[go: up one dir, main page]

WO2009119116A1 - 環境温度測定方法、液体試料測定方法および測定器 - Google Patents

環境温度測定方法、液体試料測定方法および測定器 Download PDF

Info

Publication number
WO2009119116A1
WO2009119116A1 PCT/JP2009/001425 JP2009001425W WO2009119116A1 WO 2009119116 A1 WO2009119116 A1 WO 2009119116A1 JP 2009001425 W JP2009001425 W JP 2009001425W WO 2009119116 A1 WO2009119116 A1 WO 2009119116A1
Authority
WO
WIPO (PCT)
Prior art keywords
environmental temperature
temperature
measuring
charging
measuring instrument
Prior art date
Application number
PCT/JP2009/001425
Other languages
English (en)
French (fr)
Inventor
楠本邦雅
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/747,711 priority Critical patent/US20100268475A1/en
Priority to CN200980101229.1A priority patent/CN101883972B/zh
Priority to JP2010505374A priority patent/JP5430555B2/ja
Priority to EP09724854A priority patent/EP2259038A4/en
Publication of WO2009119116A1 publication Critical patent/WO2009119116A1/ja
Priority to US15/223,175 priority patent/US20160334357A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3274Corrective measures, e.g. error detection, compensation for temperature or hematocrit, calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3273Devices therefor, e.g. test element readers, circuitry

Definitions

  • the present invention relates to a measuring instrument that measures an analyte with high contamination and infectivity, and more particularly, to a configuration and a measuring method that provide high analysis accuracy in a measuring instrument that uses a disposable sensor.
  • detachable disposable sensors are used as sensor parts that come into contact with samples.
  • a biosensing device is a sensing device that uses a biological material as a molecular identification element, utilizing the molecular recognition ability of biological materials such as microorganisms, enzymes, and antibodies, among the measurement elements of a sensor that recognizes an analyte. It is. In other words, this biosensing device uses biological materials in part of the process of recognizing a specific component of interest and measuring its concentration to identify the target molecule and send a signal that depends on the concentration. is there.
  • biosensors using enzyme reactions and immune reactions of antibodies have been put into practical use and are widely used in the medical field and food field.
  • various methods such as electrochemical analysis, colorimetry, and luminescence analysis have been developed as quantification methods.
  • measuring instruments in the medical field related to people's health are required to have high measurement accuracy due to their role despite the use of disposable sensors.
  • various corrections are made to the concentration analysis value of the specimen in order to achieve high measurement accuracy.
  • concentration analysis value of the specimen in order to achieve high measurement accuracy.
  • optimization of sensors and calibration curves by lot management will be included in the category of correction.
  • temperature is one of the most important factors in correction. For example, when measuring the concentration of a specific component in a sample, if the sample temperature is higher than the reference temperature for which a calibration curve is set (which cannot be generally stated), acceleration will occur at various analysis stages and the measurement result will be It will be larger than the actual value. On the other hand, if the sample temperature is lower than the reference temperature, the opposite measurement result may be obtained.
  • an environmental temperature sensor is generally provided in a measuring instrument, and the value is used as a sample temperature during measurement to apply temperature correction to the analyte concentration value.
  • this method since this method only uses the ambient temperature as the sample temperature during measurement in a pseudo manner, it is difficult to perform an accurate correction if there is a deviation between the sample-derived temperature and the ambient temperature. is there. Therefore, there is a need for a method for measuring and correcting the temperature of the sample concentration measuring unit (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 discloses a plan view of a measuring instrument in which a sensor is inserted and a cross-sectional view thereof (see FIGS. 12A and 12B).
  • the blood glucose level measurement indicator 112 is provided with a temperature sensor 110 via a lead wire 124, and measures the environmental temperature in the vicinity of the sensor 114 inserted into the measuring instrument.
  • the temperature correction is performed on the measured analyte concentration information while minimizing the influence of the heat of air accumulated in the measuring instrument or the heat generated from the substrate.
  • Patent Document 2 describes a configuration shown in FIG. 13A which is a plan view of a measuring instrument into which a sensor is inserted.
  • a rechargeable battery 294 is provided in the measuring instrument. When charging, the battery 294 is electrically connected by docking with a docking station 200 (not shown).
  • Patent Documents 1 and 2 have the following problems. That is, in the above configuration, the ambient temperature in the vicinity of the sensor 114 and in the measuring instrument can be measured by the temperature sensor 110 and the temperature detection system 39, respectively. However, when the measuring device is provided with a heat generating material having a heat generating action, the environmental temperature in the measuring device rises, and there is a problem that the measurement accuracy of the environmental temperature deteriorates.
  • An object of the present invention is to provide an environmental temperature measuring method, a liquid sample measuring method, and a measuring instrument that can be corrected.
  • the environmental temperature measurement method of the present invention is an environmental temperature measurement method for measuring an environmental temperature based on electrical information measured by an environmental temperature sensor in a measuring instrument provided with a heat generating material and an environmental temperature sensor in a housing. And a heating operation time measuring step and an external environment temperature calculating step.
  • the heat generation operation time measurement step the operation time when the heat generation material provided in the housing generates heat is measured.
  • the external environment temperature calculation step the external environment temperature outside the housing is calculated based on the operating time of the heat generating material and the internal environment temperature in the housing.
  • the operating time of the heat generating material is measured. Then, based on the operating time of the heat generating material and the measurement result (internal environmental temperature) of the environmental temperature sensor installed in the housing, the environmental temperature outside the housing (external environment) excluding the influence of heat from the heat generating material. Temperature).
  • accurately calculating the external environment temperature outside the housing is to calculate the external environment temperature when the specimen (liquid sample) is spotted on the biosensor inserted into the measuring instrument, that is, the temperature of the liquid sample itself. Can be equated with.
  • the external environment temperature outside the housing calculated accurately can be used as the temperature correction temperature when measuring the concentration of the liquid sample. Therefore, the measurement accuracy of the concentration of the liquid sample measured by the measuring instrument can be improved.
  • the liquid sample measuring method of the present invention measures the concentration of a specific component in a liquid sample spotted on a biosensor mounted on the measuring instrument in a measuring instrument in which a heat generating material and an environmental temperature sensor are provided in a housing.
  • the liquid sample measuring method includes a specimen concentration measuring step and an external environment temperature correcting step.
  • the concentration of the specific component in the liquid sample spotted on the biosensor is measured.
  • the concentration of the specific component is corrected based on the external environment temperature outside the housing obtained by the environmental temperature measurement method.
  • the temperature information calculation step is performed based on the operating time of the heat generating material and the internal environmental temperature inside the housing.
  • the concentration measurement result of the liquid sample obtained in the specimen concentration measurement process is corrected in the external environment temperature correction process.
  • the measuring instrument of the present invention includes a housing, a heat generating material, an environmental temperature sensor, an operating time measuring unit, and an arithmetic unit.
  • the heat generating material is provided in the housing.
  • the environmental temperature sensor is provided in the housing and measures the internal environmental temperature in the housing.
  • the operation time measuring unit measures the operation time of the heat generating material.
  • the arithmetic unit calculates the external environment temperature information outside the housing based on the operation time when the heat generating material generates heat and the internal environment temperature.
  • the internal environment temperature in the housing provided with the heat generating material and the operating time of the heat generating material Based on the above, the outside environment temperature outside the housing is calculated.
  • the flowchart explaining the measurement algorithm in one embodiment of this invention The schematic block diagram of the measuring device in the embodiment.
  • Explanatory drawing of the charging current and battery voltage at the time of charge operation in the embodiment Explanatory drawing which shows the environmental temperature calculation method at the time of charge operation in the embodiment.
  • Explanatory drawing which shows the environmental temperature calculation method at the time of charge operation in the embodiment The top view and front view which show the measuring device in which the conventional biosensor was inserted. Sectional drawing and disassembled perspective view of the measuring device mounted with the conventional battery.
  • the flowchart which shows the measurement algorithm in other embodiment of this invention.
  • Explanatory drawing of the temperature correction process of the various correction items in the embodiment Explanatory drawing of the time change which shows the environmental temperature at the time of charge operation in the same embodiment, and the error after correction
  • error of the detection temperature of the temperature sensor in the same embodiment, and the calculated environmental temperature. 11 is a graph obtained by superimposing the three characteristic curves shown in FIG.
  • finish of charge of FIG. The graph which expanded the elapsed time before and behind the end of charge in the open air 30 degreeC.
  • the blood glucose level measuring device that measures the glucose concentration using blood as an analysis object will be described as an example of the measuring device 2. 1 to 11 are only one embodiment of the present invention, and the scope of the invention is not limited thereto.
  • FIG. 1 is a flowchart showing an overall algorithm in the case of calculating the concentration of a specimen that is a measurement object after the biosensor 1 according to the present embodiment is mounted on the measuring instrument 2.
  • FIG. 2 is a diagram showing an outline of the configuration of the measuring instrument 2 according to the present embodiment.
  • FIG. 3 is an exploded perspective view of the biosensor 1.
  • the biosensor 1 is configured by laminating a cover 12, a spacer 13, a reagent layer 15, and an insulating substrate 12a.
  • the cover 12 has an air hole 36 at the center thereof.
  • the spacer 13 has a substantially rectangular sample supply path 20.
  • the reagent layer 15 carries a reagent that undergoes an enzyme reaction with a specific component in the liquid sample.
  • the insulating substrate 12a is made of polyethylene terephthalate or the like, and an electrode layer is formed on the surface thereof.
  • the electrode layer is divided by a laser or the like, and a working electrode 14a, a counter electrode 14b, and a detection electrode (not shown) are formed as the electrode system 14.
  • FIG. 4 is an enlarged view of a main part of a portion where the biosensor 1 is attached to the measuring instrument 2.
  • FIG. 5 is a perspective view illustrating a state before and after mounting the biosensor 1 on a sensor holding unit (biosensor holding unit) 3 that detachably holds the biosensor 1.
  • the measuring instrument 2 of the present embodiment includes a sensor holding unit 3 that detachably holds the biosensor 1 as shown in FIGS. 2, 4, and 5.
  • measurement connection terminals 31 corresponding to the respective connection terminals for forming electrical contacts together with the electrode system 14 on the biosensor 1 are installed therein.
  • the electrode system 14 and the measurement connection terminal 31 on the biosensor 1 are arranged at positions where they contact each other.
  • Each terminal (not shown) of the measurement connection terminal 31 is, for example, a detection electrode for detecting that a specimen as a liquid sample has been introduced into the cavity 17, an electrode for measuring the concentration of the analyte, and further It contacts each electrode for measuring various correction items.
  • the switching circuit 4 switches the electrodes to which the applied voltage is applied.
  • the applied voltage is output from voltage applying means 5 constituted by DAC (Digital-to-Analog-Converter) or the like, and is applied between predetermined electrodes.
  • the current (also referred to as response current) obtained by the electrochemical reaction by the voltage applied to each electrode is converted into a voltage by the current / voltage conversion circuit 6.
  • the voltage value obtained here is converted into a digital signal by an A / D conversion circuit (Analog-to-Digital Converter) 7. Based on this digital signal, the sample concentration information is calculated by the calculation means 10.
  • the various correction items are, for example, hematocrit value correction and interfering substance correction.
  • all the correction items that can be measured electrochemically are included in the various correction items.
  • the storage means 8 composed of an EEPROM (ElectricallyrasErasable Programmable Read Only Memory), a flash memory or the like is used to calculate various correction items for the environmental temperature in advance.
  • the table is stored.
  • temperature correction is performed at the time of sample concentration calculation using temperature information from the environmental temperature sensor 9 including a thermistor and the like and a calculation table for various correction items.
  • the final sample concentration calculated by the calculation means 10 is displayed on the display unit 11.
  • the measuring device 2 is equipped with a rechargeable secondary battery (heat generating material) 21 and a charging circuit 33 for charging.
  • the storage means 8 stores a table for calculating various correction items as described above, and is necessary when calculating the environmental temperature outside the measuring instrument 2 from the environmental temperature measured inside the measuring instrument 2 during the charging operation. Further, an environmental temperature calculation table is stored.
  • the measuring device 2 is equipped with a clock (operation time measuring unit) 19 for measuring the concentration measurement date and time, the charging operation time and the like (charging operation time information).
  • a clock operation time measuring unit 19 for measuring the concentration measurement date and time, the charging operation time and the like (charging operation time information).
  • step S1 the measuring instrument 2 is waiting for an operation from the user, waiting for biosensor insertion, or being charged.
  • step S ⁇ b> 2 the biosensor 1 is inserted into the measuring device 2.
  • step S3 the insertion of the biosensor 1 causes the specimen to wait for spotting, and the switching circuit 4 sets the connection of the application electrode and applies the voltage for spotting detection to the measuring connection terminal 31. Start. Then, the A / D conversion circuit 7 starts measuring current.
  • step S4 when the spotting of the specimen is detected in step S4, in steps S5, S6, and S7, the switching circuit 4 sequentially switches the voltage application voltage value and the applied voltage value to a predetermined setting, so Apply the voltage to measure the correction items and ambient temperature.
  • the current flowing between the predetermined electrodes of the biosensor 1 or the thermistor (environment temperature sensor 9) is converted into a voltage, and the specimen concentration, various correction items, and the environment temperature are measured.
  • step S8 the measuring device 2 measures the measurement item related to the calculation of the sample concentration, and how many minutes have elapsed since the start of the charging operation or after the end of the charging operation after the sample was spotted. (See FIG. 2).
  • the charging operation time measurement step by the clock 19 may be performed in parallel with the above-described sample concentration measurement, or only when the charging operation time is within a predetermined range, It may be performed in parallel. That is, the timing for correcting the internal environmental temperature can be set as appropriate according to, for example, the level at which the heat generating material generates heat, the environmental temperature measured by the thermistor (environment temperature sensor 9), and the like.
  • step S9 if the detected time is within a predetermined time range set in advance, the environmental temperature in measuring instrument 2 measured in step S10 and the actual temperature outside measuring instrument 2 are different. Judgment is made and the ambient temperature is corrected. That is, based on the charging operation time and the internal environment temperature measured by the environmental temperature sensor 9, the external environment temperature is calculated using information in the external environment temperature calculation table stored in the storage unit. On the other hand, if it is outside the specified time range, it is determined that the environmental temperature in the measuring instrument 2 is equivalent to the environmental temperature outside the measuring instrument 2, and the environmental temperature is not corrected. That is, the internal environment temperature measured by the thermistor 9 is used as it is as the external environment temperature.
  • step S11 temperature correction processing of various correction items is performed using the determined environmental temperature, the sample concentration is calculated in step S12, and the result is displayed on the display unit 11 in step S13.
  • FIG. 6A is a diagram showing a flow of a process for calculating the environmental temperature used when the temperature of various correction items is corrected.
  • FIG. 6B is a diagram showing the flow of the temperature correction process for various correction items, which is the correction process.
  • FIG. 7 is data obtained by actually measuring the temperature change inside the measuring instrument 2 over the charging time while the environmental temperature outside the measuring instrument 2 is kept constant at 10 ° C., 20 ° C., and 30 ° C.
  • FIG. 8 shows temperature change data from the start of charging in FIG. 7 to 10 minutes.
  • the environmental temperature measured inside the measuring instrument 2 immediately after the start of charging is naturally equal to the temperature outside the measuring instrument 2.
  • a charging current of 400 mA or more flows through a charging IC, a capacitor, a coil, a resistor, and other electrical components for controlling the charging operation and the battery itself.
  • the electric power is P [W]
  • the current is I [A]
  • the resistance is R [ ⁇ ] depending on the resistance component and the charging current of each electric component
  • P I ⁇ I ⁇ R Is consumed, and heat is released from each electrical component.
  • the battery used is a lithium ion battery and is small and has a high capacity.
  • the battery may be damaged if overcharged or overdischarged. For this reason, it is necessary to carry out charging with a predetermined profile.
  • the battery voltage is measured to determine whether the battery voltage is within a chargeable range. If it is within the chargeable range, the standby charging mode is entered, and charging is started with a small current. Then, it becomes a constant current mode of A section, and charge is advanced by a large amount of constant current (430 mA in FIG. 9). In the constant current mode, a large current flows and the amount of heat generated by the parts is large, so the temperature inside the measuring instrument rises rapidly.
  • the precharge mode is passed immediately after the start of charging and the constant current mode is entered.
  • the battery voltage gradually increases, and when the battery voltage reaches 4.215V around 24 minutes after the start, the battery enters the constant voltage mode in the B section and the charging is advanced while maintaining the battery voltage.
  • the charging current gradually decreases, and the temperature inside the measuring instrument gradually decreases according to the operation.
  • the charging completion current 65 mA or less is determined during the constant voltage mode charging
  • charging is terminated at point C around 84 minutes after the start, and thereafter, the standby state of the D section is entered. After the end of charging, the charging current becomes 0 mA. For this reason, the components dissipate the internal heat, and the temperature inside the measuring device 2 rapidly drops, and then settles to the temperature outside the measuring device 2.
  • the temperature information calculation step 05 the operation for calculating the environmental temperature at the time of temperature correction is started.
  • the charging operation time measurement step (heat generation operation time measurement step) 02 charging operation time information at the start of charging is acquired from the clock 19, and the information is transmitted to the computing means 10 as charging operation start time information.
  • the environmental temperature measurement process (internal environmental temperature calculation process) 03 the internal environment detected by the thermistor (environment temperature sensor 9). The temperature information is sent to the calculation means 10.
  • charging operation time information at the time of sample spotting indicating the start of sample concentration measurement is acquired from the clock 19, and the information is sent to the calculation means 10 as sample spot time information. .
  • the ambient temperature measurement process (external environment temperature calculation process) 04 during the heat generation the time after the start of the charging operation is measured from the charging operation start time information and the time information at the time of the sample spotting.
  • the charging operation time and the internal environmental temperature measured by the thermistor (environmental temperature sensor 9) are calculated. At this time, if the charging operation time is not less than a certain value, the temperature of the thermistor 9 can be used as it is. Therefore, it is also determined whether to calculate or use the temperature of the thermistor 9 as it is.
  • the temperature inside the measuring instrument 2 returns to a temperature substantially equal to the environmental temperature at the start of charging after 120 minutes from the start of charging. For this reason, it is determined that the environmental temperature inside the measuring instrument 2 measured by the thermistor (environmental temperature sensor 9) substantially matches the environmental temperature outside the measuring instrument 2. Further, as shown in FIG. 8, since the temperature inside the measuring instrument 2 is equal to the environmental temperature at the start of charging within 60 seconds after the start of charging, the same determination as described above is performed. Therefore, if the time of spotting is within 60 seconds after charging starts or after 120 minutes, the internal environment temperature correction process (temperature correction process) 06 uses the environmental temperature measured by the thermistor (environment temperature sensor 9) as the various correction items. It is determined as a temperature for temperature correction. Using this temperature correction temperature, the measurement object concentration information calculated in the sample concentration measurement process 01 (corresponding to the measurement object concentration measurement process 01 in FIG. 6A) is corrected.
  • the exothermic environmental temperature measurement step 04 if the time at which the sample is spotted is less than 120 minutes after 60 seconds from the start of charging, the measurement is corrected from the internal environmental temperature measured by the thermistor (environment temperature sensor 9). The ambient temperature outside the vessel 2 is calculated.
  • the storage means 8 holds in advance the data shown in FIG. 7 (external environment temperature calculation table) showing the transition of the charging time at each environmental temperature outside the measuring instrument 2 and the environmental temperature inside the measuring instrument 2.
  • the environmental temperature outside the measuring device 2 can be calculated from the time and the environmental temperature inside the measuring device 2.
  • the time of spotting is 50 minutes after the start of charging, and the temperature measured by the thermistor (environment temperature sensor 9) at that time (inside the internal environment temperature of the measuring device 2).
  • the environmental temperature is 28 ° C.
  • the external environmental temperature outside the measuring device 2 is 20 ° C.
  • the external environment temperature correction step (temperature correction step) 07 the external environment temperature 20 ° C. thus determined is determined as the temperature correction temperature of various correction items. Using this temperature correction temperature, the measurement object concentration information calculated in the sample concentration measurement step 01 is corrected.
  • FIG. 10 shows the case where the detected temperature at the spotting time of the sample is on the data of FIG. 7 as the temperature calculation table (environment temperature calculation table). It may be calculated based on the data of 7.
  • FIG. 23 is a graph in which the characteristic curves of the outside air temperature of 10 ° C., 20 ° C., and 30 ° C. in FIG. As can be seen from this graph, the slopes of the three characteristic curves almost coincide with each other after a predetermined time has elapsed (15 to 22 min) immediately after the start of charging. Therefore, in this time zone, in the outside environment temperature correction step 07 (see FIG. 6A), a common temperature calculation table (environment temperature calculation table, environment temperature correction information) is used regardless of the outside air temperature. Can be used.
  • a common temperature calculation table environment temperature calculation table, environment temperature correction information
  • FIG. 24 is an enlarged view of the characteristic curves of the outside air temperatures of 10 ° C., 20 ° C., and 30 ° C. after the end of charging in FIG.
  • the characteristic curves corresponding to each outside air temperature substantially coincide after the end of charging. Therefore, even after the end of charging, in the external environment temperature correction step 07, a common temperature calculation table can be used regardless of the outside air temperature. That is, the temperature calculation table can be simplified by sharing the temperature calculation table within the range.
  • 25 (a) to 25 (c) are enlarged views of the characteristic curves of the outside air temperatures of 10 ° C., 20 ° C., and 30 ° C. before and after the end of charging in FIG.
  • a temperature calculation table environmental temperature correction information
  • an appropriate table can be selected during or after charging.
  • the outside air temperature can be calculated. That is, optimization is achieved by switching between the temperature calculation table during charging and the temperature calculation table after charging.
  • a common temperature calculation table as described above can also be used.
  • the measurement result in the thermistor (environment temperature sensor 9) is compared with the temperature data of each table in the measuring instrument 2, If the difference is greater than or equal to a predetermined value, it may be determined as an error and notified on the display unit 11 or the like. Thereby, for example, when the outside air temperature is less than 10 ° C. or 45 ° C. or more, it is determined that the use environment temperature condition of the measuring device 2 is not satisfied, the temperature is not calculated, and the use is stopped. Can be encouraged.
  • the temperature at the start of charging by storing the temperature at the start of charging, it is possible to make an error determination from the charging operation time information and the internal environment temperature information at that time.
  • the measurement result of the environmental temperature sensor (thermistor) 9 at the start of charging is 23 degrees
  • the spotting time (charging operation time information) is 50 minutes
  • the temperature of the environmental temperature sensor 9 at that time is 35 degrees or more or 20 If it is less than the degree, it can be seen that there is a large difference compared to the graph shown in FIG. For this reason, it can be determined that the result is strange and an error is detected.
  • determination may be made again by measuring the temperature in the environmental temperature sensor 9.
  • FIG. 11 is data of temperatures from 48 minutes to 52 minutes after the start of charging in the data of FIG. Temperature data is held at 1 minute intervals.
  • a method for calculating the environmental temperature outside the measuring instrument 2 when the spotting time is 49.5 minutes after the start of charging and the detected temperature at that time is 25 ° C. will be described.
  • the temperature data is taken at 1-minute intervals, and data after 49.5 minutes is not retained. Therefore, the temperature is obtained by linear approximation from the latest data before and after 49.5 minutes.
  • the detected temperature is 25 ° C., in the data of FIG. 7, there should be an expected environmental temperature outside the measuring instrument 2 between the outside air temperatures of 10 ° C. and 20 ° C.
  • the temperature data after 49 minutes at 10 ° C. is 18.8 ° C.
  • the temperature data after 50 minutes is 18.6 ° C.
  • the temperature after 49.5 minutes is 18.7 ° C. by linear approximation.
  • the temperature after 49.5 minutes when the outside air temperature is 20 ° C. is 28.55 ° C.
  • the environmental temperature outside the measuring instrument 2 is calculated as 16.4 ° C. when the detection temperature is 25 ° C. in 49.5 minutes after the start of charging.
  • various correction items are included as targets for temperature correction based on the environmental temperature information (internal environmental temperature, external environmental temperature). Information (see FIG. 6B).
  • the concentration information (measurement object concentration information) of the specimen sample is corrected in accordance with the environmental temperature information (internal environment temperature, external environment temperature) in the computing means 10 (“internal environment temperature correction step 06” or “ In the external environment temperature correction process 07 "(see FIG. 6A)), correction by various correction items is also performed at an appropriate timing before and after that.
  • the various correction item information is performed by the environmental temperature information and the environmental temperature information during heating (environmental temperature information during charging). By doing so, it is possible to further improve the accuracy.
  • correction item temperature correction step 08 temperature correction is performed on the measured various correction item information based on the environmental temperature information and the charging environmental temperature information, and correction information (various corrections) of the various correction items is performed. Item information) is determined. This correction information was obtained from the environmental temperature (internal environmental temperature, external environmental temperature) calculated by the above-described method and correction value data at predetermined temperatures of various correction items held in advance in the storage unit 8. This is a correction value for the environmental temperature at the time of sample spotting. Thereafter, in the calculation means 10, the measurement object concentration information is corrected by the various correction item information obtained in the correction item temperature correction step 08. Finally, the specimen concentration (measurement object concentration) subjected to various corrections including the temperature is displayed on the display unit 11.
  • data at 10 ° C., 20 ° C., 30 ° C. and 10 ° C. intervals are held in the storage means 8, but by holding temperature data at finer intervals (for example, 1 ° C. intervals).
  • temperature data at finer intervals (for example, 1 ° C. intervals).
  • the environmental temperature sensor 9 for example, a thermistor, a resistance temperature detector, an IC temperature sensor, a radiation thermometer, and the like are conceivable.
  • the blood is spotted on the biosensor 1 after the biosensor 1 is mounted on the measuring instrument 2 and then provided in the measuring instrument 2.
  • the clock 19 and the environmental temperature sensor 9 the charging time of the secondary battery 21 and the internal environmental temperature during charging are measured, and the external environmental temperature during charging is specified.
  • the environmental temperature at the time of charging is measured in real time to identify the environmental temperature (external environmental temperature), and based on this environmental temperature (external environmental temperature), the glucose concentration in the blood spotted on the biosensor 1, etc.
  • the various analytes can be corrected. Therefore, the influence of the temperature rise of the environmental temperature due to the heat generating material such as the secondary battery 21 can be eliminated, and the concentration and the like of various analytes can be measured with high accuracy.
  • the high-precision measuring instrument 2 can be provided at low cost without newly providing a temperature sensor for measuring the temperature of the biosensor 1 itself.
  • blood glucose has been described as a measurement target substance, but the present invention is not limited to this.
  • the same effect can be obtained even in in vivo samples such as cholesterol, triglyceride, lactic acid, uric acid, bilirubin, alcohol, environmental samples, food samples, and the like.
  • the environmental temperature sensor 9 is disposed in the vicinity of the sensor holding unit 3 or in the vicinity of the opening of the measuring instrument 2.
  • the influence of heat generation from the heat generating material propagates not only in the air but also through the board. For this reason, in that case, an error factor of measurement data due to variations in substrate characteristics (base material thickness, copper foil thickness, insulating material thickness, etc.) becomes large. Therefore, if possible, it is most desirable to provide the environmental temperature sensor 9 in the sensor holding unit 3 that is not easily affected by the heat conduction from the substrate and is close to the biosensor 1.
  • FIG. 14 is a flowchart showing an overall algorithm in the case where the specimen concentration is calculated after the biosensor 201 according to the present embodiment is mounted on the measuring device 202.
  • FIG. 15 is a diagram showing an outline of the configuration of the measuring instrument 202 according to this embodiment.
  • the measuring device 202 of the present embodiment Details of the measuring device 202 of the present embodiment and the biosensor 201 that is a component of the method will be described. Since the exploded perspective view of the biosensor 201 is the same as FIG. 3 described in the first embodiment, the description thereof is omitted here.
  • FIG. 16 is an enlarged view of a main part of a portion where the biosensor 201 is attached to the measuring instrument 202.
  • FIG. 17 is a perspective view illustrating a state before and after the biosensor 201 is attached to the sensor holding unit 203 that holds the biosensor 201 detachably.
  • the measuring device 202 of the present embodiment includes a sensor holding unit 203 that detachably holds a biosensor 201 that is a component of the present embodiment.
  • measurement connection terminals 231 which are connection terminals corresponding to the electrode system 214 on the biosensor 201 and corresponding to each other are installed therein.
  • the electrode system 214 on the biosensor 201 and the measurement connection terminal 231 on the measuring device 202 side are arranged at positions where they are in contact with each other.
  • Each terminal (not shown) of the measurement connection terminal 231 includes, for example, a detection electrode for detecting that a specimen has been introduced into the cavity 17 (see FIG. 3), and an electrode for measuring the concentration of the analyte, Furthermore, when the electrodes for measuring various correction items are in contact with each other and a voltage is applied between these electrodes, the switching circuit 204 switches the electrodes to which the applied voltage is applied.
  • the applied voltage is output from voltage applying means 205 composed of a DAC (Digital-to-Analog-Converter) or the like, and a voltage is applied between predetermined electrodes.
  • a current (also referred to as response current) obtained by the electrochemical reaction is converted into a voltage by a current / voltage conversion circuit 206, and the obtained voltage value is converted into a digital signal by an A / D conversion circuit (Analog to Digital Converter) 207.
  • the sample concentration information is calculated by the calculation means 210.
  • the various correction items are, for example, hematocrit value correction and interfering substance correction. Of course, all correction items that can be measured electrochemically are included.
  • the storage unit 208 including an EEPROM (ElectricallyrErasable Programmable Read Only Memory), a flash memory, and the like is a table for calculating various correction items for the environmental temperature in advance. Is stored. Then, temperature correction is performed at the time of analyte concentration measurement using temperature information from the environmental temperature sensor 1 (first environmental temperature sensor) 209a and the environmental temperature sensor 2 (second environmental temperature sensor) 209b, which are composed of a thermistor or the like. .
  • the final sample concentration obtained by the calculation unit 210 is displayed on the display unit 211.
  • the measuring device 202 is equipped with a rechargeable secondary battery 221 and is equipped with a charging circuit 233 for charging.
  • the storage unit 208 holds a table for calculating various correction items. Further, from the environmental temperature measured inside the measuring device during the charging operation, the measuring device actually required for temperature correction is used. A temperature calculation table for calculating the outside environmental temperature is held.
  • a clock (operation time measuring unit) 219 for measuring the date and time when the concentration is measured and the charging operation time is mounted.
  • step S21 the measuring device 202 is in a standby state waiting for an operation from the user or waiting for insertion of the biosensor 201, or in a charging operation.
  • step S22 when the measuring instrument 202 is activated by a user operation or the biosensor 201 is inserted, in step S22, the measuring instrument 202 confirms how much time has elapsed after the start of the charging operation or after the end of the charging operation. However, if the specified time has elapsed, the sample is waiting to be spotted. Here, if the specified time has not elapsed, the process waits for spotting in step S24 after elapse of a preset waiting time via step S23.
  • step S24 when the specimen is in the spotting waiting state, the switching circuit 204 sets the connection of the application electrode in order to apply the voltage for spotting detection to the measuring connection terminal 231, and starts voltage application.
  • the A / D conversion circuit 207 starts measuring current.
  • the switching circuit 204 sequentially switches the switching circuit 204 and the applied voltage value to predetermined settings in step S26 and step S27, and the sample concentration and various correction items. Apply voltage to measure ambient temperature.
  • step S28 the current flowing between the predetermined electrodes of the biosensor 201 or the thermistor (environment temperature sensors 209a and 209b) is converted into a voltage, and the environment temperature is measured.
  • step S29 the measuring instrument 202 performs an environmental temperature correction process after measuring the measurement item related to the calculation of the specimen concentration.
  • step S30 temperature correction processing of various correction items is performed using the environmental temperature determined in step S29.
  • step S31 the specimen concentration is calculated based on the corrected ambient temperature and various correction items, and the result is displayed on the display unit 211 in step S32.
  • FIG. 18A and FIG. 18B are diagrams showing a flow of a process for calculating a temperature used at the time of temperature correction of various correction items.
  • 19 (a), 19 (b), and 19 (c) show the measuring device 202 over the charging time with the ambient temperature outside the measuring device kept constant at 10 ° C., 20 ° C., and 30 ° C., respectively.
  • This is data indicating the temperature change of the environmental temperature sensor 209a provided inside, and the difference between the calculated corrected external environmental temperature and the actually measured outdoor air temperature.
  • 20 (a), FIG. 20 (b), and FIG. 20 (c) in particular, enlarge the portion of FIG. 19 (a), FIG. 19 (b), and FIG. It is the temperature change data shown.
  • the environmental temperature measured inside the measuring device 202 immediately after the start of charging is naturally equal to the temperature outside the measuring device 202.
  • a charging current of 400 mA or more flows through a charging IC, a capacitor, a coil, a resistor, and other electrical components for controlling the charging operation and the battery itself.
  • the electric power is P [W]
  • the current is I [A]
  • the resistance is R [ ⁇ ]
  • P I ⁇ I ⁇ R
  • the charging operation of the secondary battery is the same as the graph shown in FIG. 9 of the first embodiment described above, and thus the description thereof is omitted here.
  • the charging operation time measurement step 02 is performed after the number of minutes after the charging operation, or the charging operation Check how many minutes have passed since the end.
  • the temperature detected by the environmental temperature sensors 209a and 209b is indicated by a dotted line.
  • the difference between the ambient temperature corrected by the solid line and the outside air temperature is shown.
  • the measuring device 202 in this embodiment does not perform the sample concentration measurement operation for 10 minutes after the start of charging. .
  • accurate temperature correction is possible by optimizing a calculation formula described later or a correction coefficient of the calculation formula in the time domain.
  • two environments in the measuring instrument 202 are provided by an environmental temperature sensor 209a provided in the vicinity of the sensor holding unit 203 or in the vicinity of the other opening and an environmental temperature sensor 209b provided in the vicinity of the heat generating material. Measure the temperature.
  • the corrected environmental temperature corresponding to the outside air temperature is calculated from the temperature information of the two locations measured in the environmental temperature measuring step 03, but can be calculated using Equation 1. Was found.
  • T T1- ⁇ ⁇ (T2-T1) Equation 1
  • T Corrected environmental temperature [° C]
  • T1 Temperature detected by the environmental temperature sensor 209a [° C.]
  • T2 Temperature detected by the environmental temperature sensor 209b [° C.]
  • Correction coefficient
  • the correction coefficient ⁇ is a coefficient that is influenced by the component arrangement and exterior shape inside the measuring instrument 202, and the coefficient changes for each model.
  • the correction coefficient of the measurement data in FIGS. 19A to 19C is 0.4.
  • the temperature of the environmental temperature sensor 209a disposed in the vicinity of the sensor holding unit 203 is different from the actual outside air temperatures of 10 ° C, 20 ° C, and 30 ° C. It is clear that the difference between the environmental temperature and the outside air temperature calculated by Equation 1 can be calculated with an accuracy of ⁇ 1.5 ° C. except for 10 minutes after the start of charging and 10 minutes after the end of charging.
  • each temperature of the time when the difference between the temperature (T1) detected by the environmental temperature sensor 209a and the actual outside air temperature becomes maximum is shown. While T1 deviates by about 5 ° C with respect to all outside air temperatures, the environmental temperature calculated by Equation 1 clearly shows that the difference from the outside air temperature is within 1 ° C. .
  • various correction item information (see FIG. 18B) is assumed to be subjected to temperature correction based on environmental temperature information (internal environmental temperature, external environmental temperature). Is given. That is, the concentration information (measurement object concentration information) of the sample is corrected by the calculation unit 210 according to the environmental temperature information (internal environmental temperature, external environmental temperature) (internal environmental temperature correction step 06) or “external In the environmental temperature correction step 07), various correction items are also corrected at appropriate timings before and after that.Of course, regarding the various correction item information, what is affected by temperature is also shown in FIG. ), The accuracy can be further improved by performing the temperature correction by the environmental temperature information and the environmental temperature information during heat generation (environmental temperature information during charging).
  • correction item temperature correction step 08 temperature correction is performed on the measured various correction item information based on the environmental temperature information and the charging environment temperature information, and correction information (various corrections) of the various correction items is performed. Item information) is determined. This correction information was obtained from the environmental temperature (internal environmental temperature, external environmental temperature) calculated by the above method and correction value data at predetermined temperatures of various correction items held in advance in the storage unit 208. This is a correction value for the environmental temperature at the time of sample spotting. Thereafter, in the calculation unit 210, the measurement object concentration information is corrected by the various correction item information obtained in the correction item temperature correction step 08, and finally the sample concentration subjected to various corrections including the temperature is displayed on the display unit 211. Is displayed.
  • the environmental temperature sensors 209a and 209b for example, a thermistor, a resistance temperature detector, an IC temperature sensor, a radiation thermometer, and the like are conceivable.
  • a thermistor for example, a resistance temperature detector, an IC temperature sensor, a radiation thermometer, and the like are conceivable.
  • the secondary battery 221 and the environmental temperature sensors 209a and 209b provided in the above measure the charging time of the secondary battery 221 and the environmental temperature at the time of charging. Then, by specifying the environmental temperature at the time of charging, the environmental temperature at the time of charging is measured in real time to specify the environmental temperature (outside environmental temperature). Further, various analysis objects such as glucose concentration in blood spotted on the biosensor 201 can be corrected based on this environmental temperature (outside environmental temperature).
  • a high-precision measuring instrument 202 can be realized at low cost without newly providing a temperature sensor for measuring the temperature of the biosensor 201 itself.
  • the glucose concentration, the environmental temperature, and the hematocrit are factors that change the measurement method of the glucose concentration in the blood spotted on the biosensor 201. Measurement accuracy can be dramatically improved by adding values and correction values for interfering substances.
  • blood glucose has been described as a measurement target substance, as in the first embodiment, but the present invention is not limited to this, and in vivo samples such as cholesterol, triglyceride, lactic acid, uric acid, bilirubin, alcohol, and environmental samples Even if it is a food sample etc., the same effect is acquired.
  • the installation location of the environmental temperature sensor 209a is set in the vicinity of the sensor holding portion 203 or in the vicinity of the opening that is easily affected by outside air.
  • the installation location of the environmental temperature sensor 209b is in the vicinity of the secondary battery (heating material) 221 that causes the heat generation to be affected by the environmental temperature sensor 209b.
  • FIG. 21 shows the transition of the temperature difference between the environmental temperature sensor 209b and the environmental temperature sensor 209a with respect to the elapsed charging time of this embodiment.
  • This graph is a graph in a state where the outside air temperature is fixed at 10 ° C., 20 ° C., and 30 ° C., but it can be seen that the temperature difference in each charging mode is almost the same even if the outside air temperature changes.
  • the temperature difference peak in the constant current mode is 7 to 8 ° C
  • the temperature difference at the end of the charging operation is about 2.5 ° C
  • the temperature difference is 1 ° C. It is less than. That is, since each mode of the charging operation can be detected by the measuring instrument itself, whether or not the environmental temperature sensors 209a and 209b are functioning normally is confirmed by checking the temperature difference in the charging mode regardless of the outside air temperature. It is possible.
  • the ambient temperature outside ambient temperature
  • the environmental temperature sensor 209a is disposed in the vicinity of the sensor holding unit 203 or in the vicinity of the opening.
  • the influence of heat generation from the heat generating material such as the secondary battery 221 propagates not only in the air but also through the board. For this reason, in this case, an error factor of measurement data due to variations in substrate characteristics (base material thickness, copper foil thickness, insulating material thickness, etc.) increases. Therefore, if possible, it is most desirable that the environmental temperature sensors 209a and 209b are provided in the sensor holding unit 203 that is hardly affected by the heat conduction from the substrate and is close to the biosensor 201.
  • the corrected environmental temperature can be calculated by using Equation 1 except for 10 minutes after the start of charging and 10 minutes after the end of charging.
  • ⁇ ⁇ (T2-T1) ⁇ on the right side of Equation 1 the temperature detected by the environmental temperature sensors 209a and 209b rises due to the heat generated by the heat generating material.
  • the corrected environmental temperature can be calculated by using Equation 1 except for 10 minutes after the start of charging and 10 minutes after the end of charging.
  • this is because the temperature change of the heat generating material is gentle, and the temperature change detected by the environmental temperature sensor 209a follows the temperature change detected by the environmental temperature sensor 209b.
  • the temperature change of the heat generating material is abrupt for 10 minutes after the start of charging and 10 minutes after the end of charging, and the temperature change detected by the environmental temperature sensor 209a cannot follow the temperature change detected by the environmental temperature sensor 209b. . For this reason, it is a little difficult to calculate with Equation 1 as it is. Therefore, when a significant temperature change occurs in the heat generating material, it is possible to calculate the corrected environmental temperature by using a different calculation formula.
  • the correction value ⁇ is set as follows according to the elapsed time from the start of charging.
  • the environmental temperature T can be calculated with higher accuracy.
  • T T1- ⁇ ⁇ (T2-T1) + ⁇ Equation 2 ⁇ : Correction coefficient For example, in the range from 0 to 10 minutes after the start of charging, an error of about 2 ° C. occurs. Therefore, the environmental temperature T may be calculated using the correction coefficient ⁇ ( ⁇ 2 ° C.).
  • the environmental temperature T may be calculated using the following equations 3 and 4 by dividing the range from 0 to 10 min after the start of charging into two ranges of 0 to 2 min and 2 to 10 min.
  • T T1- ⁇ ⁇ (T2-T1) + ⁇ Equation 3
  • T T1- ⁇ ⁇ (T2-T1) + ⁇ Equation 4 ⁇ , ⁇ : correction coefficient
  • the charging time of a rechargeable battery (secondary battery) as a charging unit mounted on the measuring instrument 2 described above may vary depending on the remaining battery level and the charging method (the magnitude of the charging current value). Are known.
  • the estimated time for completion of charging is calculated based on the remaining battery level and the charging method, there is a difference from the actual charging completion time, and it is used only to the extent of a guide.
  • the estimated time for completion of charging is calculated based on the remaining battery level and the charging method, there is a difference from the actual charging completion time, and it is used only to the extent of a guide.
  • the two elements replacement battery capacity and charging method (charging current)
  • based on a total of four parameters including two elements of environmental temperature data and operation time from the start of charging Predict the charging completion time.
  • the measuring device 2 includes a secondary battery 21 that is one of the heat generating materials, a charging circuit 33, a calculation means (battery remaining amount measuring unit) 10, and a display unit. 11 is mounted.
  • the charging circuit 33 charges the secondary battery 21.
  • the calculation means 10 obtains the remaining battery level of the secondary battery 21 via the charging circuit 33.
  • the display unit 11 displays a clock 19 for measuring the concentration measurement date and time, the charging operation time, and various measurement information and status.
  • the time required from the start of charging to completion varies greatly depending on the remaining battery level of the secondary battery 21 and the charging method by the charging circuit 33.
  • the charging circuit 33 when charging quickly, the charging current is increased so that the charging can be performed in a short time. In normal charging, the charging current is decreased and charging is performed over time. This is because when the quick charge is performed, the secondary battery 21 deteriorates quickly and the battery life is shortened.
  • the charging current does not have to be constant (see FIG. 9 and the explanation thereof in the upper part).
  • a nickel metal hydride battery, a lithium ion battery, or the like is used for the secondary battery 21 a nickel metal hydride battery, a lithium ion battery, or the like.
  • FIG. 23 is actual measurement data showing the temperature change inside the measuring instrument 2 over the charging time with the external environment temperature of the measuring instrument 2 kept constant at 10 ° C., 20 ° C., and 30 ° C.
  • the charging conditions and the charging method at this time are set to be the same. That is, the remaining battery level of the secondary battery 21 is set to 0, and charging methods such as charging current are the same.
  • the charging completion time is the shortest about 74 minutes (see FIG. 25A) from the start of charging,
  • the charging completion time is the longest, about 94 minutes (see FIG. 25C) from the start.
  • the charging completion time can be obtained by using the remaining battery capacity, the charging current, the charging operation time, and the external environment temperature of the secondary battery 21 as parameters. It becomes possible to do.
  • the notification of the estimated time until the completion of charging is performed by using the display unit 11 provided in the measuring device 2 to display the remaining time until the charging is completed, A method using vibration may be used.
  • the charge completion time can be obtained using the remaining battery amount, the charging current, the charging operation time, and the external environment temperature of the secondary battery 21 as parameters, and more accurate. High prediction. Therefore, it can be used in a measuring instrument or the like having a charging function and a function of measuring an environmental temperature provided with a temperature sensor in the housing. In particular, it is useful in the field of portable small medical devices that use the calculated charging time.
  • the outside environment temperature outside the housing is calculated based on information measured by the environment temperature sensor (thermistor) 9 provided in the measuring instrument 2 or the like.
  • the environmental temperature sensor 9 or the like does not operate normally for some reason, the external environmental temperature information cannot be calculated correctly.
  • the concentration value of the specific component in the liquid sample corrected based on the external environment temperature information cannot be obtained accurately, and the measurement accuracy of the measuring instrument 2 may be deteriorated.
  • the present embodiment adopts a configuration as shown in FIG. Constituent elements common to those in the first and second embodiments described above are given the same reference numerals, and descriptions thereof are omitted.
  • the environmental temperature sensors 209a and 209b provided in the housing are respectively positioned at positions near the heat generating material (first region) and positions near the heat generating material (second region).
  • first region positions near the heat generating material
  • second region positions near the heat generating material
  • this embodiment is different from the second embodiment in that a plurality of environmental temperature sensors 209aa, 209ab and 209ba, 209bb are provided in the first region and the second region, respectively. ing.
  • a plurality of environmental temperature sensors 209aa, 209ab and 209ba, 209bb in the first region and the second region, respectively, for example, in the first region a plurality of environmental temperatures provided in the first region.
  • the difference between the detection results of the respective internal environment temperature information measured by the sensors 209ba and 209bb is obtained. Whether or not the environmental temperature sensors 209ba and 209bb are operating normally can be determined based on whether or not the obtained temperature difference exceeds a predetermined range.
  • the difference between the internal environment temperature information measured by the plurality of environmental temperature sensors 209aa and 209ab provided in the second area is obtained. Whether or not the environmental temperature sensors 209aa and 209ab are operating normally can be confirmed based on whether or not the obtained temperature difference exceeds a predetermined range.
  • each environmental temperature sensor operates normally before the correction (internal environmental temperature correction step 06 and external environmental temperature correction step 07) is performed on the measurement target concentration information by the temperature correction temperature. It can be determined in advance.
  • a plurality of environmental temperature sensors 209aa, 209ab and 209ba, 209bb are provided in the first region and the second region, respectively, and the internal environmental temperature information measured by the environmental temperature sensors 209aa, 209ab and 209ba, 209bb.
  • the above-described calculation means (determination unit) 210 has a difference between the internal environmental temperature information measured by the plurality of environmental temperature sensors 209ba and 209bb provided in the first area, or in the second area. It is determined whether any one of the differences in the internal environment temperature information measured by the plurality of environmental temperature sensors 209aa and 209ab provided in the sensor exceeds a predetermined range (determination step). When the range is exceeded, an error notification unit such as the above-described display unit 211 performs error display (notification) (error notification step).
  • the internal environment temperature information of the plurality of environmental temperature sensors in each of the first region and the second region is periodically measured, and each environment is measured.
  • the present invention it is possible to easily calculate the environmental temperature outside the housing while taking into consideration the effect of the temperature rise during heat generation by the heat generating material provided in the housing. Therefore, it can be used in a measuring instrument or the like that measures the environmental temperature with a temperature sensor provided in the housing. It is also useful in fields such as medical small diagnostic devices and analyzers that require high-precision measurement results by correcting the calculated concentration values of specific components based on the ambient temperature. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 分析対象物を保持して測定を行なうキャビティ(17)と、キャビティ(17)内において分析対象物濃度を測定する電極系(14)とをバイオセンサ(1)上に備え、二次電池(21)と環境温度センサ(9)とを測定器(2)内に備え、二次電池(21)の充電時間と充電時の環境温度とから、充電時の環境温度を特定することにより、充電時環境温度をリアルタイムで測定して、この充電時環境温度情報から、測定された分析対象物濃度に対して高精度の温度補正を行なう温度補正工程09で可能とし、非常に高い精度の分析結果を得ることができる。

Description

環境温度測定方法、液体試料測定方法および測定器
 本発明は、汚染・感染性の高い分析対象物を測定する測定器に関し、特に、使い捨てセンサを使用する測定器において、高い分析精度を与える構成及び測定方法に関する。
 汚染・感染性の高い分析対象物を小型機器で測定するセンシング分野、その中でも特に人々の健康を支えるバイオセンシング機器では、試料と接触するセンサ部分は取り外し可能な使い捨てセンサが使用されている。
 バイオセンシング機器とは、分析対象物を認識するセンサの測定要素の中に、例えば、微生物、酵素、抗体等の生物材料の分子認識能力を利用し、生物材料を分子識別素子として用いたセンシング機器である。すなわち、このバイオセンシング機器は、目的の特定成分を認識しその濃度を測定する過程の一部において、生物由来の材料を、目的分子の特定、濃度に依存したシグナルの発信などに利用したものである。特に、酵素反応や抗体の免疫反応を利用したバイオセンサの実用化は進んでおり、医療分野や食品分野に広く利用されている。また、その定量方法として、電気化学的分析や比色、発光量分析等のように、多岐に渡る方法が開発されている。
 中でも、人々の健康に関わる医療分野における測定器においては、使い捨てセンサを使用するにも関わらず、その役割から高い測定精度が要求されている。このため、医療分野におけるバイオセンシング機器では、高い測定精度を実現するために、検体の濃度分析値に様々な補正を行っている。例えば、温度補正やヘマトクリット値補正、類似物質による測定誤差補正、電気化学分析においては妨害物質補正もある。ひいては、ロット管理によるセンサと検量線の最適化等も補正の範疇に入れられるであろう。
 この内、温度は、補正において特に重要な要素の一つである。例えば、試料中の特定の成分の濃度を測定中に、その試料温度が検量線を設定した基準の温度より高ければ(一概には言えないが)、種々の分析段階において加速がかかり測定結果は実際の値より大きくなるであろう。一方、試料温度が基準の温度よりも低ければ、その逆の測定結果となることが考えられる。
 この問題を解決する方法として、例えば、測定器内に環境温度センサを設け、その値を測定中の試料温度として用いて、検体濃度値に温度補正をかけることが一般的に行われている。しかしながらこの方法は、擬似的に、環境温度を測定中の試料温度として用いているだけであるため、試料由来の温度と環境温度との間にずれがあれば正確な補正を行うことは困難である。そこで、検体濃度測定部の温度を測定して補正する方式が求められている(例えば、特許文献1、2参照)。
 特許文献1には、センサが挿入された測定器の平面図およびその断面図(図12(a)、図12(b)参照)が開示されている。この血糖値測定表示器112には、リード線124を介して温度センサ110が設けられており、測定器に挿入されたセンサ114近辺の環境温度を測定する。これにより、測定器内に溜まった空気の熱又は基板から生じる熱の影響を最小限にして、測定された検体濃度の情報に温度補正を行っている。
 特許文献2では、センサが挿入される測定器の平面図である図13(a)に示す構成のものが記載されており、測定器内に充電可能なバッテリ294が設けられ、このバッテリ294への充電時にはドッキングステーション200(図示せず)とドッキングすることにより、バッテリ294への電気接続を可能としている。
特開2007-10317号公報 特表2007-526440号公報
 しかしながら、上記特許文献1、2に記載の構成では、以下に示すような問題点を有している。
 すなわち、上記構成では、温度センサ110、温度検知システム39によって、それぞれセンサ114近辺および測定器内の環境温度を測定できる。しかし、測定器に発熱作用がある発熱材料が設けられた場合には、測定器内の環境温度が上昇するため、環境温度の測定精度が悪化するという課題がある。
 さらに、特許文献1に記載の構成では、計測時には、リード線124をセンサ近辺に折り曲げるなどの動作が必要となるため、手間がかかり煩わしいという課題も有している。
 また、特許文献2に記載の構成では、特に、発熱材料が基板に実装される部品である場合には、熱が基板を介して伝播するためセンサ付近の温度変化を正確に検出することは困難である。また、熱シールを新たに設ける必要があり、さらには熱シートにより内部構成が限定されるため、装置の小型化を妨げてしまう。
 本発明は、これら従来の課題を解決するものであり、測定器内に発熱材料が設けられている場合でも、発熱材料からの熱の影響を排除して、分析対象物の濃度を高精度に補正することが可能な環境温度測定方法、液体試料測定方法および測定器を提供することを目的とする。
 本発明の環境温度測定方法は、ハウジング内に発熱材料と環境温度センサとが設けられた測定器において、環境温度センサによって計測される電気情報に基づいて、環境温度を測定する環境温度測定方法であって、発熱動作時間計測工程と、外環境温度算出工程と、を備えている。発熱動作時間計測工程は、ハウジング内に設けられた発熱材料の発熱時の動作時間を計測する。外環境温度算出工程は、発熱材料の動作時間とハウジング内の内環境温度とに基づいて、ハウジング外の外環境温度を算出する。
 ここでは、測定器内に設けられた発熱材料からの熱の影響を排除するために、まず、発熱材料の動作時間を計測する。そして、この発熱材料の動作時間と、ハウジング内に設置された環境温度センサにおける測定結果(内環境温度)とに基づいて、発熱材料からの熱の影響を排除したハウジング外の環境温度(外環境温度)を算出する。
 ここで、ハウジング外の外環境温度を正確に算出することは、測定器に挿入されるバイオセンサに対する検体(液体試料)の点着時における外環境温度、つまり液体試料そのものの温度を算出するものと同視することができる。
 これにより、精度良く算出されたハウジング外の外環境温度を、液体試料の濃度測定時における温度補正用温度として用いることができる。よって、測定器によって測定される液体試料の濃度の測定精度を向上させることができる。
 本発明の液体試料測定方法は、ハウジング内に発熱材料と環境温度センサとが設けられた測定器において、測定器に装着されるバイオセンサに点着された液体試料中の特定成分の濃度を測定する液体試料測定方法であって、検体濃度測定工程と、外環境温度補正工程と、を備えている。検体濃度測定工程は、バイオセンサに点着された液体試料中の特定成分の濃度を測定する。外環境温度補正工程は、環境温度測定方法において求められたハウジング外の外環境温度に基づいて特定成分の濃度を補正する。
 ここでは、発熱材料と環境温度センサとをハウジング内に備えた測定器において、温度情報算出工程において発熱材料の動作時間とハウジング内の内環境温度とに基づいて得られた測定器のハウジング外の外環境温度を用いて、検体濃度測定工程において得られた液体試料の濃度測定結果を、外環境温度補正工程において補正する。
 これにより、発熱材料の発熱動作開始からの経過時間と測定器のハウジング内の内環境温度とをリアルタイムで測定することができる。これにより、発熱材料の発熱によるハウジング内の内環境温度の上昇による影響をキャンセルしてハウジング外の外環境温度を特定することができる。そして、この特定されたハウジング外の外環境濃度情報に基づいて、測定された分析対象物濃度に対して高精度の温度補正を実施することができる。
 本発明の測定器は、ハウジングと、発熱材料と、環境温度センサと、動作時間計測部と、演算装置と、を備えている。発熱材料は、ハウジング内に設けられている。環境温度センサは、ハウジング内に設けられており、ハウジング内の内環境温度を測定する。動作時間計測部は、発熱材料の動作時間を計測する。演算装置は、発熱材料の発熱時の動作時間と内環境温度とに基づいて、ハウジング外の外環境温度情報を算出する。
 ここでは、例えば、バイオセンサ等が挿入されてバイオセンサに点着された液体試料等の濃度測定を行う測定器において、発熱材料が設けられたハウジング内の内環境温度と、発熱材料の動作時間と、に基づいて、ハウジング外における外環境温度を算出する。
 これにより、発熱材料の発熱動作開始からの経過時間と測定器のハウジング内の内環境温度とをリアルタイムで測定することができる。これにより、発熱材料の発熱によるハウジング内の内環境温度の上昇による影響をキャンセルしてハウジング外の外環境温度を特定することができる。そして、この特定されたハウジング外の外環境濃度情報に基づいて、測定された分析対象物濃度に対して高精度の温度補正を実施することができる。
本発明の一実施の形態における測定アルゴリズムを説明するフローチャート。 同実施の形態における測定器の概略構成図。 同実施の形態におけるバイオセンサの概略構成図。 同実施の形態におけるセンサ保持部周辺および温度センサを説明する概略構成図。 同実施の形態におけるセンサ保持部へのバイオセンサ装着状態を説明する概略構成図。 同実施の形態における各種補正項目の温度補正時に使用する環境温度算出工程の説明図。 同実施の形態における各種補正項目の温度補正工程の説明図。 同実施の形態における充電動作時の測定器内部の環境温度の説明図。 同実施の形態における充電動作時の測定器内部の環境温度(一部)の説明図。 同実施の形態における充電動作時の充電電流及び電池電圧の説明図。 同実施の形態における充電動作時の環境温度算出方法を示す説明図。 同実施の形態における充電動作時の環境温度算出方法を示す説明図。 従来のバイオセンサが挿入された測定器を示す平面図及び正面図。 従来のバッテリが搭載された測定器の断面図と分解斜視図。 本発明の他の実施の形態における測定アルゴリズムを示すフローチャート。 同実施の形態における測定器の概略構成図。 同実施の形態におけるセンサ保持部周辺および温度センサを説明する概略構成図。 同実施の形態におけるセンサ保持部へのバイオセンサ装着状態を示す概略構成図。 同実施の形態における環境温度算出工程の説明図。 同実施の形態における各種補正項目の温度補正工程の説明図。 同実施の形態における充電動作時の環境温度および補正後の誤差を示す時間変化の説明図(外気温:10℃の場合)。 同実施の形態における充電動作時の環境温度および補正後の誤差を示す時間変化の説明図(外気温:20℃の場合)。 同実施の形態における充電動作時の環境温度および補正後の誤差を示す時間変化の説明図(外気温:30℃の場合)。 同実施の形態における充電動作時の環境温度および補正後の誤差を示す時間変化の説明図(外気温:10℃、時間軸:0~10分)。 同実施の形態における充電動作時の環境温度および補正後の誤差を示す時間変化の説明図(外気温:20℃、時間軸:0~10分)。 同実施の形態における充電動作時の環境温度および補正後の誤差を示す時間変化の説明図(外気温:30℃、時間軸:0~10分)。 同実施の形態における充電時間経過に対する温度センサ応答の差の説明図。 同実施の形態における温度センサの検出温度と、算出した環境温度との誤差の説明図。 図10に示す3つの特性曲線を重ね合わせたグラフ。 図10の充電終了後の経過時間を拡大したグラフ。 外気30℃における充電終了前後の経過時間を拡大したグラフ。 外気20℃における充電終了前後の経過時間を拡大したグラフ。 外気10℃における充電終了前後の経過時間を拡大したグラフ。 本発明のさらに他の実施形態におけるセンサ保持部周辺および発熱材料周辺に配置された環境温度センサを示す概略構成図。
符号の説明
  1  バイオセンサ
  2  測定器
  3  センサ保持部(バイオセンサ保持部)
  4  切換回路
  5  電圧印加手段
  6  電流/電圧変換回路(電流/電圧変換手段)
  7  A/D変換回路
  8  記憶手段(記憶装置)
  9  環境温度センサ
 10  演算手段(演算装置)
 11  表示部
 12  カバー
 12a 絶縁性基板
 13  スペーサ
 14a 電極系(作用極)
 14b 電極系(対極)
 15  試薬層
 17  キャビティ
 18  測定部
 19  時計(動作時間計測部)
 20  試料供給路
 21  二次電池(発熱材料)
 31  測定用接続端子
 33  充電回路
 36  空気孔
201  バイオセンサ
202  測定器
203  センサ保持部(バイオセンサ保持部)
204  切換回路
205  電圧印加手段
206  電流/電圧変換回路(電流/電圧変換手段)
207  A/D変換回路
208  記憶手段(記憶装置)
209a 環境温度センサ(第1環境温度センサ)
209b 環境温度センサ(第2環境温度センサ)
209aa,209ab 環境温度センサ(第1環境温度センサ)
209ba,209bb 環境温度センサ(第2環境温度センサ)
210  演算手段(演算装置)
211  表示部
214  電極系
219  時計(動作時間計測部)
221  二次電池(発熱材料)
231  測定用接続端子
233  充電回路(充電IC)
 以下で、本発明の一実施形態に係る測定器およびこれを用いた環境温度測定方法、液体試料測定方法について、図面を用いて詳細に説明する。
 (実施形態1)
 本実施形態に係る測定器2について、図1~図11に基づいて説明する。
 ここでは、測定器2として、分析対象物としての血液を用いてグルコース濃度を測定する血糖値測定器を例として挙げて説明する。なお、図1~図11は、本発明の一実施形態に過ぎず、発明の範囲がこれらによって限定されるものではない。
 図1は、本実施形態によるバイオセンサ1を測定器2へ装着した後、測定対象物である検体の濃度を算出する場合の全体的なアルゴリズムを示すフローチャートである。また、図2は、本実施形態による測定器2の構成の概要を示した図である。
 次に、本実施形態の測定器および方法の構成要素であるバイオセンサ1の詳細について説明する。図3は、バイオセンサ1の分解斜視図である。
 バイオセンサ1は、図3に示すように、カバー12と、スペーサ13と、試薬層15と、絶縁性基板12aとを積層して構成されている。
 カバー12は、その中央部に空気孔36を有している。スペーサ13は、略長方形状の試料供給路20を有している。試薬層15は、液体試料中の特定成分と酵素反応する試薬を担持している。絶縁性基板12aは、ポリエチレンテレフタレート等からなり、その表面には電極層が形成されている。この電極層は、レーザ等によって分割され、電極系14として、作用極14a、対極14b、および検知極(図示せず)が形成されている。
 次に、本実施形態の主要な構成要素の1つである測定器2について説明する。図4は、バイオセンサ1が測定器2に装着される部分の要部拡大図である。図5は、バイオセンサ1を着脱自在に保持するセンサ保持部(バイオセンサ保持部)3に装着する前後の状態を示した斜視図である。
 本実施形態の測定器2は、図2、図4、図5に示すように、バイオセンサ1を着脱自在に保持するセンサ保持部3を備えている。そして、その内部には、バイオセンサ1上の電極系14とともに電気的接点を形成するための、それぞれに対応した接続端子である測定用接続端子31が設置されている。言い換えれば、バイオセンサ1上の電極系14と測定用接続端子31とは、互いに接触する位置に配置されている。
 測定用接続端子31の各端子(図示せず)は、例えば、液体試料である検体がキャビティ17に導入されたことを検知する検知極や分析対象物の濃度を測定するための電極、さらには各種補正項目を測定するための電極とそれぞれ接触する。そして、これらの電極間に対して電圧を印加する際には、切換回路4において印加電圧を印加する電極が切り換えられる。印加電圧は、DAC(Digital to Analog Converter)等から構成される電圧印加手段5から出力され、所定の電極間に印加される。
 各電極に印加された電圧による電気化学反応によって得られた電流(応答電流とも言う。)は、電流/電圧変換回路6において電圧に変換される。ここで得られた電圧値は、A/D変換回路(Analog to Digital Converter)7でデジタル信号へと変換される。そして、このデジタル信号に基づいて、演算手段10において検体濃度情報が演算される。
 ここで、各種補正項目とは、例えば、ヘマトクリット値補正や妨害物質補正などである。当然ながら、電気化学的に測定が可能な補正項目については全てこの各種補正項目の中に含まれる。また、検体濃度測定時は、検体濃度の温度補正が行われるが、EEPROM(Electrically Erasable Programmable Read Only Memory)、フラッシュメモリ等で構成される記憶手段8には予め環境温度に対する各種補正項目の算出用テーブルが格納されている。そして、サーミスタ等から構成される環境温度センサ9からの温度情報と各種補正項目の算出用テーブルを用いて、検体濃度演算時に温度補正が行われる。演算手段10によって演算された最終的な検体濃度は、表示部11に表示される。
 なお、測定器2には充電可能な二次電池(発熱材料)21が搭載され、充電を行うための充電回路33が備えられている。記憶手段8には、上述した各種補正項目の算出用テーブル等が格納されているが、充電動作時における測定器2内部で測定される環境温度から測定器2外の環境温度を算出する時に必要とされる環境温度用算出用テーブルがさらに格納されている。
 また、測定器2には、濃度測定した日時および充電動作時間等(充電動作時間情報)を計測するための時計(動作時間計測部)19が搭載されている。
 次に、本実施形態における測定器2の検体濃度測定過程について、図1のフローチャートを用いて説明する。
 まず、ステップS1では、測定器2は、ユーザからの操作待ち、またはバイオセンサ挿入待ちの待機状態、あるいは充電動作中である。
 次に、ステップS2では、測定器2にバイオセンサ1が挿入される。
 次に、ステップS3では、バイオセンサ1の挿入によって検体の点着待ち状態となり、切換回路4において印加電極の接続を設定して測定用接続端子31に対して点着検知用の電圧の印加を開始する。そして、A/D変換回路7において、電流の測定を開始する。
 次に、ステップS4において検体の点着が検出されると、ステップS5,S6,S7において、切換回路4が電圧を印加する電極および印加電圧値を所定の設定に順次切り換えて、検体濃度,各種補正項目,環境温度を測定するための電圧を印加する。このとき、バイオセンサ1の所定の電極間あるいはサーミスタ(環境温度センサ9)に流れる電流を電圧に変換して、検体濃度、各種補正項目および環境温度がそれぞれ測定される。
 次に、ステップS8では、測定器2が、検体濃度の算出に係る測定項目を測定後、検体点着時が充電動作開始後あるいは充電動作終了後、何分経過していたのかを時計19(図2参照)を用いて確認する。
 なお、時計19による充電動作時間の計測工程については、上述した検体濃度の測定と並行して実施されてもよいし、充電動作時間が所定の範囲内にある場合にのみ、検体濃度の測定と並行して実施されてもよい。つまり、内環境温度を補正するタイミングについては、例えば、発熱材料が発熱するレベルやサーミスタ(環境温度センサ9)で測定した環境温度等に応じて、適宜、設定することができる。
 次に、ステップS9では、検出された時間が予め設定した規定時間の範囲内であれば、ステップS10において測定した測定器2内の環境温度と測定器2外の実際の温度が乖離していると判断して環境温度の補正を行う。つまり、充電動作時間と環境温度センサ9で測定された内環境温度とに基づいて、記憶手段に格納されている外環境温度算出テーブルの情報を使用して、外環境温度を算出する。一方、規定時間の範囲外であれば、測定器2内の環境温度は測定器2外の環境温度と同等であると判断し、環境温度の補正は行わない。つまり、サーミスタ9で測定した内環境温度をそのまま外環境温度として使用する。
 その後、ステップS11において、決定した環境温度を用いて各種補正項目の温度補正処理を行い、ステップS12において検体濃度を算出し、ステップS13において表示部11に結果を表示する。
 続いて、環境温度の補正処理について、図6(a),図6(b)、図7及び図8を用いて説明する。図6(a)は、各種補正項目の温度補正時に使用する環境温度を算出する工程の流れを示した図である。図6(b)は、補正工程である各種補正項目の温度補正工程の流れを示した図である。図7は、測定器2外の環境温度を10℃,20℃,30℃に一定に保持した状態で、充電時間経過における測定器2内部の温度変化を実際に測定したデータである。図8は、特に図7の充電開始から10分経過までの温度変化データである。
 ここで、測定器2外の温度変化が緩やかである場合、充電開始直後は測定器2内部で測定される環境温度も当然、測定器2外の温度と同等である。しかし、充電動作が開始すると、充電動作を制御するための充電IC,コンデンサ,コイル,抵抗器等の電気部品及び電池自身には400mA以上の充電電流が流れる。この時、それらの各電気部品の持つ抵抗成分と充電電流により、電力をP[W]、電流をI[A]、抵抗をR[Ω]とすると、
    P=I×I×R
で求められる電力Pが消費され、各電気部品からは熱が放出される。
 ここで、二次電池の充電動作について、図9に示す外気20℃時の充電プロファイルを用いて説明する。使用している電池はリチウムイオン電池であり、小型で高容量であるが、過充電、過放電になると電池が破損するおそれがある。このため、充電時は決められたプロファイルで行う必要がある。
 まず、充電を開始すると電池の電圧を計測し、電池電圧が充電可能な範囲かどうかを判定する。充電可能範囲であれば予備充電モードに入り、少ない電流で充電を開始する。続いてA区間の定電流モードとなり、多量の定電流(図9では430mA)で充電を進める。定電流モードでは大電流が流れ、部品の発熱量が多いため、測定器内部は急激に温度が上昇する。
 図9では、電池残量があったため、充電開始直後に予備充電モードはパスして定電流モードに入っている。定電流モードでは徐々に電池電圧が上昇していき、開始後24分頃に電池電圧が4.215Vに達すると、B区間の定電圧モードとなり電池電圧を保持したまま充電を進める。定電圧モードでは徐々に充電電流は減少し、その動作に応じて測定器内部の温度も緩やかに下降する。そして、定電圧モード充電中に予め決められた充電完了電流(65mA)以下を判定すると開始後84分頃にC点で充電を終了し、以降D区間の待機状態となる。充電終了後は充電電流が0mAとなる。このため、部品は内部の熱を放熱し、測定器2内部の温度も急激に下降した後、測定器2外部の温度に落ち着く。
 次に、図6(a)を用いて、環境温度算出工程の流れを説明する。
 まず、充電動作が開始されると、温度情報演算工程05では、温度補正時の環境温度算出の動作が開始される。充電動作時間計測工程(発熱動作時間計測工程)02では、時計19から充電開始時の充電動作時間情報を取得し、その情報を充電動作開始時刻情報として、演算手段10に送信する。その後、センサ保持部3にバイオセンサ1が装着されて検体濃度測定が開始されると、環境温度測定工程(内環境温度算出工程)03では、サーミスタ(環境温度センサ9)で検出された内環境温度情報が演算手段10に送られる。また、充電動作時間計測工程02では、時計19から検体濃度測定開始を示す検体点着時の充電動作時間情報を取得し、その情報は、検体点着時時刻情報として、演算手段10に送られる。発熱時環境温度測定工程(外環境温度算出工程)04では、充電動作開始時刻情報と検体点着時の時刻情報とから、充電動作開始後、どのくらいの時間が経過したのかを計測し、この計測した充電動作時間と、サーミスタ(環境温度センサ9)で測定した内環境温度に基づいて算出する。この時、充電動作時間が一定以上であれば、サーミスタ9の温度をそのまま使用することができるため、算出するかそのままサーミスタ9の温度を使用するかも判断している。
 つまり、測定器2内部の温度は、図7に示すように、充電開始後120分以降、充電開始時の環境温度とほぼ同等の温度に戻る。このため、サーミスタ(環境温度センサ9)で測定された測定器2内部の環境温度は、測定器2外部の環境温度とほぼ一致するものと判断する。また、測定器2内部の温度は、図8に示すように、充電開始後60秒以内は充電開始時の環境温度と等しいため上記と同様の判断を行う。よって、点着時が充電開始後60秒以内または120分以降であれば、内環境温度補正工程(温度補正工程)06は、サーミスタ(環境温度センサ9)で測定した環境温度を各種補正項目の温度補正用温度として決定する。この温度補正用温度を使って、検体濃度測定工程01(図6(a)における測定対象物濃度測定工程01に該当)で算出された測定対象物濃度情報に対して補正が行われる。
 発熱時環境温度測定工程04では、検体点着時の時刻が充電開始後60秒以降120分未満であると、サーミスタ(環境温度センサ9)で測定した測定器2内部の環境温度から補正した測定器2外部の環境温度を算出する。記憶手段8では、予め測定器2外の各環境温度における充電時間と測定器2内の環境温度の推移を示す図7のデータ(外環境温度算出テーブル)を保持しており、点着時の時刻と測定器2内の環境温度から測定器2外の環境温度を算出することができる。
 具体的には、図10に示すように、点着時の時刻が充電開始後50分であり、そのときサーミスタ(環境温度センサ9)で測定した温度(測定器2の内部環境温度を示す内環境温度)が28℃であると、測定器2外部の外環境温度は20℃であることが得られる。外環境温度補正工程(温度補正工程)07では、このように求めた外環境温度20℃を各種補正項目の温度補正用温度として決定する。この温度補正用温度を使って、検体濃度測定工程01で算出された測定対象物濃度情報に対して補正が行われる。
 温度による補正工程である補正項目温度補正工程08(図6(a)参照)では、各種補正項目の温度補正を行う。なお、図10では、検体の点着時間での検出温度が温度算出用テーブル(環境温度算出用テーブル)としての図7のデータ上にある場合を示しているが、データに無い場合は、図7のデータを基にして算出すればよい。
 図23は、図10における外気温10℃、20℃、30℃の特性曲線について、外気温10℃のグラフを基準として重ねたものである。このグラフから分かるように、充電開始直後から所定時間経過後(15~22min)には、3つの特性曲線の傾きはほぼ一致していることが分かる。よって、この時間帯においては、外環境温度補正工程07(図6(a)参照)では、外気温度に関わらず、共通の温度算出用のテーブル(環境温度算出用テーブル、環境温度補正情報)を用いることができる。
 図24は、図10における充電終了後における外気温10℃、20℃、30℃の特性曲線を拡大したものである。このグラフから分かるように、充電完了時間は各外気温度によって差があるものの、充電終了後においては、各外気温度に対応する特性曲線はほぼ一致していることが分かる。よって、充電終了後においても、外環境温度補正工程07では、外気温度に関わらず、共通の温度算出用のテーブルを用いることができる。つまり、温度算出用テーブルをその範囲においては共通化することで簡略化が図れる。
 図25(a)~図25(c)は、図10の充電終了時前後における外気温10℃、20℃、30℃の特性曲線をそれぞれ拡大したものである。このグラフから分かるように、各外気温度に対応する特性曲線を温度算出用のテーブル(環境温度補正情報)を記憶しておくことで、充電中あるいは充電後のタイミングにおいて、適切なテーブルを選択して外気温度を算出することができる。つまり、充電中の温度算出テーブルと充電後の温度算出テーブルとを切り替えて最適化を図る。もちろん、充電後は、上述のように共通化した温度算出テーブルを使用することもできる。
 なお、上述した温度補正用のテーブルを用いて外気温度を算出する際には、測定器2内にサーミスタ(環境温度センサ9)における測定結果と、各テーブルの温度データとを比較して、その差が所定値以上となっている場合には、エラーと判断して表示部11等において通知すればよい。これにより、例えば、外気温度が10℃未満、あるいは45℃以上である場合には、測定器2の使用環境温度条件が満たされていないと判断して、温度の算出を行わず、使用の中止を促すことができる。
 さらに本実施形態では、充電開始時の温度を記憶することで、充電動作時間情報とその時の内環境温度情報とから、エラー判定を行うことができる。例えば、充電開始時の環境温度センサ(サーミスタ)9における測定結果が23度であって、点着時間(充電動作時間情報)が50分、その時の環境温度センサ9の温度が35度以上または20度未満であれば、図10に示すグラフと比較すると大きく乖離していることが分かる。このため、この結果をおかしいと判断して、エラーと判定することができる。もちろん、この場合、再度、環境温度センサ9において温度を測定して判断してもよい。
 次に、外環境温度の求め方について、図11を使用して具体的に説明する。
 図11は、図7のデータにおいて、充電開始後48分から52分までの温度のデータである。温度データは1分間隔で保持している。ここで、点着時間が充電開始後49.5分後であり、そのときの検出温度が25℃である場合の測定器2外の環境温度算出方法を説明する。温度データは前述の通り1分間隔で取っており、49.5分後のデータは保持していない。そのため、49.5分の前後直近のデータから一次式近似して温度を求める。
 検出温度は25℃であるため、図7のデータにおいては、外気温度10℃と20℃の間に測定器2外の予想環境温度が存在するはずである。10℃の49分後の温度データは18.8℃であり、50分後の温度データは18.6℃である。このため、一次式近似により49.5分後の温度は18.7℃となる。同様に外気温度20℃の時の49.5分後の温度は28.55℃である。以上、28.55と25と18.7の比から、充電開始後49.5分で検出温度25℃の時、測定器2外の環境温度は、16.4℃と算出される。
 続いて、図6(b)を用いて、「内環境温度補正工程06」もしくは「外環境温度補正工程07」において算出された環境温度を用いた各種補正項目の温度補正工程の流れを説明する。
 環境温度情報(内環境温度、外環境温度)により温度補正を受ける対象としては、検体濃度測定工程01(図6(a)参照)で算出された測定対象物濃度情報以外にも、各種補正項目情報(図6(b)参照)が挙げられる。すなわち、検体試料の濃度情報(測定対象物濃度情報)は、演算手段10において、環境温度情報(内環境温度、外環境温度)に応じて補正される(「内環境温度補正工程06」もしくは「外環境温度補正工程07」(図6(a)参照))のであるが、その前後の適切なタイミングで各種補正項目による補正も行われる。当然ながら、この各種補正項目情報についても、温度の影響を受けるものに関しては、図6(b)に示すように、環境温度情報や発熱時環境温度情報(充電時環境温度情報)により温度補正が行われることにより、よりその精度を高めることが可能である。
 より詳細に説明すると、補正項目温度補正工程08では、測定された各種補正項目情報に対して、環境温度情報や充電時環境温度情報により温度補正が行われ、各種補正項目の補正情報(各種補正項目情報)が決定される。この補正情報は、前述の方法で算出した環境温度(内環境温度、外環境温度)と、予め記憶手段8に保持されている各種補正項目の所定の温度における補正値のデータとから求めた、検体点着時の環境温度における補正値である。その後、演算手段10内では、補正項目温度補正工程08で求めた各種補正項目情報により、測定対象物濃度情報が補正される。そして、最終的に、温度を含む各種補正がなされた検体濃度(測定対象物濃度)が、表示部11に表示される。
 なお、本実施形態では、10℃,20℃,30℃と10℃間隔のデータを記憶手段8において保持しているが、より細かい間隔の温度データ(例えば、1℃間隔)を保持することにより、さらに精度の高い温度算出を行うことが可能である。
 また、環境温度センサ9としては、例えば、サーミスタ、測温抵抗体、IC温度センサ、放射温度計などが考えられる。
 以上のように、本実施形態による液体試料測定方法および測定器2では、バイオセンサ1を測定器2に装着してからバイオセンサ1に血液が点着された後、測定器2内に備えられた時計19と環境温度センサ9とを用いて、二次電池21の充電時間と充電時の内環境温度とを計測し、充電時の外環境温度を特定する。
 これにより、充電時環境温度をリアルタイムで測定して環境温度(外環境温度)を特定し、この環境温度(外環境温度)に基づいて、バイオセンサ1に点着された血液中のグルコース濃度などの各種分析対象物を補正することができる。よって、二次電池21等の発熱材料による環境温度の温度上昇の影響を排除して、各種分析対象物の濃度等を高精度に測定することができる。この結果、例えば、グルコース濃度などの測定において、温度補正の精度が向上し、発熱材料の発熱時の場合でも高精度の測定結果を得ることができる。また、バイオセンサ1自体の温度を測定するための温度センサを新たに設けることなく、高精度の測定器2を低コストで提供することができる。
 また、本実施形態では、バイオセンサ1に点着された血液中のグルコース濃度の測定方法をより高精度なものに変化させる要因として、計測時間だけでなく、グルコース濃度、環境温度、ヘマトクリット値、妨害物質の補正値などを追加することにより、測定精度を飛躍的に向上させることができる。
 また、本実施形態では、測定対象物質として血糖について説明したが、本発明はこれに限定されるものではない。例えば、コレステロール、トリグリセリド、乳酸、尿酸、ビリルビン、アルコールなどの生体内サンプルや環境サンプル、食品サンプル等であっても同様の効果が得られる。
 また、本実施形態では、環境温度センサ9はセンサ保持部3の近傍、あるいは測定器2の開口部近傍に配置するのが望ましい。ただし、例えば、電気回路基板上に配置した場合には、発熱材料からの発熱の影響が空気中だけで無く、基板を介して伝播する。このため、その場合には、基板の特性(基材厚,銅箔厚,絶縁材厚等)バラつきによる測定データの誤差要因が大きくなってしまう。よって、可能であれば、環境温度センサ9は、基板からの伝導熱の影響を受けにくく、バイオセンサ1に近い、センサ保持部3内に設けるのが最も望ましい。
 (実施形態2)
 以下に、本発明の他の実施形態について、図3,9,12,13および図14~図22に基づいて説明する。ここでは、上記実施形態1と同様に、分析対象物として血液を用いてグルコース濃度を測定する血糖センサの場合について説明する。なお、図面を用いて以下で説明する内容は、本発明の一実施形態に過ぎず、本発明はこれに限られるものではない。
 図14は、本実施形態に係るバイオセンサ201を測定器202へ装着した後、検体濃度を算出する場合の全体的なアルゴリズムを示すフローチャートである。また、図15は、本実施形態に係る測定器202の構成の概要を示した図である。
 本実施形態の測定器202および方法の構成要素であるバイオセンサ201の詳細について説明する。バイオセンサ201の分解斜視図については、上記実施形態1で説明した図3と同様の図面であるため、ここではその説明を省略する。
 次に、本実施形態の構成要素である測定器202について説明する。図16は、バイオセンサ201が測定器202に装着される部分の要部拡大図である。図17は、バイオセンサ201を着脱自在に保持するセンサ保持部203に装着する前後の状態を示した斜視図である。
 図15、図16、図17に示すように、本実施形態の測定器202には、同じく本実施形態の構成要素であるバイオセンサ201を着脱自在に保持するセンサ保持部203を備えている。そして、その内部には、バイオセンサ201上の電極系214と電気的接点を形成するための、それぞれに対応した接続端子である測定用接続端子231が設置されている。言い換えれば、バイオセンサ201上の電極系214と測定器202側の測定用接続端子231とが互いに接触する位置に配置されている。
 測定用接続端子231の各端子(図示せず)は、例えば、検体がキャビティ17(図3参照)に導入されたことを検知する検知極や分析対象物の濃度を測定するための電極間、さらには各種補正項目を測定するための電極とそれぞれ接触する、そして、これらの電極間に対して電圧を印加する際には、切換回路204において、印加電圧を印加する電極を切り換える。印加電圧は、DAC(Digital to Analog Converter)等から構成される電圧印加手段205から出力され、所定の電極間に電圧が印加される。
 電気化学反応により得られた電流(応答電流とも言う。)は、電流/電圧変換回路206において電圧に変換され、得られた電圧値はA/D変換回路(Analog to Digital Converter)207でデジタル信号へと変換され、演算手段210で検体濃度情報が演算される。
 ここで、各種補正項目とは、例えば、ヘマトクリット値補正や妨害物質補正などである。当然ながら電気化学的に測定が可能である補正項目については全て含まれる。また、検体濃度測定時は検体濃度の温度補正が行われるが、EEPROM(Electrically Erasable Programmable Read Only Memory)、フラッシュメモリ等で構成される記憶手段208は、予め環境温度に対する各種補正項目の算出用テーブルを格納している。そして、サーミスタ等から構成される環境温度センサ1(第1環境温度センサ)209a、環境温度センサ2(第2環境温度センサ)209bからの温度情報を用いて、検体濃度測定時に温度補正が行われる。演算手段210で求められた最終的な検体濃度は、表示部211に表示される。
 なお、測定器202には、充電可能な二次電池221が搭載されており、充電を行うための充電回路233が備えられている。記憶手段208には、前述のとおり各種補正項目の算出用テーブルを保持しているが、さらに充電動作時における測定器内部で測定される環境温度から、実際に温度補正時に必要とされる測定器外の環境温度を算出するための温度用算出用テーブルを保持している。また、濃度測定した日時および充電動作時間等を計測するための時計(動作時間計測部)219が搭載されている。
 次に、本実施形態に係る測定器202の検体濃度測定過程について、図14のフローチャートを用いて説明する。
 まず、ステップS21では、測定器202は、ユーザからの操作待ちまたはバイオセンサ201の挿入待ちの待機状態、あるいは充電動作中である。
 次に、ユーザ操作による測定器202の起動、またはバイオセンサ201が挿入されると、ステップS22では、測定器202は充電動作開始後あるいは充電動作終了後、どのくらい時間が経過しているのかを確認し、規定時間経過後であれば検体の点着待ち状態となる。
 ここで、規定時間経過していなければ、ステップS23を経由して、予め設定した待ち時間経過後に、ステップS24において、点着待ち状態となる。
 次に、ステップS24において、検体点着待ち状態になると、測定用接続端子231に点着検知用の電圧を印加するために切換回路204で印加電極の接続を設定し、電圧印加を開始し、A/D変換回路207では電流の測定を開始する。
 次に、ステップS25において、検体の点着が検出されると、ステップS26、ステップS27において、切換回路204が、切換回路204および印加電圧値を所定の設定に順次切り換え、検体濃度、各種補正項目、環境温度を測定するための電圧を印加する。
 次に、ステップS28では、バイオセンサ201の所定の電極間あるいはサーミスタ(環境温度センサ209a,209b)に流れる電流を電圧に変換して、環境温度を測定する。
 次に、ステップS29では、測定器202は、検体濃度の算出に係る測定項目の測定後に環境温度の補正処理を行う。
 次に、ステップS30では、ステップS29で決定した環境温度を用いて各種補正項目の温度補正処理を行う。
 次に、ステップS31では、上記補正後の環境温度、各種補正項目に基づいて検体濃度を算出し、ステップS32において、表示部211に結果を表示する。
 続いて、環境温度の補正処理について、図18(a)、図18(b)、図19(a)~図19(c)及び図20(a)~図20(c)を用いて説明する。図18(a)および図18(b)は、各種補正項目の温度補正時に使用する温度を算出する工程の流れを示した図である。図19(a),図19(b),図19(c)は、それぞれ測定器外の環境温度を10℃,20℃,30℃に一定に保持した状態で、充電時間経過における測定器202内部に設けた環境温度センサ209aの温度変化と、算出した補正後の外環境温度と実際に測定した外気温度との差を示すデータである。図20(a),図20(b),図20(c)は、特に、図19(a),図19(b),図19(c)の充電開始から10分経過までの部分を拡大して示した温度変化データである。
 測定器202外の温度変化が緩やかである場合、充電開始直後は測定器202内部で測定される環境温度も当然測定器202外の温度と同等である。しかし、充電動作が開始すると、充電動作を制御するための充電IC,コンデンサ,コイル,抵抗器等の電気部品及び電池自身には400mA以上の充電電流が流れる。この時、それらの各電気部品の持つ抵抗成分と充電電流により、電力をP[W]、電流をI[A]、抵抗をR[Ω]とすると、
    P=I×I×R
で求められる電力が消費され、各電気部品からは熱が放出される。
 ここで、二次電池の充電動作について、上述した実施形態1の図9に示すグラフと同様であるため、ここでは説明を省略する。
 次に、図18(a)で環境温度補正工程の流れを説明する。
 まず、ユーザ操作により測定器202が起動、あるいはバイオセンサ201がセンサ保持部203に挿入されると、充電動作時間計測工程02は、そのときが充電動作後何分経過後なのか、あるいは充電動作終了後何分経過後なのかを確認する。
 図19(a),図19(b),図19(c)及び図20(a),図20(b),図20(c)では、点線によって環境温度センサ209a,209bによる検出温度を、実線によって補正した環境温度と外気温度との差、をそれぞれ表している。これらの図面からわかるように、充電動作開始後2~6分程度経過後は、補正した環境温度と外気温度との差が約2度以上と大きいため正確な温度補正が困難である。よって、本実施形態における測定器202では、図19(a),図19(b),図19(c)に示すように、充電開始後10分間は、検体濃度測定動作を行わない方が好ましい。しかし、この場合に関しても、別途後述する算出式、あるいは算出式の補正係数を上記時間領域において最適化することにより正確な温度補正が可能である。
 環境温度測定工程03では、センサ保持部203の近傍あるいはそれ以外の開口部近傍に設けた環境温度センサ209aと、発熱材料近傍に設けた環境温度センサ209bにより、測定器202内部の2箇所の環境温度を測定する。
 発熱時環境温度測定工程04では、環境温度測定工程03で測定した2箇所の温度情報から外気温度に相当する補正した環境温度を算出するが、式1を用いて算出することが可能であることが見出された。
    T=T1-α×(T2-T1) ・・・式1
     T :補正した環境温度[℃]
     T1:環境温度センサ209aで検出した温度[℃]
     T2:環境温度センサ209bで検出した温度[℃]
     α :補正係数
 補正係数αは、測定器202内部の部品配置や外装形状に影響される係数であり、機種毎に係数は変化する。図19(a)~図19(c)の測定データの補正係数は、0.4である。
 図19(a),図19(b),図19(c)では、センサ保持部203近傍に配置した環境温度センサ209aの温度が、実際の各外気温度10℃,20℃,30℃に対して、充電開始後10分間及び充電終了後10分間を除いては式1で算出した環境温度と外気温度の差が±1.5℃の精度で算出できることが明かである。図22には、環境温度センサ209aで検出した温度(T1)と実際の外気温度との差が最大となる時間の各温度を示している。T1は、全ての外気温度に対して5℃程度乖離しているのに対して、式1で算出した環境温度は、外気温度との差が1℃以内に収まっていることが明白となった。
 式1により補正した環境温度が算出されると、「外環境温度補正工程07」で検体濃度の温度補正を行い、同様に補正項目温度補正工程08で各種補正項目の温度補正を行う。
 続いて、図18(b)を用いて、「内環境温度補正工程06」もしくは「外環境温度補正工程07」において算出された環境温度を用いた各種補正項目の温度補正工程の流れを説明する。
 検体濃度測定工程01で算出された測定対象物濃度情報以外にも、環境温度情報(内環境温度、外環境温度)により温度補正を受けるものとして、各種補正項目情報(図18(b)参照)があげられる。すなわち、試料の濃度情報(測定対象物濃度情報)は、演算手段210にて、環境温度情報(内環境温度、外環境温度)に応じて補正を受ける(内環境温度補正工程06」もしくは「外環境温度補正工程07)のであるが、その前後の適切なタイミングで各種補正項目による補正も行なわせる。当然ながら、この各種補正項目情報についても、温度の影響を受けるものに関しては、図18(b)に示すように、環境温度情報や発熱時環境温度情報(充電時環境温度情報)により温度補正が行われることにより、よりその精度を高めることが可能である。
 より詳細に説明すると、補正項目温度補正工程08では、測定された各種補正項目情報に対して、環境温度情報および充電時環境温度情報により温度補正が行われ、各種補正項目の補正情報(各種補正項目情報)が決定される。この補正情報は、上述の方法で算出した環境温度(内環境温度、外環境温度)と、予め記憶手段208に保持されている各種補正項目の所定の温度における補正値のデータとから求めた、検体点着時の環境温度における補正値である。その後、演算手段210内では、補正項目温度補正工程08で求めた各種補正項目情報によって測定対象物濃度情報が補正され、最終的に温度を含む各種補正がなされた試料濃度が、表示部211に表示される。
 なお、環境温度センサ209a,209bとしては、例えば、サーミスタ、測温抵抗体、IC温度センサ、放射温度計などが考えられる。
 以上のように、本実施形態による液体試料測定方法および測定器202では、バイオセンサ201を測定器202に対して装着してから、バイオセンサ201に血液が点着された後、測定器202内に備えられた二次電池221と環境温度センサ209a,209bによって、二次電池221の充電時間と充電時の環境温度とを計測する。そして、充電時の環境温度を特定することにより、充電時環境温度をリアルタイムで測定して環境温度(外環境温度)を特定する。さらに、この環境温度(外環境温度)に基づいて、バイオセンサ201に点着された血液中のグルコース濃度などの各種分析対象物を補正することができる。
 これにより、二次電池221等の発熱材料による環境温度の温度上昇の影響をキャンセルすることができうる。その結果、グルコース濃度の温度補正の精度が高まり、発熱材料の発熱時の場合でも、高精度な測定結果を得られることが明白となった。また、バイオセンサ201自体の温度を測定するための温度センサを新たに設けることなく、高精度の測定器202を低コストで実現可能である。
 また、本実施形態では、上記実施形態1と同様に、バイオセンサ201に点着された血液中のグルコース濃度の測定方法を変化させる要因として、計測時間だけでなく、グルコース濃度、環境温度、ヘマトクリット値、妨害物質の補正値などを追加することにより、測定精度を飛躍的に向上させることができる。
 さらに、本実施形態では、上記実施形態1と同様に、測定対象物質として血糖について説明したが、これに限定されず、コレステロール、トリグリセリド、乳酸、尿酸、ビリルビン、アルコールなどの生体内サンプルや環境サンプル、食品サンプル等であっても同様の効果が得られる。
 また、本実施形態では、測定器202内の環境温度を2箇所測定し、その温度差を基に測定器202外の環境温度を算出している。このため、それぞれの温度センサの設置箇所については、それぞれが異なる温度変化を持つ特徴的な箇所が望まれる。本実施形態では、環境温度センサ209aの設置箇所は、外気の影響を受けやすいセンサ保持部203近傍、あるいは開口部近傍としている。そして、環境温度センサ209bの設置箇所は、環境温度センサ209bに対して発熱の影響を与える原因となっている二次電池(発熱材料)221の近傍としている。
 本実施形態の充電時間経過に対する環境温度センサ209bと環境温度センサ209aの温度差の推移を図21に示す。この図では、外気温度を10℃,20℃,30℃に一定にした状態でのグラフであるが、外気温度が変わっても各充電モードでの温度差はほぼ同じであることが分かる。
 具体的には、定電流モードでの温度差ピークは7~8℃であり、充電動作終了時の温度差は2.5℃程度であり、充電動作終了後100分経過すると温度差は1℃未満となっている。つまり、充電動作の各モードは測定器自体で検知できるため、外気温度に関わらず充電モードでの温度差を確認することで、環境温度センサ209a,209bが正常に機能しているかどうかを確認することが可能である。さらに、もし充電回路233の故障および劣化した二次電池221の異常発熱が発生している場合などにおいても、上記温度差を算出することにより、環境温度(外環境温度)の検知が可能となることが判明した。
 また、本実施形態では、前述のように環境温度センサ209aは、センサ保持部203近傍あるいは開口部近傍に配置するのが望ましい。ただし、電気回路基板上に配置した場合、二次電池221等の発熱材料からの発熱の影響が空気中だけで無く、基板を介して伝播する。このため、その場合、基板の特性(基材厚,銅箔厚,絶縁材厚等)バラつきによる測定データの誤差要因が大きくなる。よって、可能であれば、環境温度センサ209a,209bは、基板からの伝導熱の影響を受けにくく、バイオセンサ201に近い、センサ保持部203内に設けるのが最も望ましい。
 また、本実施形態では、式1を用いることで、充電開始後10分間及び充電終了後10分間以外において、補正した環境温度の算出が可能であることが明白となった。この式1からわかるように、T1とT2が等しい場合、つまり発熱材料が発熱していない場合は式1の右辺の第2項が0となり、T=T1の関係が導かれ、開口部近傍に配置された環境温度センサ209aで検出した温度がそのまま外気温度(外環境温度)となることが見出される。式1の右辺の第2項の部分{α×(T2-T1)}は、発熱材料の発熱による影響で環境温度センサ209a,209bで検出される温度が上昇するため、発熱材料から開口部に影響している温度(T2-T1)に機種の内部構造に影響する係数αを乗算したものを表している。よって、発熱の影響を受けているT1の温度から、α×(T2-T1)を差し引くことで外気温度が算出できる、という考えに基づいて式1が成立している。よって、同様な考えに基づいていれば、算出式は必ずしも式1に限られるものではない。
 また、本実施形態では、式1を用いることで、充電開始後10分間及び充電終了後10分間以外において、補正した環境温度の算出が可能であることが明白である。ただし、これは発熱材料の温度変化が緩やかであり、環境温度センサ209aで検出される温度変化が環境温度センサ209bで検出される温度変化に追従しているためである。しかし、充電開始後10分間及び充電終了後10分間では発熱材料の温度変化が急激であり、環境温度センサ209aで検出される温度変化が環境温度センサ209bで検出される温度変化に追従できていない。このため、式1のままでは算出するのは少し難しい。よって、発熱材料の著しい温度変化が発生する場合は、異なる算出式を用いることで補正した環境温度を算出することが可能である。
 なお、上記式1については、上述したように、充電開始直後から10min経過時までの補正の精度が低下しているが、充電開始からの経過時間に応じて、以下のように補正値βを用いた式2を採用することで、より高精度に環境温度Tを算出することができる。
    T=T1-α×(T2-T1)+β ・・・式2
     β:補正係数
 例えば、充電開始後0~10min経過までの範囲では、2℃程度の誤差が生じるため、補正係数β(≒2℃)を用いて、環境温度Tを算出すればよい。
 また、充電開始後0~10min経過までの範囲を0~2min、2~10minの2つに分けて、以下の式3,4を用いて環境温度Tを算出してもよい。
    T=T1-α×(T2-T1)+γ ・・・式3
    T=T1-α×(T2-T1)+δ ・・・式4
     γ,δ:補正係数
 これにより、図19(a)~図19(c)および図20(a)~図20(c)に示すように、充電開始後0~10minの範囲内における環境温度Tの算出精度をさらに向上させることができる。
 <充電完了時刻の予測>
 従来より、上述した測定器2に搭載されている充電部としての充電池(二次電池)の充電時間は、電池残量と充電方法(充電電流値の大きさ)に応じて変化することが知られている。
 従って、充電完了の予測時間は、上記電池残量と充電方法とに基づいて算出していたが、実際の充電完了時間とは差異があり、あくまでも目安程度にしか使用されていない。
 本実施形態では、上述した2つの要素(電池残量と充電方法(充電電流))に加えて、環境温度データおよび充電開始からの動作時間の2つの要素を加えた計4つのパラメータに基づいて、充電完了時間を予測する。
 今回、環境温度により充電時間が変化することが分かり、その要素も考慮することによって、充電完了時間の予測精度をさらに向上させることができる。
 具体的には、図2に示すように、測定器2には、発熱材料の一つである二次電池21と、充電回路33と、演算手段(電池残量測定部)10と、表示部11が搭載されている。充電回路33は、二次電池21を充電する。演算手段10は、二次電池21の電池残量を、充電回路33を経由して求める。表示部11は、濃度測定した日時および充電動作時間などを計測するための時計19および各種の測定情報、状況を表示する。
 充電開始から完了までに要する時間は、上述したように、二次電池21の電池残量と充電回路33による充電方法とによって大きく変化する。充電回路33では、急速充電する場合は、充電電流を大きくして短時間で充電ができるようにし、通常の充電の場合は、充電電流を小さくして時間をかけて充電する。これは、急速充電を行うと二次電池21の劣化が早まって電池寿命が短くなるためである。また、ここで充電電流は、一定でなくてもよい(図9および上段のその説明部分参照)。
 ここで、二次電池21には、ニッケル水素電池やリチウムイオン電池などが用いられている。
 また、図23は、測定器2の外環境温度を10℃,20℃,30℃に一定に保持した状態で、充電時間経過における測定器2内部の温度変化を示す実測データである。もちろん、この時の充電条件および充電方法は、それぞれ同一に設定されている。つまり、二次電池21の電池残量は0に合わせられており、充電電流など充電方法はそれぞれ同一である。
 このような同一の充電条件の下、図23からも判るように、外環境温度が30度の場合、充電完了時間が充電開始から約74分(図25(a)参照)と一番短く、外環境温度が10度の場合は、充電完了時間が開始から約94分(図25(c)参照)と一番長くなっている。
 従って、充電機能を有する測定器2おいて、二次電池21の電池残量、充電電流、充電動作時間および外環境温度をパラメータとして、充電完了時間を求めることができ、より精度の高い予測をすることが可能となる。
 これにより、正確な充電完了時間、または充電完了までの残り時間をユーザに通知することができる。よって、ユーザは残り時間を確認して時間を有効に使うことができる。
 また、充電完了までの予測時間の通知は、測定器2に備えられた表示部11を使用して、充電完了までの残り時間を表示する方法や、聴覚の不自由な人には、音声または振動を使用する方法を用いればよい。
 以上のように、本実施形態の測定器2によれば、二次電池21の電池残量、充電電流、充電動作時間および外環境温度をパラメータとして、充電完了時間を求めることができ、より精度の高い予測をすることができる。よって、充電機能を有し、ハウジング内に温度センサを設けた環境温度を測定する機能を有する測定器等において利用可能である。特に、算出された充電時間を利用する携帯型の小型医療機器の分野において有用である。
 (実施形態3)
 本発明のさらに他の実施形態に係る測定器について、図26を用いて説明すれば以下の通りである。
 すなわち、上述の実施形態1および実施形態2においては、測定器2に設けられている環境温度センサ(サーミスタ)9等によって計測される情報に基づいて、ハウジング外の外環境温度を算出している。しかし、もし何らかの要因によって、この環境温度センサ9等が正常に動作しない場合には、外環境温度情報が正しく算出することができない。この結果、この外環境温度情報に基づいて補正された液体試料中の特定成分の濃度の値を正確に求めることができなくなって、測定器2の測定精度が悪くなるおそれがある。
 この問題を解決するために、本実施形態では、図26に示すような構成を採用している。上述の実施の形態1および2と共通の構成要素に関しては同一の符号を付け、その説明を省略する。
 上記実施形態2では、ハウジング内に設けられている環境温度センサ209a,209bが、発熱材料の近傍の位置(第1の領域)と発熱材料の近傍とは異なる位置(第2の領域)にそれぞれ1個ずつ設けられている。これに対して、本実施形態では、この第1の領域および第2の領域に、それぞれ複数の環境温度センサ209aa,209abおよび209ba,209bbが設けられている点において、上記実施形態2とは異なっている。
 第1の領域および第2の領域に、それぞれ複数の環境温度センサ209aa,209abおよび209ba,209bbを設けることにより、例えば、第1の領域では、第1の領域内に設けられた複数の環境温度センサ209ba,209bbにおいて測定された各内環境温度情報の検出結果の差を求める。そして、この求めた温度の差が所定の範囲を超えているか否かにより、環境温度センサ209ba,209bbが正常に動作しているかどうかを判定することができる。
 同様に、第2の領域においても、第2の領域内に設けられた複数の環境温度センサ209aa,209abにおいて測定された内環境温度情報の差を求める。そして、この求められた温度の差が所定の範囲を超えているか否かにより、環境温度センサ209aa,209abが正常に動作しているかどうかを確認することができる。
 つまり、温度補正用温度による測定対象物濃度情報に対しての補正(内環境温度補正工程06や外環境温度補正工程07)が行われる前の段階で、各環境温度センサが正常に動作しているかどうかを事前に判定することができる。
 このように、第1の領域および第2の領域に、それぞれ複数の環境温度センサ209aa,209abおよび209ba,209bbを設け、この環境温度センサ209aa,209abおよび209ba,209bbにおいて測定された内環境温度情報の差を求めることにより、各領域に設けられた環境温度センサ209aa,209abおよび209ba,209bbが正常に動作しない場合に生じる測定精度の悪化を未然に防止することができる。
 なお、この場合、上述した演算手段(判定部)210が、第1の領域内に設けられた複数の環境温度センサ209ba,209bbにおいて測定された内環境温度情報の差、または第2の領域内に設けられた複数の環境温度センサ209aa,209abにおいて測定された内環境温度情報の差のいずれか一方が所定の範囲を超えているか否かを判定し(判定工程)、その温度の差が所定の範囲を超えている場合には、上述の表示部211等のエラー通知部が、エラー表示(通知)を行う(エラー通知工程)。
 また、液体試料中の特定成分の濃度を測定しない時や測定開始前においても、定期的に第1領域および第2領域のそれぞれ複数の環境温度センサの内環境温度情報を測定して、各環境温度センサ間の温度差データにより環境温度センサを相互監視すると共に、その温度差データの変化も監視することで、環境温度センサの異常を予知することも可能となり、より信頼性の高い測定器を提供することができる。
 本発明によれば、筐体内に備えられた発熱材料による発熱時の温度上昇の影響を加味しながら、ハウジング外の環境温度を容易に算出することができる。よって、ハウジング内に設けられている温度センサにより環境温度を測定する測定器等において利用可能である。また、算出された液体試料中の特定成分の濃度の値を環境温度に基づいて補正して高精度な測定結果が要求される医療用の小型診断装置・分析装置等の分野においても有用である。

Claims (47)

  1.  ハウジング内に発熱材料と環境温度センサとが設けられた測定器において、前記環境温度センサによって計測される電気情報に基づいて、温度を測定する環境温度測定方法であって、
     前記ハウジング内に設けられた発熱材料の発熱時の動作時間を計測する発熱動作時間計測工程と、
     前記発熱材料の動作時間と前記環境温度センサにおいて得られた内環境温度とに基づいて、前記ハウジング外の外環境温度を算出する外環境温度算出工程と、
    を備えている環境温度測定方法。
  2.  請求項1記載の環境温度測定方法であって、
     前記外環境温度算出工程では、前記ハウジング内に設けられた記憶装置に格納された環境温度算出用テーブルに基づいて前記ハウジング外の外環境温度を算出する、
    環境温度測定方法。
  3.  請求項1または2に記載の環境温度測定方法であって、
     前記外環境温度算出工程では、前記ハウジング内に複数設けられた複数の環境温度センサにおける内環境温度情報の検出結果の差と、前記発熱材料の動作時間とに基づいて、前記ハウジング外の外環境温度を算出する、
    環境温度測定方法。
  4.  請求項1から3のいずれか1項に記載の環境温度測定方法であって、
     前記外環境温度算出工程において算出された前記外環境温度を用いて、各種補正項目についても温度補正を行う補正工程を、
    さらに備えている環境温度測定方法。
  5.  請求項1または2に記載の環境温度測定方法であって、
     前記発熱材料は、二次電池、バッテリ、充電器、充電IC、コイル(インダクタ)、抵抗器の少なくとも1つである、
    環境温度測定方法。
  6.  請求項5に記載の環境温度測定方法において、
     前記外環境温度算出工程は、充電中であるか否かに関わらず、前記発熱動作時間計測工程において測定される前記二次電池の動作時間と、前記内環境温度情報とに基づいて、前記外環境温度を算出する、
    環境温度測定方法。
  7.  請求項6に記載の環境温度測定方法において、
     前記外環境温度算出工程では、充電中あるいは充電後のタイミングで、複数の前記所定の環境温度算出用テーブルの中から適切なものを選択し、外環境温度を算出する、
    環境温度測定方法。
  8.  請求項5から7のいずれか1項に記載の環境温度測定方法において、
     前記環境温度センサにおいて測定された内環境温度測定情報と、前記環境温度算出用テーブルの中に含まれる温度データとの差が所定の範囲を超えているか否かを判定する判定工程と、
     前記判定工程において前記所定の範囲を超えると判定された場合には、エラーと判断して通知を行うエラー通知工程と、
    をさらに備えている環境温度測定方法。
  9.  請求項5から8のいずれか1項に記載の環境温度測定方法において、
     前記外環境温度算出工程では、充電完了後には、共通の前記環境温度算出用テーブルの情報を用いる、
    環境温度測定方法。
  10.  請求項5から9のいずれか1項に記載の環境温度測定方法において、
     前記外環境温度算出工程では、充電開始直後から所定時間が経過した時間帯中には、共通の前記環境温度算出用テーブルの情報を用いる、
    環境温度測定方法。
  11.  請求項3または4に記載の環境温度測定方法であって、
     前記発熱材料は、二次電池、バッテリ、充電器、充電IC、コイル(インダクタ)、抵抗器の少なくとも1つである、
    環境温度測定方法。
  12.  請求項11に記載の環境温度測定方法であって、
     前記外環境温度算出工程は、充電中であるか否かに関わらず、前記発熱動作時間計測工程において測定される前記二次電池の動作時間と、前記測定器内に設置された複数の前記環境温度センサにおける測定結果とに基づいて、前記外環境温度を算出する、
    環境温度測定方法。
  13.  請求項12に記載の環境温度測定方法において、
     前記外環境温度算出工程では、充電中あるいは充電後のタイミングで、複数の環境温度算出用テーブルの中から適切なものを選択し、前記外環境温度を算出する、
    環境温度測定方法。
  14.  請求項12または13に記載の環境温度測定方法において、
     複数の前記環境温度センサにおける測定結果の差が所定の範囲を超えているか否かを判定する判定工程と、
     前記判定工程において前記所定の範囲を超えると判定された場合には、エラーと判断して通知を行うエラー通知工程と、
    をさらに備えている環境温度測定方法。
  15.  ハウジング内に発熱材料と環境温度センサとが設けられた測定器において、前記測定器に装着されるバイオセンサに点着された液体試料中の特定成分の濃度を測定する液体試料測定方法であって、
     前記バイオセンサに点着された前記液体試料中の特定成分の濃度を測定する検体濃度測定工程と、
     請求項1から14のいずれか1項に記載の環境温度測定方法において求められた前記ハウジング外の外環境温度に基づいて前記特定成分の濃度を補正する外環境温度補正工程と、
    を備えている液体試料測定方法。
  16.  請求項15に記載の液体試料測定方法であって、
     前記外環境温度算出工程は、前記ハウジング内に設けられ前記バイオセンサが着脱可能なバイオセンサ保持部の近傍、あるいは前記測定器の開口部近傍に設けられた環境温度センサによって前記ハウジング内の内環境温度を測定する内環境温度測定工程を、
    含む液体試料測定方法。
  17.  請求項15に記載の液体試料測定方法であって、
     前記外環境温度算出工程は、前記ハウジング内に設けられ前記バイオセンサが着脱可能なバイオセンサ保持部内に装着され前記バイオセンサ上の電極端子の近傍に設けられた環境温度センサによって前記ハウジング内の内環境温度を測定する内環境温度測定工程を、
    含む液体試料測定方法。
  18.  請求項15から17のいずれか1項に記載の液体試料測定方法であって、
     前記発熱動作時間計測工程中に前記検体濃度測定工程が開始された場合、前記発熱動作時間計測工程は、前記検体濃度測定工程と並行して実施される、
    液体試料測定方法。
  19.  請求項15から17のいずれか1項に記載の液体試料測定方法であって、
     前記発熱動作時間計測工程中に前記検体濃度測定工程が開始された場合、前記発熱動作時間計測工程は、前記発熱動作時間の計測が開始されてから予め規定された時間においてのみ、前記検体濃度測定工程と並行して実施される、
    液体試料測定方法。
  20.  請求項15から19のいずれか1項に記載の液体試料測定方法であって、
     前記外環境温度補正工程は、前記内環境温度測定工程において測定された前記ハウジング内の内環境温度に基づいて、前記バイオセンサに点着された前記液体試料中の特定成分の濃度を補正する内環境温度補正工程を含む、
    液体試料測定方法。
  21.  請求項15から20のいずれか1項に記載の液体試料測定方法であって、
     前記外環境温度補正工程は、前記検体濃度測定工程によって得られた前記液体試料中の特定成分の濃度を補正する温度以外の各種補正項目を、前記環境温度センサにおいてそれぞれ測定された前記ハウジング内の内環境温度情報、または前記外環境温度算出工程において算出された前記ハウジング外の外環境温度情報に基づいて補正する補正項目温度補正工程を含む、
    液体試料測定方法。
  22.  請求項15から21のいずれか1項に記載の液体試料測定方法であって
     前記外環境温度算出工程では、前記内環境温度情報と前記外環境温度情報との値の差が、所定の閾値を超える場合に補正を行う、
    液体試料測定方法。
  23.  請求項15から22のいずれか1項に記載の液体試料測定方法であって、
     前記外環境温度算出工程は、前記発熱動作時間計測工程において算出された充電動作時間情報に基づいて、前記ハウジング内の内環境温度を、前記液体試料が前記バイオセンサに対して点着されたことを検知してから補正する、
    液体試料測定方法。
  24.  請求項15から23のいずれか1項に記載の液体試料測定方法であって、
     前記外環境温度補正工程では、前記測定器に設けられた記憶装置に格納された複数の環境温度算出用テーブルの中から、前記発熱材料の発熱時の動作時間に応じて最適な前記環境温度算出用テーブルを選択し、前記液体試料中の特定成分の濃度を補正する、
    液体試料測定方法。
  25.  請求項21に記載の液体試料測定方法であって、
     前記補正項目温度補正工程では、前記測定器に設けられた記憶装置に格納された複数の環境温度算出用テーブルを前記発熱材料の発熱時の充電動作時間情報に応じて選択し、さらに前記特定成分濃度の温度補正の前後に行われる様々な温度以外の補正項目についても温度補正を行う、
    液体試料測定方法。
  26.  ハウジングと、
     前記ハウジング内に設けられた発熱材料と、
     前記ハウジング内に設けられており、前記ハウジング内の内環境温度を測定する環境温度センサと、
     前記発熱材料の動作時間を計測する動作時間計測部と、
     前記発熱材料の発熱時の動作時間と前記内環境温度とに基づいて、前記ハウジング外の外環境温度情報を算出する演算装置と、
    を備えている測定器。
  27.  バイオセンサが装着され、前記バイオセンサに点着された試料中の特定成分の濃度を測定する測定器において、
     ハウジングと、
     前記ハウジング内に設けられた発熱材料と、
     前記ハウジング内に設けられており、前記ハウジング内の内環境温度を測定する環境温度センサと、
     前記バイオセンサ側の測定用電極から分析に必要な信号を取り出す測定用接続端子と、
     前記ハウジングに対して一体的に形成されており、前記バイオセンサを着脱可能な状態で保持するバイオセンサ保持部と、
     前記発熱材料の動作時間を計測する動作時間計測部と、
     前記環境温度センサにおいて測定された内環境温度と、前記動作時間計測部において計測された前記動作時間とに基づいて、前記ハウジング外の外環境温度を算出する演算装置と、
    を備えている測定器。
  28.  請求項26または27に記載の測定器であって、
     前記環境温度センサは、前記ハウジング内に複数設けられており、
     前記演算装置は、前記発熱材料の発熱時の動作時間と、前記複数の環境温度センサにおいて測定された複数の内環境温度とに基づいて、前記外環境温度を算出する、
    測定器。
  29.  請求項26から28のいずれか1項に記載の測定器であって、
     前記環境温度センサは、前記バイオセンサ保持部内に配置されている、
    測定器。
  30.  請求項26から28のいずれか1項に記載の測定器であって、
     前記環境温度センサは、少なくとも前記バイオセンサ保持部の開口部近傍に設けられている、
    測定器。
  31.  請求項26から30のいずれか1項に記載の測定器であって、
     前記複数の環境温度センサのうちの少なくとも1つは、前記発熱材料の近傍に設けられている、
    測定器。
  32.  請求項26から31のいずれか1項に記載の測定器であって、
     前記演算装置は、前記測定器外の外環境温度に基づいて、前記バイオセンサに点着された前記試料中の特定成分の濃度を補正する温度以外の様々な補正項目について、さらに補正を行う、
    測定器。
  33.  請求項26から32いずれか1項に記載の測定器であって、
     前記動作時間と前記内環境温度とに基づいて、前記ハウジング外の外環境温度を演算するための複数の環境温度算出用テーブルを格納する記憶装置を、
    さらに備えている、
    測定器。
  34.  請求項26または27に記載の測定器であって、
     前記発熱材料は、二次電池、バッテリ、充電器、充電IC、コイル(インダクタ)、抵抗器の少なくとも1つである、
    測定器。
  35.  請求項34に記載の測定器であって、
     前記演算装置は、充電中であるか否かに関わらず、前記動作時間計測部で計測された前記二次電池の動作時間と、前記内環境温度とに基づいて、前記外環境温度を算出する、
    測定器。
  36.  請求項34に記載の測定器であって、
     前記演算装置は、充電中あるいは充電後のタイミングで、複数の前記環境温度算出用テーブルの中から適切なものを選択し、外環境温度を算出する、
    測定器。
  37.  請求項34から36のいずれか1項に記載の測定器であって、
     前記環境温度算出用テーブルの中に含まれる温度データと、前記環境温度センサにおいて測定された内環境温度との差が所定の範囲を超えているか否かを判定する判定部と、
     前記判定部において前記所定の範囲を超えると判定された場合には、エラーと判断して通知を行うエラー通知部と、
    をさらに備えている測定器。
  38.  請求項34から37のいずれか1項に記載の測定器であって、
     前記演算装置は、充電完了後には共通の前記環境温度算出用テーブルの情報を用いる、
    測定器。
  39.  請求項34から38のいずれか1項に記載の測定器であって、
     前記演算装置は、充電開始直後から所定時間が経過した時間帯中には、共通の前記環境温度算出用テーブルの情報を用いる、
    測定器。
  40.  請求項28に記載の測定器であって、
     前記発熱材料は、二次電池、バッテリ、充電器、充電IC、コイル(インダクタ)、抵抗器の少なくとも1つである、
    測定器。
  41.  請求項40に記載の測定器であって、
     前記演算装置は、充電中であるか否かに関わらず、前記測定器内に設置された複数の前記環境温度センサにおける測定結果に基づいて、前記外環境温度を算出する、
    測定器。
  42.  請求項40に記載の測定器であって、
     前記演算装置は、充電中あるいは充電後のタイミングで、複数の所定の環境温度算出用テーブルの情報の中から適切なものを選択して補正を行う、
    測定器。
  43.  請求項40から42のいずれか1項に記載の測定器であって、
     複数の前記環境温度センサにおける測定結果の差が所定の範囲を超えているか否かを判定する判定部と、
     前記判定部において前記所定の範囲を超えると判定された場合には、エラーと判断して通知を行うエラー通知部と、
    をさらに備えている測定器。
  44.  請求項43に記載の測定器であって、
     前記ハウジング内における前記発熱材料の近傍に設けられた第1の領域と
     前記ハウジング内における前記第1の領域とは異なる位置に設けられた第2の領域と、
     前記第1の領域および前記第2の領域には、それぞれ複数の前記環境温度センサが設けられており、
     前記判定部は、前記第1の領域内に設けられた複数の前記環境温度センサにおける内環境温度情報の検出結果の差、または前記第2の領域内に設けられた複数の前記環境温度センサにおける内環境温度情報の検出結果の差のいずれか一方が所定の範囲を超えているか否かを判定し、
     前記エラー通知部は、前記差が所定の範囲を超えている場合にエラーとして判断して通知を行う、
    測定器。
  45.  請求項34に記載の測定器であって、
     前記二次電池の電池残量を測定する電池残量測定部と、
     所定の電流を流して前記二次電池の充電を行う充電回路と、
    を備えている測定器。
  46.  請求項45に記載の測定器であって、
     前記演算装置は、前記電池残量と前記充電電流と前記二次電池の発熱時の動作時間および前記内環境温度とに基づいて、前記二次電池の充電完了時間を予測する、
    測定器。
  47.  請求項45または46に記載の測定器であって、
     各種の測定情報や状況情報を表示する表示部をさらに有し、
     前記表示部において前記充電完了時間を通知する、
    測定器。
PCT/JP2009/001425 2008-03-27 2009-03-27 環境温度測定方法、液体試料測定方法および測定器 WO2009119116A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/747,711 US20100268475A1 (en) 2008-03-27 2009-03-27 Environment temperature measuring method, liquid sample measuring method, and measuring device
CN200980101229.1A CN101883972B (zh) 2008-03-27 2009-03-27 环境温度测量方法、液体试料测量方法以及测量器
JP2010505374A JP5430555B2 (ja) 2008-03-27 2009-03-27 環境温度測定方法、液体試料測定方法およびバイオセンサ用測定器
EP09724854A EP2259038A4 (en) 2008-03-27 2009-03-27 AMBIENT TEMPERATURE MEASURING METHOD, LIQUID SAMPLE MEASURING METHOD AND MEASURING DEVICE
US15/223,175 US20160334357A1 (en) 2008-03-27 2016-07-29 Liquid sample measuring method, and measuring device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008082811 2008-03-27
JP2008-082812 2008-03-27
JP2008082812 2008-03-27
JP2008-082811 2008-03-27

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/747,711 A-371-Of-International US20100268475A1 (en) 2008-03-27 2009-03-27 Environment temperature measuring method, liquid sample measuring method, and measuring device
US15/223,175 Continuation US20160334357A1 (en) 2008-03-27 2016-07-29 Liquid sample measuring method, and measuring device

Publications (1)

Publication Number Publication Date
WO2009119116A1 true WO2009119116A1 (ja) 2009-10-01

Family

ID=41113327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001425 WO2009119116A1 (ja) 2008-03-27 2009-03-27 環境温度測定方法、液体試料測定方法および測定器

Country Status (5)

Country Link
US (2) US20100268475A1 (ja)
EP (1) EP2259038A4 (ja)
JP (2) JP5430555B2 (ja)
CN (1) CN101883972B (ja)
WO (1) WO2009119116A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040090A2 (en) * 2008-10-03 2010-04-08 Bayer Healthcare Llc System and method for predicting ambient temperature in a fluid analyte meter
WO2010144441A1 (en) * 2009-06-08 2010-12-16 Bayer Healthcare Llc Method and assembly for determining the temperature of a test sensor
JP2012506536A (ja) * 2008-10-21 2012-03-15 ライフスキャン・インコーポレイテッド ストリップの赤外線温度測定
WO2012042757A1 (ja) * 2010-09-29 2012-04-05 パナソニック株式会社 生体試料測定装置
WO2013018500A1 (ja) * 2011-07-29 2013-02-07 アークレイ株式会社 携帯型医療機器
US8401873B2 (en) 2007-05-30 2013-03-19 Bayer Healthcare Llc Health data management device
JPWO2012117699A1 (ja) * 2011-03-01 2014-07-07 パナソニックヘルスケア株式会社 生体試料測定装置
CN104865895A (zh) * 2014-02-24 2015-08-26 发那科株式会社 具备cpu的异常检测功能的控制装置
JP2015163901A (ja) * 2011-11-01 2015-09-10 パナソニックヘルスケアホールディングス株式会社 生体試料測定装置
JP2015180882A (ja) * 2012-03-12 2015-10-15 パナソニックヘルスケアホールディングス株式会社 生体情報測定器
JP2017527810A (ja) * 2014-09-09 2017-09-21 ライフスキャン・スコットランド・リミテッド 一体化された熱チャネルを有するハンドヘルドテストメータ
JP2019053084A (ja) * 2012-12-28 2019-04-04 Phcホールディングス株式会社 生体情報測定器
CN113503987A (zh) * 2021-06-25 2021-10-15 深圳感臻科技有限公司 一种优化内置温度传感器准确度的方法及系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9974472B2 (en) 2011-06-16 2018-05-22 Abbott Diabetes Care Inc. Temperature-compensated analyte monitoring devices, systems, and methods thereof
GB201116481D0 (en) * 2011-09-26 2011-11-09 Cellnovo Ltd Monitoring devices
EP2682715B1 (en) * 2012-07-02 2015-03-11 Sensirion AG Portable electronic device
CN103868610B (zh) * 2012-12-17 2017-02-08 深圳合众思壮科技有限公司 温度校准方法、装置及设备
EP2802128B1 (en) * 2013-05-06 2018-07-11 Sensirion AG Self-calibrating temperature sensor within a mobile terminal device
EP2801804B1 (en) * 2013-05-06 2018-07-11 Sensirion AG Self-calibrating temperature sensor within a mobile terminal device
EP2808652B1 (en) 2013-05-31 2016-11-16 Sensirion AG Portable electronic device with integrated temperature sensor being compensated by other sensing data
EP2808650B1 (en) * 2013-05-31 2017-03-22 Sensirion AG Portable electronic device
JP2015010873A (ja) * 2013-06-27 2015-01-19 富士通株式会社 温度測定装置及び温度測定方法
KR101524166B1 (ko) * 2014-02-11 2015-06-10 현대자동차주식회사 커넥터 변환기 및 이를 이용한 차량 충전 시스템 및 차량 충전 방법
EP2930475B1 (en) 2014-12-22 2017-11-15 Sensirion AG Flow sensor arrangement
CN105989243B (zh) * 2016-03-29 2018-09-25 深圳市职业病防治院 基于工作环境实时信息大数据的职业病危害风险评估方法
KR101943555B1 (ko) * 2016-10-24 2019-01-31 (주)오상헬스케어 환경 변화에 대응 가능한 poc 진단장치 및 그 제어방법
CN112041681A (zh) * 2017-12-18 2020-12-04 赛诺菲 包含可充电电池的独立使用nfc血糖仪
JP6947081B2 (ja) * 2018-02-27 2021-10-13 トヨタ自動車株式会社 電池の充放電制御方法および電池システム
JP7072997B2 (ja) * 2018-09-27 2022-05-23 ダイハツ工業株式会社 バッテリの周囲温度推定装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159541A (ja) * 1995-12-12 1997-06-20 Oki Electric Ind Co Ltd 温度検出方法および温度検出機能を有するプリンタ装置
JP2006184129A (ja) * 2004-12-27 2006-07-13 Toshiba Tec Corp 内部温度検出装置
JP2007010317A (ja) 2005-06-28 2007-01-18 Gunze Ltd 温度センサ、計測表示器、及び血糖値計測表示器
JP2007526440A (ja) 2003-06-03 2007-09-13 バイエル・ヘルスケア・エルエルシー 携帯型医療診断装置
WO2008004565A1 (fr) * 2006-07-05 2008-01-10 Panasonic Corporation procédé et appareil pour mesurer un échantillon liquide

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4829458A (en) * 1987-07-07 1989-05-09 Honeywell Incorporated External constant specification in a digital electronic system
US5182509A (en) * 1989-10-11 1993-01-26 372604 B.C. Ltd. Conditioning and charging circuit for nickel-cadmium batteries
US5066859A (en) * 1990-05-18 1991-11-19 Karkar Maurice N Hematocrit and oxygen saturation blood analyzer
US5199637A (en) * 1992-05-05 1993-04-06 Honeywell Inc. Electronic thermostat having correction for internally generated heat from load switching
US5405511A (en) * 1993-06-08 1995-04-11 Boehringer Mannheim Corporation Biosensing meter with ambient temperature estimation method and system
JPH077866A (ja) * 1993-06-16 1995-01-10 Sanyo Electric Co Ltd 二次電池の充電回路
JP2836677B2 (ja) * 1995-02-28 1998-12-14 日本電気株式会社 充電完了時間表示付き二次電池用充電装置
JPH0935756A (ja) * 1995-07-20 1997-02-07 Nippon Soken Inc 充電装置
JP3692617B2 (ja) * 1996-05-27 2005-09-07 ソニー株式会社 充電時間演算方法およびバッテリパック
JPH10172616A (ja) * 1996-12-17 1998-06-26 Sanyo Electric Co Ltd 充電装置
CA2242497A1 (en) * 1998-08-19 2000-02-19 Enersafe Technologies, Inc. Method and apparatus for the continuous performance monitoring of a lead acid battery system
US6144185A (en) * 1999-03-22 2000-11-07 Johnson Controls Technology Company Method and apparatus for determining the condition of a battery through the use of multiple battery tests
JP3249788B2 (ja) * 1999-05-07 2002-01-21 エヌイーシーモバイルエナジー株式会社 電池パック電源装置
JP2003156469A (ja) * 2001-11-22 2003-05-30 Matsushita Electric Ind Co Ltd バイオセンサ、バイオセンサ用測定装置及び基質の定量方法
WO2003062812A1 (en) * 2002-01-18 2003-07-31 Arkray, Inc. Analyzer having temperature sensor
US7364353B2 (en) * 2005-01-26 2008-04-29 Carrier Corporation Dynamic correction of sensed temperature
JP4215013B2 (ja) * 2005-03-16 2009-01-28 セイコーエプソン株式会社 充電残り時間算出装置
KR100680267B1 (ko) * 2005-09-16 2007-02-08 주식회사 인포피아 식별정보를 포함하는 바이오 센서 및 바이오 센서의식별정보 판독장치
US7784705B2 (en) * 2006-02-27 2010-08-31 Honeywell International Inc. Controller with dynamic temperature compensation
US8588887B2 (en) * 2006-09-06 2013-11-19 Innurvation, Inc. Ingestible low power sensor device and system for communicating with same
US7760084B2 (en) * 2007-12-07 2010-07-20 Paksense, Inc. Redundant monitoring
CA2740930A1 (en) * 2008-10-21 2010-04-29 Lifescan, Inc. Multiple temperature measurements coupled with modeling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159541A (ja) * 1995-12-12 1997-06-20 Oki Electric Ind Co Ltd 温度検出方法および温度検出機能を有するプリンタ装置
JP2007526440A (ja) 2003-06-03 2007-09-13 バイエル・ヘルスケア・エルエルシー 携帯型医療診断装置
JP2006184129A (ja) * 2004-12-27 2006-07-13 Toshiba Tec Corp 内部温度検出装置
JP2007010317A (ja) 2005-06-28 2007-01-18 Gunze Ltd 温度センサ、計測表示器、及び血糖値計測表示器
WO2008004565A1 (fr) * 2006-07-05 2008-01-10 Panasonic Corporation procédé et appareil pour mesurer un échantillon liquide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2259038A4 *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347371B2 (en) 2007-05-30 2019-07-09 Ascensia Diabetes Care Holdings Ag Fluid analyte meter system
US9189598B2 (en) 2007-05-30 2015-11-17 Bayer Healthcare Llc Fluid analyte meter
US8401873B2 (en) 2007-05-30 2013-03-19 Bayer Healthcare Llc Health data management device
US8649997B2 (en) 2008-10-03 2014-02-11 Bayer Healthcare Llc Systems and methods for predicting ambient temperature in a fluid analyte meter
WO2010040090A3 (en) * 2008-10-03 2010-07-01 Bayer Healthcare Llc System and method for predicting ambient temperature in a fluid analyte meter
WO2010040090A2 (en) * 2008-10-03 2010-04-08 Bayer Healthcare Llc System and method for predicting ambient temperature in a fluid analyte meter
JP2012506536A (ja) * 2008-10-21 2012-03-15 ライフスキャン・インコーポレイテッド ストリップの赤外線温度測定
US8801273B2 (en) 2009-06-08 2014-08-12 Bayer Healthcare Llc Method and assembly for determining the temperature of a test sensor
US10989611B2 (en) 2009-06-08 2021-04-27 Ascensia Diabetes Care Holdings Ag Method and assembly for determining the temperature of a test sensor
US9874481B2 (en) 2009-06-08 2018-01-23 Ascensia Diabetes Care Holdings Ag Method and assembly for determining the temperature of a test sensor
US10215647B2 (en) 2009-06-08 2019-02-26 Ascensia Diabetes Care Holdings Ag Method and assembly for determining the temperature of a test sensor
WO2010144441A1 (en) * 2009-06-08 2010-12-16 Bayer Healthcare Llc Method and assembly for determining the temperature of a test sensor
US8877130B2 (en) 2010-09-29 2014-11-04 Panasonic Healthcare Co., Ltd. Device for measuring biological sample
WO2012042757A1 (ja) * 2010-09-29 2012-04-05 パナソニック株式会社 生体試料測定装置
JP5244261B2 (ja) * 2010-09-29 2013-07-24 パナソニック株式会社 生体試料測定装置
US9587989B2 (en) 2011-03-01 2017-03-07 Panasonic Healthcare Holdings Co., Ltd. Biological sample measurement device
US9921227B2 (en) 2011-03-01 2018-03-20 Panasonic Healthcare Holdings Co., Ltd. Biological information measurement method
JPWO2012117699A1 (ja) * 2011-03-01 2014-07-07 パナソニックヘルスケア株式会社 生体試料測定装置
WO2013018500A1 (ja) * 2011-07-29 2013-02-07 アークレイ株式会社 携帯型医療機器
JP2015163901A (ja) * 2011-11-01 2015-09-10 パナソニックヘルスケアホールディングス株式会社 生体試料測定装置
US11187667B2 (en) 2011-11-01 2021-11-30 Phc Holdings Corporation Biological sample measuring apparatus
US9823214B2 (en) 2011-11-01 2017-11-21 Panasonic Healthcare Holdings Co., Ltd. Biological sample measuring apparatus
US9614393B2 (en) 2012-03-12 2017-04-04 Panasonic Healthcare Holdings Co., Ltd. Charging device for biological information measurement device and biological information measurement device charged using same
JP2015180882A (ja) * 2012-03-12 2015-10-15 パナソニックヘルスケアホールディングス株式会社 生体情報測定器
US9804147B2 (en) 2012-03-12 2017-10-31 Panasonic Healthcare Holdings Co., Ltd. Charging device for biological information measurement device and biological information measurement device charged using same
US10018616B2 (en) 2012-03-12 2018-07-10 Phc Holdings Corporation Charging device for biological information measurement device and biological information measurement device charged using same
JP2018130018A (ja) * 2012-03-12 2018-08-16 Phcホールディングス株式会社 生体情報測定器
JP2017032574A (ja) * 2012-03-12 2017-02-09 パナソニックヘルスケアホールディングス株式会社 生体情報測定器
US10209237B2 (en) 2012-03-12 2019-02-19 Phc Holdings Corporation Charging device for biological information measurement device and biological information measurement device charged using same
JP2019053084A (ja) * 2012-12-28 2019-04-04 Phcホールディングス株式会社 生体情報測定器
CN104865895B (zh) * 2014-02-24 2017-08-29 发那科株式会社 具备cpu的异常检测功能的控制装置
US10126715B2 (en) 2014-02-24 2018-11-13 Fanuc Corporation Controller having CPU abnormality detection function
CN104865895A (zh) * 2014-02-24 2015-08-26 发那科株式会社 具备cpu的异常检测功能的控制装置
JP2017527810A (ja) * 2014-09-09 2017-09-21 ライフスキャン・スコットランド・リミテッド 一体化された熱チャネルを有するハンドヘルドテストメータ
CN113503987A (zh) * 2021-06-25 2021-10-15 深圳感臻科技有限公司 一种优化内置温度传感器准确度的方法及系统
CN113503987B (zh) * 2021-06-25 2024-05-28 深圳感臻智能股份有限公司 一种优化内置温度传感器准确度的方法及系统

Also Published As

Publication number Publication date
EP2259038A4 (en) 2013-01-02
EP2259038A1 (en) 2010-12-08
JP5771557B2 (ja) 2015-09-02
CN101883972B (zh) 2014-03-05
US20160334357A1 (en) 2016-11-17
JP2012215578A (ja) 2012-11-08
JP5430555B2 (ja) 2014-03-05
CN101883972A (zh) 2010-11-10
JPWO2009119116A1 (ja) 2011-07-21
US20100268475A1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP5430555B2 (ja) 環境温度測定方法、液体試料測定方法およびバイオセンサ用測定器
JP6448504B2 (ja) 勾配ベース補正
CA2535833C (en) Method and apparatus for assay of electrochemical properties
KR101929058B1 (ko) 바이오센서를 위한 언더필 관리 시스템
CN103210310B (zh) 包含次级输出信号的基于斜率的补偿
EP1411348A1 (en) Implement and device for analysis
RU2016102349A (ru) Компенсация температуры для измерения аналита на основании заданного времени получения выборки из физической характеристики образца, содержащего аналит
JP2011506966A5 (ja)
CN102628832B (zh) 分析装置、传感器检查装置及检查方法
US20180038819A1 (en) Blood component measuring device, method for measuring blood component, and bio-sensor
CN101495856A (zh) 生物传感器测定系统、以及测定方法
KR101950161B1 (ko) 샘플의 분석적 검사를 위한 테스트 엘리먼트 분석 시스템
EP3151023A1 (en) Measurement error correction device of bio-measurer
CA2804931C (en) Method and apparatus for assay of electrochemical properties
AU2012204094B2 (en) Method and apparatus for assay of electrochemical properties
AU2013204819A1 (en) Method and apparatus for assay of electrochemical properties

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101229.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010505374

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009724854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12747711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE