WO (1) WO2010055189A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120104A3 (de) * 2011-03-10 2014-01-09 Siemens Aktiengesellschaft Dampfturbinenanlage für ein thermisches kraftwerk, sowie betriebsverfahren einer dampfturbinenanlage für ein thermisches kraftwerk

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2366757B1 (en) 2008-11-17 2016-02-17 Ingelia, S.L. Pressure and temperature control system for at least one chemical reactor for treating biomass
CA3084690C (en) 2011-04-15 2023-09-19 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
ES2393464B1 (es) * 2011-06-09 2013-11-18 Ingelia, S.L. Procedimiento para la extracción de productos bioquímicos obtenidos a partir de un proceso de carbonización hidrotermal de biomasa.
CN104053649A (zh) * 2012-01-10 2014-09-17 阿彻丹尼尔斯米德兰德公司 从糖类制备hmf和hmf衍生物同时回收适合于直接发酵为乙醇的未反应糖类的方法
CA3225246A1 (en) 2012-05-07 2013-11-14 Carbon Technology Holdings, LLC Biogenic activated carbon and methods of making and using same
PL399500A1 (pl) 2012-06-12 2013-12-23 Dagas Spólka Z Ograniczona Odpowiedzialnoscia Sposób prowadzenia procesu pirolizy odpadowych tworzyw sztucznych i/lub odpadów gumowych i/lub odpadów organicznych oraz instalacja do realizacji tego sposobu
DE202012012520U1 (de) * 2012-08-15 2013-04-26 Ava-Co2 Schweiz Ag Vorrichtung zur Reinigung von Prozesswasser in einem hydrothermalen Karbonisierungsprozess
ES2457073B1 (es) 2012-09-19 2015-02-02 Ingelia, S.L. Producto biocombustible y proceso de obtención
WO2015061701A1 (en) 2013-10-24 2015-04-30 Biogenic Reagent Ventures, Llc Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates
EP3094593B1 (en) 2014-01-16 2022-01-26 Carbon Technology Holdings, LLC Carbon micro-plant
CA2977092C (en) 2014-02-24 2022-12-13 Biogenic Reagents Ventures, Llc Highly mesoporous activated carbon
US11413601B2 (en) 2014-10-24 2022-08-16 Carbon Technology Holdings, LLC Halogenated activated carbon compositions and methods of making and using same
CN105833821B (zh) * 2016-06-06 2017-11-28 宁夏软件工程院有限公司 一种具有自动温控功能的反应釜
CN106017128B (zh) * 2016-06-30 2018-02-23 中国大唐集团科学技术研究院有限公司华东分公司 一种带节能评估装置的射汽真空系统及其运行方法
CA2972505A1 (en) 2017-07-05 2019-01-05 Decide Nv Process and system for treating municipal solid waste materials and producing multiple products
BR112020025445A2 (pt) 2018-06-14 2021-03-16 Carbon Technology Holdings, LLC Composições de dióxido de silício de carbono poroso biogênico e métodos de produção e uso das mesmas
CZ308537B6 (cs) * 2019-10-17 2020-11-11 Aikona Ltd Zařízení pro termicko-katalytický rozklad – pyrolýzu odpadních látek organického původu
CA3183438A1 (en) * 2020-05-11 2021-11-18 Kitsault Energy, Ltd. Apparatus and process for catalyzed steam biofuel production
GB2592086B (en) 2020-06-17 2024-02-21 Coal Products Ltd Fibres
KR20230087510A (ko) 2020-09-25 2023-06-16 카본 테크놀로지 홀딩스, 엘엘씨 바이오매스 열분해와 통합된 금속 광석의 바이오-환원
EP4019612A1 (en) 2020-12-23 2022-06-29 Ingelia, S.L. Apparatus to obtain valuable products from biomass and process thereof
BR112023016141A2 (pt) 2021-02-18 2023-11-21 Carbon Tech Holdings Llc Produtos metalúrgicos com carbono negativo
MX2023012635A (es) 2021-04-27 2024-01-12 Carbon Tech Holdings Llc Composiciones de biocarbón con carbono fijado optimizado y procesos para producir las mismas.
EP4367070A1 (en) 2021-07-09 2024-05-15 Carbon Technology Holdings, LLC Processes for producing biocarbon pellets with high fixed-carbon content and optimized reactivity, and biocarbon pellets obtained therefrom
US20230150872A1 (en) 2021-11-12 2023-05-18 Carbon Technology Holdings, LLC Biocarbon compositions with optimized compositional parameters, and processes for producing the same
CN114534651B (zh) * 2022-01-13 2024-03-12 宁夏天霖新材料科技有限公司 一种反应器温度控制方法
CN116078277B (zh) * 2023-03-06 2023-06-20 山东健奕宏生物制药有限公司 一种乳糖氢化还原压力反应釜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974130A (en) * 1954-11-22 1961-03-07 Phillips Petroleum Co Method of controlling pressure and liquid level in a vessel
WO2002006153A1 (en) * 2000-07-13 2002-01-24 Hydrogen Energy America Llc Method and apparatus for controlled generation of hydrogen by dissociation of water
DE102006038983A1 (de) * 2006-08-21 2008-02-28 Logos-Innovationen Gmbh Verfahren zur Herstellung von Trinkwasser aus atmosphärischer Luft
DE102007062808A1 (de) * 2006-12-28 2008-07-17 Dominik Peus Vorrichtung zur Behandlung von Fest-/Flüssiggemischen
WO2008095589A1 (de) * 2007-02-08 2008-08-14 Grenol GmbH Hydrothermale karbonisierung von biomasse
EP1970431A1 (de) * 2007-03-13 2008-09-17 Loritus GmbH Vorrichtung und Verfahren zur hydrothermalen Karbonisierung von Biomasse

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES160612A1 (es) 1943-02-20 1943-07-01 Gil Moreno De Mora Jose Pedro Procedimiento para la carbonización de residuos vegetales
US2595365A (en) * 1947-06-14 1952-05-06 Standard Oil Dev Co Carbonization of carbonizable solids
US2674130A (en) * 1952-12-19 1954-04-06 Spychalla Alex Portable machine tool
GB1053572A (es) * 1963-05-14
ES160612Y (es) 1970-07-02 1971-06-01 Novalux Iberica, S. A. Portalamparas simple para tubos fluorescentes dotado de me-dios de incorporacion al soporte.
DE2117364C3 (de) * 1971-04-08 1983-12-01 Basf Ag, 6700 Ludwigshafen Verfahren zur Abführung der Reaktionswärme bei der diskontinuierlichen Homo- oder Copolymerisation von Vinylchlorid
US4278447A (en) * 1979-11-16 1981-07-14 Conoco, Inc. Methods for producing feedstock for a fixed bed gasifier from finely-divided coal
US4579562A (en) 1984-05-16 1986-04-01 Institute Of Gas Technology Thermochemical beneficiation of low rank coals
DE3715158C1 (de) * 1987-05-07 1988-09-15 Veba Oel Entwicklungs Gmbh Verfahren zur Gewinnung von Schweloel
RU2055014C1 (ru) * 1992-04-29 1996-02-27 Научно-производственное объединение "Эмекат" Способ конверсии углеводородного сырья и способ получения катализатора для его осуществления
WO1996032163A1 (en) * 1995-04-11 1996-10-17 Moraski Dennis P Biomass solids gasification system and process
US5883292A (en) * 1996-01-17 1999-03-16 Twenty-First Century Research Corporation Reaction control by regulating internal condensation inside a reactor
JP3802325B2 (ja) 2000-08-23 2006-07-26 信行 林 植物系バイオマスの加圧熱水分解方法とそのシステム
US6790317B2 (en) 2001-06-28 2004-09-14 University Of Hawaii Process for flash carbonization of biomass
DK1922392T3 (da) * 2005-09-05 2013-01-21 Stichting Energie Indretning til fremstilling af en produktgas fra biomasse
WO2008138637A2 (de) * 2007-05-11 2008-11-20 Suncoal Industries Gmbh Verfahren und vorrichtung zur hydrothermalen karbonisierung (htc) von biomasse mit einer htc-anlage
DE102008058444B4 (de) 2007-11-21 2020-03-26 Antacor Ltd. Verfahren und Verwendung einer Vorrichtung zur Herstellung von Brennstoffen, Humus oder Suspensionen davon
EP2366757B1 (en) * 2008-11-17 2016-02-17 Ingelia, S.L. Pressure and temperature control system for at least one chemical reactor for treating biomass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974130A (en) * 1954-11-22 1961-03-07 Phillips Petroleum Co Method of controlling pressure and liquid level in a vessel
WO2002006153A1 (en) * 2000-07-13 2002-01-24 Hydrogen Energy America Llc Method and apparatus for controlled generation of hydrogen by dissociation of water
DE102006038983A1 (de) * 2006-08-21 2008-02-28 Logos-Innovationen Gmbh Verfahren zur Herstellung von Trinkwasser aus atmosphärischer Luft
DE102007062808A1 (de) * 2006-12-28 2008-07-17 Dominik Peus Vorrichtung zur Behandlung von Fest-/Flüssiggemischen
WO2008095589A1 (de) * 2007-02-08 2008-08-14 Grenol GmbH Hydrothermale karbonisierung von biomasse
EP1970431A1 (de) * 2007-03-13 2008-09-17 Loritus GmbH Vorrichtung und Verfahren zur hydrothermalen Karbonisierung von Biomasse

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ELTON JACQUOT, J.: "Back in Black: Using hydrothermal Carbonization to clean Emissions", SCIENCE & TECHNOLOGY, 2007
See also references of EP2366757A4
TITRICI M.M. ET AL.: "Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the C02 problem?", NEW JOURNAL OF CHEMISTRY, vol. 31, 8 March 2007 (2007-03-08), pages 787 - 789, XP002481844 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120104A3 (de) * 2011-03-10 2014-01-09 Siemens Aktiengesellschaft Dampfturbinenanlage für ein thermisches kraftwerk, sowie betriebsverfahren einer dampfturbinenanlage für ein thermisches kraftwerk

Also Published As

Publication number Publication date
RU2011114832A (ru) 2012-12-27
EP2484437A2 (en) 2012-08-08
CA2740225C (en) 2016-01-19
BRPI0920395A2 (pt) 2016-03-29
CA2740225A1 (en) 2010-05-20
MX2011003823A (es) 2011-07-28
ES2564184T3 (es) 2016-03-18
RU2530114C2 (ru) 2014-10-10
EP2366757A4 (en) 2014-06-18
EP2366757A1 (en) 2011-09-21
EP2366757B1 (en) 2016-02-17
EP2484437A3 (en) 2017-01-18
US20110225876A1 (en) 2011-09-22
US8475727B2 (en) 2013-07-02

Similar Documents

Publication Publication Date Title
ES2564184T3 (es) Sistema de control de presión y temperatura de al menos un reactor químico para tratar biomasa
US8381523B2 (en) Geothermal electricity production methods and geothermal energy collection systems
JP6734298B2 (ja) 地熱プラントにおける帯水層流体の内部エネルギーの利用方法
US7891188B2 (en) Apparatus for producing power using geothermal liquid
US20090178409A1 (en) Apparatus and method for storing heat energy
JP4721349B2 (ja) バイオガス中のメタン濃度の安定化システム及びバイオガス中のメタン濃度の安定化方法
US20170008776A1 (en) Facility and method for treating water pumped in a natural environment by evaporation/condensation
BRPI0718959B1 (pt) Método para regeneração de um absorvente rico tendo absorvido CO2 e regenerador para um absorvente líquido para CO2
NO332159B1 (no) Fremgangsmate og anlegg for energieffektiv oppfanging og utskillelse av CO2 fra en gassfase
WO2011004866A1 (ja) 蒸気供給装置
CN101921006A (zh) 一种太阳能聚光发电和海水淡化集成方法及系统
CN105221363B (zh) 中低温地热和生物质燃气联合发电系统及发电成本计算方法
WO2009082713A1 (en) Apparatus and method for storing heat energy
CN112654830A (zh) 用于储存热量的方法和设备
WO2012168502A1 (es) Procedimiento para la extracción de productos bioquímicos obtenidos a partir de un proceso de carbonización hidrotermal de biomasa
US4084379A (en) Energy conversion system
GB2625453A (en) Fossil fuel thermodynamic system and carbon dioxide emission reduction method and device thereof
ES2339320B1 (es) Metodo de carbonizacion hidrotermal con reactor de flujo invertido,eninstalacion.
CN205243651U (zh) 一种可实现100%碳回收的高效闭式燃气发电系统
RU2679330C1 (ru) Энергетический комплекс на основе газификации отходов биомассы
ES2339321B1 (es) Sistema de control de la presion y temperatura de un reactor o conjunto de reactores quimicos.
KR101175131B1 (ko) 바이오가스 농축 정제 시스템
WO2014096736A1 (fr) Dispositif et procede d'evaporation d'un liquide et leurs applications
RU104171U1 (ru) Установка для опреснения морской воды
CN203392884U (zh) 一种热泵低压蒸馏装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09825797

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1498/KOLNP/2011

Country of ref document: IN

Ref document number: MX/A/2011/003823

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2740225

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009825797

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011114832

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0920395

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110408