WO2009119804A1 - 電子部品用薄膜配線および薄膜配線形成用スパッタリングターゲット材 - Google Patents
電子部品用薄膜配線および薄膜配線形成用スパッタリングターゲット材 Download PDFInfo
- Publication number
- WO2009119804A1 WO2009119804A1 PCT/JP2009/056284 JP2009056284W WO2009119804A1 WO 2009119804 A1 WO2009119804 A1 WO 2009119804A1 JP 2009056284 W JP2009056284 W JP 2009056284W WO 2009119804 A1 WO2009119804 A1 WO 2009119804A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thin film
- film
- atomic
- substrate
- resistance
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53257—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a refractory metal
- H01L23/53261—Refractory-metal alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/04—Alloys based on tungsten or molybdenum
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/095—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
- H01L2924/097—Glass-ceramics, e.g. devitrified glass
- H01L2924/09701—Low temperature co-fired ceramic [LTCC]
Definitions
- the present invention relates to a flat display device such as a liquid crystal display or an organic EL display, a thin film wiring for an electronic component used for an electric wiring / electrode of an electronic component such as a thin film sensor, and a sputtering target material for forming a thin film wiring.
- TFT liquid crystal displays that produce thin film devices on substrates such as glass
- electrical wiring films and electrodes that are used to form elements on thin film sensors and ceramic substrates
- corrosion resistance, heat resistance, and adhesion to the substrate have been used.
- a pure metal film such as a pure Cr film, a pure Ta film, a pure Ti film or the like, which is excellent in high melting point metal, or an alloy film thereof is used.
- the present applicant has also proposed a Mo alloy film in which 3 to 50 atomic% of Nb is added to Mo as a low resistance Mo alloy film excellent in corrosion resistance, heat resistance and adhesion to a substrate (for example, Patent Documents). 1). JP 2002-190212 A
- An object of the present invention is to provide a novel thin film wiring and thin film for an electronic component of an Mo alloy that has low resistance, heat resistance, corrosion resistance, and excellent adhesion to the substrate even when the film is formed on a large substrate. It is to provide a sputtering target material for forming a wiring.
- the present inventor has found that a tensile stress is easily applied to the sputtering film of the MoNb alloy, and an appropriate amount of W is effective for the relaxation of the tensile stress.
- the present invention has been found.
- the additive element in a thin film wiring in which a metal film is formed on a substrate, when the total amount of Mo and an additive element is 100 atomic%, the additive element contains Nb of 2 to 15 atomic% and W as the additive element.
- the present invention when the total amount of Mo and additive elements is 100 atomic%, contains 2 to 15 atomic% of Nb, 2 to 20 atomic% of W, and 30 atomic% or less of Nb + W as the additional elements, and the balance It is a sputtering target material for forming a thin film wiring composed of Mo and inevitable impurities.
- the Mo alloy film of the present invention By selecting the Mo alloy film of the present invention, low resistance, excellent heat resistance, corrosion resistance and adhesion to the substrate, and it is possible to suppress the occurrence of warping to a large substrate. As an indispensable technology.
- An important feature of the present invention is that by adding appropriate amounts of Nb and W to Mo, low resistance, excellent heat resistance, corrosion resistance, and adhesion to the substrate, and tensile stress when sputtering film formation is performed. It is in the point that it becomes possible to reduce the warpage and suppress the occurrence of warping of the substrate on which the Mo alloy thin film is formed.
- Nb is contained as an additive element in an amount of 2 to 15 atomic%, W is 2 to 20 atomic%, and Nb + W is 30 atomic% or less.
- the reason why Nb is contained as an additive element in the present invention is that it has an effect of improving corrosion resistance by alloying with Mo. This effect of improving the corrosion resistance appears from 2 atomic%, and the corrosion resistance improves with an increase in the amount added, but excessive addition is not desirable because the specific resistance increases.
- the upper limit of the addition amount is preferably 15 atomic%. More preferably, it is 10 atomic% or less.
- Mo is an element that has practically low resistance and adhesion, but is inferior in corrosion resistance, and is easily subjected to tensile stress when formed on a large substrate by sputtering. Even if only Nb is added to Mo, there is little effect on the relaxation of the tensile stress applied to the sputtered film of Mo. Therefore, W is added to relieve the tensile stress. The effect of relieving the tensile stress of the MoNb alloy film becomes clear by adding W at 2 atomic% or more. The relaxation of the tensile stress becomes remarkable as the film stress changes from the tension side to the compression side as the amount of W added increases, but when the amount of W exceeds 20 atomic%, the compressive stress increases and the adhesion decreases. Therefore, it is desirable to make it 20 atomic% or less.
- the thin film wiring for electronic parts of the present invention preferably has a low specific resistance. Therefore, the total amount of Nb and W added is set to 30 atomic% or less. An increase in the specific resistance in the wiring causes a signal delay of the thin film device and causes a decrease in performance. Therefore, it is desirable that the specific resistance is as low as possible. A practical specific resistance is desirably 30 ⁇ cm or less. In the case of the Mo alloy thin film of the present invention in which the specific resistance is increased by adding Nb and W to alloy with Mo, optimization of the addition amount of Nb and W is the most effective in reducing the specific resistance. It is important, and in order to stably realize a thin film wiring of 30 ⁇ cm or less, it is more preferable that the total amount of Nb and W added is 20 atomic% or less.
- Mo is an element that has practically both adhesion and low resistance, and therefore is an essential element and is a base element that occupies the remainder other than Nb and W described above. Therefore, it is desired that the balance has as little unavoidable impurity content as possible, but oxygen, nitrogen and carbon, which are gas components, and Fe, Cu, which are transition metals, and semimetals, as long as the effects of the present invention are not impaired. Inevitable impurities such as Al and Si may be included.
- oxygen and nitrogen of the gas components are each 1000 ppm by mass or less, carbon is 200 ppm by mass or less, Fe and Cu are 200 ppm by mass or less, Al and Si are 100 ppm by mass or less, and the purity excluding the gas components It may be 99.9% or more.
- the resistance of the conventional MoNb alloy is ensured while maintaining the same or better characteristics as the conventional MoNb alloy having low resistance, excellent heat resistance, corrosion resistance, and adhesion to the substrate.
- the problem of tensile stress can be alleviated. For this reason, it has the effect that it becomes possible to suppress generation
- the film thickness is preferably 100 to 400 nm in order to obtain a stable electric resistance.
- the film thickness is less than 100 nm, since the film is thin, the electrical resistance increases due to the influence of electron surface scattering, and the surface form of the film easily changes.
- the film thickness exceeds 400 nm, it is possible to reduce the specific resistance, but it takes time to form the film and the productivity is lowered.
- sputtering using a target material is optimal.
- a method of forming a film using a Mo alloy target material having the same composition as the thin film wiring a method of forming a film by cosputtering using a MoNb alloy target material and a MoW alloy target material, and the like can be applied. From the viewpoint of easy setting of sputtering conditions and easy production of a wiring thin film having a desired composition, it is desirable to perform sputtering film formation using the same Mo alloy target material as the composition of the thin film wiring.
- the film formation conditions during sputtering are an Ar gas pressure of 0.5 Pa or less, a power density of 5 W / cm 2 or more, and a substrate heating temperature of 150 ° C. or more. .
- Mo-10Nb (atomic%) and Mo-35W (atomic%) targets were prepared, and an Mo alloy thin film was formed using a sputtering apparatus of Anelva SPF440.
- the sputtering conditions were such that the Ar pressure was 0.3 Pa, the total input power was fixed at 700 W, and the Mo—Nb—W thin film and the Mo—Nb thin film having different compositions shown in Table 1 were formed on a Si wafer having a diameter of 101.6 mm. A film having a thickness of 200 nm was formed thereon.
- the substrate was rotated so that the film thickness became uniform. Subsequently, the film stress of the formed Mo alloy thin film was measured using a thin film stress measuring instrument FLX2320 (KLA-tencor).
- Samples 2 and 3 of the present invention can realize a thin film having a low resistance of 30 ⁇ cm or less at the time of film formation and have sufficient corrosion resistance without an increase in specific resistance even after the corrosion resistance test.
- the Mo—Nb target and the Mo—Nb—W target shown in Table 2 were prepared, and the sputtering conditions were as follows: Ar pressure: 0.25 Pa; input power: 500 W; A Mo alloy film was formed.
- Table 2 shows the results of measuring the film stress of the Mo alloy thin film after film formation in the same manner as in Example 1. Further, for the formed Mo alloy thin film, in the same manner as in Example 1, the specific resistance at the time of film formation and the specific resistance after the corrosion resistance test immersed in pure water for 5 days were measured by the 4-probe method. The measurement results are shown in Table 2.
- the Mo target, Mo—Nb target, and Mo—Nb—W target shown in Table 3 were prepared, the sputtering conditions were Ar pressure of 0.3 Pa, the input power was 700 W, and the thickness was on a Si wafer having a diameter of 101.6 mm. Mo film and Mo alloy film were formed at 400 nm.
- the results of measuring the film stress in the same manner as in Example 1 are shown in Table 3. Further, the Mo alloy thin film formed as described above was held for 200 hours in an environment of a specific resistance at the time of film formation and a specific resistance after a corrosion resistance test immersed in pure water for 5 days at a temperature of 85 ° C. and a relative humidity of 85%. The specific resistance after the high temperature and high humidity test was measured by a four-probe method. Table 4 shows the measurement results.
- the Mo—Nb—W alloy film of the present invention has a small difference between the target composition and the film composition and can reduce the tensile stress as compared with the Mo film and the Mo—Nb alloy film. Further, it can be seen that the film characteristics have a higher corrosion resistance than Mo as in the case of the Mo—Nb alloy, so that the resistance value changes little after the corrosion resistance test and after the high temperature and high humidity test.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
さらに、最近、液晶ディスプレイ等の平面表示装置分野では、表示装置の大型化、高精細化に伴って信号の遅延を防止するために配線膜・電極膜を低抵抗化する要求がある。
このような低抵抗化の要求に対して、より低抵抗な高融点金属としてMoを主成分とした配線膜が検討されている。本出願人も、耐食性、耐熱性や基板との密着性に優れた低抵抗なMo合金膜としてMoに3~50原子%のNbを添加したMo合金膜を提案している(例えば、特許文献1参照)。
本発明の目的は、大型の基板への成膜においても、基板に反りが発生しない低抵抗で耐熱性、耐食性、基板との密着性に優れた新規なMo合金の電子部品用薄膜配線および薄膜配線を形成するためのスパッタリングターゲット材を提供することである。
また、好ましくは、比抵抗が30μΩcm以下である電子部品用薄膜配線である。また、好ましくは、膜厚が100nm~400nmである電子部品用薄膜配線である。
また、本発明は、Moと添加元素の総量を100原子%とした時、該添加元素としてNbを2~15原子%、Wを2~20原子%、Nb+Wで30原子%以下含有し、残部Moおよび不可避的不純物でなる薄膜配線形成用スパッタリングターゲット材である。
本発明でNbを添加元素として含有するのは、Moと合金化することで耐食性を改善する効果を有するためである。この耐食性の改善効果は、2原子%から現れ、添加量の増加とともに耐食性は向上するが、比抵抗が上昇するため過度の添加は望ましくない。特に、薄膜配線として使用する上では、比抵抗を30μΩcm程度に安定的に制御しなければならないため、添加量の上限は15原子%が望ましい。より好ましくは10原子%以下である。
MoにNbのみを添加しても、Moのスパッタ膜に付与される引張応力の緩和には効果が少ない。そこで、引張応力を緩和するためにWを添加する。上記のMoNb合金膜の引張応力を緩和する効果はWを2原子%以上で添加することで明確となる。引張応力の緩和はWの添加量の増加に伴い膜応力が引張側から圧縮側に推移することで顕著になるがWの添加量が20原子%を超えると圧縮応力が増加し密着性が低下するので、20原子%以下とすることが望ましい。
本発明の電子部品用薄膜配線では、上記の構成により、低抵抗で、耐熱性、耐食性および基板との密着性に優れる従来のMoNb合金と同等以上の特性を確保しつつ、従来のMoNb合金の問題であった引張応力を緩和することができる。このためMo合金薄膜を成膜した基板の反りの発生を抑制することが可能となるという効果を有し、電子部品用薄膜配線として好適である。
また、低抵抗なMo合金膜を得るには、スパッタリング時の成膜条件はArガス圧を0.5Pa以下、電力密度を5W/cm2以上、基板加熱温度を150℃以上とすることが望ましい。
続いて、成膜したMo合金薄膜の膜応力を薄膜応力測定器FLX2320(KLA-tencor)を使用して測定した。測定結果を表1に示す。
また、成膜したMo合金薄膜について、成膜時の比抵抗と純水に5日間浸漬させた耐食試験後の比抵抗を4探針法により測定した。測定結果を表1に示す。
また、本発明例の試料2および3は、成膜時に30μΩcm以下と低抵抗な薄膜を実現できること、また、耐食試験後にも比抵抗の上昇がなく十分な耐食性を有していることが分かる。
また、成膜したMo合金薄膜について、実施例1と同様に、成膜時の比抵抗と純水に5日間浸漬させた耐食試験後の比抵抗を4探針法により測定した。測定結果を表2に示す。
また、上記で成膜したMo合金薄膜について、成膜時の比抵抗と、純水に5日間浸漬させた耐食試験後の比抵抗、温度85℃・相対湿度85%の環境に200時間保持した高温高湿試験後の比抵抗を4探針法により測定した。測定結果を表4に示す。
Claims (4)
- 基板上に金属膜を形成した薄膜配線において、前記金属膜はMoと添加元素の総量を100原子%とした時、該添加元素としてNbを2~15原子%、Wを2~20原子%、Nb+Wで30原子%以下含有し、残部Moおよび不可避的不純物でなることを特徴とする電子部品用薄膜配線。
- 比抵抗が30μΩcm以下であることを特徴とする請求項1に記載の電子部品用薄膜配線。
- 前記金属膜の膜厚が100nm~400nmであることを特徴とする請求項1または2に記載の電子部品用薄膜配線。
- Moと添加元素の総量を100原子%とした時、該添加元素としてNbを2~15原子%、Wを2~20原子%、Nb+Wで30原子%以下含有し、残部Moおよび不可避的不純物でなることを特徴とする薄膜配線形成用スパッタリングターゲット材。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020107024041A KR101250191B1 (ko) | 2008-03-28 | 2009-03-27 | 전자부품용 박막 배선 및 박막 배선 형성용 스퍼터링 타겟재 |
JP2010505834A JP5327651B2 (ja) | 2008-03-28 | 2009-03-27 | 電子部品用薄膜配線および薄膜配線形成用スパッタリングターゲット材 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008085631 | 2008-03-28 | ||
JP2008-085631 | 2008-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009119804A1 true WO2009119804A1 (ja) | 2009-10-01 |
Family
ID=41113988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/056284 WO2009119804A1 (ja) | 2008-03-28 | 2009-03-27 | 電子部品用薄膜配線および薄膜配線形成用スパッタリングターゲット材 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5327651B2 (ja) |
KR (1) | KR101250191B1 (ja) |
WO (1) | WO2009119804A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012049535A (ja) * | 2010-08-25 | 2012-03-08 | Plansee Se | 多重膜のエッチング液組成物及びそのエッチング方法 |
WO2025013598A1 (ja) * | 2023-07-12 | 2025-01-16 | 株式会社プロテリアル | 電子部品用積層配線膜および被覆層形成用スパッタリングターゲット材 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995016797A1 (fr) * | 1993-12-14 | 1995-06-22 | Kabushiki Kaisha Toshiba | Materiau en molybdene-tungstene pour cablage, cible en molybdene-tungstene pour cablage, procede de fabrication et couche mince de cablage en molybdene-tungstene |
JP2005307226A (ja) * | 2004-04-16 | 2005-11-04 | Hitachi Metals Ltd | Mo系ターゲット材 |
JP2008010342A (ja) * | 2006-06-30 | 2008-01-17 | Mitsubishi Electric Corp | 透明性導電膜、半導体デバイスおよびアクティブマトリクス型表示装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT8697U1 (de) * | 2005-10-14 | 2006-11-15 | Plansee Se | Rohrtarget |
-
2009
- 2009-03-27 JP JP2010505834A patent/JP5327651B2/ja active Active
- 2009-03-27 KR KR1020107024041A patent/KR101250191B1/ko active Active
- 2009-03-27 WO PCT/JP2009/056284 patent/WO2009119804A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995016797A1 (fr) * | 1993-12-14 | 1995-06-22 | Kabushiki Kaisha Toshiba | Materiau en molybdene-tungstene pour cablage, cible en molybdene-tungstene pour cablage, procede de fabrication et couche mince de cablage en molybdene-tungstene |
JP2005307226A (ja) * | 2004-04-16 | 2005-11-04 | Hitachi Metals Ltd | Mo系ターゲット材 |
JP2008010342A (ja) * | 2006-06-30 | 2008-01-17 | Mitsubishi Electric Corp | 透明性導電膜、半導体デバイスおよびアクティブマトリクス型表示装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012049535A (ja) * | 2010-08-25 | 2012-03-08 | Plansee Se | 多重膜のエッチング液組成物及びそのエッチング方法 |
WO2025013598A1 (ja) * | 2023-07-12 | 2025-01-16 | 株式会社プロテリアル | 電子部品用積層配線膜および被覆層形成用スパッタリングターゲット材 |
Also Published As
Publication number | Publication date |
---|---|
JP5327651B2 (ja) | 2013-10-30 |
JPWO2009119804A1 (ja) | 2011-07-28 |
KR101250191B1 (ko) | 2013-04-05 |
KR20100126572A (ko) | 2010-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5541651B2 (ja) | 薄膜トランジスター用配線膜形成用スパッタリングターゲット | |
JP6823799B2 (ja) | 電子部品用積層配線膜および被覆層形成用スパッタリングターゲット材 | |
KR20210029744A (ko) | 구리 합금 스퍼터링 타겟 및 구리 합금 스퍼터링 타겟의 제조 방법 | |
KR101804660B1 (ko) | 전자 부품용 적층 배선막 및 피복층 형성용 스퍼터링 타깃재 | |
JP6292471B2 (ja) | 電子部品用金属薄膜および金属薄膜形成用Mo合金スパッタリングターゲット材 | |
TWI576454B (zh) | Spraying target for forming wiring film and coating layer for electronic parts | |
WO2017022320A1 (ja) | アルミニウムスパッタリングターゲット | |
JP2007084928A (ja) | 銅合金製バッキングプレートおよび該銅合金の製造方法 | |
JP5327651B2 (ja) | 電子部品用薄膜配線および薄膜配線形成用スパッタリングターゲット材 | |
TW201447004A (zh) | 銅-錳合金膜及銅-錳合金濺鍍靶材及銅-錳合金膜的成膜方法 | |
JP4743645B2 (ja) | 金属薄膜配線 | |
KR101337141B1 (ko) | 전자부품용 적층 배선막 | |
JP5125112B2 (ja) | 熱欠陥発生のない液晶表示装置用配線および電極並びにそれらを形成するためのスパッタリングターゲット | |
JP5099504B2 (ja) | 密着性に優れた液晶表示装置用配線および電極 | |
TW201439347A (zh) | 金屬薄膜及金屬薄膜形成用鉬合金濺鍍靶材 | |
CN102953036A (zh) | 电子部件用层叠配线膜和被覆层形成用溅射靶材 | |
JP4876785B2 (ja) | 銅合金製バッキングプレートおよび該銅合金の製造方法 | |
JP4840173B2 (ja) | 熱欠陥発生がなくかつ密着性に優れた液晶表示装置用積層配線および積層電極並びにそれらの形成方法 | |
JP2011122212A (ja) | 繰返し加熱における抵抗率安定性に優れるNi合金電極膜およびNi合金電極膜形成用スパッタリングターゲット | |
JP2008107710A (ja) | 熱欠陥発生が少なくかつ表面状態の良好な液晶表示装置用配線および電極並びにそれらを形成するためのスパッタリングターゲット | |
TWI619820B (zh) | 銅合金濺鍍靶材 | |
WO2025013598A1 (ja) | 電子部品用積層配線膜および被覆層形成用スパッタリングターゲット材 | |
TW200622017A (en) | Wiring/electrode and sputtering target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09723953 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010505834 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107024041 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09723953 Country of ref document: EP Kind code of ref document: A1 |