[go: up one dir, main page]

WO2009145105A1 - 混繊スパンボンド不織布及びその用途 - Google Patents

混繊スパンボンド不織布及びその用途 Download PDF

Info

Publication number
WO2009145105A1
WO2009145105A1 PCT/JP2009/059346 JP2009059346W WO2009145105A1 WO 2009145105 A1 WO2009145105 A1 WO 2009145105A1 JP 2009059346 W JP2009059346 W JP 2009059346W WO 2009145105 A1 WO2009145105 A1 WO 2009145105A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
mixed fiber
weight
thermoplastic
spunbonded nonwoven
Prior art date
Application number
PCT/JP2009/059346
Other languages
English (en)
French (fr)
Inventor
尚佑 國本
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US12/994,925 priority Critical patent/US20110092936A1/en
Priority to CN2009801195517A priority patent/CN102046870A/zh
Priority to JP2010514452A priority patent/JP5606310B2/ja
Priority to KR1020107026874A priority patent/KR101258333B1/ko
Priority to EP20090754613 priority patent/EP2292822B1/en
Publication of WO2009145105A1 publication Critical patent/WO2009145105A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers of the pads
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • A61F13/51121Topsheet, i.e. the permeable cover or layer facing the skin characterised by the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F13/534Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad
    • A61F13/537Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having an inhomogeneous composition through the thickness of the pad characterised by a layer facilitating or inhibiting flow in one direction or plane, e.g. a wicking layer
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/082Melt spinning methods of mixed yarn
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/70Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/681Spun-bonded nonwoven fabric

Definitions

  • the present invention is a surface of absorbent articles such as sanitary napkins, panty liners, incontinence pads, and disposable diapers which are excellent in bulkiness, initial hydrophilicity and durable hydrophilicity, flexibility, fluff resistance, stretchability and tactile feel, and less sticky.
  • the present invention relates to a mixed fiber spunbonded nonwoven fabric suitable as a sheet and / or a second sheet or a sheet (core wrap) for wrapping an absorbent body.
  • Non-woven fabric is excellent in breathability and flexibility, so it absorbs discharged or excreted menstrual blood, urine and other liquids quickly to the absorbent body, and the surface that comes into contact with the skin of the wearer is flexible, giving it to the skin It is widely used as a surface sheet for absorbent articles such as disposable diapers and sanitary napkins that require low irritation surface properties.
  • Patent Document 1 a high-shrinkable fiber sheet and a low-shrinkage or non-shrinkable nonwoven fabric are laminated and integrated, and then heat-treated.
  • the method of shrinking a highly shrinkable fiber sheet to form wrinkles on the surface is disclosed in Patent Document 2 as a bulky nonwoven fabric obtained by applying hot air treatment to impart bulkiness and latent crimpable fibers crimped by heat treatment.
  • a method of laminating a nonwoven fabric has been proposed.
  • Patent Document 3 discloses a bulky, poorly water-permeable portion and a hydrophobic structure in which a hydrophobic fiber layer and a hydrophilic fiber layer are layered.
  • Patent Document 4 discloses a method of forming a nonwoven fabric having a multiphase structure having a water-permeable portion in which hydrophilic fibers and hydrophilic fibers are mixed, and a nonwoven fabric formed by mixing hydrophilic fibers and water-repellent fibers. A method has been proposed.
  • the method of imparting bulkiness by heat treating a nonwoven fabric makes the process complicated, and the fibers forming the nonwoven fabric are not thinned by the heat treatment, and in some cases, the fiber diameter may be increased by heat shrinkage. In any case, there is a possibility that flexibility and tactile sensation are lowered by heat treatment. Moreover, the nonwoven fabric which mixed the hydrophilic fiber and the water-repellent fiber has insufficient bulkiness, and a surface sheet having both flexibility and bulkiness has not been obtained.
  • Patent Document 5 proposes a number of methods for adding a nonionic surfactant such as polyoxyethylene alkyl ether as means for hydrophilizing a nonwoven fabric such as a spunbond nonwoven fabric made of a propylene-based polymer. .
  • initial hydrophilicity (representing general hydrophilicity in a broad sense. In this specification, in order to distinguish it from durable hydrophilicity, it may be expressed as initial hydrophilicity. .)
  • Is also improved hydrophilic hydrophilic refers to hydrophilicity after exposure for a certain period of time to an environment at a temperature slightly higher than normal room temperature (approximately 40 ° C.) or higher. Same. ] Inferior.
  • JP-A-6-128853 Japanese Patent Laid-Open No. 2003-250836 JP 2002-20957 A JP 2004-73759 A JP 2006-188804 A
  • An object of the present invention is an absorbent article such as a sanitary napkin, a panty liner, an incontinence pad, and a paper diaper that is excellent in bulkiness, durable hydrophilicity and initial hydrophilicity, flexibility, fluff resistance, stretchability, and touch feeling, and has little stickiness It is to develop a mixed fiber spunbonded nonwoven fabric suitable as a top sheet and / or a second sheet or a sheet (core wrap) for wrapping an absorbent body.
  • thermoplastic elastomer long fiber with a hydrophilic thermoplastic resin long fiber.
  • the present invention comprises a mixed fiber spunbonded nonwoven fabric comprising 90 to 10% by weight of thermoplastic resin (A) long fibers and 10 to 90% by weight of thermoplastic elastomer (B) long fibers, and at least the thermoplastic resin (A) long fibers.
  • the present invention provides a mixed fiber spunbonded non-woven fabric characterized by being hydrophilized, a surface sheet and a second sheet of an absorbent article comprising the mixed fiber spunbonded non-woven fabric, and an absorbent article.
  • the mixed fiber spunbonded nonwoven fabric of the present invention has features such as high bulkiness, initial hydrophilicity and durable hydrophilicity, flexibility, fluff resistance, stretchability and tactile feel, and less stickiness. It can be suitably used as a top sheet or a second sheet.
  • FIG. 2 is a schematic view of a test piece for measuring the fiber diameter of a (mixed fiber) spunbonded nonwoven fabric. These are the micrographs of 40 times and 200 times of the folded part in FIG.
  • thermoplastic resin (A) Various known thermoplastic resins can be used as the thermoplastic resin (A) as a raw material of the thermoplastic resin long fiber which is one of the components forming the mixed fiber spunbond nonwoven fabric of the present invention.
  • the thermoplastic resin (A) is a resinous polymer different from the thermoplastic elastomer (B) described later, and is usually a crystalline polymer having a melting point (Tm) of 100 ° C. or higher or a glass transition temperature. It is an amorphous polymer at 100 ° C. or higher.
  • Tm melting point
  • a crystalline thermoplastic resin is preferable.
  • the maximum point elongation of the nonwoven fabric produced by the known method for producing a spunbond nonwoven fabric using the thermoplastic resin is 50% or more, preferably 70% or more. It is preferable to use a thermoplastic resin (extensible thermoplastic resin) having a property of 100% or more and almost no elastic recovery.
  • a thermoplastic resin extendensible thermoplastic resin
  • the mixed fiber spunbond nonwoven fabric obtained by blending with the thermoplastic elastomer (B) long fibers is used as, for example, a surface sheet, the mixed fiber spunbond nonwoven fabric is stretched and stretched.
  • thermoplastic thermoplastic long fiber and the thermoplastic elastomer (B) long fiber were stretched, when the stress was released, only the thermoplastic elastomer (B) long fiber was elastically recovered and stretched (stretched) Stretchable thermoplastic resin filaments bend without elastic recovery, and a bulky spunbonded nonwoven fabric develops a bulky feeling, and when stretched, the stretchable thermoplastic resin filaments become thin and have good flexibility and touch. At the same time, a non-elongation function can be provided.
  • the upper limit of the maximum point elongation of the spunbonded nonwoven fabric made of the thermoplastic resin (A) is not necessarily limited, it is usually 300% or less.
  • thermoplastic resin (A) are homo- or copolymers of ⁇ -olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene.
  • High pressure method low density polyethylene linear low density polyethylene (so-called LLDPE), high-density polyethylene (so-called HDPE), polypropylene (propylene homopolymer), polypropylene random copolymer, poly 1-butene, poly 4 -methyl-1- Polyolefin such as pentene, ethylene / propylene random copolymer, ethylene / 1-butene random copolymer, propylene / 1-butene random copolymer, polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, etc.), polyamide ( Nylon-6, Nairro -66, polymetaxylene adipamide, etc.), polyvinyl chloride, polyviny
  • high-pressure method low-density polyethylene low-density polyethylene, linear low-density polyethylene, high-density polyethylene, propylene-based polymers such as polypropylene and polypropylene random copolymer, polyethylene terephthalate, polyamide, and the like are more preferable.
  • a propylene-based polymer is particularly preferable from the viewpoint of spinning stability at the time of molding and stretchability of the nonwoven fabric.
  • the propylene polymer include a propylene homopolymer having a melting point (Tm) of 135 ° C. or higher or propylene and 10 mol% or less of ethylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl- A copolymer of 1-pentene or the like with one or more ⁇ -olefins having 2 or more carbon atoms (excluding 3 carbon atoms), preferably 2 to 8 (excluding 3 carbon atoms) is preferable.
  • a propylene / ⁇ -olefin random copolymer having a melting point of 135 to 155 ° C. is a mixed fiber spunbond nonwoven fabric excellent in stretchability, initial hydrophilicity and durable hydrophilicity, flexibility, and touch feeling. Since it is obtained, it is preferable.
  • the melt flow rate (MFR: ASTM D-1238, 230 ° C., load 2160 g) is not particularly limited, but is usually 1 to 1000 g / 10 minutes, preferably 5 to 500 g / It is in the range of 10 minutes, more preferably 10 to 100 g / 10 minutes.
  • the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the propylene polymer according to the present invention is usually 1.5 to 5.0.
  • the range of 1.5 to 3.0 is more preferable in that a fiber having good spinnability and particularly excellent fiber strength can be obtained.
  • Mw and Mn can be measured by a known method by GPC (gel permeation chromatography).
  • the propylene-based polymer has a small amount, preferably 1 to 20% by weight, more preferably 2 to 15% by weight, and still more preferably 4 to 10% by weight.
  • the HDPE added to the propylene polymer is not particularly limited, but usually has a density of 0.94 to 0.97 g / cm 3 , preferably 0.95 to 0.97 g / cm 3 , more preferably 0.96 to 0.9. It is in the range of 97 g / cm 3 .
  • the melt flow rate of HDPE (MFR: ASTM D-1238, 190 ° C., load 2160 g) is usually 0.1 to 100 g / 10 min from the viewpoint of developing extensibility. More preferably, it is in the range of 0.5 to 50 g / 10 minutes, more preferably 1 to 30 g / 10 minutes.
  • good spinnability means that yarn breakage does not occur during discharge from the spinning nozzle and during drawing, and filament fusion does not occur.
  • thermoplastic elastomer (B) which is one of the components forming the mixed fiber spunbonded nonwoven fabric of the present invention
  • various known thermoplastic elastomers can be used, and two or more types of thermoplastic elastomers can be used in combination.
  • SBS polystyrene-polybutadiene-polystyrene block copolymer
  • SIS polystyrene-polyisoprene-polystyrene block copolymer
  • hydrogenated polystyrene-polyethylene-butylene-polystyrene hydrogenated polystyrene-polyethylene-butylene-polystyrene
  • SEBS block copolymer
  • SEPS polystyrene-polyethylenepropylene-polystyrene block copolymer
  • a block copolymer comprising a polymer block composed of a conjugated diene compound such as butadiene or isoprene, or a styrene elastomer as a hydrogenated product thereof; a highly crystalline aromatic polyester Polyester elastomers typified by block copolymers composed of styrene and amorphous aliphatic polyethers; from crystalline, high melting point polyamides and non-crystalline, low glass transition temperature (Tg) polyethers or polyesters
  • Tg glass transition temperature
  • examples thereof include mixed polyolefin elastomers; vinyl chloride elastomers; fluorine elastomers.
  • Styrenic elastomers include diblock and triblock copolymers based on polystyrene blocks and butadiene rubber blocks or isoprene rubber blocks.
  • the rubber block may be unsaturated or completely hydrogenated.
  • Specific examples of the styrene elastomer include KRATON polymer (trade name, manufactured by Shell Chemical Co., Ltd.), SEPTON (trade name, manufactured by Kuraray Co., Ltd.), and TUFTEC (trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.). ), Rheostomer (trade name, manufactured by Riken Technos Co., Ltd.) and the like.
  • polyester-based elastomers are manufactured and sold under trade names such as HYTREL (trade name, manufactured by EI DuPont Co., Ltd.) and perprene (trade name, manufactured by Toyobo Co., Ltd.). Yes.
  • amide-based elastomer for example, it is manufactured and sold under the trade name of PEBAX (trade name, manufactured by Atofina Japan Co., Ltd.).
  • polyolefin elastomers include ethylene / ⁇ -olefin copolymers and propylene / ⁇ -olefin copolymers.
  • TAFMER trade name, manufactured by Mitsui Chemicals, Inc.
  • VISTAMAXX trade name, manufactured by ExxonMobil
  • Engage which is an ethylene-octene copolymer (trade name, manufactured by DuPontDow Elastomers), crystal It is manufactured and sold under a trade name such as CATALLOY (trade name, manufactured by Montel Co., Ltd.) containing a functional olefin copolymer.
  • vinyl chloride elastomers are manufactured and sold under the trade names such as Leonil (trade name, manufactured by Riken Technos Co., Ltd.) and Posmir (trade name, manufactured by Shin-Etsu Polymer Co., Ltd.).
  • thermoplastic elastomers (B) polyolefin-based elastomers and thermoplastic polyurene elastomers are preferable.
  • thermoplastic polyurethane-based elastomers have stretchability and processability, and are excellent in initial hydrophilicity and durable hydrophilicity. Since a mixed fiber spunbond nonwoven fabric is obtained, it is preferable.
  • thermoplastic polyurethane elastomers having a solidification start temperature of 65 ° C. or higher, preferably 75 ° C. or higher, and most preferably 85 ° C. or higher are preferred.
  • the upper limit of the solidification start temperature is preferably 195 ° C.
  • the solidification start temperature is a value measured using a differential scanning calorimeter (DSC), and the temperature of the thermoplastic polyurethane elastomer was increased to 230 ° C. at 10 ° C./min and held at 230 ° C. for 5 minutes.
  • the solidification start temperature is 65 ° C. or higher, it is possible to suppress molding defects such as fusion between fibers, yarn breakage, and resin lump when obtaining a mixed fiber spunbond nonwoven fabric.
  • the formed mixed fiber spunbond nonwoven fabric can be prevented from being wound around the embossing roller.
  • the obtained mixed fiber spunbond nonwoven fabric has little stickiness, and is suitably used for materials that come into contact with the skin, such as clothing, sanitary materials, and sports materials.
  • the moldability can be improved by setting the solidification start temperature to 195 ° C. or lower.
  • the solidification start temperature of the formed fiber tends to be higher than the solidification start temperature of the thermoplastic polyurethane elastomer used for this.
  • the polyol, isocyanate compound and chain extender used as raw materials for the thermoplastic polyurethane elastomer each have an optimal chemical structure.
  • the hard segment amount is a weight obtained by dividing the total weight of the isocyanate compound and the chain extender used in the production of the thermoplastic polyurethane-based elastomer by the total amount of the polyol, the isocyanate compound and the chain extender and multiplying by 100. Percent (% by weight) value.
  • the hard segment amount is preferably 20 to 60% by weight, more preferably 22 to 50% by weight, and most preferably 25 to 48% by weight.
  • the thermoplastic polyurethane elastomer preferably has a polar solvent insoluble particle number of 3 million particles / g or less, more preferably 2.5 million particles or less, and even more preferably 2 million particles or less.
  • the polar solvent insoluble component in the thermoplastic polyurethane elastomer is mainly a lump such as fish eye or gel generated during the production of the thermoplastic polyurethane elastomer, and is a hard segment of the thermoplastic polyurethane elastomer.
  • thermoplastic polyurethane elastomers such as components in which hard segments and / or soft segments are cross-linked by allophanate bonds, burette bonds, etc., and components generated by a chemical reaction between these raw materials .
  • the number of particles insoluble in the polar solvent is the particle size distribution measuring device using the pore electrical resistance method for the insoluble when the thermoplastic polyurethane elastomer is dissolved in the dimethylacetamide solvent (hereinafter abbreviated as “DMAC”). This is a value measured by attaching a 100 ⁇ m aperture to the surface. When a 100 ⁇ m aperture is attached, the number of particles of 2 to 60 ⁇ m in terms of uncrosslinked polystyrene can be measured.
  • DMAC dimethylacetamide solvent
  • the thermoplastic polyurethane elastomer preferably has a moisture value of 350 ppm or less. Preferably it is 300 ppm or less, most preferably 150 ppm or less.
  • the total amount of heat of fusion obtained from an endothermic peak having a peak temperature in the range of 90 to 140 ° C. measured by a differential scanning calorimeter (DSC) of the thermoplastic polyurethane elastomer (a) And the sum (b) of the heat of fusion determined from the endothermic peak having a peak temperature exceeding 140 ° C. and not exceeding 220 ° C.
  • a / (a + b) means the ratio of heat of fusion (unit:%) of the hard domain of the thermoplastic polyurethane elastomer.
  • the ratio of heat of fusion of the hard domains of the thermoplastic polyurethane-based elastomer is 80% or less, the strength and stretchability of the fibers and particularly the fibers and the nonwoven fabrics in the mixed fiber spunbond nonwoven fabric are improved.
  • the lower limit of the ratio of heat of fusion of the hard domains of the thermoplastic polyurethane elastomer is preferably about 0.1%.
  • thermoplastic polyurethane elastomers preferably have a melt viscosity of 100 to 3000 Pa ⁇ s, more preferably 200 to 2000 Pa ⁇ s, and most preferably 1000 to 1500 Pa ⁇ s under the conditions of a temperature of 200 ° C. and a shear rate of 100 sec ⁇ 1.
  • the melt viscosity is a value measured by a capillograph (made by Toyo Seiki Co., Ltd., having a nozzle length of 30 mm and a diameter of 1 mm).
  • thermoplastic polyurethane-based elastomer having such characteristics can be obtained by, for example, a production method described in JP-A-2004-244791.
  • the thermoplastic polyurethane-based elastomer having a small amount of insoluble polar solvent can be obtained by filtration after performing a polymerization reaction of a polyol, an isocyanate compound and a chain extender, as will be described later.
  • thermoplastic resin (A) long fibers examples include surfactants, among which nonionic surfactants are preferable.
  • nonionic surfactants include ether type nonionic surfactants such as polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, polyoxyethylene alkylphenyl ether, and polyoxypropylene alkylphenyl ether; Polyhydric alcohol ether type nonionic surfactants; ester type nonionic surfactants such as polyoxyethylene fatty acid esters and polyoxypropylene fatty acid esters; sucrose fatty acid esters, sorbitan fatty acid esters, polyoxyethylene fatty acid esters, polyoxy Polyhydric alcohol ester type nonionic surfactant such as propylene fatty acid ester; fatty acid alkanolamide, alkylene oxide adduct of aliphatic amide having an acyl group having 8 to 18 carbon atoms, etc. Amide nonionic surface active agents.
  • ether type nonionic surfactants such as polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, polyoxyethylene alkylpheny
  • nonionic surfactants may be used singly or as a mixture of two or more kinds of nonionic surfactants.
  • ether type nonionic surfactant a surfactant having an alkyl group having 8 to 50 carbon atoms or an alkyl group having 8 to 18 carbon atoms is preferable.
  • an ether type nonionic system comprising an aliphatic oxide alkylene oxide adduct having an aliphatic alcohol having 10 to 40, preferably 12 to 24, more preferably 16 to 22 carbon atoms.
  • a surfactant (AE type nonionic surfactant) and an ester type nonionic surfactant having an ester with a fatty acid having 8 to 18 carbon atoms are preferred.
  • thermoplastic resin (A) long fibers As a method of hydrophilizing the thermoplastic resin (A) long fibers, a method of adding a surfactant, more specifically, a method of applying long fibers with a surfactant, or a thermoplastic resin (A) in advance. And a method of fiberizing (kneading) after adding a surfactant.
  • the nonionic surfactant is used in a proportion of 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, relative to 100 parts by weight of the thermoplastic resin (A).
  • a method of applying to the surface of the long fiber or kneading into the thermoplastic resin (A) is preferable. Further, from the viewpoint of hydrophilic sustainability, a method of adding a surfactant to the thermoplastic resin (A) and then fiberizing (kneading) is more preferable.
  • the addition amount of the nonionic surfactant is less than 0.1 parts by weight, the effect of improving the initial hydrophilicity and durability hydrophilicity of the obtained mixed fiber spunbonded nonwoven fabric may be insufficient.
  • the amount exceeds 10 parts by weight the processability may be reduced, and the amount of the nonionic surfactant that oozes out on the fiber surface may increase, and the resulting mixed fiber spunbond nonwoven fabric may become sticky.
  • mixed fiber spunbonded nonwoven fabric with excellent durability and hydrophilicity can maintain good hydrophilicity even after storage at high temperature or after heat processing for manufacturing absorbent articles. It is preferably used for a surface sheet and / or a second sheet of an absorbent article such as a liner, an incontinence pad, and a paper diaper, or a sheet (core wrap) that wraps an absorbent body. The effect is remarkable when it is 10 [sec] or less, particularly 5 [sec] or less.
  • the mixed fiber spunbond nonwoven fabric includes various stabilizers such as heat stabilizers and weather stabilizers; slip agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes and the like as optional components. Can be added.
  • various stabilizers such as heat stabilizers and weather stabilizers; slip agents, antifogging agents, lubricants, dyes, pigments, natural oils, synthetic oils, waxes and the like as optional components. Can be added.
  • antioxidants examples include anti-aging agents such as 2,6-di-t-butyl-4-methylphenol (BHT); tetrakis [methylene-3- (3,5-di-t-butyl-4- Hydroxyphenyl) propionate] methane, 6- (3,5-di-t-butyl-4-hydroxyphenyl) propionic acid alkyl ester, 2,2′-oxamide bis [ethyl-3- (3,5-di-t- Butyl-4-hydroxyphenyl)] propionate, Irganox® 1010 (hindered phenol antioxidant: trade name); fatty acid metals such as zinc stearate, calcium stearate, calcium 1,2-hydroxystearate A salt etc. can be mentioned. These may be used alone or in combination of two or more.
  • BHT 2,6-di-t-butyl-4-methylphenol
  • tetrakis [methylene-3- (3,5-di-t-butyl-4- Hydroxyphenyl
  • the mixed fiber spunbonded nonwoven fabric of the present invention comprises a mixed fiber spunbonded nonwoven fabric containing 90 to 10% by weight of thermoplastic resin (A) long fibers and 10 to 90% by weight of thermoplastic elastomer (B) long fibers, and is at least thermoplastic. Resin (A) long fibers are hydrophilized.
  • the mixed fiber spunbond nonwoven fabric of the present invention is mixed with the thermoplastic resin (A) long fiber that has been subjected to a hydrophilic treatment within a range of 10 to 90% by weight of the thermoplastic elastomer (B) long fiber, thereby providing an initial hydrophilic property. And it becomes the mixed fiber spunbonded nonwoven fabric excellent in durable hydrophilicity.
  • thermoplastic resin (A) long fibers forming the mixed fiber spunbond nonwoven fabric of the present invention have been subjected to a hydrophilic treatment, but the thermoplastic elastomer (B) long fibers have not necessarily been subjected to a hydrophilic treatment. Also good.
  • thermoplastic elastomer (B) long fibers are preferably 20% by weight or more, and 30% by weight. From the viewpoint of workability (stickiness resistance), it is preferably 70% by weight or less, and more preferably 60% by weight or less.
  • the fiber diameter (average value) of the thermoplastic resin (A) long fiber and the thermoplastic elastomer (B) long fiber forming the mixed fiber spunbond nonwoven fabric according to the present invention is usually 50 ⁇ m or less, preferably 40 ⁇ m or less, and more preferably. Is in the range of 30 ⁇ m or less.
  • the fiber diameters of the thermoplastic resin (A) long fiber and the thermoplastic elastomer (B) long fiber may be the same or different.
  • the mixed fiber spunbonded nonwoven fabric according to the present invention can be appropriately selected according to its use.
  • the basis weight is usually 120 g / m 2 or less from the viewpoint of flexibility. , Preferably 15 to 80 g / m 2 , more preferably 15 to 60 g / m 2 .
  • the mixed fiber spunbonded nonwoven fabric according to the present invention uses the thermoplastic resin (A) and the thermoplastic elastomer (B) to produce a known spunbonded nonwoven fabric, for example, Japanese Patent Application Laid-Open No. 2004-244791. It can be produced by the method described.
  • thermoplastic resin (A) and the thermoplastic elastomer (B) are melted by separate extruders, the melted polymer is individually divided into a die (die) having a large number of spinning holes (nozzles). ), And the thermoplastic resin (A) and the thermoplastic elastomer (B) are ejected simultaneously from different spinning holes at the same time, and then the melt-spun thermoplastic resin (A) long fibers and the thermoplastic elastomer ( After the long fibers of B) are introduced into the cooling chamber and cooled by cooling air, they can be produced by a method of drawing (pulling) the long fibers with drawing air and depositing them on the moving collection surface.
  • the melting temperature of the polymer is not particularly limited as long as it is higher than the softening temperature or melting temperature of the polymer and lower than the thermal decomposition temperature, and can be determined depending on the polymer used.
  • the die temperature depends on the polymer used, for example, a propylene polymer or an olefin polymer composition of a propylene polymer and HDPE as the thermoplastic resin (A), and a heat as the thermoplastic elastomer (B).
  • a plastic polyurethane elastomer or olefin copolymer elastomer it can be set to a temperature of usually 180 to 240 ° C, preferably 190 to 230 ° C, more preferably 200 to 225 ° C.
  • the temperature of the cooling air is not particularly limited as long as the temperature at which the polymer is solidified, but is usually in the range of 5 to 50 ° C., preferably 10 to 40 ° C., more preferably 15 to 30 ° C.
  • the wind speed of the stretched air is usually in the range of 100 to 10,000 m / min, preferably 500 to 10,000 m / min.
  • the deposited mixed spunbond nonwoven fabric is exemplified by a method of pressing and solidifying with a nip roll before drawing, and in that case, the roll is preferably heated.
  • a method using a means such as needle punch, water jet, ultrasonic wave, or hot embossing using an embossing roll or hot air through can be exemplified as pre-bonding, but both can be entangled lighter than usual. It is preferable in terms of texture and stretchability of the surface sheet.
  • the embossed area ratio is in the range of 5 to 20%, preferably 5 to 10%, and the non-embossed unit area is 0.5 mm 2 or more, preferably 4 to 40 mm 2.
  • the non-embossed unit area is the maximum area of a quadrilateral inscribed in the embossed portion in the smallest unit of the non-embossed portion surrounded on all four sides by the embossed portion.
  • Examples of the stamped shape include a circle, an ellipse, an ellipse, a square, a rhombus, a rectangle, a square, and a continuous shape based on these shapes.
  • the mixed-fiber spunbond nonwoven fabric layer between the embosses has a thermoplastic elastomer (B) long fiber having elasticity and a thermoplastic resin (A) which is substantially less elastic (elongated fiber) than the thermoplastic elastomer (B) long fiber.
  • Long fibers exist with a high degree of freedom. Therefore, the mixed fiber spunbonded nonwoven fabric has such a structure to reduce residual strain and to impart good stretchability.
  • the stretchable range is small, but the stress is improved.
  • the stretchable range can be increased, but when the embossed pitch is increased, the residual strain tends to be slightly increased.
  • the stretched thermoplastic elastomer (B) long fibers recover elastically and return to the length before stretching, but the length of the thermoplastic resin (A) is long. Since the fiber stays in a length close to the stretched state, the thermoplastic resin (A) long fiber is bent, and the bent fiber protrudes from the surface of the mixed fiber spunbond nonwoven fabric. It becomes a mixed fiber spunbond nonwoven fabric which is rich in flexibility. Moreover, since it is excellent also in elasticity, it is suitable for the surface sheet of an absorbent article with a rich fit.
  • the mixed fiber spunbond nonwoven fabric of the present invention may be laminated with other layers depending on various uses.
  • Other layers laminated on the mixed fiber spunbonded nonwoven fabric of the present invention are not particularly limited, and various layers can be laminated depending on applications.
  • a knitted fabric, a woven fabric, a non-woven fabric, a film, and the like can be given.
  • thermal embossing thermal fusion methods such as ultrasonic fusion
  • mechanical entanglement methods such as needle punch, water jet
  • Various known methods such as a method using an adhesive such as a hot melt adhesive and a urethane-based adhesive, extrusion lamination, and the like can be adopted.
  • nonwoven fabric laminated on the mixed fiber spunbond nonwoven fabric of the present invention examples include various known nonwoven fabrics such as a spunbond nonwoven fabric, a melt blown nonwoven fabric, a wet nonwoven fabric, a dry nonwoven fabric, a dry pulp nonwoven fabric, a flash spun nonwoven fabric, and a spread nonwoven fabric.
  • These non-woven fabrics may be non-stretchable non-woven fabrics.
  • the non-stretchable non-woven fabric refers to one having an elongation at break of MD or CD of about 50% and generating no return stress after stretching.
  • the film laminated on the mixed fiber spunbonded nonwoven fabric of the present invention is preferably a breathable (moisture permeable) film that takes advantage of the air permeability and hydrophilicity that are the characteristics of the mixed fiber spunbonded nonwoven fabric of the present invention.
  • a breathable film include various known breathable films, for example, films made of thermoplastic elastomers such as moisture-permeable polyurethane elastomers, polyester elastomers, polyamide elastomers, and thermoplastic resins containing inorganic or organic fine particles. Examples thereof include a porous film formed by stretching a film to be porous.
  • thermoplastic resin used for the porous film is preferably a high pressure method low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, polypropylene random copolymer, or a polyolefin such as a composition thereof.
  • the absorbent article of the present invention is a sanitary napkin, a panty liner, an incontinence pad, a paper diaper or the like containing the mixed fiber spunbond nonwoven fabric.
  • an intermediate layer made of an absorber is usually provided between the back sheet and the liquid permeable top sheet.
  • the mixed fiber spunbond nonwoven fabric of the present invention is excellent in initial hydrophilicity and durable hydrophilicity, and is flexible and bulky. Therefore, the surface sheet of the absorbent article and / or the second sheet or the sheet that wraps the absorbent body (core wrap) Can be suitably used.
  • Thickness [ ⁇ m] (Mixed fiber) Three test pieces of 100 mm (MD) ⁇ 100 mm (CD) were collected from the spunbonded nonwoven fabric. In addition, the collection place was arbitrary three places. Next, the thickness [ ⁇ m] of each collected test piece was measured by a method described in JIS L 1096 using a load-type thickness meter. The average value of the thickness of each test piece was calculated
  • the fiber diameter of the thermoplastic resin (A) long fiber was measured by folding each collected specimen as shown in FIG. 1, and photographing the fiber on the specimen surface from the folded portion at a magnification of 200 times as shown in FIG. The image was analyzed by image dimension measurement software (Innotech Co., Ltd .: Pixs2000 Version 2.0). Ten fiber diameters are measured for each test piece, the average value of the fiber diameters of each test piece is obtained, and the second decimal place is rounded off to obtain the fiber diameter of the thermoplastic resin (A) long fiber of each nonwoven fabric sample [ ⁇ m ].
  • thermoplastic elastomer (B) long fiber was photographed at a magnification of 200 times without folding each of the collected test pieces, a fiber having a large fiber diameter was selected, and the image was measured using image dimension measurement software (manufactured by Innotech): Pixs2000 Version 2.0). Ten fiber diameters are measured for each test piece, the average value of the fiber diameters of each test piece is obtained, the second decimal place is rounded off, and the fiber diameter of the thermoplastic elastomer (B) long fiber of each nonwoven fabric sample [ ⁇ m ].
  • EPT EF3 filter papers manufactured by Hollingsworth & Vose Company Ltd., length 100 mm, width 100 mm
  • an aqueous solution of sodium chloride (9 g / liter) was used as the liquid.
  • the surface tension of the liquid is 70 +/ ⁇ 2 mN / m.
  • Each test piece and the filter paper were left in an atmosphere of a temperature of 20 ° C. and a humidity of 65% for 24 hours.
  • Set a ring stand that supports the Lister funnel (with a magnetic valve mounted and can pass 25 ml of liquid in (3.5 +/- 0.25) seconds), and place a glass tube (50 ml capacity) in the funnel. Prepared to enter.
  • the artificial urine was discharged from the funnel to the cavity plate, and the time from when the liquid started to pass through to the end of the electrode was measured (the timer automatically measured).
  • the average value of the liquid permeation time of each test piece was obtained, and the second decimal place was rounded off to obtain the initial hydrophilicity [sec] of each nonwoven fabric sample.
  • Liquid flow distance (Mixed fiber) A sample (50 mm x 200 mm) was collected from a spunbonded nonwoven fabric. No. made by Advantech Co., Ltd. on a plate fixed at an angle of 45 degrees. Two pieces of two filter papers were placed on top of each other, a sample was placed thereon, and both ends in the longitudinal direction of the sample were fixed on the plate together with the filter paper. Drop one drop (about 0.3 ml) of artificial urine with a dropper from a height of about 10 mm above the sample surface, measure the distance from the drop point to the point where the drop is completely absorbed, and the liquid flow The distance (mm) was used. The smaller this value, the better the hydrophilicity.
  • Residual strain [%] (Mixed fiber) Six test pieces of 200 mm (MD) ⁇ 50 mm (CD) were collected from the spunbonded nonwoven fabric. In addition, the collection place was MD and CD arbitrary 3 places (a total of 6 places). Next, each collected specimen was stretched using a universal tensile testing machine (Intesco, IM-201 type) under the conditions of 100 mm between chucks, a tensile speed of 100 mm / min, and a draw ratio of 100%. The strain was recovered to the original length, and the strain at the time of recovery was measured to obtain the residual strain [%]. For the residual strain, an average value was obtained for the above 6 points (3 points for each of MD and CD), and the first decimal place was rounded off to obtain the residual strain [%] of each nonwoven fabric sample.
  • a universal tensile testing machine Intesco, IM-201 type
  • Tactile Ten panelists confirmed the touch of the (mixed fiber) spunbonded nonwoven fabric and evaluated it according to the following criteria.
  • thermoplastic polyurethane elastomer (TPU) used for the Example and the comparative example were performed in accordance with the following method.
  • DSC220C differential scanning calorimeter
  • As a sample about 8 mg of ground TPU was collected in an aluminum pan, covered with a cover and crimped.
  • alumina was similarly collected as a reference. After setting the sample and reference at a predetermined position in the cell, a flow rate of 40 Nml / min. The measurement was performed under a nitrogen stream. Temperature rising rate 10 ° C./min.
  • the temperature was raised from room temperature to 230 ° C. and maintained at this temperature for 5 minutes, and then 10 ° C./min. The temperature was lowered to ⁇ 75 ° C. The starting temperature of the exothermic peak derived from the solidification of TPU recorded at this time was measured and used as the solidification starting temperature (unit: ° C.).
  • Reagent A 180 g of reagent A and 2.37 g of TPU pellets were precisely weighed in a 200 cc glass bottle, and the soluble content in TPU was dissolved over 3 hours, which was used as a measurement sample.
  • a 100 ⁇ m aperture tube was attached to Multisizer II, the solvent in the apparatus was replaced with reagent A, and the degree of vacuum was adjusted to about 3000 mmAq.
  • 120 g of reagent A was weighed into a well-washed sample beaker, and it was confirmed that the amount of pulses generated by blank measurement was 50 or less.
  • TPU weight ⁇ (A / 100) ⁇ B / (B + C) ⁇ ⁇ D
  • A TPU concentration (% by weight) of measurement sample
  • B Weight of measurement sample weighed in beaker
  • C Weight of reagent A weighed in beaker
  • D In measurement ( The amount of solution (g) sucked into the aperture tube during 210 seconds).
  • Ratio of heat of fusion of hard domain Measured with a differential scanning calorimeter (DSC220C) connected to an SSC5200H disk station manufactured by Seiko Instruments Inc.
  • DSC220C differential scanning calorimeter
  • SSC5200H disk station manufactured by Seiko Instruments Inc.
  • a sample about 8 mg of ground TPU was collected in an aluminum pan, covered with a cover and crimped.
  • alumina was collected as a reference. After setting the sample and reference at a predetermined position in the cell, a flow rate of 40 Nml / min. The measurement was performed under a nitrogen stream. Temperature rising rate 10 ° C./min. The temperature was raised from room temperature to 230 ° C.
  • melt viscosity a / (a + b) ⁇ 100 (13) Melt viscosity at 200 ° C. (hereinafter simply referred to as “melt viscosity”) Using a capillograph (Model 1C manufactured by Toyo Seiki Co., Ltd.), the melt viscosity (unit: unit: Pa ⁇ s) of TPU at a shear rate of 100 sec ⁇ 1 at 200 ° C. was measured. A nozzle having a length of 30 mm and a diameter of 1 mm was used.
  • TPU Moisture value of TPU
  • the moisture content (unit: ppm) of TPU is measured by combining the moisture content measuring device (AVQ-5S made by Hiranuma Sangyo Co., Ltd.) and the water vaporizer (EV-6 made by Hiranuma Sangyo Co., Ltd.). It was. About 2 g of TPU pellets weighed in a heated sample pan were put into a heating furnace at 250 ° C., and the evaporated water was introduced into a titration cell of a moisture measuring device from which residual moisture had been removed in advance and titrated with a Karl Fischer reagent. The titration was completed when no change in the potential of the titration electrode accompanying the change in the amount of water in the cell occurred for 20 seconds.
  • Shore A hardness TPU hardness was measured according to the method described in JIS K-7311 at 23 ° C. and 50% relative humidity. The durometer was type A.
  • MDI Diphenylmethane diisocyanate
  • polyol solution 1 628.6 parts by weight of a polyester polyol having a number average molecular weight of 2000 (Mitsui Takeda Chemical Co., Ltd., trade name: Takelac U2024), 2.21 parts by weight of Irganox 1010, and 77.5 weights of 1,4-butanediol Were charged in tank B under a nitrogen atmosphere and adjusted to 95 ° C. with stirring. This mixture is referred to as polyol solution 1.
  • the hard segment amount calculated from these reaction raw materials was 37.1% by weight.
  • a high-speed stirrer (SM40) in which MDI was adjusted to 120 ° C. at a flow rate of 17.6 kg / h and polyol solution 1 at a flow rate of 42.4 kg / h in a liquid feed line via a gear pump and a flow meter.
  • the solution was quantitatively passed through, stirred and mixed at 2000 rpm for 2 minutes, and then passed through a static mixer.
  • the static mixer unit was connected to the first to third static mixers (temperature 230 ° C.) connected with three static mixers with a pipe length of 0.5 m and an inner diameter of 20 mm ⁇ , and three static mixers with a pipe length of 0.5 m and an inner diameter of 20 mm ⁇ .
  • Fourth to sixth static mixers (temperature 220 ° C.), pipe length 1.0 m, 7 to 12 static mixers (temperature 210 ° C.) connected with six static mixers with an inner diameter of 34 mm ⁇ , pipe length 0.5 m,
  • a thirteenth to fifteenth static mixer (temperature 200 ° C.) connected with three static mixers having an inner diameter of 38 mm ⁇ was connected in series.
  • the reaction product flowing out of the fifteenth static mixer was passed through a gear pump and a single-screw extruder (diameter 65 mm ⁇ , temperature 180 to 210) attached with a polymer filter (manufactured by Nagase Sangyo Co., Ltd., trade name: Dena filter) at the tip. And extruded from a strand die. After cooling with water, it was continuously pelletized with a pelletizer. Next, the obtained pellets were charged into a dryer and dried at 100 ° C. for 8 hours to obtain a thermoplastic polyurethane elastomer having a moisture value of 40 ppm.
  • thermoplastic polyurethane elastomer was continuously extruded by a single screw extruder (diameter 50 mm ⁇ , temperature 180 to 210 ° C.) and pelletized. It was again dried at 100 ° C. for 7 hours to obtain a thermoplastic polyurethane elastomer (TPU-1) having a moisture value of 57 ppm.
  • the solidification start temperature of TPU-1 is 103.7 ° C.
  • the number of particles insoluble in the polar solvent is 1.5 million particles / g
  • the hardness by a test piece prepared by injection molding is 86 A
  • the melt viscosity at 200 ° C. is 1900 Pa ⁇ s
  • hard The heat of fusion ratio of the domain was 35.2%.
  • thermoplastic resin composition for spunbond nonwoven fabric > MFR (according to ASTM D1238, measured at a temperature of 230 ° C. and a load of 2.16 kg) 60 g / 10 min, a density of 0.91 g / cm 3 , a melting point of 160 ° C. (hereinafter abbreviated as “PP-1”) 96 parts by weight and MFR (measured according to ASTM D1238 at a temperature of 190 ° C. and a load of 2.16 kg) 5 g / 10 minutes, a density of 0.97 g / cm 3 and a melting point of 134 ° C.
  • MFR according to ASTM D1238, measured at a temperature of 230 ° C. and a load of 2.16 kg
  • PP-1 melting point of 160 ° C.
  • thermoplastic resin composition (hereinafter “HDPE”) After mixing 4 parts by weight, a hydrophilization master batch (Ciba, trade name: IRGASURF HL560 (hereinafter abbreviated as “hydrophilizing agent A”).
  • ionic surface active agent is a (hydrophilization treatment agent component) [polyoxyethylene alkyl ether: CH 3 (CH 2) 17 -O- (CH 2 CH 2) 2.5 -H ] 60 fold % Contained. ]
  • ionic surface active agent is a (hydrophilization treatment agent component) [polyoxyethylene alkyl ether: CH 3 (CH 2) 17 -O- (CH 2 CH 2) 2.5 -H ] 60 fold % Contained. ]
  • thermoplastic polyurethane elastomer (TPU-1) and the thermoplastic resin composition (A-1) independently using a 75 mm ⁇ extruder and a 50 mm ⁇ extruder, forming a spunbond nonwoven fabric having a spinneret Using a machine (length in the direction perpendicular to the machine flow direction on the collecting surface: 800 mm), both the resin temperature and the die temperature are 210 ° C., the cooling air temperature is 20 ° C., and the drawing air velocity is 3750 m / min.
  • a spunbond method was used to melt-spin, and a web consisting of mixed long fibers including long fibers B consisting of TPU-1 and long fibers A consisting of A-1 was deposited on the collection surface.
  • a web consisting of 40:60 (wt%) mixed fiber was obtained.
  • the spinneret has a nozzle pattern in which discharge holes of TPU-1 and discharge holes of A-1 are alternately arranged, and the nozzle diameter of TPU-1 (fiber B) is 0.75 mm ⁇ and A-1 (fiber
  • the single hole discharge rate of the fiber B was 0.60 g / (minute / hole), and the single hole discharge amount of the fiber A was 0.61 g / (minute / hole).
  • the web composed of the mixed long fibers deposited is peeled off from the moving belt after nip by a nip roll (linear pressure 10 kg / cm) coated with a non-adhesive material placed on the belt, and the embossed pattern has an area ratio of 18%.
  • the mixture was heat-bonded by embossing with an embossed area of 0.41 mm 2 , a heating temperature of 105 ° C., and a linear pressure of 70 kg / cm to obtain a mixed fiber spunbonded nonwoven fabric.
  • the basis weight of the obtained mixed fiber spunbonded nonwoven fabric was 30 g / m 2 .
  • the obtained mixed fiber spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in Table 1. (9) The tactile sensation was “B”.
  • Example 2 250 mm (MD) ⁇ 200 mm (CD) was cut out from the mixed fiber spunbond nonwoven fabric obtained in Example 1, and using a universal tensile testing machine (IM-201, manufactured by Intesco), the chuck was 200 mm, the tensile speed was The film was stretched in the MD direction under the conditions of 200 mm / min and a stretching ratio of 100%.
  • the basis weight of the mixed fiber spunbonded nonwoven fabric after stretching was 33 g / m 2 .
  • the mixed fiber spunbonded nonwoven fabric after stretching was evaluated by the method described above. The evaluation results are shown in Table 1. (9) The tactile sensation was “A”.
  • Example 3 A mixed fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the basis weight of the mixed fiber spunbonded nonwoven fabric was 60 g / m 2 . The obtained mixed fiber spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in Table 1. (9) The tactile sensation was “B”.
  • thermoplastic resin composition for spunbond nonwoven fabric As ether type nonionic surfactant, ethylene oxide adduct of eicosanol [CH 3 (CH 2 ) 19 —O— (CH 2 CH 2 O) 2.5 —H]: 60 wt%, and MFR: 30 g / 10 min Propylene homopolymer: 40% by weight of an antioxidant (trade name: Irgafos 168, manufactured by Ciba), 0.05 parts by weight, melt kneaded at 230 ° C., extruded, and pelletized masterbatch (hydrophilic agent B ) was prepared.
  • ether type nonionic surfactant ethylene oxide adduct of eicosanol [CH 3 (CH 2 ) 19 —O— (CH 2 CH 2 O) 2.5 —H]: 60 wt%, and MFR: 30 g / 10 min
  • Propylene homopolymer 40% by weight of an antioxidant (trade name: Irgafos 168, manufactured
  • thermoplastic resin composition (A-2) 96 parts by weight of PP-1 used in Example 1 and 4 parts by weight of HDPE were mixed, and then 5 parts by weight of hydrophilizing agent B (100 parts by weight of PP-1 / HDPE mixture) (hydrophilic treatment agent). 3 parts by weight in terms of components) were mixed to prepare a thermoplastic resin composition (A-2).
  • a mixed fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 3 except that the thermoplastic resin composition (A-2) was used instead of the thermoplastic resin composition (A-1) used in Example 3. It was.
  • the basis weight of the obtained mixed fiber spunbonded nonwoven fabric was 60 g / m 2 .
  • the obtained mixed fiber spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in Table 1. (9) The tactile sensation was “B”.
  • thermoplastic resin composition for spunbond nonwoven fabric MFR (according to ASTM D1238, measured at a temperature of 230 ° C. and a load of 2.16 kg) 60 g / 10 min, a density of 0.91 g / cm 3 , a melting point of 142 ° C. (hereinafter referred to as “PP-2”) 96 parts by weight and 4 parts by weight of HDPE were mixed, and then 5 parts by weight of hydrophilizing agent A used in Example 1 with respect to 100 parts by weight of the PP-2 / HDPE mixture (in terms of hydrophilizing agent component) To 3 parts by weight) to prepare a thermoplastic resin composition (A-3).
  • MFR accordinging to ASTM D1238, measured at a temperature of 230 ° C. and a load of 2.16 kg
  • PP-2 96 parts by weight and 4 parts by weight of HDPE were mixed, and then 5 parts by weight of hydrophilizing agent A used in Example 1 with respect to 100 parts by weight of the PP-2 / HDPE mixture (in terms of
  • a mixed fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the thermoplastic resin composition (A-3) was used instead of the thermoplastic resin composition (A-1) used in Example 1. It was.
  • the basis weight of the obtained mixed fiber spunbonded nonwoven fabric was 30 g / m 2 .
  • the obtained mixed fiber spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in Table 1. (9) The tactile sensation was “B”.
  • thermoplastic resin composition for spunbond nonwoven fabric After mixing 96 parts by weight of PP-2 used in Example 5 and 4 parts by weight of HDPE, 5 parts by weight of hydrophilizing agent B used in Example 4 with respect to 100 parts by weight of the PP-2 / HDPE mixture ( A thermoplastic resin composition (A-4) was prepared by mixing 3 parts by weight in terms of a hydrophilizing agent component.
  • a mixed fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the thermoplastic resin composition (A-4) was used instead of the thermoplastic resin composition (A-1) used in Example 1. It was.
  • the basis weight of the obtained mixed fiber spunbonded nonwoven fabric was 30 g / m 2 .
  • the obtained mixed fiber spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in Table 1. (9) The tactile sensation was “B”.
  • Example 7 Example except that a thermoplastic polyolefin elastomer (manufactured by ExxonMobil, trade name: VISTAMAXX VM2125, hereinafter abbreviated as “TPO-1”) is used in place of the thermoplastic polyurethane elastomer (TPU-1) used in Example 5. 5 was performed to obtain a mixed fiber spunbond nonwoven fabric. The basis weight of the obtained mixed fiber spunbonded nonwoven fabric was 30 g / m 2 . The obtained mixed fiber spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in Table 2. (9) The tactile sensation was “B”.
  • TPO-1 thermoplastic polyolefin elastomer
  • Example 8 A mixed fiber spunbond was performed in the same manner as in Example 6 except that TPO-1 used in Example 7 was used as the thermoplastic elastomer instead of the thermoplastic polyurethane elastomer (TPU-1) used in Example 6.
  • TPO-1 used in Example 7 was used as the thermoplastic elastomer instead of the thermoplastic polyurethane elastomer (TPU-1) used in Example 6.
  • a nonwoven fabric was obtained.
  • the basis weight of the obtained mixed fiber spunbonded nonwoven fabric was 30 g / m 2 .
  • the obtained mixed fiber spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in Table 2. (9) The tactile sensation was “B”.
  • thermoplastic resin composition (A-2) was prepared by mixing 5 parts by weight of the hydrophilic agent A used in Example 1 with 100 parts by weight of PP-1 used in Example 1.
  • a spunbonded nonwoven fabric was obtained by the method described in Example 1 using A-2 alone.
  • the basis weight of the obtained spunbonded nonwoven fabric was 30 g / m 2 .
  • the obtained spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in Table 2. Note that (8) measurement of residual strain could not be measured because the fracture occurred when the draw ratio was less than 100%.
  • Example 2 A spunbonded nonwoven fabric was obtained by the method described in Example 1 using A-1 used in Example 1 alone. The basis weight of the obtained spunbonded nonwoven fabric was 30 g / m 2 . The obtained spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in Table 2.
  • Example 3 A mixed fiber spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that the hydrophilic agent A was not used in Example 1. The basis weight of the obtained mixed fiber spunbonded nonwoven fabric was 30 g / m 2 . The obtained mixed fiber spunbonded nonwoven fabric was evaluated by the method described above. The evaluation results are shown in Table 2.
  • the spanned nonwoven fabric (Comparative Example 1 and Comparative Example 2) consisting only of a propylene polymer not containing long thermoplastic polyurethane elastomer fibers or a propylene polymer containing a small amount of high-density polyethylene is a hydrophilizing agent. It is clear that the initial hydrophilicity is improved to 2.1 seconds by adding, but there is no durable hydrophilicity.
  • mixed fiber spunbond nonwoven fabrics Examples 1 to 6) mixed with thermoplastic polyurethane elastomer long fibers and mixed fiber spunbond nonwoven fabrics mixed with polyolefin elastomer long fibers (Examples 7 and 8).
  • the initial hydrophilicity is 1.1 seconds to 2.1 even though the thermoplastic resin long fibers are only hydrophilized and the thermoplastic polyurethane elastomer long fibers and the polyolefin elastomer long fibers are not hydrophilized. It is clear that it is excellent at 2 seconds, and the durability and hydrophilicity are extremely excellent at 1.7 seconds to 3.3 seconds, respectively.
  • the mixed fiber spunbonded nonwoven fabric (Example 2) formed by stretching treatment is bulky and increases in thickness compared to the unstretched mixed fiber spunbonded nonwoven fabric (Example 1), with less residual strain, It turns out that it is excellent in touch.
  • the mixed fiber spunbonded nonwoven fabric of the present invention is excellent in bulkiness, initial hydrophilicity and durable hydrophilicity, flexibility, fluff resistance, stretchability and tactile sensation, and has little stickiness. First, it can be suitably used for medical materials, hygiene materials, industrial materials, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nonwoven Fabrics (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

 本発明は、嵩高性、初期親水性及び耐久親水性、柔軟性、耐毛羽立ち性、伸縮性及び触感に優れ、ベタツキが少ない生理用ナプキン、パンティライナー、失禁パッド、紙おむつ等の吸収性物品の表面シートとして好適な混繊スパンボンド不織布を提供することを目的とする。  本発明は、熱可塑性樹脂(A)長繊維90~10重量%と熱可塑性エラストマー(B)長繊維10~90重量%を含む混繊スパンボンド不織布からなり、少なくとも熱可塑性樹脂(A)長繊維が親水化処理されていることを特徴とする混繊スパンボンド不織布、当該混繊スパンボンド不織布からなる吸収性物品の表面シート及びセカンドシート並びに吸収性物品を提供するものである。

Description

混繊スパンボンド不織布及びその用途
 本発明は、嵩高性、初期親水性及び耐久親水性、柔軟性、耐毛羽立ち性、伸縮性及び触感に優れ、ベタツキが少ない生理用ナプキン、パンティライナー、失禁パッド、紙おむつ等の吸収性物品の表面シート及び/またはセカンドシートあるいは吸収体を包むシート(コアラップ)として好適な混繊スパンボンド不織布に関する。
 不織布は通気性、柔軟性に優れることから、排出あるいは排泄された経血や尿等の液体を素早く吸収体に移行させる吸収性能や、着用者の肌に当接する面が柔軟で、肌に与える刺激が少ないという表面特性が要求される紙おむつ、生理用ナプキン等の吸収性物品用の表面シートとして幅広く使用されている。
 そして、表面シートの肌さわり性、ウェットバック性を改良する方法として、例えば、特許文献1には、高収縮性繊維シートと低収縮性又は非収縮性の不織布を積層一体化した後、熱処理することにより高収縮性繊維シートを収縮させて表面に皺を形成させる方法が、特許文献2には、熱風処理して嵩高性を付与してなる嵩高不織布と熱処理により捲縮する潜在捲縮性繊維不織布とを積層する方法が提案されている。
 また、排泄された尿等の液体の吸収、移行速度を改良する方法として、例えば、特許文献3には、疎水性繊維層と親水性繊維層が層状に重なった嵩高で水難透過性部と疎水性繊維と親水性繊維が混在してなる水透過性部を備えた複相構造を有する不織布とする方法が、特許文献4には、親水性繊維と撥水性繊維とを混合してなる不織布とする方法が提案されている。
 しかしながら、不織布を熱処理して嵩高性を付与する方法は、プロセスが煩雑となり、また、熱処理により不織布を形成する繊維が細くなることはなく、場合によっては熱収縮して繊維径が太くなる場合もあり、いずれにしても熱処理することにより柔軟性、触感が低下する虞がある。また、親水性繊維と撥水性繊維とを混合した不織布は嵩高性が不十分であり、柔軟性、嵩高性を併せ持つ表面シートは得られていない。
 一方、特許文献5には、プロピレン系重合体からなるスパンボンド不織布等の不織布を親水化する手段として、ポリオキシエチレンアルキルエーテル等の非イオン系界面活性剤を添加する方法が多数提案されている。かかる界面活性剤を添加することにより、初期の親水性(一般的な広義の親水性のことを表す。本明細書では、耐久親水性と区別するために、初期親水性と表記することもある。)は改良されるものも、耐久親水性〔通常の室温よりもやや高い程度の温度(およそ40℃程度)以上の環境に一定時間曝された後の親水性をいい、本明細書において以下同様。〕に劣ることが分かった。
特開平6-128853号公報 特開2003-250836号公報 特開2002-20957号公報 特開2004-73759号公報 特開2006-188804号公報
 本発明の課題は、嵩高性、耐久親水性及び初期親水性、柔軟性、耐毛羽立ち性、伸縮性及び触感に優れ、ベタツキが少ない生理用ナプキン、パンティライナー、失禁パッド、紙おむつ等の吸収性物品の表面シート及び/またはセカンドシートあるいは吸収体を包むシート(コアラップ)として好適な混繊スパンボンド不織布を開発することである。
 かかる課題を解決するために、種々検討した結果、親水化処理された熱可塑性樹脂長繊維に熱可塑性エラストマー長繊維を混繊することにより、上記課題が解決し得ることを見出した。
 本発明は、熱可塑性樹脂(A)長繊維90~10重量%と熱可塑性エラストマー(B)長繊維10~90重量%を含む混繊スパンボンド不織布からなり、少なくとも熱可塑性樹脂(A)長繊維が親水化処理されていることを特徴とする混繊スパンボンド不織布、当該混繊スパンボンド不織布からなる吸収性物品の表面シート及びセカンドシート並びに吸収性物品を提供するものである。
 本発明の混繊スパンボンド不織布は、嵩高性、初期親水性及び耐久親水性、柔軟性、耐毛羽立ち性、伸縮性及び触感に優れ、ベタツキが少ないという特徴を兼ね備えているので、吸収性物品の表面シートもしくはセカンドシートとして好適に用い得る。
は、(混繊)スパンボンド不織布の繊維径を測定するための試験片の概略図である。 は、図1で折りたたまれた部分の40倍及び200倍の顕微鏡写真である。
 <熱可塑性樹脂(A)>
 本発明の混繊スパンボンド不織布を形成する成分の一つである熱可塑性樹脂長繊維の原料となる熱可塑性樹脂(A)としては、種々公知の熱可塑性樹脂を用い得る。かかる熱可塑性樹脂(A)は、後述の熱可塑性エラストマー(B)とは異なる樹脂状の重合体であって、通常、融点(Tm)が100℃以上の結晶性の重合体あるいはガラス転移温度が100℃以上の非晶性の重合体である。これら熱可塑性樹脂(A)の中でも結晶性の熱可塑性樹脂が好ましい。
 また、熱可塑性樹脂(A)の中でも、当該熱可塑性樹脂を用いて公知のスパンボンド不織布の製造方法により製造して得られる不織布の最大点伸度が50%以上、好ましくは70%以上、より好ましくは100%以上であり、且つ弾性回復が殆どない性質を有する熱可塑性樹脂(伸長性熱可塑性樹脂)を用いることが好ましい。かかる伸長性熱可塑性樹脂を用いると、熱可塑性エラストマー(B)長繊維と混繊して得られる混繊スパンボンド不織布を例えば表面シートとして用いる際に、混繊スパンボンド不織布を延伸加工して伸長性熱可塑性樹脂長繊維と熱可塑性エラストマー(B)長繊維が延伸された後、応力が解放されると、熱可塑性エラストマー(B)長繊維のみが弾性回復し、伸ばされた(伸長された)伸長性熱可塑性樹脂長繊維は弾性回復せずに褶曲し、混繊スパンボンド不織布に嵩高感が発現し、しかも伸長されることにより伸長性熱可塑性樹脂長繊維は細くなり柔軟性、触感が良くなるとともに、伸び止り機能を付与することができる。なお、熱可塑性樹脂(A)からなるスパンボンド不織布の最大点伸度の上限は必ずしも限定されないが、通常、300%以下である。
 熱可塑性樹脂(A)としては、具体的には、エチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテンおよび1-オクテン等のα-オレフィンの単独若しくは共重合体である高圧法低密度ポリエチレン、線状低密度ポリエチレン(所謂LLDPE)、高密度ポリエチレン(所謂HDPE)、ポリプロピレン(プロピレン単独重合体)、ポリプロピレンランダム共重合体、ポリ1-ブテン、ポリ4-メチル-1-ペンテン、エチレン・プロピレンランダム共重合体、エチレン・1-ブテンランダム共重合体、プロピレン・1-ブテンランダム共重合体等のポリオレフィン、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド(ナイロン-6、ナイロン-66、ポリメタキシレンアジパミド等)、ポリ塩化ビニル、ポリイミド、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチレン・(メタ)アクリル酸共重合体、エチレン-アクリル酸エステル-一酸化炭素共重合体、ポリアクリロニトリル、ポリカーボネート、ポリスチレン、アイオノマーあるいはこれらの混合物等を例示することができる。これらのうちでは、高圧法低密度ポリエチレン、線状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン及びポリプロピレンランダム共重合体等のプロピレン系重合体、ポリエチレンテレフタレート、ポリアミド等がより好ましい。
 これら熱可塑性樹脂(A)の中でも、成形時の紡糸安定性や不織布の延伸加工性の観点から、プロピレン系重合体が特に好ましい。
 プロピレン系重合体としては、融点(Tm)が135℃以上プロピレンの単独重合体若しくはプロピレンと10モル%以下のエチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン等の炭素数2以上(但し炭素数3を除く)、好ましくは2~8(但し炭素数3を除く)の1種または2種以上のα-オレフィンとの共重合体が好ましい。
 これらプロピレン系重合体の中でも、融点が135~155℃のプロピレン・α-オレフィンランダム共重合体は、伸縮性、初期親水性及び耐久親水性、柔軟性、触感などに優れる混繊スパンボンド不織布が得られるので好ましい。
 プロピレン系重合体は、溶融紡糸し得る限り、メルトフローレート(MFR:ASTMD-1238、230℃、荷重2160g)は特に限定はされないが、通常、1~1000g/10分、好ましくは5~500g/10分、さらに好ましくは10~100g/10分の範囲にある。また、本発明に係るプロピレン系重合体の重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnは、通常1.5~5.0である。紡糸性が良好で、かつ繊維強度が特に優れる繊維が得られる点で、さらには1.5~3.0の範囲が好ましい。MwおよびMnは、GPC(ゲルパーミエーションクロマトグラフィー)によって、公知の方法で測定することができる。
 プロピレン系重合体に、紡糸性、延伸加工性の観点から、少量、好ましくは1~20重量%、より好ましくは2~15重量%、さらに好ましくは4~10重量%の範囲の量で高密度ポリエチレン(HDPE)を添加したオレフィン系重合体組成物(但し、プロピレン系重合体+HDPE=100重量%)は、得られる不織布積層体の延伸加工適性をさらに向上することができるので好ましい。
 プロピレン系重合体に添加されるHDPEは特に制限がないが通常密度0.94~0.97g/cm3、好ましくは0.95~0.97g/cm3、さらに好ましくは0.96~0.97g/cm3の範囲にある。また、紡糸性を有する限りとくに限定はされないが伸長性を発現させる観点で、HDPEのメルトフローレート(MFR:ASTM D-1238、190℃、荷重2160g)は、通常0.1~100g/10分、より好ましくは0.5~50g/10分、さらに好ましくは1~30g/10分の範囲にある。なお、本発明において、良好な紡糸性とは、紡糸ノズルからの吐き出し時および延伸中に糸切れを生じず、フィラメントの融着が生じないことをいう。
 <熱可塑性エラストマー(B)>
 本発明の混繊スパンボンド不織布を形成する成分の一つである熱可塑性エラストマー(B)としては、種々公知の熱可塑性エラストマーを用いることができ、2種類以上の熱可塑性エラストマーを併用してもよい。具体的には、例えば、ポリスチレン-ポリブタジエン-ポリスチレンブロックコポリマー(SBSと呼称)、ポリスチレン-ポリイソプレン-ポリスチレンブロックコポリマー(SISと呼称)、それらの水素添加物であるポリスチレン-ポリ・エチレン・ブチレン-ポリスチレンブロックコポリマー(SEBSと呼称)、及びポリスチレン-ポリ・エチレン・プロピレン-ポリスチレンブロックコポリマー(SEPSと呼称)に代表される少なくとも1個のスチレン等の芳香族ビニル化合物から構成される重合体ブロックと少なくとも1個のブタジエンあるいはイソプレン等の共役ジエン化合物から構成される重合体ブロックからなるブロック共重合体あるいはその水素添加物であるスチレン系エラストマー;高結晶性の芳香族ポリエステルと非晶性の脂肪族ポリエーテルから構成されるブロック共重合体に代表されるポリエステル系エラストマー;結晶性で高融点のポリアミドと非晶性でガラス転移温度(Tg)が低いポリエーテルもしくはポリエステルから構成されるブロック共重合体に代表されるポリアミド系エラストマー;ハードセグメントがポリウレタンでソフトセグメントがポリカーボネート系ポリオール、エーテル系ポリオール、カプロラクトン系ポリエステルもしくはアジペート系ポリエステル等から構成されるブロック共重合体に代表される熱可塑性ポリウレタン系エラストマー;非晶性もしくは低結晶性のエチレン・α-オレフィンランダム共重合体、プロピレン・α-オレフィンランダム共重合体、プロピレン・エチレン・α-オレフィンランダム共重合体等を単独、または前記非晶性もしくは低結晶性のランダム共重合体とプロピレン単独重合体あるいはプロピレンと少量のα-オレフィンとの共重合体、高密度ポリエチレン、中密度ポリエチレン等の結晶性のポリオレフィンとを混合したポリオレフィン系エラストマー;塩化ビニル系エラストマー;フッ素系エラストマー等を例示できる。
 スチレン系エラストマーとしては、ポリスチレンブロックとブタジエンラバーブロックまたはイソプレンラバーブロックとをベースにした、ジブロックおよびトリブロックコポリマーが挙げられる。前記ラバーブロックは、不飽和または完全に水素添加されたものであってもよい。スチレン系エラストマーとしては、具体的には、例えば、KRATONポリマー(商品名、シェルケミカル(株)製)、SEPTON(商品名、クラレ(株)製)、TUFTEC(商品名、旭化成工業(株)製)、レオストマー(商品名、リケンテクノス(株)製)等の商品名で製造・販売されている。
 ポリエステル系エラストマーとしては、具体的には、例えば、HYTREL(商品名、E.I.デュポン(株)製)、ペルプレン(商品名、東洋紡(株)製)などの商品名で製造・販売されている。
 アミド系エラストマーとしては、具体的には、例えば、PEBAX(商品名、アトフィナ・ジャパン(株)製)の商品名で製造・販売されている。
 ポリオレフィン系エラストマーとしては、エチレン/α-オレフィン共重合体、プロピレン/α-オレフィン共重合体が挙げられる。具体的には、例えば、TAFMER(商品名、三井化学(株)製)、VISTAMAXX(商品名、ExxonMobil社製)、エチレン-オクテン共重合体であるEngage(商品名、DuPontDow Elastomers社製)、結晶性オレフィン共重合体を含むCATALLOY(商品名、モンテル(株)製)などの商品名で製造・販売されている。
 塩化ビニル系エラストマーとしては、具体的には、例えば、レオニール(商品名、リケンテクノス(株)製)、ポスミール(商品名、信越ポリマー(株)製)などの商品名で製造・販売されている。
 これら熱可塑性エラストマー(B)の中でも、ポリオレフィン系エラストマーおよび熱可塑性ポリウレンエラストマーが好ましく、とくに、熱可塑性ポリウレタン系エラストマーは、伸縮性、加工性を有し、しかも初期親水性及び耐久親水性に優れる混繊スパンボンド不織布が得られるので好ましい。
 <熱可塑性ポリウレタン系エラストマー>
 熱可塑性ポリウレタン系エラストマーの中でも、凝固開始温度が65℃以上、好ましくは75℃以上、最も好ましくは85℃以上の熱可塑性ポリウレタン系エラストマーが好ましい。凝固開始温度の上限値は195℃が好ましい。ここで、凝固開始温度は、示差走査熱量計(DSC)を用いて測定される値であり、熱可塑性ポリウレタン系エラストマーを10℃/分で230℃まで昇温し、230℃で5分間保持した後、10℃/分で降温させる際に生じる熱可塑性ポリウレタン系エラストマーの凝固に由来する発熱ピークの開始温度である。凝固開始温度が65℃以上であると、混繊スパンボンド不織布を得る際に繊維同士の融着、糸切れ、樹脂塊などの成形不良を抑制することができるとともに、熱エンボス加工の際には成形された混繊スパンボンド不織布がエンボスローラーに巻きつくことを防止できる。また、得られる混繊スパンボンド不織布もベタツキが少なく、たとえば、衣料、衛生材料、スポーツ材料などの肌と接触する材料に好適に用いられる。一方、凝固開始温度を195℃以下にすることにより、成形加工性を向上させることができる。なお、成形された繊維の凝固開始温度はこれに用いた熱可塑性ポリウレタン系エラストマーの凝固開始温度よりも高くなる傾向にある。
 このような熱可塑性ポリウレタン系エラストマーの凝固開始温度を65℃以上に調整するためには、熱可塑性ポリウレタン系エラストマーの原料として使用するポリオール、イソシアネート化合物および鎖延長剤について、それぞれ最適な化学構造を有するものを選択するとともに、ハードセグメントの量を調整する必要がある。ここで、ハードセグメント量とは、熱可塑性ポリウレタン系エラストマーの製造に使用したイソシアネート化合物と鎖延長剤との合計重量を、ポリオール、イソシアネート化合物および鎖延長剤の総量で除算して100を掛けた重量パーセント(重量%)値である。ハードセグメント量は、好ましくは20~60重量%であり、さらに好ましくは22~50重量%であり、最も好ましくは、25~48重量%である。
 また、かかる熱可塑性ポリウレタン系エラストマーは、好ましくは極性溶媒不溶分の粒子数が300万個/g以下、より好ましくは250万個以下、さらにより好ましくは200万個以下である。ここで、熱可塑性ポリウレタン系エラストマー中の極性溶媒不溶分とは、主に、熱可塑性ポリウレタン系エラストマーの製造中に発生するフィッシュアイやゲルなどの塊状物であり、熱可塑性ポリウレタン系エラストマーのハードセグメント凝集物に由来する成分、ならびにハードセグメントおよび/またはソフトセグメントがアロファネート結合、ビュレット結合等により架橋された成分など、熱可塑性ポリウレタン系エラストマーを構成する原料ならびにこの原料間の化学反応により生じる成分である。
 極性溶媒不溶分の粒子数は、熱可塑性ポリウレタン系エラストマーをジメチルアセトアミド溶媒(以下、「DMAC」と略す。)に溶解させた際の不溶分を、細孔電気抵抗法を利用した粒度分布測定装置に100μmのアパーチャーを装着して測定した値である。100μmのアパーチャーを装着すると、未架橋ポリスチレン換算で2~60μmの粒子の数を測定することができる。
 極性溶媒不溶分の粒子数が熱可塑性ポリウレタン系エラストマー1gに対して300万個以下にすることにより、上記熱可塑性ポリウレタン系エラストマーの凝固開始温度範囲内において、繊維径の分布の増大、紡糸時の糸切れなどの問題をより抑えることができる。また大型スパンボンド成形機械での不織布の成形におけるストランド中への気泡の混入、または糸切れの発生を抑制するという観点からは、熱可塑性ポリウレタン系エラストマーの水分値が350ppm以下のものが好ましく、より好ましくは300ppm以下、最も好ましくは150ppm以下のものである。
 また伸縮性の観点からは、熱可塑性ポリウレタン系エラストマーが、示差走査熱量計(DSC)により測定される、ピーク温度が90~140℃の範囲にある吸熱ピークから求められる融解熱量の総和(a)と、ピーク温度が140℃を超えて220℃以下の範囲にある吸熱ピークから求められる融解熱量の総和(b)とが、下記式(I)
   a/(a+b)≦0.8   (I)
の関係を満たすことが好ましく、
下記式(II)
   a/(a+b)≦0.7   (II)
の関係を満たすことがさらに好ましく、
下記式(III)
   a/(a+b)≦0.55   (III)
の関係を満たすことが最も好ましい。
 ここで、「a/(a+b)」は熱可塑性ポリウレタン系エラストマーのハードドメインの融解熱量比(単位:%)を意味する。熱可塑性ポリウレタン系エラストマーのハードドメインの融解熱量比が80%以下になると、繊維、特に混繊スパンボンド不織布における繊維および不織布の強度ならびに伸縮性が向上する。本発明では、熱可塑性ポリウレタン系エラストマーのハードドメインの融解熱量比の下限値は0.1%程度が好ましい。
 かかる熱可塑性ポリウレタン系エラストマーは、温度200℃、せん断速度100sec-1の条件における溶融粘度が100~3000Pa・sが好ましく、より好ましくは200~2000Pa・s、最も好ましくは1000~1500Pa・sである。ここで、溶融粘度は、キャピログラフ(東洋精機(株)製、ノズル長30mm、直径1mmのものを使用)で測定した値である。
 このような特性を有する熱可塑性ポリウレタン系エラストマーは、例えば、特開2004-244791号公報に記載された製造方法により得ることができる。
 極性溶媒不溶分の少ない上記熱可塑性ポリウレタン系エラストマーは、後述するように、ポリオール、イソシアネート化合物および鎖延長剤の重合反応を行なった後、ろ過することにより得ることができる。
 <親水化処理剤>
 本発明の混繊スパンボンド不織布に初期親水性及び耐久親水性を付与するためには、少なくとも熱可塑性樹脂(A)長繊維に親水性を付与する必要がある。親水性を付与するための親水化処理剤としては、界面活性剤などが挙げられ、中でも非イオン性界面活性剤が好ましい。非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシプロピレンアルキルフェニルエーテル等のエーテル型非イオン系界面活性剤;アルキルグリコシド等の多価アルコールエーテル型非イオン系界面活性剤;ポリオキシエチレン脂肪酸エステル、ポリオキシプロピレン脂肪酸エステル等のエステル型非イオン系界面活性剤;ショ糖脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシプロピレン脂肪酸エステル等の多価アルコールエステル型非イオン系界面活性剤;脂肪酸アルカノールアミド、炭素数8~18のアシル基を有する脂肪族アミドのアルキレンオキサイド付加物等のアミド系非イオン系界面活性剤等が挙げられる。
 これら非イオン性界面活性剤は単独でも、二種以上の非イオン性界面活性剤の混合物であってもよい。
 エーテル型非イオン系界面活性剤としては、炭素数が8~50のアルキル基または炭素数8~18のアルキル基を有するアルキルフェニル基を有する界面活性剤が好ましい。
 これら非イオン性界面活性剤の中でも、脂肪族アルコールの炭素数が10~40、好ましくは12~24、より好ましくは16~22の、脂肪族アルコールのアルキレンオキサイド付加物からなるエーテル型非イオン系界面活性剤(AE型非イオン系界面活性剤)および炭素数8~18の脂肪酸とのエステルを有するエステル型非イオン系界面活性剤が好ましい。
 熱可塑性樹脂(A)長繊維を親水化処理する方法としては、界面活性剤を添加する方法、より具体的には、界面活性剤で長繊維を塗布する方法や、予め熱可塑性樹脂(A)に界面活性剤を添加した後に繊維化する(練り込む)方法などが挙げられる。中でも、前記非イオン系界面活性剤を熱可塑性樹脂(A)100重量部に対して、0.1~10重量部、より好ましくは0.5~5重量部の割合で、熱可塑性樹脂(A)長繊維表面に塗布あるいは熱可塑性樹脂(A)に練りこむ方法が好ましい。また、親水性の持続性の観点からは、添加方法として、予め熱可塑性樹脂(A)に界面活性剤を添加した後に繊維化する(練り込む)方法がより好ましい。
 非イオン系界面活性剤の添加量が、0.1重量部未満では、得られる混繊スパンボンド不織布の初期親水性及び耐久親水性の改良効果が不十分となる虞がある。一方、10重量部を超えると、加工性が低下する虞や、繊維表面に非イオン系界面活性剤の染み出す量が多くなり、得られる混繊スパンボンド不織布がべたつく虞もある。
 なお、耐久親水性に優れる混繊スパンボンド不織布は、高温下での保管後もしくは吸収性物品製造のための熱加工後においても良好な親水性を維持することが出来るため、生理用ナプキン、パンティライナー、失禁パッド、紙おむつ等の吸収性物品の表面シート及び/又はセカンドシートあるいは吸収体を包むシート(コアラップ)等に好適に用いられるが、後述する実施例に記載の(5)耐久親水性が10〔sec〕以下、特に5〔sec〕以下のものが、その効果が顕著である。
 <その他添加剤>
 本発明において、混繊スパンボンド不織布には任意成分として、耐熱安定剤、耐候安定剤などの各種安定剤;スリップ剤、防曇剤、滑剤、染料、顔料、天然油、合成油、ワックス等を添加することができる。
 かかる安定剤としては、たとえば、2,6-ジ-t-ブチル-4-メチルフェノール(BHT)等の老化防止剤;テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、6-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸アルキルエステル、2,2'-オキザミドビス[エチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)]プロピオネート、Irganox 1010(ヒンダードフェノール系酸化防止剤:商品名)等のフェノール系酸化防止剤;ステアリン酸亜鉛、ステアリン酸カルシウム、1,2-ヒドロキシステアリン酸カルシウムなどの脂肪酸金属塩などを挙げることができる。これらは1種単独で用いても、2種以上を組み合わせて用いてもよい。
 <混繊スパンボンド不織布>
 本発明の混繊スパンボンド不織布は、熱可塑性樹脂(A)長繊維90~10重量%と熱可塑性エラストマー(B)長繊維10~90重量%を含む混繊スパンボンド不織布からなり、少なくとも熱可塑性樹脂(A)長繊維が親水化処理されている。
 本発明の混繊スパンボンド不織布は、親水化処理されている熱可塑性樹脂(A)長繊維に熱可塑性エラストマー(B)長繊維10~90重量%の範囲で混繊することにより、初期親水性及び耐久親水性に優れる混繊スパンボンド不織布となる。
 本発明の混繊スパンボンド不織布を形成する熱可塑性樹脂(A)長繊維は親水化処理されていることが必須であるが、熱可塑性エラストマー(B)長繊維は必ずしも親水化処理されていなくてもよい。
 混繊スパンボンド不織布としては、嵩高性、伸縮性や柔軟性及び初期親水性及び耐久親水性の観点からは、熱可塑性エラストマー(B)長繊維が20重量%以上であることが好ましく、30重量%以上であることがより好ましく、加工性(耐べたつき性)の観点からは、70重量%以下が好ましく、60重量%以下であることがより好ましい。
 本発明に係る混繊スパンボンド不織布を形成する熱可塑性樹脂(A)長繊維及び熱可塑性エラストマー(B)長繊維の繊維径(平均値)は、それぞれ通常50μm以下、好ましくは40μm以下、より好ましくは30μm以下の範囲にある。熱可塑性樹脂(A)長繊維と熱可塑性エラストマー(B)長繊維の繊維径は同じであっても異なってもよい。
 本発明に係る混繊スパンボンド不織布は、その用途に応じて適宜選択できるが、例えば生理用ナプキンの表面材シートとして使用する場合は、柔軟性の観点から、通常、目付が120g/m2以下、好ましくは15~80g/m2、より好ましくは15~60g/m2、の範囲にある。
 本発明に係る混繊スパンボンド不織布は、前記熱可塑性樹脂(A)及び前記熱可塑性エラストマー(B)を用いて、公知のスパンボンド不織布の製造方法、例えば、特開2004-244791号公報等に記載の方法により製造し得る。
 具体的には、熱可塑性樹脂(A)及び熱可塑性エラストマー(B)をそれぞれ別個の押出機で溶融した後、溶融した重合体をそれぞれ個別に多数の紡糸孔(ノズル)を備えた口金(ダイ)に導入し、熱可塑性樹脂(A)と熱可塑性エラストマー(B)とを異なる紡糸孔から独立に同時に吐出させた後、溶融紡糸された熱可塑性樹脂(A)の長繊維と熱可塑性エラストマー(B)の長繊維を冷却室に導入し、冷却風により冷却した後、延伸エアーにより長繊維を延伸(牽引)し、移動捕集面上に堆積させる方法により製造し得る。重合体の溶融温度はそれぞれ重合体の軟化温度あるいは融解温度以上で且つ熱分解温度未満であれば特に限定はされず、用いる重合体等により決め得る。口金温度は、用いる重合体にもよるが、例えば、熱可塑性樹脂(A)としてプロピレン系重合体あるいはプロピレン系重合体とHDPEとのオレフィン系重合体組成物を、熱可塑性エラストマー(B)として熱可塑性ポリウレタン系エラストマーあるいはオレフィン系共重合体エラストマーを用いる場合は、通常180~240℃、好ましくは190~230℃、より好ましくは200~225℃の温度に設定し得る。
 冷却風の温度は重合体が固化する温度であれば特に限定はされないが、通常5~50℃、好ましくは10~40℃、より好ましくは15~30℃の範囲にある。延伸エアーの風速は、通常100~10,000m/分、好ましくは500~10,000m/分の範囲にある。
 堆積された混繊スパンボンド不織布は、延伸加工する前に、ニップロールにて押し固める方法が例示され、その際はロールが加熱されていることが望ましい。またニードルパンチ、ウォータージェット、超音波等の手段を用いる方法、あるいはエンボスロールを用いる熱エンボス加工またはホットエアースルーを用いることがプレボンディングとして例示できるがいずれも通常より軽めに交絡することが得られる表面シートの風合い、伸縮性の面で好ましい。
 熱エンボス加工により熱融着する場合は、通常、エンボス面積率が5~20%、好ましくは5~10%、非エンボス単位面積が0.5mm2以上、好ましくは4~40mm2の範囲にある。非エンボス単位面積とは、四方をエンボス部で囲まれた最小単位の非エンボス部において、エンボスに内接する四角形の最大面積である。また刻印形状は、円、楕円、長円、正方、菱、長方、四角やそれら形状を基本とする連続した形が例示される。かかる範囲のエンボスを有することにより、混繊スパンボンド不織布を構成する熱可塑性樹脂(A)長繊維と熱可塑性エラストマー(B)長繊維の繊維間を実質的に結合するエンボス部に結束点を形成し、またエンボス間に混繊スパンボンド不織布層には弾性を有する熱可塑性エラストマー(B)長繊維及び実質的に熱可塑性エラストマー(B)長繊維より弾性の低い(伸長繊維)熱可塑性樹脂(A)長繊維が自由度の大きい状態で存在する。したがって、このような構造により混繊スパンボンド不織布は、残留歪みを低減し良好な伸縮性が付与される。
 なおエンボス面積率が大きい場合、延伸可能な範囲は小さくなるが、応力を向上する。またエンボス面積率が小さい場合、延伸可能な範囲を大きくすることが出来るが、エンボスピッチが大きくなると若干残留ひずみが大きくなる傾向がある。
 本発明の混繊スパンボンド不織布は、延伸加工することにより、延伸された熱可塑性エラストマー(B)長繊維は弾性回復して延伸前の長さ近くに復帰するが、熱可塑性樹脂(A)長繊維は延伸された状態に近い長さに留まるので、熱可塑性樹脂(A)長繊維は褶曲し、混繊スパンボンド不織布の表面にも褶曲した繊維が飛び出した状態になるので、より嵩高性があり、且つ、柔軟性に富んだ混繊スパンボンド不織布となる。また、伸縮性にも優れるため、フィット感に富んだ吸収性物品の表面シートに好適である。
 本発明の混繊スパンボンド不織布は種々用途により、他の層を積層してもよい。本発明の混繊スパンボンド不織布に積層する他の層は、特に限定はされず、用途により種々の層を積層し得る。
 具体的には、例えば、編布、織布、不織布、フィルム等を挙げることができる。本発明の混繊スパンボンド不織布に他の層をさらに積層する(貼り合せる)場合は、熱エンボス加工、超音波融着等の熱融着法、ニードルパンチ、ウォータージェット等の機械的交絡法、ホットメルト接着剤、ウレタン系接着剤等の接着剤による方法、押出しラミネート等をはじめ、種々公知の方法を採り得る。
 本発明の混繊スパンボンド不織布に積層される不織布としては、スパンボンド不織布、メルトブローン不織布、湿式不織布、乾式不織布、乾式パルプ不織布、フラッシュ紡糸不織布、開繊不織布等、種々公知の不織布を挙げることができ、これら不織布は非伸縮性不織布であっても良い。ここで非伸縮性不織布とは、MDまたはCDの破断点伸度が50%程度でありかつ伸長後に戻り応力を発生させないものを言う。
 本発明の混繊スパンボンド不織布に積層されるフィルムとしては、本発明の混繊スパンボンド不織布の特徴である通気性、親水性を活かす、通気性(透湿性)フィルムが好ましい。かかる通気性フィルムとしては、種々公知の通気性フィルム、例えば、透湿性を有するポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等の熱可塑性エラストマーからなるフィルム、無機あるいは有機微粒子を含む熱可塑性樹脂からなるフィルムを延伸して多孔化してなる多孔フィルム等を挙げることができる。多孔フィルムに用いる熱可塑性樹脂としては、高圧法低密度ポリエチレン、線状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリプロピレンランダム共重合体あるいはそれらの組成物等のポリオレフィンが好ましい。
 <吸収性物品>
 本発明の吸収性物品は、前記混繊スパンボンド不織布を含む生理用ナプキン、パンティライナー、失禁パッド、紙おむつ等である。吸収性物品は、通常、裏面シート、液透過性の表面シートとの間に吸収体からなる中間層が設けられている。
 本発明の混繊スパンボンド不織布は、初期親水性及び耐久親水性に優れ、しかも、柔軟で嵩高性をするので、吸収性物品の表面シート及び/又はセカンドシートあるいは吸収体を包むシート(コアラップ)として好適に用い得る。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例及び比較例における物性値等は、以下の方法により測定した。
 (1)目付〔g/m2
 (混繊)スパンボンド不織布から200mm(MD)×50mm(CD)の試験片を6点採取した。なお、採取場所はMD、CDともに任意の3箇所とした(計6箇所)。次いで、採取した各試験片を上皿電子天秤(研精工業社製)を用いて、それぞれ質量(g)を測定した。各試験片の質量の平均値を求めた。求めた平均値から1m2当たりの質量(g)に換算し、小数点第2位を四捨五入して各不織布サンプルの目付〔g/m2〕とした。
 (2)厚み〔μm〕
 (混繊)スパンボンド不織布から100mm(MD)×100mm(CD)の試験片を3点採取した。なお、採取場所は任意の3箇所とした。次いで、採取した各試験片を荷重型厚み計を用いて、JIS L 1096に記載の方法で厚み〔μm〕を測定した。各試験片の厚みの平均値を求め、小数点第2位を四捨五入して各不織布サンプルの厚み〔μm〕とした。
 (3)繊維径〔μm〕
 (混繊)スパンボンド不織布から100mm(MD)×50mm(CD)の試験片を採取した。
 熱可塑性樹脂(A)長繊維の繊維径は、採取した各試験片を図1に示すように折りたたみ、折りたたまれた部分から試験片表面の繊維を図2に示すように倍率200倍で撮影し、その画像を画像寸法計測ソフトウェア(イノテック社製:Pixs2000 Version2.0)により解析した。各試験片について10本の繊維径を測定し、各試験片の繊維径の平均値を求め、小数点第2位を四捨五入して各不織布サンプルの熱可塑性樹脂(A)長繊維の繊維径〔μm〕とした。
 熱可塑性エラストマー(B)長繊維の繊維径は、採取した各試験片を折りたたまずに、倍率200倍で撮影し、繊維径が太い繊維を選び、その画像を画像寸法計測ソフトウェア(イノテック社製:Pixs2000 Version2.0)により解析した。各試験片について10本の繊維径を測定し、各試験片の繊維径の平均値を求め、小数点第2位を四捨五入して各不織布サンプルの熱可塑性エラストマー(B)長繊維の繊維径〔μm〕とした。
 (4)初期親水性〔sec〕
 (混繊)スパンボンド不織布から125mm(MD)×125mm(CD)の試験片を3点採取した。なお、採取場所は任意の3箇所とした。次いで、採取した各試験片をLister(Lenzing  Instruments社製)を用いて、EDANA150.2-93に記載の方法に準拠して液透過時間〔sec〕を測定した。
 具体的には、濾紙としてEPT EF3 フィルターペーパー(Hollingsworth&Vose Company Ltd.社製、縦100mm、横100mm)を10枚用いた。また、液として塩化ナトリウムの水溶液(9g/リットル)を用いた。なお、液の表面張力は70+/-2mN/mである。各試験片と濾紙を温度20℃および湿度65%の雰囲気に24時間放置した。Listerの漏斗(マグネットバルブ部が搭載され、(3.5+/-0.25)秒で25mlの液を通せるもの)を支えるリングスタンドをセッティングし、ガラス管(容量50ml)を漏斗の中に入るように準備した。装置のベースプレートの上に10枚の濾紙を置き、その上に各試験片を、トップ側(スキンと接触する側)が上側になる様に置いた。その際、プレート内の電極が清浄であることを確認するとともに、漏斗がプレートの中心になるように位置を調節した。漏斗がキャビティプレートの上5mm(サンプルの上30mm)となるように高さを調節した。電極とタイマーが接続されていることを確認し、タイマーを起動させ、ゼロ合わせを行った。次いで、ガラス管に人工尿5mlを注入した。
 その後、人工尿を漏斗からキャビティプレートに排出し、電極部で液が通り始めてから通り終わるまでの時間を測定した(タイマーが自動的に測定する)。
 各試験片の液透過時間の平均値を求め、小数点第2位を四捨五入して各不織布サンプルの初期親水性〔sec〕とした。
 (5)耐久親水性〔sec〕
 (混繊)スパンボンド不織布から125mm(MD)×125mm(CD)の試験片を3点採取した。なお、採取場所は任意の3箇所とした。採取した各試験片を、乾燥機(「タバイセイフティオーブン STS222」、縦600mm、横600mm、奥行き600mm、エスペック社製)の中央部付近に、乾燥機の循環風が試験片に垂直に当たる方向に吊り下げ、機内を40℃の状態にセットして1時間放置した。次いで、各試験片を取り出して1時間室温で放置した後、(4)初期親水性の測定と同様に液透過時間〔sec〕を測定した。各試験片の液透過時間の平均値を求め、小数点第2位を四捨五入して各不織布サンプルの耐久親水性〔sec〕とした。
 以下の(6)繰り返し吸収率、(7)液流れ距離の測定では、人工尿として、表面張力が70+/-2mN/m塩化ナトリウムの水溶液(9g/リットル)を用いた。
 また、(6)繰り返し吸収率、(7)液流れ距離の測定は、(混繊)スパンボンド不織布を製造してから24時間経過後48時間以内(加熱処理なし)、および(混繊)スパンボンド不織布を製造してから24時間以上経過した(混繊)スパンボンド不織布を設定温度80℃で2時間加熱処理した後取り出して2時間以内(加熱処理あり)の2条件で測定した。
 (6)繰り返し吸収
 (混繊)スパンボンド不織布から試料(50mm×200mm)を採取した。アドバンテック社製No.2濾紙を10枚重ね、その上に試料を水平に置いた。試料面より約10mmの高さからスポイトにて人工尿を1滴(約0.3ml)ずつ、20mm間隔で10箇所に静置し、2秒以内に吸収される液滴の数を測定した。これを3分おきに3回繰り返し、繰り返し吸収(回)とした。この数値が大きいほど、親水性が優れると評価した。
 (7)液流れ距離
 (混繊)スパンボンド不織布から試料(50mm×200mm)を採取した。45度に傾斜させて固定した板上に、アドバンテック社製No.2濾紙を5枚重ねて置き、その上に試料を置いて、試料の長手方向の両端を前記濾紙と一緒に板上に固定した。試料面より約10mmの高さからスポイトにて人工尿を1滴(約0.3ml)落下させ、液滴の落下点から液滴が完全に吸収された点までの距離を計測し、液流れ距離(mm)とした。この数値が小さいほど、親水性が優れると評価した。
 (8)残留歪〔%〕
 (混繊)スパンボンド不織布から200mm(MD)×50mm(CD)の試験片を6点採取した。なお、採取場所はMD、CDともに任意の3箇所とした(計6箇所)。次いで、採取した各試験片を万能引張試験機(インテスコ社製、IM-201型)を用いて、チャック間100mm、引張速度100mm/min、延伸倍率100%の条件で延伸した後、直ちに同じ速度で原長まで回復させて、回復時のひずみを測定し、残留歪〔%〕とした。なお、残留歪は、上記6点(MD、CD各3点)について平均値を求め、小数点第1位を四捨五入して各不織布サンプルの残留歪〔%〕とした。
 (9)触感
 パネラー10人が(混繊)スパンボンド不織布の手触りを確認し、下記基準で評価した。
A:10人のうち10人がベタツキ無く、手触りが良いと感じた場合。
B:10人のうち9~7人がベタツキ無く、手触りが良いと感じた場合。
C:10人のうち6~3人がベタツキ無く、手触りが良いと感じた場合。
D:10人のうち2~0人がベタツキ無く、手触りが良いと感じた場合。
 また、実施例、比較例に用いた熱可塑性ポリウレタンエラストマー(TPU)の分析および評価は、下記の方法に従って行った。
 (10)凝固開始温度〔℃〕
 セイコー電子工業(株)製SSC5200Hディスクステーションに接続した示差走査熱量計(DSC220C)により測定した。サンプルとして、粉砕したTPUをアルミ製パンに約8mg採取し、カバーを被せクリンプした。リファレンスとして、同様にアルミナをリファレンスとして採取した。サンプルおよびリファレンスをセル内の所定の位置にセットした後、流量40Nml/min.の窒素気流下で測定を行った。昇温速度10℃/min.で室温から230℃まで昇温し、この温度で5分間維持した後、10℃/min.の降温速度で-75℃まで降温させた。このときに記録されたTPUの凝固に由来する発熱ピークの開始温度を測定し、凝固開始温度(単位:℃)とした。
 (11)極性溶媒不溶分の粒子数〔個/g〕
 細孔電気抵抗法に基づく粒度分布測定装置としてベックマンコールター社製マルチサーザーIIを使用して測定を行った。5リットルのセパラブルフラスコに、ジメチルアセトアミド(和光純薬工業(株)製 特級品)3500gとチオシアン酸アンモニウム(純正化学(株)製 特級品)145.83gとを秤量し、室温にて24時間かけて溶解させた。
 次いで、1μmのメンブランフィルターを用いて減圧濾過を行い、試薬Aを得た。200ccのガラス瓶に試薬A180gとTPUペレット2.37gを精秤し、3時間かけてTPU中の可溶分を溶解させ、これを測定用試料とした。マルチサイザーIIに100μmのアパーチャーチューブを取り付け、装置内の溶媒を試薬Aに置換した後、減圧度を約3000mmAqに調節した。十分に洗浄した試料投入用のビーカーに試薬Aを120g秤量し、ブランク測定により発生したパルス量が50個/分以下であることを確認した。最適なCurrent値とGainをマニュアルにしたがって設定した後、10μmの未架橋ポリスチレン標準粒子を使用してキャリブレーションを実施した。測定は、十分に洗浄した試料投入用ビーカーに試薬Aを120g、測定用試料を約10g秤量し、210秒間実施した。この測定によりカウントされた粒子数を、アパーチャーチューブに吸引されたTPU重量で除算した値をTPU中の極性溶媒不溶分の粒子数(単位:個/g)とした。なお、TPU重量は次式により算出した。
 TPU重量={(A/100)×B/(B+C)}×D
式中、A:測定用試料のTPU濃度(重量%)、B:ビーカーに秤量した測定用試料の重量(g)、C:ビーカーに秤量した試薬Aの重量(g)、D:測定中(210秒間)にアパーチャーチューブに吸引された溶液量(g)である。
 (12)ハードドメインの融解熱量比
 セイコー電子工業(株)製SSC5200Hディスクステーションに接続した示差走査熱量計(DSC220C)により測定した。サンプルとして、粉砕したTPUをアルミ製パンに約8mg採取し、カバーを被せクリンプした。リファレンスとして、同様にアルミナを採取した。サンプルおよびリファレンスをセル内の所定の位置にセットした後、流量40Nml/min.の窒素気流下で測定を行った。昇温速度10℃/min.で室温から230℃まで昇温した。このとき、ピーク温度が90℃以上140℃以下の範囲にある吸熱ピークから求められる融解熱量の総和(a)と、ピーク温度が140℃を超えて220℃以下の範囲にある吸熱ピークから求められる融解熱量の総和(b)を求め、次式によりハードドメインの融解熱量比(単位:%)を求めた。
 ハードドメインの融解熱量比(%)=a/(a+b)×100
 (13)200℃における溶融粘度(以下、単に「溶融粘度」という。)
 キャピログラフ(東洋精機(株)製モデル1C)を用いて、TPUの200℃におけるせん断速度100sec-1の時の溶融粘度(単位:単位:Pa・s)を測定した。長さ30mm、直径は1mmのノズルを用いた。
 (14)TPUの水分値
 水分量測定装置(平沼産業社製AVQ-5S)と水分気化装置(平沼産業社製EV-6)とを組み合わせてTPUの水分量(単位:ppm)の測定を行った。加熱試料皿に秤量した約2gのTPUペレットを250℃の加熱炉に投入し、気化した水分を予め残存水分を除去した水分量測定装置の滴定セルに導き、カールフィッシャー試薬にて滴定した。セル中の水分量変化に伴う滴定電極の電位変化が20秒間生じないことをもって滴定終了とした。
 (15)ショアA硬度
 TPUの硬さは、23℃、50%相対湿度下においてJIS K-7311に記載の方法に従い測定した。デュロメーターはタイプAを使用した。
 <熱可塑性ポリウレタンエラストマーの製造例1>
 ジフェニルメタンジイソシアネート(以下MDIと記す。)をタンクに窒素雰囲気下で装入し、気泡が混入しない程度に攪拌しながら45℃に調整した。
 数平均分子量2000のポリエステルポリオール(三井武田ケミカル(株)製、商品名:タケラックU2024)628.6重量部と、イルガノックス1010を2.21重量部と、1,4-ブタンジオール77.5重量部とをタンクBに窒素雰囲気下で仕込み、攪拌しながら95℃に調整した。この混合物をポリオール溶液1という。
 これらの反応原料から計算されるハードセグメント量は37.1重量%であった。
次に、ギヤポンプ、流量計を介した送液ラインにて、MDIを17.6kg/hの流速で、ポリオール溶液1を42.4kg/hの流速で、120℃に調整した高速攪拌機(SM40)に定量的に通液し、2000rpmで2分間攪拌混合した後、スタティックミキサーに通液した。スタティックミキサー部は、管長0.5m、内径20mmφのスタティックミキサーを3本接続した第1~第3のスタティックミキサー(温度230℃)と、管長0.5m、内径20mmφのスタティックミキサーを3本接続した第4~第6のスタティックミキサー(温度220℃)と、管長1.0m、内径34mmφのスタティックミキサーを6本接続した第7~第12のスタティックミキサー(温度210℃)と、管長0.5m、内径38mmφのスタティックミキサーを3本接続した第13~第15のスタティックミキサー(温度200℃)とを直列に接続したものであった。
 第15スタティックミキサーから流出した反応生成物を、ギヤポンプを介して、ポリマーフィルター(長瀬産業(株)製、商品名:デナフィルター)を先端に付随した単軸押出機(直径65mmφ、温度180~210℃)に圧入し、ストランドダイから押出した。水冷後、ペレタイザーにて連続的にペレット化した。次いで、得られたペレットを乾燥機に装入し、100℃で8時間乾燥して、水分値40ppmの熱可塑性ポリウレタンエラストマーを得た。この熱可塑性ポリウレタンエラストマーを単軸押出機(直径50mmφ、温度180~210℃)で連続的に押出し、ペレット化した。再度、100℃で7時間乾燥して、水分値57ppmの熱可塑性ポリウレタンエラストマー(TPU-1)を得た。
 TPU-1の凝固開始温度は103.7℃、極性溶媒不溶分の粒子数は150万個/g、射出成形により調整した試験片による硬度は86A、200℃における溶融粘度は1900Pa・s、ハードドメインの融解熱量比は35.2%であった。
 [実施例1]
 <スパンボンド不織布用の熱可塑性樹脂組成物の調製>
 MFR(ASTM D1238に準拠し、温度230℃、荷重2.16kgで測定)60g/10分、密度0.91g/cm3、融点160℃のプロピレンホモポリマー(以下、「PP-1」と略す)96重量部とMFR(ASTM D1238に準拠して、温度190℃、荷重2.16kgで測定)5g/10分、密度0.97g/cm3、融点134℃の高密度ポリエチレン(以下、「HDPE」と略す)4重量部とを混合した後、親水化処理マスターバッチ〔Ciba社製、商品名:IRGASURF HL560(以下、「親水化剤A」と略す。)なお、親水化剤Aはエーテル型非イオン系界面活性剤(親水化処理剤成分)である〔ポリオキシエチレンアルキルエーテル:CH3(CH217―O―(CH2CH22.5―H〕を60重量%含有する。〕をPP-1/HDPE混合物100重量部に対して5重量部(親水化処理剤成分換算で3重量部)混合し、熱可塑性樹脂組成物(A-1)を調製した。
 <混繊スパンボンド不織布の製造>
 前記熱可塑性ポリウレタンエラストマー(TPU-1)と熱可塑性樹脂組成物(A-1)とをそれぞれ独立に75mmφの押出機及び50mmφの押出機を用いて溶融した後、紡糸口金を有するスパンボンド不織布成形機(捕集面上の機械の流れ方向に垂直な方向の長さ:800mm)を用いて、樹脂温度とダイ温度がともに210℃、冷却風温度20℃、延伸エア風速3750m/分の条件でスパンボンド法により溶融紡糸し、TPU-1からなる長繊維BとA-1からなる長繊維Aとを含む混合長繊維からなるウェッブを捕集面上に堆積させ、繊維B:繊維Aが、40:60(重量%)の混合繊維からなるウェッブを得た。前記紡糸口金は、TPU-1の吐出孔とA-1の吐出孔とが交互に配列されたノズルパターンを有し、TPU-1(繊維B)のノズル径0.75mmφ及びA-1(繊維A)のノズル径0.6mmφであり、ノズルのピッチが縦方向8mm、横方向11mmであり、ノズル数の比は繊維B用ノズル:繊維A用ノズル=1:1.45であった。繊維Bの単孔吐出量は0.60g/(分・孔)、繊維Aの単孔吐出量0.61g/(分・孔)とした。
 堆積された混合長繊維からなるウェッブはベルト上に設置された、非粘着素材でコーティングされたニップロール(線圧10kg/cm)にてニップ後、移動ベルトから剥離させ、エンボスパターンは面積率18%、エンボス面積0.41mm2であり、加熱温度105℃、線圧70kg/cm条件の加熱エンボスにて熱接着し、混繊スパンボンド不織布を得た。得られた混繊スパンボンド不織布の目付は30g/m2であった。得られた混繊スパンボンド不織布を上記記載の方法で評価した。評価結果を表1に示す。なお、(9)触感は「B」であった。
 [実施例2]
 実施例1にて得られた混繊スパンボンド不織布から250mm(MD)×200mm(CD)を切り出し、万能引張試験機(インテスコ社製、IM-201型)を用いて、チャック間200mm、引張速度200mm/min、延伸倍率100%の条件でMD方向に延伸した。延伸後の混繊スパンボンド不織布の目付は33g/m2であった。延伸後の混繊スパンボンド不織布を上記記載の方法で評価した。評価結果を表1に示す。なお、(9)触感は「A」であった。
 [実施例3]
 実施例1において、混繊スパンボンド不織布の目付を60g/m2とする以外は、実施例1と同様に行い混繊スパンボンド不織布を得た。得られた混繊スパンボンド不織布を上記記載の方法で評価した。評価結果を表1に示す。なお、(9)触感は「B」であった。
 [実施例4]
 <スパンボンド不織布用の熱可塑性樹脂組成物の調製>
 エーテル型非イオン系界面活性剤として、エイコサノールのエチレンオキサイド付加物〔CH3(CH2)19-O-(CH2CH2O)2.5-H〕:60重量%、およびMFR:30g/10分のプロピレン単独重合体:40重量%に酸化防止剤(Ciba社製、商品名Irgafos 168)を0.05重量部加え、230℃で溶融混練して押出し、ペレット状のマスターバッチ(親水化剤B)を用意した。
 ついで、実施例1で用いたPP-1を96重量部とHDPE4重量部とを混合した後、親水化剤BをPP-1/HDPE混合物100重量部に対して5重量部(親水化処理剤成分換算で3重量部)混合し、熱可塑性樹脂組成物(A-2)を調製した。
 <混繊スパンボンド不織布の製造>
 実施例3で用いた熱可塑性樹脂組成物(A-1)に替えて、熱可塑性樹脂組成物(A-2)を用いる以外は、実施例3と同様に行い、混繊スパンボンド不織布を得た。得られた混繊スパンボンド不織布の目付は60g/m2であった。得られた混繊スパンボンド不織布を上記記載の方法で評価した。評価結果を表1に示す。なお、(9)触感は「B」であった。
 [実施例5]
 <スパンボンド不織布用の熱可塑性樹脂組成物の調製>
 MFR(ASTM D1238に準拠し、温度230℃、荷重2.16kgで測定)60g/10分、密度0.91g/cm3、融点142℃のプロピレン・エチレンランダム共重合体(以下、「PP-2」と略す)96重量部とHDPE4重量部とを混合した後、実施例1で用いた親水化剤AをPP-2/HDPE混合物100重量部に対して5重量部(親水化処理剤成分換算で3重量部)混合し、熱可塑性樹脂組成物(A-3)を調製した。
 <混繊スパンボンド不織布の製造>
 実施例1で用いた熱可塑性樹脂組成物(A-1)に替えて、熱可塑性樹脂組成物(A-3)を用いる以外は、実施例1と同様に行い、混繊スパンボンド不織布を得た。得られた混繊スパンボンド不織布の目付は30g/m2であった。得られた混繊スパンボンド不織布を上記記載の方法で評価した。評価結果を表1に示す。なお、(9)触感は「B」であった。
 [実施例6]
 <スパンボンド不織布用の熱可塑性樹脂組成物の調製>
 実施例5で用いたPP-2を96重量部とHDPE4重量部とを混合した後、実施例4で用いた親水化剤BをPP-2/HDPE混合物100重量部に対して5重量部(親水化処理剤成分換算で3重量部)混合し、熱可塑性樹脂組成物(A-4)を調製した。
 <混繊スパンボンド不織布の製造>
 実施例1で用いた熱可塑性樹脂組成物(A-1)に替えて、熱可塑性樹脂組成物(A-4)を用いる以外は、実施例1と同様に行い、混繊スパンボンド不織布を得た。得られた混繊スパンボンド不織布の目付は30g/m2であった。得られた混繊スパンボンド不織布を上記記載の方法で評価した。評価結果を表1に示す。なお、(9)触感は「B」であった。
Figure JPOXMLDOC01-appb-T000001
 [実施例7]
 実施例5で用いた熱可塑性ポリウレタンエラストマー(TPU-1)に替えて、熱可塑性ポリオレフィンエラストマー(ExxonMobil社製、商品名:VISTAMAXX VM2125、以下「TPO-1」と略す)を用いる以外は、実施例5と同様に行い、混繊スパンボンド不織布を得た。得られた混繊スパンボンド不織布の目付は30g/m2であった。得られた混繊スパンボンド不織布を上記記載の方法で評価した。評価結果を表2に示す。なお、(9)触感は「B」であった。
 [実施例8]
 実施例6で用いた熱可塑性ポリウレタンエラストマー(TPU-1)に替えて、熱可塑性エラストマーとして、実施例7で用いたTPO-1を用いる以外は、実施例6と同様に行い、混繊スパンボンド不織布を得た。得られた混繊スパンボンド不織布の目付は30g/m2であった。得られた混繊スパンボンド不織布を上記記載の方法で評価した。評価結果を表2に示す。なお、(9)触感は「B」であった。
 [比較例1]
 実施例1で用いたPP-1 100重量部に対して、実施例1で用いた親水剤Aを5重量部混合した熱可塑性樹脂組成物(A-2)を調整した。次いで、A-2を単独で用いて、実施例1に記載の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の目付は30g/m2であった。得られたスパンボンド不織布を上記記載の方法で評価した。評価結果を表2に示す。なお、(8)残留歪の測定は、延伸倍率が100%未満の状態で破断したため、測定できなかった。
 [比較例2]
 実施例1で用いたA-1を単独で用いて、実施例1に記載の方法でスパンボンド不織布を得た。得られたスパンボンド不織布の目付は30g/m2であった。得られたスパンボンド不織布を上記記載の方法で評価した。評価結果を表2に示す。
 [比較例3]
 実施例1において親水剤Aを用いなかった以外は実施例1と同様に行い、混繊スパンボンド不織布を得た。得られた混繊スパンボンド不織布の目付は30g/m2であった。得られた混繊スパンボンド不織布を上記記載の方法で評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から、熱可塑性ポリウレタンエラストマー長繊維を含まないプロピレン系重合体あるいは高密度ポリエチレンを少量含むプロピレン系重合体のみからなるスパンド不織布(比較例1及び比較例2)は、親水化剤を添加することにより初期親水性は2.1秒と改良されるものの耐久親水性は全くないことが明らかである。それに対して、熱可塑性ポリウレタンエラストマー長繊維を混繊した混繊スパンボンド不織布(実施例1~6)及びポリオレフィン系エラストマー長繊維を混繊した混繊スパンボンド不織布(実施例7及び実施例8)は熱可塑性樹脂長繊維が親水化処理されるだけで、熱可塑性ポリウレタンエラストマー長繊維及びポリオレフィン系エラストマー長繊維が親水化処理されていないにもかかわらず、初期親水性が1.1秒~2.2秒と優れ、しかも耐久親水性にいたってはそれぞれ1.7秒~3.3秒と極めて優れることが明らかである。
 また、延伸処理してなる混繊スパンボンド不織布(実施例2)は、延伸処理されていない混繊スパンボンド不織布(実施例1)に比べ、嵩高くなって厚みが増し、残留歪が少なく、触感に優れることが判る。
 本発明の混繊スパンボンド不織布は、嵩高性、初期親水性及び耐久親水性、柔軟性、耐毛羽立ち性、伸縮性及び触感に優れ、ベタツキが少ないので、かかる特徴を活かして、衛生材用をはじめ、医療材用、衛生材用、産業資材用等に好適に用い得る。

Claims (16)

  1.  熱可塑性樹脂(A)長繊維90~10重量%と熱可塑性エラストマー(B)長繊維10~90重量%を含む混繊スパンボンド不織布からなり、少なくとも熱可塑性樹脂(A)長繊維が親水化処理されていることを特徴とする混繊スパンボンド不織布。
  2.  親水化処理が、熱可塑性樹脂(A)長繊維に非イオン系界面活性剤を熱可塑性樹脂(A)100重量部に対して0.1~10重量部の割合で添加することにより処理されてなる請求項1記載の混繊スパンボンド不織布。
  3.  前記熱可塑性エラストマー(B)が、熱可塑性ポリウレタン系エラストマーであることを特徴とする請求項1または2記載の混繊スパンボンド不織布。
  4.  前記熱可塑性ポリウレタン系エラストマーが、
     示差走査熱量計(DSC)により測定される凝固開始温度が65℃以上であり、かつ細孔電気抵抗法に基づき100μmのアパーチャーを装着した粒度分布測定装置で測定される極性溶媒不溶分の粒子数が300万個/g以下である熱可塑性ポリウレタン系エラストマーである請求項3記載の混繊スパンボンド不織布。
  5.  前記熱可塑性ポリウレタン系エラストマーが、下記の関係式(I)を満たす熱可塑性ポリウレタンエラストマーである請求項3または4記載の混繊スパンボンド不織布。
           a/(a+b)≦0.8    (I)
     (式中、aは、DSCにより測定される90℃~140℃の範囲に存在する吸熱ピークから求められる融解熱量の総和を表し、bは、DSCにより測定される140℃よりも大きく220℃以下の範囲にある吸熱ピークから算出される融解熱の総和を表す。)
  6.  前記熱可塑性エラストマー(B)が、ポリオレフィン系エラストマーであることを特徴とする請求項1または2記載の混繊スパンボンド不織布。
  7.  前記熱可塑性樹脂(A)が、ポリオレフィンであることを特徴とする請求項1または2記載の混繊スパンボンド不織布。
  8.  ポリオレフィンが、プロピレン系重合体であることを特徴とする請求項7記載の混繊スパンボンド不織布。
  9.  ポリオレフィンが、プロピレン系重合体99~80重量%と高密度ポリエチレン1~20重量%からなる請求項7記載の混繊スパンボンド不織布。
  10.  プロピレン系重合体が、プロピレン・α-オレフィンランダム共重合体である請求項8又は請求項9記載の混繊スパンボンド不織布。
  11.  熱可塑性樹脂(A)長繊維が褶曲し、混繊スパンボンド不織布の表面に出てなる請求項1~10のいずれか1項に記載の混繊スパンボンド不織布。
  12.  請求項1~11のいずれかに記載の混繊スパンボンド不織布からなる吸収性物品の表面シート。
  13.  請求項1~11のいずれかに記載の混繊スパンボンド不織布からなる吸収性物品のセカンドシート。
  14.  請求項1~11のいずれかに記載の混繊スパンボンド不織布からなる吸収性物品の吸収体を包むシート。
  15.  請求項12に記載の表面シート及び/又は請求項13に記載のセカンドシートを用いてなる吸収性物品。
  16.  請求項1~11のいずれかに記載の混繊スパンボンド不織布を含んでなる吸収性物品。
PCT/JP2009/059346 2008-05-29 2009-05-21 混繊スパンボンド不織布及びその用途 WO2009145105A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/994,925 US20110092936A1 (en) 2008-05-29 2009-05-21 Mixed fiber spun bonded nonwoven fabric and use thereof
CN2009801195517A CN102046870A (zh) 2008-05-29 2009-05-21 混纤纺粘非织造布及其用途
JP2010514452A JP5606310B2 (ja) 2008-05-29 2009-05-21 混繊スパンボンド不織布及びその用途
KR1020107026874A KR101258333B1 (ko) 2008-05-29 2009-05-21 혼섬 스펀본드 부직포 및 그의 용도
EP20090754613 EP2292822B1 (en) 2008-05-29 2009-05-21 Filament-mixed spun-bonded nonwoven fabric and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-141461 2008-05-29
JP2008141461 2008-05-29
JP2009014661 2009-01-26
JP2009-014661 2009-01-26

Publications (1)

Publication Number Publication Date
WO2009145105A1 true WO2009145105A1 (ja) 2009-12-03

Family

ID=41376983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059346 WO2009145105A1 (ja) 2008-05-29 2009-05-21 混繊スパンボンド不織布及びその用途

Country Status (6)

Country Link
US (1) US20110092936A1 (ja)
EP (1) EP2292822B1 (ja)
JP (1) JP5606310B2 (ja)
KR (1) KR101258333B1 (ja)
CN (2) CN102046870A (ja)
WO (1) WO2009145105A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097840A1 (ja) * 2012-12-19 2014-06-26 花王株式会社 不織布
WO2017006972A1 (ja) * 2015-07-06 2017-01-12 三井化学株式会社 スパンボンド不織布及び衛生材料
JP2019173245A (ja) * 2018-03-29 2019-10-10 三井化学株式会社 不織布
WO2020103964A1 (en) 2018-11-23 2020-05-28 Reifenhäuser GmbH & Co. KG Maschinenfabrik Bulky nonwoven fabric with enhanced compressibility and recovery
EP3811917A1 (en) 2019-10-21 2021-04-28 Paul Hartmann AG Absorbent article with soft acquisition component
EP3812495A1 (en) 2019-10-21 2021-04-28 Paul Hartmann AG Absorbent article with acquisition component
WO2022210047A1 (ja) * 2021-03-30 2022-10-06 三井化学株式会社 スパンボンド不織布及び衛生材料

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016343A1 (ja) * 2009-08-05 2011-02-10 三井化学株式会社 混繊スパンボンド不織布、その製造方法及びその用途
BR112013026090B1 (pt) * 2011-04-15 2020-08-18 Lubrizol Advanced Materials, Inc Fibra, tecido, artigo, métodos de provisão de um efeito de resfriamento em um artigo, e de produção de uma fibra e de um tecido
BR112016010917B1 (pt) * 2013-11-20 2022-01-25 Kimberly-Clark Worldwide, Inc Artigo absorvente
US10835216B2 (en) * 2014-12-24 2020-11-17 Covidien Lp Spinneret for manufacture of melt blown nonwoven fabric
KR101603604B1 (ko) 2014-12-31 2016-03-16 도레이케미칼 주식회사 일회용 흡수제품용 탄성부직포 및 이를 포함하는 일회용 흡수제품
US10729600B2 (en) 2015-06-30 2020-08-04 The Procter & Gamble Company Absorbent structure
CN108348387B (zh) * 2015-11-04 2021-05-28 宝洁公司 吸收结构
CA3004318C (en) 2015-11-04 2021-06-08 The Procter & Gamble Company Absorbent structure comprising a heterogeneous mass
CN105332278B (zh) * 2015-11-26 2017-12-05 常州市灵达化学品有限公司 环境友好型聚烯烃非织造布多次亲水整理剂
EP3568113A1 (en) 2017-01-13 2019-11-20 The Procter and Gamble Company Nonwoven and absorbent articles having same
CN107217329A (zh) * 2017-06-28 2017-09-29 滁州市三和纤维制造有限公司 一种采用原位沉析法合成改性腈纶浆粕纤维的制备方法
US20220325141A1 (en) * 2019-09-19 2022-10-13 Denka Company Limited Binding tape
US12052975B1 (en) 2020-06-11 2024-08-06 Annette Grignard Universal pet crate bumper
US20220356619A1 (en) * 2021-05-02 2022-11-10 John Garner Moisture absorbing fabrric blend
DE102021208606B4 (de) * 2021-08-06 2025-02-06 Friedrich-Alexander Universität Erlangen-Nürnberg, Körperschaft des öffentlichen Rechts Verfahren zur Herstellung eines Polymer-Vliesstoffs
USD1011639S1 (en) 2021-10-07 2024-01-16 Annette Grignard Animal crate bumper
USD1004213S1 (en) 2021-10-07 2023-11-07 Annette Grignard Animal crate bumper
USD1004215S1 (en) 2021-10-07 2023-11-07 Annette Grignard Animal crate bumper
USD1004214S1 (en) 2021-10-07 2023-11-07 Annette Grignard Animal crate bumper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020957A (ja) 2000-07-06 2002-01-23 Nippon Kyushutai Gijutsu Kenkyusho:Kk 複相構造を持った不織布およびその製造法
JP2003250836A (ja) 2001-12-28 2003-09-09 Kao Corp 吸収性物品用の表面シート
JP2004073759A (ja) 2002-06-21 2004-03-11 Uni Charm Corp 吸収性物品
JP2004244791A (ja) 2003-01-24 2004-09-02 Mitsui Chemicals Inc 混合繊維、ならびに該混合繊維からなる伸縮性不織布およびその製造方法
JP2006188804A (ja) 2004-12-06 2006-07-20 Mitsui Chemicals Inc 親水性部と疎水性部を有する成形体の製造方法
WO2007138733A1 (ja) * 2006-05-31 2007-12-06 Mitsui Chemicals, Inc. 不織布積層体およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2050371A1 (en) * 1970-10-14 1972-04-20 Lutravil Spinnvlies GmbH & Co., 6750 Kaiserlautern Spun mat - with hydrophilic props, contg melt-spun thermoplastics - and hydroxyalkylated polyamides
US4990147A (en) * 1988-09-02 1991-02-05 The Procter & Gamble Company Absorbent article with elastic liner for waste material isolation
JP3063074B2 (ja) * 1995-10-25 2000-07-12 東洋紡績株式会社 混繊不織布
MY117643A (en) * 1996-02-29 2004-07-31 Uni Charm Corp Liquid-permeable topsheet for body exudates absorbent article, apparatus and method for manufacturing same
JP2002069820A (ja) * 2000-06-13 2002-03-08 Idemitsu Unitech Co Ltd スパンボンド不織布および吸収性物品
EP1357216A4 (en) * 2000-06-13 2005-06-01 Idemitsu Unitech Co Ltd SPINNING MATS AND POURABLE SUBJECT
US8207070B2 (en) * 2000-11-22 2012-06-26 Techmer Pm, Llc Wettable polyolefin fibers and fabrics
JP4341325B2 (ja) * 2002-08-08 2009-10-07 チッソ株式会社 弾性不織布及びこれを用いた繊維製品
US7405171B2 (en) * 2002-08-08 2008-07-29 Chisso Corporation Elastic nonwoven fabric and fiber products manufactured therefrom
TWI306129B (en) * 2003-01-24 2009-02-11 Mitsui Chemicals Inc Fiber mixture, stretch nonwoven fabric comprising the same, and production method for the stretch nonwoven fabric
TWI293093B (en) * 2003-01-24 2008-02-01 Mitsui Chemicals Inc Stretch nonwoven fabric and production method for the same
US20050159067A1 (en) * 2003-11-07 2005-07-21 Mitsui Chemicals, Inc. Hydrophilic nonwoven fabric
JP2007029612A (ja) * 2005-07-29 2007-02-08 Oji Nepia Kk 使い捨ておむつ
JP2007262631A (ja) * 2006-03-29 2007-10-11 Japan Polypropylene Corp プロピレン系共重合体又はその組成物から成形された繊維及びその繊維製品
JP2007009403A (ja) * 2006-10-20 2007-01-18 Mitsui Chemicals Inc 混合繊維からなる不織布及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020957A (ja) 2000-07-06 2002-01-23 Nippon Kyushutai Gijutsu Kenkyusho:Kk 複相構造を持った不織布およびその製造法
JP2003250836A (ja) 2001-12-28 2003-09-09 Kao Corp 吸収性物品用の表面シート
JP2004073759A (ja) 2002-06-21 2004-03-11 Uni Charm Corp 吸収性物品
JP2004244791A (ja) 2003-01-24 2004-09-02 Mitsui Chemicals Inc 混合繊維、ならびに該混合繊維からなる伸縮性不織布およびその製造方法
JP2006188804A (ja) 2004-12-06 2006-07-20 Mitsui Chemicals Inc 親水性部と疎水性部を有する成形体の製造方法
WO2007138733A1 (ja) * 2006-05-31 2007-12-06 Mitsui Chemicals, Inc. 不織布積層体およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2292822A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014139359A (ja) * 2012-12-19 2014-07-31 Kao Corp 不織布
CN104334784A (zh) * 2012-12-19 2015-02-04 花王株式会社 无纺布
WO2014097840A1 (ja) * 2012-12-19 2014-06-26 花王株式会社 不織布
WO2017006972A1 (ja) * 2015-07-06 2017-01-12 三井化学株式会社 スパンボンド不織布及び衛生材料
JPWO2017006972A1 (ja) * 2015-07-06 2018-03-15 三井化学株式会社 スパンボンド不織布及び衛生材料
JP7048150B2 (ja) 2018-03-29 2022-04-05 三井化学株式会社 不織布
JP2019173245A (ja) * 2018-03-29 2019-10-10 三井化学株式会社 不織布
WO2020103964A1 (en) 2018-11-23 2020-05-28 Reifenhäuser GmbH & Co. KG Maschinenfabrik Bulky nonwoven fabric with enhanced compressibility and recovery
EP3812495A1 (en) 2019-10-21 2021-04-28 Paul Hartmann AG Absorbent article with acquisition component
WO2021078797A1 (en) 2019-10-21 2021-04-29 Paul Hartmann Ag Absorbent article with soft acquisition component
WO2021078798A1 (en) 2019-10-21 2021-04-29 Paul Hartmann Ag Absorbent article with acquisition component
EP3811917A1 (en) 2019-10-21 2021-04-28 Paul Hartmann AG Absorbent article with soft acquisition component
WO2022210047A1 (ja) * 2021-03-30 2022-10-06 三井化学株式会社 スパンボンド不織布及び衛生材料

Also Published As

Publication number Publication date
CN104593946A (zh) 2015-05-06
KR101258333B1 (ko) 2013-04-25
EP2292822A1 (en) 2011-03-09
EP2292822A4 (en) 2011-09-21
JP5606310B2 (ja) 2014-10-15
KR20110013436A (ko) 2011-02-09
US20110092936A1 (en) 2011-04-21
JPWO2009145105A1 (ja) 2011-10-13
EP2292822B1 (en) 2013-07-03
CN102046870A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
JP5606310B2 (ja) 混繊スパンボンド不織布及びその用途
US10669660B2 (en) Method for producing a mixed fiber spunbonded nonwoven web
JP4472753B2 (ja) 不織布積層体およびその製造方法
JP5174802B2 (ja) 不織布積層体
JP5534807B2 (ja) 混繊不織布積層体
US8129298B2 (en) Nonwoven laminates and process for producing the same
JP2019070221A (ja) 不織布積層体、伸縮性不織布積層体、繊維製品、吸収性物品及び衛生マスク
JP5606072B2 (ja) 立体ギャザー用シート
JP5127690B2 (ja) 繊維及び不織布
JP2008213284A (ja) 不織布積層体
JP2008213282A (ja) 不織布積層体及びその製造方法
JP7108044B2 (ja) 不織布積層体、伸縮性不織布積層体、繊維製品、吸収性物品及び衛生マスク
KR101571995B1 (ko) 섬유, 부직포 및 그의 용도

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980119551.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010514452

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12994925

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107026874

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009754613

Country of ref document: EP