WO2009139383A1 - 基地局、ユーザ装置及び方法 - Google Patents
基地局、ユーザ装置及び方法 Download PDFInfo
- Publication number
- WO2009139383A1 WO2009139383A1 PCT/JP2009/058837 JP2009058837W WO2009139383A1 WO 2009139383 A1 WO2009139383 A1 WO 2009139383A1 JP 2009058837 W JP2009058837 W JP 2009058837W WO 2009139383 A1 WO2009139383 A1 WO 2009139383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference signal
- lte
- mobile station
- base station
- signal sequence
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
- H04W72/1215—Wireless traffic scheduling for collaboration of different radio technologies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/10—Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/0026—Interference mitigation or co-ordination of multi-user interference
Definitions
- the present invention relates to a base station, a user apparatus, and a reference signal multiplexing method in a mobile communication system in which a plurality of antennas are used in the base station.
- a communication method of a MIMO (Multiple Input Multiple Output) transmission method using a plurality of antennas between a base station and a user apparatus is known.
- a directional beam formed by multiplying a plurality of streams generated by duplicating a stream of a signal to be transmitted can be used, and the quality and transmission speed of the transmission signal can be reduced. Can be improved.
- the weighting factor used here is called a precoding vector or a precoding matrix.
- FIG. 1 shows the configuration of a reference signal in the LTE system (see Non-Patent Document 1).
- the reference signal may be defined as a predetermined bit sequence used when receiving and demodulating other symbols on the receiving side, or simply defined as a known reference signal on the transmitting side and the receiving side. Also good. Specifically, as shown in FIG.
- a reference signal to be used for channel estimation of transmission signals from the first and second antennas is multiplexed on the first OFDM symbol, the fifth OFDM symbol, the eighth OFDM symbol, and the twelfth OFDM symbol. Then, a reference signal to be used for channel estimation of transmission signals from the third and fourth antennas is multiplexed on the second OFDM symbol and the ninth OFDM symbol.
- the number of transmission antennas used in the base station is expected to increase from four (for example, eight transmission antennas).
- an LTE-A mobile station a mobile station having a mobile functional capability according to LTE-Advanced
- receives a reference signal from eight transmission antennas of the base station it is possible to efficiently estimate channel fluctuations from the respective transmission antennas. Is desired.
- the present invention provides a mobile station (for example, an LTE mobile station) that receives a downlink communication reference signal using four transmission antennas, and a mobile station (for example, an LTE mobile station that receives a reference signal suitable for downlink communication using more than four transmission antennas). It is an object to improve downlink channel estimation accuracy when a plurality of transmission antennas are used in a base station, while allowing coexistence with an LTE-A mobile station).
- a base station that transmits a reference signal: A first reference signal sequence generation unit that generates a first reference signal sequence in which M types of reference signals are arranged; A second reference signal sequence generation unit that generates a second reference signal sequence in which N types (N> M) of reference signals are arranged; A scheduler for allocating resource blocks to the first mobile station and the second mobile station; A signal multiplexing unit that multiplexes the first reference signal sequence into a resource block to be allocated to the first mobile station, and multiplexes the second reference signal sequence to a resource block to be allocated to the second mobile station; A transmitter for transmitting the first and second reference signal sequences;
- One of the features is to have
- a mobile station is A mobile station that receives a reference signal from a base station: A control information decoding unit that decodes information indicating a configuration of a reference signal sequence from control information received from the base station; and a first channel estimation unit that performs channel estimation based on the configuration of the reference signal sequence;
- a reference signal multiplexing method includes: A reference signal multiplexing method in which a base station multiplexes reference signals, wherein: Generating a first reference signal sequence in which M types of reference signals are arranged; Generating a second reference signal sequence in which N types (N> M) of reference signals are arranged; Allocating a resource block to a first mobile station and a second mobile station; and multiplexing the first reference signal sequence on a resource block allocated to the first mobile station; Multiplexing a sequence into resource blocks assigned to the second mobile station;
- One of the features is to have
- the channel estimation accuracy in the mobile station can be improved.
- the figure which shows the structure of the reference signal series in a LTE system The figure which shows a mode that the radio
- the block diagram of the base station which concerns on 1st Example of this invention.
- wireless resource is scheduled dynamically.
- First embodiment 1.1 Semi-static division of radio resources 1.2 Reference signal mapping 1.3 Base station 1.4 Mobile station 1.5 Operation example 2. Second embodiment 2.1 Dynamic division of radio resources 2.2 Reference signal mapping 3. Third embodiment 3.1 Reference signal mapping 3.2 Base station 3.3 Mobile station 3.4 Operation example Fourth Embodiment
- a configuration of a reference signal that enables channel estimation at a mobile station when more than four transmission antennas are used at a base station will be described.
- the base station uses resource blocks including four types of reference signal sequences and resource blocks including more than four types of reference signal sequences. The present invention is not limited to the following embodiments.
- a reference signal sequence in which M types of reference signals are arranged in a base station, and a reference signal in which N types (N> M) of reference signals are arranged. Applicable when using series.
- a reference signal sequence refers to a sequence in which a reference signal is arranged in a predetermined symbol of a resource block.
- the base station may use a reference signal sequence suitable for downlink communication with more than four transmission antennas and a reference signal sequence suitable for downlink communication with four transmission antennas.
- the base station uses a reference signal sequence to be used for channel estimation of transmission signals from more than four transmission antennas, and a reference to be used for channel estimation of transmission signals from four transmission antennas among the same transmission antennas. Transmit signal series.
- the mobile station that has received the reference signal performs channel estimation based on which reference signal sequence is used.
- an LTE-A mobile station is used as a mobile station that receives N types of reference signals suitable for downlink communication using N transmission antennas (for example, 8 transmission antennas), and M (M ⁇ N).
- N transmission antennas for example, 8 transmission antennas
- M M ⁇ N
- an LTE mobile station as a mobile station that receives a reference signal suitable for downlink communication using one transmission antenna (for example, four transmission antennas).
- the present invention is applicable to various systems in which a plurality of transmission antennas are used in a base station.
- FIG. 2A is a diagram showing an arrangement of radio resources when an LTE mobile station and an LTE-A mobile station coexist in the LTE-Advanced system.
- the LTE system band includes a frequency band (resource block A) used by the LTE-A mobile station for communication, and a frequency band (resource block B) used by the LTE mobile station for communication. Is divided in the frequency direction.
- the “resource block” in this case is not a resource allocation unit such as a radio resource occupying a bandwidth of 180 kHz and a period of 1 ms, for example, but a resource of the entire system band including many resources of such an allocation unit. Note that it points.
- the LTE-A mobile station performs communication using one or more resource blocks (resource allocation unit) included in the resource block A.
- the LTE mobile station performs communication using one or more resource blocks (resource allocation units) included in the resource block B.
- the base station arranges the common reference signal in the resource block (resource allocation Unit).
- the base station can multiplex the common reference signal into the resource block (resource allocation unit) in an arrangement suitable for the LTE mobile station.
- the common reference signal is a reference signal used in common by a plurality of mobile stations in the same cell.
- the common reference signal transmitted in the resource block A is used by a plurality of LTE-A mobile stations located in the cell for channel estimation and the like.
- the common reference signal transmitted in the resource block B is used by a plurality of LTE mobile stations located in the cell for channel estimation and the like.
- the boundary on the frequency axis between the resource block A and the resource block B may be fixed unchanged by the system, or may be changed according to some kind of trigger. For example, it may change quasi-statically depending on the traffic volume or the number of subscribers. Strictly speaking, the “quasi-static change” is a concept included in the “dynamic change”, but corresponds to a case where the changing period or period is considerably long.
- the dynamic change is a change for each subframe of 1 ms, for example, and the quasi-static change may correspond to a change of 100 ms for example.
- these numerical values are merely examples, and any appropriate numerical values may be used. This is because dynamic, static and quasi-static are relative concepts.
- the boundary between resource block A and resource block B may be transmitted to all mobile stations existing in the cell with common control information such as a broadcast channel.
- the frequency division of the resource block A and the resource block B is advantageous in that, for example, the LTE mobile station can use the conventional band as it is, so that the device configuration is hardly changed.
- FIG. 3A is a diagram illustrating another radio resource division method when an LTE mobile station and an LTE-A mobile station coexist.
- the resource block A used for communication by the LTE-A mobile station and the resource block B used for communication by the LTE mobile station may be divided in the time direction.
- the base station multiplexes the common reference signal into the resource block (resource allocation unit) in an arrangement suitable for the LTE-A mobile station.
- the resource block B the base station multiplexes the common reference signal into the resource block (resource allocation unit) in an arrangement suitable for the LTE mobile station.
- the time division of the resource block A and the resource block B is advantageous in that both the LTE mobile station and the LTE-A mobile station can widen the usable frequency range. Further, time division of radio resources is preferable from the viewpoint of saving the battery of the mobile station, for example, because the mobile station only needs to be activated during a period in which a signal related to the mobile station is visited.
- 2A and 3A show the case where one boundary exists on the frequency axis or the time axis, but a plurality of boundaries may exist.
- FIG. 2B shows an example in which a plurality of boundaries between LTE mobile station radio resources and LTE-A radio resources exist on the frequency axis.
- a boundary exists regularly.
- the number of boundaries, the number of boundaries when dividing radio resources, the ratio of resources, and the like are not limited to those shown in the figure, and any appropriate numerical value may be used.
- Frequency division of radio resources with multiple boundaries is advantageous in that both LTE and LTE-A mobile stations can widen the range of available frequencies. Furthermore, since radio resources are continuously reserved for both the LTE mobile station and the LTE-A mobile station, this method is preferable from the viewpoint of shortening the delay.
- FIG. 3B shows an example in which a plurality of boundaries between LTE mobile station radio resources and LTE-A radio resources exist on the time axis. In the illustrated example, such a boundary exists regularly.
- the number of boundaries, the number of boundaries when dividing radio resources, the ratio of resources, and the like are not limited to those shown in the figure, and any appropriate numerical value may be used. Increasing the number of time division boundaries is preferable from the viewpoint of shortening the period during which radio resources cannot be used continuously.
- 2A and 3A may be combined to divide resource blocks semi-statically in the time direction and the frequency direction.
- FIG. 2C shows an example in which a plurality of boundaries between the radio resources for LTE mobile stations and the radio resources for LTE-A exist both on the frequency axis and on the time axis.
- FIG. 2D shows another example in which a plurality of boundaries between radio resources for LTE mobile stations and radio resources for LTE-A exist both on the frequency axis and on the time axis.
- LTE-A-dedicated the radio resources referred to as “LTE-A-dedicated” in FIGS. 2A to 2C are not excluded from being used for LTE terminals. That is, assigning an LTE mobile station (first mobile station) to a radio resource indicated as “LTE-A only” is not prohibited at all. However, if such allocation is performed, the reception quality of the LTE mobile station may be somewhat degraded due to the reference signal dedicated to LTE-A.
- the meaning of such “dedicated” applies not only to FIGS. 2A to 2C but also to other drawings and thus throughout the present application.
- FIG. 4 shows a specific arrangement example of the reference signal sequence according to the first embodiment of the present invention.
- the base station has eight transmit antennas.
- the resource block assigned to the LTE-A mobile station eight types of reference signal sequences (P1 to P8) suitable for the LTE-A mobile station are arranged.
- four types of reference signal sequences are arranged in the resource block allocated to the LTE mobile station.
- the “resource block” in this case corresponds to a radio resource allocation unit for each mobile station.
- the resource block suitable for the LTE-A mobile station and the resource block suitable for the LTE mobile station partially have the same configuration.
- the configurations of the first OFDM symbol and the second OFDM symbol are the same in both resource blocks.
- the resource block A used for communication by the LTE-A mobile station and the resource block B used for communication by the LTE mobile station are divided in advance, so that it is suitable for the LTE-A mobile station.
- the arrangement of the reference signal sequence may be different from the arrangement of the reference signal sequence adapted to the LTE mobile station.
- the number of symbols of each of the four types of reference signals of the resource block allocated to the LTE mobile station is equal to each other, and each of the eight types of reference signals of the resource block allocated to the LTE-A mobile station.
- the number of symbols is equal to each other.
- the number of symbols of each of the four types of reference signals of the resource block allocated to the LTE mobile station may have a predetermined relationship (for example, a fixed ratio), and the resource block allocated to the LTE-A mobile station
- the number of symbols of each of the eight types of reference signals may have a predetermined relationship (for example, a fixed ratio).
- the number of symbols of the first and second reference signals may be twice the number of symbols of the third and fourth reference signals.
- the number of symbols of the first to fourth reference signals may be twice the number of symbols of the fifth to eighth reference signals.
- the predetermined relationship may be specified by any appropriate amount such as a ratio in the resource block, the number of symbols, and a density. This is applicable not only to this embodiment but also to other embodiments.
- the resource block allocated to the LTE mobile station can form a common reference signal sequence suitable for the LTE mobile station, and the resource block allocated to the LTE-A mobile station Therefore, it is possible to configure a common reference signal sequence suitable for the LTE-A mobile station. Further, since the reference signal is quasi-statically assigned to consecutive frequencies / time, the LTE mobile station and the LTE-A mobile station use not only the assigned resource block but also the reference signal of the adjacent resource block. Channel estimation. That is, it is possible to improve downlink channel estimation accuracy.
- the base station 10 has a frequency bandwidth control unit 101.
- the base station 10 also includes an LTE-A mobile station buffer 103a, a scheduler 105a, a channel encoding unit 107a, a data modulation unit 109a, a precoding multiplication unit 111a, a subcarrier mapping unit 113a, a reference A signal sequence generation unit 114a and a reference signal multiplexing unit 115a; an LTE mobile station buffer 103b; a scheduler 105b; a channel encoding unit 107b; a data modulation unit 109b; a precoding multiplication unit 111b; A subcarrier mapping unit 113b, a reference signal sequence generation unit 114b, and a reference signal multiplexing unit 115b are included.
- the base station 10 includes an IFFT (Inverse Fast Fourier Transform) unit 117, a CP (Cy
- the base station 10 is illustrated as having eight transmission antennas, it may have any number of two or more transmission antennas.
- the configuration of the base station 10 is an example of a base station of a precoding MIMO transmission scheme in which the same data is duplicated and multiplied by the precoding weight of each transmission antenna and then transmitted from a plurality of antennas. If not, for example, the precoding multipliers 111a and 111b may not exist.
- the frequency bandwidth control unit 101 divides the frequency band to be allocated to the LTE mobile station and the frequency band to be allocated to the LTE-A mobile station according to the traffic amount, the number of subscribers, and the like. .
- This frequency band information is reported as control information to each mobile station through a broadcast channel.
- 3A, 3B, 2C, and 2D when the resource block to be allocated to the LTE mobile station and the resource block to be allocated to the LTE-A mobile station are divided in the time direction, frequency bandwidth control is performed.
- a transmission time interval control unit is provided. Also in this case, the transmission time interval control unit divides the transmission time interval to be allocated to the LTE mobile station and the transmission time interval to be allocated to the LTE-A mobile station according to the traffic amount, the number of subscribers, and the like.
- the LTE-A mobile station buffer 103 a stores transmission data to be transmitted to each of the N1 LTE-A mobile stations in the cell of the base station 10.
- the LTE-A mobile station scheduler 105a allocates resource blocks to the transmission data stored in the buffer 103a.
- the scheduler 105a acquires information on the frequency band to be allocated to the LTE-A mobile station from the frequency bandwidth control unit 101, and allocates resource blocks within this frequency band.
- Channel coding unit 107a for LTE-A mobile station selects a coding rate based on channel quality information (CQI: Channel Quality Indicator) fed back from LTE-A mobile station, and sets a channel code for transmission data. To do.
- the data modulation unit 109a for the LTE-A mobile station selects a modulation scheme based on the channel quality information fed back from the LTE-A mobile station, and performs data modulation on the transmission data.
- the LTE-A mobile station precoding multiplier 111a multiplies transmission data by a precoding matrix based on precoding matrix information (PMI: Precoding Matrix Indicator) fed back from the LTE-A mobile station.
- PMI Precoding Matrix Indicator
- the LTE-A mobile station subcarrier mapping unit 113a maps transmission data to subcarriers.
- the subcarrier mapping unit 113a acquires information on the frequency band to be allocated to the LTE-A mobile station from the frequency bandwidth control unit 101, and maps the subcarrier within the range of this frequency band.
- the reference signal sequence generation unit 114a generates, for example, a common reference signal sequence for the LTE-A terminal shown on the left side of FIG.
- the reference signal multiplexing unit 115a for the LTE-A mobile station multiplexes the common reference signal sequence for the LTE-A mobile station into the resource block allocated to the LTE-A mobile station.
- the LTE mobile station buffer 103b to the reference signal multiplexing unit 115b perform the same processing on the N2 LTE mobile stations as the LTE-A mobile station buffer 103a to the reference signal multiplexing unit 115a.
- the LTE terminal reference signal sequence generation unit 114b generates, for example, the LTE terminal common reference signal sequence shown on the right side of FIG.
- the LTE mobile station reference signal multiplexing unit 115b multiplexes the LTE mobile station common reference signal sequence to the resource block allocated to the LTE mobile station.
- the transmission signal on which the common reference signal is multiplexed is subjected to fast inverse Fourier transform by the IFFT unit 117 for each antenna and converted to the time domain. Furthermore, a guard interval (CP) is inserted by the CP assigning unit 119 and transmitted from the RF transmission circuit 121 to each mobile station.
- CP guard interval
- the mobile station 20 corresponds to a mobile station that receives a reference signal suitable for downlink communication using N transmission antennas (for example, 8 transmission antennas) of the base station, like an LTE-A mobile station.
- the mobile station 20 includes a duplexer 201, an RF reception circuit 203, a reception timing estimation unit 205, an FFT unit 207, a broadcast information decoding unit 209, a channel estimation unit 211, a data channel signal detection unit 213, a channel decoding Part 215.
- the mobile station 20 is illustrated as having two antennas, it may have one antenna or more than two antennas.
- the RF receiving circuit 203 receives a signal from the base station via the duplexer 201, and performs predetermined signal processing for converting the received signal into a baseband digital signal. This signal processing may include, for example, power amplification, band limiting, and analog to digital conversion.
- the reception timing estimation unit 205 estimates the reception timing of the reception signal input from the RF reception circuit 203. For this estimation, a guard interval (CP) given by the base station may be used.
- the FFT unit 207 performs a Fourier transform on the reception signal input from the RF reception circuit 203 based on the reception timing notified from the reception timing estimation unit 205.
- the broadcast information decoding unit 209 decodes the control information notified through the broadcast channel from the received signal Fourier-transformed by the FFT unit 207, and acquires information on the frequency band assigned to the LTE-A mobile station. From this control information, the configuration of the common reference signal sequence suitable for the LTE-A mobile station is known. For example, it can be seen that the configuration shown on the left side of FIG. 4 is used for the common reference signal sequence.
- the channel estimation unit 211 performs channel estimation using a common reference signal sequence suitable for the LTE-A mobile station in order to decode data. By the channel estimation, the phase rotation amount and amplitude fluctuation amount on the propagation path are acquired.
- the data channel signal detection unit 213 uses the channel estimation result of the channel estimation unit 211 to demodulate data.
- the channel decoding unit 215 decodes the data demodulated by the data channel signal detection unit 213 and reproduces the signal transmitted from the base station.
- the base station generates information on resource blocks to be allocated to the LTE mobile station and resource blocks to be allocated to the LTE-A mobile station as control information transmitted on the broadcast channel (S101). Note that S101 may be performed at a timing different from the following S103 to S111.
- the base station performs scheduling for the LTE mobile station and the LTE-A mobile station, and allocates a resource block to each mobile station (S103). For example, the base station generates a reference signal sequence for the LTE mobile station shown on the right side of FIG. 4 (S105), and also generates a reference signal sequence for the LTE-A mobile station shown on the left side of FIG. S107). Next, the base station multiplexes the LTE mobile station reference signal sequence into the resource block allocated to the LTE mobile station, and the LTE-A mobile station reference signal sequence allocated to the LTE-A mobile station. Multiplexed into blocks (S109). The transmission signal multiplexed with the reference signal is transmitted to the LTE mobile station and the LTE-A mobile station.
- the LTE-A mobile station performs channel estimation using a common reference signal sequence suitable for the LTE-A mobile station (S111a). Further, the LTE mobile station performs channel estimation using a common reference signal sequence suitable for the LTE mobile station (S111b).
- the case where the resource block A allocated to the LTE-A mobile station and the resource block B allocated to the LTE mobile station are quasi-statically divided has been described.
- the second embodiment a case will be described in which the resource block A allocated to the LTE-A mobile station and the resource block B allocated to the LTE mobile station are dynamically scheduled (for each subframe) by the scheduler.
- FIG. 8A is a diagram showing an arrangement of reference signals when dynamically assigning resource blocks to LTE mobile stations and LTE-A mobile stations when they coexist in the LTE-Advanced system.
- the scheduler of the base station allocates optimal resource blocks to the LTE mobile station and the LTE-A mobile station based on channel quality information (CQI) reported from each mobile station. Accordingly, the resource block A allocated to the LTE-A mobile station and the resource block B allocated to the LTE mobile station change for each subframe.
- CQI channel quality information
- the base station In the resource block A allocated to the LTE-A mobile station, the base station multiplexes a reference signal sequence suitable for the LTE-A mobile station.
- a reference signal sequence suitable for an LTE-A terminal is generated by multiplexing an individual reference signal orthogonal to an antenna on a reference signal sequence suitable for an LTE terminal.
- the base station In addition, in the resource block B allocated to the LTE mobile station, the base station multiplexes a reference signal sequence in which a common reference signal suitable for the LTE mobile station is arranged.
- the individual reference signal refers to a reference signal having a different configuration (here, different configurations for the LTE-A mobile station and the LTE mobile station) depending on the mobile station, and the antenna orthogonal reference signal refers to each antenna.
- the reference signal used for channel estimation of the signal transmitted from is orthogonal in the frequency direction or time direction for each antenna. Therefore, the individual reference signal orthogonal to the antenna suitable for the LTE-A mobile station is used for channel estimation by a plurality of LTE-A mobile stations located in the cell.
- the LTE mobile station can perform channel estimation not only on resource blocks assigned to the LTE mobile station but also on resource blocks assigned to the LTE-A mobile station, so that the reference signal adapted to the LTE-A mobile station can be used. It is preferable that the arrangement configuration of the sequence and the arrangement configuration of the reference signal sequence suitable for the LTE mobile station are shared in whole or in part. The common part of the reference signal sequence can be used for channel estimation by both the LTE mobile station and the LTE-A mobile station existing in the cell. Therefore, the LTE mobile station uses the reference signal of the resource block allocated to the LTE-A mobile station to select scheduling, modulation scheme selection, coding rate selection, precoding matrix selection in MIMO transmission, and handover selection. It is possible to measure the reception quality for such as.
- L1 / L2 control information that the resource block is allocated to the LTE-A mobile station (that is, information indicating the configuration of the reference signal sequence for LTE-A) is notified to each mobile station as L1 / L2 control information.
- the L1 / L2 control information that the resource block is allocated to the LTE-A mobile station may be encoded together with information on the modulation scheme, coding rate, or retransmission, or may be encoded separately from the information. .
- FIG. 9 shows a specific arrangement example of the reference signal sequence according to the second embodiment of the present invention.
- the base station has eight transmit antennas.
- the arrangement itself of the reference signal sequence shown in FIG. 9 is the same as that of FIG. 4, but may be different.
- the resource block allocated to the LTE-A mobile station eight types of reference signals suitable for the LTE-A mobile station are arranged.
- four types of reference signals are arranged in the resource block allocated to the LTE mobile station.
- the resource block suitable for the LTE-A mobile station and the resource block suitable for the LTE mobile station partially have the same configuration.
- the configurations of the first OFDM symbol and the second OFDM symbol are the same in both resource blocks.
- the fifth OFDM symbol, the sixth OFDM symbol, the twelfth OFDM symbol, and the thirteenth OFDM symbol a part of the reference signal sequence suitable for the LTE mobile station is thinned out and used for channel estimation of transmission signals from the fifth to eighth antennas. Add a reference signal to power.
- the numbers of symbols of the eight types of reference signals are equal to each other.
- the number of symbols of each of the four types of reference signals of the resource block allocated to the LTE mobile station may have a predetermined relationship (for example, a fixed ratio), and the resource block allocated to the LTE-A mobile station
- the number of symbols of each of the eight types of reference signals may have a predetermined relationship (for example, a fixed ratio).
- the number of symbols of the first and second reference signals may be twice the number of symbols of the third and fourth reference signals.
- the number of symbols of the first to fourth reference signals may be twice the number of symbols of the fifth to eighth reference signals.
- the configuration of the reference signal sequence in FIG. 9 is such that the resource block A used for communication by the LTE-A mobile station and the resource block B used for communication by the LTE mobile station are in the frequency direction as in the first embodiment. Alternatively, it can also be used when it is divided semi-statically in the time direction.
- FIG. 8B shows the above-described operation for radio resources that can be used in both LTE and LTE-A when the fixed or quasi-static radio resource division of the first embodiment shown in FIG. 3B is performed. Shows a typical scheduling process.
- the LTE-A mobile station can improve the channel estimation accuracy by using the dedicated reference signal. Furthermore, by making the configuration of the reference signal suitable for the LTE-A mobile station and the configuration of the reference signal suitable for the LTE mobile station at least partially in common, the LTE-A mobile station can demodulate differently depending on the reference signal. There is no need to perform processing.
- the LTE mobile station can also perform channel estimation using resource blocks allocated to the LTE-A mobile station.
- FIG. 10 shows a specific arrangement of reference signal sequences according to the third embodiment of the present invention.
- the base station has eight transmit antennas.
- the resource block allocated to the LTE-A mobile station eight types of common reference signals suitable for the LTE-A mobile station are arranged.
- four types of reference signals are arranged in the resource block allocated to the LTE mobile station.
- the resource block suitable for the LTE-A mobile station and the resource block suitable for the LTE mobile station partially have the same configuration.
- the configurations of the first OFDM symbol, the second OFDM symbol, and the fifth OFDM symbol are the same in both resource blocks.
- a reference signal sequence suitable for the LTE-A mobile station is configured so that the overhead of the reference signal does not increase.
- a part of the reference signal sequence in FIG. 1 is thinned out, and a reference signal to be used for channel estimation of transmission signals from the fifth to eighth antennas is multiplexed on the thinned part.
- reference signals for the eighth OFDM symbol, the ninth OFDM symbol, and the twelfth OFDM symbol are used as reference signals for the fifth to eighth antennas. Thereby, the number of symbols of each of the eight types of reference signals is equal to each other.
- the number of symbols of each of the four types of reference signals of the resource block allocated to the LTE mobile station may have a predetermined relationship (for example, a fixed ratio), and the resource block allocated to the LTE-A mobile station
- the number of symbols of each of the eight types of reference signals may have a predetermined relationship (for example, a fixed ratio).
- the number of symbols of the first and second reference signals may be twice the number of symbols of the third and fourth reference signals.
- the number of symbols of the first to fourth reference signals may be twice the number of symbols of the fifth to eighth reference signals.
- the third embodiment is preferable from the viewpoint of saving overhead because the ratio of the reference signal sequence in the resource block for LTE-A is smaller than that in the second embodiment. Furthermore, the arrangement of reference signal sequences suitable for LTE-A mobile stations and the arrangement of reference signal sequences suitable for LTE mobile stations are at least partially shared. As a result, the LTE-A mobile station can perform channel estimation at different portions after performing channel estimation at the common portion. The LTE mobile station can also perform channel estimation at the common part.
- Example 1 and Example 2 in FIG. 10B show another example of mapping of reference signals according to the second and third embodiments.
- the reference signal sequences P1 to P4 are arranged in common in the resource blocks for LTE and LTE-A, and the reference signal sequences P5 to P8 are added in the resource blocks for LTE-A. This is preferable from the viewpoint of sharing the location where the reference signal sequence is arranged.
- the configuration of the base station 30 will be described with reference to FIG. This base station can be used in both the second and third embodiments.
- the base station 30 includes a scheduler 305 and a subcarrier mapping unit 313.
- the base station 30 includes an LTE-A mobile station buffer 303a, a channel coding unit 307a, a data modulation unit 309a, a precoding multiplication unit 311a, a reference signal sequence generation unit 314a, and a reference signal multiplexing unit. 315a, an LTE mobile station buffer 303b, a channel encoder 307b, a data modulator 309b, a precoding multiplier 311b, a reference signal sequence generator 314b, and a reference signal multiplexer 315b.
- the base station 30 includes an IFFT unit 317, a CP providing unit 319, and an RF transmission circuit 321 for each antenna.
- the base station 30 is illustrated as having eight transmission antennas, the base station 30 may have any number of two or more transmission antennas.
- the base station 10 is an example of a base station of a precoding MIMO transmission scheme in which the same data is duplicated and multiplied by the precoding weight of each transmission antenna and then transmitted from a plurality of antennas, and precoding is not applied.
- the precoding multipliers 311a and 311b may not exist.
- the LTE-A mobile station buffer 303 a stores transmission data to be transmitted to each of the N1 LTE-A mobile stations in the cell of the base station 30.
- the LTE mobile station buffer 303 b stores transmission data to be transmitted to each of the N2 LTE mobile stations in the cell of the base station 30.
- the scheduler 305 allocates resource blocks to the transmission data stored in the buffers 303a and 303b. That is, the scheduler 305 performs scheduling for both the LTE mobile station and the LTE-A mobile station. Scheduler 305 outputs this resource allocation information to subcarrier mapping section 313, reference signal sequence generation sections 314a and 314b, and reference signal multiplexing sections 315a and 315b.
- channel encoder 307a to precoding multiplier 311a for the LTE-A mobile station perform the same processing as the channel encoder 107a to precoding multiplier 111a in FIG.
- channel coding section 307b to precoding multiplication section 311b for LTE mobile stations perform the same processing as channel coding section 107b to precoding multiplication section 111b in FIG.
- the subcarrier mapping unit 313 maps transmission data to subcarriers based on resource allocation information from the scheduler.
- the LTE-A terminal reference signal sequence generation unit 314a generates the LTE-A terminal reference signal sequence shown on the left side of FIG. 9 or FIG. 10, for example.
- the reference signal multiplexing unit 315a for the LTE-A mobile station multiplexes the reference signal sequence for the LTE-A mobile station into the resource block allocated to the LTE-A mobile station.
- the LTE terminal reference signal sequence generation unit 314b generates the LTE terminal reference signal sequence shown on the right side of FIG. 9 or FIG. 10, for example.
- the LTE mobile station reference signal multiplexing unit 315a multiplexes the LTE mobile station reference signal sequence to the resource block allocated to the LTE-A mobile station.
- Information that the reference signal sequence for the LTE-A mobile station is used (information that the antenna orthogonal reference signal is used) is stored in the L1 / L2 control information.
- the transmission signal in which the reference signal (and L1 / L2 control information) is multiplexed is subjected to fast inverse Fourier transform by the IFFT unit 317 for each antenna, and is converted to the time domain. Furthermore, a guard interval (CP) is inserted by the CP assigning unit 319 and transmitted from the RF transmission circuit 321 to each mobile station.
- CP guard interval
- the configuration of the mobile station 40 will be described with reference to FIG. This mobile station can be used in both the second and third embodiments.
- the mobile station 40 corresponds to a mobile station that receives a reference signal suitable for downlink communication using N transmission antennas (for example, 8 transmission antennas) of the base station, such as an LTE-A mobile station.
- the mobile station 40 includes a duplexer 401, an RF reception circuit 403, a reception timing estimation unit 405, an FFT unit 407, a channel estimation unit 408 using a common reference signal, an L1 / L2 control information decoding unit 409, and a channel estimation unit. 411, a data channel signal detection unit 413, and a channel decoding unit 415.
- the mobile station 40 is illustrated as having two antennas, it may have one antenna or more than two antennas.
- the duplexers 401 to FFT unit 407 perform the same processing as the duplexers 201 to FFT unit 207 in FIG.
- the channel estimation unit 408 using the common reference signal, for example, a reference signal sequence for the LTE mobile station shown on the right side of FIG. 9 or FIG. 10, and a reference for the LTE-A mobile station shown on the left side of FIG. 9 or FIG.
- Channel estimation is performed using a common part with the signal sequence.
- the phase rotation amount and amplitude fluctuation amount on the propagation path are acquired.
- the L1 / L2 control information decoding unit 409 decodes the L1 / L2 control information using the channel estimation result by the common part of the reference signal sequence. From the L1 / L2 control information, the configuration of the reference signal sequence suitable for the LTE-A mobile station is known. For example, it can be seen that the configuration shown on the left side of FIG. 9 or 10 is used for the reference signal sequence.
- the channel estimation unit 421 uses a common part of the reference signal sequence for the LTE mobile station and the reference signal sequence for the LTE-A mobile station to decode the data, and uses the antenna orthogonality for the LTE-A mobile station. Channel estimation is performed using the individual reference signal.
- the data channel signal detection unit 413 demodulates data using the channel estimation result of the channel estimation unit 411.
- Channel decoding section 415 decodes the data demodulated by data channel signal detection section 413, and reproduces the signal transmitted from the base station.
- the base station performs scheduling for the LTE mobile station and the LTE-A mobile station, and allocates a resource block to each mobile station (S203). For example, the base station generates a reference signal sequence for the LTE mobile station shown on the right side of FIG. 9 or 10 (S205), and for example, a reference for the LTE-A mobile station shown on the left side of FIG. 9 or FIG. A signal sequence is generated (S207). Next, the base station generates L1 / L2 control information indicating that a resource block has been allocated to the LTE-A mobile station (information indicating the configuration of the reference signal for the LTE-A terminal) (S207).
- the base station multiplexes the LTE mobile station reference signal sequence to the resource block allocated to the LTE mobile station, and multiplexes the LTE-A mobile station reference signal sequence to the resource block allocated to the LTE-A mobile station. (S209).
- L1 / L2 control information is also multiplexed into the resource block.
- the transmission signal in which the reference signal and the L1 / L2 control information are multiplexed is transmitted to the LTE mobile station and the LTE-A mobile station.
- the LTE-A mobile station performs channel estimation using the common part of the reference signal sequence and decodes the L1 / L2 control information (S211a). Further, channel estimation is performed using the individual reference signal (S213a). Also, the LTE mobile station performs channel estimation using the common part of the reference signal sequence (S211b).
- FIG. 14 shows a configuration example of a reference signal sequence for LTE-A when the base station has four transmission antennas. Also in this case, it is preferable that the configuration of the reference signal sequence adapted to the LTE-A mobile station and the configuration of the reference signal sequence adapted to the LTE mobile station are all or partly in common.
- the reference signal sequence for the LTE-A mobile station can be configured so that the number of symbols of each of the four types of reference signals is equal to each other. Further, as shown in FIG. 14B, the reference signal sequence for the LTE-A mobile station can be configured so that the resource block allocated to the LTE-A mobile station does not increase the overhead of the reference signal. .
- the present invention is not limited to the above-described embodiment, and when a mobile station that receives M types of reference signals and a mobile station that receives N types (N> M) of reference signals coexist. Applicable. N may be any integer of 2 or more. Further, in the embodiments of the present invention, the precoding MIMO transmission scheme in which the same data is duplicated and multiplied by the precoding weight of each transmitting antenna and then transmitted from a plurality of antennas has been described. The present invention is not limited to the precoding MIMO transmission method, and can be applied when the base station has a plurality of transmission antennas.
- the channel estimation accuracy in the mobile station can be improved. For example, when more than four transmission antennas are used in the base station, channel estimation can be performed in a mobile station that cannot perform channel estimation using reference signals of up to four transmission antennas.
- a base station that transmits a reference signal A first reference signal sequence generation unit that generates a first reference signal sequence in which M types of reference signals are arranged; A second reference signal sequence generation unit that generates a second reference signal sequence in which N types (N> M) of reference signals are arranged; A scheduler for allocating resource blocks to the first mobile station and the second mobile station; A signal multiplexing unit that multiplexes the first reference signal sequence into a resource block to be allocated to the first mobile station, and multiplexes the second reference signal sequence to a resource block to be allocated to the second mobile station; A transmitter for transmitting the first and second reference signal sequences; Base station with
- the first reference signal sequence generation unit generates the first reference signal sequence so that the number of symbols of each of the M types of reference signals has a predetermined relationship
- the base station according to claim 1 wherein the second reference signal sequence generation unit generates the second reference signal sequence so that the number of symbols of each of the N types of reference signals has a predetermined relationship.
- (Section 4) 2. The scheduler according to claim 1, wherein the scheduler divides a resource block to be allocated to the first mobile station and a resource block to be allocated to the second mobile station quasi-statically in a frequency direction or a time direction. base station.
- a control information transmitting unit that transmits information on resource blocks to be allocated to the first and second mobile stations as common control information to mobile stations existing in the cell;
- An L1 / L2 control information generating unit that generates information indicating a configuration of the second reference signal sequence as L1 / L2 control information of a resource block allocated to the second mobile station in subframe units; And an L1 / L2 control information transmission unit for transmitting the L1 / L2 control information;
- a mobile station that receives a reference signal from a base station: A control information decoding unit that decodes information indicating a configuration of a reference signal sequence from control information received from the base station; and a first channel estimation unit that performs channel estimation based on the configuration of the reference signal sequence; A mobile station.
- the control information decoding unit decodes L1 / L2 control information based on a channel estimation result in the second channel estimation unit, and decodes information indicating a configuration of a reference signal sequence from the L1 / L2 control information
- (Section 9) A reference signal multiplexing method in which a base station multiplexes reference signals, wherein: Generating a first reference signal sequence in which M types of reference signals are arranged; Generating a second reference signal sequence in which N types (N> M) of reference signals are arranged; Allocating a resource block to a first mobile station and a second mobile station; and multiplexing the first reference signal sequence on a resource block allocated to the first mobile station; Multiplexing a sequence into resource blocks assigned to the second mobile station; A reference signal multiplexing method.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
Description
リファレンス信号を送信する基地局であって:
M種類のリファレンス信号が配置された第1のリファレンス信号系列を生成する第1のリファレンス信号系列生成部;
N種類(N>M)のリファレンス信号が配置された第2のリファレンス信号系列を生成する第2のリファレンス信号系列生成部;
第1の移動局と第2の移動局とに対してリソースブロックを割り当てるスケジューラ;
前記第1のリファレンス信号系列を前記第1の移動局に割り当てるリソースブロックに多重し、前記第2のリファレンス信号系列を前記第2の移動局に割り当てるリソースブロックに多重する信号多重部;及び
前記第1及び第2のリファレンス信号系列を送信する送信部;
を有することを特徴の1つとする。
基地局からリファレンス信号を受信する移動局であって:
前記基地局から受信した制御情報から、リファレンス信号系列の構成が示された情報を復号する制御情報復号部;及び
前記リファレンス信号系列の構成に基づいてチャネル推定を行う第1のチャネル推定部;
を有することを特徴の1つとする。
基地局がリファレンス信号を多重するリファレンス信号多重方法であって:
M種類のリファレンス信号が配置された第1のリファレンス信号系列を生成するステップ;
N種類(N>M)のリファレンス信号が配置された第2のリファレンス信号系列を生成するステップ;
第1の移動局と第2の移動局とに対してリソースブロックを割り当てるステップ;及び
前記第1のリファレンス信号系列を前記第1の移動局に割り当てるリソースブロックに多重し、前記第2のリファレンス信号系列を前記第2の移動局に割り当てるリソースブロックに多重するステップ;
を有することを特徴の1つとする。
1.1 無線リソースの準静的な分割
1.2 リファレンス信号のマッピング
1.3 基地局
1.4 移動局
1.5 動作例
2.第2実施例
2.1 無線リソースの動的な分割
2.2 リファレンス信号のマッピング
3.第3実施例
3.1 リファレンス信号のマッピング
3.2 基地局
3.3 移動局
3.4 動作例
4.第4実施例
本発明の実施例では、一例として基地局で4本より多い送信アンテナが用いられるときに、移動局でチャネル推定を可能とするリファレンス信号の構成について説明する。基地局で4本より多い送信アンテナが用いられる場合、基地局は、4種類のリファレンス信号系列を含むリソースブロックと、4種類より多いリファレンス信号系列を含むリソースブロックを使用する。本発明は、以下の実施例に限定されず、一般的に、基地局でM種類のリファレンス信号が配置されたリファレンス信号系列と、N種類(N>M)のリファレンス信号が配置されたリファレンス信号系列とを使用する場合に適用可能である。なお、リファレンス信号系列とは、リファレンス信号がリソースブロックの所定のシンボルに配置された系列のことを言う。
図2Aは、LTE-AdvancedシステムにLTE移動局とLTE-A移動局とが共存する場合における無線リソースの配置を示す図である。本発明の第1実施例では、LTEシステムの帯域は、LTE-A移動局が通信に使用する周波数帯域(リソースブロックA)と、LTE移動局が通信に使用する周波数帯域(リソースブロックB)とに周波数方向で分割される。この場合における「リソースブロック」は、例えば180kHzの帯域幅及び1msの期間を占める無線リソースのようなリソース割当単位ではなく、そのような割当単位のリソースが多数含まれているシステム帯域全体のリソースを指すことに留意を要する。LTE-A移動局は、リソースブロックAに含まれる1つ以上のリソースブロック(リソース割当単位)を用いて通信を行う。LTE移動局は、リソースブロックBに含まれる1つ以上のリソースブロック(リソース割当単位)を用いて通信を行う。このように周波数帯域を分割することにより、リソースブロックAでは、LTE-A移動局が通信するため、基地局は、LTE-A移動局に適した配置で、共通リファレンス信号をリソースブロック(リソース割当単位)に多重することが可能になる。また、リソースブロックBでは、LTE移動局が通信するため、基地局は、LTE移動局に適した配置で、共通リファレンス信号をリソースブロック(リソース割当単位)に多重することが可能になる。
図4は、本発明の第1実施例に係るリファレンス信号系列の具体的な配置例を示す。基地局は8つの送信アンテナを有するものとする。LTE-A移動局に割り当てられたリソースブロックには、LTE-A移動局に適合した8種類のリファレンス信号系列(P1~P8)が配置されている。一方、LTE移動局に割り当てられたリソースブロックには、4種類のリファレンス信号系列が配置されている。文脈から明らかなように、この場合における「リソースブロック」は、各移動局に対する無線リソースの割当単位に相当する。LTE-A移動局に適したリソースブロックと、LTE移動局に適したリソースブロックは、部分的に同じ構成を有する。図示の例では、第1OFDMシンボル及び第2OFDMシンボルの構成は、双方のリソースブロックで等しい。このようにリファレンス信号系列の配置構成を少なくとも一部で共通にすることで、LTE-AシステムでLTE移動局をサポートすることが可能になる。
図5を参照して、本発明の第1実施例に係る基地局10の構成について説明する。基地局10は、周波数帯域幅制御部101を有する。また、基地局10は、LTE-A移動局用のバッファ103aと、スケジューラ105aと、チャネル符号化部107aと、データ変調部109aと、プリコーディング乗算部111aと、サブキャリアマッピング部113aと、リファレンス信号系列生成部114aと、リファレンス信号多重部115aとを有し、LTE移動局用のバッファ103bと、スケジューラ105bと、チャネル符号化部107bと、データ変調部109bと、プリコーディング乗算部111bと、サブキャリアマッピング部113bと、リファレンス信号系列生成部114bと、リファレンス信号多重部115bとを有する。更に、基地局10は、アンテナ毎にIFFT(Inverse Fast Fourier Transform)部117と、CP(Cyclic Prefix)付与部119と、RF(Radio Frequency)送信回路121とを有する。
図6を参照して、本発明の第1実施例に係る移動局20の構成について説明する。移動局20は、LTE-A移動局のように、基地局のN本の送信アンテナ(例えば、8送信アンテナ)による下りリンク通信に適合したリファレンス信号を受信する移動局に相当する。移動局20は、デュプレクサ201と、RF受信回路203と、受信タイミング推定部205と、FFT部207と、報知情報復号部209と、チャネル推定部211と、データチャネル信号検出部213と、チャネル復号部215とを有する。移動局20は、2アンテナを有するものとして図示されているが、1本のアンテナを有してもよく、2本より多いアンテナを有してもよい。
図7を参照して、本発明の第1実施例に係るリファレンス信号多重方法及びチャネル推定方法について説明する。
図8Aは、LTE-AdvancedシステムにLTE移動局とLTE-A移動局とが共存する場合に、これらの移動局に動的にリソースブロックを割り当てるときのリファレンス信号の配置を示す図である。例えば、基地局のスケジューラは、各移動局から報告されたチャネル品質情報(CQI)に基づいて、LTE移動局及びLTE-A移動局に最適なリソースブロックを割り当てる。従って、LTE-A移動局に割り当てられるリソースブロックAとLTE移動局に割り当てられるリソースブロックBとがサブフレーム毎に変化する。
図9は、本発明の第2実施例に係るリファレンス信号系列の具体的な配置例を示す。基地局は8つの送信アンテナを有するものとする。図9に示されるリファレンス信号系列の配置自体は、図4のものと同じであるが、異なっていてもよい。LTE-A移動局に割り当てられたリソースブロックには、LTE-A移動局に適合した8種類のリファレンス信号が配置されている。一方、LTE移動局に割り当てられたリソースブロックには、様に4種類のリファレンス信号が配置されている。LTE-A移動局に適したリソースブロックと、LTE移動局に適したリソースブロックは、部分的に同じ構成を有する。図示の例では、第1OFDMシンボル及び第2OFDMシンボルの構成は、双方のリソースブロックで等しい。このようにリファレンス信号系列の配置を少なくとも一部で共通にすることで、LTE-AシステムでLTE移動局をサポートすることが可能になる。
図10は、本発明の第3実施例に係るリファレンス信号系列の具体的な配置を示す。基地局は8つの送信アンテナを有するものとする。LTE-A移動局に割り当てられたリソースブロックには、LTE-A移動局に適した8種類の共通リファレンス信号が配置されている。一方、LTE移動局に割り当てられたリソースブロックには、4種類のリファレンス信号が配置されている。LTE-A移動局に適したリソースブロックと、LTE移動局に適したリソースブロックは、部分的に同じ構成を有する。図示の例では、第1OFDMシンボル、第2OFDMシンボル及び第5OFDMシンボルの構成は、双方のリソースブロックで等しい。このようにリファレンス信号系列の配置を少なくとも一部で共通にすることで、LTE-AシステムでLTE移動局をサポートすることが可能になる。
図11を参照して、基地局30の構成について説明する。この基地局は、第2実施例にも第3実施例にも使用可能である。基地局30は、スケジューラ305と、サブキャリアマッピング部313とを有する。また、基地局30は、LTE-A移動局用のバッファ303aと、チャネル符号化部307aと、データ変調部309aと、プリコーディング乗算部311aと、リファレンス信号系列生成部314aと、リファレンス信号多重部315aとを有し、LTE移動局用のバッファ303bと、チャネル符号化部307bと、データ変調部309bと、プリコーディング乗算部311bと、リファレンス信号系列生成部314bと、リファレンス信号多重部315bとを有する。更に、基地局30は、アンテナ毎にIFFT部317と、CP付与部319と、RF送信回路321とを有する。
図12を参照して、移動局40の構成について説明する。この移動局は、第2実施例にも第3実施例にも使用可能である。移動局40は、LTE-A移動局のように、基地局のN本の送信アンテナ(例えば、8送信アンテナ)による下りリンク通信に適合したリファレンス信号を受信する移動局に相当する。移動局40は、デュプレクサ401と、RF受信回路403と、受信タイミング推定部405と、FFT部407と、共通リファレンス信号によるチャネル推定部408と、L1/L2制御情報復号部409と、チャネル推定部411と、データチャネル信号検出部413と、チャネル復号部415とを有する。移動局40は、2アンテナを有するものとして図示されているが、1本のアンテナを有してもよく、2本より多いアンテナを有してもよい。
図13を参照して、本発明の第2及び第3実施例に係るリファレンス信号多重方法及びチャネル推定方法について説明する。
リファレンス信号を送信する基地局であって:
M種類のリファレンス信号が配置された第1のリファレンス信号系列を生成する第1のリファレンス信号系列生成部;
N種類(N>M)のリファレンス信号が配置された第2のリファレンス信号系列を生成する第2のリファレンス信号系列生成部;
第1の移動局と第2の移動局とに対してリソースブロックを割り当てるスケジューラ;
前記第1のリファレンス信号系列を前記第1の移動局に割り当てるリソースブロックに多重し、前記第2のリファレンス信号系列を前記第2の移動局に割り当てるリソースブロックに多重する信号多重部;及び
前記第1及び第2のリファレンス信号系列を送信する送信部;
を有する基地局。
前記第1のリファレンス信号系列生成部は、M種類のリファレンス信号のそれぞれのシンボル数が所定の関係となるように第1のリファレンス信号系列を生成し、
前記第2のリファレンス信号系列生成部は、N種類のリファレンス信号のそれぞれのシンボル数が所定の関係となるように第2のリファレンス信号系列を生成する、第1項に記載の基地局。
前記第2のリファレンス信号系列生成部は、前記第1のリファレンス信号系列の構成と少なくとも一部で共通するように第2のリファレンス信号系列を構成する、第1項に記載の基地局。
前記スケジューラは、前記第1の移動局に割り当てるべきリソースブロックと、前記第2の移動局に割り当てるべきリソースブロックとを、準静的に周波数方向又は時間方向で分割する、第1項に記載の基地局。
前記第1及び第2の移動局に割り当てるべきリソースブロックに関する情報を、セル内に存在する移動局に共通制御情報として送信する制御情報送信部;
を更に有する、第4項に記載の基地局。
前記第2のリファレンス信号系列の構成が示された情報を、前記第2の移動局に対してサブフレーム単位で割り当てたリソースブロックのL1/L2制御情報として生成するL1/L2制御情報生成部;及び
前記L1/L2制御情報を送信するL1/L2制御情報送信部;
を更に有する、第1項に記載の基地局。
基地局からリファレンス信号を受信する移動局であって:
前記基地局から受信した制御情報から、リファレンス信号系列の構成が示された情報を復号する制御情報復号部;及び
前記リファレンス信号系列の構成に基づいてチャネル推定を行う第1のチャネル推定部;
を有する移動局。
M種類のリファレンス信号が配置された第1のリファレンス信号系列と、N種類(N>M)のリファレンス信号が配置された第2のリファレンス信号系列との共通部分でチャネル推定を行う第2のチャネル推定部;
を更に有し、
前記制御情報復号部は、前記第2のチャネル推定部でのチャネル推定結果に基づいてL1/L2制御情報を復号し、該L1/L2制御情報からリファレンス信号系列の構成が示された情報を復号する、第7項に記載の移動局。
基地局がリファレンス信号を多重するリファレンス信号多重方法であって:
M種類のリファレンス信号が配置された第1のリファレンス信号系列を生成するステップ;
N種類(N>M)のリファレンス信号が配置された第2のリファレンス信号系列を生成するステップ;
第1の移動局と第2の移動局とに対してリソースブロックを割り当てるステップ;及び
前記第1のリファレンス信号系列を前記第1の移動局に割り当てるリソースブロックに多重し、前記第2のリファレンス信号系列を前記第2の移動局に割り当てるリソースブロックに多重するステップ;
を有するリファレンス信号多重方法。
101 周波数帯域幅制御部
103a、103b バッファ
105a、105b スケジューラ
107a、107b チャネル符号化部
109a、109b データ変調部
111a、111b プリコーディング乗算部
113a、113b サブキャリアマッピング部
114a、114b リファレンス信号系列生成部
115a、115b リファレンス信号多重部
117 IFFT部
119 CP付与部
121 RF送信回路
20 移動局
201 デュプレクサ
203 RF受信回路
205 受信タイミング推定部
207 FFT部
209 報知情報復号部
211 チャネル推定部
213 データチャネル信号検出部
215 チャネル復号部
30 基地局
303a、303b バッファ
305 スケジューラ
307a、307b チャネル符号化部
309a、309b データ変調部
311a、311b プリコーディング乗算部
313 サブキャリアマッピング部
314a、314b リファレンス信号系列生成部
315a、315b リファレンス信号多重部
317 IFFT部
319 CP付与部
321 RF送信回路
40 移動局
401 デュプレクサ
403 RF受信回路
405 受信タイミング推定部
407 FFT部
408 共通リファレンス信号によるチャネル推定部
409 L1/L2制御情報復号部
411 チャネル推定部
413 データチャネル信号検出部
415 チャネル復号部
Claims (13)
- 第1のシステム帯域で第1のユーザ装置と通信し、第2のシステム帯域で第2のユーザ装置と通信する基地局であって、
M種類のリファレンス信号系列を生成する第1のリファレンス信号系列生成部と、
N種類(N>M)のリファレンス信号系列を生成する第2のリファレンス信号系列生成部と、
前記第1のユーザ装置及び前記第2のユーザ装置に対してリソースブロックを割り当てるスケジューリング部と、
前記第1のユーザ装置のリソースブロックに前記M種類のリファレンス信号系列を多重し、前記第2のユーザ装置のリソースブロックに前記N種類のリファレンス信号系列を多重する信号多重部と、
前記第M種類及びN種類のリファレンス信号系列を含む信号を送信する送信部と、
を有する基地局。 - 前記第1のリファレンス信号系列生成部は、M種類のリファレンス信号系列それぞれのシンボル数同士が所定の関係となるように第1のリファレンス信号系列を生成し、
前記第2のリファレンス信号系列生成部は、N種類のリファレンス信号系列それぞれのシンボル数同士が所定の関係となるように第2のリファレンス信号系列を生成する請求項1に記載の基地局。 - 前記第2のリファレンス信号系列生成部は、前記M種類のリファレンス信号系列の構成と少なくとも一部で共通するように前記N種類のリファレンス信号系列を構成する請求項1に記載の基地局。
- 前記第1のユーザ装置に割当可能な無線リソースと、前記第2のユーザ装置専用の無線リソースとが、周波数及び/又は時間軸上で分割されている請求項1に記載の基地局。
- 前記第1のユーザ装置に割当可能な無線リソースと、前記第2のユーザ装置専用の無線リソースとの境界が、周波数軸上で複数個存在する請求項4に記載の基地局。
- 前記第1のユーザ装置に割当可能な無線リソースと、前記第2のユーザ装置専用の無線リソースとの境界が、時間軸上で複数個存在する請求項4に記載の基地局。
- 前記第1のユーザ装置に割当可能な無線リソースと、前記第2のユーザ装置専用の無線リソースとの境界が、周波数軸上でも時間軸上でも複数個存在する請求項4に記載の基地局。
- 前記第1のユーザ装置に割当可能な無線リソースは、前記第2のユーザ装置にも割当可能な共有無線リソースであり、
前記第2のユーザ装置に前記共有無線リソースが割り当てられたことを示す低レイヤ制御信号が、前記第2のユーザ装置に送信され、
前記N種類のリファレンス信号系列は、前記低レイヤ制御信号が示す方法で、前記共有無線リソース内のリソースブロックにマッピングされている請求項1記載の基地局。 - 当該基地局は、セル内のユーザ装置に送信される共通制御情報を生成する制御情報送信部を更に有し、
前記共通制御情報は、前記第1のユーザ装置に割当可能な無線リソースと、前記第2のユーザ装置専用の無線リソースとの分割方法を示す請求項4に記載の基地局。 - 当該基地局は、前記第2のユーザ装置にサブフレーム単位で割り当てられたリソースブロックを示す低レイヤ制御信号を生成する低レイヤ制御信号生成部を更に有し、
前記N種類のリファレンス信号系列は、前記低レイヤ制御信号が示す方法で前記リソースブロックにマッピングされている請求項1に記載の基地局。 - 基地局からリファレンス信号を受信するユーザ装置であって、
前記基地局から受信した制御情報から、リファレンス信号系列の構成が示された情報を復号する制御情報復号部と、
前記リファレンス信号系列の構成に基づいてリファレンス信号系列を受信信号から抽出し、抽出したリファレンス信号系列に基づいてチャネル推定を行う第1のチャネル推定部と、
を有するユーザ装置。 - M種類のリファレンス信号系列が配置されたリソースブロックに含まれる第1のリファレンス信号系列と、N種類(N>M)のリファレンス信号系列が配置されたリソースブロックに含まれる第2のリファレンス信号系列との双方を用いてチャネル推定を行う第2のチャネル推定部を、当該ユーザ装置は更に有し、
前記制御情報復号部は、前記第2のチャネル推定部でのチャネル推定結果に基づいて低レイヤ制御情報を復号し、該低レイヤ制御情報からリファレンス信号系列の構成が示された情報を復号する請求項7に記載のユーザ装置。 - 第1のシステム帯域で第1のユーザ装置と通信し、第2のシステム帯域で第2のユーザ装置と通信する基地局で使用される方法であって、
M種類のリファレンス信号系列及びN種類(N>M)のリファレンス信号系列を生成するステップと、
第1のユーザ装置及び第2のユーザ装置に割り当てるリソースブロックを決定するスケジューリングステップと、
前記第1のユーザ装置のリソースブロックに前記M種類のリファレンス信号系列を多重し、前記第2のユーザ装置のリソースブロックに前記N種類のリファレンス信号系列を多重するステップと、
前記第M種類及びN種類のリファレンス信号系列を含む信号を送信するステップと、
を有する方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980126695.5A CN102090006B (zh) | 2008-05-13 | 2009-05-12 | 基站、用户装置和方法 |
US12/991,448 US8654747B2 (en) | 2008-05-13 | 2009-05-12 | Base station, user equipment terminal and method |
JP2010511985A JP5213955B2 (ja) | 2008-05-13 | 2009-05-12 | 基地局、ユーザ装置及び方法 |
EP09746589.2A EP2288064A4 (en) | 2008-05-13 | 2009-05-12 | Base station, user device, and method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-126428 | 2008-05-13 | ||
JP2008126428 | 2008-05-13 | ||
JP2008-241677 | 2008-09-19 | ||
JP2008241677 | 2008-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009139383A1 true WO2009139383A1 (ja) | 2009-11-19 |
Family
ID=41318750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/058837 WO2009139383A1 (ja) | 2008-05-13 | 2009-05-12 | 基地局、ユーザ装置及び方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8654747B2 (ja) |
EP (1) | EP2288064A4 (ja) |
JP (1) | JP5213955B2 (ja) |
KR (1) | KR20110013433A (ja) |
CN (1) | CN102090006B (ja) |
WO (1) | WO2009139383A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010106725A1 (ja) * | 2009-03-16 | 2010-09-23 | パナソニック株式会社 | 無線受信装置及び無線送信装置、並びに無線通信方法 |
WO2010106729A1 (ja) * | 2009-03-16 | 2010-09-23 | パナソニック株式会社 | 無線受信装置及び無線送信装置、並びに無線通信方法 |
JP4684371B2 (ja) * | 2008-08-05 | 2011-05-18 | シャープ株式会社 | 無線通信システム、基地局装置、移動局装置、通信方法 |
JP2012521138A (ja) * | 2009-03-17 | 2012-09-10 | サムスン エレクトロニクス カンパニー リミテッド | マルチストリーム伝送におけるパイロット信号をマッピングする方法及びシステム |
JP2013513282A (ja) * | 2009-12-04 | 2013-04-18 | サムスン エレクトロニクス カンパニー リミテッド | 送信装置、端末、データ送信方法、データ受信方法、及びコンピュータで読み出し可能な記録媒体 |
JP2014053936A (ja) * | 2008-06-23 | 2014-03-20 | Panasonic Corp | 無線通信装置および無線通信方法 |
WO2014181441A1 (ja) * | 2013-05-09 | 2014-11-13 | 富士通株式会社 | 通信システム、基地局、移動局、及び受信品質測定方法 |
US12279236B2 (en) | 2009-03-16 | 2025-04-15 | Sun Patent Trust | Radio reception apparatus, radio transmission apparatus, and radio communication method |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110013433A (ko) * | 2008-05-13 | 2011-02-09 | 가부시키가이샤 엔티티 도코모 | 기지국, 유저장치 및 방법 |
KR101208549B1 (ko) | 2008-08-05 | 2012-12-05 | 엘지전자 주식회사 | 하향링크 mimo시스템에 있어서 기준 신호 송신 방법 |
KR101688243B1 (ko) * | 2009-01-29 | 2016-12-20 | 선 페이턴트 트러스트 | 무선 통신 장치, 무선 통신 방법 및 집적 회로 |
KR101530201B1 (ko) | 2009-03-03 | 2015-06-19 | 삼성전자주식회사 | 간섭 제어 방법 또는/및 전송 전력 제어 방법을 적용하여 신호를 전송하는 신호 전송 시스템 및 그 방법 |
SI2446685T1 (sl) | 2009-06-25 | 2019-03-29 | Koninklijke Philips N.V. | Postopek za komunikacijo v mobilnem omrežju |
US8385302B2 (en) * | 2009-11-20 | 2013-02-26 | Qualcomm Incorporated | Methods and apparatus for enabling distributed beacon transmissions |
CN103944846B (zh) * | 2013-01-17 | 2017-04-12 | 展讯通信(上海)有限公司 | 正交频分复用系统及其信道估计方法 |
EP2887760A1 (en) | 2013-12-23 | 2015-06-24 | Telefonica S.A. | A method and a system for performing virtualization of a radio access technology over Orthogonal Frequency-Division Multiple Access (OFDMA) wireless networks and computer program products thereof |
US9986482B2 (en) * | 2015-11-18 | 2018-05-29 | Verizon Patent And Licensing Inc. | Managing carrier restrictions in a wireless network |
US11632271B1 (en) | 2022-02-24 | 2023-04-18 | T-Mobile Usa, Inc. | Location-based channel estimation in wireless communication systems |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008126428A (ja) | 2006-11-16 | 2008-06-05 | Kasai Kogyo Co Ltd | 表皮の貼着方法並びに貼着装置 |
JP2008241677A (ja) | 2007-03-26 | 2008-10-09 | Sakura Seiki Kk | カバーフィルム貼着装置 |
WO2009025081A1 (ja) * | 2007-08-17 | 2009-02-26 | Panasonic Corporation | 無線通信装置および無線通信方法 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4765322B2 (ja) * | 2005-01-21 | 2011-09-07 | ソニー株式会社 | 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム |
KR101137345B1 (ko) * | 2005-07-03 | 2012-04-23 | 엘지전자 주식회사 | 이동 통신 시스템에서 분산된 파일럿 신호가 포함된 신호를송수신하는 방법 |
US7995664B2 (en) * | 2005-07-15 | 2011-08-09 | Lg Electronics Inc. | Method and apparatus for transmitting pilot symbols in wireless communication system |
KR101002160B1 (ko) * | 2006-04-12 | 2010-12-17 | 엘지전자 주식회사 | Mimo 시스템에서 기준신호 할당 방법 |
US8094638B2 (en) * | 2006-08-22 | 2012-01-10 | Texas Instruments Incorporated | Adaptive selection of transmission parameters for reference signals |
JP4940867B2 (ja) * | 2006-09-29 | 2012-05-30 | 日本電気株式会社 | 移動通信システムにおける制御信号およびリファレンス信号の多重方法、リソース割当方法および基地局 |
JP5159274B2 (ja) * | 2006-11-30 | 2013-03-06 | パナソニック株式会社 | 無線送信装置及び無線送信方法 |
KR101265632B1 (ko) * | 2006-12-12 | 2013-05-22 | 엘지전자 주식회사 | 참조 신호 전송, 참조 신호 전송 패턴 설정, 자원 블록설정 및 할당을 위한 방법 및 장치 |
JP4935993B2 (ja) * | 2007-02-05 | 2012-05-23 | 日本電気株式会社 | 無線通信システムにおけるリファレンス信号生成方法および装置 |
JP5026122B2 (ja) * | 2007-03-20 | 2012-09-12 | 株式会社エヌ・ティ・ティ・ドコモ | 移動通信システムにおける基地局装置及び方法 |
CN101682491A (zh) * | 2007-03-20 | 2010-03-24 | 株式会社Ntt都科摩 | 在移动通信系统中使用的基站装置、用户装置和方法 |
EP2141841B1 (en) * | 2007-04-26 | 2013-07-17 | Panasonic Corporation | Wireless communication terminal , base station and methods |
JP4755137B2 (ja) * | 2007-05-01 | 2011-08-24 | 株式会社エヌ・ティ・ティ・ドコモ | 基地局装置及び通信制御方法 |
JP5024533B2 (ja) * | 2007-06-19 | 2012-09-12 | 日本電気株式会社 | 移動通信システムにおけるリファレンス信号系列の割当方法および装置 |
JP5273393B2 (ja) * | 2007-08-10 | 2013-08-28 | 日本電気株式会社 | 通信システム、それに用いられる装置及びその方法、プログラム |
WO2009084222A1 (ja) * | 2007-12-27 | 2009-07-09 | Panasonic Corporation | 系列番号設定方法、無線通信端末装置および無線通信基地局装置 |
KR20110013433A (ko) * | 2008-05-13 | 2011-02-09 | 가부시키가이샤 엔티티 도코모 | 기지국, 유저장치 및 방법 |
KR101243508B1 (ko) * | 2008-11-14 | 2013-03-20 | 엘지전자 주식회사 | 무선 통신 시스템에서 신호 전송 방법 및 장치 |
-
2009
- 2009-05-12 KR KR1020107026772A patent/KR20110013433A/ko not_active Withdrawn
- 2009-05-12 EP EP09746589.2A patent/EP2288064A4/en not_active Withdrawn
- 2009-05-12 CN CN200980126695.5A patent/CN102090006B/zh not_active Expired - Fee Related
- 2009-05-12 JP JP2010511985A patent/JP5213955B2/ja not_active Expired - Fee Related
- 2009-05-12 WO PCT/JP2009/058837 patent/WO2009139383A1/ja active Application Filing
- 2009-05-12 US US12/991,448 patent/US8654747B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008126428A (ja) | 2006-11-16 | 2008-06-05 | Kasai Kogyo Co Ltd | 表皮の貼着方法並びに貼着装置 |
JP2008241677A (ja) | 2007-03-26 | 2008-10-09 | Sakura Seiki Kk | カバーフィルム貼着装置 |
WO2009025081A1 (ja) * | 2007-08-17 | 2009-02-26 | Panasonic Corporation | 無線通信装置および無線通信方法 |
Non-Patent Citations (12)
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015073291A (ja) * | 2008-06-23 | 2015-04-16 | パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America | 無線通信装置および無線通信方法 |
US10333657B2 (en) | 2008-06-23 | 2019-06-25 | Sun Patent Trust | Integrated circuit |
US10826656B2 (en) | 2008-06-23 | 2020-11-03 | Sun Patent Trust | Integrated circuit |
US9806857B2 (en) | 2008-06-23 | 2017-10-31 | Sun Patent Trust | Communication apparatus and communication method |
US11991006B2 (en) | 2008-06-23 | 2024-05-21 | Sun Patent Trust | Communication apparatus and communication method |
US11418295B2 (en) | 2008-06-23 | 2022-08-16 | Sun Patent Trust | Communication apparatus and communication method |
JP2014053936A (ja) * | 2008-06-23 | 2014-03-20 | Panasonic Corp | 無線通信装置および無線通信方法 |
US11711174B2 (en) | 2008-06-23 | 2023-07-25 | Sun Patent Trust | Communication apparatus and communication method |
US9219532B2 (en) | 2008-06-23 | 2015-12-22 | Panasonic Intellectual Property Corporation Of America | Method of arranging reference signals and wireless communication base station apparatus |
US9020516B2 (en) | 2008-08-05 | 2015-04-28 | Huawei Technologies Co., Ltd. | Wireless communication system, base station device, mobile station device, and communication method |
JP4684371B2 (ja) * | 2008-08-05 | 2011-05-18 | シャープ株式会社 | 無線通信システム、基地局装置、移動局装置、通信方法 |
US10912079B2 (en) | 2009-03-16 | 2021-02-02 | Sun Patent Trust | Radio reception apparatus, radio transmission apparatus, and radio communication method |
US8937875B2 (en) | 2009-03-16 | 2015-01-20 | Panasonic Intellectual Property Corporation Of America | Radio reception apparatus, radio transmission apparatus, and radio communication method |
US9265042B2 (en) | 2009-03-16 | 2016-02-16 | Panasonic Intellectual Property Corporation Of America | Radio reception apparatus, radio transmission apparatus, and radio communication method |
US9491742B2 (en) | 2009-03-16 | 2016-11-08 | Sun Patent Trust | Radio reception apparatus, radio transmission apparatus, and radio communication method |
US8442569B2 (en) | 2009-03-16 | 2013-05-14 | Panasonic Corporation | Radio reception apparatus, radio transmission apparatus, and radio communication method |
US10299264B2 (en) | 2009-03-16 | 2019-05-21 | Sun Patent Trust | Radio reception apparatus, radio transmission apparatus, and radio communication method |
US12279236B2 (en) | 2009-03-16 | 2025-04-15 | Sun Patent Trust | Radio reception apparatus, radio transmission apparatus, and radio communication method |
US9049064B2 (en) | 2009-03-16 | 2015-06-02 | Panasonic Intellectual Property Corporation Of America | Radio reception apparatus, radio transmission apparatus, and radio communication method |
US9867181B2 (en) | 2009-03-16 | 2018-01-09 | Sun Patent Trust | Radio reception apparatus, radio transmission apparatus, and radio communication method |
WO2010106729A1 (ja) * | 2009-03-16 | 2010-09-23 | パナソニック株式会社 | 無線受信装置及び無線送信装置、並びに無線通信方法 |
WO2010106725A1 (ja) * | 2009-03-16 | 2010-09-23 | パナソニック株式会社 | 無線受信装置及び無線送信装置、並びに無線通信方法 |
US10129869B2 (en) | 2009-03-16 | 2018-11-13 | Sun Patent Trust | Radio reception apparatus, radio transmission apparatus, and radio communication method |
US9929838B2 (en) | 2009-03-17 | 2018-03-27 | Samsung Electronics Co., Ltd. | Method and system for mapping pilot signals in multi-stream transmissions |
US9871632B2 (en) | 2009-03-17 | 2018-01-16 | Samsung Electronics Co., Ltd. | Method and system for mapping pilot signals in multi-stream transmissions |
US9647810B2 (en) | 2009-03-17 | 2017-05-09 | Samsung Electronics Co., Ltd. | Method and system for mapping pilot signals in multi-stream transmissions |
JP2012521138A (ja) * | 2009-03-17 | 2012-09-10 | サムスン エレクトロニクス カンパニー リミテッド | マルチストリーム伝送におけるパイロット信号をマッピングする方法及びシステム |
JP2013513282A (ja) * | 2009-12-04 | 2013-04-18 | サムスン エレクトロニクス カンパニー リミテッド | 送信装置、端末、データ送信方法、データ受信方法、及びコンピュータで読み出し可能な記録媒体 |
US9853705B2 (en) | 2013-05-09 | 2017-12-26 | Fujitsu Limited | Communication system, base station, mobile station, and reception quality determination method |
JPWO2014181441A1 (ja) * | 2013-05-09 | 2017-02-23 | 富士通株式会社 | 通信システム、基地局、移動局、及び受信品質測定方法 |
WO2014181441A1 (ja) * | 2013-05-09 | 2014-11-13 | 富士通株式会社 | 通信システム、基地局、移動局、及び受信品質測定方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2288064A4 (en) | 2017-01-25 |
CN102090006A (zh) | 2011-06-08 |
US8654747B2 (en) | 2014-02-18 |
KR20110013433A (ko) | 2011-02-09 |
JP5213955B2 (ja) | 2013-06-19 |
US20110085536A1 (en) | 2011-04-14 |
JPWO2009139383A1 (ja) | 2011-09-22 |
EP2288064A1 (en) | 2011-02-23 |
CN102090006B (zh) | 2014-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5213955B2 (ja) | 基地局、ユーザ装置及び方法 | |
JP5990632B2 (ja) | 直交周波数分割多重方式を使用する移動通信システムにおける制御チャネルのリソース割り当て方法及び装置 | |
JP4800418B2 (ja) | 移動通信システム、基地局装置及び方法 | |
JP5952463B2 (ja) | リレーのためのバックホールサブフレームの制御チャネルリソース割当方法及び装置 | |
US10313078B2 (en) | Flexible transmission of messages in a wireless communication system with multiple transmit antennas | |
JP2015180066A (ja) | 送信方法および送信装置 | |
US9166666B2 (en) | Terminal station apparatus, base station apparatus, transmission method and control method | |
KR101388577B1 (ko) | 이동단말장치, 무선기지국장치 및 무선통신방법 | |
WO2013069663A1 (ja) | 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法 | |
KR20130050111A (ko) | 다중 안테나를 위한 제어 채널 검색 방법 및 장치 | |
JP6800980B2 (ja) | エンド・ツー・エンド・レイテンシが縮小された無線通信システムにおけるデータ信号送信 | |
JP2018038045A (ja) | 通信装置、通信方法および集積回路 | |
JP5068691B2 (ja) | 基地局、移動局及び共通情報通信方法 | |
JP5289615B2 (ja) | 無線通信システムにおけるレーンジングチャネル送信方法及び装置 | |
JP2010200077A (ja) | 移動通信システム、基地局装置、移動局装置および移動通信方法 | |
JP5226099B2 (ja) | ユーザ装置、送信方法、通信システム | |
JP6880104B2 (ja) | 通信装置、通信方法および集積回路 | |
JP5260131B2 (ja) | 基地局、移動局及び共通情報通信方法 | |
JP5356541B2 (ja) | 無線通信システムにおけるアップリンク制御信号送信方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980126695.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09746589 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010511985 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009746589 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20107026772 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12991448 Country of ref document: US |