WO2009124426A1 - 一种制药化工园区混合废水的处理方法 - Google Patents
一种制药化工园区混合废水的处理方法 Download PDFInfo
- Publication number
- WO2009124426A1 WO2009124426A1 PCT/CN2008/001373 CN2008001373W WO2009124426A1 WO 2009124426 A1 WO2009124426 A1 WO 2009124426A1 CN 2008001373 W CN2008001373 W CN 2008001373W WO 2009124426 A1 WO2009124426 A1 WO 2009124426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tank
- anaerobic
- wastewater
- water
- sludge
- Prior art date
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 51
- 239000000126 substance Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000007062 hydrolysis Effects 0.000 claims abstract description 25
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 25
- 239000000919 ceramic Substances 0.000 claims abstract description 8
- 238000005273 aeration Methods 0.000 claims abstract description 3
- 239000010802 sludge Substances 0.000 claims description 75
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 50
- 239000000945 filler Substances 0.000 claims description 30
- 238000004062 sedimentation Methods 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 5
- 238000011001 backwashing Methods 0.000 claims description 4
- 238000005345 coagulation Methods 0.000 claims description 3
- 230000015271 coagulation Effects 0.000 claims description 3
- 239000008394 flocculating agent Substances 0.000 claims description 3
- 238000012856 packing Methods 0.000 claims description 3
- 238000001556 precipitation Methods 0.000 claims description 3
- 239000006228 supernatant Substances 0.000 claims description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000000855 fermentation Methods 0.000 claims description 2
- 238000005191 phase separation Methods 0.000 claims description 2
- 239000007921 spray Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 230000003311 flocculating effect Effects 0.000 abstract 1
- 238000005507 spraying Methods 0.000 abstract 1
- 239000010865 sewage Substances 0.000 description 29
- 238000011161 development Methods 0.000 description 11
- 230000029087 digestion Effects 0.000 description 11
- 230000000630 rising effect Effects 0.000 description 10
- 238000005189 flocculation Methods 0.000 description 8
- 230000016615 flocculation Effects 0.000 description 8
- 239000005416 organic matter Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 238000004065 wastewater treatment Methods 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- -1 polypropylene Polymers 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 231100000086 high toxicity Toxicity 0.000 description 2
- 239000010842 industrial wastewater Substances 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 206010003497 Asphyxia Diseases 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000012550 audit Methods 0.000 description 1
- 238000012822 chemical development Methods 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/08—Aerobic processes using moving contact bodies
- C02F3/085—Fluidized beds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
- C02F2103/343—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2203/00—Apparatus and plants for the biological treatment of water, waste water or sewage
- C02F2203/002—Apparatus and plants for the biological treatment of water, waste water or sewage comprising an initial buffer container
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the invention relates to a method for treating organic wastewater in industrial and industrial parks, and more particularly to a method for treating mixed wastewater in a pharmaceutical chemical industry park. Background technique
- the chemical industry park is the mainstream of the global chemical industry cluster development, the main stream of international new industrialization development, the inevitable development of the industrial chain, and the new mode of China's chemical industry development.
- the chemical park has developed more than 320 large-scale parks involving chemical industry in China, and more than 60 chemical parks approved by the provincial and above governments.
- the increasingly serious problem of water pollution has become the key to restrict the rapid and sustainable development of China's chemical industry parks.
- the mixed wastewater in the pharmaceutical industry park usually has complex composition, many organic substances, high water quality fluctuation, high concentration, high COD and BOD 5 values, low COD and BOD 5 ratio, high NH 3 -N concentration, deep color and high toxicity.
- the solid suspension has a high concentration of SS.
- the microbial biochemical treatment method is recognized as one of the methods with high treatment efficiency and good effect, but there are still many defects in the simple treatment of biochemical treatment for wastewater treatment in the pharmaceutical industry.
- the "hydrolysis + biological contact oxidation" biochemical treatment method is often used in China to treat pharmaceutical industrial wastewater, but the "hydrolysis + biological contact oxidation” biochemical treatment method has strict requirements on the nutrients and pH in the wastewater, and it is difficult to adapt to the pharmaceutical chemical park mixed. Wastewater organic matter, large fluctuations in water quality, and high toxicity specialty.
- the present invention provides a method for treating mixed wastewater in a pharmaceutical chemical park, which can process a high-speed and high-efficiency treatment of a pharmaceutical chemical park. Waste water.
- the principle of the invention is to first convert the hardly biodegradable macromolecular substance into a biodegradable small molecular substance, that is, the biodegradability of the extracted wastewater by hydrolysis acidification, and simultaneously remove part of COD, and then remove the waste water by anaerobic biological treatment. Most of the organic matter is then removed by aerobic biological treatment to remove most of the remaining organic matter. Finally, the refractory organic matter remaining after the biochemical treatment of the wastewater is removed by physicochemical coagulation and sedimentation treatment.
- a method for treating mixed wastewater in a pharmaceutical chemical park the steps of which are:
- the hydrolysis tank converts the biodegradable macromolecular substance into a biodegradable small molecular substance, improves the biodegradability of the waste water, and internally fills the suspended packing, and adopts an upflow type water distribution.
- the anaerobic digestion sludge and concentrated sludge are mixed with the mixed wastewater of the pharmaceutical chemical park to form a muddy water mixture, which is put into a hydrolysis tank and an anaerobic tank for anaerobic fermentation sludge activation and cultivation, and the secondary sedimentation tank is refluxed with activated sludge and a pharmaceutical chemical park.
- the mixed wastewater is separately charged into the moving bed biofilm reactor reaction device and the aerated biological filter to perform suffocation.
- Anaerobic reactor (anaerobic tank) A combined anaerobic reactor with two processes of upflow anaerobic sludge blanket (UASB) and anaerobic filter (AF) Hybrid anaerobic reactor, HAR ).
- HAR flows the wastewater from bottom to top through the reactor.
- the sludge does not require agitation equipment, reflecting the presence of a special three-phase (gas, liquid, solid) separator at the top.
- the entire reactor consists of a bottom water distribution zone, a central reaction zone and a top separation zone.
- the sludge can be anaerobic granular sludge or ordinary activated sludge.
- the anaerobic reactor adopts an external circulation reflux device to solve the problems of short flow and dead angle in the operation of the upflow anaerobic sludge blanket reactor, further enhance the mixing and contact of anaerobic microorganisms with wastewater, and improve the load and treatment efficiency. .
- Anaerobic reactor starts initial volume load
- the moving bed biofilm reactor (MBBR) reaction device is a push-flow reaction device with a gas distribution zone at the bottom, a steam-water ratio of 50:1, volumetric load (about 2 ⁇ 2.5kg BOD5/m 3 * d), sludge concentration It is 8g/L, the filling rate is 60% (volume ratio), the design volume is 600L, the design residence time is 30h, the influent is the bottom water inlet, the effluent is the supernatant effluent, and the outlet is provided with a serrated overflow weir. board.
- the sewage continuously passes through the suspended filler in the MBBR reactor and gradually forms a biofilm on the inner and outer surfaces of the filler, and the microorganisms on the biofilm enable the sewage to be purified.
- the flocculation and sedimentation process mainly includes: flocculant dosing facility, flocculation reaction tank and final settling tank.
- the flocculant is made of an aluminum salt.
- polyaluminum such as PAC, or high-molecular flocculant
- the flocculating agent is not particularly limited. The choice of the scheme is also very large.
- Aluminum ferric silicate can also be selected, and the coagulant is polyacrylamide.
- the invention provides a method for treating mixed wastewater in a pharmaceutical chemical park, according to a pharmaceutical chemical park mixed
- the organic matter of wastewater is not only high in concentration but also complex in composition. It can be treated at high speed and high efficiency.
- the effluent meets the latest national wastewater discharge standards, of which COD is less than 100mg/L.
- the equipment required by the invention has small footprint and simple management. detailed description
- the mixed wastewater is adjusted to the water volume and water quality through the adjustment tank and then enters the hydrolysis tank.
- the tank capacity is designed to be 230L.
- the inoculated sludge is the anaerobic digestion sludge and concentrated sludge in the municipal sewage treatment plant.
- the sludge concentration in the hydrolysis tank is 3000. ⁇ 5000mg/L, filled with hanging filler (PE+Vortex), using upflow water, the rising flow rate is 1.0 ⁇ 1.6m/h, and the residence time (HRT) is 11.5h.
- the tank capacity is designed to be 450L.
- the liquid rising velocity in the tank is 0.5 ⁇ 1.2m/h.
- the inoculated sludge is the anaerobic digestion sludge and concentrated sewage in the urban sewage treatment plant.
- the parameters of sludge and sludge are: 60 ⁇ 68gVSS/L, 70-80 gSS/L, and the residence time (HRT) is 22.5h.
- Aerobic moving bed biofilm reactor (MBBR) is filled with hollow cross-height high-density polypropylene suspension filler (1*1), filler filling rate is 60% (volume ratio), steam-water ratio is 50:1, residence time ( HRT) is 30h.
- the tank capacity is designed to be 300L.
- the inoculated sludge is the return sludge of the secondary settling tank in the urban sewage treatment plant.
- the tank is filled with round ceramic filler and the temperature is controlled at 10 °C. ⁇ 35 ° C, the soda ratio is 20:1, and the residence time (HRT) is 15h.
- the flocculant used in the flocculation and sedimentation process was PAC, and the dosage was 600 mg/L.
- the mixed wastewater is adjusted to the water volume and water quality through the adjustment tank and then enters the hydrolysis tank.
- the tank capacity is designed to be 230L.
- the inoculated sludge is the anaerobic digestion sludge and concentrated sludge in the municipal sewage treatment plant.
- the sludge concentration in the hydrolysis tank is 3000. ⁇ 5000mg/L, filled with hanging filler (PE+Vortex), using upflow water, the rising flow rate is 1.0 ⁇ 1.6m/h, and the residence time (HRT) is 13h.
- the tank capacity is designed to be 450L.
- the liquid rising velocity in the tank is 0.5 ⁇ 1.2m/h.
- the inoculated sludge is the anaerobic digestion sludge and concentration in the urban sewage treatment plant.
- the parameters of sludge and sludge are: 60 ⁇ 68gVSS/L, 70-80 gSS/L, and the residence time (HRT) is 25.5h.
- Aerobic moving bed biofilm reactor (MBBR) is filled with hollow cross-height high-density polypropylene suspension filler (1*1), filler filling rate is 60% (volume ratio), steam-water ratio is 50:1, residence time ( HRT) is 34h.
- the tank capacity is designed to be 300L.
- the inoculated sludge is the return sludge of the secondary settling tank in the urban sewage treatment plant.
- the tank is filled with round ceramic filler and the temperature is controlled at 10 °C. ⁇ 35'C, the soda ratio is 20:1, and the residence time (HRT) is 17h.
- the flocculant used in the flocculation and sedimentation process was PAC, and the dosage was 600 mg/L.
- the influent COD 1000 ⁇ 3000mg/L
- BOD 5 300 ⁇ 7500mg/L
- pH 6.0 ⁇ 8.0 chroma is 220 times
- SS 2500mg/L.
- the mixed wastewater is adjusted to the water volume and water quality through the adjustment tank and then enters the hydrolysis tank.
- the tank capacity is designed to be 230L.
- the inoculated sludge is the anaerobic digestion sludge and concentrated sludge in the municipal sewage treatment plant.
- the sludge concentration in the hydrolysis tank is 3000. ⁇ 5000mg/L, filled with hanging filler (PE+Vortex), using upflow water, the rising flow rate is 1.0 ⁇ 1.6m/h, and the residence time (HRT) is 15h.
- the tank capacity is designed to be 450L.
- the liquid rising velocity in the tank is 0.5 ⁇ 1.2m/h.
- the inoculated sludge is the anaerobic digestion sludge and concentrated sewage in the urban sewage treatment plant.
- the parameters of sludge and sludge are: 60 ⁇ 68gVSS/L, 70-80 gSS/L, and the residence time (HRT) is 30h.
- the bed biofilm reactor (MBBR) inoculated sludge is the return sludge of the secondary settling tank in the urban sewage treatment plant.
- Aerobic moving bed biofilm reactor (MBBR) is filled with hollow cross-height high-density polypropylene suspension filler (1*1), filler filling rate is 60% (volume ratio), steam-water ratio is 50:1, residence time ( HRT) is 40h.
- the tank capacity is designed to be 300L.
- the inoculated sludge is the return sludge of the secondary settling tank in the urban sewage treatment plant.
- the tank is filled with round ceramic filler and the temperature is controlled at 10 °C. ⁇ 35'C, the soda ratio is 20:1, and the residence time (HRT) is 20h.
- the flocculant used in the flocculation and sedimentation process was PAC, and the dosage was 650 mg/L.
- the mixed wastewater is adjusted to the water volume and water quality through the adjustment tank and then enters the hydrolysis tank.
- the tank capacity is designed to be 230L.
- the inoculated sludge is the anaerobic digestion sludge and concentrated sludge in the municipal sewage treatment plant.
- the sludge concentration in the hydrolysis tank is 3000. ⁇ 5000mg/L, filled with hanging filler (PE+Vortex), using upflow water, the rising flow rate is 1.0 ⁇ 1.6m/h, and the residence time (HRT) is 11.5h.
- the tank capacity is designed to be 450L.
- the liquid rising velocity in the tank is 0.5 ⁇ 1.2m/h.
- the inoculated sludge is the anaerobic digestion sludge and concentrated sewage in the urban sewage treatment plant.
- the parameters of sludge and sludge are: 60 ⁇ 68gVSS/L, 70-80 gSS/L, and the residence time (HRT) is 22.5h.
- Aerobic moving bed biofilm reactor (MBBR) is filled with hollow cross-height high-density polypropylene suspension filler (1*1), filler filling rate is 60% (volume ratio), steam-water ratio is 50:1, residence time ( HRT) is 30h.
- the tank capacity is designed to be 300L.
- the inoculated sludge is the return sludge of the secondary settling tank in the urban sewage treatment plant.
- the tank is filled with round ceramic filler and the temperature is controlled at 10 °C. ⁇ 35 ° C, the soda ratio is 20:1, and the residence time (HRT) is 15h.
- the flocculant used in the flocculation and sedimentation process was PAC, and the dosage was 550 mg/L.
- the mixed wastewater is adjusted to the water volume and water quality through the adjustment tank and then enters the hydrolysis tank.
- the tank capacity is designed to be 230L.
- the inoculated sludge is the anaerobic digestion sludge and concentrated sludge in the municipal sewage treatment plant.
- the sludge concentration in the hydrolysis tank is 3000. ⁇ 5000mg/L, filled with hanging filler (PE+Vortex), using upflow water, the rising flow rate is 1.0 ⁇ 1.6m/h, and the residence time (HRT) is 15h.
- the tank capacity is designed to be 450L.
- the liquid rising velocity in the tank is 0.5 ⁇ 1.2m/h.
- the inoculated sludge is the anaerobic digestion sludge and concentrated sewage in the urban sewage treatment plant.
- the parameters of sludge and sludge are: 60 ⁇ 68gVSS/L, 70-80 gSS/L, and the residence time (HRT) is 30h.
- Aerobic moving bed biofilm reactor (MBBR) is filled with hollow cross-height high-density polypropylene suspension filler (1*1), filler filling rate is 60% (volume ratio), steam-water ratio is 50:1, residence time ( HRT) is 40h.
- the tank capacity is designed to be 300L.
- the inoculated sludge is the return sludge of the secondary settling tank in the urban sewage treatment plant.
- the tank is filled with round ceramic filler and the temperature is controlled at 10 °C. ⁇ 35 ° C, steam to water ratio of 20:1, residence time (HRT) is 20h.
- the flocculant used in the flocculation and sedimentation process is PAC, and the dosage is 700mg/L.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Biological Treatment Of Waste Water (AREA)
Description
一种制药化工园区混合废水的处理方法 技术领域
本发明涉及工业及工业园区有机废水的处理方法,更具体地说是制药化工园 区混合废水的处理方法。 背景技术
我国制药工业企业有 5000多家, 生产化学原料药近 1500余种, 总产量 43 万吨, 位居世界第二; 制药工业每生产 1吨原料药平均用 6吨化工原料, 有的高 达数十吨甚至上百吨。 制药工业是国家环保规划重要治理的 12个行业之一, 据 统计制药工业占全国工业总产值的 1.7%, 而污水排放量 (2005年为 243.1亿吨) 约为工业废水生产总量的 2%。 2004年医药制造业污水排放量为 42982万吨, 达标排放污水量为排放总量的 94.82% ; 而 2005年医药制造业污水排放量为 4 亿吨,达标排放污水量为排放总量的 94.79%。而我国又是一个水质性缺水国家, 水资源的短缺和污染问题已经严重影响了我国国民经济建设和人们的正常生活。
化工园区是全球化学工业集群式发展的主流, 是国际新型工业化发展的主 流, 是优化产业链发展的必然, 是我国化工产业发展新模式。化工园区建设经十 多年发展我国涉及化工产业的规模园区 320 多家, 省级以上政府批准建设的化 工园区 60多家。 据国家发改委等公布的 《中国开发区审核公告目录》(2006 年 版), 国家级开发区 222 家和省级开发区 1346家, 涉及化工的开发区达 30%以 上。伴随化工产业快速集聚发展, 水污染问题日趋严重已成为制约我国化工园区 快速持续发展的关键。
制药工业园区混合废水通常具有组成成份复杂,有机物种类多,水质波动大, 浓度高, COD和 BOD5值高, COD与 BOD5比值低, NH3-N浓度高, 色度深, 毒性大, 固体悬浮物 SS浓度高等特点。微生物生化处理方法是公认的处理效率 高、效果好的方法之一,但是将生化处理简单用于制药工业废水的处理还存在许 多缺陷。 目前国内常采用 "水解 +生物接触氧化"生化处理方法处理制药工业废 水, 但是"水解 +生物接触氧化"生化处理方法对废水中营养物质、 pH值等有严 格的要求, 难以适应制药化工园区混合废水有机物种类多、 水质波动大、 毒性大
的特点。
针对特定制药化工厂的污水处理已有大量的研究,但是由于制药化工园区混 合废水的高浓度、难降解的特点,对于其中的某些难降解的特征有机物仍然难以 彻底分解并达到完全处理。 发明内容
1. 发明要解决的技术问题
针对制药化工园区混合废水存在的成份复杂、有机物种类多、水质波动大和 污染物浓度髙的特点,本发明提供了一种制药化工园区混合废水的处理方法,可 以高速、 高效的处理制药化工园区混合废水。
2. 技术方案
本发明的原理是首先通过水解酸化将难生物降解的大分子物质转化为易生 物降解的小分子物质即提髙废水的可生化性, 同时去除部分 COD, 其次通过厌 氧生物处理去除废水中的大部分有机物,然后通过好氧生物处理去除剩余的大部 分有机物质,最后通过物化混凝沉淀处理去除废水生化处理后残余的难降解有机 物。
本发明的技术方案是:
一种制药化工园区混合废水的处理方法, 其步骤为:
(A) 制药化工园区混合废水进入调节池进行水量水质的调节后, 进入水解池, 水解池内部填充悬挂式填料, 采用上流式布水;
(B) 水解池的出水进入厌氧池, 厌氧池采用上流式布水, 池底设有穿孔管作为 布水管, 池顶部为三相分离区, 厌氧池出水回流位置在三相分离器下部, 通 过外循环加压泵从池底部进入厌氧池;
(C)厌氧池出水进入移动床生物膜反应器, 在移动床生物膜反应器中投加悬浮 填料, 在其池底有曝气装置;
(D)移动床生物膜反应器的出水采用上部喷淋的形式进入曝气生物滤池, 曝气 生物滤池中投加陶瓷填料,底部有承托板和出水管, 底部设置有反冲洗进水 管, 顶部设计有筛网防止反冲洗时填料溢出, 并设计有反冲洗出水管, 出水 为上清液出水;
( E) 曝气生物滤池的出水先后进入沉淀池和混凝反应池进行沉淀。
水解池将难生物降解的大分子物质转化为易生物降解的小分子物质,改善废 水的可生化性, 内部填充悬挂式填料, 采用上流式布水。将厌氧消化污泥和浓缩 污泥与制药化工园区混合废水混合搅拌为泥水混合物,投入水解池和厌氧池进行 厌氧发酵污泥激活培养,将二沉池回流活性污泥与制药化工园区混合废水混合分 别投入移动床生物膜反应器反应装置和曝气生物滤池, 进行闷曝。
厌氧反应装置 (厌氧池) 采用结合上流式厌氧污泥床反应器( upflow anaerobic sludge blanket, UASB)和厌氧滤池( anaerobic filter, AF) 2种工艺的 复合式厌氧反应器( hybrid anaerobic reactor, HAR )。 HAR为废水由下向上流过 反应器, 污泥无需搅拌设备, 反映其顶部有特殊的三相 (气、 液、 固) 分离器。 整个反应器由底部布水区、中部的反应区和顶部的分离区组成。污泥可以采用厌 氧颗粒污泥、 普通活性污泥。厌氧反应器采用外循环回流装置, 解决了上流式厌 氧污泥床反应器在运行时出现的短流和死角等问题,进一步增强厌氧微生物与废 水的混和与接触, 提高负荷及处理效率。 厌氧反应器启动初期容积负荷
0.1~0.5kgCOD/(m3 - d), 当 COD去除率达到 70%且稳定运行时, 逐步降低水力 停留时间或者增加进水 COD浓度的方式提升负荷, 最高容积负荷可达到
10kgCOD/( m3 · d)。
移动床生物膜反应器(MBBR)反应装置为推流式反应装置, 底部设有布气 区, 汽水比为 50:1, 容积负荷 (约 2~2.5kgBOD5/m3 * d), 污泥浓度为 8g/L, 填料填充率为 60% (体积比), 设计容积为 600L, 设计停留时间为 30h, 进水 为底部进水, 出水采用上清液出水, 出水口设有锯齿型溢流堰板。污水连续通过 MBBR 反应器内的悬浮填料并逐渐在填料内外表面形成生物膜, 生物膜上的微 生物使得污水得以净化。
沉淀工艺中需投加絮凝剂进行絮凝沉淀, 絮凝沉淀工艺主要包括: 絮凝剂投 加设施、 絮凝反应池和终沉池。 絮凝剂采用铝盐。 尤其是聚铝, 如 PAC, 或采 用高分子絮凝剂, 沉淀工艺对絮凝剂无特别限定, 方案的选择也极多, 还可以选 择硅酸铝铁, 助凝剂采用聚丙烯酰胺。
3. 有益效果
本发明提供了一种制药化工园区混合废水的处理方法,根据制药化工园区混
合废水有机物不仅浓度高且成分复杂的特点, 可以高速、 高效的予以处理, 出水 达到国家最新的制药废水排放标准, 其中 COD小于 100mg/L。本发明所需设备 占地面积小、 管理简单。 具体实施方式
实施例 1
某制药化工园区混合废水处理过程中, 进水 COD=1000~1500mg/L, BOD5=300~400mg/L, pH值 7.0~8.0, 色度为 200倍, SS为 1800mg/L。
(A)混合废水通过调节池调节水量及水质后进入水解池,池容设计为 230L, 接种污泥为城市污水处理厂中的厌氧消化污泥和浓缩污泥, 水解池污泥浓度为 3000~5000mg/L, 内部填充悬挂式填料 (PE+维纶丝), 采用上流式布水, 上升 流速为 1.0~1.6m/h, 停留时间 (HRT) 为 11.5h。
(B) 废水经水解处理后, 进入厌氧池, 池容设计为 450L, 池内液体上升 流速为 0.5~1.2m/h, 接种污泥为城市污水处理厂中的厌氧消化污泥和浓缩污泥, 污泥性状参数为: 60~68gVSS/L、 70-80 gSS/L, 停留时间 (HRT) 为 22.5h。
(C) 经厌氧池处理后, 进入好氧 MBBR池, 池容设计为 600L, 好氧移动 床生物膜反应器(MBBR)接种污泥为城市污水处理厂中二沉池回流污泥。好氧 移动床生物膜反应器( MBBR )中投加中空十字撑高密度聚丙烯悬浮填料(1*1 ), 填料填充率为 60% (体积比), 汽水比为 50:1, 停留时间 (HRT) 为 30h。
(D) 进入曝气生物滤池 (BAF), 池容设计为 300L, 接种污泥为城市污水 处理厂中二沉池回流污泥, 池中投加圆形陶瓷填料, 温度控制在 10°C~35°C, 汽 水比为 20:1, 停留时间 (HRT) 为 15h。
(E) 絮凝沉淀工艺中絮凝剂采用 PAC, 投加量为 600mg/L。
经上述工艺处理后, 最终出水 COD 80mg/L, BOD5 15mg/L, pH 7, 色度 16倍, SS 10mg/Lo 实施例 2
某制药化工园区混合废水处理过程中, 进水 COD=1500~2000mg/L, BOD5=350~600mg/L, pH值 8.0~9.0, 色度为 250倍, SS为 2100mg/L。
(A)混合废水通过调节池调节水量及水质后进入水解池,池容设计为 230L, 接种污泥为城市污水处理厂中的厌氧消化污泥和浓缩污泥, 水解池污泥浓度为 3000~5000mg/L, 内部填充悬挂式填料 (PE+维纶丝), 采用上流式布水, 上升 流速为 1.0~1.6m/h, 停留时间 (HRT) 为 13h。
(B) 废水经水解处理后, 进入厌氧池, 池容设计为 450L, 池内液体上升 流速为 0.5~1.2m/h, 接种污泥为城市污水处理厂中的厌氧消化污泥和浓縮污泥, 污泥性状参数为: 60~68gVSS/L、 70-80 gSS/L, 停留时间 (HRT) 为 25.5h。
(C) 经厌氧池处理后, 进入好氧 MBBR池, 池容设计为 600L, 好氧移动 床生物膜反应器(MBBR)接种污泥为城市污水处理厂中二沉池回流污泥。好氧 移动床生物膜反应器(MBBR)中投加中空十字撑高密度聚丙烯悬浮填料(1*1 ), 填料填充率为 60% (体积比), 汽水比为 50:1, 停留时间 (HRT) 为 34h。
(D) 进入曝气生物滤池 (BAF), 池容设计为 300L, 接种污泥为城市污水 处理厂中二沉池回流污泥, 池中投加圆形陶瓷填料, 温度控制在 10°C~35'C, 汽 水比为 20:1, 停留时间 (HRT) 为 17h。
(E) 絮凝沉淀工艺中絮凝剂采用 PAC, 投加量为 600mg/L。
经上述工艺处理后, 最终出水 COD90mg/L, BOD518mg/L, pH7.5, 色度 20倍, SS11mg/L。 实施例 3
某制药化工园区混合废水处理过程中, 进水 COD=1000~3000mg/L, BOD5=300~7500mg/L, pH值 6.0~8.0, 色度为 220倍, SS为 2500mg/L。
(A)混合废水通过调节池调节水量及水质后进入水解池,池容设计为 230L, 接种污泥为城市污水处理厂中的厌氧消化污泥和浓缩污泥, 水解池污泥浓度为 3000~5000mg/L, 内部填充悬挂式填料 (PE+维纶丝), 采用上流式布水, 上升 流速为 1.0~1.6m/h, 停留时间 (HRT) 为 15h。
( B) 废水经水解处理后, 进入厌氧池, 池容设计为 450L, 池内液体上升 流速为 0.5~1.2m/h, 接种污泥为城市污水处理厂中的厌氧消化污泥和浓缩污泥, 污泥性状参数为: 60~68gVSS/L、 70-80 gSS/L, 停留时间 (HRT) 为 30h。
(C) 经厌氧池处理后, 进入好氧 MBBR池, 池容设计为 600L, 好氧移动
床生物膜反应器(MBBR)接种污泥为城市污水处理厂中二沉池回流污泥。 好氧 移动床生物膜反应器(MBBR)中投加中空十字撑高密度聚丙烯悬浮填料(1*1 ), 填料填充率为 60% (体积比), 汽水比为 50:1, 停留时间 (HRT) 为 40h。
(D) 进入曝气生物滤池 (BAF), 池容设计为 300L, 接种污泥为城市污水 处理厂中二沉池回流污泥, 池中投加圆形陶瓷填料, 温度控制在 10°C~35'C, 汽 水比为 20:1, 停留时间 (HRT) 为 20h。
(E) 絮凝沉淀工艺中絮凝剂采用 PAC, 投加量为 650mg/L。
经上述工艺处理后, 最终出水 COD85mg/L, BOD520mg/L, pH7.5, 色度 16倍, SS8mg/L。 实施例 4
某制药化工园区混合废水处理过程中, 进水 COD=1000~2000mg/L, BOD5=300~600mg/L, pH值 9.0~10.0, 色度为 160倍, SS为 1500mg/L。
(A)混合废水通过调节池调节水量及水质后进入水解池,池容设计为 230L, 接种污泥为城市污水处理厂中的厌氧消化污泥和浓缩污泥, 水解池污泥浓度为 3000~5000mg/L, 内部填充悬挂式填料 (PE+维纶丝), 采用上流式布水, 上升 流速为 1.0~1.6m/h, 停留时间 (HRT) 为 11.5h。
(B) 废水经水解处理后, 进入厌氧池, 池容设计为 450L, 池内液体上升 流速为 0.5~1.2m/h, 接种污泥为城市污水处理厂中的厌氧消化污泥和浓缩污泥, 污泥性状参数为: 60~68gVSS/L、 70-80 gSS/L, 停留时间 (HRT) 为 22.5h。
(C) 经厌氧池处理后, 进入好氧 MBBR池, 池容设计为 600L, 好氧移动 床生物膜反应器(MBBR)接种污泥为城市污水处理厂中二沉池回流污泥。好氧 移动床生物膜反应器(MBBR)中投加中空十字撑高密度聚丙烯悬浮填料(1*1 ), 填料填充率为 60% (体积比), 汽水比为 50:1, 停留时间 (HRT) 为 30h。
(D) 进入曝气生物滤池 (BAF), 池容设计为 300L, 接种污泥为城市污水 处理厂中二沉池回流污泥, 池中投加圆形陶瓷填料, 温度控制在 10°C~35°C, 汽 水比为 20:1, 停留时间 (HRT) 为 15h。
(E) 絮凝沉淀工艺中絮凝剂采用 PAC, 投加量为 550mg/L。
经上述工艺处理后, 最终出水 COD75mg/L, BOD512mg/L, pH7.8, 色度
16倍, SS10mg/L。 实施例 5
某制药化工园区混合废水处理过程中, 进水 COD=2000~3000mg/L, BOD5=350~550mg/L, pH值 6.0~7.5, 色度为 150倍, SS为 900mg/L。
(A)混合废水通过调节池调节水量及水质后进入水解池,池容设计为 230L, 接种污泥为城市污水处理厂中的厌氧消化污泥和浓缩污泥, 水解池污泥浓度为 3000~5000mg/L, 内部填充悬挂式填料 (PE+维纶丝), 采用上流式布水, 上升 流速为 1.0~1.6m/h, 停留时间 (HRT) 为 15h。
( B) 废水经水解处理后, 进入厌氧池, 池容设计为 450L, 池内液体上升 流速为 0.5~1.2m/h, 接种污泥为城市污水处理厂中的厌氧消化污泥和浓缩污泥, 污泥性状参数为: 60~68gVSS/L、 70-80 gSS/L, 停留时间 (HRT) 为 30h。
(C) 经厌氧池处理后, 进入好氧 MBBR池, 池容设计为 600L, 好氧移动 床生物膜反应器(MBBR)接种污泥为城市污水处理厂中二沉池回流污泥。 好氧 移动床生物膜反应器(MBBR)中投加中空十字撑高密度聚丙烯悬浮填料(1*1 ), 填料填充率为 60% (体积比), 汽水比为 50:1 , 停留时间 (HRT) 为 40h。
(D) 进入曝气生物滤池 (BAF), 池容设计为 300L, 接种污泥为城市污水 处理厂中二沉池回流污泥, 池中投加圆形陶瓷填料, 温度控制在 10°C~35°C, 汽 水比为 20:1 , 停留时间 (HRT) 为 20h。
( E) 絮凝沉淀工艺中絮凝剂采用 PAC, 投加量为 700mg/L。
经上述工艺处理后, 最终出水 COD90mg/L, BOD515mg/L, pH7, 色度 8 倍, SS5mg/L。
Claims
1. 一种制药化工园区混合废水的处理方法, 其步骤为:
(A) 制药化工园区混合废水进入调节池进行水量水质的调节后, 进入水解池, 水 解池内部填充悬挂式填料, 采用上流式布水;
( B) 水解池的出水进入厌氧池, 厌氧池采用上流式布水, 池底设有穿孔管作为布 水管, 池顶部为三相分离区, 厌氧池出水回流位置在三相分离器下部, 通过外 循环加压泵从池底部进入厌氧池;
(C ) 厌氧池出水进入移动床生物膜反应器, 在移动床生物膜反应器中投加悬浮填 料, 在其池底有曝气装置;
( D) 移动床生物膜反应器的出水采用上部喷淋的形式进入曝气生物滤池, 曝气生 物滤池中投加陶瓷填料, 底部有承托板和出水管, 底部设置有反冲洗进水管, 顶部设计有筛网防止反冲洗时填料溢出, 并设计有反冲洗出水管, 出水为上清 液出水;
( E) 曝气生物滤池的出水先后进入沉淀池和混凝反应池进行沉淀。
2. 根据权利要求 1 所述的一种制药化工园区混合废水的处理方法, 其特征在于将 脱水泥饼与制药化工园区混合废水混合搅拌为泥水混合物, 投入水解池和厌氧 池进行厌氧发酵污泥激活培养, 将活性污泥与制药化工园区混合废水混合分别 投入移动床生物膜反应器反应装置和曝气生物滤池, 进行闷曝。
3. 根据权利要求 2所述的一种制药化工园区混合废水的处理方法, 其特征在于整 个工艺连续进水, 以达到水解和厌氧装置的污泥驯化, 水解池中组合填料的挂 膜, 移动床生物膜反应器和曝气生物滤池载体填料的挂膜; 根据需要对反应装 置的运行参数进行调节, 以达到整个反应装置的优化运行。
4. 根据权利要求 1~3中任一项所述的一种制药化工园区混合废水的处理方法, 其 特征在于步骤(B)中所述的厌氧池为结合上流式厌氧污泥床反应器和厌氧滤池 两种工艺的复合式厌氧池。
5. 根据权利要求 1~3中任一项所述的一种制药化工园区混合废水的处理方法, 其 特征在于步骤 (C) 中所述的移动床生物膜反应器反应装置为推流式反应装置, 底部设有布气区, 汽水比为 50:1, 填料填充率体积比为 60%, 出水口设有锯齿 型溢流堰板。
根据权利要求 1~3中任一项所述的一种制药化工园区混合废水的处理方法, 其 特征在于步骤 (E) 中沉淀工艺中需投加絮凝剂, 絮凝剂为铝盐。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/894,195 US7988857B2 (en) | 2008-04-08 | 2010-09-30 | Method for treating mixed wastewater from pharmaceutical chemical industry park |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008100233330A CN101254993B (zh) | 2008-04-08 | 2008-04-08 | 一种制药化工园区混合废水的处理方法 |
CN200810023333.0 | 2008-04-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/894,195 Continuation US7988857B2 (en) | 2008-04-08 | 2010-09-30 | Method for treating mixed wastewater from pharmaceutical chemical industry park |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009124426A1 true WO2009124426A1 (zh) | 2009-10-15 |
Family
ID=39890162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/001373 WO2009124426A1 (zh) | 2008-04-08 | 2008-07-25 | 一种制药化工园区混合废水的处理方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7988857B2 (zh) |
CN (1) | CN101254993B (zh) |
WO (1) | WO2009124426A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112299644A (zh) * | 2020-01-16 | 2021-02-02 | 广东宇唐环保设备有限公司 | 一种高效的污水处理系统及其高效处理方法 |
CN113845265A (zh) * | 2020-06-25 | 2021-12-28 | 宝山钢铁股份有限公司 | 一种碱性废水高效处理方法和系统 |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101885555B (zh) * | 2009-05-12 | 2012-04-25 | 江西金达莱环保研发中心有限公司 | 一种处理发酵类制药废水的方法 |
CN101602564B (zh) * | 2009-07-21 | 2011-07-20 | 南京大学 | 一种焦化废水的处理方法 |
CN102276101A (zh) * | 2010-06-10 | 2011-12-14 | 中国科学院生态环境研究中心 | 一种含喹诺酮类抗生素废水的生化处理反应器 |
CN102633403B (zh) * | 2012-02-26 | 2015-07-29 | 南京大学 | 一种维生素b12生产废水的处理方法 |
CN102827410A (zh) * | 2012-08-17 | 2012-12-19 | 四川亿思通科技工程有限公司 | 生物亲和亲水磁性悬浮填料及其制备方法 |
CN103910470B (zh) * | 2014-04-04 | 2015-07-29 | 南京大学盐城环保技术与工程研究院 | 一种处理化工园区综合废水的系统及方法 |
CN104230109B (zh) * | 2014-09-23 | 2016-01-20 | 哈尔滨工业大学 | Uasb/a/mbbr结合化学法处理高有机物高氨氮废水的方法 |
CN104556562B (zh) * | 2014-12-15 | 2016-08-24 | 北京桑德环境工程有限公司 | 一种工业园区废水的深度处理方法 |
CN104529072B (zh) * | 2014-12-25 | 2016-08-24 | 北京桑德环境工程有限公司 | 一种聚乙烯醇废水的处理系统及方法 |
US9896363B2 (en) * | 2015-04-06 | 2018-02-20 | Headworks Bio Inc. | Moving bed biofilm reactor for waste water treatment system |
CN104817168A (zh) * | 2015-04-13 | 2015-08-05 | 广东石油化工学院 | Mbbr工艺填料的挂膜方法 |
JP6924812B2 (ja) * | 2016-03-03 | 2021-08-25 | 住友重機械エンバイロメント株式会社 | 水処理装置及び水処理方法 |
CN105858912A (zh) * | 2016-05-09 | 2016-08-17 | 芜湖卓越空调零部件有限公司 | 一种调节池 |
CN106365304A (zh) * | 2016-09-30 | 2017-02-01 | 南京大学 | 一种青霉素废水生物强化处理装置及处理方法 |
CN106904795B (zh) * | 2017-03-31 | 2021-03-19 | 沈阳环境科学研究院 | 一种奶牛养殖废水处理工艺 |
CN107082491A (zh) * | 2017-06-06 | 2017-08-22 | 谢绍舜 | 升流式厌氧生化污水处理组合池 |
CN107117702A (zh) * | 2017-07-06 | 2017-09-01 | 河北海鹰环境安全科技股份有限公司 | 一种污水处理多功能曝气生物滤池 |
CN107244785B (zh) * | 2017-07-26 | 2023-04-18 | 广州市卓冠环保科技有限公司 | 一种微动力化粪池 |
CN107337280A (zh) * | 2017-09-13 | 2017-11-10 | 哈尔滨工业大学 | 一种工业园区污水厂水解酸化反应器 |
SE542009C2 (en) | 2018-01-29 | 2020-02-11 | Veolia Water Solutions & Tech | Biofilm carrier media in moving bed biofilm reactor processes |
CN108821515A (zh) * | 2018-07-20 | 2018-11-16 | 华兰生物工程重庆有限公司 | 一种生物制药污水处理系统及方法 |
CN108726660A (zh) * | 2018-08-07 | 2018-11-02 | 浙江海拓环境技术有限公司 | 一种用于电镀废水处理的mbbr反应器 |
CN109912018B (zh) * | 2019-04-11 | 2024-01-09 | 信开环境投资有限公司 | 悬浮生物膜组件、包含其的系统及使用方法 |
CN110467322A (zh) * | 2019-09-20 | 2019-11-19 | 扬州大学 | 实验室高浓度综合废水处理一体机 |
CN111087131A (zh) * | 2019-12-31 | 2020-05-01 | 深圳粤鹏环保技术股份有限公司 | 一种制药废水生化处理方法 |
CN111498983A (zh) * | 2020-04-22 | 2020-08-07 | 图方便(苏州)环保科技有限公司 | 一种基于mbbr污水处理用过滤装置及处理方法 |
CN111807616B (zh) * | 2020-07-07 | 2022-03-25 | 云锦华彰(北京)生物科技有限公司 | 一种可操控生物技术的污水净化装置 |
CN111825274A (zh) * | 2020-07-08 | 2020-10-27 | 宁波神筹环保设备有限公司 | 一种工业园区综合污水深度处理装置和方法 |
CN112759183A (zh) * | 2020-12-17 | 2021-05-07 | 自然资源部天津海水淡化与综合利用研究所 | 一种玉米淀粉加工废水的处理方法 |
CN112978902A (zh) * | 2021-03-29 | 2021-06-18 | 国环科技发展(湖北)有限公司 | 一种提标升级mbbr生化处理设备及其方法 |
CN114314841B (zh) * | 2022-02-08 | 2023-07-25 | 兰州大学淮安高新技术研究院 | 固定化生物滤池挂膜方法 |
CN116375233B (zh) * | 2023-03-24 | 2024-04-12 | 寿县国祯水处理有限公司 | 一种分区联动提升的曝气系统及需氧量联动计算方法 |
CN118062994A (zh) * | 2024-03-19 | 2024-05-24 | 太原市泓源环境工程有限公司 | 一种曝气生物滤池及污水处理方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1154219A1 (ru) * | 1983-02-16 | 1985-05-07 | Ордена Трудового Красного Знамени Институт Биологии Южных Морей Им.А.О.Ковалевского | Способ биохимической очистки сточных вод |
US6126830A (en) * | 1997-09-10 | 2000-10-03 | Marshall; Judith M. | Method and apparatus for treating medical waste water |
KR20010056962A (ko) * | 1999-12-17 | 2001-07-04 | 김동우 | 염색폐수처리방법 |
KR20050028949A (ko) * | 2003-09-17 | 2005-03-24 | 한국과학기술연구원 | 고농도 축산폐수의 효율적인 영양소 제거 장치 및 방법 |
CN1611457A (zh) * | 2003-10-30 | 2005-05-04 | 中国石油化工股份有限公司 | 一种高浓度有机废水的处理方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0645038B2 (ja) * | 1987-12-08 | 1994-06-15 | 新日本製鐵株式会社 | セラミックスによる水の浄化方法 |
US5057221A (en) * | 1988-12-19 | 1991-10-15 | Weyerhaeuser Company | Aerobic biological dehalogenation reactor |
US6309553B1 (en) * | 1999-09-28 | 2001-10-30 | Biothane Corporation | Phase separator having multiple separation units, upflow reactor apparatus, and methods for phase separation |
US6391203B1 (en) * | 2000-11-22 | 2002-05-21 | Alexander G. Fassbender | Enhanced biogas production from nitrogen bearing feed stocks |
US6692642B2 (en) * | 2002-04-30 | 2004-02-17 | International Waste Management Systems | Organic slurry treatment process |
CN1257118C (zh) * | 2004-05-19 | 2006-05-24 | 天津大学 | 气井采出废水达标排放的集成化处理工艺 |
US20090166296A1 (en) * | 2004-12-06 | 2009-07-02 | Aquenox Pty Ltd | Wastewater treatment plant |
CN1296293C (zh) * | 2005-04-05 | 2007-01-24 | 太原理工大学 | 一种焦化废水生物处理的工艺 |
CN100368318C (zh) * | 2005-12-15 | 2008-02-13 | 南京大学 | 一种纺织印染废水生物厌氧反应器 |
US7625490B2 (en) * | 2006-09-27 | 2009-12-01 | Cort Steven L | Use of a magnetic separator to biologically clean water |
US20080099409A1 (en) * | 2006-10-26 | 2008-05-01 | Aquatron Robotic Systems Ltd. | Swimming pool robot |
US7491336B2 (en) * | 2006-11-01 | 2009-02-17 | Rimkus Consulting Group, Inc. | Process for treating industrial effluent water with activated media |
CN1948190B (zh) * | 2006-11-07 | 2012-07-25 | 南京大学 | 氟洛芬生产废水的处理方法 |
-
2008
- 2008-04-08 CN CN2008100233330A patent/CN101254993B/zh not_active Expired - Fee Related
- 2008-07-25 WO PCT/CN2008/001373 patent/WO2009124426A1/zh active Application Filing
-
2010
- 2010-09-30 US US12/894,195 patent/US7988857B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1154219A1 (ru) * | 1983-02-16 | 1985-05-07 | Ордена Трудового Красного Знамени Институт Биологии Южных Морей Им.А.О.Ковалевского | Способ биохимической очистки сточных вод |
US6126830A (en) * | 1997-09-10 | 2000-10-03 | Marshall; Judith M. | Method and apparatus for treating medical waste water |
KR20010056962A (ko) * | 1999-12-17 | 2001-07-04 | 김동우 | 염색폐수처리방법 |
KR20050028949A (ko) * | 2003-09-17 | 2005-03-24 | 한국과학기술연구원 | 고농도 축산폐수의 효율적인 영양소 제거 장치 및 방법 |
CN1611457A (zh) * | 2003-10-30 | 2005-05-04 | 中国石油化工股份有限公司 | 一种高浓度有机废水的处理方法 |
Non-Patent Citations (1)
Title |
---|
SONG, X.ET AL.: "A Process of Hydrolysis/Acidification-A/O2-SMBR for Treating High Concentration Nitrogen Wastewater from Pharmaceutical Industrial.", WATER & WASTEWATER ENGINEERING., vol. 33, no. 5, May 2007 (2007-05-01), pages 57 - 59 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112299644A (zh) * | 2020-01-16 | 2021-02-02 | 广东宇唐环保设备有限公司 | 一种高效的污水处理系统及其高效处理方法 |
CN113845265A (zh) * | 2020-06-25 | 2021-12-28 | 宝山钢铁股份有限公司 | 一种碱性废水高效处理方法和系统 |
CN113845265B (zh) * | 2020-06-25 | 2024-03-12 | 宝山钢铁股份有限公司 | 一种碱性废水高效处理方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
CN101254993A (zh) | 2008-09-03 |
US7988857B2 (en) | 2011-08-02 |
US20110079554A1 (en) | 2011-04-07 |
CN101254993B (zh) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009124426A1 (zh) | 一种制药化工园区混合废水的处理方法 | |
CN100402448C (zh) | 制浆造纸废水的净化处理方法 | |
CN101591123B (zh) | 一种印染废水处理系统 | |
CN100398470C (zh) | 一种垃圾渗滤液处理方法 | |
CN108751625B (zh) | 一种发酵类抗生素废水的处理系统及工艺 | |
WO2010133177A1 (zh) | 一种垃圾渗滤液废水处理系统及其工艺 | |
CN109052821B (zh) | 一种高效资源回收低能耗的制药废水处理装置及其运行方法 | |
CN104986916B (zh) | 一种造纸涂布废水处理工艺 | |
CN102826710B (zh) | 一种高盐分高氨氮制药污水的处理工艺及处理装置 | |
CN102659281B (zh) | 白酒生产废水的处理方法 | |
CN101565261A (zh) | 一种医药中间体生产废水的处理方法 | |
CN101250006A (zh) | 一种垃圾渗滤液好氧厌氧循环处理流化床反应器 | |
CN108821473A (zh) | 一种印染污水处理工艺 | |
CN110818205A (zh) | 一种降低钢铁综合废水污染物浓度的系统及工艺 | |
CN111762965A (zh) | 一种石油化工废水深度处理回收利用方法 | |
CN101863592B (zh) | 一种城镇小型生活垃圾填埋场渗滤液处理方法 | |
CN108275780A (zh) | 新型高含氮石化废水处理装置及参数调整的方法 | |
CN201136823Y (zh) | 一种垃圾废水好氧厌氧循环处理装置 | |
CN102863078B (zh) | 一种化工废水的处理方法 | |
CN107973488A (zh) | 一种氨氮废水脱氮处理的方法 | |
CN211311222U (zh) | 一种豆制品废水达标处理的装置 | |
US11447408B2 (en) | Combination of captivator and fixed film bioreactor solutions | |
CN106746223A (zh) | 混凝‑厌氧水解‑好氧协同处理切削液废水装置及方法 | |
CN102633403B (zh) | 一种维生素b12生产废水的处理方法 | |
CN216639199U (zh) | 一种基于芬顿的废水处理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08783564 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08783564 Country of ref document: EP Kind code of ref document: A1 |