WO2009125573A1 - 送信装置および受信装置 - Google Patents
送信装置および受信装置 Download PDFInfo
- Publication number
- WO2009125573A1 WO2009125573A1 PCT/JP2009/001592 JP2009001592W WO2009125573A1 WO 2009125573 A1 WO2009125573 A1 WO 2009125573A1 JP 2009001592 W JP2009001592 W JP 2009001592W WO 2009125573 A1 WO2009125573 A1 WO 2009125573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- audio
- frequency division
- frequency
- clock
- division parameter
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/08—Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division
- H04N7/083—Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division with signal insertion during the vertical and the horizontal blanking interval, e.g. MAC data signals
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/085—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
- H03L7/093—Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/16—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
- H03L7/18—Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
- H04L7/0008—Synchronisation information channels, e.g. clock distribution lines
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2370/00—Aspects of data communication
- G09G2370/12—Use of DVI or HDMI protocol in interfaces along the display data pipeline
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/003—Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
- G09G5/006—Details of the interface to the display terminal
- G09G5/008—Clock recovery
Definitions
- the present disclosure generally relates to a transmission device and a reception device used for high-speed transmission of video data and audio data.
- a DVI (Digital Visual Interface) standard is known as an interface standard for high-speed transmission of digitized video data between a computer main body and a display.
- Japanese Patent Application Laid-Open No. 2004-228561 discloses a method of multiplexing audio data and transmitting video data in accordance with the DVI standard.
- FIG. 27 is a block diagram showing a configuration example of a conventional transmission / reception system.
- a transmission device 501 and a reception device 601 are connected to each other via a transmission line that conforms to the DVI standard.
- the transmission apparatus 501 multiplexes audio data with video data and transmits the multiplexed audio data to the reception apparatus 601.
- Examples of the transmission device 501 include a DVD player and a BD (Blu-ray Disc) recorder
- examples of the reception device 601 include a plasma television and a liquid crystal television.
- a frequency division parameter determination unit 53 is provided in the transmission device 501 to obtain frequency division parameters M and N for connecting the pixel clock and the audio clock, and the frequency division parameters M and N are replaced with the audio clock. And transmit.
- FIG. 28 is a diagram for explaining the relationship between the audio clock and pixel clock and the frequency division parameters M and N.
- the frequency f of the audio clock is often set to an integer multiple of the sampling frequency fs when digitizing the audio signal that was originally an analog signal.
- the division parameter N is a parameter for dividing the audio clock
- the division parameter M is a parameter for dividing the pixel clock. The following relationship exists among the frequency f of the audio clock, the frequency pclk of the pixel clock, and the frequency division parameters M and N.
- N a predetermined value
- M the result of counting the N frequency division of the audio clock with the pixel clock.
- N 6144 is set
- FIG. 29 shows a configuration example of the conventional frequency division parameter determination unit 53.
- the frequency division parameters M and N obtained by the frequency division parameter determination unit 53 in this way are packetized by the video / audio / packet multiplexing unit 51 and multiplexed during the blanking period of the video data.
- the video / audio / packet multiplexing unit 51 packetizes the audio data in the same manner, and multiplexes it during the blanking period of the video data.
- the audio data is temporarily stored in the transmission data storage unit 52 and output in synchronization with the blanking period of the video data.
- An SRAM is usually used for the transmission data storage unit 52.
- the video / audio / packet multiplexed data and the pixel clock output from the transmission device 501 are transmitted via the transmission path and received by the reception device 601.
- the video / audio / packet separating unit 61 separates and outputs the video data and the pixel clock.
- the video data is synchronized with the pixel clock, and is generally displayed on a plasma panel or a liquid crystal panel after image processing for improving image quality is performed later.
- the video / audio / packet separating unit 61 separates and outputs the frequency division parameters M and N.
- the audio clock reproduction unit 63 reproduces the audio clock using the divided frequency division parameters M and N and the pixel clock.
- FIG. 30 shows a configuration example of a conventional audio clock reproduction unit 63.
- the audio clock reproduction unit 63 includes a PLL (Phase Locked Loop) including a phase comparator 631, an LPF (Low Pass Filter) 632, a VCO (Voltage Controlled Oscillator) 633, and an N frequency divider 634. ing.
- PLL Phase Locked Loop
- LPF Low Pass Filter
- VCO Voltage Controlled Oscillator
- the oscillation frequency fr of the VCO 633 is equal to that of the PLL.
- fpr corresponds to the phase comparison frequency of the PLL. Since this relationship is the same as the relationship between the frequency dividing parameters M and N on the transmission apparatus 501 side, the pixel clock, and the audio clock, the oscillation frequency fr of the VCO 633 is equal to the frequency f of the audio clock on the transmission side. That is, the audio clock is reproduced on the receiving side.
- the audio data separated and output from the video / audio / packet separation unit 61 is temporarily stored in the reception data storage unit 62 and output in synchronization with the audio clock reproduced by the audio clock reproduction unit 63. That is, audio data synchronized with the audio clock is output from the receiving device 601. If this is converted into an analog signal using the DA converter 31, for example, it can be audible.
- HDMI High-Definition Multimedia Interface
- DVI Digital Video Interface
- audio data can be multiplexed with video data and transmitted.
- advances in AV equipment in recent years have progressed rapidly, and a technology for realizing further improvement in sound quality is always needed and desired.
- the audio clock can be satisfactorily reproduced on the reception device side.
- the pixel clock and the audio clock are not synchronized on the transmitting device side, the audio clock cannot be reproduced properly on the receiving device side, and jitter is superimposed on the reproduced audio clock. There was a problem that it was possible. With respect to this point, the results of studies by the inventors will be described.
- the value is not necessarily a constant value.
- f / N 1 kHz
- the result of counting the N frequency division of the audio clock with the pixel clock does not become the constant value M, but varies as M1, M2, M3,.
- the reproduced audio clock has a smooth step response due to the effect of the LPF, the frequency eventually fluctuates, for example, f1, f2, f3,.
- Such a change in the frequency of the audio clock causes a deterioration in the sound quality of the analog audio signal. That is, when the audio data is converted into an analog audio signal by the DA converter 31, if the frequency of the audio clock fluctuates as f1, f2, f3,..., Distortion occurs in the analog audio signal due to this fluctuation.
- the frequency of this distortion is about f / N, for example, about 1 kHz in the case of HDMI. That is, a distortion of about 1 kHz is superimposed on the analog audio signal, which causes deterioration in sound quality and sounds as noise.
- An object of the present disclosure is to suppress deterioration in sound quality of an audio signal and enable transmission of high-quality audio data in a transmission device and a reception device in a digital interface for video / audio transmission.
- a transmission device in a digital interface for video / audio transmission outputs a frequency division parameter for associating a pixel clock for video data and an audio clock for audio data, and a frequency division parameter control unit Video / audio / packet multiplexing for generating transmission data by packetizing the audio data to be transmitted and the frequency division parameter output from the frequency division parameter control unit and superimposing them on the blanking period of the video data to be transmitted
- two integer values Pt and Qt that are out of a predetermined band including at least 300 Hz to 3 kHz as the band of the audio data are output as the frequency division parameter. It is.
- the frequency of distortion generated in the audio signal due to the frequency variation of the audio clock reproduced on the receiving device side as a frequency division parameter for associating the pixel clock with the audio clock from the transmission device is Values that deviate from the audio data band can be transmitted.
- a frequency division parameter determining unit that determines two integer values Mt and Nt satisfying the relationship, and a frequency division parameter averaging unit that averages one or both of Mt and Nt and outputs the averaged frequency division parameter
- a video / audio / packet multiplexing unit that generates transmission data by packetizing the audio data to be transmitted and the averaged frequency division parameter, and superimposing them on a blanking period of the video data to be transmitted.
- the transmission data and the pixel clock are transmitted.
- the averaged frequency is transmitted from the transmission device as the frequency division parameter for associating the pixel clock and the audio clock.
- the transmitting apparatus further includes an audio clock regeneration unit that generates a new audio clock based on the averaged frequency division parameter and the pixel clock, and is synchronized with the new audio clock.
- the voice data that has been used may be used as the voice data to be transmitted.
- the speed is the same between the voice data generation on the transmission device side and the voice data reproduction on the reception device side, and the deterioration of the voice quality can be prevented.
- a receiving device in a digital interface for video / audio transmission includes: video data; audio data; a pixel clock for the video data; and audio for the audio data.
- the audio clock reproducing unit includes: an audio clock reproducing unit that reproduces an audio clock by operating the PLL so as to satisfy the relationship; and a band determining unit that discriminates the band of the fpr in the audio clock reproducing unit. Is configured to switch the loop characteristics of the PLL according to the discrimination result of the band discrimination unit.
- the loop characteristic of the PLL in the audio clock reproduction unit is appropriately switched according to the band of fpr, so the time until the PLL outputs the target audio clock, that is, the lock time is minimized. There is no occurrence of sound interruption.
- a receiving device in a digital interface for video / audio transmission includes: video data; audio data; a pixel clock for the video data; and audio for the audio data.
- An audio clock reproducing unit that reproduces an audio clock the audio clock reproducing unit being capable of dealing with at least two types of frequency division parameters, and depending on the type of frequency division parameter, the loop characteristics of the PLL Are configured to switch between.
- the loop characteristics of the PLL in the audio clock reproduction unit are appropriately switched according to the type of the frequency division parameter, so that no sound is generated due to the mismatch between the frequency division parameter and the PLL characteristic. Problems such as deterioration of sound quality can be prevented.
- a receiving device in a digital interface for transmitting video / audio data is configured to receive video data, audio data, a pixel clock for the video data, and the audio data from the received data.
- the frequency of the distortion generated in the audio signal due to the frequency variation of the reproduced audio clock is the band of the audio data. Values that deviate from can be regenerated. Thereby, even if distortion occurs in the audio signal due to the frequency fluctuation of the reproduced audio clock on the receiving device side, it cannot be heard as noise, so that deterioration of sound quality can be suppressed.
- a receiving device in a digital interface for video / audio transmission includes: video data; audio data; a pixel clock for the video data; and audio for the audio data.
- a video / audio / packet separating unit that separates a frequency division parameter for associating with a clock, a frequency division parameter averaging unit that averages the frequency division parameter and outputs the averaged frequency division parameter, and a PLL (Phase Locked Loop), and includes an audio clock reproduction unit that reproduces an audio clock by the operation of the PLL from the received pixel clock and the averaged frequency division parameter.
- PLL Phase Locked Loop
- the frequency division parameter for associating the pixel clock and the audio clock is averaged and used in the receiving apparatus. Therefore, since the distortion of the audio signal due to the frequency fluctuation of the reproduced audio clock is suppressed on the receiving device side, it is possible to suppress the deterioration of the sound quality.
- the present disclosure since the deterioration of the sound quality of the sound signal reproduced on the receiving device side is suppressed, it is possible to transmit sound data with high sound quality.
- FIG. 1 is an exemplary block diagram illustrating a configuration example of a transmission device according to the first embodiment of the present disclosure.
- FIG. 2 is an exemplary block diagram illustrating a configuration example of the receiving device according to the first embodiment.
- FIG. 3 is an exemplary diagram illustrating an internal configuration example of the audio clock reproducing unit in the configuration of FIG.
- FIG. 4 is an exemplary block diagram illustrating a configuration example of the transmission / reception system according to the first embodiment.
- FIG. 5 is an exemplary block diagram illustrating a configuration example of a transmission device according to the second embodiment of the present disclosure.
- FIG. 6 is an exemplary diagram illustrating an internal configuration example of the frequency division parameter control unit in the configuration of FIG. 5.
- FIG. 5 is an exemplary block diagram illustrating a configuration example of a transmission device according to the first embodiment of the present disclosure.
- FIG. 7 is an exemplary block diagram illustrating a configuration example of a receiving device according to the second embodiment.
- FIG. 8 is an exemplary block diagram illustrating an internal configuration example of the audio clock reproduction unit in the configuration of FIG.
- FIG. 9 is an exemplary block diagram illustrating a configuration example of a transmission / reception system according to the second embodiment.
- FIG. 10 is an exemplary block diagram illustrating a configuration example of a receiving device according to the third embodiment of the present disclosure.
- FIG. 11 is an exemplary diagram illustrating an internal configuration example of the frequency division parameter regeneration unit in the configuration of FIG. 10.
- FIG. 12 is an exemplary diagram conceptually showing the frequency division parameter regeneration.
- FIG. 13 is an exemplary diagram conceptually illustrating the frequency division parameter regeneration.
- FIG. 14 is an exemplary diagram illustrating an internal configuration example of the frequency division parameter regenerating unit in the configuration of FIG.
- FIG. 15 is an exemplary diagram conceptually showing the frequency division parameter regeneration.
- FIG. 16 is an exemplary diagram conceptually illustrating the frequency division parameter regeneration.
- FIG. 17 is an exemplary block diagram illustrating a configuration example of a transmission apparatus according to the third embodiment.
- FIG. 18 is an exemplary block diagram illustrating a configuration example of a transmission device according to the fourth embodiment of the present disclosure.
- FIG. 19 is an exemplary diagram illustrating an internal configuration example of the frequency division parameter averaging unit in the configuration of FIG.
- FIG. 20 is an exemplary diagram conceptually showing the effect of frequency division parameter averaging.
- FIG. 21 is an exemplary block diagram illustrating a configuration example of a modified example of the transmission apparatus according to the fourth embodiment of the present disclosure.
- FIG. 22 is an exemplary block diagram illustrating a configuration of a receiving device according to the fourth embodiment.
- FIG. 23 is an exemplary diagram showing an internal configuration example of the audio clock reproduction unit in the configuration of FIG.
- FIG. 24 is an exemplary diagram showing an internal configuration example of the audio clock reproduction unit in the configuration of FIG.
- FIG. 25 is an exemplary diagram showing an internal configuration example of the audio clock reproduction unit in the configuration of FIG.
- FIG. 26 is an exemplary diagram showing an example of an internal configuration of the ⁇ - ⁇ converter in the configuration of FIG.
- FIG. 27 is a block diagram illustrating a configuration example of a conventional transmission / reception system.
- FIG. 28 is a diagram illustrating a relationship between the audio clock and the pixel clock and the frequency division parameter.
- FIG. 29 is a configuration example of a conventional frequency division parameter determination unit.
- FIG. 30 is a configuration example of a conventional audio clock reproducing unit.
- FIG. 31 is an exemplary diagram conceptually showing the change of the audio clock frequency caused by the change of the frequency division parameter.
- the transmission device and the reception device shown in the present embodiment are connected to each other by a transmission line conforming to the HDMI standard that is upward compatible with the DVI standard.
- the scope of application of the present disclosure is not limited to HDMI as a digital interface for video / audio transmission, and can be applied to other digital interfaces.
- FIG. 1 is an exemplary block diagram illustrating a configuration example of a transmission device according to the first embodiment of the present disclosure.
- the transmission apparatus 101 in FIG. 1 includes a video / audio / packet multiplexing unit (multiplexing unit) 11, a transmission data storage unit 12, a frequency division parameter determination unit 13, and a transmission band determination unit 14.
- the frequency division parameter determination unit 13 determines frequency division parameters Pt and Qt for associating the pixel clock and the audio clock. Further, when the frequency division parameters Pt and Qt are determined, the band of the audio data determined by the transmission band determination unit 14 is used as a basis.
- the frequency division parameter determination unit 13 and the transmission band determination unit 14 constitute a frequency division parameter control unit 15 that outputs a frequency division parameter.
- the transmission data storage unit 12 is configured by, for example, an SRAM, temporarily stores audio data synchronized with the audio clock, and outputs the audio data in synchronization with the pixel clock.
- the video / audio / packet multiplexing unit 11 packetizes the audio data output from the transmission data storage unit 12 and multiplexes it during the blanking period of the video data. Further, the frequency division parameters Pt and Qt output from the frequency division parameter determination unit 13 are also packetized and multiplexed in the same manner during the blanking period of the video data.
- the obtained video / audio / packet multiplexed data is output from the transmission apparatus 101 together with the pixel clock as transmission data.
- the frequency of the audio clock is ft
- the frequency of the pixel clock is pclk.
- the frequency division parameters Pt and Qt are determined so that the frequency fpt becomes a frequency outside the audio data band determined by the transmission band determining unit 14 (that is, not within the frequency band).
- this band may be a human audible band (generally 20 Hz to 20 kHz) or a human voice band (generally 300 Hz to 4 kHz).
- a narrower range for example, 300 Hz to 1.5 kHz may be used.
- the frequency may be 300 Hz to 3 kHz. That is, it is preferable that a predetermined band including at least 300 Hz to 3 kHz considered to be easily felt by human beings is defined as a band of audio data. These values may be preset by the manufacturer.
- this band is set as a fluctuation value
- a user operating the transmission apparatus 101 may be settable. That is, since there are individual differences in the human audible band, the user may be able to set the band where the noise is felt to be the lowest while listening to the voice reproduced on the receiving device side.
- the transmission band determination unit 14 may scan the voice data to be transmitted in advance and determine the band of the voice data based on the maximum frequency and the minimum frequency included in the voice data.
- the transmission band discrimination unit 14 determines both or one of the maximum frequency and the minimum frequency as the band of the audio data in order to maximize the sound quality. This determination is not limited to this, for example, but may be performed once or a plurality of times for each independent audio data such as a song, a broadcast program, a media program, or the value determined at any point in time is used. You may make it do.
- frequency division parameters Pt and Qt are determined.
- fpt may be determined based on the sampling frequency fs of the audio data. For example, 1/2 of the sampling frequency fs, or more generally V times the U of the sampling frequency fs (U and V are integers) may be used as the value of fpt.
- the transmission apparatus 101 can be connected to a conventional reception apparatus.
- the transmission apparatus can transmit audio data with high sound quality.
- fpt fs / 2
- the same effect can be obtained by setting fpt to be out of the audio data band as described above.
- the fpt is an integral multiple of fs / 2
- unnecessary aliasing noise does not occur.
- 20 kHz which is the upper limit of the human audible band
- fpt is set to an integral multiple of fs / 2, such aliasing noise does not occur.
- FIG. 2 is an exemplary block diagram showing a configuration example of the receiving apparatus according to the present embodiment.
- a receiving apparatus 201 illustrated in FIG. 2 is configured to be compatible with both the transmitting apparatus 101 according to the present embodiment illustrated in FIG. 1 and a conventional transmitting apparatus.
- 2 includes a video / audio / packet separation unit (separation unit) 21, a reception data storage unit 22, an audio clock reproduction unit 23, and a band determination unit 24.
- the video / audio / packet separator 21 separates video data, audio data, and frequency division parameters Pr and Qr from the received video / audio / packet multiplexed data.
- the video data is synchronized with the pixel clock, and is generally displayed on a plasma panel or a liquid crystal panel after image processing for improving image quality is performed later.
- the audio clock reproduction unit 23 includes a PLL, and reproduces an audio clock from the pixel clock and the frequency division parameters Pr and Qr.
- the separated audio data is temporarily stored in the reception data storage unit 22 and output from the reception data storage unit 22 in synchronization with the audio clock reproduced by the audio clock reproduction unit 23. That is, audio data synchronized with the audio clock is output from the receiving device 201. For example, the output audio data is converted into an analog audio signal by the DA converter 31.
- FIG. 3 is an exemplary diagram illustrating an internal configuration example of the audio clock reproduction unit 23. 3 includes a frequency divider 231, a phase comparator 232, low pass filters (LPF 1 and LPF 2) 233 and 234, a VCO 236 (oscillation frequency fr), and a frequency divider 237. Yes.
- fpr corresponds to the phase comparison frequency of the PLL.
- this relationship is the same as the relationship between the frequency division parameters Pt and Qt, the pixel clock, and the audio clock in the transmission apparatus 101 in FIG. 1, and therefore the oscillation frequency fr of the VCO 236 is equal to the frequency ft of the audio clock on the transmission side. . That is, the audio clock is reproduced on the receiving side.
- the phase comparison frequency fpr has different values depending on the characteristics of the transmission device connected to the reception device 201. For example, when the transmission apparatus 101 of FIG. 1 is connected, the phase comparison frequency fpr is outside the band of the audio data determined by the transmission band determination unit 14 as with the above-described fpt. On the other hand, when a conventional transmitter is connected, the phase comparison frequency fpr is usually in the audio data band.
- the phase comparison frequency fpr varies depending on the characteristics of the transmission device connected to the reception device 201.
- the band discrimination unit 24 discriminates the expected band of the phase comparison frequency fpr, and the PLL loop characteristic in the audio clock reproduction unit 23 is switched according to the discrimination result. It is configured. Therefore, the audio clock reproduction unit 23 of FIG. 3 includes a changeover switch 235 for selecting the outputs of the low-pass filters 233 and 234.
- the changeover switch 235 selects the output of the narrow band low pass filter 233, while when the phase comparison frequency fpr is high, the changeover switch 235 selects the output of the wide band low pass filter 234. To do. Thereby, the loop characteristics of the PLL are optimized according to the expected phase comparison frequency fpr. Therefore, since the time (lock time) until the PLL outputs the target audio clock is minimized, the occurrence of sound interruption is eliminated.
- FIG. 3 a configuration in which switching is performed by providing two types of low-pass filters of narrow band and broadband is illustrated, but if a configuration in which switching is performed by providing three or more types of low-pass filters, various phase comparison frequencies fpr are provided. Can be optimized.
- the example of switching the characteristics of the low-pass filter has been shown as a method of switching the loop characteristics of the PLL. However, for example, the voltage / frequency characteristics of the VCO may be switched, or both may be combined. Good. In any case, the loop characteristics of the PLL may be optimized according to the determined phase comparison frequency fpr.
- the PLL may be configured with a digital circuit.
- the VCO is constituted by a counter, for example, and outputs a triangular wave or a sawtooth wave.
- the pixel clock pclk may be used as the operation clock of such a VCO.
- a stable clock is supplied from a crystal oscillator, it is possible to reproduce a stable audio clock independent of the jitter of the pixel clock pclk. The same applies to each receiving apparatus described later.
- the transmission device side adds information that can determine whether the phase comparison frequency fpr is high or low to the packet that transmits the frequency division parameters Pr and Qr, and the band determination unit 24 determines this information. It may be. Specifically, for example, if the frequency division parameter packet transmitted from the conventional transmission apparatus and the frequency division parameter packet transmitted from the transmission apparatus 101 in FIG. Good.
- FIG. 4 is an exemplary block diagram showing a configuration example of the transmission / reception system according to the present embodiment.
- the basic configurations of the transmitting apparatus 101A and the receiving apparatus 201A are substantially the same as those of the transmitting apparatus 101 in FIG. 1 and the receiving apparatus 201 in FIG. 2, respectively, and common components are denoted by the same reference numerals.
- the receiving device 201A includes a memory 25 that stores information on the receiving device
- the transmitting device 101A includes a control unit 16 that reads information on the memory 25, and is based on the read information on the receiving device 201A. The difference is that the frequency division parameter to be transmitted is set.
- the EDID (Enhanced Display Data Channel) is widely known as the memory 25 for storing information of the receiving device 201A.
- the EDID is composed of a rewritable memory such as an EEPROM, and stores version information, a format of video data and audio data that can be received by the receiving apparatus, and the like.
- the control unit 16 of the transmission apparatus 101A reads, for example, version information of EDID, and controls the frequency division parameter determination unit 13 to transmit a frequency division parameter that can be received by the reception apparatus 201A. By performing such control, the setting by the transmission band discriminating unit 14 which is necessary in the transmission apparatus 101 of FIG. 1 becomes unnecessary, and thus plug and play is possible.
- high-quality sound data can be transmitted by a digital interface and reproduced.
- FIG. 5 is an exemplary block diagram illustrating a configuration example of a transmission device according to the second embodiment of the present disclosure.
- the same components as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted here.
- 5 includes a video / audio / packet multiplexing unit 11, a transmission data storage unit 12, a frequency division parameter control unit 15A, and a setting unit 17.
- the frequency division parameter control unit 15A outputs at least two types of frequency division parameters for associating the pixel clock and the audio clock.
- the frequency division parameters M and N compatible with the conventional transmission apparatus are output as the frequency division parameter 1
- the frequency division parameters Pt and Qt compatible with the transmission apparatus according to the first embodiment are output as the frequency division parameters. 2 is output.
- the setting unit 17 is for setting the type of frequency division parameter output by the frequency division parameter control unit 15A.
- the user of the transmission apparatus 102 can operate using a menu screen or the like.
- the user outputs frequency division parameters M and N when the receiving side is a conventional receiving device, and outputs frequency division parameters Pt and Qt when the receiving side is the receiving device according to the first embodiment.
- Control the setting unit Or you may make it the setting part 17 perform a setting according to audio
- the type of frequency division parameter is switched depending on whether the audio data is a music source or a movie source.
- the video / audio / packet multiplexing unit 11 packetizes the frequency division parameter output from the frequency division parameter control unit 15A, and multiplexes and transmits the packet during the blanking period of the video data. At this time, each type of frequency division parameter may be transmitted as the same packet. For example, if the packet header is different between the frequency division parameter 1 and the frequency division parameter 2, processing on the reception side is simplified. .
- FIG. 6 is an exemplary diagram illustrating an internal configuration example of the frequency division parameter control unit 15A of FIG.
- the selector 151 selects either N or Qt as a frequency division parameter according to the setting of the setting unit 17.
- the frequency divider 152 divides the audio clock by N or Qt, and the counter 153 counts the period by the pixel clock.
- the count value of the counter 153 is output as the frequency division parameter M or Pt.
- pclk / M ft / N Is within the bandwidth of the voice data
- pclk / Pt f / Qt Is out of the band of voice data.
- the frequency division parameters M and N are transmitted to the conventional reception apparatus, while the first By transmitting the frequency division parameters Pt and Qt to the receiving apparatus according to the embodiment, it is possible to transmit audio data with higher sound quality than in the past. Further, since it is possible to avoid transmitting the frequency division parameters Pt and Qt to the conventional receiving apparatus, no sound is generated due to inconsistency between the frequency dividing parameter and the PLL of the receiving apparatus, or sound quality is deteriorated. There is no problem to do.
- one type of audio data can reduce the circuit scale of the transmission apparatus.
- FIG. 7 is an exemplary block diagram showing a configuration example of the receiving apparatus according to the present embodiment.
- the receiving apparatus 202 of FIG. 7 includes a video / audio / packet separating unit 21, a received data storage unit 22, and an audio clock reproducing unit 26.
- the audio clock reproduction unit 26 has a PLL, and reproduces the audio clock by the operation of the PLL from the received pixel clock and the frequency division parameter separated by the video / audio / packet separation unit 21.
- at least two types of frequency division parameters can be handled, and the PLL loop characteristics are switched according to the type of frequency division parameter.
- the video / audio / packet separating unit 21 distinguishes and outputs at least two types of frequency division parameters. For example, when the frequency division parameters M and N are included in the transmission data, these are output as the frequency division parameter 1, and when the frequency division parameters Pr and Qr are included in the transmission data, they are output as the frequency division parameter 2. Output as. For example, when the frequency division parameters M and N and the frequency division parameters Pr and Qr are transmitted in different packets, the type of the frequency division parameter is distinguished by the packet header. When transmitted in the same packet, for example, N and Qr are distinguished from each other and output.
- FIG. 8 is an exemplary block diagram showing an example of the internal configuration of the audio clock reproduction unit 26 of FIG.
- the phase comparator 263 and the VCO 266 are shared by two types of frequency division parameters.
- the selector 262 selects one of the outputs of the frequency dividers 261a and 261b
- the selector 265 selects one of the outputs of the low-pass filters 264a and 264b
- the selector 268 selects one of the outputs of the frequency dividers 267a and 267b. select.
- the setting unit 269 controls the selection operation of the selectors 262, 265, and 268 depending on whether the frequency division parameter separated by the video / audio / packet separation unit 21 is M, N, Pr, or Qr. That is, the setting unit 269 switches the PLL loop characteristics according to the type of the frequency division parameter.
- the receiving apparatus of the present embodiment for example, when the frequency division parameters M and N are received from the conventional transmitting apparatus, the sound reproduction with the conventional sound quality can be performed, and the transmission according to the present embodiment or the first embodiment is performed.
- the frequency division parameters Pr and Qr are received from the apparatus, it is possible to reproduce sound data with higher sound quality than in the past.
- the operation of the audio clock reproduction unit 26 is appropriately performed. Since switching is performed, no sound is generated due to inconsistency between the frequency division parameter and the PLL characteristic, or sound quality is not deteriorated.
- FIG. 9 is an exemplary block diagram showing a configuration example of the transmission / reception system according to the present embodiment.
- the basic configurations of the transmitting apparatus 102A and the receiving apparatus 202A are substantially the same as those of the transmitting apparatus 102 in FIG. 5 and the receiving apparatus 202 in FIG. 7, respectively, and common components are denoted by the same reference numerals.
- the receiving device 202A includes a memory 25 for storing information on the receiving device
- the transmitting device 102A includes a control unit 16 that reads information on the memory 25. Based on the read information on the receiving device 201A. The difference is that the frequency division parameter to be transmitted is set.
- EDID Enhanced Display Data Channel
- the control unit 16 of the transmission device 102A reads, for example, version information of the EDID, and controls the frequency division parameter control unit 15A to transmit a frequency division parameter that can be received by the reception device 202A.
- the setting by the setting unit 17 that is necessary in the transmission apparatus 102 in FIG. 5 becomes unnecessary, and thus plug and play is possible.
- high-quality sound data can be transmitted and reproduced by a digital interface.
- FIG. 10 is an exemplary block diagram illustrating a configuration example of a receiving device according to the third embodiment of the present disclosure. 10, the same components as those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and detailed description thereof is omitted here. 10 includes a video / audio / packet separation unit 21, a reception data storage unit 22, a frequency division parameter regeneration unit 28, and an audio clock reproduction unit 29.
- the receiving apparatus 203 receives the frequency division parameter transmitted from the conventional transmission apparatus, and performs frequency division such that the frequency division parameter is output from the transmission apparatus according to the first embodiment from the received frequency division parameter.
- this band when this band is a fixed value, it may be a human audible band (generally 20 Hz to 20 kHz) or a human voice band (generally 300 Hz to 4 kHz). Alternatively, a narrower range, for example, 300 Hz to 1.5 kHz may be used. Alternatively, for example, the frequency may be 300 Hz to 3 kHz. That is, it is preferable that a predetermined band including at least 300 Hz to 3 kHz considered to be easily felt by human beings is defined as a band of audio data. These values may be preset by the manufacturer.
- this band is set as a fluctuation value
- a user operating the receiving device 203 may be settable. That is, since there are individual differences in the human audible band, it may be possible to set the band where the user feels the lowest noise while listening to the reproduced voice.
- the frequency division parameter regenerating unit 28 may scan the received audio data in advance and determine the band of the audio data based on the maximum frequency and the minimum frequency included in the audio data.
- the frequency dividing parameters Pr and Qr are regenerated.
- fpr may be determined based on the sampling frequency fs of the audio data. For example, 1/2 of the sampling frequency fs or more generally V times the U of the sampling frequency fs (U and V are integers) may be used as the value of fpr.
- the receiving device 203 receives the frequency division parameters Mr and Nr transmitted from the conventional transmitting device.
- the pixel clock frequency is pclk
- ftr is usually in the audio data band.
- the frequency division parameter regenerating unit 28 regenerates new frequency division parameters Pr and Qr based on the received frequency division parameters Mr and Nr.
- fpr corresponds to the phase synchronization frequency of the PLL in the audio clock reproduction unit 29.
- FIG. 11 is an exemplary diagram showing an example of the internal configuration of the frequency division parameter regeneration unit 28 in this case.
- FIG. 12 is an exemplary diagram conceptually showing such frequency division parameter regeneration.
- the frequency division parameter regeneration unit 28 is configured to output an integer value as Pr, and configured to output so that the average value of the output becomes the value of Pr obtained by calculation. It is assumed that
- Pr becomes a value close to an integer (for example, 100.0625, 99.984375, etc.), and the fluctuation cycle is also close to the original Mr fluctuation cycle.
- Mr is a constant value
- the frequency division parameter regenerating unit 28 alternates the value of “ ⁇ 1” of the integer value. Shall be output.
- the frequency division parameter regeneration unit 28 alternately outputs “MA′ ⁇ 1” and “MA ′ + 1” as the value of Pr.
- the average output value of Pr becomes MA '
- Mr is updated to become MB
- the above processing is considered to superimpose a “noise sequence in which the average value becomes zero” represented by, for example, ⁇ 1, +1, ⁇ 1, +1,... ⁇ On the average output value of Pr. Can do.
- the amplitude of noise is not necessarily limited to “ ⁇ 1”, and may be any amplitude.
- FIG. 14 is an exemplary diagram showing an internal configuration of the frequency division parameter regeneration unit 28 in this case.
- the frequency division parameter regeneration unit 28 outputs the same value as Nr as Qr.
- the M reproducing unit 283 newly generates one Pr by using n Mrs that fluctuate at the frequency ftr.
- FIG. 15 is an exemplary diagram conceptually showing such frequency division parameter regeneration.
- the M regeneration unit 283 obtains one MA from n MA1 to MAn.
- the MA for example, an average value or median value of n MA1 to MAn is used.
- the M regeneration unit 283 obtains an MB from n MB1 to MBn and obtains an MC from n MC1 to MCn. That is, MA, MB, MC,... Are obtained as Pr.
- the output of Pr cannot be switched suddenly.
- the problem may be that it becomes abnormal (ie, the frequency of the audio clock suddenly changes to an unusual level, causing noise such as crackling, clapping, or popping sound).
- Nr and Mr have changed significantly, for example ⁇ 10, ⁇ 20, ⁇ 100 or ⁇ 200 (changes whose absolute value exceeds a predetermined threshold).
- the process in the M regeneration unit 283 is stopped and initialized once, and the Pr regeneration process is performed again from there.
- the control unit 285 outputs the original Mr as it is.
- FIG. 16 is an exemplary diagram showing such processing.
- the sampling frequency fs is switched from fs1 to fs2 when the value of Mr changes from MYn to MB1, and a large change occurs in the value of Mr.
- the regeneration process of Pr may be stopped immediately.
- it is not stopped immediately, and when MB2 is received, the value of Mr is actually large. Recognizing that there has been a change, the regeneration process of Pr is stopped. In this way, it is possible to reduce the probability that the regeneration process of Pr will be redone by recognizing that there is a large change in the value of Mr only when a greatly different value of Mr is detected twice (or more). .
- the frequency division parameter regeneration unit 28 is provided in the reception device 203, and the frequency division parameter is regenerated, thereby changing the frequency of fluctuation of the frequency division parameter (the PLL phase synchronization frequency in the audio clock reproduction unit) fpr.
- the frequency division parameter the PLL phase synchronization frequency in the audio clock reproduction unit
- the receiving apparatus may be configured so that both conversions are possible, and the user may be able to select one of them on a menu screen, for example, or may be automatically switched based on audio data. When switching automatically, for example, conversion may be switched between a music source and a movie source.
- a frequency division parameter regeneration unit 18 similar to the frequency division parameter regeneration unit 28 described above may be added to the transmission device 103.
- a transmission device similar to that of the first embodiment can be realized simply by adding the transmission parameter regeneration unit 18 based on the configuration of the conventional transmission device.
- FIG. 18 is an exemplary block diagram illustrating a configuration example of the transmission apparatus according to the present embodiment.
- the transmission device 104 includes a video / audio / packet multiplexing unit 11, a transmission data storage unit 12, a frequency division parameter determination unit 41, and a frequency division parameter averaging unit 42.
- the frequency division parameter determination unit 41 determines and outputs the frequency division parameters Mt and Nt, as in the conventional transmission apparatus.
- the frequency division parameter averaging unit 42 averages the frequency division parameters Mt and Nt output from the frequency division parameter determination unit 41, and outputs the averaged frequency division parameters M't and N't. One of the frequency division parameters Mt and Nt may be averaged.
- various periods can be considered for the period during which the frequency division parameter averaging unit 42 performs the averaging. For example, averaging is performed continuously while the frequency of the pixel clock and audio clock does not change, and when the frequency change of the pixel clock or audio clock is detected, the average value so far is discarded and the frequency after the frequency change is discarded. What is necessary is just to obtain
- averaging may be performed every predetermined period, for example, 0.2 seconds (5 Hz), 1 second (1 Hz), or several seconds.
- FIG. 19 is an exemplary diagram illustrating an internal configuration example of the frequency division parameter averaging unit 42.
- Nt is a constant value
- the resolution of the numerical expression is higher than the resolution of the numerical expression of the original integer values Mt and Nt.
- M′t is set to (m + 3) bit length with respect to Mt having an m bit length
- N′t is set to (n + 3) bit length with respect to Nt having an n bit length.
- the frequency division parameter storage unit 421 stores the latest eight frequency division parameters M [t0] to M [t0-7].
- an average value N ′ [t0] is obtained.
- the reception device side reproduces the audio clock based on the averaged frequency division parameter, so the audio clock on the transmission device side and the reception device side There is a difference in frequency between the reproduced audio clock. For this reason, in a very short time, there is a discrepancy in the speed between audio data transmission on the transmission device side and audio data reproduction on the reception device side. For this reason, overflow or underflow may occur in the audio data buffer memory of the receiving apparatus, and audio quality may be degraded, such as audio interruption or abnormal noise.
- an audio clock regenerator 46 that generates a new audio clock based on the averaged frequency division parameter and the pixel clock.
- the transmission data storage unit 12 stores audio data synchronized with the new audio clock generated by the audio clock regeneration unit 46 as audio data to be transmitted.
- the audio data generation on the transmission device side and the audio data reproduction on the reception device side are the same in speed, so that it is possible to prevent deterioration in audio quality.
- the audio data synchronized with the audio clock input from the outside is temporarily stored in the transmission data storage unit 12, and the audio data is transmitted at a timing synchronized with the new audio clock generated by the audio clock regeneration unit 46. Also good. That is, it is possible to synchronize with the new audio clock generated by the audio clock regeneration unit 46 on the writing side or the reading side of the transmission data storage unit 12.
- the audio clock regeneration unit 46 can be realized by a configuration as shown in FIG. 30, for example.
- FIG. 22 is an exemplary block diagram showing a configuration example of a receiving apparatus according to this embodiment.
- the same reference numerals as those in FIG. 2 are given to the same components as those in FIG. 2, and detailed description thereof will be omitted.
- 22 includes a video / audio / packet separation unit 21, a reception data storage unit 22, a frequency division parameter averaging unit 43, and an audio clock reproduction unit 44.
- the frequency division parameter averaging unit 43 averages the frequency division parameters Mt and Nt separated by the video / audio / packet separation unit 21, and outputs the averaged frequency division parameters M't and N't.
- the configuration and operation of the frequency division parameter averaging unit 43 are the same as those of the frequency division parameter averaging unit 42 described above, and may be configured as shown in FIG. 19, for example.
- the configuration of the audio clock reproducing unit 44 may be basically the same as the conventional one, but the resolution of the numerical expression of the averaged frequency division parameters M′t and N′t is the original integer values Mt and Nt. If it is higher than the resolution of the numerical expression, it is necessary to change the configuration in consideration of this point. This configuration change is also required when averaging the frequency division parameters on the transmission device side.
- FIGS. 23 and 24 show an example of the internal configuration of the audio clock reproduction unit 44.
- FIG. The configurations of FIGS. 23 and 24 are based on the premise that the accuracy of the averaged frequency division parameter M′t is increased by 8 times.
- the oscillation frequency of the VCO 444 has been increased by 8 times in order to increase the accuracy of phase comparison by 8 times.
- a divider 446 that generates a sound clock by dividing the clock output from the VCO 444 by 8 is provided after the VCO 44.
- the frequency divider 441, the phase comparator 442, the low-pass filter 443, and the frequency divider 445 that divides the VCO output are the same as those in the prior art. In this configuration, the phase comparison period is the same as the conventional one.
- the accuracy of M't is increased by 8 times, so the phase comparison frequency is 1/8.
- the frequency divider 441 that divides the pixel clock, the phase comparator 442, the VCO 448, and the frequency divider 445 that divides the VCO output are the same as the conventional ones.
- FIG. 25 is an exemplary diagram showing another configuration example of the audio clock reproducing unit 44.
- a ⁇ - ⁇ converter 45 is provided so that the averaged frequency division parameter M′t is converted to the original resolution (after being converted into an integer) and then used for audio clock reproduction. Yes.
- the configuration other than the ⁇ - ⁇ converter 45 is the same as the conventional one.
- FIG. 26 is an exemplary diagram showing an example of the configuration of the ⁇ - ⁇ converter 45.
- an averaged division parameter M′t of (m + 3) bits is input and converted to an average value M ′′ t of m bits.
- an input / output difference ( Error) is integrated, and a value obtained by quantizing the integrated value is added to or subtracted from the output, and a conventional m-bit frequency division parameter Mt can be input.
- the output M ′′ t is equivalent to the result of rounding M′t, and is equivalent to an averaged value for Mt. is doing.
- the fluctuation of the frequency of the audio clock can be suppressed by averaging the variable frequency dividing parameters, it is possible to reproduce a high-quality analog audio signal. .
- the present disclosure it is possible to transmit high-quality audio data through a digital interface such as HDMI. Therefore, the present disclosure is effective in improving the quality of audio data, for example, in networking of digital home appliances.
- Audio clock reproduction unit 11 Multiplexer 15, 15A Frequency division parameter control unit 21 Separation unit 23 Audio clock reproduction unit 24 Band discrimination unit 26 Audio clock reproduction unit 28 Frequency division parameter regeneration unit 29 Audio clock reproduction unit 41 Frequency division parameter determination unit 42 Frequency division parameter Averaging unit 43 Frequency division parameter averaging unit 44 Audio clock reproduction unit 46 Audio clock regeneration unit 101, 102, 103, 104, 104A Transmitting device 201, 202, 203, 204 Receiving device
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Multimedia (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
Description
このような分周パラメータM,Nを求めるためには、例えば、Nは所定の値とし、音声クロックのN分周をピクセルクロックで計数した結果をMとすればよい。例えば、pclk=27MHz、f=6.144MHzのとき、N=6144に設定すれば、fpt=1kHzとなり、M=27000が得られる。図29は従来の分周パラメータ決定部53の構成例である。
pclk/M = fr/N = fpr
の関係を満たす。fprはPLLの位相比較周波数に相当する。この関係は、送信装置501側の分周パラメータM,Nとピクセルクロックおよび音声クロックとの関係と同じであるため、VCO633の発振周波数frは送信側の音声クロックの周波数fと等しくなる。すなわち、受信側で音声クロックが再生されることになる。
pclk/M = f/N = fpt = 1kHz
となるNを選択している。これは、音声クロック再生部の位相比較周波数fprを一定値にすることによって、LPFの特性を一定に保ち、音声クロック再生部を簡易に構成するためである。また、ピクセルクロックと音声クロックとが完全に同期していれば、Mは常に一定の値となるため、音声クロック再生部は音声クロックを良好に再生することができる。
f/N = 1kHz
となる一定値Nを選択したときでも、音声クロックのN分周をピクセルクロックで計数した結果は、一定値Mとはならず、M1,M2,M3,…と変動する。この変動する分周パラメータM1,M2,M3,…を用いて、受信側で音声クロックを再生すると
pclk/M1 = f1/N
pclk/M2 = f2/N
pclk/M3 = f3/N
となり、図31に示すように、再生される音声クロックは、LPFの効果によって滑らかにステップ応答するものの、最終的にはその周波数は例えば、f1,f2,f3,…と変動してしまう。
pclk/Pt = ft/Qt = fpt
(pclkはピクセルクロックの周波数、ftは音声クロックの周波数)
の関係を満たし、かつ、前記fptが、前記音声データの帯域としての、少なくとも300Hzから3kHzまでを含む所定の帯域から外れるような2つの整数値Pt,Qtを、前記分周パラメータとして出力するものである。
pclk/Mt = ft/Nt
(pclkはピクセルクロックの周波数、ftは音声クロックの周波数)
の関係を満たす2つの整数値Mt,Ntを、決定する分周パラメータ決定部と、前記Mt,Ntの一方または両方を平均化し、平均化された分周パラメータとして出力する分周パラメータ平均化部と、送信する音声データと前記平均化された分周パラメータとをパケット化し、送信する映像データのブランキング期間に重畳することによって、送信データを生成する映像・音声・パケット多重部とを備え、前記送信データと前記ピクセルクロックとを送信するものである。
pclk/Pr = fr/Qr = fpr
(pclkはピクセルクロックの周波数、frは再生された音声クロックの周波数、Pr,Qrは分周パラメータ)
の関係を満たすように前記PLLが動作することによって、音声クロックを再生する音声クロック再生部と、前記音声クロック再生部における前記fprの帯域を判別する帯域判別部とを備え、前記音声クロック再生部は、前記帯域判別部の判別結果に応じて、前記PLLのループ特性を切り替えるように構成されているものである。
pclk/Pr = ft/Qr = fpr
(pclkはピクセルクロックの周波数、ftは音声クロックの周波数)
の関係を満たし、かつ、前記fprが、前記音声データの帯域としての、少なくとも300Hzから3kHzまでを含む所定の帯域から外れるような2つの整数値Pr,Qrを、前記新たな分周パラメータとして再生成するものである。
図1は本開示の第1の実施形態に係る送信装置の構成例を示す例示的なブロック図である。図1の送信装置101は、映像・音声・パケット多重部(多重部)11と、送信データ記憶部12と、分周パラメータ決定部13と、送信帯域判別部14とを備えている。
pclk/Pt = ft/Qt = fpt
となる周波数fptが、送信帯域判別部14によって決定された音声データの帯域から外れる(すなわち、周波数帯域内にない)ように、分周パラメータPt,Qtを決定する。
fpt=fs/2=24kHz
となる。
128×fs/Qt=fs/2
であるから、Qt=256となる。よって、音声クロックの256分周をピクセルクロックで計数し、
pclk/Pt=128×fs/Qt=fs/2
の関係を満たすPtを決定する。
pclk/Pt=fr/Qt=fs/2
となり、送信側の音声クロックと同じ周波数の音声クロックが再生される。
pclk/Pr = fr/Qr =fpr
の関係を満たすことになる。fprはPLLの位相比較周波数に相当する。この関係は例えば、図1の送信装置101における分周パラメータPt,Qtとピクセルクロックおよび音声クロックとの関係と同じであるため、VCO236の発振周波数frは送信側の音声クロックの周波数ftと等しくなる。すなわち、受信側で音声クロックが再生される。
図5は本開示の第2の実施形態に係る送信装置の構成例を示す例示的なブロック図である。図5において、図1と共通の構成要素には同一の符号を付しており、ここではその詳細な説明を省略する。図5の送信装置102は、映像・音声・パケット多重部11と、送信データ記憶部12と、分周パラメータ制御部15Aと、設定部17とを備えている。
pclk/M = ft/N
は音声データの帯域内にあり、
pclk/Pt = f/Qt
は音声データの帯域外にある。
図10は本開示の第3の実施形態に係る受信装置の構成例を示す例示的なブロック図である。図10において、図2と共通の構成要素には図2と同一の符号を付しており、ここではその詳細な説明を省略する。図10の受信装置203は、映像・音声・パケット分離部21と、受信データ記憶部22と、分周パラメータ再生成部28と、音声クロック再生部29とを備えている。
pclk/Pr = ft/Qr =fpr
の関係を満たし、かつ、fpr(音声クロック再生部29におけるPLLの位相比較周波数に相当)が、音声データの帯域として定めた所定の帯域から外れるように、分周パラメータPr,Qrを再生成する。
ft=128×fs(fsは音声データのサンプリング周波数)
とすると、次のような関係になる。
pclk/Mr = 128×fs/Nr = ftr
なお、ftrは通常、音声データの帯域内にある。
pclk/Pr = 128×fs/Qr = fpr
である。fprは音声クロック再生部29におけるPLLの位相同期周波数に相当する。
(pclk/Mr)×(Nr/Qr)=(128×fs/Nr)×(Nr/Qr)
であるから、
Pr=(Mr×Qr)/Nr
とすればよい。よって、Qr=256とするので、M再生成部282は、
Pr=256×Mr/Nr
を出力する。
上述の第1~第3の実施形態では、分周パラメータの変動周波数、すなわち、受信装置側の音声クロック再生部におけるPLLの位相比較周波数が、音声データの帯域外になるようにすることによって、高音質のアナログ音声信号の再生を実現した。これに対して本開示の第4の実施形態では、変動する分周パラメータを平均化することによって、音声クロックの周波数の変動を抑え、これにより、高音質のアナログ音声信号の再生を実現する。
15,15A 分周パラメータ制御部
21 分離部
23 音声クロック再生部
24 帯域判別部
26 音声クロック再生部
28 分周パラメータ再生成部
29 音声クロック再生部
41 分周パラメータ決定部
42 分周パラメータ平均化部
43 分周パラメータ平均化部
44 音声クロック再生部
46 音声クロック再生成部
101,102,103,104,104A 送信装置
201,202,203,204 受信装置
Claims (26)
- 映像・音声伝送用のデジタルインターフェースにおける送信装置であって、
映像データ用のピクセルクロックと音声データ用の音声クロックとを関連付けるための分周パラメータを、出力する分周パラメータ制御部と、
送信データを生成するために、音声データと前記分周パラメータ制御部から出力された分周パラメータとをパケット化し、映像データのブランキング期間に重畳する多重部とを備え、
前記送信データと前記ピクセルクロックとを送信するものであり、
前記分周パラメータ制御部は、
pclk/Pt = ft/Qt = fpt
(pclkはピクセルクロックの周波数、ftは音声クロックの周波数)
の関係を満たし、かつ、前記fptが、所定の帯域から外れるような2つの整数値Pt,Qtを、前記分周パラメータとして出力する
ことを特徴とする送信装置。 - 請求項1記載の送信装置において、
前記所定の帯域は、300Hzから3kHzまでの周波数帯域である
ことを特徴とする送信装置。 - 請求項1記載の送信装置において、
前記所定の帯域は、人間の可聴帯域である、20Hzから20kHzまでである
ことを特徴とする送信装置。 - 請求項1記載の送信装置において、
前記所定の帯域は、人間の音声の帯域である、300Hzから4kHzまでである
ことを特徴とする送信装置。 - 請求項1記載の送信装置において、
前記所定の帯域は、前記音声データに含まれた最小周波数と最大周波数に基づいて、定められる
ことを特徴とする送信装置。 - 請求項1記載の送信装置において、
前記分周パラメータ制御部は、
前記fptを、前記音声データのサンプリング周波数fsのU分のV倍(U,Vは整数)に設定する
ことを特徴とする送信装置。 - 請求項1記載の送信装置において、
前記整数値Qtを固定値とし、前記整数値Ptのみを前記分周パラメータとして送信する
ことを特徴とする送信装置。 - 請求項1記載の送信装置において、
前記分周パラメータ制御部は、
前記Pt,Qtからなる分周パラメータとは別に、少なくとも1種類の分周パラメータを出力可能に構成されている
ことを特徴とする送信装置。 - 映像・音声伝送用のデジタルインターフェースにおける送信装置であって、
映像データ用のピクセルクロックと音声データ用の音声クロックとを関連付けるための分周パラメータとして、
pclk/Mt = ft/Nt
(pclkはピクセルクロックの周波数、ftは音声クロックの周波数)
の関係を満たす2つの整数値Mt,Ntを、決定する分周パラメータ決定部と、
前記Mt,Ntの少なくとも1つを平均化し、平均化された分周パラメータとして出力する分周パラメータ平均化部と、
送信データを生成するために、音声データと前記平均化された分周パラメータとをパケット化し、映像データのブランキング期間に重畳する多重部とを備え、
前記送信データと前記ピクセルクロックとを送信する
ことを特徴とする送信装置。 - 請求項9記載の送信装置において、
前記平均化された分周パラメータの数値表現の分解能は、前記Mt,Ntの数値表現の分解能よりも高い
ことを特徴とする送信装置。 - 請求項9記載の送信装置において、
前記分周パラメータ平均化部は、
前記ピクセルクロックまたは音声クロックの周波数変化を検出したとき、これまでの平均値を捨てて、周波数変化後から新たに平均化を開始する
ことを特徴とする送信装置。 - 請求項9記載の送信装置において、
前記平均化された分周パラメータと前記ピクセルクロックを基にして、新たな音声クロックを生成する音声クロック再生成部を備え、
前記新たな音声クロックに同期した音声データが、前記音声データとして用いられる
ことを特徴とする送信装置。 - 請求項1または9記載の送信装置において、
前記デジタルインターフェースは、HDMI(High-Definition Multimedia Interface)である
ことを特徴とする送信装置。 - 映像・音声伝送用のデジタルインターフェースにおける受信装置であって、
受信データから、映像データと、音声データと、前記映像データ用のピクセルクロックと前記音声データ用の音声クロックとを関連付けるための分周パラメータとを、分離する分離部と、
PLL(Phase Locked Loop)を有し、受信したピクセルクロックと前記分周パラメータとから、
pclk/Pr = fr/Qr = fpr
(pclkはピクセルクロックの周波数、frは再生された音声クロックの周波数、Pr,Qrは分周パラメータ)
の関係を満たすように前記PLLが動作することによって、音声クロックを再生する音声クロック再生部と、
前記音声クロック再生部における前記fprの帯域を判別する帯域判別部とを備え、
前記音声クロック再生部は、前記帯域判別部の判別結果に応じて、前記PLLのループ特性を切り替えるように構成されている
ことを特徴とする受信装置。 - 請求項14記載の受信装置において、
前記帯域判別部は、前記分周パラメータを所定の値と比較することによって、前記fprの帯域を判別する
ことを特徴とする受信装置。 - 請求項14記載の受信装置において、
前記帯域判別部は、前記分周パラメータが含まれたパケットのヘッダの値に基づいて、前記fprの帯域を判別する
ことを特徴とする受信装置。 - 映像・音声伝送用のデジタルインターフェースにおける受信装置であって、
受信データから、映像データと、音声データと、前記映像データ用のピクセルクロックと前記音声データ用の音声クロックとを関連付けるための分周パラメータとを、分離する分離部と、
PLL(Phase Locked Loop)を有し、受信したピクセルクロックと前記分周パラメータとから、前記PLLの動作によって、音声クロックを再生する音声クロック再生部とを備え、
前記音声クロック再生部は、少なくとも2種類の分周パラメータに対応可能であり、かつ、分周パラメータの種類に応じて、前記PLLのループ特性を切り替えるように構成されている
ことを特徴とする受信装置。 - 映像・音声伝送用のデジタルインターフェースにおける受信装置であって、
受信データから、映像データと、音声データと、前記映像データ用のピクセルクロックと前記音声データ用の音声クロックとを関連付けるための分周パラメータとを、分離する分離部と、
前記分周パラメータから、新たな分周パラメータを再生成する分周パラメータ再生成部と、
PLL(Phase Locked Loop)を有し、受信したピクセルクロックと前記新たな分周パラメータとから、前記PLLの動作によって、音声クロックを再生する音声クロック再生部とを備え、
前記分周パラメータ再生成部は、
pclk/Pr = ft/Qr = fpr
(pclkはピクセルクロックの周波数、ftは音声クロックの周波数)
の関係を満たし、かつ、前記fprが、所定の帯域から外れるような2つの整数値Pr,Qrを、前記新たな分周パラメータとして再生成する
ことを特徴とする受信装置。 - 請求項18記載の受信装置において、
前記所定の帯域は、300Hzから3kHzまでの周波数帯域である
ことを特徴とする受信装置。 - 請求項18記載の受信装置において、
前記所定の帯域は、人間の可聴帯域である、20Hzから20kHzまでである
ことを特徴とする受信装置。 - 請求項18記載の受信装置において、
前記所定の帯域は、人間の音声の帯域である、300Hzから4kHzまでである
ことを特徴とする受信装置。 - 請求項18記載の受信装置において、
前記所定の帯域は、前記音声データに含まれた最小周波数と最大周波数に基づいて、定められる
ことを特徴とする受信装置。 - 請求項18記載の受信装置において、
前記分周パラメータ再生成部は、
前記fprを、前記音声データのサンプリング周波数fsのU分のV倍(U,Vは整数)に設定する
ことを特徴とする受信装置。 - 映像・音声伝送用のデジタルインターフェースにおける受信装置であって、
受信データから、映像データと、音声データと、前記映像データ用のピクセルクロックと前記音声データ用の音声クロックとを関連付けるための分周パラメータとを、分離する分離部と、
前記分周パラメータを平均化し、平均化された分周パラメータとして出力する分周パラメータ平均化部と、
PLL(Phase Locked Loop)を有し、受信したピクセルクロックと前記平均化された分周パラメータとから、前記PLLの動作によって、音声クロックを再生する音声クロック再生部とを備えた
ことを特徴とする受信装置。 - 請求項24記載の受信装置において、
前記分周パラメータ平均化部は、前記ピクセルクロックまたは音声クロックの周波数変化を検出したとき、これまでの平均値を捨てて、周波数変化後から新たに平均化を開始する
ことを特徴とする受信装置。 - 請求項14,17,18,24のうちいずれか1項記載の受信装置において、
前記デジタルインターフェースは、HDMI(High-Definition Multimedia Interface)である
ことを特徴とする受信装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010507146A JP5194110B2 (ja) | 2008-04-11 | 2009-04-06 | 送信装置および受信装置 |
CN2009801069482A CN101960847A (zh) | 2008-04-11 | 2009-04-06 | 发送装置及接收装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008103444 | 2008-04-11 | ||
JP2008-103444 | 2008-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009125573A1 true WO2009125573A1 (ja) | 2009-10-15 |
Family
ID=41161710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/001592 WO2009125573A1 (ja) | 2008-04-11 | 2009-04-06 | 送信装置および受信装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090257453A1 (ja) |
JP (1) | JP5194110B2 (ja) |
CN (1) | CN101960847A (ja) |
WO (1) | WO2009125573A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011130429A (ja) * | 2009-11-19 | 2011-06-30 | Panasonic Corp | データ送出装置、データ受信装置、及びデータ送受信システム |
JPWO2011099295A1 (ja) * | 2010-02-10 | 2013-06-13 | パナソニック株式会社 | デジタルビデオ信号出力装置および表示装置、デジタルビデオ信号出力方法および受信方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5254376B2 (ja) * | 2010-01-29 | 2013-08-07 | パナソニック株式会社 | 再生装置 |
TWI720153B (zh) | 2016-03-29 | 2021-03-01 | 日商新力股份有限公司 | 送訊裝置、送訊方法、收訊裝置、收訊方法及收送訊系統 |
JP2022031983A (ja) * | 2018-10-02 | 2022-02-24 | ソニーセミコンダクタソリューションズ株式会社 | 送信装置、受信装置及び送受信システム |
JP7584523B2 (ja) * | 2020-09-04 | 2024-11-15 | ソニーセミコンダクタソリューションズ株式会社 | センサ装置、受信装置及び送受信システム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002078336A1 (fr) * | 2001-03-23 | 2002-10-03 | Matsushita Electric Industrial Co., Ltd. | Procede d'emission de donnees, procede de reception de donnees, dispositif d'emission de donnees et dispositif de reception de donnees |
JP2004023187A (ja) * | 2002-06-12 | 2004-01-22 | Matsushita Electric Ind Co Ltd | データ送信装置、データ受信装置 |
JP2007150855A (ja) * | 2005-11-29 | 2007-06-14 | Toshiba Corp | 受信システム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3723878A (en) * | 1970-07-30 | 1973-03-27 | Technical Communications Corp | Voice privacy device |
US5631587A (en) * | 1994-05-03 | 1997-05-20 | Pericom Semiconductor Corporation | Frequency synthesizer with adaptive loop bandwidth |
JP3964880B2 (ja) * | 2001-03-23 | 2007-08-22 | 松下電器産業株式会社 | データ受信方法、データ受信装置、ディジタル信号伝送システム、およびデータ送受信方法 |
US7558326B1 (en) * | 2001-09-12 | 2009-07-07 | Silicon Image, Inc. | Method and apparatus for sending auxiliary data on a TMDS-like link |
US7088398B1 (en) * | 2001-12-24 | 2006-08-08 | Silicon Image, Inc. | Method and apparatus for regenerating a clock for auxiliary data transmitted over a serial link with video data |
JP3800337B2 (ja) * | 2003-08-19 | 2006-07-26 | ソニー株式会社 | デジタル伝送システムおよびクロック再生装置 |
US7158045B1 (en) * | 2004-10-13 | 2007-01-02 | Cirrus Logic, Inc. | Method and apparatus for maintaining an ideal frequency ratio between numerically-controlled frequency sources |
JP4469758B2 (ja) * | 2005-07-04 | 2010-05-26 | パナソニック株式会社 | 音声処理装置 |
TWI325275B (en) * | 2006-07-26 | 2010-05-21 | Realtek Semiconductor Corp | Method applied in multimedia interface for generating audio clock |
-
2009
- 2009-04-06 CN CN2009801069482A patent/CN101960847A/zh active Pending
- 2009-04-06 JP JP2010507146A patent/JP5194110B2/ja not_active Expired - Fee Related
- 2009-04-06 WO PCT/JP2009/001592 patent/WO2009125573A1/ja active Application Filing
- 2009-04-08 US US12/420,506 patent/US20090257453A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002078336A1 (fr) * | 2001-03-23 | 2002-10-03 | Matsushita Electric Industrial Co., Ltd. | Procede d'emission de donnees, procede de reception de donnees, dispositif d'emission de donnees et dispositif de reception de donnees |
JP2004023187A (ja) * | 2002-06-12 | 2004-01-22 | Matsushita Electric Ind Co Ltd | データ送信装置、データ受信装置 |
JP2007150855A (ja) * | 2005-11-29 | 2007-06-14 | Toshiba Corp | 受信システム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011130429A (ja) * | 2009-11-19 | 2011-06-30 | Panasonic Corp | データ送出装置、データ受信装置、及びデータ送受信システム |
JPWO2011099295A1 (ja) * | 2010-02-10 | 2013-06-13 | パナソニック株式会社 | デジタルビデオ信号出力装置および表示装置、デジタルビデオ信号出力方法および受信方法 |
US9319658B2 (en) | 2010-02-10 | 2016-04-19 | Panasonic Intellectual Property Management Co., Ltd. | Digital video signal output device and display device, and digital video signal output method and reception method |
JP5914884B2 (ja) * | 2010-02-10 | 2016-05-11 | パナソニックIpマネジメント株式会社 | デジタルビデオ信号出力装置および表示装置、デジタルビデオ信号出力方法および受信方法 |
Also Published As
Publication number | Publication date |
---|---|
US20090257453A1 (en) | 2009-10-15 |
CN101960847A (zh) | 2011-01-26 |
JP5194110B2 (ja) | 2013-05-08 |
JPWO2009125573A1 (ja) | 2011-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4625863B2 (ja) | 送信装置および送受信装置 | |
JP3800337B2 (ja) | デジタル伝送システムおよびクロック再生装置 | |
JP5194110B2 (ja) | 送信装置および受信装置 | |
US7855751B2 (en) | Data transmission device and data reception device | |
US20070005163A1 (en) | Audio processor | |
JPWO2008129816A1 (ja) | クロック同期方法 | |
JP4962024B2 (ja) | データ送信・受信システム | |
JP5254376B2 (ja) | 再生装置 | |
US8258846B2 (en) | Method and apparatus for regenerating sampling frequency and then quickly locking signals accordingly | |
JP5270288B2 (ja) | 送信装置 | |
JP2013153409A (ja) | クロック再生成回路およびデジタルオーディオ再生装置 | |
JP2007295514A (ja) | データ受信装置 | |
US5926606A (en) | VCD up-grading circuit board for a CD player or CD-ROM | |
JPH11191759A (ja) | 標本化クロック再生回路 | |
WO2012017573A1 (ja) | 送受信システム、送信装置および受信装置 | |
JP5540953B2 (ja) | クロック再生成回路およびこれを用いたデジタルオーディオ再生装置 | |
JP2006101029A (ja) | データ受信装置 | |
JP2005277461A (ja) | データ伝送システム | |
JP2006325234A (ja) | ディジタル信号伝送システムおよび方法、送信装置および方法、並びに受信装置および方法 | |
US20080219645A1 (en) | Reproducing Apparatus | |
JP2013026992A (ja) | 再生装置 | |
WO2013047728A1 (ja) | コンテンツデータ伝送システム及びコンテンツデータ伝送方法 | |
JP2004320748A (ja) | 信号処理回路 | |
JP2007116500A (ja) | Pll回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980106948.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09730982 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010507146 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09730982 Country of ref document: EP Kind code of ref document: A1 |