WO2010004989A1 - 多能性幹細胞の製造方法 - Google Patents
多能性幹細胞の製造方法 Download PDFInfo
- Publication number
- WO2010004989A1 WO2010004989A1 PCT/JP2009/062364 JP2009062364W WO2010004989A1 WO 2010004989 A1 WO2010004989 A1 WO 2010004989A1 JP 2009062364 W JP2009062364 W JP 2009062364W WO 2010004989 A1 WO2010004989 A1 WO 2010004989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- cell
- culture
- pluripotent stem
- day
- Prior art date
Links
- 210000001778 pluripotent stem cell Anatomy 0.000 title claims abstract description 179
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 210000004027 cell Anatomy 0.000 claims abstract description 400
- 210000001082 somatic cell Anatomy 0.000 claims abstract description 73
- 230000008672 reprogramming Effects 0.000 claims abstract description 63
- 239000000126 substance Substances 0.000 claims abstract description 44
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 claims abstract description 22
- 102100024270 Transcription factor SOX-2 Human genes 0.000 claims abstract description 22
- 230000022131 cell cycle Effects 0.000 claims abstract description 21
- 101001139134 Homo sapiens Krueppel-like factor 4 Proteins 0.000 claims abstract description 19
- 102100020677 Krueppel-like factor 4 Human genes 0.000 claims abstract description 19
- 101000984042 Homo sapiens Protein lin-28 homolog A Proteins 0.000 claims abstract description 15
- 102100025460 Protein lin-28 homolog A Human genes 0.000 claims abstract description 15
- 108090000623 proteins and genes Proteins 0.000 claims description 335
- 239000013598 vector Substances 0.000 claims description 156
- 238000000034 method Methods 0.000 claims description 142
- 239000002609 medium Substances 0.000 claims description 107
- 230000001177 retroviral effect Effects 0.000 claims description 80
- 235000003642 hunger Nutrition 0.000 claims description 68
- 230000037351 starvation Effects 0.000 claims description 68
- 102000004169 proteins and genes Human genes 0.000 claims description 64
- 241001430294 unidentified retrovirus Species 0.000 claims description 55
- 239000012634 fragment Substances 0.000 claims description 46
- 108010067306 Fibronectins Proteins 0.000 claims description 28
- 102000016359 Fibronectins Human genes 0.000 claims description 28
- 238000012258 culturing Methods 0.000 claims description 26
- 235000015097 nutrients Nutrition 0.000 claims description 26
- 239000003814 drug Substances 0.000 claims description 24
- 230000027455 binding Effects 0.000 claims description 23
- 229940079593 drug Drugs 0.000 claims description 23
- 230000001939 inductive effect Effects 0.000 claims description 22
- 230000000694 effects Effects 0.000 claims description 18
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 17
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 17
- 229920001184 polypeptide Polymers 0.000 claims description 16
- 230000014509 gene expression Effects 0.000 claims description 13
- 239000003112 inhibitor Substances 0.000 claims description 9
- 230000030833 cell death Effects 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 210000000130 stem cell Anatomy 0.000 claims description 7
- 239000001963 growth medium Substances 0.000 claims description 6
- 229920000656 polylysine Polymers 0.000 claims description 4
- 102000012432 Collagen Type V Human genes 0.000 claims description 3
- 108010022514 Collagen Type V Proteins 0.000 claims description 3
- 229920002307 Dextran Polymers 0.000 claims description 3
- 102000018233 Fibroblast Growth Factor Human genes 0.000 claims description 3
- 108050007372 Fibroblast Growth Factor Proteins 0.000 claims description 3
- 108010039918 Polylysine Proteins 0.000 claims description 3
- 229940126864 fibroblast growth factor Drugs 0.000 claims description 3
- 108010056030 retronectin Proteins 0.000 description 134
- 238000012546 transfer Methods 0.000 description 133
- 230000006698 induction Effects 0.000 description 60
- 239000000243 solution Substances 0.000 description 59
- 241000700605 Viruses Species 0.000 description 58
- 235000018102 proteins Nutrition 0.000 description 57
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 54
- 238000010899 nucleation Methods 0.000 description 45
- 238000002360 preparation method Methods 0.000 description 45
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 44
- 239000006228 supernatant Substances 0.000 description 34
- 239000013612 plasmid Substances 0.000 description 30
- 238000005259 measurement Methods 0.000 description 28
- 239000000203 mixture Substances 0.000 description 25
- 108020004414 DNA Proteins 0.000 description 22
- 230000001965 increasing effect Effects 0.000 description 16
- 210000002950 fibroblast Anatomy 0.000 description 14
- 102100035423 POU domain, class 5, transcription factor 1 Human genes 0.000 description 13
- 108091008146 restriction endonucleases Proteins 0.000 description 13
- 239000013603 viral vector Substances 0.000 description 13
- 241000699666 Mus <mouse, genus> Species 0.000 description 12
- 101710126211 POU domain, class 5, transcription factor 1 Proteins 0.000 description 12
- 210000002966 serum Anatomy 0.000 description 12
- -1 c-MYC Proteins 0.000 description 11
- 230000001976 improved effect Effects 0.000 description 11
- 208000015181 infectious disease Diseases 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 230000009261 transgenic effect Effects 0.000 description 10
- 101150037203 Sox2 gene Proteins 0.000 description 8
- 230000002500 effect on skin Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 102000004058 Leukemia inhibitory factor Human genes 0.000 description 7
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- IDDDVXIUIXWAGJ-DDSAHXNVSA-N 4-[(1r)-1-aminoethyl]-n-pyridin-4-ylcyclohexane-1-carboxamide;dihydrochloride Chemical compound Cl.Cl.C1CC([C@H](N)C)CCC1C(=O)NC1=CC=NC=C1 IDDDVXIUIXWAGJ-DDSAHXNVSA-N 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 6
- 210000002242 embryoid body Anatomy 0.000 description 6
- 230000011987 methylation Effects 0.000 description 6
- 238000007069 methylation reaction Methods 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 5
- 238000000246 agarose gel electrophoresis Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 238000007865 diluting Methods 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000000411 inducer Substances 0.000 description 5
- PMXCMJLOPOFPBT-HNNXBMFYSA-N purvalanol A Chemical compound C=12N=CN(C(C)C)C2=NC(N[C@@H](CO)C(C)C)=NC=1NC1=CC=CC(Cl)=C1 PMXCMJLOPOFPBT-HNNXBMFYSA-N 0.000 description 5
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 101100510266 Homo sapiens KLF4 gene Proteins 0.000 description 4
- 101150070299 KLF4 gene Proteins 0.000 description 4
- 101150085710 OCT4 gene Proteins 0.000 description 4
- 238000011579 SCID mouse model Methods 0.000 description 4
- 206010043276 Teratoma Diseases 0.000 description 4
- 150000001413 amino acids Chemical group 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 244000309466 calf Species 0.000 description 4
- 239000006285 cell suspension Substances 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 239000013600 plasmid vector Substances 0.000 description 4
- 210000001626 skin fibroblast Anatomy 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 3
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 3
- 241000220223 Fragaria Species 0.000 description 3
- 235000016623 Fragaria vesca Nutrition 0.000 description 3
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 229930186217 Glycolipid Natural products 0.000 description 3
- 101150012532 NANOG gene Proteins 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 238000003501 co-culture Methods 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 108091006047 fluorescent proteins Proteins 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 3
- 101150111214 lin-28 gene Proteins 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 229960004857 mitomycin Drugs 0.000 description 3
- 238000003753 real-time PCR Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 210000001550 testis Anatomy 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- LLAPDLPYIYKTGQ-UHFFFAOYSA-N 1-aminoethyl Chemical group C[CH]N LLAPDLPYIYKTGQ-UHFFFAOYSA-N 0.000 description 2
- XHSQDZXAVJRBMX-DDHJBXDOSA-N 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=CC(Cl)=C(Cl)C=C2N=C1 XHSQDZXAVJRBMX-DDHJBXDOSA-N 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 238000009010 Bradford assay Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 102000008186 Collagen Human genes 0.000 description 2
- 108010035532 Collagen Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 2
- 101000599940 Homo sapiens Interferon gamma Proteins 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 238000002123 RNA extraction Methods 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 239000002771 cell marker Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229920001436 collagen Polymers 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 210000002257 embryonic structure Anatomy 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 102000034287 fluorescent proteins Human genes 0.000 description 2
- 210000001654 germ layer Anatomy 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 229960002897 heparin Drugs 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 238000004114 suspension culture Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 2
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- HLOLRONOOCGTRG-UHFFFAOYSA-N 4,5-dihydroxycyclopent-2-en-1-one Chemical compound OC1C=CC(=O)C1O HLOLRONOOCGTRG-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-ULQXZJNLSA-N 4-amino-1-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-tritiopyrimidin-2-one Chemical compound O=C1N=C(N)C([3H])=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-ULQXZJNLSA-N 0.000 description 1
- ARIOBGGRZJITQX-UHFFFAOYSA-N 5-amino-3-{[4-(aminosulfonyl)phenyl]amino}-n-(2,6-difluorophenyl)-1h-1,2,4-triazole-1-carbothioamide Chemical compound N=1N(C(=S)NC=2C(=CC=CC=2F)F)C(N)=NC=1NC1=CC=C(S(N)(=O)=O)C=C1 ARIOBGGRZJITQX-UHFFFAOYSA-N 0.000 description 1
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 1
- 239000012110 Alexa Fluor 594 Substances 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 108010024986 Cyclin-Dependent Kinase 2 Proteins 0.000 description 1
- 102100036239 Cyclin-dependent kinase 2 Human genes 0.000 description 1
- 230000007067 DNA methylation Effects 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001094700 Homo sapiens POU domain, class 5, transcription factor 1 Proteins 0.000 description 1
- 101000713275 Homo sapiens Solute carrier family 22 member 3 Proteins 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 102000007547 Laminin Human genes 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 241000711408 Murine respirovirus Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 102000046299 Transforming Growth Factor beta1 Human genes 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 101800002279 Transforming growth factor beta-1 Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- BIIVYFLTOXDAOV-YVEFUNNKSA-N alvocidib Chemical compound O[C@@H]1CN(C)CC[C@@H]1C1=C(O)C=C(O)C2=C1OC(C=1C(=CC=CC=1)Cl)=CC2=O BIIVYFLTOXDAOV-YVEFUNNKSA-N 0.000 description 1
- 229950010817 alvocidib Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- NGOLMNWQNHWEKU-DEOSSOPVSA-N butyrolactone I Chemical compound C([C@@]1(C(=O)OC)C(=C(O)C(=O)O1)C=1C=CC(O)=CC=1)C1=CC=C(O)C(CC=C(C)C)=C1 NGOLMNWQNHWEKU-DEOSSOPVSA-N 0.000 description 1
- FQYAPAZNUPTQLD-DEOSSOPVSA-N butyrolactone I Natural products COC1=C(c2ccc(O)cc2)[C@](Cc3ccc(O)c(CC=C(C)C)c3)(OC1=O)C(=O)O FQYAPAZNUPTQLD-DEOSSOPVSA-N 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 210000001728 clone cell Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000011278 co-treatment Methods 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 239000002875 cyclin dependent kinase inhibitor Substances 0.000 description 1
- 229940043378 cyclin-dependent kinase inhibitor Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- NIJJYAXOARWZEE-UHFFFAOYSA-N di-n-propyl-acetic acid Natural products CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 210000001705 ectoderm cell Anatomy 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003797 essential amino acid Substances 0.000 description 1
- 235000020776 essential amino acid Nutrition 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 238000012637 gene transfection Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 229960001330 hydroxycarbamide Drugs 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229960000779 irinotecan hydrochloride Drugs 0.000 description 1
- GURKHSYORGJETM-WAQYZQTGSA-N irinotecan hydrochloride (anhydrous) Chemical compound Cl.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 GURKHSYORGJETM-WAQYZQTGSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011177 media preparation Methods 0.000 description 1
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 1
- 210000001704 mesoblast Anatomy 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- FMURUEPQXKJIPS-UHFFFAOYSA-N n-(1-benzylpiperidin-4-yl)-6,7-dimethoxy-2-(4-methyl-1,4-diazepan-1-yl)quinazolin-4-amine;trihydrochloride Chemical compound Cl.Cl.Cl.C=12C=C(OC)C(OC)=CC2=NC(N2CCN(C)CCC2)=NC=1NC(CC1)CCN1CC1=CC=CC=C1 FMURUEPQXKJIPS-UHFFFAOYSA-N 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000001178 neural stem cell Anatomy 0.000 description 1
- 239000003900 neurotrophic factor Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- GTVPOLSIJWJJNY-UHFFFAOYSA-N olomoucine Chemical compound N1=C(NCCO)N=C2N(C)C=NC2=C1NCC1=CC=CC=C1 GTVPOLSIJWJJNY-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 210000000229 preadipocyte Anatomy 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- ZKDXRFMOHZVXSG-HNNXBMFYSA-N purvalanol B Chemical compound C=12N=CN(C(C)C)C2=NC(N[C@@H](CO)C(C)C)=NC=1NC1=CC=C(C(O)=O)C(Cl)=C1 ZKDXRFMOHZVXSG-HNNXBMFYSA-N 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- BTIHMVBBUGXLCJ-OAHLLOKOSA-N seliciclib Chemical compound C=12N=CN(C(C)C)C2=NC(N[C@@H](CO)CC)=NC=1NCC1=CC=CC=C1 BTIHMVBBUGXLCJ-OAHLLOKOSA-N 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- MSRILKIQRXUYCT-UHFFFAOYSA-M valproate semisodium Chemical compound [Na+].CCCC(C(O)=O)CCC.CCCC(C([O-])=O)CCC MSRILKIQRXUYCT-UHFFFAOYSA-M 0.000 description 1
- 229960000604 valproic acid Drugs 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- WAEXFXRVDQXREF-UHFFFAOYSA-N vorinostat Chemical compound ONC(=O)CCCCCCC(=O)NC1=CC=CC=C1 WAEXFXRVDQXREF-UHFFFAOYSA-N 0.000 description 1
- 229960000237 vorinostat Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0696—Artificially induced pluripotent stem cells, e.g. iPS
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/40—Regulators of development
- C12N2501/405—Cell cycle regulated proteins, e.g. cyclins, cyclin-dependant kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/602—Sox-2
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/603—Oct-3/4
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/604—Klf-4
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/605—Nanog
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/60—Transcription factors
- C12N2501/608—Lin28
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/70—Enzymes
- C12N2501/72—Transferases [EC 2.]
- C12N2501/727—Kinases (EC 2.7.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
- C12N2533/52—Fibronectin; Laminin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/15011—Lentivirus, not HIV, e.g. FIV, SIV
- C12N2740/15041—Use of virus, viral particle or viral elements as a vector
- C12N2740/15043—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/15011—Lentivirus, not HIV, e.g. FIV, SIV
- C12N2740/15071—Demonstrated in vivo effect
Definitions
- the present invention relates to a method for producing a pluripotent stem cell having the ability to differentiate into various cells.
- Pluripotent stem cells that can differentiate into all cell lineages of organisms have the potential to differentiate into any type of cell and to produce any type of tissue or organ. Therefore, it is expected to be applied to a new treatment method (regenerative medicine) in which the cells are used to regenerate and compensate for lost cells in an organism. Furthermore, it has applicability as a research tool in the fields of embryology, molecular biology, and pharmacy.
- ES cell embryonic stem cell
- blastocyst embryonic stem cell
- pluripotent stem cells which are cell lines induced by artificially introducing genes into somatic cells without using embryos : IPS cells:
- IPS cells induced pluripotent stem cells
- the cell is produced by artificially introducing a gene involved in acquiring or maintaining the totipotency of a cell into a somatic cell.
- active research is being conducted on the production method and usage.
- Non-patent document 1 discloses a method for producing human iPS cells by introducing genes encoding four kinds of polypeptides of OCT3 / 4, SOX2, c-MYC, and KLF4.
- human iPS cells were prepared by introducing genes encoding four types of polypeptides, OCT4, SOX2, NANOG, and LIN28 (Non-patent Document 2).
- somatic cells into which these genes have been introduced are induced by iPS cells, and only a part (0.02% or less of the total number of cells) is actually induced by iPS cells. Not too much.
- Non-patent Document 3 an attempt has been made to add a drug that inhibits DNA methylation to the medium.
- c-MYC is an oncogene and the risk of canceration of the introduced cells is unavoidable when applied to medical treatment
- attempts to induce iPS cells other than c-MYC have been made.
- the induction efficiency further decreases (0.001% or less of the total number of cells).
- An object of the present invention is to improve the induction efficiency of pluripotent stem cells and promote the research and utilization of the cells.
- the present inventors have cultivated somatic cells in contact with a factor involved in nuclear reprogramming (also referred to herein as a nuclear reprogramming factor).
- a nuclear reprogramming factor also referred to herein as a nuclear reprogramming factor.
- ES cell-like cells that is, stem cells that retain pluripotency are induced at a high frequency, and pluripotent stem cells can be produced with high efficiency and stability.
- a retroviral vector carrying a gene that encodes a nuclear reprogramming factor is introduced into a somatic cell in the presence of a functional substance that has an activity of binding to a retrovirus, the method is more effective than the conventional method using polybrene. It was found that the induction efficiency of pluripotent stem cells was improved and pluripotent stem cells could be obtained at a high frequency, and the present invention was completed.
- the first invention of the present invention relates to a method for producing a cell population containing pluripotent stem cells, the step of treating somatic cells contacted with a nuclear reprogramming factor under nutrient starvation conditions, and And / or treatment with an agent that arrests the cell cycle.
- a production method wherein the step of treating under nutrient starvation conditions is a step of treating under protein starvation conditions, and the step of treating under protein starvation conditions comprises a medium having a low protein concentration
- a production method is provided which is a step of culturing somatic cells in contact with a nuclear reprogramming factor using a medium having a protein concentration of 0 to 0.5%.
- somatic cells contacted with a nuclear reprogramming factor are somatic cells cultured in a culture medium supplemented with a nuclear reprogramming factor, a somatic cell into which a nuclear reprogramming factor has been introduced, a gene encoding a nuclear reprogramming factor
- a production method is provided which is a somatic cell selected from the group consisting of a somatic cell into which is introduced and a somatic cell in which expression of a nuclear reprogramming factor is induced by a drug.
- the nuclear reprogramming factor is a nuclear reprogramming factor selected from the group consisting of OCT4, SOX2, c-MYC, KLF4, NANOG and LIN28.
- a second invention of the present invention relates to a method for producing a cell population containing pluripotent stem cells, comprising the following steps: (1) A step of bringing a nuclear reprogramming factor into contact with a somatic cell, and (2) a step of treating the somatic cell obtained in (1) above under a nutrient starvation condition and / or a step of treating with a drug that stops the cell cycle.
- the above step (1) comprises adding a nuclear reprogramming factor to a culture medium, introducing a nuclear reprogramming factor or a gene encoding the factor into a somatic cell, and a somatic cell with a drug.
- a production method carried out by an operation selected from the group consisting of induction of expression of the factor.
- a production method in which the step of treating in the nutrient starvation condition in the step (2) is a process of treating in the protein starvation condition, and the step of treating in the protein starvation condition is a medium having a low protein concentration, for example, protein concentration
- a production method is provided which is carried out by culturing using a medium in which is 0 to 0.5% (w / v).
- a production method characterized in that, in the step of treating under the protein starvation conditions, a cell death inhibitor is contained in the medium to be used.
- the nuclear reprogramming factor is a nuclear reprogramming factor selected from the group consisting of OCT4, SOX2, c-MYC, KLF4, NANOG and LIN28.
- the third invention of the present invention includes the step of producing a cell population containing pluripotent stem cells according to the first or second invention, and the step of isolating pluripotent stem cells from the obtained cell population.
- a method for producing pluripotent stem cells is provided.
- the fourth invention of the present invention relates to a method for producing a cell population containing pluripotent stem cells, and relates to a retro which retains a gene encoding a nuclear reprogramming factor in the presence of a functional substance having an activity of binding to a retrovirus.
- the method includes the step of infecting a somatic cell with a viral vector.
- the functional substance having an activity of binding to a retrovirus is fibronectin, fibroblast growth factor, type V collagen, a fragment of the polypeptide, polylysine, DEAE-dextran, and the substance A production method is provided which is a functional substance selected from the group consisting of functional substances having a binding site in the retrovirus.
- a production method wherein the functional substance having an activity of binding to a retrovirus is a polypeptide having a heparin-II binding region of fibronectin. Furthermore, a production method is also provided in which the gene encoding a nuclear reprogramming factor is a gene encoding a nuclear reprogramming factor selected from the group consisting of OCT4, SOX2, c-MYC, KLF4, NANOG and LIN28.
- the fifth invention of the present invention is a pluripotency comprising the step of producing a cell population containing pluripotent stem cells according to the fourth invention and the step of isolating pluripotent stem cells from the obtained cell population.
- a method for producing a stem cell is provided.
- the pluripotent stem cell obtained by the present invention has the ability to differentiate into a desired cell, and the differentiated cell obtained by differentiating the pluripotent stem cell exhibits high engraftment in vivo. Therefore, the method of the present invention is extremely useful in basic research and medical application research.
- 3 is a photograph of cells derived from three germ layers showing the teratoma-forming ability of established iPS cell clones. It is a photograph which shows the pluripotency by the differentiation induction of the established iPS cell clone via EB.
- a somatic cell means a cell other than a germ cell among cells constituting an organism.
- the step of bringing a nuclear reprogramming factor into contact with a somatic cell is, for example, a method of adding a polypeptide of the factor to a culture medium in contact with the somatic cell (eg, Cell Stem Cell, Volume 4 472-476 (2009), a method of introducing a polypeptide of the factor into a somatic cell, a method of introducing a gene encoding the factor into a somatic cell, or a chemical substance (eg, 5-aza-2 ′ (Deoxycytidine, BIX-01294, PD0325901, suberoylanilide hydroxamic acid, valproic acid, etc.) by inducing the expression of the endogenous factor in somatic cells, or a combination of any of the above methods be able to.
- a culture medium in contact with the somatic cell eg, Cell Stem Cell, Volume 4 472-476 (2009), a method of introducing a polypeptide of the factor into a somatic cell, a method of introducing
- Examples of the method for introducing the gene encoding the nuclear reprogramming factor into the somatic cell include a method of introducing a vector incorporating the gene encoding the nuclear reprogramming factor into the somatic cell.
- the vector is not particularly limited, and an appropriate vector can be selected and used from known vectors. For example, either a method using a viral vector or a method using a non-viral vector can be used in the present invention. Regarding the details of these vectors, many documents have already been published, and these vectors can be appropriately selected from these documents and used.
- the viral vector used above is not particularly limited, and is usually a known viral vector used in gene transfer methods, such as a retroviral vector (including lentiviral vectors and pseudotype vectors), an adenoviral vector, an adenovirus vector.
- a retroviral vector including lentiviral vectors and pseudotype vectors
- An associated virus vector simian virus vector, vaccinia virus vector, Sendai virus vector, or the like can be used.
- retroviral vectors, lentiviral vectors or adenoviral vectors can be used.
- those lacking replication ability are preferable so that they cannot self-replicate in infected cells.
- a substance that improves gene transfer efficiency can also be used during gene transfer.
- substances that improve gene transfer efficiency include substances that have an activity of binding to viral vectors, such as fibronectin or fibronectin fragments.
- a fibronectin fragment having a heparin binding site for example, a fragment commercially available as Retronectin (registered trademark, CH-296, manufactured by Takara Bio Inc.) can be used.
- Retronectin registered trademark, CH-296, manufactured by Takara Bio Inc.
- the present invention is not particularly limited, the aforementioned substances are particularly suitable for gene transfer using a retroviral vector or a lentiviral vector.
- a gene encoding a nuclear reprogramming factor can be used by being incorporated into one or more types of viral vectors.
- polybrene which is a synthetic polycation having an action of improving the infection efficiency of retrovirus cells
- polybrene which is a synthetic polycation having an action of improving the infection efficiency of retrovirus cells
- a retrovirus vector for the purpose of inducing pluripotent stem cells.
- the present inventors introduced a gene encoding a nuclear reprogramming factor into a somatic cell using a retroviral vector in the presence of a functional substance having an activity of binding to a retrovirus without using polybrene. It was found for the first time that pluripotent stem cells can be obtained at a high frequency as a result of improved induction efficiency of pluripotent stem cells compared to the case of using polybrene.
- the method includes a step of infecting somatic cells with a retroviral vector carrying a gene encoding a nuclear reprogramming factor in the presence of a functional substance having an activity of binding to a retrovirus.
- a method for producing a cell population containing pluripotent stem cells is provided.
- retroviral vectors including lentiviral vectors or pseudotype vectors can be used in this embodiment.
- a functional substance having an activity to bind to a retrovirus there is no particular problem as long as it is a substance having the activity.
- fibronectin fibroblast growth factor, type V collagen, fragment of the above polypeptide , Polylysine or DEAE-dextran.
- a functional substance having a binding site in a retrovirus derived from the substance can be used in the present invention.
- a fragment of fibronectin those having a heparin-II binding region in the molecule are suitable, and such a fragment is also described in, for example, WO 97/18318.
- retronectin registered trademark, CH-296, manufactured by Takara Bio Inc.
- substances functionally equivalent to these functional substances for example, functional substances having a heparin-binding site can also be used.
- a mixture of the functional substance, a polypeptide containing the functional substance, a polymer of the functional substance, a derivative of the functional substance, or the like can be used.
- a functional substance having an activity of binding to a retrovirus may be used in combination with a functional substance having an activity of binding to a target cell, ie, a somatic cell into which a gene is to be introduced.
- a functional substance having binding activity may be used in combination.
- the functional substance having the target cell binding activity is not particularly limited, and examples thereof include a substance having a ligand that binds to the target cell.
- the ligand include cell adhesion proteins (fibronectin, laminin, collagen, etc.) or fragments thereof, hormones, cytokines, antibodies to cell surface antigens, polysaccharides, glycoproteins, glycolipids, glycoproteins or glycolipids derived from glycolipids Or metabolites of target cells.
- the functional substance is immobilized on a suitable solid phase, for example, a container (plate, petri dish, flask, bag, etc.) used for cell culture or a carrier (microbeads, etc.). Used in.
- a suitable solid phase for example, a container (plate, petri dish, flask, bag, etc.) used for cell culture or a carrier (microbeads, etc.). Used in.
- pluripotent stem cells can be obtained with higher efficiency than conventional methods even when a low concentration of virus is used, so that the amount of virus used can be greatly reduced.
- pluripotent stem cells are obtained with higher efficiency than conventional methods. be able to.
- the non-viral vector used above is not particularly limited, and examples thereof include a plasmid vector, a method of introducing this using a carrier such as a liposome or ligand-polylysine, a calcium phosphate method, an electroporation method, Alternatively, it can be introduced by a particle gun method or the like.
- a gene encoding a nuclear reprogramming factor can usually be inserted into a viral vector or a non-viral vector so as to be expressed under the control of an appropriate promoter.
- the promoter any of those that constitutively promote expression and those that are induced by drugs or the like (for example, tetracycline or doxorubicin) can be used.
- promoters or other regulatory elements that cooperate with the transcription initiation site such as enhancer sequences or terminator sequences, may be present in the vector.
- only a gene encoding one type of factor may be incorporated into one vector, but genes encoding a plurality of factors may be incorporated into one vector.
- a gene that can serve as a marker for confirming the introduction of the gene for example, a drug resistance gene, a gene encoding a reporter enzyme, or a gene encoding a fluorescent protein
- a gene that can serve as a marker for confirming the introduction of the gene for example, a drug resistance gene, a gene encoding a reporter enzyme, or a gene encoding a fluorescent protein
- OCT4, SOX2, c-MYC, KLF4, NANOG, LIN28, etc. are known, and usually a plurality of these, preferably 2 to 3 or more types are used.
- the amino acid sequence information of factors derived from various organisms (for example, human and mouse) and the base sequence information of genes encoding the factors are published on a database.
- the gene encoding the factor can be isolated or artificially synthesized based on sequence information available from a database.
- the above factor (polypeptide) can also be obtained from a culture obtained by culturing a transformant introduced with these genes.
- Step of contacting nuclear reprogramming factor with somatic cell there is no particular limitation on the somatic cell used in the present invention, and any somatic cell can be used.
- somatic cells such as fibroblasts, preadipocytes, hepatocytes, blood cells, skin keratinocytes, mesenchymal stem cells, hematopoietic stem cells, or neural stem cells can be used.
- the somatic cells may be collected from living organisms or established as cell lines. When it is desired to transplant the prepared pluripotent stem cell or a cell differentiated from the cell into a living body, it is preferable to induce the pluripotent stem cell from a somatic cell collected from the living body itself.
- a gene encoding a nuclear reprogramming factor is introduced into a somatic cell using a known vector, and the factor is expressed from the introduced gene.
- contact between the nuclear reprogramming factor and somatic cells is achieved.
- each vector When gene transfer is performed using a plurality of vectors incorporating a gene encoding a nuclear reprogramming factor, each vector may be sequentially introduced into somatic cells, or a mixture of vectors may be prepared and simultaneously introduced into somatic cells. May be.
- a medium having a reduced concentration hereinafter sometimes referred to as a nutrient starvation medium.
- a medium containing no protein or a reduced concentration thereof for example, a medium having a protein concentration in the range of 0 to 0.5% (w / v) (hereinafter referred to as a protein concentration) May be described as protein starvation medium), preferably in the range of 0 to 0.3% (w / v), more preferably in the range of 0 to 0.1% (w / v).
- the operation of culturing cells in a certain medium is exemplified.
- the protein concentration in the protein starvation medium can be measured as a standard protein (for example, bovine serum albumin) equivalent by a known method, for example, the Raleigh method, the Bradford method, or the bicinchoninic acid (BCA) method.
- BCA bicinchoninic acid
- the basic medium used for the preparation of the protein starvation medium contains an energy source such as amino acids, sugars or organic acids, vitamins, buffer components for adjusting pH or inorganic salts, and the like, for example, DMEM.
- an energy source such as amino acids, sugars or organic acids, vitamins, buffer components for adjusting pH or inorganic salts, and the like, for example, DMEM.
- a known medium or a modification thereof, or other commercially available medium can also be used.
- Ingredients for maintaining the pluripotency usually added to the medium for ES cells or iPS cells, such as leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) Growth factors such as transforming growth factor (transformor- ⁇ 1: TGF- ⁇ 1) or cilia-like neurotrophic factor (CNTF) or other cytokines may be added.
- serum or plasma can be added.
- the above-mentioned various components are in a protein concentration range in which the total amount of final protein in the medium is 0 to 0.5% (w / v), preferably in a protein concentration range of 0 to 0.3% (w / v). More preferably, it is added to the medium so that the protein concentration is in the range of 0 to 0.1% (w / v).
- the medium may be prepared according to a known medium preparation method and used for culturing somatic cells in contact with a nuclear reprogramming factor.
- the component may be a single component or a plurality of components.
- other components may be removed or reduced in the protein starvation medium.
- the treatment under nutrient starvation conditions is performed after subjecting a somatic cell contacted with a nuclear reprogramming factor, for example, a somatic cell obtained in the step described in (1) above to co-culture with a normal feeder cell, It can be carried out by replacing the medium with a nutrient starvation medium and continuing the culture.
- This medium exchange may be performed by a single operation, or may be divided into several times, and the content of nutrient components may be reduced stepwise to replace the nutrient starvation medium.
- the culture may be continued by changing to a medium for co-culture with feeder cells.
- the somatic cells obtained in the step described in (1) above may be cultured from the beginning using a nutrient starvation medium and then replaced with a medium for co-culture with feeder cells, and the culture may be continued.
- the treatment with the nutrient starvation medium is not limited to the treatment performed by exchanging the medium as described above, and may be another method capable of being treated under substantially equivalent conditions, for example, proteolytic enzyme is added to the medium.
- the nutritional starvation state may be achieved by an operation such as a method of adding to reduce the protein concentration or a method of adding lipase to reduce the lipid concentration.
- the feeder cells here are not particularly limited as long as they can supply components effective for the growth of induced pluripotent stem cells, but cells such as fibroblasts (eg embryo fibroblasts) Are preferably used.
- the cell number (also referred to as the seeding number in the present specification) for seeding the somatic cell obtained in the step (1) on the feeder cell is the number of cells in which pluripotent stem cells are efficiently induced.
- the c-MYC gene is not introduced, about 9,000 cells / cm 2 is seeded.
- pluripotent stem cells can be further efficiently induced by reducing the number of cells seeded by the somatic cells. For example, a cell number of 100 to 5000 cells / cm 2 is good, and a cell number of 250 to 5000 cells / cm 2 is preferable.
- extracellular matrix proteins or fragments thereof can be used.
- the protein or a fragment thereof is preferably used in a state immobilized on an appropriate solid phase such as a culture vessel.
- cells are treated under nutrient starvation conditions during the whole period of culture of somatic cells contacted with a nuclear reprogramming factor, or an arbitrary partial period.
- the somatic cells are exposed to nutrient starvation conditions for at least 12 hours, preferably 18 hours or more during the culturing step of the somatic cells contacted with the nuclear reprogramming factor.
- the treatment time is no particular upper limit to the treatment time, but from the viewpoint of cell viability, the treatment is performed for a period of 8 days or less, preferably 6 days or less.
- a step of treating with a drug that stops the cell cycle may be used.
- the agent used to stop the cell cycle is not particularly limited, but butyrolactone I, olomoucine, roscovitine, purvalanol A, purvalanol B, DRB (5,6-dichlorobenzimidazole 1- ⁇ -D-ribofuranoside), SU9516, NU6102, Cyclin-dependent kinase inhibitors such as NU6140, JNJ-770621, CDK1 / 2 inhibitor II, flavopiridol, PD0332991, CDK2 inhibitory peptides (TAT-LFG and TAT-LDL), mitomycin, cisplatin, methotrexate, 5-fluorouracil, Anti-cancer agents such as hydroxyurea, irinotecan hydrochloride, adriamycin, actinomycin D
- both the step of treating under the above-mentioned nutrient starvation conditions and the step of treating with a drug that stops the cell cycle may be performed.
- a cell death inhibitor may be used during a part of the culture period.
- the cell death inhibitor is not particularly limited, but Y-27632 [(R) (+)-trans-4- (1-aminoethyl) -N- (4-pyridyl) cyclohexanecarboxamide dihydrochloride] and the like Can be used.
- treatment conditions with drugs that halt the cell cycle, or normal conditions there are no particular limitations on the culture conditions of somatic cells in contact with the nuclear reprogramming factor.
- Pluripotent stem cells obtained by the method described above can be distinguished from other cells based on their morphological characteristics.
- alkaline phosphatase stage-specific embryonic antigen (SSEA, such as SSEA-4), tumor rejection antigen (TRA) -1-60, TRA-1-81, OCT4 or NANOG
- SSEA stage-specific embryonic antigen
- TRA tumor rejection antigen
- a marker molecule that serves as an indicator of the undifferentiated state such as.
- the expression of the molecule can be confirmed using, for example, an antibody that recognizes the molecule.
- alkaline phosphatase the expression can also be confirmed based on the enzyme activity.
- pluripotent stem cells can be isolated from the cell population obtained by the above operation, and pluripotent stem cells separated from other cells can be obtained.
- the pluripotent stem cells isolated in this way can be established as a cell line by a known method. That is, as one aspect of the present invention, pluripotency including the steps of the method for producing a cell population containing the pluripotent stem cells of the present invention and the step of isolating pluripotent stem cells from the obtained cell population. Examples include stem cell production methods.
- pluripotent stem cells can be induced and grown at a higher frequency as compared with conventional methods for producing pluripotent stem cells (for example, iPS cells), and the yield of pluripotent stem cells can be improved. Manufacturing is possible.
- KLF4 gene amplification synthetic primers hKLF4-F and hKLF4-R having the base sequences described in SEQ ID NOs: 3 and 4 in the sequence listing were synthesized, respectively.
- the SOX2 fragment and the KLF4 fragment were mixed with pDON-AI-2 Neo DNA (manufactured by Takara Bio Inc.), which was also digested with NotI-SalI, and ligated using DNA Ligation Kit ⁇ Mighty Mix> (manufactured by Takara Bio Inc.). . Escherichia coli JM109 (manufactured by Takara Bio Inc.) was transformed with this reaction product to obtain a transformant.
- plasmids with the desired DNA fragment inserted were selected to obtain recombinant plasmids pDON-AI-2-Neo-SOX2 and pDON-AI-2-neo-KLF4.
- This pDON-AI-2-Neo-SOX2 is a plasmid containing an open reading frame encoding the SOX2 polypeptide contained in NM_003106.2.
- PDON-AI-2-Neo-KLF4 is a plasmid containing a sequence encoding the KLF4 polypeptide contained in NM_004235.3.
- Preparation Example 2 Preparation of Retroviral Vector (1) Transfer to pDON-AI-2 and pDON-5 Plasmid Vectors pDON-AI-2-Neo-OCT4 and pDON-AI-2-Neo- prepared in Preparation Example 1 SOX2, pDON-AI-2-Neo-KLF4, pDON-AI-2-Neo-LIN28, and pDON-AI-2-Neo-NANOG were treated with restriction enzymes NotI and SalI, respectively, followed by 1.0% agarose electrophoresis The resulting fragments were separated on a gel.
- each of the fragments was mixed with pDON-5 DNA (Takara Bio Inc.) digested with NotI-SalI, and DNA Ligation Kit ⁇ It connected using Mighty Mix> (made by Takara Bio Inc.).
- Recombinant plasmids thus prepared are selected from those into which each gene has been correctly inserted, and pDON-5-OCT4, pDON-5-SOX2, pDON-5-KLF4, pDON-5-LIN28, and pDON-5, respectively. It was named NANOG.
- recombinant plasmids were prepared by inserting these into pDON-AI-2 DNA (Takara Bio Inc.) in the same manner, and pDON-AI-2-OCT4 and pDON- were respectively obtained. They were named AI-2-KLF4 and pDON-AI-2-LIN28.
- pDON-AI-2-OCT4-IR-SOX2 is selected from the recombinant plasmids thus prepared, those having the respective genes inserted correctly are selected, and pDON-AI-2-OCT4-IR-SOX2, pDON-AI-2-LIN28-IR-NANOG, and pDON-5-OCT4, respectively.
- pDON-AI-2-OCT4-IR-SOX2 is a plasmid in which the OCT4 gene, IRES, and SOX2 gene are inserted into pDON-AI-2 in this order from the 5 'end.
- pDON-AI-2-LIN28-IR-NANOG is a plasmid in which LIN28 gene, IRES, and NANOG gene are inserted into pDON-AI-2 in this order from the 5 'end.
- pDON-5-OCT4-IR-SOX2 is a plasmid in which the OCT4 gene, IRES and SOX2 gene are inserted into pDON-5 in this order from the 5 'end.
- pDON-5-LIN28-IR-NANOG is a plasmid in which LIN28 gene, IRES and NANOG gene are inserted into pDON-5 in this order from the 5 'end.
- pDON-5-NANOG-IR-LIN28 is a plasmid in which NANOG gene, IRES and LIN28 gene are inserted into pDON-5 in this order from the 5 'end.
- Retroviral vector G3T-hi cells (manufactured by Takara Bio Inc.) were treated with 10F-DMEM [10% fetal bovine serum (manufactured by Invitrogen) and 1% penicillin / streptomycin so that the cells became 5 ⁇ 10 5 cells / mL
- 10F-DMEM 10% fetal bovine serum (manufactured by Invitrogen) and 1% penicillin / streptomycin so that the cells became 5 ⁇ 10 5 cells / mL
- the suspension was suspended in D-MEM (manufactured by Nacalai Tesque) and 4 mL of the suspension was seeded on a 6 cm collagen-coated dish (manufactured by Iwaki) and cultured in a CO 2 incubator at 37 ° C. for 24 hours.
- OPTI-MEM manufactured by Invitrogen
- 10 ⁇ L of TransIT (registered trademark) -293 manufactured by Takara Bio Inc.
- 2 ⁇ g of pGP plasmid manufactured by Takara Bio Inc.
- 1 ⁇ g of The pE-Ampho plasmid manufactured by Takara Bio Inc.
- 2 ⁇ g of each recombinant plasmid prepared in Preparation Example 2- (1) and (4) were added and mixed, and the mixture was further allowed to stand at room temperature for 15 minutes.
- This mixed solution was added to the G3T-hi cells and the culture was continued.
- the mixture was replaced with 4 mL of 10F-DMEM.
- the virus-containing medium was collected and filtered through a 0.45 ⁇ m filter to prepare a virus solution containing a retrovirus vector.
- 10F-DMEM was further added to continue the culture, and after 24 hours, the virus-containing medium was collected and filtered through a 0.45 ⁇ m filter.
- the virus solution was stored frozen at ⁇ 80 ° C. and thawed before use.
- Table 2 shows the names of retroviral vectors obtained from the respective recombinant plasmids.
- Preparation Example 3 Preparation of Fluorescent Protein Expression Retroviral Vector (1) Preparation of Plasmid Vector AcGFP1 gene was transferred from pAcGFP1 (Clontech) to pDON-AI DNA (Takara Bio) to prepare pDON-AI-AcGFP1 . Similarly, mStrawberry gene was transferred to pDON-AI-2 Neo DNA from pm Strawberry Vector (manufactured by Clontech) to prepare pDON-AI-2-Neo-m Strawberry.
- retroviral vector DON-am-AcGFP1 was obtained from pDON-AI-AcGFP1, and retrovirus was produced from pDON-AI-2-Neo-mStrainberry.
- a viral vector DONAI2-am-mStrainberry was prepared.
- Preparation Example 4 Preparation of Medium for Mouse ES Cells (1) Preparation of 100 ⁇ LIF Knockout DMEM (Dulbecco's modified) against 0.5 mL of 10 6 units / mL of leukemia inhibitory factor (LIF; ESGRO, manufactured by Invitrogen) Eagle's medium (manufactured by Invitrogen) (8.5 mL) and knockout serum replacement (manufactured by Invitrogen) (1.5 mL) were added to prepare 100 ⁇ LIF.
- LIF leukemia inhibitory factor
- Example 1 Induction of pluripotent stem cells (1) Immobilization of retronectin to culture plates Phosphate buffer so that each well of a non-treatment 6-well culture plate (Becton Dickinson) has a concentration of 20-25 ⁇ g / mL Retronectin (registered trademark, manufactured by Takara Bio Inc.) solution diluted with an aqueous solution (PBS) was added in an amount of 2 mL, and immobilized at 4 ° C. overnight or at room temperature for 2 hours. Thereafter, the solution was removed from each well, washed once with PBS, and stored at 4 ° C. until subjected to each experiment.
- Retronectin registered trademark, manufactured by Takara Bio Inc.
- Second gene transfer by retroviral vector The second gene transfer was performed on the first day of culture. 700 ⁇ L of each virus solution prepared in Preparation Example 2 was mixed in the combination shown in Table 3, and polybrene (hexadimethrin bromide; manufactured by Aldrich) was added to a final concentration of 8 ⁇ g / mL to prepare a retrovirus vector mixture. did. The supernatant was removed from the culture plate cultured in (2), and this retroviral vector mixture was added. After culturing in a CO 2 incubator at 37 ° C. for 4 hours, 2 mL of 10F-DMEM was added. After further culturing for 2 days, the supernatant was removed, and 2 mL of 10F-DMEM was added to continue the culture.
- polybrene hexadimethrin bromide
- the transfected cells on day 7 of culture prepared in (3) were collected and suspended in 10F-DMEM so as to be 5 ⁇ 10 4 cells / mL. 10 mL of this suspension was seeded on the feeder cells, and the culture was continued.
- pluripotent stem cell colonies The number of pluripotent stem cell (iPS cells) colonies under each condition of protein starvation treatment or methylation inhibitor treatment under conditions A, B, and C was measured on the 28th day of culture. . The results are shown in Table 4.
- pluripotent stem cell colonies were confirmed from the 16th day of culture under any condition, whereas in the group treated with methylation inhibitor, the pluripotent stem cells were cultured on the 26th day of culture. Colonies were confirmed. In other words, it was revealed that the induction period of pluripotent stem cells can be significantly shortened by protein starvation treatment.
- Example 2 Examination of protein starvation conditions (1) Immobilization of retronectin on culture plate Retronectin was immobilized on a culture plate in the same manner as in Example 1- (1).
- feeder cells seeded on the feeder cells by the same method as in Example 1- (4), and the culture was continued.
- feeder cells mitomycin C-treated SNL76 / 7 cells or STO cells (Dainippon Pharmaceutical Co., Ltd.)
- SNL76 / 7 cells or STO cells (Dainippon Pharmaceutical Co., Ltd.)
- STO cells Dainippon Pharmaceutical Co., Ltd.
- the gene-introduced cells were seeded at a rate of 2.5 ⁇ 10 5 cells.
- Example 3 Examination of cell cycle arrester (1) Immobilization of retronectin on culture plate Retronectin was immobilized on the culture plate in the same manner as in Example 1- (1).
- the group treated with the cell cycle arrester had much more pluripotent stem cell colonies than the control (no treatment). That is, in the process of inducing pluripotent stem cells, it has been clarified that the efficiency of inducing pluripotent stem cells is dramatically increased by performing a treatment that stops the cell cycle.
- Example 4 Examination of the number of seeded cells of gene-transferred cells (1) Immobilization of retronectin on a culture plate Retronectin was immobilized on a culture plate in the same manner as in Example 1- (1).
- Second gene transfer with retroviral vector 700 ⁇ L of virus solution is mixed in the combination of Example 4- (2) on the first day of culture so that the final concentration becomes 8 ⁇ g / mL. After adding polybrene to prepare a retrovirus vector mixture, the supernatant was removed from the plate in which the cells were cultured, and this retrovirus vector mixture was added. After culturing for 1 day, the supernatant was removed, and 2 mL of 10F-DMEM was added to continue the culture.
- the induction efficiency of pluripotent stem cell colonies was higher as the number of seeded cells of the transgenic cells was smaller. That is, in the process of inducing pluripotent stem cells, it has been clarified that the induction efficiency of pluripotent stem cells is increased by reducing the number of seeded cells into which the gene is introduced.
- the transfected cells were seeded on the feeder cells by the same method as in Example 2- (4), and the culture was continued.
- a 6-well culture plate manufactured by Corning
- feeder cells were seeded at a rate of 2.5 ⁇ 10 5 cells.
- the gene-introduced cells were seeded at 2 ⁇ 10 4 cells.
- the group subjected to protein starvation treatment had far more pluripotent stem cell colonies than the control (no treatment). That is, in the process of inducing pluripotent stem cells, it has been clarified that the efficiency of inducing pluripotent stem cells is dramatically increased by performing protein starvation treatment.
- Y27632 [(R) (+)-trans-4- (1-aminoethyl) -N- (4-pyridyl) cyclohexanecarboxyamide dihydro, which is one of the substances that suppress cell death during the protein starvation treatment period. It was revealed that pluripotent stem cell colonies can be stably obtained by adding [chloride].
- Example 6 Examination of the number of seeded cells of gene-transferred cells-2 (1) Immobilization of retronectin on culture plate Retronectin was immobilized on the culture plate in the same manner as in Example 1- (1).
- Example 7 Examination of Gene Introduction Method Regarding gene introduction using a retroviral vector, introduction was performed once or twice using retronectin or polybrene, and pluripotent stem cells were induced and compared. Table 13 shows the set conditions.
- Example 4- (2) First gene transfer by retroviral vector Regarding gene transfer by retronectin, gene transfer was performed in the same manner as in Example 4- (2).
- the gene transfer by polybrene was performed by the following method. Specifically, 2 mL of human skin fibroblasts suspended in 10F-DMEM at 5 ⁇ 10 4 cells / mL were seeded in each well in a 6-well culture plate one day ago and cultured for one day. After mixing 700 ⁇ L of the virus solution prepared in Preparation Example 2 under the combination of condition C in Table 3, polybrene was added to a final concentration of 8 ⁇ g / mL to prepare a retrovirus vector mixture, and then the cells were cultured. The supernatant was removed from the prepared plate, this retroviral vector mixture was added, and culture was started (culture day 0).
- Second gene transfer by retroviral vector For the second gene transfer group, gene transfer by retronectin was performed by the same method as in Example 4- (2) on the first day of culture.
- the gene introduction with polybrene was performed in the same manner as the gene introduction with polybrene in Example 7- (2). That is, the supernatant was removed from the plate in which the cells were cultured, and a retrovirus vector mixture prepared in the same manner was added to continue the culture. After culturing for 1 day, the supernatant was removed, and 2 mL of 10F-DMEM was added to continue the culture.
- Example 8 Comparison of Gene Transfer Methods at the Time of Multiple Gene Transfer When pluripotent stem cells are induced, gene transfer may be performed using a plurality of retroviral vectors. Therefore, gene transfer efficiency by retronectin or polybrene was compared as a method for gene transfer using a plurality of retrovirus vectors.
- Retronectin was immobilized on the culture plate in the same manner as in Example 1- (1). However, a non-treatment 24-well culture plate (Becton Dickinson) was used, and 500 ⁇ L of the retronectin solution was added to each well.
- gene introduction with polybrene was performed in the same manner as gene introduction with polybrene in Example 7- (2).
- the cells were suspended in a medium so as to be 4 ⁇ 10 4 cells / mL, and 500 ⁇ L was added to each well of a 24-well culture plate (Corning).
- 250 microliters of virus solutions were mixed at a time, and polybrene was added so that it might become final concentration of 4 micrograms / mL, and the retrovirus vector liquid mixture was prepared. After 1 day of culture, the supernatant was removed and 500 ⁇ L of 10F-DMEM was added, and the culture was continued.
- Retronectin was immobilized on the culture plate in the same manner as in Example 8- (1).
- Example 10 Examination of gene transfer method-2 Regarding gene transfer using a retroviral vector, pluripotent stem cells were induced and compared under the conditions of using retronectin or polybrene and further changing the amount of retrovirus.
- Retronectin was immobilized on the culture plate in the same manner as in Example 1- (1).
- Example 7- (2) First gene transfer by retrovirus vector Gene transfer was carried out in the same manner as in Example 7- (2). However, the virus solution was set to a group diluted 10-fold or 10-fold with 10F-DMEM.
- Transgenic cells were seeded on feeder cells in the same manner as in Example 7- (4), and the culture was continued. However, the transgenic cells were seeded at 2 ⁇ 10 4 cells.
- gene introduction with retronectin resulted in much higher pluripotent stem cell induction efficiency than gene transfer with polybrene. Further, it has been clarified that the gene introduction efficiency is further improved by diluting and using the virus solution when retronectin is used for gene introduction, and as a result, the induction efficiency of pluripotent stem cells is further improved.
- Example 11 Examination of gene introduction method-3 The same test as in Example 10 was performed with only three types of genes to be introduced, OCT4, SOX2, and KLF4.
- Example 12 Comparison of gene introduction methods during multigene introduction-3 The gene transfer efficiency using retronectin or polybrene with a plurality of retroviral vectors was further compared.
- a fluorescent protein gene was introduced using a method of carrying out gene introduction twice, similar to the pluripotent stem cell induction experiment, targeting human adult dermal fibroblasts derived from 4 different donors.
- cell A is derived from a 28-year-old white woman
- cell B is derived from a 42-year-old white woman
- cell C is derived from a 51-year-old white woman
- cell D is derived from a 48-year-old black woman (all manufactured by Lonza).
- Retronectin was immobilized on the culture plate in the same manner as in Example 8- (1).
- Example 8- (2) First gene transfer by retroviral vector Gene transfer was carried out in the same manner as in Example 8- (2) (culture day 0). However, the virus solution was diluted with 10F-DMEM in a 10-fold, 100-fold, or 1000-fold dilution group.
- Second gene transfer by retroviral vector The second gene transfer was performed on the first day of culture by the same method as in Example 12- (2). However, in the gene transfer with polybrene, the supernatant was removed on the second day of culture, and 500 ⁇ L of 10F-DMEM was added, and the culture was continued.
- Example 13 Examination of donor difference Regarding the gene introduction by retrovirus vector, the same four types of human adult skin fibroblasts as in Example 12 were targeted, and pluripotent stem cells were induced using retronectin or polybrene for comparison. Table 20 shows the set conditions.
- Retronectin was immobilized on the culture plate in the same manner as in Example 1- (1). However, a non-treatment 12-well culture plate (manufactured by Becton Dickinson) was used, and 1 mL of retronectin solution was added to each well.
- Example 7- (2) First gene transfer by retrovirus vector Gene transfer was carried out in the same manner as in Example 7- (2) (culture day 0). However, a 12-well plate for cell culture (manufactured by Corning) was used for gene introduction with polybrene. As a virus solution, a solution prepared by mixing equal amounts of three types of vectors was diluted 10-fold with 10F-DMEM, and 1 mL was added to each well. 1 mL of human adult dermal fibroblasts suspended in 10F-DMEM at 5 ⁇ 10 4 cells / mL were also seeded in each well.
- Second Gene Introduction with Retroviral Vector A second gene introduction was performed on the first day of culture by the same method as in Example 13- (2). However, in the gene transfection with polybrene, the supernatant was removed on the second day of culture, and 1 mL of 10F-DMEM was added at a time, and the culture was continued.
- Example 10- (5) Culture By the same method as in Example 10- (5), the culture on feeder cells was continued until the 25th day of culture.
- pluripotent stem cells As shown in Table 21, the formation of pluripotent stem cells was observed under all conditions. In any donor-derived cell, gene introduction with retronectin was much more effective than gene introduction with polybrene. The induction efficiency of pluripotent stem cells was high.
- Example 14 Examination of Transgenes With regard to gene introduction using a retroviral vector, retronectin was used, and the combination of genes to be introduced was changed, and pluripotent stem cells were induced and compared. Table 22 shows the set combinations.
- Retronectin was immobilized on the culture plate in the same manner as in Example 13- (1).
- Example 4- (2) First gene transfer by retrovirus vector Gene transfer was carried out in the same manner as in Example 4- (2).
- the virus solutions were mixed in equal amounts in the combinations shown in Table 22, and diluted 100-fold with 10F-DMEM, and 1 mL was added to each well.
- 1 mL of human adult dermal fibroblasts suspended in 10F-DMEM at 5 ⁇ 10 4 cells / mL were also seeded in each well.
- Example 10- (5) Culture By the same method as in Example 10- (5), the culture on feeder cells was continued until the 25th day of culture.
- Example 2- (4) Seeding on feeder cells The seeded cells were seeded on the feeder cells by the same method as in Example 2- (4). However, the transgenic cells were seeded at 4 ⁇ 10 5 cells.
- iPS cell pluripotent stem cell colony formed on a 10 cm petri dish under each condition on the 29th day of culture was picked up under a stereomicroscope (SZ61; manufactured by OLYMPUS).
- SZ61 stereomicroscope
- clones # 1, # 4, # 5, # 6, and # 10 were established as iPS cell clones obtained by protein starvation treatment, and clone # 3 was established as an iPS cell clone under control conditions.
- Example 16 Quantification of Provirus Copy Number Inserted into iPS Cell Clone Genome The provirus copy number inserted into the genome of each established iPS cell clone was quantified.
- an iPS cell clone “253G1” established at Kyoto University [Nakagawa, M .; Et al., Nature Biotechnology, Vol. 26, No. 1, pp. 101-106, 2008].
- the control 253G1 was about 19.3 copies, but clone 6.4 was about 6.4 copies, clone # 3 was about 10.2 copies, clone # 4 was about 7.1 copies, clone # 5 was about 11.4 copies, clone # 6 was about 5.7 copies, and clone # 10 was about 13.3 copies. Therefore, the retrovirus produced based on the pDON-5 vector was used for gene transfer by retronectin, and in all of the prepared iPS cell clones, the gene was transferred using polybrene and produced more than 253G1. It was confirmed that iPS cells can be efficiently produced by the above method, despite the fact that the number of inserted copies of retrovirus is clearly small.
- Example 17 Confirmation of ES Cell Marker Gene Expression It was confirmed by RT-PCR whether each established iPS cell clone expressed an ES cell marker gene. The iPS cell clones of clone # 1 and clone # 3 and the 253G1 iPS cell clone as a control were confirmed.
- RNA extraction Several tens of each iPS cell colony was collected, and total RNA was collected using FastPure (registered trademark) RNA Kit (manufactured by Takara Bio Inc.). The method followed the protocol for total RNA extraction from cultured cells attached to Kit.
- cDNA synthesis cDNA was synthesized using the total RNA extracted in Example 17- (1) as a template.
- PrimeScript registered trademark
- RT reagent Kit Perfect Real Time
- 200 ng of total RNA was added.
- TaKaRa PCR Thermal Cycler Dice Gradient manufactured by Takara Bio Inc.
- PCR was performed using 20 ng as a template in terms of the total RNA amount of the cDNA obtained in Example 17- (2).
- 5 ⁇ L of 5 ⁇ PrimeSTAR GXL Buffer manufactured by Takara Bio Inc.
- 2 ⁇ L of dNTP Mixture 2.5 mM etch
- 5 pmol forward primer 5 pmol reverse primer
- 0.5 ⁇ L PrimeSTAR (registered trademark) GXL DNA Polymerase (1.25 U / ⁇ L) (manufactured by Takara Bio Inc.) was added, and sterilized distilled water was added to make the total volume 25 ⁇ L.
- the reaction solution was set in TaKaRa PCR Thermal Cycler Dice Gradient, and 30 cycles of reaction were performed with 98 ° C. for 10 seconds, 60 ° C. for 15 seconds, and 68 ° C. for 15 seconds.
- Example 18 Evaluation of iPS cell clone pluripotency in vivo
- clone # 1 was transplanted into the testes of SCID mice. The teratoma formation ability was evaluated.
- iPS cell suspension The cultured iPS cell clone (clone # 1) was removed from the ES cell (20% Knockout Serum Replacement, 1 mM CaCl 2 , 0.1 mg / mL collagenase IV, 0.25% trypsin) The cell count was performed using a part of the sample. After centrifuging the iPS cell suspension, the supernatant was removed, and the suspension was prepared with HANKS 'BALANCED SALT SOLUTION (manufactured by Sigma) to 5 ⁇ 10 6 cells / mL.
- HANKS 'BALANCED SALT SOLUTION manufactured by Sigma
- Example 18- (1) Administration of iPS cell suspension to testis of SCID mice
- the iPS cell suspension prepared in Example 18- (1) was administered to the testis of SCID mice at 2.5 ⁇ 10 5 cells / 50 ⁇ L.
- Example 19 Comparison of Gene Transfer Efficiency and Pluripotent Stem Cell (iPS Cell) Colony Number in Each Gene Transfer Method
- iPS cell inducer Gene transfer of AcGFP1 gene as an index indicating the abundance of pluripotent stem cells (iPS cells) induction efficiency and AcGFP1-positive cell rate in retronectin gene transfer method (retronectin method) and polybrene gene transfer method (polybrene method)
- retronectin method retronectin method
- polybrene method polybrene gene transfer method
- Retronectin was immobilized on the culture plate in the same manner as in Example 1- (1). However, a non-treatment 12-well plate was used as a plate coated with retronectin, and 1 mL of a retronectin solution (25 ⁇ g / mL) was added to each well.
- Example 10- (5) Culture Culture was performed on feeder cells in the same manner as in Example 10- (5). However, on the 11th day of culture, cells were collected from some wells under Condition A, genome extraction was performed, and the number of inserted retroviral vectors was quantified.
- Table 19 shows the results of Example 19- (4), (5), and (6).
- the insert copy number is about twice as high as that of the retronectin method, but the iPS cell colony number is 9 times as high. It was.
- condition B although there was no difference in the AcGFP1 positive rate in both methods, the retronectin method was more than twice as high in the number of iPS cell colonies. From these, it is certain that the gene transfer efficiency is improved by the retronectin method, but it shows high pluripotent stem cell induction efficiency that is difficult to explain by itself. In addition, it has been clarified for the first time that it has a function of increasing the efficiency of inducing pluripotent stem cells.
- Retrovirus vectors obtained by a series of 5 preparation operations and different in 5 production lots
- retronectin is used. Introduced the gene, and compared the induction efficiency of pluripotent stem cells.
- Virus 1 was subjected to the experiment as it was immediately after preparation and collection, and viruses 2 to 5 were stored frozen after preparation and thawed for the experiment.
- Example 4- (2) First gene transfer by retrovirus vector Gene transfer was carried out in the same manner as in Example 4- (2) (culture day 0). However, the virus solution was diluted 10-fold with 10F-DMEM for each lot and mixed in an equal amount of 3 types of vectors, and 2 mL was added to each well.
- Example 10- (5) Culture By the same method as in Example 10- (5), culture was performed on feeder cells until the 25th day of culture.
- pluripotent stem cells As shown in Table 26, in the induction of pluripotent stem cells using retronectin, there is almost no effect due to the production lot of the virus vector. In addition, when the virus vector used after cryopreservation and thawing was used, the same number of colonies as that of the unfrozen one was observed. When pluripotent stem cells are induced using retronectin, it has been clarified that pluripotent stem cells can be stably induced regardless of the fluctuation of the titer of the virus solution or the presence or absence of freezing and thawing. It was.
- Example 21 Comparison of Retronectin and Native Fibronectin in Gene Transfer by Static Infection Method
- Gene introduction was performed using a plate coated with retronectin and a plate coated with Native fibronectin to induce pluripotent stem cells.
- the plates used were the plates prepared in Example 21- (1) below, a 35 mm petri dish coated with retronectin (manufactured by TAKARA BIO INC., T110A) and a 35 mm petri dish coated with native fibronectin (manufactured by FALCON, 354457).
- Retronectin was immobilized on the culture plate in the same manner as in Example 1- (1). However, a non-treatment 35 mm petri dish (manufactured by IWAKI) was used as the culture container. Moreover, these immobilization operations are not performed on petri dishes coated with retronectin and native fibronectin (hereinafter also referred to as retronectin dish and fibronectin dish, respectively), which are commercially available products.
- Example 10- (5) Culture By the same method as in Example 10- (5), the culture was performed on feeder cells until the 27th day of culture.
- iPS cell induction was possible with retronectin even in the static infection method without centrifugation when adsorbing virus to retronectin.
- Native Fibronectin failed to obtain any pluripotent stem cell colony regardless of the combination of retroviruses. The superiority of retronectin over native fibronectin in iPS cell induction was revealed.
- Example 22 Examination of virus mixing ratio With the aim of improving the induction efficiency of pluripotent stem cells, the optimal virus vector mixing ratio was examined. Three types of genes, OCT4, SOX2, and KLF4, were used for induction.
- Example 23 Efficiency of Retroviral Vector Introduction into Mouse Embryonic Fibroblast (MEF) The efficiency of gene introduction into MEF using a retroviral vector was compared by the retronectin method and the polybrene method.
- Retronectin was immobilized on the culture plate in the same manner as in Example 1- (1). However, a non-treatment 12-well plate (manufactured by Becton Dickinson) was used as a plate to coat retronectin, and 1 mL of retronectin solution (25 ⁇ g / mL) was added to each well.
- the gene transfer efficiency by the retronectin method was much higher than the gene transfer efficiency by the polybrene method. This shows that the gene transfer method by the retronectin method is useful for mouse fibroblasts as well as human fibroblasts, suggesting that efficient induction of iPS cells can be promoted.
- Example 24 Induction of iPS cells from MEF using human iPS cell inducer
- the amino acid sequences of human and mouse iPS cell inducers are very similar, and are highly conserved functionally. The Therefore, it was examined whether mouse iPS cells could be induced from MEF using a human iPS cell inducer.
- Transgenic cells were seeded on feeder cells by the same method as in Example 10- (4), and the culture was continued. However, the passage day was set to the 4th day of gene introduction, and the number of seeded cells was set to a group of 2 ⁇ 10 5 , 5 ⁇ 10 4 or 1 ⁇ 10 4 cells.
- mice iPS cells can be induced from MEFs by using a viral vector carrying a human iPS cell inducer. From this, it was found that the iPS cell induction system using retronectin is useful not only for humans but also for mice.
- Example 25 Confirmation of multipotency by induction of iPS cell differentiation via EB (Embryoid body)
- EB Embryoid body
- One of the definitions of iPS cells is pluripotency. In vitro, it is probably due to differentiation induction via EB. The ability to confirm can be confirmed. Therefore, an experiment was conducted for the purpose of evaluating the pluripotency of the produced iPS cells.
- Alexa Fluor 594 F (ab ') 2 fragment of goat anti-mouse IgG (H + L) antibody (manufactured by Invitrogen) was added 1000-fold diluted with 1% BSA / PBS, and incubated at 4 ° C overnight. . The next day, after washing with PBS three times, observation with a fluorescence microscope was performed.
- the iPS cells produced by this method can differentiate into ⁇ III-tublin, which is an ectoderm cell, and ⁇ -smooth mucelle-actin-positive cell, which is a mesoderm cell. It was shown to have abilities.
- Example 26 Examination of medium from gene introduction to passage to feeder cells Calf serum (calf serum) is expected to have fewer differentiation inducing factors than FBS (fetal calf serum), and is more suitable for iPS cell induction. The possibility was considered. Then, the influence on the iPS cell induction
- Second gene introduction by retroviral vector Second gene introduction was carried out in the same manner as in Example 11- (3).
- iPS cell induction efficiency increased depending on the concentration of calf serum, and induction efficiency higher than that of the control group, Condition A, was obtained at 5%, 10%, and 20%. From this, it was shown that calf's serum is effective for cell expansion at the time of iPS cell induction.
- Example 27 Examination of cell cycle arresting agent-2 With regard to purvalanol A, which is a cell cycle arresting agent, for which the induction promoting effect of pluripotent stem cells was confirmed in Example 3, Y27632 [(R) ( +)-Trans-4- (1-aminoethyl) -N- (4-pyridyl) cyclohexanecarboxamide dihydrochloride] was studied.
- Example 3- (2) First gene transfer by retroviral vector Gene transfer was carried out in the same manner as in Example 3- (2) (culture day 0). However, the virus solution was mixed 10 times with 10F-DMEM in an equal amount of 3 types of vectors, and 2 mL was added to each well.
- Example 28 Examination of cell cycle arresting agent-3
- NU6140 manufactured by ALEXIS BIOCHEMICALS
- ALEXIS BIOCHEMICALS which is one of cell cycle arresting agents
- Retronectin was immobilized on the culture plate in the same manner as in Example 1- (1). However, a non-treatment 12-well culture plate (Becton Dickinson) was used, and 1 mL of the retronectin solution was added to each well.
- Example 4- (2) First gene transfer by retrovirus vector Gene transfer was carried out in the same manner as in Example 4- (2) (culture day 0). However, the virus solution was a 100-fold diluted solution of 3 types of vectors mixed with 10F-DMEM, and 1 mL was added to each well.
- the number of pluripotent stem cell colonies increased in the group treated with NU6140 compared to the control (no treatment). That is, it was reconfirmed that the induction efficiency is increased by stopping the cell cycle in the process of inducing pluripotent stem cells.
- Example 29 Examination of DHCP In induction culture of pluripotent stem cells, compound DHCP (International Publication No. WO98 / 13328) produced by heating a uronic acid compound derived from animals and plants, and GM in which glutathione is added to DHCP The drug treatment according to (International Publication No. 98/39291 pamphlet) was performed, and the influence on the induction efficiency was examined.
- compound DHCP International Publication No. WO98 / 13328
- Example 4- (2) First gene transfer by retrovirus vector Gene transfer was carried out in the same manner as in Example 4- (2) (culture day 0). However, the virus solution was mixed 10 times with 10F-DMEM, and 1 mL was added to each well.
- the number of pluripotent stem cell colonies increased in the group treated with DHCP and GM compared to the control (no treatment). That is, it was revealed that DHCP and its derivative GM have an effect of promoting the induction of pluripotent stem cells.
- Example 30 Comparison of Retronectin and Native Fibronectin in Gene Transfer by Static Infection Method-2 Similarly to Example 21, gene introduction was performed using a plate coated with retronectin and a plate coated with Native fibronectin to induce pluripotent stem cells. At the same time, gene transfer with polybrene was also performed, and the dilution rate of the virus solution was also examined.
- the plates used were commercially available 35 mm petri dishes coated with retronectin (Takara Bio, T110A) and 35 mm petals coated with Native fibronectin (FALCON, 354457).
- Example 21- (2) First gene transfer by retrovirus vector Gene transfer using a petri dish coated with retronectin and Native fibronectin was performed in the same manner as in Example 21- (2).
- One day ago 2 mL of human skin fibroblasts suspended in 10F-DMEM were seeded in a 35 mm cell culture dish (manufactured by IWAKI) at 5 ⁇ 10 4 cells / mL, and cultured for 1 day.
- the supernatant is removed from the petri dish in which the cells have been cultured, and this retroviral vector mixed solution is added, followed by CO treatment at 37 ° C.
- the culture was started in 2 incubators (culture day 0). In either method, the virus solution was mixed in equal amounts in the same combination as in Example 21- (2), and a group to be used as it was and a group to be diluted 10-fold or 10-fold with 10F-DMEM were set. .
- the gene transfer by the stationary infection method using a petri dish coated with retronectin (denoted as a retronectin dish in the table) is far more efficient in inducing pluripotent stem cells than the gene transfer by polybrene.
- the gene transfer using a petri dish coated with retronectin pluripotent stem cells can be stably induced even when the virus solution is diluted, whereas a petri dish coated with native fibronectin (fibronectin dish in the table). No pluripotent stem cell colonies were formed by gene transfer using The superiority of retronectin over native fibronectin in pluripotent stem cell induction was reconfirmed.
- Preparation Example 5 Preparation of Lentiviral Vector (1) Transfer to pLenti6.3 Plasmid Vector pDON-5-KLF4 prepared in Preparation Example 2- (1) was digested with restriction enzyme NotI and then DNA Blunting Kit (Takara Bio Inc.) And then digested with restriction enzyme XhoI to obtain a KLF4 fragment.
- PDON-5-OCT4-IR-SOX2 prepared in Preparation Example 2- (4) was digested with restriction enzyme NotI, blunted using DNA Blunting Kit, and further digested with BlnI to obtain OCT4-IR-SOX2 fragment 1 Got.
- pDON-5-OCT4-IR-SOX2 was digested with restriction enzymes BlnI and XhoI to obtain OCT4-IR-SOX2 fragment 2.
- pDON-5-LIN28-IR-NANOG prepared in Preparation Example 2- (4) was digested with NotI, then blunted using DNA Blunting Kit, and further digested with XbaI to obtain LIN28-IR-NANOG fragment 1 Got.
- LIN28-IR-NANOG fragment 2 was obtained by digesting pDON-5-LIN28-IR-NANOG with restriction enzymes XbaI and XhoI.
- pLenti-6.3 / V5-TOPO plasmid (Invitrogen) was digested with restriction enzymes EcoRV and XhoI to obtain a pLenti6.3 fragment.
- restriction enzymes EcoRV and XhoI The above-mentioned various fragments were subjected to 1.0% agarose gel electrophoresis, and DNA fragments of the desired size were extracted and purified.
- the pLenti6.3 fragment was mixed with KLF4 fragment, OCT4-IR-SOX2 fragments 1 and 2, or LIN28-IR-NANOG fragments 1 and 2, respectively, and ligated using DNA Ligation Kit ⁇ Mighty Mix>.
- Recombinant plasmids thus prepared were selected with the correct insertion of each gene and named pLenti6.3-KLF4, pLenti6.3-OCT4-IR-SOX2, and pLenti6.3-LIN28-IR-NANOG, respectively.
- Table 41 shows the names of lentiviral vectors obtained from the respective recombinant plasmids. Three virus solutions were mixed in equal amounts and used for infection. A part of the mixed virus was mixed with Lenti-X Concentrator (manufactured by Clontech), one third of the virus solution, and left at 4 ° C. for 1 hour.
- the virus solution before or after concentration was stored frozen at ⁇ 80 ° C. when not used immediately after preparation, and thawed before use.
- Example 31 Induction of pluripotent stem cells using a lentiviral vector (1) Immobilization of retronectin on a culture plate Retronectin was immobilized on a culture plate in the same manner as in Example 1- (1). However, a non-treatment 12-well plate was used as a plate coated with retronectin, and 1 mL of a retronectin solution (25 ⁇ g / mL) was added to each well.
- a retronectin solution 25 ⁇ g / mL
- Second gene transfer with lentiviral vector was performed on the first day of culture in the same manner as in Example 31- (2). After further culturing for 1 day, the supernatant was removed, and 1 mL of 10F-DMEM was added to continue the culture.
- pluripotent stem cell colonies could be obtained only when infection was performed using retronectin regardless of the presence or absence of concentration. That is, even when a lentiviral vector was used, it was found that gene introduction with retronectin can induce pluripotent stem cells more efficiently than gene introduction with polybrene.
- the present invention provides a method for producing pluripotent stem cells at a higher frequency compared to conventional production methods. Since the pluripotent stem cells contained in the cell population obtained by the present invention can be differentiated into desired cells by known means, it is very useful for the production of cells for biological transplantation or for use in basic research. is there.
- SEQ ID NO: 1 Primer hSOX2-F to amplify the SOX2 gene.
- SEQ ID NO: 2 Primer hSOX2-R to amplify the SOX2 gene.
- SEQ ID NO: 3 Primer hKLF4-F to amplify the KLF4 gene.
- SEQ ID NO: 4 Primer hKLF4-R to amplify the KLF4 gene.
- SEQ ID NO: 6 Primer IRES-R-NotI to amplify the IRES sequence.
- SEQ ID NO: 7 Primer OCT4EndoqP-F1 to amplify the inherent OCT4 gene.
- SEQ ID NO: 8 Primer OCT4EndoP-R1 to amplify the inherent OCT4 gene.
- SEQ ID NO: 9 Primer SOX2EndoP-F2 to amplify the inherent SOX2 gene.
- SEQ ID NO: 10 Primer SOX2EndoP-R2 to amplify the inherent SOX2 gene.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Developmental Biology & Embryology (AREA)
- Microbiology (AREA)
- Transplantation (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
(1)核初期化因子を体細胞と接触させる工程、及び
(2)上記(1)で得られる体細胞を栄養飢餓条件で処理する工程及び/又は細胞周期を停止させる薬剤で処理する工程。
上記のとおり、本態様ではレンチウイルスベクター又はシュードタイプベクターを包含するレトロウイルスベクターを使用することができる。
本発明に使用される体細胞に特に限定はなく、任意の体細胞を使用することができる。例えば、線維芽細胞、前駆脂肪細胞、肝細胞、血球細胞、皮膚角化細胞、間葉系幹細胞、造血幹細胞、又は神経幹細胞等の体細胞を使用することができる。前記の体細胞は生体より採取されたもの、又は細胞株として樹立されたもののどちらでもよい。作製された多能性幹細胞もしくは当該細胞より分化させた細胞を生体に移植することが望まれる場合には、その生体自身から採取された体細胞より多能性幹細胞を誘導することが好ましい。
核初期化因子を接触させた体細胞、例えば、上記(1)に記載の工程において得られた体細胞を栄養飢餓条件にさらすことにより、多能性幹細胞が誘導・成育される頻度又は収量を向上させることができ、多能性幹細胞を高効率で製造することができる。ここで、栄養飢餓条件にさらすとは、培地中の細胞の栄養源となる成分のうち特定の成分、例えばアミノ酸、タンパク質、糖質、脂質、有機酸、又はビタミン類等を含まないか又はその濃度が低減された培地(以下、栄養飢餓培地と記載することがある)中で細胞を培養することを意味する。特に本発明を限定するものではないが、本発明ではタンパク質を含まないか又はその濃度が低減された培地、例えばタンパク質濃度が0~0.5%(w/v)の範囲にある培地(以下、タンパク質飢餓培地と記載することがある)、好適には0~0.3%(w/v)の範囲にある培地、更に好適には0~0.1%(w/v)の範囲にある培地中で細胞を培養する操作が例示される。タンパク質飢餓培地中のタンパク質濃度は公知の方法、例えばローリー法、ブラッドフォード法又はビシンコニン酸(BCA)法により、標準タンパク質(例えばウシ血清アルブミン)換算値として測定することができる。
(1)pDON-AI-2-Neo-SOX2及びpDON-AI-2-Neo-KLF4プラスミドの構築
NCBIデータベース登録番号(Accession No.)NM_003106.2の配列情報より、配列表の配列番号1及び2に記載の塩基配列を有するSOX2遺伝子増幅用合成プライマーhSOX2-F及びhSOX2-Rをそれぞれ合成した。また、NCBIデータベース登録番号NM_004235.3の配列情報より、配列表の配列番号3及び4に記載の塩基配列を有するKLF4遺伝子増幅用合成プライマーhKLF4-F及びhKLF4-Rをそれぞれ合成した。
NCBIデータベース登録番号NM_002701.4、NM_024674.4、NM_024865.2の配列情報をもとに、それぞれOCT4、LIN28、NANOGの各ポリペプチドをコードする人工合成遺伝子を合成した。前記の人工合成遺伝子は、各ポリペプチドをコードするオープンリーディングフレームの塩基配列に加え、5’末端にCDSの直前の3塩基の配列及び制限酵素NotIの認識配列、3’末端に制限酵素SalIの認識配列をそれぞれ有している。3種の人工合成遺伝子は、NotI、SalIの認識配列を利用して、調製例1-(1)と同様にpDON-AI-2 Neoに連結し、各遺伝子が挿入された組換えプラスミドpDON-AI-2-Neo-OCT4、pDON-AI-2-Neo-LIN28及びpDON-AI-2-Neo-NANOGを得た。
(1)pDON-AI-2、pDON-5プラスミドベクターへの移し替え
調製例1により調製したpDON-AI-2-Neo-OCT4、pDON-AI-2-Neo-SOX2、pDON-AI-2-Neo-KLF4、pDON-AI-2-Neo-LIN28、及びpDON-AI-2-Neo-NANOGをそれぞれ制限酵素NotI及びSalIにより処理後、1.0%アガロース電気泳動に供して生じたフラグメントをゲル上で分離した。ゲルより各ポリペプチドをコードするオープンリーディングフレームを含むフラグメントを抽出・精製後、このフラグメントのそれぞれを同じくNotI-SalIで消化したpDON-5 DNA(タカラバイオ社製)と混合し、DNA Ligation Kit<Mighty Mix>(タカラバイオ社製)を用いて連結した。こうして作製された組換えプラスミドより各遺伝子が正しく挿入されたものを選択し、それぞれpDON-5-OCT4、pDON-5-SOX2、pDON-5-KLF4、pDON-5-LIN28、及びpDON-5-NANOGと命名した。
配列番号5及び6で示すIRES配列増幅用合成プライマーIRES-F-SalI及びIRES-R-NotIを合成した。IRES配列を増幅するために、鋳型DNAとしてpIRES2-ZsGreen1(クロンテック社製)、プライマーとしてIRES-F-SalI及びIRES-R-NotIを用いてPrimeSTAR(登録商標) DNA polymerase(タカラバイオ社製)によりPCRを行なった。反応終了後、反応液を1.0%アガロースゲル電気泳動に供し、約0.6kbpのDNAフラグメントを抽出、精製した。次に、このDNAフラグメントを制限酵素SalI及びNotIで消化し、精製することによりIRESフラグメントを得た。
上記調製例2-(1)で調製したpDON-5-SOX2、pDON-5-LIN28、及びpDON-5-NANOGプラスミドを制限酵素NotI及びHpaIにより処理後、1.0%アガロース電気泳動に供して生じたフラグメントをゲル上で分離した。SOX2、LIN28、又はNANOGの各遺伝子を含むフラグメント(それぞれSOX2、LIN28、及びNANOGフラグメントと記載する)をゲルより抽出・精製した。
上記調製例2-(1)で調製したpDON-AI-2-OCT4、pDON-AI-2-LIN28、pDON-5-OCT4、pDON-5-LIN28、及びpDON-5-NANOGを制限酵素SalI及びHpaIで消化したもの、(2)で調製したIRESフラグメント及び(3)で調製したSOX2、LIN28及びNANOGフラグメントを表1の組み合わせで混合し、DNA Ligation Kit<Mighty Mix>(タカラバイオ社製)を用いて連結した。
G3T-hi細胞(タカラバイオ社製)を5×105cells/mLとなるように10F-DMEM[10%牛胎児血清(インビトロジェン社製)及び1%ペニシリン/ストレプトマイシン(ナカライテスク社製)含有D-MEM(シグマ社製)]に懸濁し、その4mLを6cmコラーゲンコートディッシュ(イワキ社製)に播種して37℃のCO2インキュベーターで24時間培養した。
(1)プラスミドベクターの調製
pAcGFP1(クロンテック社製)よりAcGFP1遺伝子をpDON-AI DNA(タカラバイオ社製)に移し替え、pDON-AI-AcGFP1を調製した。同様に、pmStrawberry Vector(クロンテック社製)よりmStrawberry遺伝子をpDON-AI-2 Neo DNAに移し替え、pDON-AI-2-Neo-mStrawberryを調製した。
調製例2-(5)と同様の方法により、pDON-AI-AcGFP1からはレトロウイルスベクターDON-am-AcGFP1を、pDON-AI-2-Neo-mStrawberryからはレトロウイルスベクターDONAI2-am-mStrawberryを調製した。
(1)100×LIFの調製
106unit/mLの白血病抑制因子(LIF;ESGRO、インビトロジェン社製)0.5mLに対して、ノックアウトDMEM(Dulbecco’s modified eagle’s medium、インビトロジェン社製)8.5mL、ノックアウト血清リプレースメント(インビトロジェン社製)1.5mLを添加して100×LIFを調製した。
ノックアウトDMEM 425mLに対して、ノックアウト血清リプレースメント(インビトロジェン社製)75ml、100×非必須アミノ酸混合物(NEAA mixture、Lonza社製)5mL、100mM ピルビン酸ナトリウム(Lonza社製)5mL、200mM L-グルタミン(Lonza社製)5mL、55mM 2-メルカプトエタノール(インビトロジェン社製)0.91mL、及び(1)で調製した100×LIF 5mLを添加することによりマウスES細胞用培地を調製した。
(1)レトロネクチンの培養プレートへの固定化
ノントリートメント6穴培養プレート(ベクトン・ディッキンソン社製)の各ウェルに20~25μg/mLとなるように、リン酸緩衝水溶液(PBS)で希釈したレトロネクチン(登録商標、タカラバイオ社製)溶液を2mLずつ添加し、4℃で一晩もしくは室温で2時間固定化を行った。その後、各ウェルより溶液を除去し、PBSで1回洗浄の後、各実験に供するまで4℃で保存した。
調製例2で調製したウイルス液700μLずつを表3の組み合わせで(1)で調製したレトロネクチン固定化培養プレートの各ウェルにそれぞれ添加し、32℃、2,000×gで2時間遠心した。
2回目の遺伝子導入は培養1日目に行った。調製例2により調製したウイルス液各700μLずつを表3の組み合わせで混合し、終濃度8μg/mLとなるようにポリブレン(ヘキサジメトリン・ブロミド;アルドリッチ社製)を添加してレトロウイルスベクター混合液を調製した。(2)で培養していた培養プレートより上清を除去し、このレトロウイルスベクター混合液を添加した。37℃のCO2インキュベーターで4時間培養後、10F-DMEMを2mL添加した。更に2日間培養後、上清を除去し10F-DMEMを2mL添加して培養を継続した。
10cmシャーレ(イワキ社製)に終濃度1mg/mLのゼラチン(シグマ社製)水溶液を添加し室温1時間あるいは4℃で一晩固定化後、洗浄してゼラチン固定化シャーレを作製した。ここに終濃度12μg/mLのマイトマイシンC(ナカライテスク社製)で処理したSNL76/7細胞(DSファーマ社製)を1×106cellsずつ播種し、37℃のCO2インキュベーターで終夜培養することによりフィーダー細胞を調製した。
培養8日目(フィーダー細胞上に播種してから1日培養後)上清を除去し、タンパク質飢餓処理条件では、血清が含まれていないDMEM(0F-DMEM:10F-DMEMより牛胎児血清を除去したもの)を10mL添加した。一方、メチル化阻害剤処理条件では、ES細胞用培地[1%ペニシリン/ストレプトマイシン、4ng/mL bFGF(R&D systems社製)を含む霊長類ES細胞用培地(リプロセル社製)]を10mL添加し、更に終濃度1μMとなるように5-アザ-2’-デオキシシチジン(シグマ社製)を添加した。なお、実施例1-(2)に記載の条件A、B、Cにそれぞれの処理を行った。
培養28日目に条件A、B、Cのそれぞれのタンパク質飢餓処理あるいはメチル化阻害剤処理の各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表4に示す。
上記の実施例において使用された10F-DMEM、DMEM及びES細胞用培地について、それぞれに含有されるタンパク質の濃度をブラッドフォード法(Coomassie Plus Protein Assay Reagent;ピアス社製)を使用して測定した。この結果、10F-DMEM、DMEM及びES細胞用培地にはそれぞれ5.5mg/mL、0.633mg/mL、24.1mg/mL(すべてウシ血清アルブミン相当)のタンパク質が含有されていることが確認された。
(1)レトロネクチンの培養プレートへの固定化
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例1-(2)と同様の方法により遺伝子導入を行った(培養0日目)。ただし、細胞播種後の遠心は行っていない。なお、レトロウイルスベクターはDON5-am-OCT4-IR-SOX2、DON5-am-LIN28-IR-NANOG及びDONAI2-am-KLF4の組み合わせでそれぞれ行った
2回目の遺伝子導入は培養1日目に、実施例2-(2)と同様の方法により遺伝子導入を行った。
培養6日目に実施例1-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。ただし、フィーダー細胞(マイトマイシンC処理したSNL76/7細胞もしくはSTO細胞(大日本製薬社製))は、1.5×106cellsずつ播種した。また、遺伝子導入細胞は2.5×105cellsずつ播種した。
培養7日目(フィーダー細胞上に播種してから1日培養後)にシャーレから上清を除去し、表5に示す条件により細胞を処理した。表中、0.5F-DMEMは0.5%血清を含むDMEMを示す。なお、ES細胞用培地に交換後は、各条件とも培養28日目まで培養を継続し、この間1~2日おきに培地を交換した。
培養28日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表6に示す。
(1)レトロネクチンの培養プレートへの固定化
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例1-(2)と同様の方法により遺伝子導入を行った(培養0日目)。ただし、プレートの洗浄は1.5%ヒト血清アルブミンを含むPBSで行い、細胞播種後の遠心は行わなかった。なお、レトロウイルスベクターはDON5-am-OCT4-IR-SOX2、DON5-am-LIN28-IR-NANOG、又はDON5-am-KLF4の組み合わせで行った。
2回目の遺伝子導入は培養1日目に、実施例3-(2)と同様の方法により行った。
培養7日目に実施例1-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。
培養8日目(フィーダー細胞上に播種してから1日培養後)にシャーレから上清を除去し、ES細胞用培地に交換後、それぞれ終濃度0.1μM、0.5μM、又は2μMとなるようにプルバラノールA(シグマ社製)を添加した群、終濃度10μM、100μMとなるようにヒドロキシウレア(シグマ社製)を添加した群を設定した。なお、コントロールには薬剤を添加しなかった。2日間培養後、ES細胞用培地に交換し、培養22日目まで培養を継続した。この間1~2日おきに培地を交換した。
培養22日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表7に示す。
(1)レトロネクチンの培養プレートへの固定化
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例2-(2)と同様の方法により遺伝子導入を行った(培養0日目)。なお、レトロウイルスベクターはDON5-am-OCT4-IR-SOX2、DON5-am-LIN28-IR-NANOG、又はDON5-am-KLF4の組み合わせで行った
2回目の遺伝子導入では、培養1日目に、ウイルス液700μLずつを実施例4-(2)の組み合わせで混合し、終濃度8μg/mLとなるようにポリブレンを添加してレトロウイルスベクター混合液を調製後、細胞を培養していたプレートより上清を除去し、このレトロウイルスベクター混合液を添加した。1日培養後、上清を除去し10F-DMEMを2mL添加して培養を継続した。
培養6日目に実施例2-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。ただし、遺伝子導入細胞は0.62×105、1.25×105、2.5×105、又は5×105cellsずつ播種する群を設定した。
培養7日目(フィーダー細胞上に播種してから1日培養後)にシャーレより上清を除去し、0F-DMEMを10mL添加した。2日間培養後、上清を除去してES細胞用培地を各シャーレに9mL添加し、培養28日目まで培養を継続した。この間1~2日おきに培地を交換した。
培養28日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。また、iPS細胞誘導効率(%)を、(iPS細胞コロニー数÷遺伝子導入細胞播種数)×100として算出した。その結果を表8に示す。
(1)レトロネクチンの培養プレートへの固定化
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例4-(2)と同様の方法により遺伝子導入を行った(培養0日目)。
2回目の遺伝子導入は培養1日目に、実施例5-(2)と同様の方法により行った。
培養6日目に実施例2-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。ただし、培養容器は6穴培養プレート(コーニング社製)を使用し、フィーダー細胞は、2.5×105cellsずつ播種した。また、遺伝子導入細胞は2×104cellsずつ播種した。
培養7日目(フィーダー細胞上に播種してから1日培養後)に6穴培養プレートから上清を除去し、表9に示す条件により細胞を処理した。なお、ES細胞用培地に交換後は、各条件とも培養28日目まで培養を継続し、この間1~2日おきに培地を交換した。
培養28日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表10に示す。なお、表中の数字はN=2の平均値を示す。
(1)レトロネクチンの培養プレートへの固定化
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例4-(2)と同様の方法により遺伝子導入を行った(培養0日目)。
2回目の遺伝子導入は培養1日目に、実施例6-(2)と同様の方法により行った。
培養6日目に実施例5-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。ただし、遺伝子導入細胞は2.5×103、5×103、1×104、2×104、4×104、又は8×104cellsずつ播種する群を設定した。
培養7日目(フィーダー細胞上に播種してから1日培養後)に6穴培養プレートから上清を除去し、0F-DMEMあるいはES細胞用培地(コントロール)を2mL添加した。2日間培養後、上清を除去してES細胞用培地を各ウェルに2mL添加し、培養28日目まで培養を継続した。この間1~2日おきに培地を交換した。
培養28日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。また、iPS細胞誘導効率(%)を、(iPS細胞コロニー数÷遺伝子導入細胞播種数)×100として算出した。その結果を表11及び表12に示す。なお、表11はコントロール群の結果、表12はタンパク質飢餓群の結果を示す。
レトロウイルスベクターによる遺伝子導入に関して、レトロネクチンあるいはポリブレンを用いて1回あるいは2回導入を行い、多能性幹細胞の誘導を行い比較した。設定した条件を表13に示す。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
レトロネクチンによる遺伝子導入に関しては実施例4-(2)と同様の方法により遺伝子導入を行った。ポリブレンによる遺伝子導入に関しては、以下の方法で行った。すなわち、1日前に6穴培養プレートに、5×104cells/mLとなるように10F-DMEMで懸濁したヒト皮膚線維芽細胞を2mLずつ各ウェルに播種し1日培養した。調製例2により調製したウイルス液700μLずつを表3の条件Cの組み合わせで混合し、終濃度8μg/mLとなるようにポリブレンを添加してレトロウイルスベクター混合液を調製後、細胞を培養していたプレートより上清を除去し、このレトロウイルスベクター混合液を添加し、培養を開始した(培養0日目)。
2回目の遺伝子導入を行う群に関しては培養1日目に、レトロネクチンによる遺伝子導入は実施例4-(2)と同様の方法により遺伝子導入を行った。ポリブレンによる遺伝子導入に関しては、実施例7-(2)のポリブレンによる遺伝子導入と同様の方法で行った。すなわち、細胞を培養していたプレートより上清を除去し、同様に調製したレトロウイルスベクター混合液を添加し培養を継続した。1日培養後、上清を除去し10F-DMEMを2mL添加して培養を継続した。
培養6日目に実施例5-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。ただし、遺伝子導入細胞は1.75×104cellsずつ播種した。
培養7日目(フィーダー細胞上に播種してから1日培養後)に6穴培養プレートから上清を除去し、0F-DMEMあるいはES細胞用培地(タンパク質飢餓処理なし群)を2mL添加した。2日間培養後、上清を除去してES細胞用培地を各ウェルに2mL添加し、培養28日目まで培養を継続した。この間1~2日おきに培地を交換した。
培養28日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表14に示す。なお、表中の数字はN=2の平均値を示す。
多能性幹細胞誘導時には、複数のレトロウイルスベクターを用いて遺伝子導入を行うことがある。そこで、複数のレトロウイルスベクターによる遺伝子導入を行う際の方法としてレトロネクチンあるいはポリブレンによる遺伝子導入効率を比較した。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。ただし、ノントリートメント24穴培養プレート(ベクトン・ディッキンソン社製)を用い、レトロネクチン溶液は各ウェルに500μLずつ添加した。
レトロネクチンによる遺伝子導入に関しては実施例3-(2)と同様の方法により行った。ただし、レトロウイルスベクターはDON-am-AcGFP1とDONAI2-am-mStrawberryの組み合わせで、ウイルス液250μLずつを混合して行った。更に、10F-DMEMで50倍希釈したウイルス液250μLを混合する群も設定した。また、細胞は4×104cells/mLとなるように培地に懸濁し、500μLずつ各ウェルに添加した。
遺伝子導入操作から3日後、細胞を回収し、フローサイトメーター(CytomicsFC500、ベックマン・コールター社製)により、AcGFP1陽性及びmStrawberry陽性細胞を測定した。その結果を表15に示す。表15はそれぞれの遺伝子導入方法における両陽性細胞の割合を示す。
レトロネクチンあるいはポリブレンによる複数のレトロウイルスベクターを用いた遺伝子導入効率を更に比較した。
実施例8-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例8-(2)と同様の方法により遺伝子導入を行った。ただし、ウイルス液の希釈は10F-DMEMで10倍希釈、又は100倍希釈する群を設定した。
実施例8-(3)と同様の方法により遺伝子導入効率を測定した。ただし、フローサイトメーターによる測定は遺伝子導入操作から5日後に行った。結果を表16に示す。表16はそれぞれの遺伝子導入方法における両陽性細胞の割合を示す。
レトロウイルスベクターによる遺伝子導入に関して、レトロネクチンあるいはポリブレンのそれぞれを使用する条件で、更にレトロウイルスの量を変化させて多能性幹細胞の誘導を行い比較した。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例7-(2)と同様の方法により遺伝子導入を行った。ただし、ウイルス液は10F-DMEMで10倍希釈、又は100倍希釈する群を設定した。
実施例7-(3)と同様の方法により2回目の遺伝子導入を行った。ただしウイルス希釈群については実施例10-(2)と同様に希釈したウイルス液を用いた。
実施例7-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し、培養を継続した。ただし、遺伝子導入細胞は2×104cellsずつ播種した。
培養7日目(フィーダー細胞上に播種してから1日培養後)に6穴培養プレートから上清を除去し、ES細胞用培地を2mL添加し、培養28日目まで培養を継続した。この間1~2日おきに培地を交換した。
培養28日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表17に示す。なお、表中の数字はN=2の平均値を示す。
導入する遺伝子をOCT4、SOX2、KLF4の3種類のみとして、実施例10と同様の試験を行った。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例10-(2)と同様の方法により遺伝子導入を行った。ただし、レトロウイルスベクターは、調製例2で調製したレトロウイルスベクターDON5-am-OCT4-IR-SOX2及びDON5-am-KLF4を使用した。
実施例10-(3)と同様の方法により2回目の遺伝子導入を行った。ただし使用したレトロウイルスベクターは実施例11-(2)と同様である。
実施例10-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し、培養を継続した。
実施例10-(5)と同様の方法により行った。
培養28日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表18に示す。なお、表中の数字はN=2の平均値を示す。
レトロネクチンあるいはポリブレンによる複数のレトロウイルスベクターを用いた遺伝子導入効率を更に比較した。4名の異なるドナーに由来するヒト成人皮膚線維芽細胞を標的とし、多能性幹細胞誘導実験と同様に遺伝子導入を2回実施する方法を用いて蛍光タンパク質遺伝子の導入を行った。本実施例中、細胞Aは28歳白人女性由来、細胞Bは42歳白人女性由来、細胞Cは51歳白人女性由来、細胞Dは48歳黒人女性由来(いずれもLonza社製)を示す。
実施例8-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例8-(2)と同様の方法により遺伝子導入を行った(培養0日目)。ただし、ウイルス液の希釈は10F-DMEMで10倍希釈、100倍希釈、又は1000倍希釈する群を設定した。
2回目の遺伝子導入は培養1日目に、実施例12-(2)と同様の方法により行った。ただし、ポリブレンによる遺伝子導入において、培養2日目に上清を除去し、10F-DMEMを500μL添加して培養を継続した。
実施例8-(3)と同様の方法により、培養6日目に遺伝子導入効率を測定した。結果を表19に示す。表19はそれぞれの遺伝子導入方法における各細胞での両陽性細胞の割合を示す。なお、表中の数字はN=2の平均値を示す。
レトロウイルスベクターによる遺伝子導入に関して、実施例12と同じ4種のヒト成人皮膚線維芽細胞を標的とし、レトロネクチンあるいはポリブレンを用いて多能性幹細胞の誘導を行い比較した。設定した条件を表20に示す。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。ただしノントリートメント12穴培養プレート(ベクトン・ディッキンソン社製)を使用し、レトロネクチン溶液を各ウェルに1mLずつ添加した。
実施例7-(2)と同様の方法により遺伝子導入を行った(培養0日目)。ただし、ポリブレンによる遺伝子導入では細胞培養用12穴プレート(コーニング社製)を使用した。ウイルス液は、3種のベクターを等量ずつ混合した溶液を10F-DMEMで10倍希釈し、各ウェルに1mLずつ添加した。5×104cells/mLとなるように10F-DMEMで懸濁したヒト成人皮膚線維芽細胞についても1mLずつ各ウェルに播種した。
実施例13-(2)と同様の方法により、培養1日目に2回目の遺伝子導入を行った。ただし、ポリブレンによる遺伝子導入において、培養2日目に上清を除去し、10F-DMEMを1mLずつ添加して培養を継続した。
培養6日目に実施例5-(4)と同様の方法により、遺伝子導入された細胞をフィーダー細胞上に播種し培養を継続した。
実施例10-(5)と同様の方法により、フィーダー細胞上での培養を培養25日目まで行った。
培養25日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表21に示す。なお、表中の数字はN=2の平均値を示す。
レトロウイルスベクターによる遺伝子導入に関して、レトロネクチンを使用し、導入する遺伝子の組み合わせを変化させて、多能性幹細胞の誘導を行い比較した。設定した組み合わせを表22に示す。
実施例13-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例4-(2)と同様の方法により遺伝子導入を行った。ウイルス液は、表22にある組み合わせでそれぞれの溶液を等量ずつ混合し、10F-DMEMで100倍希釈し、各ウェルに1mLずつ添加した。5×104cells/mLとなるように10F-DMEMで懸濁したヒト成人皮膚線維芽細胞についても1mLずつ各ウェルに播種した。
実施例14-(2)と同様の方法により、培養1日目に2回目の遺伝子導入を行った。
培養6日目に実施例5-(4)と同様の方法により、遺伝子導入された細胞をフィーダー細胞上に播種し培養を継続した。
実施例10-(5)と同様の方法により、フィーダー細胞上での培養を培養25日目まで行った。
培養25日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表23に示す。なお、表中の数字はN=4の平均値を示す。
レトロネクチンを用いた遺伝子導入により誘導した多能性幹細胞(iPS細胞)コロニーをピックアップし、各種アッセイに用いるためのiPS細胞クローンを樹立した。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例2-(2)と同様の方法により遺伝子導入を行った。
実施例2-(3)と同様の方法により2回目の遺伝子導入を行った。
実施例2-(4)と同様の方法により、遺伝子導入された細胞のフィーダー細胞上への播種を行った。ただし、遺伝子導入細胞は4×105cellsずつ播種した。
培養7日目(フィーダー細胞上に播種してから1日培養後)にシャーレから上清を除去し、コントロール条件(ES細胞用培地)又はタンパク質飢餓処理条件(0F-DMEMで2日間培養後ES細胞用培地に交換)で以降の培養を行った。培地の交換後は、各条件とも培養29日目まで培養を継続し、この間1~2日おきに培地を交換した。
培養29日目の各条件の10cmシャーレ上に形成された多能性幹細胞(iPS細胞)コロニーを実体顕微鏡(SZ61;OLYMPUS社製)下でピックアップした。ピックアップしたiPS細胞コロニーをあらかじめES細胞用培地を100μL添加した96穴培養プレートのウェルに移し、数回ピペッティングを行った後、フィーダー細胞を1ウェル当たり5.4×104cellsずつ播種した24穴培養プレートに継代した。継代後は毎日培地交換を行い、十分な大きさになったiPS細胞コロニーを随時継代していき、iPS細胞クローンの樹立を行った。なお、タンパク質飢餓処理を行い得られたiPS細胞クローンとしてクローン#1、#4、#5、#6、#10を樹立し、コントロール条件でのiPS細胞クローンとしてクローン#3を樹立した。
樹立した各iPS細胞クローンのゲノムに挿入されたプロウイルスコピー数の定量を行った。なお、コントロールとして京都大学で樹立されたiPS細胞クローン「253G1」〔Nakagawa,M.ら、ネイチャー バイオテクノロジー(Nat.Biotechnol)、第26巻、第1号,101-106頁、2008年〕についても同様に解析した。
6ウェルプレートの1ウェルにコンフルエントの実施例15で樹立した各iPS細胞クローン(クローン#1、#3、#4、#5、#6、又は#10)あるいは253G1を、ES細胞剥離液で回収し、PUREGENE DNA Purificationキット(QIAGEN社製)を用いてゲノム抽出を行った。
iPS細胞クローンのゲノムに挿入されたプロウイルスコピー数は、CycleavePCR Core Kit(タカラバイオ社製)を用いてリアルタイムPCRにより算出した。Provirus Copy Number Detection Primer Set,Human(for Real Time PCR)(タカラバイオ社製)に付属のプライマーセット及びDNAコントロール・テンプレートを用いて、実施例16-(1)で抽出したゲノムDNA200ngあたりのプロウイルスコピー数及びヒトIFNγコピー数をそれぞれ算出し、(レトロウイルスコピー数)/(ヒトIFNγコピー数)×2によって1細胞あたりの挿入レトロウイルスコピー数を算出した。なお、全てN=2で行い、平均を算出した。
樹立された各iPS細胞クローンがES細胞のマーカー遺伝子を発現しているかどうかをRT-PCRにより確認した。なおクローン#1、クローン#3のiPS細胞クローン、及びコントロールとして253G1のiPS細胞クローンについて確認を行った。
各iPS細胞コロニーを数十個回収し、FastPure(登録商標) RNA Kit(タカラバイオ社製)によりTotalRNAを回収した。方法はKitに添付の培養細胞からのTotalRNA抽出のプロトコルに従った。
実施例17-(1)で抽出したTotal RNAを鋳型として、cDNAの合成を行った。PrimeScript(登録商標) RT reagent Kit(Perfect Real Time)(タカラバイオ社製)を用い、SYBR Green Assayの場合のプロトコルに従ってプレミックスを調製し、Total RNAを200ng添加した。TaKaRa PCR Thermal Cycler Dice Gradient(タカラバイオ社製)を用いて37℃で15分、85℃で5秒の反応を行い、cDNAを得た。
まず、配列表の配列番号7~10に記載の塩基配列を有する合成プライマー及び参考文献〔Takahashi,Kら、セル(Cell)、第131巻、861-872頁、2007年〕に記載の塩基配列を有する合成プライマーをDNA合成機で合成し、常法により精製した。
反応終了後、該反応液5μLを3.0%アガロースゲル電気泳動に供し、増幅されたDNAフラグメントを確認した。結果を図1に示す。図1から明らかなように、元のヒト成人皮膚線維芽細胞(図中に示すNHDF-Ad)では確認されない各ES細胞マーカーが、クローン#1、クローン#3ならびに253G1で確認された。すなわち、樹立されたiPS細胞クローンはES細胞と同様の遺伝子発現パターンを示していることが確認された。
樹立されたiPS細胞クローンがヒトES細胞と同様に多分化能を持つことを確認するため、クローン#1についてSCIDマウスの精巣に移植し、テラトーマ形成能について評価を行った。
培養したiPS細胞クローン(クローン#1)をES細胞剥離液(20%Knockout Serum Replacement、1mM CaCl2、0.1mg/mLコラゲナーゼIV、0.25%トリプシン)を用いて回収し、その一部を用いてセルカウントを行った。iPS細胞懸濁液を遠心後に上清を除去し、HANKS’ BALANCED SALT SOLUTION(Sigma社製)で5×106cells/mLになるように調製した。
実施例18-(1)で調製したiPS細胞懸濁液をSCIDマウスの精巣に2.5×105cells/50μLで投与した。
iPS細胞を投与後、10週目に剖検を行いSCIDマウスからテラトーマを取り出し、TISSU MOUNT(千葉メディカル社製)で包埋して凍結ブロックを作成した。凍結ブロックは使用まで-80℃に保存した。クライオスタットを用いて凍結切片を作製し、標準的な方法でHE染色後、検鏡を行った。その結果を図2に示す。図2に示すように、三胚葉由来の組織が観察できたことから、レトロネクチンによる遺伝子導入で樹立したiPS細胞クローンは多分化能を持つと評価された。
核初期化因子(iPS細胞誘導因子)をコードする遺伝子とともに各レトロウイルスベクターが挿入された細胞の存在率を示す指標としてAcGFP1遺伝子の遺伝子導入を行い、レトロネクチンによる遺伝子導入法(レトロネクチン法)とポリブレンによる遺伝子導入法(ポリブレン法)における多能性幹細胞(iPS細胞)誘導効率とAcGFP1陽性細胞率の比較を行った。また、一部の条件については、ゲノムへのレトロウイルスベクター挿入コピー数の定量を行い、コピー数と多能性幹細胞(iPS細胞)誘導効率との比較を行った。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。ただし、レトロネクチンをコートするプレートにはノントリートメント12穴プレートを用い、各ウェルに1mLずつのレトロネクチン溶液(25μg/mL)を添加した。
調製例2及び調製例3で調製したウイルス液を表24の組み合わせで等量ずつ混合し、条件Aについては10F―DMEMで10倍希釈及び100倍希釈、条件Bについては10倍希釈にしたものを調製し、遺伝子導入に用いた。遺伝子導入は実施例7-(2)と同様の方法により遺伝子導入を行った。ただし、レトロネクチン法におけるPBSでのプレートの洗浄には1mLのPBSを使用し、レトロネクチン法及びポリブレン法での感染に用いる細胞数は4×104cells/well、レトロウイルスベクター溶液は1mL/wellとした。
実施例19-(2)と同様の方法により、培養1日目に2回目の遺伝子導入を行った。
実施例10-(4)と同様の方法により、遺伝子導入細胞のフィーダー細胞上への播種を行った。ただし、フィーダー細胞上への播種に使用しなかった残りの細胞を用いてフローサイトメーターによりAcGFP1陽性細胞率を測定した。
実施例10-(5)と同様の方法により、フィーダー細胞上での培養を行った。ただし、培養11日目に条件Aの一部のウェルから細胞を回収してゲノム抽出を行い、レトロウイルスベクターの挿入数を定量した。
培養28日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。
5回の一連の調製操作によって得られた、5種の生産ロットが異なるレトロウイルスベクター(以下、それぞれウイルス1~5と示す)を用いて、レトロネクチンによる遺伝子導入を行い、多能性幹細胞の誘導効率を比較した。ウイルス1は調製、回収直後にそのまま実験に供し、ウイルス2~5は調製後に凍結保存しておき、解凍したものを実験に供した。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例4-(2)と同様の方法により遺伝子導入を行った(培養0日目)。ただしウイルス液は、各ロットごとに、3種のベクターを等量ずつ混合した溶液を10F-DMEMで10倍希釈し、各ウェルに2mLずつ添加した。
実施例20-(2)と同様の方法により、培養1日目に行った。
培養6日目に実施例5-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。
実施例10-(5)と同様の方法により、培養25日目までフィーダー細胞上での培養を行った。
培養25日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表26に示す。なお、表中の数字はN=2の平均値を示す。
レトロネクチンがコーティングされたプレート及びNativeフィブロネクチンがコーティングされたプレートを用いて遺伝子導入を行い、多能性幹細胞誘導を行った。尚、使用するプレートは、下記実施例21-(1)で作成したプレート、あらかじめレトロネクチンがコーティングされた35mmシャーレ(タカラバイオ社製、T110A)及びNativeフィブロネクチンがコーティングされた35mmシャーレ(FALCON社製、354457)の市販品を用いた。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。但し、培養容器にはノントリートメント35mmシャーレ(IWAKI社製)を用いた。また市販品であるレトロネクチン及びNativeフィブロネクチンをコーティング済みのシャーレ(以下、それぞれ、レトロネクチンディッシュ、フィブロネクチンディッシュとも記載する)には、これらの固定化操作は行っていない。
調製例2で調製したウイルス液を、表27の組み合わせで等量ずつ混合した後、10F-DMEMで10倍希釈し、実施例21-(1)で調製したレトロネクチン固定化培養シャーレ、もしくはレトロネクチン、Nativeフィブロネクチンがコーティング済みシャーレにそれぞれ2mLずつ添加し、32℃のCO2インキュベーター内に4~6時間静置した。
実施例21-(2)と同様の方法により、培養1日目に行った。
培養6日目に実施例5-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。
実施例10-(5)と同様の方法により、培養27日目までフィーダー細胞上での培養を行った。
培養27日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表28に示す。なお、表中の数字はN=3の平均値を示す。
多能性幹細胞の誘導効率の向上を目指し、最適なウイルスベクター混合比率の検討を行った。なお、誘導に用いる遺伝子としてOCT4、SOX2及びKLF4の3種類を用いた。
実施例11-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例11-(2)と同様の方法により遺伝子導入を行った。ただし、表29に示すようにウイルス混合比率を変更した。なお、遺伝子導入法はレトロネクチン法で、ウイルス溶液を100倍希釈して感染に用いた。
実施例22-(2)と同様の方法により、培養1日目に2回目の遺伝子導入を行った。
実施例11-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。
実施例10-(5)と同様の方法によりフィーダー細胞上での培養を行った。
培養27日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表30に示す。なお、表中の数字はN=3の平均値を示す。
レトロウイルスベクターを用いたMEFへの遺伝子導入効率をレトロネクチン法及びポリブレン法で比較した。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。ただし、レトロネクチンをコートするプレートにはノントリートメント12穴プレート(ベクトン・ディッキンソン社製)を用い、各ウェルに1mLずつのレトロネクチン溶液(25μg/mL)を添加した。
実施例19-(2)及び(3)と同様の方法で遺伝子導入を行った。レトロウイルスベクターは調製例3と同様の方法で調製したが、pE-Amphoプラスミドの代りにpE-Ecoプラスミド(タカラバイオ社製)を用いて作製したDON-eco-AcGFP1を用いた。調製したレトロウイルスベクターを原液から10F-DMEMで10倍希釈ずつ100000倍まで希釈した溶液をそれぞれ感染に用いた。また、標的細胞にはMEF(ミリポア社製)を使用した。
遺伝子導入の翌日に培地を10F―DMEMに交換した。
遺伝子導入操作から4日後、細胞を回収し、フローサイトメーターにより、AcGFP1陽性細胞率を測定した。その結果を表31に示す。
ヒトとマウスのiPS細胞誘導因子のアミノ酸配列は非常に酷似しており、機能的にも高度に保存されていることが推測される。そこで、ヒトiPS細胞誘導因子を用いてMEFからマウスiPS細胞を誘導可能かどうか検討した。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例23-(2)と同様のレトロネクチン法により遺伝子導入を行った。誘導に用いるレトロウイルスベクターの組み合わせは表32に示した。また、レトロウイルスベクターは調製例2と同様の方法で調製したが、pE-Amphoプラスミドの代りにpE-Ecoプラスミドを用いて作製したレトロウイルスベクターを用いた。
遺伝子導入翌日及び3日目に培地を10F―DMEMに交換した。
実施例10-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。ただし、継代日は遺伝子導入4日目とし、播種細胞数は2×105、5×104又は1×104cellsずつ播種する群を設定した。
培養5日目(フィーダー細胞上に播種してから1日培養後)に6穴培養プレートから上清を除去し、調製例4により調製したマウスES細胞用培地を2mL添加した。培養19日目まで培養を継続した。この間1~2日おきに培地を交換した。
培養19日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表33に示す。なお、表中の数字はN=2の平均値を示す。
iPS細胞の定義の一つに多分化能があげられており、in vitroではEBを介した分化誘導により多分化能を確認することができる。そこで、作製したiPS細胞の多分化能を評価することを目的に実験を行った。
実施例15-(6)と同様の方法によりフィーダー細胞とES細胞用培地を用いて、6穴培養プレートで培養したiPS細胞クローン(クローン#3)を、ES細胞剥離液を用いて回収し、EB形成培地(80%DMEM/F12、20%Knockout Serum Replacement、2mM L-グルタミン、1×NEAA Mixture)に懸濁した後、ノントリートメント6穴培養プレートで浮遊培養を行った。なお、隔日で培地交換を行った。
培養8日目に、前日ゼラチンコートしておいた24ウェルプレートにEBを全量播種し、プレートに接着させてさらに8日間培養を行った。なお、隔日で培地交換を行った。
培養16日目に、細胞を4%パラホルムアルデヒドで室温10分間固定を行った後、PBSで2回洗浄し、1%BSA/PBSで室温1時間反応することでブロッキングを行った。その後、Mouse anti-βIII-tublin antibody(Millipore社製)又はMouse anti-α-smooth mucsle actin antibody(DAKO社製)を1%BSA/PBSで50倍希釈した溶液を添加し、4℃で一晩インキュベートを行った。翌日、PBSで3回洗浄後、1%BSA/PBSで室温1時間反応することでブロッキングを行った。Alexa Fluor 594 F(ab‘)2 fragment of goat anti-mouse IgG (H+L)antibody(invitrogen社製)を1%BSA/PBSで1000倍希釈した溶液を添加し、4℃で一晩インキュベートを行った。翌日、PBSで3回洗浄後、蛍光顕微鏡による観察を行った。
calf serum(仔ウシ血清)はFBS(ウシ胎児血清)よりも分化誘導因子が少ないと予想され、よりiPS細胞誘導に適している可能性が考えられた。そこで、遺伝子導入後からフィーダー細胞への継代までに使用する培地中の血清成分のiPS細胞誘導効率への影響について検討を行った。
実施例11-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例11-(2)と同様に、レトロネクチン法で100倍希釈した溶液を用いて遺伝子導入を行った。
実施例11-(3)と同様の方法により2回目の遺伝子導入を行った。
実施例11-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。ただし、遺伝子導入2回目の翌日からフィーダー細胞上への播種までの培地中の血清成分を、表34に示す組成に変更した。
実施例10-(5)と同様の方法によりフィーダー細胞上での培養を行った。
培養27日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表35に示す。なお、表中の数字はN=2の平均値を示す。
実施例3で多能性幹細胞の誘導促進効果が確認された、細胞周期停止剤のプルバラノールAについて、薬剤処理期間の延長と、細胞死を抑制する物質の1つであるY27632[(R)(+)-トランス-4-(1-アミノエチル)-N-(4-ピリジル)シクロヘキサンカルボキシアミドジヒドロクロリド]との併用を検討した。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例3-(2)と同様の方法により遺伝子導入を行った(培養0日目)。ただしウイルス液は3種のベクターを等量ずつ混合した溶液を10F-DMEMで10倍希釈し、各ウェルに2mLずつ添加した。
実施例27-(2)と同様の方法により、培養1日目に2回目の遺伝子導入を行った。
培養6日目に実施例5-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。
培養7日目(フィーダー細胞上に播種してから1日培養後)に6穴培養プレートから上清を除去し、ES細胞用培地に交換後、表36に示すように、薬剤処理を行った。薬剤処理期間終了後、ES細胞用培地に交換し、培養26日目まで培養を継続した。この間1~2日おきに培地を交換した。4日間ないし6日間の薬剤処理を行った条件については、薬剤処理期間中も2日おきに培地を交換し、そのたびに薬剤を同じ濃度で添加した。
培養26日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表37に示す。なお、表中の数字はN=2の平均値を示す。
多能性幹細胞の誘導培養において、細胞周期停止剤の1つであるNU6140(ALEXIS BIOCHEMICALS社製)による薬剤処理を行い、誘導効率への影響を検討した。
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。ただし、ノントリートメント12穴培養プレート(ベクトン・ディッキンソン社製)を用い、レトロネクチン溶液は各ウェルに1mLずつ添加した。
実施例4-(2)と同様の方法により遺伝子導入を行った(培養0日目)。ただしウイルス液は3種のベクターを等量ずつ混合した溶液を10F-DMEMで100倍希釈し、各ウェルに1mLずつ添加した。
実施例28-(2)と同様の方法により、培養1日目に2回目の遺伝子導入を行った。
培養6日目に実施例5-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し、培養を継続した。
培養7日目(フィーダー細胞上に播種してから1日培養後)に6穴培養プレートから上清を除去し、ES細胞用培地に交換後、それぞれ終濃度0.1μM、1μMとなるようにNU6140を添加した群を設定した。なお、コントロールでは薬剤を添加しなかった。2日間培養後、ES細胞用培地に交換し、培養28日目まで培養を継続した。この間1~2日おきに培地を交換した。
培養28日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表38に示す。なお、表中の数字はN=2の平均値を示す。
多能性幹細胞の誘導培養において、動植物由来のウロン酸化合物を加熱することで生成した化合物DHCP(国際公開第98/13328号パンフレット)、およびDHCPにグルタチオンが付加されたGM(国際公開第98/39291号パンフレット)による薬剤処理を行い、誘導効率への影響を検討した。
実施例28-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。
実施例4-(2)と同様の方法により遺伝子導入を行った(培養0日目)。ただしウイルス液は3種のベクターを等量ずつ混合した溶液を10F-DMEMで10倍希釈し、各ウェルに1mLずつ添加した。
実施例28-(2)と同様の方法により、培養1日目に2回目の遺伝子導入を行った。
培養6日目に実施例5-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。
培養7日目(フィーダー細胞上に播種してから1日培養後)に6穴培養プレートから上清を除去し、ES細胞用培地に交換後、それぞれ終濃度10μMとなるようにDHCPおよびGMを添加した群を設定した。なお、コントロールでは薬剤を添加しなかった。2日間培養後、ES細胞用培地に交換し、培養26日目まで培養を継続した。この間1~2日おきに培地を交換した。
培養26日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表39に示す。なお、表中の数字はN=2の平均値を示す。
実施例21と同様に、レトロネクチンがコーティングされたプレート及びNativeフィブロネクチンがコーティングされたプレートを用いて遺伝子導入を行い、多能性幹細胞誘導を行った。同時にポリブレンによる遺伝子導入も実施し、ウイルス液の希釈倍率についても検討した。尚、使用するプレートは、あらかじめレトロネクチンがコーティングされた35mmシャーレ(タカラバイオ社製、T110A)及びNativeフィブロネクチンがコーティングされた35mmシャーレ(FALCON社製、354457)の市販品を用いた。
レトロネクチン及びNativeフィブロネクチンがコーティングされたシャーレを用いた遺伝子導入は、実施例21-(2)と同様に行った。ポリブレンによる遺伝子導入に関しては以下の方法で行った。1日前に35mm細胞培養用シャーレ(IWAKI社製)に、5×104cells/mLとなるように10F-DMEMで懸濁したヒト皮膚線維芽細胞を2mLずつ播種し、1日培養した。終濃度4μg/mLとなるようにポリブレンを添加したレトロウイルスベクター混合液を調製後、細胞を培養していたシャーレより上清を除去し、このレトロウイルスベクター混合液を添加し、37℃のCO2インキュベーターで培養を開始した(培養0日目)。いずれの方法においても、ウイルス液は実施例21-(2)と同様の組み合わせで等量ずつ混合し、そのまま使用する群と、10F-DMEMで10倍希釈、又は100倍希釈する群を設定した。
実施例30-(1)と同様の方法により、培養1日目に2回目の遺伝子導入を行った。
培養6日目に実施例5-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。
実施例10-(5)と同様の方法により、培養25日目まで行った。
培養25日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表40に示す。なお、表中の数字はN=2の平均値を示す。
(1)pLenti6.3プラスミドベクターへの移し替え
調製例2-(1)より調製したpDON-5-KLF4を制限酵素NotIで消化後、DNA Blunting Kit(タカラバイオ社製)を用いて平滑化し、さらに制限酵素XhoIで消化してKLF4フラグメントを得た。調製例2-(4)で調製したpDON-5-OCT4-IR-SOX2を制限酵素NotIで消化後、DNA Blunting Kitを用いて平滑化し、さらにBlnIで消化することによってOCT4-IR-SOX2フラグメント1を得た。同じくpDON-5-OCT4-IR-SOX2を制限酵素BlnI及びXhoIで消化し、OCT4-IR-SOX2フラグメント2を得た。また、調製例2-(4)で調製したpDON-5-LIN28-IR-NANOGをNotIで消化後、DNA Blunting Kitを用いて平滑化し、さらにXbaIで消化することによってLIN28-IR-NANOGフラグメント1を得た。同じくpDON-5-LIN28-IR-NANOGを制限酵素XbaI及びXhoIで消化することでLIN28-IR-NANOGフラグメント2を得た。pLenti-6.3/V5-TOPOプラスミド (インビトロジェン社製)を制限酵素EcoRV及びXhoIで消化し、pLenti6.3フラグメントを得た。前記の各種フラグメントを1.0%アガロースゲル電気泳動に供し、目的サイズのDNAフラグメントを抽出、精製した。pLenti6.3フラグメントを、KLF4フラグメント、OCT4-IR-SOX2フラグメント1及び2、又はLIN28-IR-NANOGフラグメント1及び2とそれぞれ混合し、DNA Ligation Kit<Mighty Mix>を用いて連結した。
こうして作製された組換えプラスミドより各遺伝子が正しく挿入されたものを選択し、それぞれpLenti6.3-KLF4、pLenti6.3-OCT4-IR-SOX2及びpLenti6.3-LIN28-IR-NANOGと命名した。
調製例2-(5)と同様に G3T-hi細胞を播種し、24時間培養した。500μLのOPTI-MEMに10μLのTransIT(登録商標)-293(タカラバイオ社製)を混合し、室温で5分放置後、4μgのViraPower Lentiviral Packaging Mix(インビトロジェン社製)及び1μgの調製例5-(1)で調製した各組換えプラスミドをそれぞれ加えて混合し、更に15分間室温で放置した。この混合液を上記のG3T-hi細胞に添加して培養を継続し、24時間後に4mLの10F-DMEMに交換した。更に24時間培養を継続した後、ウイルスを含む培地を回収し、0.45μmのフィルターでろ過してレンチウイルスベクターを含むウイルス液を調製した。表41にそれぞれの組換えプラスミドから得たレンチウイルスベクターの名称を示す。3種のウイルス液は等量ずつ混合し、感染に用いた。混合ウイルスの一部は、ウイルス液の三分の一量のLenti-X Concentrator(クロンテック社製)を加え混合し、4℃で1時間放置した。その後1,500×gで1時間遠心後、上清を除去し、新たに10F-DMEMを加え、20倍濃縮ウイルス液を調製した。濃縮前もしくは濃縮後のウイルス液は調製後すぐに使用しない場合は-80℃で凍結保存して、使用時に解凍して用いた。
(1)レトロネクチンの培養プレートへの固定化
実施例1-(1)と同様の方法によりレトロネクチンの培養プレートへの固定化を行った。ただし、レトロネクチンをコートするプレートにはノントリートメント12穴プレートを用い、各ウェルに1mLずつのレトロネクチン溶液(25μg/mL)を添加した。
調製例5で調製した各混合ウイルス液を12穴レトロネクチン固定化培養プレート、もしくは12穴培養プレートに500μLずつ添加し、さらに1×105cells/mLとなるように10F-DMEMで懸濁したヒト成人皮膚線維芽細胞を500μLずつ各ウェルに添加した。ポリブレン感染条件については終濃度8μg/mLとなるようにポリブレンを添加した。これらのプレートを32℃、1,000×gで30分遠心後、37℃のCO2インキュベーターで培養を開始した(培養0日目)。設定した条件を表42に示す。
2回目の遺伝子導入を培養1日目に、実施例31-(2)と同様に行った。更に1日培養後、上清を除去し10F-DMEMを1mL添加して培養を継続した。
培養6日目に実施例5-(4)と同様の方法によりフィーダー細胞上に遺伝子導入細胞を播種し培養を継続した。培養7日目(フィーダー細胞上に播種してから1日培養後)に上清を除去し、ES細胞用培地を2mL添加し、培養32日目まで培養を継続した。この間、2日おきに培地を交換した。
培養32日目に各条件の多能性幹細胞(iPS細胞)コロニー数を計測した。その結果を表43に示す。なお、条件Aについては、1ウェルの結果のみを示す。
SEQ ID NO:2;Primer hSOX2-R to amplify the SOX2 gene.
SEQ ID NO:3;Primer hKLF4-F to amplify the KLF4 gene.
SEQ ID NO:4;Primer hKLF4-R to amplify the KLF4 gene.
SEQ ID NO:5;Primer IRES-F-SalI to amplify the IRES sequence.
SEQ ID NO:6;Primer IRES-R-NotI to amplify the IRES sequence.
SEQ ID NO:7;Primer OCT4EndoqP-F1 to amplify the endogenous OCT4 gene.
SEQ ID NO:8;Primer OCT4EndoP-R1 to amplify the endogenous OCT4 gene.
SEQ ID NO:9;Primer SOX2EndoP-F2 to amplify the endogenous SOX2 gene.
SEQ ID NO:10;Primer SOX2EndoP-R2 to amplify the endogenous SOX2 gene.
Claims (17)
- 核初期化因子と接触させた体細胞を栄養飢餓条件で処理する工程及び/又は細胞周期を停止させる薬剤で処理する工程を包含することを特徴とする、多能性幹細胞を含有する細胞集団の製造方法。
- 栄養飢餓条件で処理する工程が、タンパク質飢餓条件で処理する工程である請求項1記載の方法。
- タンパク質飢餓条件で処理する工程が、タンパク質濃度が0~0.5%(w/v)である培地を用いて核初期化因子と接触させた体細胞を培養する工程である請求項2記載の方法。
- 核初期化因子と接触させた体細胞が、核初期化因子を添加された培養培地で培養された体細胞、核初期化因子を導入された体細胞、核初期化因子をコードする遺伝子が導入された体細胞、及び薬剤により核初期化因子を発現誘導させた体細胞からなる群より選択される体細胞である請求項1記載の方法。
- 核初期化因子がOCT4、SOX2、c-MYC、KLF4、NANOG及びLIN28からなる群より選択される請求項1記載の方法。
- 下記工程を包含することを特徴とする多能性幹細胞を含有する細胞集団の製造方法:
(1)核初期化因子を体細胞と接触させる工程、及び
(2)上記(1)で得られる体細胞を栄養飢餓条件で処理する工程及び/又は細胞周期を停止させる薬剤で処理する工程。 - 工程(1)が、核初期化因子の培養培地への添加、核初期化因子又は当該因子をコードする遺伝子の体細胞への導入及び薬剤による体細胞における当該因子の発現誘導、からなる群から選択される操作により実施される請求項6記載の方法。
- 工程(2)に記載の栄養飢餓条件で処理する工程が、タンパク質飢餓条件で処理する工程である請求項6記載の方法。
- タンパク質飢餓条件で処理する工程が、タンパク質濃度が0~0.5%(w/v)である培地を用いて核初期化因子と接触させた体細胞の培養により実施される請求項8記載の方法。
- タンパク質飢餓条件で処理する工程において、用いる培地に細胞死抑制剤を含有せしめることを特徴とする請求項9記載の方法。
- 核初期化因子がOCT4、SOX2、c-MYC、KLF4、NANOG及びLIN28からなる群より選択される請求項6記載の方法。
- 請求項1~11のいずれか1項記載の方法により多能性幹細胞を含有する細胞集団を製造する工程、及び得られた細胞集団より多能性幹細胞を単離する工程を包含する、多能性幹細胞の製造方法。
- レトロウイルスに結合する活性を有する機能性物質の存在下に核初期化因子をコードする遺伝子を保持するレトロウイルスベクターを体細胞に感染させる工程を包含することを特徴とする、多能性幹細胞を含有する細胞集団の製造方法。
- レトロウイルスに結合する活性を有する機能性物質が、フィブロネクチン、線維芽細胞増殖因子、V型コラーゲン、前記のポリペプチドのフラグメント、ポリリジン、DEAE-デキストラン及び前記物質由来のレトロウイルスに結合部位を有する機能性物質からなる群より選択される機能性物質である請求項13記載の方法。
- レトロウイルスに結合する活性を有する機能性物質が、フィブロネクチンのヘパリン-II結合領域を有するポリペプチドである請求項14記載の方法。
- OCT4、SOX2、c-MYC、KLF4、NANOG及びLIN28からなる群より選択される核初期化因子をコードする遺伝子を保持するレトロウイルスベクターを体細胞に感染させる請求項13記載の方法。
- 請求項13記載の方法により多能性幹細胞を含有する細胞集団を製造する工程、及び得られた細胞集団より多能性幹細胞を単離する工程を包含する、多能性幹細胞の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09794433.4A EP2295538B1 (en) | 2008-07-07 | 2009-07-07 | Method for production of pluripotent stem cell |
JP2010519780A JP5688970B2 (ja) | 2008-07-07 | 2009-07-07 | 多能性幹細胞の製造方法 |
US13/003,262 US9238797B2 (en) | 2008-07-07 | 2009-07-07 | Method for production of pluripotent stem cell |
DK09794433.4T DK2295538T3 (en) | 2008-07-07 | 2009-07-07 | Process for producing a pluripotent stem cell |
CN200980135775.7A CN102144027B (zh) | 2008-07-07 | 2009-07-07 | 生产多能干细胞的方法 |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-177155 | 2008-07-07 | ||
JP2008177155 | 2008-07-07 | ||
JP2008230040 | 2008-09-08 | ||
JP2008-230040 | 2008-09-08 | ||
JP2008262861 | 2008-10-09 | ||
JP2008-262861 | 2008-10-09 | ||
JP2009-010214 | 2009-01-20 | ||
JP2009010214 | 2009-01-20 | ||
JP2009-050694 | 2009-03-04 | ||
JP2009050694 | 2009-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010004989A1 true WO2010004989A1 (ja) | 2010-01-14 |
Family
ID=41507102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/062364 WO2010004989A1 (ja) | 2008-07-07 | 2009-07-07 | 多能性幹細胞の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9238797B2 (ja) |
EP (1) | EP2295538B1 (ja) |
JP (1) | JP5688970B2 (ja) |
KR (1) | KR101642790B1 (ja) |
CN (1) | CN102144027B (ja) |
DK (1) | DK2295538T3 (ja) |
WO (1) | WO2010004989A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011145615A1 (ja) * | 2010-05-18 | 2011-11-24 | タカラバイオ株式会社 | 多能性幹細胞の製造のための核酸 |
WO2012060473A1 (en) * | 2010-11-04 | 2012-05-10 | Kyoto University | Method of efficiently establishing induced pluripotent stem cells |
JP2013523134A (ja) * | 2010-03-31 | 2013-06-17 | ザ スクリプス リサーチ インスティチュート | 細胞の再プログラム |
WO2015005431A1 (ja) * | 2013-07-12 | 2015-01-15 | 石原産業株式会社 | 細胞への遺伝子導入用組成物 |
US9506039B2 (en) | 2010-12-03 | 2016-11-29 | Kyoto University | Efficient method for establishing induced pluripotent stem cells |
WO2018116511A1 (ja) * | 2016-12-19 | 2018-06-28 | 学校法人神戸女学院 | 多能性幹細胞の製造方法 |
JP2018531610A (ja) * | 2015-11-02 | 2018-11-01 | オリジェン, インコーポレイテッド | 細胞周期ブロックは、人工多能性幹細胞の生成効率を改善する |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2495124C2 (ru) * | 2011-12-07 | 2013-10-10 | Федеральное государственное бюджетное учреждение "Новосибирский научно-исследовательский институт патологии кровообращения имени академика Е.Н. Мешалкина" Министерства здравоохранения Российской Федерации (ФГБУ "ННИИПК им. акад. Е.Н. Мешалкина" Минздрава России) | РЕКОМБИНАНТНАЯ ПЛАЗМИДА pSN-ZsGreen, КОДИРУЮЩАЯ БЕЛКИ SOX2 И NANOG ЧЕЛОВЕКА И ФЛУОРЕСЦЕНТНЫЙ БЕЛОК ZsGreen, ПРЕДНАЗНАЧЕННАЯ ДЛЯ ПОЛУЧЕНИЯ ИНДУЦИРОВАННЫХ ПЛЮРИПОТЕНТНЫХ СТВОЛОВЫХ КЛЕТОК ЧЕЛОВЕКА |
US20130302794A1 (en) * | 2012-05-09 | 2013-11-14 | Samsung Techwin Co., Ltd. | Nucleic acid detection by oligonucleotide probes cleaved by both exonuclease and endonuclease |
CN106119206A (zh) * | 2016-06-28 | 2016-11-16 | 深圳爱生再生医学科技有限公司 | 诱导性多能干细胞及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997007669A1 (en) * | 1995-08-31 | 1997-03-06 | Roslin Institute (Edinburgh) | Quiescent cell populations for nuclear transfer |
WO1997018318A1 (en) | 1995-11-13 | 1997-05-22 | Takara Shuzo Co., Ltd. | Method for gene introduction into target cells by retrovirus |
WO1998013328A1 (fr) | 1996-09-27 | 1998-04-02 | Takara Shuzo Co., Ltd. | Cyclopentenones, leur procede de preparation et leur utilisation |
WO1998039291A1 (en) | 1997-03-05 | 1998-09-11 | Takara Shuzo Co., Ltd. | Compounds |
WO2000001836A1 (fr) * | 1998-07-01 | 2000-01-13 | Takara Shuzo Co., Ltd. | Procedes de transfert de genes |
JP2004057198A (ja) * | 2002-07-26 | 2004-02-26 | Food Industry Research & Development Inst | 多能性体細胞 |
WO2006134871A1 (ja) * | 2005-06-15 | 2006-12-21 | Takara Bio Inc. | 脂肪細胞あるいは前駆脂肪細胞への遺伝子導入方法 |
JP2007535965A (ja) * | 2004-05-06 | 2007-12-13 | モルメド エスピーエー | 細胞の調製 |
JP2008307007A (ja) * | 2007-06-15 | 2008-12-25 | Bayer Schering Pharma Ag | 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100379458C (zh) * | 1998-07-01 | 2008-04-09 | 宝生物工程株式会社 | 基因导入的方法 |
US7994144B2 (en) * | 2001-07-10 | 2011-08-09 | Johnson & Johnson Research Pty, Limited | Process for the preparation of a composition of genetically modified hematopoietic progenitor cells |
WO2008124133A1 (en) * | 2007-04-07 | 2008-10-16 | Whitehead Institute For Biomedical Research | Reprogramming of somatic cells |
DK3293256T3 (da) * | 2007-06-29 | 2019-08-12 | Fujifilm Cellular Dynamics Inc | Automatiseret fremgangsmåde og apparatur til dyrkning af embryonale stamceller |
-
2009
- 2009-07-07 CN CN200980135775.7A patent/CN102144027B/zh active Active
- 2009-07-07 WO PCT/JP2009/062364 patent/WO2010004989A1/ja active Application Filing
- 2009-07-07 DK DK09794433.4T patent/DK2295538T3/en active
- 2009-07-07 US US13/003,262 patent/US9238797B2/en active Active
- 2009-07-07 KR KR1020117002284A patent/KR101642790B1/ko active Active
- 2009-07-07 EP EP09794433.4A patent/EP2295538B1/en active Active
- 2009-07-07 JP JP2010519780A patent/JP5688970B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997007669A1 (en) * | 1995-08-31 | 1997-03-06 | Roslin Institute (Edinburgh) | Quiescent cell populations for nuclear transfer |
WO1997018318A1 (en) | 1995-11-13 | 1997-05-22 | Takara Shuzo Co., Ltd. | Method for gene introduction into target cells by retrovirus |
WO1998013328A1 (fr) | 1996-09-27 | 1998-04-02 | Takara Shuzo Co., Ltd. | Cyclopentenones, leur procede de preparation et leur utilisation |
WO1998039291A1 (en) | 1997-03-05 | 1998-09-11 | Takara Shuzo Co., Ltd. | Compounds |
WO2000001836A1 (fr) * | 1998-07-01 | 2000-01-13 | Takara Shuzo Co., Ltd. | Procedes de transfert de genes |
JP2004057198A (ja) * | 2002-07-26 | 2004-02-26 | Food Industry Research & Development Inst | 多能性体細胞 |
JP2007535965A (ja) * | 2004-05-06 | 2007-12-13 | モルメド エスピーエー | 細胞の調製 |
WO2006134871A1 (ja) * | 2005-06-15 | 2006-12-21 | Takara Bio Inc. | 脂肪細胞あるいは前駆脂肪細胞への遺伝子導入方法 |
JP2008307007A (ja) * | 2007-06-15 | 2008-12-25 | Bayer Schering Pharma Ag | 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞 |
Non-Patent Citations (12)
Title |
---|
"invitrogen, ES Cell Culture Products-FBS o Kuwaenai ES Saibo Baiyo", KNOCKOUT SERUM REPLACEMENT(KSR), XP008138871, Retrieved from the Internet <URL:http://www.invitrogen.co.jp/products/cell-culture/10828001.shtml> [retrieved on 20090903] * |
CELL STEM CELL, vol. 4, 2009, pages 472 - 476 |
CELL, vol. 131, 2007, pages 861 - 872 |
HIDEKI MASAKI ET AL.: "Heterogeneity of pluripotent marker gene expression in colonies generated in human iPS cell induction culture.", STEM CELL RES., vol. 1, no. 2, November 2007 (2007-11-01), pages 105 - 115, XP022764781 * |
I.WILMUT ET AL.: "Viable offspring derived from fetal and adult mammalian cells.", NATURE, vol. 385, 1997, pages 810 - 813, XP002067035 * |
K.H.S.CAMPBELL ET AL.: "Sheep cloned by nuclear transfer from a cultured cell line.", NATURE, vol. 380, 1996, pages 64 - 66, XP000605296 * |
NAKAGAWA, M. ET AL., NAT. BIOTECHNOL., vol. 26, no. 1, 2008, pages 11 - 106 |
SCIENCE, vol. 318, 2007, pages 1917 - 1920 |
See also references of EP2295538A4 * |
TAKAHASHI K ET AL.: "Induction of pluripotent stem cells from adult human fibroblasts by defined factors.", CELL, vol. 131, no. 5, 30 November 2007 (2007-11-30), pages 861 - 872, XP002555952 * |
TAKAHASHI, K ET AL., CELL, vol. 131, 2007, pages 861 - 872 |
YU J. ET AL.: "Induced pluripotent stem cell lines derived from human somatic cells.", SCIENCE, vol. 318, no. 5858, 21 December 2007 (2007-12-21), pages 1917 - 1920, XP009105055 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018198628A (ja) * | 2010-03-31 | 2018-12-20 | ザ スクリプス リサーチ インスティテュート | 細胞の再プログラム |
JP2013523134A (ja) * | 2010-03-31 | 2013-06-17 | ザ スクリプス リサーチ インスティチュート | 細胞の再プログラム |
JP2020150961A (ja) * | 2010-03-31 | 2020-09-24 | ザ スクリプス リサーチ インスティテュート | 細胞の再プログラム |
JP2016171798A (ja) * | 2010-03-31 | 2016-09-29 | ザ スクリプス リサーチ インスティテュート | 細胞の再プログラム |
WO2011145615A1 (ja) * | 2010-05-18 | 2011-11-24 | タカラバイオ株式会社 | 多能性幹細胞の製造のための核酸 |
WO2012060473A1 (en) * | 2010-11-04 | 2012-05-10 | Kyoto University | Method of efficiently establishing induced pluripotent stem cells |
US9637732B2 (en) | 2010-11-04 | 2017-05-02 | Kyoto University | Method of efficiently establishing induced pluripotent stem cells |
US9506039B2 (en) | 2010-12-03 | 2016-11-29 | Kyoto University | Efficient method for establishing induced pluripotent stem cells |
JPWO2015005431A1 (ja) * | 2013-07-12 | 2017-03-02 | 石原産業株式会社 | 細胞への遺伝子導入用組成物 |
WO2015005431A1 (ja) * | 2013-07-12 | 2015-01-15 | 石原産業株式会社 | 細胞への遺伝子導入用組成物 |
JP2018531610A (ja) * | 2015-11-02 | 2018-11-01 | オリジェン, インコーポレイテッド | 細胞周期ブロックは、人工多能性幹細胞の生成効率を改善する |
WO2018116511A1 (ja) * | 2016-12-19 | 2018-06-28 | 学校法人神戸女学院 | 多能性幹細胞の製造方法 |
JPWO2018116511A1 (ja) * | 2016-12-19 | 2019-10-24 | 学校法人神戸女学院 | 多能性幹細胞の製造方法 |
JP7033318B2 (ja) | 2016-12-19 | 2022-03-10 | 学校法人神戸女学院 | 多能性幹細胞の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2295538B1 (en) | 2015-10-21 |
CN102144027B (zh) | 2016-04-06 |
KR101642790B1 (ko) | 2016-07-27 |
JPWO2010004989A1 (ja) | 2012-01-05 |
EP2295538A4 (en) | 2013-02-20 |
CN102144027A (zh) | 2011-08-03 |
DK2295538T3 (en) | 2015-12-21 |
JP5688970B2 (ja) | 2015-03-25 |
US9238797B2 (en) | 2016-01-19 |
KR20110025861A (ko) | 2011-03-11 |
US20110117653A1 (en) | 2011-05-19 |
EP2295538A1 (en) | 2011-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5688970B2 (ja) | 多能性幹細胞の製造方法 | |
KR101861171B1 (ko) | 투석된 혈청이 있는 심근세포 배지 | |
Lorenzo et al. | Generation of mouse and human induced pluripotent stem cells (iPSC) from primary somatic cells | |
KR102784455B1 (ko) | 재프로그래밍 벡터 | |
US20150072416A1 (en) | Metabolite for improving production, maintenance and proliferation of pluripotent stem cells, composition comprising the same, and method of culturing pluripotent stem cell using the same | |
JP5751548B2 (ja) | イヌiPS細胞及びその製造方法 | |
JPWO2017038562A1 (ja) | 多能性幹細胞を減少させる方法、多能性幹細胞を減少させた細胞集団の製造方法 | |
JP2018531597A (ja) | 心臓内膜由来成体幹細胞から製造された誘導多能性幹細胞の心血管系細胞への分化方法およびその用途 | |
Wei et al. | Derivation of endothelial cells from porcine induced pluripotent stem cells by optimized single layer culture system | |
RU2399667C1 (ru) | Способ получения плюрипотентных клеток | |
WO2016187451A1 (en) | Multi-pathway induction of stem cell differentiation with rna | |
JP7068405B2 (ja) | 神経系細胞の作製方法 | |
WO2016072446A1 (ja) | ウイルスベクター、細胞およびコンストラクト | |
JP2015534830A (ja) | マイクロrna及び細胞リプログラミング | |
CN102229909A (zh) | 一种牛诱导性多能干细胞诱导方法 | |
Zhou et al. | Assessing the function of mTOR in human embryonic stem cells | |
US20230159891A1 (en) | T cell progenitor production method | |
JP5913984B2 (ja) | 多能性幹細胞の製造のための核酸 | |
Yada et al. | Rhesus macaque iPSC generation and maintenance | |
WO2011145615A1 (ja) | 多能性幹細胞の製造のための核酸 | |
JP6516280B2 (ja) | iPS細胞の樹立方法および幹細胞の長期維持方法 | |
Urrutia-Cabrera et al. | Combinatorial approach of binary colloidal crystals (BCCs) and CRISPR activation to improve induced pluripotent stem cell differentiation into neurons | |
JP2024531682A (ja) | コミットされた心臓始原細胞の製造方法 | |
Solomon | Algorithm Selected Transcription Factors Used to Initiate Reprogramming and Enhanced Differentiation in Somatic and Pluripotent Stem Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980135775.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09794433 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010519780 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009794433 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13003262 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117002284 Country of ref document: KR Kind code of ref document: A |