WO2009101492A2 - Steam engine heated by the heat of compressed air - Google Patents
Steam engine heated by the heat of compressed air Download PDFInfo
- Publication number
- WO2009101492A2 WO2009101492A2 PCT/IB2009/000036 IB2009000036W WO2009101492A2 WO 2009101492 A2 WO2009101492 A2 WO 2009101492A2 IB 2009000036 W IB2009000036 W IB 2009000036W WO 2009101492 A2 WO2009101492 A2 WO 2009101492A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- steam
- compressed air
- air
- motor
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 230000005494 condensation Effects 0.000 claims abstract description 6
- 238000009833 condensation Methods 0.000 claims abstract description 6
- 239000007858 starting material Substances 0.000 claims abstract 2
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000004326 stimulated echo acquisition mode for imaging Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B17/00—Reciprocating-piston machines or engines characterised by use of uniflow principle
- F01B17/02—Engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/08—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle
Definitions
- the present invention aims to use the heat of compressed air, which can reach more than 800 o C.
- compressed air which can reach more than 800 o C.
- the air passes into a heat exchanger in which it heats the steam that operates. the steam engine.
- the air passes into other heat exchangers in which it still gives heat to heat the central heating water, and, or sanitary, or to heat the cold air before he arrives at the compressor.
- the cooled compressed air actuates the pneumatic motor in which while relaxing, it loses more heat. This cold air is used for air conditioning and refrigeration.
- the steam passes into a heat exchanger in which it gives up its heat to heat the condensation water driven by the piston pump.
- the condensation water flows in the opposite direction to that of the steam leaving the engine.5i although the steam reaches the retention tank in the form of warm water.
- the condensation water reaches the boiler in the form of steam.
- the group is started by the electric motor, compressed air, or steam under pressure.
- Figure I of the accompanying drawing shows by way of example, an embodiment of the invention.
- the fresh air arrives through the pipe 15, it passes through the pistons before arriving in the cylinders of the compressor I.
- the compressed and hot air passes from the compressor to the heat exchanger 7, in which it heats the steam . It then passes into the air-water heat exchanger or air-air 8 before arriving in the air motor 3, which it operates.
- the air cooled and cooled, comes out of the air motor by the pipe 14.
- the piston pump 5, sucks the water contained in the holding tank 6, and the flush in the heat exchanger consisting of the pipe 9 and the pipe 13. On the way the water absorbs the heat of the steam coming out of the steam engine 2, towards the tank 6.
- the water arrives in the form of steam through the pipe 9, in the heat exchanger 7, in which it is heated by the heat of the compressed air contained in the pipe Io.
- the steam passes from the heat exchanger 7, the steam engine 2, through the pipe 13. It gives up its heat in the heat exchanger consisting of the pipes 9 and 13. It comes in the form of warm water in the retention tank 6.
- the electric motor 4, is used to start the installation. It can also work as a dynamo.
- the pipes 16 and 17 allow the circulation of air or water in the heat exchanger 8.
- FIG 2 of the drawing shows a front view, for example, an embodiment of a steam-water heat exchanger and water-vapor.
- the tube I 9 driving the expanded vapor at its outlet from the engine, to the retention tank 6.
- the twisted tubes 21, installed in the tube 19, conduct the water from the pressure-retaining tank, from the pump to the tank. 7.
- the steam enters the tube 19 at point 20 and exits in the form of condensed water at point 22.
- Figure 3 is a side view of Figure 2. For the sake of clarity the thermal insulation and sound as well as connections, remote control, self - regulation systems, automatic restart, etc., are not shown. In some cases the air will be admitted under pressure into the compressor.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Compressor (AREA)
Abstract
Description
MOTEUR A VAPEUR CHAUFFEE PAR LA CHALEUR DE L'AIR COMPRIME STEAM ENGINE HEATED BY COMPRESSED AIR HEAT
La présente invention a pour but d'utiliser la chaleur de l'air comprimé, qui peut atteindre plus de 800 o C. A sa sortie du compresseur , 1 ' air passe dans un échangeur de chaleur dans lequel il réchauffe la vapeur qui fait fonctionner le moteur a vapeur. A sa sortie de cet échangeur , 1 ' air passe dans d'autres échangeurs de chaleur dans lesquels il cède encore de la chaleur pour chauffer l'eau de chauffage central, et, ou, sanitaire, ou encore chauffer l'air froid avant qu'il arrive au compresseur . L ' air comprimé refroidi , actionne le moteur pneumatique dans lequel en se détendant, il perd encore de la chaleur. Cet air froid est utilisé pour la climatisation et la réfrigération .A sa sortie du moteur à vapeur, la vapeur passe dans un échangeur de chaleur dans lequel elle cède sa chaleur pour réchauffer l'eau de condensation chassée par la pompe à piston. L'eau de condensation circule en sens opposé à celui de la vapeur qui sort du moteur.5i bien que la vapeur arrive au bac de rétention sous forme d'eau tiède. L'eau de condensation arrive au bouilleur sous forme de vapeur. La mise en marche du groupe est effectuée par le moteur électrique , de l'air comprimé, ou de la vapeur sous pression. La figure I, du dessin annexé montre à titre d'exemple, une forme d'exécution de l'invention. L'air frais arrive par le tuyau 15, il passe à travers les pistons avant d'arriver dans les cylindres du compresseur I. L'air comprimé et chaud passe du compresseur à l'échangeur de chaleur 7, dans lequel il réchauffe la vapeur. Il passe ensuite dans l'échangeur de chaleur air-eau ou air-air 8, avant d'arriver dans le moteur pneumatique 3, qu'il fait fonctionner. L'air détendu et refroidi, sort du moteur pneumatique par le tuyau 14. La pompe à piston 5, aspire l'eau contenue dans le bac de rétention 6, et la chasse dans l'échangeur de chaleur constitué par le tuyau 9 et le tuyau 13. En chemin l'eau absorbe la chaleur de la vapeur qui sort du moteur à vapeur 2, en direction du bac de rétention 6. L'eau arrive sous forme de vapeur par le tuyau 9, dans l'échangeur de chaleur 7, dans lequel elle est réchauffée par la chaleur de l'air comprimé contenu dans le tuyau Io.La vapeur passe de l'échangeur de chaleur 7, au moteur à vapeur 2, par le tuyau 13. Elle cède sa chaleur dans l'échangeur de chaleur constitué par les tuyaux 9 et 13. Elle arrive sous forme d'eau tiède dans le bac de rétention 6. Le moteur électrique 4, est utilisé pour faire démarrer l ' installation . Il peut aussi fonctionner comme dynamo. Les tuyaux 16 et 17 permettent la circulation d'air ou d'eau dans l'échangeur de chaleur 8. La prise de force 18 permet d'utiliser l'énergie cinétique fournie par le groupe. Dans certains cas, l'air refroidi à sa sortie du moteur pneumatique 3, sera utilisé pour refroidir l'eau du bac de rétention. La figure 2, du dessin, montre vue de face, à titre d'exemple, une forme d'exécution d'un échangeur de chaleur vapeur-eau et eau-vapeur. Le tube I 9 , conduisant la vapeur détendue à sa sortie du moteur, jusqu'au bac de rétention 6. Les tubes torsadés 21, installés dans le tube 19 , conduisent l'eau du bac de rétention sous pression, de la pompe jusqu'au bouilleur 7. La vapeur entre dans le tube 19 au point 20 et sort sous forme d'eau de condensation au point 22.La figure 3, est une vue de côté de la figure 2. Par souci de clarté l'isolation thermique et phonique de même que les connexions , commande à distance , systèmes d ' autorégulation , de redémarrage automatique , etc , ne sont pas représentés. Dans certains cas l'air sera admis sous pression dans le compresseur. The present invention aims to use the heat of compressed air, which can reach more than 800 o C. As it leaves the compressor, the air passes into a heat exchanger in which it heats the steam that operates. the steam engine. At its exit from this exchanger, the air passes into other heat exchangers in which it still gives heat to heat the central heating water, and, or sanitary, or to heat the cold air before he arrives at the compressor. The cooled compressed air actuates the pneumatic motor in which while relaxing, it loses more heat. This cold air is used for air conditioning and refrigeration. At its output from the steam engine, the steam passes into a heat exchanger in which it gives up its heat to heat the condensation water driven by the piston pump. The condensation water flows in the opposite direction to that of the steam leaving the engine.5i although the steam reaches the retention tank in the form of warm water. The condensation water reaches the boiler in the form of steam. The group is started by the electric motor, compressed air, or steam under pressure. Figure I of the accompanying drawing shows by way of example, an embodiment of the invention. The fresh air arrives through the pipe 15, it passes through the pistons before arriving in the cylinders of the compressor I. The compressed and hot air passes from the compressor to the heat exchanger 7, in which it heats the steam . It then passes into the air-water heat exchanger or air-air 8 before arriving in the air motor 3, which it operates. The air cooled and cooled, comes out of the air motor by the pipe 14. The piston pump 5, sucks the water contained in the holding tank 6, and the flush in the heat exchanger consisting of the pipe 9 and the pipe 13. On the way the water absorbs the heat of the steam coming out of the steam engine 2, towards the tank 6. The water arrives in the form of steam through the pipe 9, in the heat exchanger 7, in which it is heated by the heat of the compressed air contained in the pipe Io.The steam passes from the heat exchanger 7, the steam engine 2, through the pipe 13. It gives up its heat in the heat exchanger consisting of the pipes 9 and 13. It comes in the form of warm water in the retention tank 6. The electric motor 4, is used to start the installation. It can also work as a dynamo. The pipes 16 and 17 allow the circulation of air or water in the heat exchanger 8. The power take-off 18 makes it possible to use the kinetic energy supplied by the group. In some cases, the cooled air at its outlet from the air motor 3 will be used to cool the water in the holding tank. Figure 2 of the drawing shows a front view, for example, an embodiment of a steam-water heat exchanger and water-vapor. The tube I 9, driving the expanded vapor at its outlet from the engine, to the retention tank 6. The twisted tubes 21, installed in the tube 19, conduct the water from the pressure-retaining tank, from the pump to the tank. 7. The steam enters the tube 19 at point 20 and exits in the form of condensed water at point 22. Figure 3 is a side view of Figure 2. For the sake of clarity the thermal insulation and sound as well as connections, remote control, self - regulation systems, automatic restart, etc., are not shown. In some cases the air will be admitted under pressure into the compressor.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH00207/08 | 2008-02-14 | ||
CH2072008 | 2008-02-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2009101492A2 true WO2009101492A2 (en) | 2009-08-20 |
WO2009101492A3 WO2009101492A3 (en) | 2012-01-12 |
Family
ID=40957325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2009/000036 WO2009101492A2 (en) | 2008-02-14 | 2009-01-09 | Steam engine heated by the heat of compressed air |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2009101492A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101985902A (en) * | 2010-07-07 | 2011-03-16 | 贾锋胜 | Steamer generating equipment capable of heating by automobile exhaust |
WO2011127879A3 (en) * | 2010-04-12 | 2013-05-10 | Dieter Lang | Apparatus for thermal coupling of steam power stations to compressed-air storage power stations |
EP3597995A4 (en) * | 2017-05-10 | 2020-05-27 | Jin Zhang | AIR OVEN |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5896102A (en) * | 1981-12-02 | 1983-06-08 | Hitachi Ltd | Method and device for warming up steam turbine rotor |
DE4105128A1 (en) * | 1991-02-15 | 1992-08-20 | Ver Energiewerke Ag | METHOD FOR TREATING BROWN COAL FOR GAS-STEAM COMBINATION PROCESSES |
US5473898A (en) * | 1995-02-01 | 1995-12-12 | Westinghouse Electric Corporation | Method and apparatus for warming a steam turbine in a combined cycle power plant |
EP1943410B1 (en) * | 2005-10-31 | 2011-11-23 | Ormat Technologies Inc. | Method and system for producing power from a source of steam |
EP1808588A1 (en) * | 2006-01-14 | 2007-07-18 | Thermal PowerTec GmbH | Augmentation of power output and efficiency in gas turbine and combined cycle plants |
-
2009
- 2009-01-09 WO PCT/IB2009/000036 patent/WO2009101492A2/en unknown
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011127879A3 (en) * | 2010-04-12 | 2013-05-10 | Dieter Lang | Apparatus for thermal coupling of steam power stations to compressed-air storage power stations |
CN101985902A (en) * | 2010-07-07 | 2011-03-16 | 贾锋胜 | Steamer generating equipment capable of heating by automobile exhaust |
EP3597995A4 (en) * | 2017-05-10 | 2020-05-27 | Jin Zhang | AIR OVEN |
RU2728576C1 (en) * | 2017-05-10 | 2020-07-30 | Цзинь ЧЖАН | Air heat pump |
Also Published As
Publication number | Publication date |
---|---|
WO2009101492A3 (en) | 2012-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2017134096A (en) | WATER HEAT RECOVERY FOR ENERGY GENERATION AND ENGINE HEATING | |
RU2007109422A (en) | VEHICLE OR STATIONARY POWER PLANT WITH INTERNAL COMBUSTION ENGINE WITH SUPPLY AS A DRIVE SOURCE | |
CN102418622A (en) | Rankine cycle system | |
CN103115388B (en) | Thermal power plant circulating water heat supply system | |
WO2009101492A2 (en) | Steam engine heated by the heat of compressed air | |
CN102235746B (en) | Quick water heating device for heat pump | |
JP3961626B2 (en) | Steam plant | |
CN103851784A (en) | Evaporator-free absorbing type heat pump unit and heat supply method thereof | |
RU159686U1 (en) | THERMAL SCHEME OF TRIGENERATION MINI-CHP | |
EP2638336A1 (en) | Method for converting low temperature thermal energy into high temperature thermal energy and mechanical energy and a heat pump device for such conversion | |
CN202993643U (en) | CO2 Low Temperature Refrigeration System Cooled by Solar Water Vapor Ejection | |
CN202119076U (en) | Multi-energy water heating device | |
RU157594U1 (en) | TRIGGER INSTALLATION | |
CN107559102B (en) | A kind of device for utilizing residual-heat and method based on combined cycle | |
CN201652796U (en) | Quick pump heating and water heating device | |
RU2782089C1 (en) | Method for operation and device of maneuverable block combined-cycle cogeneration mini-chp | |
FR2598786A1 (en) | Device for providing hot water by heat pump | |
AU2011201220A1 (en) | A heat engine and reciprocating engine arrangement | |
FR2975471A1 (en) | THERMODYNAMIC WATER HEATER | |
RU51171U1 (en) | HEAT WATER BOILER CIRCUIT | |
FR2569469A1 (en) | Method for saving energy and heating installation with domestic hot water production making use thereof | |
RU48363U1 (en) | POWER PLANT FOR REGULATING THE NETWORK TEMPERATURE ON THE HEAT ELECTROCENTRAL | |
RU2232277C2 (en) | District-heating steam-power plant | |
RU2281437C2 (en) | Device for using heat of exhaust air | |
RU2425993C1 (en) | Mobile self-contained electric power source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09711273 Country of ref document: EP Kind code of ref document: A2 |