WO2009117945A1 - 发送数据的方法、系统和设备 - Google Patents
发送数据的方法、系统和设备 Download PDFInfo
- Publication number
- WO2009117945A1 WO2009117945A1 PCT/CN2009/070971 CN2009070971W WO2009117945A1 WO 2009117945 A1 WO2009117945 A1 WO 2009117945A1 CN 2009070971 W CN2009070971 W CN 2009070971W WO 2009117945 A1 WO2009117945 A1 WO 2009117945A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data packet
- carrier frequency
- sent
- cache
- data
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/12—Arrangements for detecting or preventing errors in the information received by using return channel
- H04L1/16—Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
- H04L1/18—Automatic repetition systems, e.g. Van Duuren systems
Definitions
- the present invention relates to the field of communications, and in particular, to a method, system and device for transmitting data. Background technique
- UMTS Universal Mobile Telecommunication System
- WCDMA Wideband Code Division Multiple Access
- CN Core Network
- FIG. 1 a system structure diagram of a UMTS is provided, which specifically includes: a UE (User Equipment, a terminal), a RAN CN, and an external network, such as a PSTN (Public Switched Telephone Network), and an Internet; It includes a Node B (base station) and an RNC (Radio Network Controller).
- the Node B is interconnected with the RNC through a standard Iub interface, and the RNC is used to manage the wireless data resources of the Node B it controls.
- the packet data transmission in the wireless communication network needs to pass through a PDCP (Packet Data Convergence Protocol) layer and an RLC (Radio Link Control Protocol) layer, where the PDCP layer processes the service data and provides
- the header compression algorithm compresses the redundant header of the packet data from the network layer to improve the utilization of the wireless channel; the RLC layer receives the data processed from the PDCP layer, segments the data, and provides segmentation of the data for the user. And retransmitting the business.
- the RLC layer forms a PDU (Protocl Data Unit)
- the PDU unit is sent to the Node B at the Medium Access Control (MAC) layer.
- the Node B provides the carrier frequency and sends the data to the UE.
- MAC Medium Access Control
- Node B supports multi-carrier communication.
- the so-called multi-carrier communication means that data can be transmitted on two or more carrier frequencies at the same time.
- its uplink and downlink are The road can communicate with the same or different number of carrier frequencies at the same time.
- the downlink uses two carrier frequencies at the same time, if the two carrier frequencies are provided by the same processing board of the Node B, only the Node B side exists.
- One MAC-ehs Medium Access Control enhace high speed
- queue and one scheduler if two carrier frequencies
- data from the same service source needs to be distributed to different MAC-ehs queues for data transmission. And reorganize at the terminal.
- the delays introduced by the two MAC-ehs queues may vary greatly depending on the terminal and the type of service that needs to be processed.
- a data transmission scheme provided by the prior art sending data to a MAC-ehs queue by the RNC
- the PDU based on the status report returned by the receiver, directly retransmits the PDU that is not correctly received in the status report.
- This method is only applicable to the case of a MAC-ehs queue. When there are two MAC-ehs queues, the delays introduced by the two MAC-ehs queues are inconsistent.
- the status report returned by the receiving end indicates another The PDUs on the MAC-ehs queue are not correctly received. If the RLC continues to retransmit these PDUs according to the prior art, it will result in invalid retransmission of a large number of PDUs.
- the prior art also provides another scheme for data transmission: the terminal UE uploads a retransmission indication of the RLC AMD (Acknowledge Mode) PDU to the Node B through the MAC-e (New MAC Entity) PDU, Node B Get the retransmission indication directly. If the data to be retransmitted is buffered in the queue of the Node B, the retransmission can be initiated in the Node B, the downlink RLC retransmission of the RNC is cancelled, and the retransmission of the RLC AMD PDU is completed by the Node B, thereby reducing the downlink transmission. Delay, this method is called Hybrid ARQ retransmission enhancement technology.
- the prior art also provides another scheme for data transmission: an RLC layer maintenance record table on the RNC side, for recording on which carrier frequency the data packet PDU that all RNCs have sent but has not been confirmed to receive correctly is transmitted; Each time the RLC requests the amount of data requested by the Node B (that is, the amount of data that can be sent at each frequency point of the Node B, called the transmission capability of the frequency point), the record table is updated when the corresponding amount of data is sent to the Node B. .
- the RNC After receiving the status report from the terminal UE, the RNC processes the data retransmission according to the carrier frequency of the data packet according to the following principles:
- the status report indicates: Before the last correctly received PDU on carrier 1, there is a PDU transmitted on carrier 1 but not correctly received, then the PDU that was not correctly received is retransmitted on carrier 1.
- the status report indicates: Before the last correctly received PDU on carrier 2, there is a PDU transmitted on carrier 2 but not correctly received, then the PDU that was not correctly received is retransmitted on carrier 2.
- the SN of the carrier frequency of the largest SN is selected as the SNack, and then the RLC of SNx ⁇ (SNack-ASN) in another carrier frequency is found.
- the PDU is switched to transmit on the carrier frequency, even if the packet needs to be retransmitted on the original carrier frequency (such as carrier frequency 2), only at this time
- the other carrier frequency (such as carrier frequency 1) retransmits the PDU and modifies the transmit carrier frequency of the data packet maintained by the RLC.
- the meaning of the ASN may be the difference between the SNs of the two frequency RLC PDUs, which is a configurable threshold, which determines the maximum allowed waiting time of the data packet PDU.
- each data packet can be guaranteed not to be retransmitted again for a period of time after retransmission, avoiding duplication.
- the method cannot transmit the retransmitted data packet from the RLC layer to the Node B's Mac-ehs when transmitting the retransmitted data, the data traffic of the Iub interface is increased, and the delay of the packet retransmission is also increased. Summary of the invention
- the embodiments of the present invention provide a method, system, and device for transmitting data, thereby effectively reducing data transmission delay in a multi-carrier communication system, ensuring data transmission efficiency, and avoiding unnecessary RLC layer data packets. Retransmission.
- a method of transmitting data comprising:
- the base station loads the data packet sent by the radio network controller RNC to at least two groups of carrier frequencies, and the number of carrier frequencies in each group of carrier frequencies is at least one, and the RNC is backed up and saved in a preset cache. Delivered data packet;
- the sending status is correct, deleting the correctly sent data packet saved in the backup in the cache; if the sending status is an error, determining to send the current group where the carrier frequency of the incorrectly transmitted data packet is located, The incorrectly transmitted backup data packets saved in the above cache are loaded to the carrier frequency in another group other than the current group for transmission.
- a system for transmitting data comprising: a base station and a radio network controller RNC, wherein
- the base station is configured to load the data packet sent by the radio network controller RNC to at least two groups of carrier frequencies, where the number of carrier frequencies in each group of carrier frequencies is at least one, and is saved in a preset cache.
- the data packet sent by the RNC acquires a sending status of the data packet; if the sending status is correct, deleting the correctly sent data packet saved in the backup in the cache; if the sending status is an error, determining the sending station The current group in which the carrier frequency of the data packet that is not correctly transmitted is located, and the incorrectly transmitted backup data packet saved in the cache in the cache is loaded into a carrier frequency in another group other than the current group for transmission;
- the RNC is used to send a data packet to the base station.
- a base station comprising:
- a receiving module configured to receive a data packet delivered by the RNC
- a loading module configured to load, by using the data packet received by the receiving module, to at least two groups of carrier frequencies, where The number of carrier frequencies in each group of carrier frequencies is at least one;
- a saving module configured to back up and save the data packet delivered by the RNC in a preset cache
- a state obtaining module configured to acquire a sending status of the data packet
- a first processing module configured to: when the status of the status acquired by the status obtaining module is correct, delete the correctly sent data packet saved in the cache;
- a second processing module configured to: when the status of the status acquired by the status acquisition module is an error, determine a current group in which the carrier frequency of the data packet that is not correctly transmitted is sent, and save the backup in the cache that is not correctly sent.
- the backup packet is loaded into a carrier frequency in another group other than the current group for transmission.
- the above technical solution caches the received data packets by adding a buffer at the Node B, which reduces the traffic impact on the lub interface caused by the RNC retransmission of the data packet, and avoids unnecessary RLC layer data packet retransmission. Because it is implemented inside the NodeB, it does not need to modify the format of the RLC PDU, and has no effect on the UE side. It can also reduce the PDU on the branch with a large retransmission delay of the RLC layer retransmission, especially for data.
- FIG. 1 is a schematic structural diagram of a system of a UMTS in the prior art
- FIG. 2 is a schematic flowchart of a method for transmitting data according to Embodiment 1 of the present invention
- FIG. 3 is a schematic flowchart of a method for transmitting data according to Embodiment 2 of the present invention.
- FIG. 4 is a schematic structural diagram of a system for transmitting data according to Embodiment 3 of the present invention.
- FIG. 5 is a schematic structural diagram of a base station according to Embodiment 4 of the present invention. detailed description
- An embodiment of the present invention provides a method for sending data, where the method includes:
- the base station loads the data packet sent by the radio network controller RNC to at least two sets of carrier frequencies for transmission, and the number of carrier frequencies in each set of carrier frequencies is at least one, and the RNC is delivered in a preset cache.
- Data packet sent by the radio network controller RNC to at least two sets of carrier frequencies for transmission, and the number of carrier frequencies in each set of carrier frequencies is at least one, and the RNC is delivered in a preset cache.
- the carrier frequency of each group may include only one carrier frequency, and may also include multiple carrier frequencies.
- the embodiment of the present invention does not impose any limitation.
- the single-MAC-ehs queue scheduling and the dual-MAC-ehs queue scheduling are common to the Node B, which is a multi-carrier frequency. Therefore, the embodiment of the present invention takes a single and dual scheduling queue as an example.
- the technical solution provided by the embodiment of the present invention is introduced:
- Embodiment 1 Taking a common dual queue as an example, when two downlink carrier frequencies are used simultaneously in the downlink, and each carrier frequency includes one carrier frequency, that is, when the downlink uses two carrier frequencies simultaneously, if two The carrier frequency is on the different processing boards of the Node B. There are two completely independent MAC-ehs scheduling queues and schedulers on the Node B side. In this case, data from the same service source needs to be distributed to different MAC-ehs scheduling queues. The above is performed, and the UE is reassembled at the receiving end. Referring to Embodiment 1, a detailed description in this case is given.
- Embodiment 2 Taking a common single queue as an example, when two downlink carrier frequencies are used simultaneously in the downlink, and each carrier frequency includes one carrier frequency, that is, when the downlink uses two carrier frequencies simultaneously, if these two There is only one MAC-ehs scheduling queue and one scheduler on the Node B side, and the detailed description in this case is given.
- Example 1 When two downlink carrier frequencies are used simultaneously in the downlink, and each carrier frequency includes one carrier frequency, that is, when the downlink uses two carrier frequencies simultaneously, if these two There is only one MAC-ehs scheduling queue and one scheduler on the Node B side, and the detailed description in this case is given.
- an embodiment of the present invention provides a method for transmitting data.
- the following downlink uses two carrier frequencies as an example, and two carrier frequencies are on different processing boards of the Node B, and correspondingly, the Node B side.
- the methods provided are as follows:
- Step 201 The RLC layer of the RNC sends a data packet to the Node B according to the sending capacity of the two carrier frequencies R) and fl of the Node B.
- the RLC PDUs sent by the RLC layer of the RNC carry the sequence numbers SN of the RLC layers.
- the RLC PDU can be sent according to the amount of data requested by the Node B;
- the limited PDU is allocated to the two Node Bs according to the preset allocation principle according to the ratio of the requested data amount (transmission capability) of the carrier frequency of the Node B. Send on frequency.
- the allocation principle may be: assuming that the RLC layer can send a data volume PDU of A, the MAC layer is at the carrier frequency fl) and The amount of data requested on the carrier frequency fl is B and C, respectively, and A ⁇ B+C (that is, the PDU that the RLC layer can transmit is insufficient), then the A*B/(B+CX calculation result is sent on the carrier frequency R).
- the RLC PDUs are rounded up according to the rounding principle, and the remaining RLC PDUs are transmitted on carrier frequency 2.
- the following is a specific example of the allocation process:
- the MAC-ehs requests the RLC layer of the RNC to send 5 RLC PDUs on the carrier frequency R), and sends 3 RLC PDUs on the carrier frequency fl. If the RLC layer can only send PDUs with SNs 1 to 10 (ie, RLC) The layer can send 10 PDUs. At this time, the PDUs that can be sent by the RLC layer are sufficient. Then, the PDUs with SNs of 1 ⁇ 5 (that is, 5 PDUs) are sent on the carrier frequency K), and the SN is sent on the carrier frequency fl.
- PDUs ie 3 PDUs
- the RLC layer can only send PDUs with SN 1-5 (that is, the RLC layer can only send 5 PDUs, and the PDUs that the RLC layer can transmit are insufficient)
- the SN is a 4 ⁇ 5 PDU (the remaining 2 RLC layers can provide PDUs).
- the embodiment of the present invention does not limit the specific manner of distribution, and the RLC RLC layer can provide sufficient RLC PDUs as an example for description.
- Step 202 The Node B receives the RLC PDUs sent by the RLC from the RNC, and sends the RLC PDUs to the corresponding carrier frequency queues.
- the Node B saves the RLC PDUs in the preset cache, and also saves the carrier frequency and the RLC PDUs. Correspondence relationship of the SN of the PDU.
- the corresponding control unit may be configured for the cache in the Node B.
- the cache is only responsible for backup and storage.
- the unconfigured control unit is taken as an example.
- the cache is also used to integrate the reporting of the transmission capacity of the two carrier frequencies. ⁇ , when there are two scheduling queues, if a scheduling queue of one carrier frequency transmits each data packet acquired by itself, and a data packet in the scheduling queue of another carrier frequency is still in an incorrect transmission state, and If the data packet that is not correctly sent meets the conditions for the frequency of the frequency transmission, the transmission capability of the two scheduling queues needs to be consolidated and then reported to the RNC.
- the control unit does not need to change the capability of the two-carrier Mac-ehs transmission capability credit, but when the channel quality of fl changes rapidly (usually degradation), the original The data packet that can be sent at normal speed cannot be sent successfully, and K), after sending the data packet obtained by itself, K), when its own transmission capability credit requests a new data packet from the RLC through the preset cache control unit,
- the preset cache control unit integrates the sending capability credit of the fl and the sending capability credit of the "), and the sending capability credit of the K) is modified and updated, so that K) can request the new data packet to the RLC.
- the preset cache may also exchange information with the RLC layer on the RNC side to correctly transmit data, so that the RLC layer reduces invalid retransmission. For example: After the maximum cache time of the cached packet set by the default cache is reached, the correct send indication of the Mac- ehs queue is still not received, it will be deleted from the preset cache, and then it will be in the preset cache. The sequence number of the deleted packet is notified to the RLC layer of the RNC. At this point, the RLC layer can retransmit this data immediately.
- the reserved field of the 3GPP (3rd Generation Partnership Project) R7 protocol is implemented, and the FP (Frame Packet, Frame Packet Data Packet) retransmission indication is passed through the existing
- the reserved field implementation in the 3GPP R7 protocol uses the two fields of the reserved spare field and the reserved extension field spare extension in the 3GPP R7 protocol to jointly indicate the SN sequence number of the retransmitted data packet, such as when the spare bit is 01, indicating data.
- the packet is retransmitted, and the spare extension is used to indicate the SN sequence number of the packet that needs to be retransmitted.
- the queue corresponding to the carrier frequency R is A; the queue corresponding to the carrier frequency fl is B as an example.
- Step 204 Determine whether the data packet corresponding to queue A and queue B is successfully sent. If yes, go to step 205; otherwise, go to step 206.
- the queue A and the queue B communicate with the cache of the Node B respectively, and notify the sending status of an RLC PDU to the cache in time.
- the specific sending status setting may be configured according to the specific needs of the system.
- the configuration sending status includes: sending a packet PDU, transmitting an ACK acknowledgment returned by the terminal UE, and receiving a NACK acknowledgment returned by the UE. And the packet PDU is not scheduled (that is, still waiting to be sent) and so on.
- Step 205 The Node B deletes the data packet saved in the cache, and reports the sending capability to the RNC RLC to request a new data volume.
- the receiving end UE side receives the data packet sent by the Node B, the data is reassembled according to the received data packet and a corresponding status report is generated.
- Step 206 The buffer of the Node B compares the incorrectly transmitted data packet (including the untransmitted data packet and the failed transmission data packet) before the current maximum correct transmission sequence number SN_Tmax, and the SN difference value of the maximum correctly transmitted data packet.
- the data packet that is not correctly sent and not sent to the corresponding frequency queue of SN_Tmax is sent to the frequency queue with the largest correct transmission sequence number SN_Tmax, and it is sent in priority, and the data packet that is not correctly transmitted is notified.
- the original frequency queue is deleted.
- the backup data packet of the data packet saved in the buffer of the Node B is obtained, and then the backup data packet is cut and transmitted, thereby effectively overcoming the RNC. Traffic to the Iub interface between Node B and Node B.
- the cache when the preset cache is sent on R) and the new queue data is requested, if the data SN2 ⁇ SNlmax-ASN in the fl is still not successfully sent, the cache will save the above-mentioned fl.
- the unsent data SN2 is sent to the queue of R) for transmission, and the fl frequency queue is notified to delete the corresponding data.
- Node B can set the ASN for the preset cache, so that it can judge SN_max-ASN. Whether the previous data needs to be transmitted by frequency (ie, whether the condition of the cut-frequency transmission is satisfied), so that the data packet satisfying the preset cut-frequency transmission condition (such as a packet that receives a NACK or has not been scheduled for a long time) can be used. To achieve the switching frequency point transmission, the condition of the cut frequency transmission can be set as needed, and for the data packet that does not satisfy the cut frequency transmission, the transmission of the frequency cut is not performed.
- the received data packet can be reorganized according to the existing 3GPP TS 25.322 protocol and generate a status report, indicating the SN of all correctly received or lost PDUs; correspondingly, the RNC layer on the RNC side
- the mode and time of the status report of the receiving end are required to be controlled to minimize the RLC layer to send the retransmission data packet to the NodeB.
- the RNC layer on the RNC side may choose not to immediately Transmitting the data packet, but retransmitting the data packet to the Node B after receiving the status report returned by the NodeB's preset buffer to the RLC of the RNC; or selecting to send the data from the terminal UE after receiving the preset number of times. After the status report, the data packet is retransmitted to the Node B.
- RNC side After the RLC layer has obtained the transmission capacity allocation of two carrier frequencies, it starts to send the data packet RLC PDU to two carrier frequencies. Assuming that the transmission capacities of the two carrier frequencies are the same, each carrier frequency sends 6 packets to the NodeB.
- the data packet received by the NodeB to the RLC layer is sent to the corresponding Mac- ehs queue of the carrier frequency, and sent to the preset buffer of the Node B for buffer backup of the data packet, and the preset cache is read by the header of the RLC PDU.
- the SN sequence numbers of the RLC PDUs are obtained, and then the data packet RLC PDUs are sequentially stored in accordance with the RLC SN.
- the two carrier frequency Mac-ehs queues of NodeB are scheduled to send data respectively. See Table 1. Assume that the data packet is sent as follows: The scheduling queue of carrier frequency K) sends 6 packets in sequence, and each transmission succeeds. The packet saved in the cache is deleted accordingly. After all the data packets are initially transmitted, they receive an ACK response from the UE, indicating that the data packet was successfully sent. Therefore, K) can request a new data transmission from the RNC side RLC, and K)'s credit indicates that it can send 6 new data packets in the next transmission period. The first two packets of the carrier frequency fl are correctly transmitted, but the third packet is not correctly transmitted, corresponding to the NACK response; in the initial transmission of the fourth packet, the fifth and sixth packets have not yet been scheduled.
- the buffer (specifically, the cached control unit)
- the frequency point K) is notified to obtain the pre-stored data packet that is not correctly transmitted that meets the frequency-changing transmission, that is, the pre-stored RLC PDU6 is sent to K), and is transmitted by using the carrier frequency R).
- the cache will modify the original credit of 6 and the modified credit is 5, and then the modified credit is sent to the RLC on the RNC side.
- the RLC layer receives the credit of fi), according to credit, only 5 new data packets are sent to the queue of fi).
- the queue of K) will send the RLC PDU6 first, and the cache will also notify fl to delete the RLC PDU6 from the queue.
- the number of NodeB Mac- ehs queues and frequency points can be one-to-many, that is, if the number of frequency points that the UE can use is 4 or 6, as long as the final NodeB Mac -
- the number of ehs queues is the same (both are 2), the methods of this embodiment can be applied, and the effect is not changed. This correspondence does not affect the implementation method and effect of the scheme at all.
- the embodiment of the present invention adds a preset cache to the Node B to perform cache backup on the received data packet. After the Mac- ehs queue correctly transmits the data packet, the cache will be notified to discard the data. Within a specified time, a packet RLC SNx in the cache has not received an ACK response, and RLC SNy receives an ACK response, and when y>x, the Mac-ehs queue takes the new data and takes it to the cache. Instead of requesting data from the RLC, it does not cause traffic impact on the Iub interface of the RNC and the NodeB.
- an embodiment of the present invention provides a method for transmitting data, where the following downlink uses two carrier frequencies simultaneously, and the two carrier frequencies are on the same processing board of the Node B, and correspondingly,
- the case where only one MAC-ehs queue and one scheduler exist on the Node B side is taken as an example.
- the method provided in this embodiment is as follows:
- Step 301 The RLC layer of the RNC sends a data packet to the Node B according to the sending capacity of the two carrier frequencies R) and fl of the Node B.
- K) and fl can be equivalent to a carrier frequency fx.
- Step 302 The Node B receives the data packet sent by the RLC layer of the RNC.
- Step 303 Since there is only one MAC-ehs queue for the two carrier frequencies, the scheduler of the Node B will receive the data packets, and consecutively number the data packets sent through different carrier frequencies;
- the number of data packets requested by the carrier frequency R is three, and the number of data packets requested by the carrier frequency fl is two.
- the number of data packets PDUs sent by the RLC layer of the obtained RNC is five.
- the MAC-ehs queue scheduler assigns three of them to the carrier frequency K), assigns two of the PDUs to the carrier frequency f 1, and numbers the data packet PDUs, and the PDUs of the carrier frequency R) are 1, 2 respectively. 3;
- the PDU of the carrier frequency fl is 4, 5 respectively.
- Step 304 the Node B sends the numbered data packets to their corresponding carrier frequencies.
- the data is sent to the terminal UE by using a carrier frequency.
- Step 305 the Node B determines whether the data packet in the MAC-ehs queue can be correctly sent, and if so, executes step 306, otherwise step 307 is performed;
- the NodeB itself maintains the communication between the queue and the cache, obtains the response of the queue in time, and performs a response according to the obtained transmission response. If the scheduling queue successfully sends the packet, the ACK response is sent to the cache to indicate the data. The packet is successfully sent through the dispatch queue; if the dispatch queue does not send the packet successfully, a NACK response is returned to the cache, indicating that the packet is not successfully sent by the dispatch queue (if it is waiting for transmission, or is in an unscheduled medium) Wait).
- Step 306 The NodeB sends the response packet according to the received ACK, and deletes the data packet saved in the cache. When all the data packets in the queue are successfully sent, the NodeB obtains a new data packet from the RNC RLC.
- Step 307 The NodeB sends a response according to the received NACK, and obtains the same data packet saved in the cache in the cache, and performs retransmission.
- the method provided by the embodiment of the present invention has no effect on the existing RLC layer/MAC layer, only for MAC-ehs.
- the number of the queue number (TSN) is set to have an impact.
- the method provided by the embodiment of the present invention adds a preset buffer to the Node B to buffer the received data packet. Backup, when the Mac-ehs queue correctly transmits the data packet, the cache will be notified to discard the data. If the data packet is not sent correctly, the pre-stored data packet is obtained from the preset cache, which reduces the Iub interface of the RNC and the Node B. Data traffic does not need to modify the format of the existing RLC PDU, and has no effect on the protocol.
- an embodiment of the present invention provides a system for transmitting data, where the system includes: a base station and a radio network controller RNC, where
- the RNC sends a data packet to the base station
- the base station receives the data packet sent by the radio network controller RNC through its own receiving module, and then loads the received data packet into at least two sets of carrier frequencies through the loading module, where each carrier frequency of the carrier frequency is transmitted.
- the number is at least one.
- the data packet loaded on each group carrier frequency is backed up and saved in the preset cache of the base station by the save module, wherein the save module can save the data packet in the preset cache.
- the save module can save the data packet in the preset cache.
- the corresponding relationship between the sequence number of the data packet and the carrier frequency carrying the data packet is saved.
- the data packet is sent by the carrier frequency, and the base station acquires the transmission status of the data packet in the carrier frequency queue in time through the state acquisition module; for example, sending a successful ACK response, not transmitting a successful NACK response, etc.; Obtaining the sending status of the obtained data packet, and performing corresponding processing.
- the status obtaining module acquires the status as the data packet is successfully sent (that is, the sending status is correct)
- the first processing module of the base station deletes the correct sending of the backup saved in the preset cache.
- the data packet is used to release the resources in the preset cache; when the state acquisition module acquires the status that the data packet transmission is unsuccessful (that is, the transmission status is an error), the second processing module of the base station obtains the previous backup from the preset cache.
- the transmission capability modification module of the base station modifies the transmission capability of the carrier frequency in the other group, and then reports the modified transmission capability, thereby implementing integration.
- the purpose of the carrier's transmission capability is a simple and low-latency
- the system provided by the embodiment of the present invention does not need to modify the format of the RLC PDU, ensures the maximum utilization of the existing device resources, and can reduce the frequency of the carrier frequency queue with a large retransmission delay of the RLC layer retransmission.
- an embodiment of the present invention provides a base station, where the base station presets a buffer, and the data packet received from the RNC RLC is not only sent to the queue corresponding to the frequency point of the base station, but also preset by itself.
- the pre-stored backup is performed in the cache, thereby effectively implementing data transmission and reducing the amount of retransmission of the RLC layer.
- the base station includes: a receiving module, a loading module, a saving module, a state acquiring module, and a first processing module and a second processing module. Among them, the specific role of each module is as follows:
- the base station receives the data packet sent by the RNC from the radio network controller through its own receiving module, and then loads the received data packet into at least two sets of carrier frequencies through the loading module, where the carrier frequency of each group of carrier frequencies is The number of the packets is at least one.
- the data packet loaded on each group carrier frequency is backed up and saved in the preset cache of the base station by the save module, wherein the save module can save the data packet in a preset cache.
- the correspondence between the sequence number of the data packet and the carrier frequency carrying the data packet is saved.
- the data packet is sent by the carrier frequency, and the base station acquires the transmission status of the data packet in the carrier frequency queue in time through the state acquisition module; for example, sending a successful ACK response, not transmitting a successful NACK response, etc.; Obtaining the sending status of the obtained data packet, and performing corresponding processing.
- the status obtaining module acquires the status as the data packet is successfully sent (that is, the sending status is correct)
- the first processing module of the base station deletes the correct sending of the backup saved in the preset cache.
- the data packet is used to release the resources in the preset cache; when the state acquisition module acquires the status that the data packet transmission is unsuccessful (that is, the transmission status is an error), the second processing module of the base station obtains the previous backup from the preset cache.
- the backup data packet saved in the cache is loaded into the carrier frequency of the another group for transmission, and the carrier frequency in the other group transmits the data packet loaded by itself, the other group
- the carrier frequency needs to report the transmission capability to the RNC to obtain new data.
- the transmission capability modification module of the base station modifies the transmission capability of the carrier frequency in the other group, and then reports the modified transmission capability.
- the embodiment of the present invention provides that the base station can also perform an interaction function with the RNC in time, and provide information indicating whether the data is correctly transmitted, so that the RLC layer of the RNC reduces invalid retransmission.
- the carrier frequency of each group may include only one carrier frequency, and may also include multiple carrier frequencies.
- the embodiment of the present invention does not impose any limitation.
- the base station provided by the embodiment of the present invention does not need to be modified when the data packet is transmitted by presetting the cache in the base station.
- the format of the RLC PDU ensures the maximum utilization of existing device resources and reduces the retransmission of the RLC layer.
- the transmission to another carrier frequency effectively avoids the situation that the RLC layer on the UE side waits for transmission of data for too long, and cannot be submitted to the PDCP layer.
- the technical solution provided by the embodiment of the present invention is used to cache the received data packet by adding a preset cache to the Node B, and the MAC-ehs queue will notify the cache after correctly transmitting the data packet. Discard this data. If a packet RLC SNx has not received an ACK response within the specified time, and RLC SNy receives an ACK response, and y>x, the Mac-ehs queue will take new data. Taking the data from the cache instead of the data to the RLC does not cause traffic impact on the Iub interface of the RNC and the NodeB. Since it is implemented inside the NodeB, it does not need to modify the format of the RLC PDU, and has no impact on the UE side.
- the technical solution provided by the embodiment of the present invention can also be identified, and then the data scheduling is converted to a carrier frequency of a frequency point to be transmitted, thereby avoiding It is waiting for the RLC layer of the UE side for a long time not to submit up.
- the method for transmitting data according to the embodiment of the present invention is as follows. The method is as follows. The method is as follows. The method is as follows. The method for transmitting data according to the embodiment of the present invention is replaced by the method of the method described above for the Mac-ehs queue, which may be replaced by a Mac-hs (Medium Access Control high speed) queue. Similar, no longer repeat them.
- the target group carrier frequency of the handover may be selected according to the local policy of the base station.
- the selection of the local policy is not limited, for example, According to the load of each group of carrier frequencies other than the current group, the selection is performed.
- the carrier frequency of the group B also sends an error, the switching selection is continued.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
说 明 书
发送数据的方法、 系统和设备
本申请要求于 2008年 3月 24 日提交中国专利局、 申请号为 200810102535.4、 发明名 称为 "一种发送数据的方法、 系统和设备" 的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。 技术领域
本发明涉及通信领域, 特别涉及一种发送数据的方法、 系统和设备。 背景技术
UMTS ( Universal Mobile Telecommunicationg System, 通用移动通信系统) 是采用 WCDMA (Wideband Code Division Multiple Access CDMA, 宽带码分多址接入) 空中接口 技术的第三代通信系统, 通常也会将 UMTS系统称为 WCDMA通信系统。 UMTS系统采用 与第二代通信移动系统类似的结构架构,包括 RAN (Radio Access Network,无线接入网络) 和 CN (Core Network, 核心网络)。 参见图 1, 提供了一种 UMTS的系统结构示意图, 具体 包括: UE (User Equipment, 终端)、 RAN CN以及外部网络, 如 PSTN (Public Switched Telephone Network, 公共交换电话网络)、 Internet; 其中, RAN包括 Node B (基站)和 RNC ( Radio Network Controller, 无线网络控制器), Node B通过标准的 Iub接口和 RNC互连, RNC用于对其控制的 Node B的无线数据资源进行管理等。
该无线通信网络中的分组数据传输需要经过 PDCP (Packet Data Convergence Protocol, 分组数据汇聚协议) 层和 RLC (Radio Link Control, 无线链路控制协议) 层, 其中, PDCP 层对业务数据进行处理, 提供头压缩算法, 压缩来自网络层的分组数据的冗余头部, 提高 无线信道的利用率; RLC层接收来自 PDCP层处理后的数据, 将数据进行分段等处理, 为 用户提供数据的分段和重传业务。 当 RLC层形成 PDU (Protocl Data Unit, 协议数据单元) 后, 将 PDU单元发送至位于 MAC (Medium Access Control, 媒体接入控制)层的 Node B, Node B提供载频, 将数据发送至 UE。
为了满足日益增长的无线业务需要, Node B支持多载波通信, 所谓多载波通信是指可 以同时在两个或更多个载频上传输数据, 对一个终端来说它的上行链路和下行链路可以同 时使用相同或不同个数的载频进行通信, 当下行链路同时使用两个载频时, 如果这两个载 频由 Node B的同一个处理板提供, 则在 Node B侧只存在一个 MAC-ehs (Medium Access Control enhace high speed, 媒体接入控制增强高速共享) 队列和一个调度器; 如果两个载频
在 Node B不同的处理板上, Node B侧会存在两套完全独立的 MAC-ehs队列和调度器, 此 时需要将来自同一个业务源的数据分发到不同的 MAC-ehs队列上进行数传, 并在终端进行 重组。 由于终端的不同, 以及需要处理的业务类型不同会导致两个 MAC-ehs队列引入的时 延可能存在很大差别。
现有技术提供的一种数据传输的方案: 通过由 RNC 向一个 MAC-ehs 队列发送数据
PDU, 并根据接收端返回的状态报告, 对于状态报告中指示没有正确接收的 PDU都直接进 行重传。该方法只适用于一个 MAC-ehs队列的情况。 当存在两个 MAC-ehs队列时, 由于两 个 MAC-ehs队列引入的时延不一致, 当一个 MAC-ehs队列上的 PDU先到达接收端的 RLC 层时, 接收端返回的状态报告会指示另一个 MAC-ehs队列上的 PDU没有正确接收, 如果 RLC继续按该现有技术对这些 PDU进行重传, 那么会导致大量 PDU的无效重传。
现有技术还提供了另一种数据传输的方案: 终端 UE通过 MAC-e (新增的 MAC实体) PDU将 RLC AMD (Acknowledge Mode,确认模式) PDU的重传指示上传给 Node B, Node B直接获取重传指示。 如果在 Node B的队列中缓存了需要重传的数据, 就可以在 Node B 内发起重传, 取消 RNC的下行 RLC重传, 由 Node B完成 RLC AMD PDU的重传, 从而减 小下行的传输时延,该方法称为 Hybrid ARQ重传增强技术。但是该方法对 UE侧的 RLC 和 MAC 层合作的有较高的要求, 必须利用 HSUPA (High Speed Uplink Packet Access, 高速上 行链路分组接入), 另外还要求 Node B能够识别 MAC-e中是否携带了重传指示, 对现有的 协议修改较大。
现有技术还提供了另一种数据传输的方案: 在 RNC侧的 RLC层维护记录表, 用于记 录所有 RNC已发送但还没有被确认正确接收的数据包 PDU是在哪个载频上发送;每次 RLC 根据 Node B请求的数据量 (即 Node B的每个频点能够发送的数据量, 称为频点的发送能 力 credit), 在发送相应的数据量给 Node B的时候更新该记录表。
其中, RNC会接收来自终端 UE的状态报告后, 根据数据包所在载频按如下原则处理 数据重传:
如果状态报告中指明: 载频 1上最后一个正确接收的 PDU之前, 存在载频 1上发送但 还没有正确接收的 PDU, 那么在载频 1上重传这个没有正确接收的 PDU。
如果状态报告中指明: 载频 2上最后一个正确接收的 PDU之前, 存在载频 2上发送但 还没有正确接收的 PDU, 那么在载频 2上重传这个没有正确接收的 PDU。
对于每个载频上最后一个正确接收的数据包 PDU的序号 SN进行比较, 选取 SN最大 的那个载频的 SN记做 SNack, 然后找出另外一个载频中 SNx< ( SNack-ASN)的 RLC PDU 转换到该载频上发送, 即使这个数据包需要在原来的载频(如载频 2)上重传, 此时也只在
另外一个载频 (如载频 1 ) 上重传此 PDU, 同时修改 RLC维护的这个数据包所在的发送载 频。 其中, ASN的含义可以是两个频点 RLC PDU的 SN的差值, 为一种可配置门限, 它 决定了数据包 PDU最大允许的等待时间。 通过控制状态报告返回的间隔可以保证每个数据 包在重传后的一段时间内不进行再次重传, 避免重复。 但是该方法尽管在发送重传数据时, 无法避免从 RLC层向 Node B的 Mac- ehs发送重传的数据包, 增加了 Iub接口的数据流量, 同样也增加了数据包重传的时延。 发明内容
有鉴于此, 本发明实施例提供了一种发送数据的方法、 系统和设备, 从而有效地减少 了多载波通信系统中数据的传输时延, 保证数据传输效率, 避免不必要的 RLC层数据包重 传。
本发明实施例提供的具体技术方案如下:
一种发送数据的方法, 该方法包括:
基站将无线网络控制器 RNC下发的数据包加载到至少两组载频进行发送, 所述每组载 频中载频的个数至少是一个, 并在预设的缓存中备份保存所述 RNC下发的数据包;
获取数据包的发送状态;
如果所述发送状态为正确, 则删除上述缓存中备份保存的正确发送的数据包; 如果所述发送状态为错误, 则确定发送所述未正确发送的数据包的载频所在的当前组, 将上述缓存中备份保存的未正确发送的备份数据包加载到所述当前组之外的其他另一组中 的载频进行发送。
一种发送数据的系统, 该系统包括: 基站和无线网络控制器 RNC, 其中,
上述基站用于将无线网络控制器 RNC下发的数据包加载到至少两组载频进行发送, 所 述每组载频中载频的个数至少是一个,并在预设的缓存中备份保存所述 RNC下发的数据包, 获取数据包的发送状态; 如果所述发送状态为正确, 则删除上述缓存中备份保存的正确发 送的数据包; 如果所述发送状态为错误, 则确定发送所述未正确发送的数据包的载频所在 的当前组, 将上述缓存中备份保存的未正确发送的备份数据包加载到所述当前组之外的其 他另一组中的载频进行发送;
上述 RNC用于向上述基站下发数据包。
一种基站, 该基站包括:
接收模块, 用于接收 RNC下发的数据包;
加载模块, 用于将上述接收模块接收到的数据包加载到至少两组载频进行发送, 所述
每组载频中载频的个数至少是一个;
保存模块, 用于在预设的缓存中备份保存所述 RNC下发的数据包;
状态获取模块, 用于获取数据包的发送状态;
第一处理模块, 用于当所述状态获取模块获取到的发送状态为正确, 删除上述缓存中 备份保存的正确发送的数据包;
第二处理模块, 用于当所述状态获取模块获取到的发送状态为错误, 确定发送所述未 正确发送的数据包的载频所在的当前组, 将上述缓存中备份保存的未正确发送的备份数据 包加载到所述当前组之外的其他另一组中的载频进行发送。
以上技术方案通过在 Node B增加缓存, 对接收到的数据包进行缓存备份, 减少了由于 RNC进行数据包重传对 lub接口造成的流量冲击, 避免不必要的 RLC层数据包重传。 由于 是在 NodeB内部实现, 不需要修改 RLC PDU的格式,对 UE侧没有影响,还能够减小 RLC 层重传的重传量时延较大的那条分支上的 PDU, 特别是针对数据在两个载频上传输引入的 时延相差很大时, 例如某组载频上的信号突然恶化, 导致数据发不出去, 可以实现将这部 分数据调度转换到另一组频点的载频进行发送, 避免数据在 UE侧的 RLC层等待很长时间 无法往上递交, 附图说明
图 1是现有技术中 UMTS的系统结构示意图;
图 2是本发明实施例 1提供的发送数据的方法流程示意图;
图 3是本发明实施例 2提供的发送数据的方法流程示意图;
图 4是本发明实施例 3提供的发送数据的系统结构示意图;
图 5是本发明实施例 4提供的基站结构示意图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施方式作 进一步地详细描述。
为了有效地减少了多载波通信系统中数据的传输时延, 保证数据传输效率, 避免不必 要的 RLC层数据包重传。 本发明实施例提供了一种发送数据的方法, 该方法包括:
基站将无线网络控制器 RNC下发的数据包加载到至少两组载频进行发送, 所述每组载 频中载频的个数至少是一个, 并在预设的缓存中备份保存 RNC下发的数据包;
获取数据包的发送状态;
如果上述发送状态为正确, 则删除上述缓存中备份保存的正确发送的数据包; 如果上述发送状态为错误, 则确定发送所述未正确发送的数据包的载频所在的当前组, 将上述缓存中备份保存的未正确发送的备份数据包加载到所述当前组之外的其他另一组中 的载频进行发送。
其中, 上述每组载频中可以只包括一个载频, 也可以包括多个载频, 本发明实施例对 此不做任何限制。
本发明实施例对于应于多载频的 Node B 而言, 常见存在单 MAC-ehs 队列调度和双 MAC-ehs 队列调度的情况, 所以本发明实施例将以单、 双调度队列为例, 详细介绍本发明 实施例提供的技术方案:
实施例 1 以常见的双队列为例, 当下行链路同时使用两组载频, 且每组载频中包括一 个载频, 即, 当下行链路同时使用两个载频时, 如果两个载频在 Node B不同的处理板上, Node B侧会存在两个完全独立的 MAC-ehs调度队列和调度器,此时需要将来自同一个业务 源的数据分发到不同的 MAC-ehs调度队列上进行数传, 并在接收端 UE进行重组, 参见实 施例 1, 给出了该情况下的详细说明。
实施例 2 以常见的单队列为例, 当下行链路同时使用两组载频, 且每组载频中包括一 个载频, 即, 当下行链路同时使用两个载频时, 如果这两个载频在 Node B的同一个处理板 上, 则在 Node B侧只存在一个 MAC-ehs调度队列和一个调度器, 参见实施例 2, 给出了该 情况下的详细说明。 实施例 1
参见图 2, 本发明实施例提供了一种发送数据的方法, 以下行链路同时使用两个载频为 例, 且两个载频在 Node B 不同的处理板上, 相应地, Node B 侧会存在两个完全独立的 MAC-ehs队列和调度器, 此时需要将来自同一个业务源的数据分发到不同的 MAC-ehs队列 上进行数据传输为例进行说明, 此时, 本发明实施例提供的方法内容如下:
步骤 201, RNC的 RLC层根据 Node B的两个载频 R)和 fl的发送能力, 向 Node B下 发数据包;
其中, RNC的 RLC层下发的 RLC PDU中携带各自在 RLC层的序号 SN。当 RLC层可 发送的数据量 RLC PDU充足时, 可以按 Node B请求的数据量进行发送;
当 RLC层可发送的数据量不足时, 则按 Node B的载频的请求的数据量 (发送能力) 的比例, 根据预设的分配原则将有限的 PDU分配到两个 Node B的两个载频上进行发送。 其中, 分配原则可以为: 假设 RLC层可发送的数据量 PDU为 A个, MAC层在载频 fl)和
载频 fl上请求的数据量分别为 B和 C, 且 A<B+C (即表示 RLC层可发送的 PDU不足), 则在载频 R)上发送 A*B/(B+CX计算结果按四舍五入的原则取整)个 RLC PDU, 在载频 2上 发送剩下的 RLC PDU。 下面以一个具体示例说明该分配过程:
例如, MAC-ehs向 RNC的 RLC层请求在载频 R)上发送 5个 RLC PDU, 在载频 fl上 发送 3个 RLC PDU, 如果 RLC层只可以发送 SN为 1~10的 PDU (即 RLC层可发送 10个 PDU, 此时 RLC层可发送的 PDU充足), 则在载频 K)上发送 SN为 1~5的 PDU (即 5个 PDU) , 在载频 fl上发送 SN为 6~8的 PDU (即 3个 PDU) ; 如果 RLC层只可以发送 SN为 1-5的 PDU (即 RLC层仅可发送 5个 PDU, 此时 RLC层可发送的 PDU不足), 则根据计 算公式 A*B/(B+C)得到 5*5/(5+3)=3, 于是, 在载频 K)上发送 SN为 1~3的 PDU (即 3个 PDU) , 在载频 2上发送 SN为 4~5的 PDU (剩下的 2个 RLC层可提供的 PDU)。
本发明实施例不限制具体的分发的方式, 且以 RNC 的 RLC 层能够提供足够的 RLC PDU的为例进行说明。
步骤 202, Node B接收来自 RNC的 RLC发送的 RLC PDU, 将 RLC PDU发送至各自 对应的载频队列的同时, Node B在预设的缓存中保存 RLC PDU, 还保存 RLC PDU所在载 频和与该 PDU的 SN的对应关系。
其中, 具体实现时, 还可以为上述在 Node B中的缓存配置对应的控制单元, 此时, 该 缓存只负责备份保存, 本实施例以未配置控制单元为例进行说明), 则该 Node B中的缓存 还用于整合两个载频的发送能力 credit的上报。 δΡ, 当存在两个调度队列时, 如果某一个载 频的调度队列发送完毕自身获取的各数据包, 而另一个载频的调度队列中的某数据包还处 于未正确发送状态时, 且该未正确发送的数据包满足换频发送的条件时, 此时, 需要整合 该两个调度队列的发送能力 credit后, 再向 RNC进行上报。 例如: 当两个载频能够平稳发 送的时候, 控制单元不需要更改两个载频的 Mac-ehs的发送能力 credit的能力上报, 但是 fl 的信道质量快速变化的时候(通常为劣化),原本能够正常速度发送的数据包不能发送成功, 而 K)将自身获取到的数据包发送成功后, K)将其自身的发送能力 credit通过预设缓存控制 单元向 RLC请求新的数据包的时候, 预设缓存控制单元会整合 fl 的发送能力 credit和《) 的发送能力 credit, 将此时 K)的发送能力 credit进行修改更新, 从而使 K)向 RLC在请求新 的数据包时, 可以相应的减少一些, 该减少的量等于 fl上还没有正确发送的数据包且这些 数据包的序号小于 R)上已经正确发送的最大的数据包序号 SN_Tmax-ASN。
上述预设的缓存还可以和 RNC侧 RLC层交互数据是否正确发送的信息, 以便让 RLC 层减少无效的重传。 例如: 预设缓存设置的缓存的数据包的最大缓存时间到达之后, 仍然 没有接收到 Mac- ehs队列的正确发送指示, 就会从预设缓存中删除它, 然后将在预设缓存
中删除的数据包的序号通知 RNC的 RLC层。 这时 RLC层可以立即重传这个数据。 其中, 在进行与 RNC的交互时, 采用 3GPP (3rd Generation Partnership Project, 第三代合作伙伴 计划) R7协议的保留字段实现, 对该 FP (Frame Packet, 帧分组数据包) 重传指示通过现 有 3GPP R7协议中的保留字段实现, 利用 3GPP R7协议中的保留 spare字段和保留的扩展 字段 spare extension这两个字段联合指示重传的数据包的 SN序号, 如置 spare bit为 01时, 指示数据包重传, 利用 spare extension标示出需要进行重传的数据包的 SN序号。
下面, 本实施例以载频 R)对应的队列为 A; 载频 fl对应的队列为 B为例进行说明。 步骤 203, 队列 A和队列 B收到各自的 RLC PDU, 进行发送。
步骤 204,判断队列 A和队列 B对应的数据包是否发送成功,如果是,则执行步骤 205; 否则执行步骤 206。
其中, 队列 A和队列 B在进行数据包的发送时, 会分别和 Node B的缓存进行通信, 及时将某个 RLC PDU的发送状态通告给缓存。其中, 具体的发送状态的设置可以根据系统 的具体需要进行配置, 例如配置发送状态包括: 数据包 PDU 发送中、 发送成功收到终端 UE返回的 ACK确认、发送失败收到 UE返回的 NACK确认,以及数据包 PDU未调度中(即 还在等待发送) 等等。
步骤 205, Node B删除自身缓存中保存的数据包, 并向 RNC RLC上报发送能力, 请求 新的数据量。
此时, 当接收端 UE侧接收到 Node B发送的数据包, 根据接收到的数据包进行数据重 组并产生相应的状态报告。
步骤 206,Node B的缓存比较当前最大的正确发送序号 SN_Tmax之前的未正确发送的 数据包(包括未发送数据包、 发送失败的数据包)和最大正确发送数据包的 SN差值, 在大 于设定的 ASN的时候, 将未正确发送的数据包且不在 SN_Tmax的对应的频点队列送到具 有最大的正确发送序号 SN_Tmax的频点队列中要求它优先发送, 同时通知该未正确发送的 数据包原来所在的频点队列将之删除。
其中, 在将未正确发送的数据包进行切频发送时, 通过获取 Node B的缓存中保存的该 数据包的备份数据包,然后将该备份数据包进行切频发送,从而有效地克服了 RNC和 Node B之间的 Iub接口的流量。
例如, 预设缓存在 R)上将自己的队列数据包 SNlmax发送完成后,请求新数据的时候, 如果 fl中的数据 SN2<SNlmax-ASN仍然没有发送成功, 则缓存会将保存的上述 fl上未发 送成功的数据 SN2送到 R)的队列中发送, 同时通知 fl频点队列将相应的数据进行删除。
针对上述切频发送, Node B可以为预设缓存设置 ASN, 让它可以判断 SN_max-ASN
之前的数据是否需要转移频点发送 (即是否满足切频发送的条件), 这样对于满足预设的切 频发送条件的数据包 (如收到 NACK、 或很久没有机会调度的数据包) 都可以实现切换频 点发送, 可以根据需要设置切频发送的条件, 对于不满足切频发送的数据包, 不执行切频的 发送。
接收端 UE, 接收到数据包可以按照现有的 3GPP TS25.322协议规定的方式进行数据的 重组并产生状态报告, 指示出所有正确接收或丢失的 PDU的 SN; 相应地, RNC侧的 RLC 层需要控制接收端状态报告产生的方式和时间,以最大限度的减少 RLC层向 NodeB发送重 传数据包; 进一步地, RNC侧 RLC层接收到终端 UE发送的状态报告后, 还可以选择不立 即重传这个数据包, 而是在收到 NodeB的预设缓存向 RNC的 RLC返回的状态报告后再向 Node B重传这个数据包; 还可以选择在收到满足预设次数的来自终端 UE发送的状态报告 之后再向 Node B重传这个数据包等方式。
为了进一步说明本发明实施例, 下面以具体示例的形式给出了本实施例提供的发送数 据的方法的处理过程, 内容如下:
1 . RNC侧 RLC层得到了两个载频的发送能力分配之后, 开始发送数据包 RLC PDU 到两个载频。 假设两个载频的发送能力相同, 每个载频各发送了 6个数据包到 NodeB。
2. NodeB接收到 RLC层的数据包分别送往载频各自对应的 Mac- ehs队列, 同时送往 Node B的预设缓存进行数据包的缓存备份, 预设缓存通过读取 RLC PDU的包头, 获取该 RLC PDU的 SN序号, 然后将这些数据包 RLC PDU按照 RLC SN进行顺序存放。
3. NodeB的两个载频 Mac-ehs队列各自调度发送数据, 参见表 1, 假设发送数据包情 况如下: 载频 K)的调度队列将 6个数据包顺序发送成功, 每发送成功一个, 就相应地删除 在缓存中保存的该数据包。 所有的数据包初传完毕后, 都得到了 UE的 ACK响应, 表明数 据包成功发送。 因此 K)可以向 RNC侧 RLC请求新的数据发送, K)的 credit指明它可以再 下一个发送时段中能发送 6个新的数据包。 而载频 fl的头两个数据包正确发送, 但是第 3 个数据包没有正确发送, 对应为 NACK响应; 第 4数据包初传中, 第 5, 6个数据包还没有 得到调度。
表 1
RLC PDU 1 2 3 4 5 6 7 8 9 10 11 12 SN
初始频点 f0 fl fO fl fO fl fO fl fO fl fO fl 发送情况 ACK ACK ACK ACK ACK NACK ACK 初传 ACK 未调 ACK 未调 中 度 度
4. NodeB的预设缓存将正确发送的(即 ACK对应) 的 RLC PDU删除, 记录最大的正 确发送的数据包序号 SN_Tack=l l。 目前由于对于 RLC PDU SN=6的数据包在发送的时候, 收到了 NACK, 即 SN_TnaCk=6, 缓存进行是否该数据包是否满足换频发送的判断, 即判断 是否 SN_Tack— SN_Tnack>=ASN, 即正确发送的数据包的最大序号和未正确发送的数据包 的序号的差值是否大于等于预设门限, 假设 A SN=5, 如果满足换频发送, 缓存 (具体为该 缓存的控制单元) 通知频点 K)来获取自身预存的该满足换频发送的未正确发送的数据包, 即将预存的 RLC PDU6 送给 K),利用载频 R)进行发送。同时,缓存将 Κ)原本的为 6的 credit 进行了修改, 修改后的 credit为 5后, 然后将修改后的 credit发送给 RNC侧的 RLC。 RLC 层收到 fi)的 credit后, 根据 credit, 只发送 5个新数据包给 fi)的队列。
5. K)的队列会优先把 RLC PDU6发送, 缓存也通知 fl从队列中删除 RLC PDU6。
6. 如果《)向 RNC RLC 获取到新数据后, 此时假设发送的 SN_Tack=15, RLC PDU8 传送成功, RLC PDU 10没有得到调度, 缓存检查 10^ ?011 15和10^ ?01;1 0的差值, 判 断该差值和 ASN 的关系, 即 RLC PDU 10 满足换频转发的条件 SN_Tack— SN_Tnack>=ASN, 缓存会通知 R)取走自身预存的数据包 RLC PDU10, 同时通知 fl队列删 除 RLC PDU10。 fl删除 RLC PDU10之后, 可能会向 RNC发送 credit请求数据, 此时缓存 会修改 fl的 credit将其请求的数据量减小 1。
对于本实施例来说, NodeB的 Mac- ehs队列和频点的个数是可以一对多的, 也就是说 如果 UE可以使用的频点个数为 4个或者 6个, 只要最终 NodeB的 Mac- ehs队列个数一致 (均为 2个), 本实施例的方法都可以适用, 效果也不改变。 这种对应关系丝毫不影响本方 案的实施方法和效果。
综上所述, 本发明实施例通过在 Node B增加预设的缓存, 用于对接收到的数据包进行 缓存备份, 当 Mac- ehs队列正确传送数据包之后将通知该缓存丢弃这个数据, 如果在规定 的时间内该缓存中某个数据包 RLC SNx还没有收到 ACK应答, 而 RLC SNy收到 ACK应 答, 且 y>x时, Mac-ehs队列取新的数据时就会向缓存中取, 而不是向 RLC要数据, 不会 对 RNC和 NodeB的 Iub接口造成流量的冲击,由于是在 NodeB内部实现,不需要修改 RLC PDU的格式, 对 UE侧没有影响, 还能够减小 RLC层重传的重传量时延较大的那条分支上 的 PDU, 特别是针对数据在两个载频上传输引入的时延相差很大时, 例如某个载频上的信 号突然恶化, 导致数据发不出去, 本发明实施例提供的技术方案也可以进行识别, 然后将 这部分数据调度转换到一个频点的载频进行发送, 避免数据在 UE侧的 RLC层等待很长时 间无法往上递交。
实施例 2
参见图 3, 本发明实施例提供了一种发送数据的方法, 其中, 以下行链路同时使用两个 载频,且这两个载频在 Node B的同一个处理板上,相应地,在 Node B侧只存在一个 MAC-ehs 队列和一个调度器的情况为例进行说明, 此时, 本实施例提供的方法内容如下:
步骤 301, RNC的 RLC层根据 Node B的两个载频 R)和 fl的发送能力, 向 Node B下 发数据包;
其中, 由于载频 K)和 fl公用一个 MAC-ehs调度队列, 可以将 K)和 fl等价于一个载频 fx。
步骤 302, Node B接收来自 RNC的 RLC层下发的数据包;
步骤 303, 由于对于两个载频只存在一个 MAC-ehs队列, Node B的调度器将接收到的 数据包, 对通过不同载频发送的数据包进行连续编号;
例如,载频 R)请求的数据包的个数为 3个,载频 fl请求的数据包的个数为 2个,此时, 获取到的 RNC的 RLC层下发的数据包 PDU为 5个, MAC-ehs队列调度器将其中的 3个分 配给载频 K), 将其中的 2个 PDU分配给载频 f 1, 对数据包 PDU进行编号, 载频 R)的 PDU 分别为 1、 2、 3; 载频 fl的 PDU分别为 4、 5。
步骤 304, Node B将编号后的数据包分别发送至其对应的载频中;
其中, 通过载频将数据发送至终端 UE。
步骤 305, Node B判断 MAC-ehs队列中的数据包是否能正确发送, 如果是, 执行歩骤 306, 否则执行步骤 307;
其中, NodeB 自身会保持队列和缓存的通信, 及时获取队列的发送响应, 根据获取到 的发送响应,执行响应的动作,如调度队列对于数据包发送成功,则向缓存发送 ACK响应, 表示该数据包通过该调度队列成功发送; 如调度队列对数据包未发送成功, 则向缓存返回 NACK 响应, 表示该数据包未被该调度队列成功发送 (如可能处于正在等待发送中, 或者 处于未调度中等等)。
步骤 306, NodeB根据收到的 ACK发送响应, 删除在缓存中保存的该数据包; 其中, 当队列中的所有的数据包都被正确发送成功, NodeB向 RNC RLC获取新的数据 包;
步骤 307, NodeB根据收到的 NACK发送响应, 在缓存中获取到备份保存的同一个数 据包, 进行重新发送。
综上, 本发明实施例提供的方法, 对现有的 RLC层/ MAC层没有影响, 只对 MAC-ehs
队列的编号 TSN ( Transmission Sequence Number, 传输序列号) 设置有影响: 综上所述, 本发明实施例提供的方法, 通过在 Node B增加预设的缓存, 用于对接收到 的数据包进行缓存备份, 当 Mac-ehs 队列正确传送数据包之后将通知这个缓存丢弃这个数 据, 如果没有正确发送数据包, 则向预设的缓存中获取预存的数据包, 减少了 RNC和 Node B的 Iub接口的数据流量, 不需要修改现有的 RLC PDU的格式, 对协议没有影响。 实施例 3
参见图 4, 本发明实施例提供了一种发送数据的系统, 其中, 系统包括: 基站和无线网 络控制器 RNC, 其中,
RNC向基站下发数据包;
基站通过自身的接收模块接收来自无线网络控制器 RNC下发的数据包, 然后通过加载 模块将接收到的数据包加载到至少两组载频进行发送, 所述每组载频中载频的个数至少是 一个, 同时, 通过保存模块分别在基站自身预设的缓存中将加载到各组载频上的数据包进 行备份保存, 其中, 该保存模块可以在预设的缓存中保存数据包的同时保存数据包的序号 和承载该数据包的载频的对应关系。 此时, 通过载频将数据包进行发送, 基站通过状态获 取模块及时获取到载频队列中数据包的发送状态; 如: 发送成功 ACK 响应, 未发送成功 NACK 响应等等; 基站根据状态获取模块获取到的数据包的发送状态, 进行相应的处理, 当状态获取模块获取状态为数据包发送成功 (即发送状态为正确), 则基站的第一处理模块 删除预设缓存中备份保存的正确发送的数据包, 实现释放预设缓存中资源的目的; 当状态 获取模块获取状态为数据包发送未成功 (即发送状态为错误), 则基站的第二处理模块从预 设的缓存中获取之前备份保存的未正确发送的数据包的备份数据包, 确定发送所述未正确 发送的数据包的载频所在的当前组, 然后将该备份数据包加载到当前组之外的其他另一组 中的载频进行发送。
其中, 用于当将缓存中保存的备份数据包加载到上述另一组中的载频进行发送, 且上 述另一组中的载频将自身加载的数据包发送完毕, 该另一组中的载频需要通过向 RNC上报 发送能力来获取新的数据, 此时, 基站的发送能力修改模块修改该另一组中的载频的发送 能力, 然后将修改后的发送能力进行上报, 从而实现整合载频的发送能力的目的。
本发明实施例提供的系统, 不需要修改 RLC PDU的格式, 保证了对现有的设备资源的 最大的利用, 并且能够减少 RLC层重传的重传量时延较大的载频频点队列的 PDU的个数, 特别是针对两个载频传输引入的时延相差较大时, 可以将在某个劣化的载频的上传输的数 据信号转移到另一组中的载频上进行传输, 有效的避免了 UE侧的 RLC层等待传输数据时
间过长, 而出现无法向 PDCP层提交的情况。 实施例 4
参见图 5, 本发明实施例提供了一种基站, 该基站预设了缓存, 将从 RNC RLC接收到 的数据包, 不仅发送到基站的频点对应的队列中, 还会在自身预设的缓存中进行预存备份, 从而有效的实现了数据的发送, 减少了 RLC层的重传量, 基站包括: 接收模块、加载模块、 保存模块、 状态获取模块以及第一处理模块、 第二处理模块, 其中, 各模块的具体作用如 下:
基站通过自身的接收模块接收到来自无线网络控制器 RNC下发的数据包, 然后通过加 载模块将接收到的数据包加载到至少两组载频进行发送, 所述每组载频中载频的个数至少 是一个, 同时, 通过保存模块分别在基站自身预设的缓存中将加载到各组载频上的数据包 进行备份保存, 其中, 该保存模块可以在预设的缓存中保存数据包的同时保存数据包的序 号和承载该数据包的载频的对应关系。 此时, 通过载频将数据包进行发送, 基站通过状态 获取模块及时获取到载频队列中数据包的发送状态; 如: 发送成功 ACK响应, 未发送成功 NACK 响应等等; 基站根据状态获取模块获取到的数据包的发送状态, 进行相应的处理, 当状态获取模块获取状态为数据包发送成功 (即发送状态为正确), 则基站的第一处理模块 删除预设缓存中备份保存的正确发送的数据包, 实现释放预设缓存中资源的目的; 当状态 获取模块获取状态为数据包发送未成功 (即发送状态为错误), 则基站的第二处理模块从预 设的缓存中获取之前备份保存的未正确发送的数据包的备份数据包, 确定发送所述未正确 发送的数据包的载频所在的当前组, 然后将该备份数据包加载到当前组之外的其他另一组 中的载频进行发送。
其中, 用于当将缓存中保存的备份数据包加载到上述另一组中的载频进行发送, 且上 述另一组中的载频将自身加载的数据包发送完毕, 该另一组中的载频需要通过向 RNC上报 发送能力来获取新的数据, 此时, 基站的发送能力修改模块修改该另一组中的载频的发送 能力, 然后将修改后的发送能力进行上报。
进一步地, 本发明实施例提供基站还能够及时和 RNC的交互功能, 提供用于表示数据 是否正确被发送的信息, 以便让 RNC的 RLC层减少无效的重传。
其中, 上述每组载频中可以只包括一个载频, 也可以包括多个载频, 本发明实施例对 此不做任何限制。
本发明实施例提供的基站, 通过在基站中预设缓存,, 使得数据包传输时, 不需要修改
RLC PDU的格式,保证了对现有的设备资源的最大的利用, 并且能够减少 RLC层重传的重
传量时延较大的载频频点队列的 PDU的个数, 特别是针对两个载频传输引入的时延相差较 大时, 可以将在某个劣化的载频的上传输的数据信号转移到另一个载频上进行传输, 有效 的避免了 UE侧的 RLC层等待传输数据时间过长, 而出现无法向 PDCP层提交的情况。
综上所述, 本发明实施例提供的技术方案, 通过在 Node B增加预设的缓存, 用于对接 收到的数据包进行缓存备份,当 Mac-ehs队列正确传送数据包之后将通知这个缓存丢弃这个 数据,如果在规定的时间内缓存中某个数据包 RLC SNx还没有收到 ACK应答,而 RLC SNy 收到 ACK应答, 且 y>x时, Mac-ehs 队列取新的数据时就会向缓存中取, 而不是向 RLC 要数据, 不会对 RNC和 NodeB的 Iub接口造成流量的冲击, 由于是在 NodeB内部实现, 不需要修改 RLC PDU的格式, 对 UE侧完全没有影响, 还能够减小 RLC层重传的重传量 时延较大的那条分支上的 PDU,特别是针对数据在两个载频上传输引入的时延相差很大时, 例如某个载频上的信号突然恶化, 导致数据发不出去, 本发明实施例提供的技术方案也可 以进行识别,然后将这部分数据调度转换到一个频点的载频进行发送,避免数据在 UE侧的 RLC层等待很长时间无法往上递交。其中,上述 Mac-ehs队列也可以替换为 Mac-hs(Medium Access Control high speed, 媒体接入控制高速共享) 队列, 替换后实现本发明实施例提供的 发送数据的方法步骤如前所述, 方法类似, 不再赘述。
本领域普通技术人员可以理解, 在实际应用时, 如果在当前组 (假设为 A组) 的载频 发送数据错误时, 需要将数据切换到当前组之外的其他另一组载频中进行发送, 如果当前 组之外存在多组(如包括 B组和 C组), 则可以根据基站的本地策略选择出切换的目标组载 频, 本实施例对此本地策略的选择不做限制, 例如可以根据当前组之外的各组载频的负荷 进行选择等; 在实际应用时, 当前组 A在切换到组 B后, 如果组 B的载频发送数据也出现 错误, 则继续进行切换选择。
本领域普通技术人员可以理解, 实现上述实施例方法携带的全部或部分步骤是可以通 过程序来指令相关的硬件完成, 所述的程序可以存储于一种计算机可读存储介质中, 该程 序在执行时, 包括方法实施例的步骤之一或其组合。 上述提到的存储介质可以是只读存储 器, 磁盘或光盘等。
以上所述仅为本发明的具体实施例, 并不用以限制本发明, 对于本技术领域的普通技 术人员来说, 凡在不脱离本发明原理的前提下, 所作的任何修改、 等同替换、 改进等, 均 应包含在本发明的保护范围之内。
Claims
1 . 一种发送数据的方法, 其特征在于, 所述方法包括:
基站将无线网络控制器 RNC下发的数据包加载到至少两组载频进行发送, 并在预设的 缓存中备份保存所述 RNC下发的数据包, 所述每组载频中载频的个数至少是一个;
获取数据包的发送状态;
如果所述发送状态为正确, 则删除所述缓存中备份保存的正确发送的数据包; 如果所述发送状态为错误, 则确定发送所述未正确发送的数据包的载频所在的当前组, 将所述缓存中备份保存的未正确发送的备份数据包加载到所述当前组之外的其他另一组中 的载频进行发送。
2. 如权利要求 1所述的发送数据的方法, 其特征在于, 所述在预设的缓存中备份保存 所述 RNC下发的数据包, 包括:
在预设缓存中保存数据包, 并保存所述数据包的序号、 所述数据包与载频的对应关系。
3. 如权利要求 1所述的发送数据的方法, 其特征在于, 所述将所述缓存中备份保存的 未正确发送的备份数据包加载到另一组中的载频进行发送, 包括:
所述基站根据当前最大正确发送的数据包的序号和未被正确发送的数据包的序号的差 值, 当所述未被正确发送的数据包满足预设的切频发送的条件时, 将所述预设缓存中备份 保存的所述未被正确发送的数据包加载到所述最大正确发送的数据包的序号对应的数据包 所在的载频的组进行发送, 并在所述未被正确发送的数据包所在的当前组载频中删除所述 未被正确发送的数据包。
4. 如权利要求 3所述的发送数据的方法, 其特征在于, 所述未被正确发送的数据包满 足预设的切频发送的条件, 包括:
所述最大正确发送的数据包的序号和所述未被正确发送的数据包的序号的差值大于所 述基站预设的切换门限, 则所述未被正确发送的数据包满足切频发送的条件。
5. 如权利要求 1所述的发送数据的方法, 其特征在于, 所述方法还包括:
当将所述缓存中备份保存的未正确发送的备份数据包加载到另一组中的载频进行发 送, 且所述另一组中的载频将自身加载的数据包发送完毕, 所述基站修改所述另一组中的
载频的发送能力。
6. 一种发送数据的系统, 其特征在于, 所述系统包括: 基站和无线网络控制器 RNC, 其中,
所述基站, 用于将所述无线网络控制器 RNC下发的数据包加载到至少两组载频进行发 送, 所述每组载频中载频的个数至少是一个, 并在预设的缓存中备份保存所述 RNC下发的 数据包, 获取数据包的发送状态; 如果所述发送状态为正确, 则删除所述缓存中备份保存 的正确发送的数据包; 如果所述发送状态为错误, 则确定发送所述未正确发送的数据包的 载频所在的当前组, 将所述缓存中备份保存的未正确发送的备份数据包加载到所述当前组 之外的其他另一组中的载频进行发送;
所述 RNC, 用于向所述基站下发数据包。
7. 如权利要求 6所述的发送数据的系统, 其特征在于, 所述基站包括:
接收模块, 用于接收所述 RNC下发的数据包;
加载模块, 用于将所述接收模块接收到的数据包加载到至少两组载频进行发送; 保存模块, 用于在预设的缓存中备份保存所述 RNC下发的数据包;
状态获取模块, 用于获取数据包的发送状态;
第一处理模块, 用于当所述状态获取模块获取到的发送状态为正确, 删除所述缓存中 备份保存的正确发送的数据包;
第二处理模块, 用于当所述状态获取模块获取到的发送状态为错误, 获取发送所述未 正确发送的数据包的载频所在的当前组, 将所述缓存中备份保存的未正确发送的备份数据 包加载到另一组中的载频进行发送。
8. 如权利要求 6所述的发送数据的系统, 其特征在于, 所述基站还包括:
发送能力修改模块, 用于当将所述缓存中备份保存的未正确发送的备份数据包加载到 另一组中载频进行发送, 且所述另一组中的载频将自身加载的数据包发送完毕, 所述基站 修改所述另一组中的载频的发送能力。
9. 一种基站, 其特征在于, 所述基站包括:
接收模块, 用于接收无线网络控制器 RNC下发的数据包;
加载模块, 用于将所述接收模块接收到的数据包加载到至少两组载频进行发送, 所述
每组载频中载频的个数至少是一个;
保存模块, 用于在预设的缓存中备份保存所述 RNC下发的数据包;
状态获取模块, 用于获取数据包的发送状态;
第一处理模块, 用于当所述状态获取模块获取到的发送状态为正确, 删除所述缓存中 备份保存的正确发送的数据包;
第二处理模块, 用于当所述状态获取模块获取到的发送状态为错误, 确定发送所述未 正确发送的数据包的载频所在的当前组, 将所述缓存中备份保存的未正确发送的备份数据 包加载到所述当前组之外的其他另一组中的载频进行发送。
10. 如权利要求 9所述的基站, 其特征在于, 所述基站还包括:
发送能力修改模块, 用于当将所述缓存中备份保存的未正确发送的备份数据包加载到 另一组中的载频进行发送, 且所述另一组中的载频将自身加载的数据包发送完毕后, 修改 所述另一组中的载频的发送能力。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810102535.4 | 2008-03-24 | ||
CN2008101025354A CN101547469B (zh) | 2008-03-24 | 2008-03-24 | 一种发送数据的方法、系统和设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009117945A1 true WO2009117945A1 (zh) | 2009-10-01 |
Family
ID=41112970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/070971 WO2009117945A1 (zh) | 2008-03-24 | 2009-03-24 | 发送数据的方法、系统和设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101547469B (zh) |
WO (1) | WO2009117945A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017063589A1 (zh) * | 2015-10-15 | 2017-04-20 | 中兴通讯股份有限公司 | 数据传输的方法及装置 |
CN111034089A (zh) * | 2017-06-26 | 2020-04-17 | 瑞典爱立信有限公司 | 利用带内控制信令的缓冲区处理 |
CN111162882A (zh) * | 2019-12-19 | 2020-05-15 | 京信通信系统(中国)有限公司 | 数据传输方法、装置、基站设备和计算机可读存储介质 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101547141B (zh) * | 2008-03-25 | 2012-06-27 | 华为技术有限公司 | 一种发送数据的方法、系统和设备 |
CN103001748B (zh) * | 2012-12-25 | 2015-10-14 | 大唐移动通信设备有限公司 | 一种数据重传以及重传数据处理的方法、设备 |
US20150036673A1 (en) * | 2013-07-30 | 2015-02-05 | Qualcomm Incorporated | Systems and methods for communicating multi-destination traffic in a wireless network |
CN104837127B (zh) * | 2014-02-08 | 2019-12-31 | 夏普株式会社 | 由辅基站和主基站执行的通信方法以及相应的基站 |
CN106411478B (zh) * | 2015-08-03 | 2019-06-07 | 苏州简约纳电子有限公司 | 适用于rlc在轮询重传定时器超时后重传pdu的方法 |
CN107332648B (zh) * | 2017-06-23 | 2021-01-15 | 京信通信系统(中国)有限公司 | 数据重传方法、装置、存储介质及其计算机设备 |
CN107436783B (zh) * | 2017-07-14 | 2021-04-20 | 惠州Tcl移动通信有限公司 | 一种用于移动终端的差分升级方法、存储介质及移动终端 |
CN109818719B (zh) * | 2017-11-21 | 2022-03-25 | 展讯通信(上海)有限公司 | 上行数据重传处理方法、装置及用户设备 |
CN110944358B (zh) * | 2018-09-25 | 2021-12-24 | 华为技术有限公司 | 数据传输方法和设备 |
CN111106902B (zh) * | 2018-10-26 | 2022-11-15 | 杭州海康威视系统技术有限公司 | 数据报文传输方法、装置、设备及计算机可读存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1870591A (zh) * | 2006-02-28 | 2006-11-29 | 华为技术有限公司 | 一种高速下行包接入硬切换方法和系统 |
CN1878420A (zh) * | 2006-07-10 | 2006-12-13 | 华为技术有限公司 | 保持无线网络控制器和基站之间资源一致性的方法 |
JP2007036912A (ja) * | 2005-07-29 | 2007-02-08 | Casio Hitachi Mobile Communications Co Ltd | 携帯端末、マルチキャストデータ受信方法およびマルチキャストデータ受信プログラム |
JP2007243413A (ja) * | 2006-03-07 | 2007-09-20 | Oki Electric Ind Co Ltd | 再送制御方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100417286C (zh) * | 2005-09-04 | 2008-09-03 | 华为技术有限公司 | 一种高速下行共享信道服务小区更新的方法及设备 |
-
2008
- 2008-03-24 CN CN2008101025354A patent/CN101547469B/zh not_active Expired - Fee Related
-
2009
- 2009-03-24 WO PCT/CN2009/070971 patent/WO2009117945A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007036912A (ja) * | 2005-07-29 | 2007-02-08 | Casio Hitachi Mobile Communications Co Ltd | 携帯端末、マルチキャストデータ受信方法およびマルチキャストデータ受信プログラム |
CN1870591A (zh) * | 2006-02-28 | 2006-11-29 | 华为技术有限公司 | 一种高速下行包接入硬切换方法和系统 |
JP2007243413A (ja) * | 2006-03-07 | 2007-09-20 | Oki Electric Ind Co Ltd | 再送制御方法 |
CN1878420A (zh) * | 2006-07-10 | 2006-12-13 | 华为技术有限公司 | 保持无线网络控制器和基站之间资源一致性的方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017063589A1 (zh) * | 2015-10-15 | 2017-04-20 | 中兴通讯股份有限公司 | 数据传输的方法及装置 |
CN111034089A (zh) * | 2017-06-26 | 2020-04-17 | 瑞典爱立信有限公司 | 利用带内控制信令的缓冲区处理 |
CN111162882A (zh) * | 2019-12-19 | 2020-05-15 | 京信通信系统(中国)有限公司 | 数据传输方法、装置、基站设备和计算机可读存储介质 |
CN111162882B (zh) * | 2019-12-19 | 2023-01-31 | 京信网络系统股份有限公司 | 数据传输方法、装置、基站设备和计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN101547469A (zh) | 2009-09-30 |
CN101547469B (zh) | 2011-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009117945A1 (zh) | 发送数据的方法、系统和设备 | |
EP1493288B1 (en) | System for efficient recovey of nodes B buffered data following serving high speed downlink shared channel cell change | |
JP3908693B2 (ja) | 移動通信システムにおけるデータ再伝送装置及び方法 | |
CA2615915C (en) | System for efficient recovery of node-b buffered data following mac layer reset | |
CN101043301B (zh) | 一种无线通信系统中的数据重排重组方法及其基站 | |
KR100967150B1 (ko) | 채널 품질 조건에 기초한 데이터 흐름 제어 방법 및 그데이터 흐름 제어용 무선 통신 시스템 | |
JP2003283596A (ja) | 高速ダウンリンクパケット接続システムにおけるタイマーを利用した交錯状況回避システム及び方法 | |
KR101073915B1 (ko) | 자동 재전송 기능을 가지는 이동통신 시스템에서, 제어정보 전송 방법 | |
WO2009117961A1 (zh) | 一种发送数据的方法、系统和设备 | |
WO2007025454A1 (fr) | Methode et systeme de retransmission de donnees avec abaissement de couche dans une communication sans fil | |
JP4379800B2 (ja) | 受信装置およびそのメモリ解放方法 | |
WO2007025459A1 (fr) | Methode de transfert en douceur d'un terminal utilisateur entre stations de base | |
AU2009245823B2 (en) | System for efficient recovery of node-b buffered data following Mac layer reset | |
AU2008202107B2 (en) | System for efficient recovery of node B buffered data following serving high speed downlink shared channel cell change | |
WO2017117800A1 (zh) | 数据发送和接收装置、方法以及通信系统 | |
EP1940095A2 (en) | System for efficient recovery of node B buffered data following serving high speed downlink shared channel cell change | |
CN115865282A (zh) | 数据重传方法、装置、设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09724125 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09724125 Country of ref document: EP Kind code of ref document: A1 |