WO2009099061A1 - 複合金属酸化物およびナトリウム二次電池 - Google Patents
複合金属酸化物およびナトリウム二次電池 Download PDFInfo
- Publication number
- WO2009099061A1 WO2009099061A1 PCT/JP2009/051784 JP2009051784W WO2009099061A1 WO 2009099061 A1 WO2009099061 A1 WO 2009099061A1 JP 2009051784 W JP2009051784 W JP 2009051784W WO 2009099061 A1 WO2009099061 A1 WO 2009099061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal oxide
- composite metal
- positive electrode
- secondary battery
- sodium secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/0018—Mixed oxides or hydroxides
- C01G49/0072—Mixed oxides or hydroxides containing manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/451—Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a composite metal oxide and a sodium secondary battery.
- the composite metal oxide is used as a positive electrode active material for a secondary battery.
- lithium secondary batteries have already been put into practical use as small power sources for mobile phones and notebook computers, and furthermore, large power sources such as electric power sources for electric vehicles and hybrid vehicles, and power sources for distributed power storage. Since it can be used as a product, the demand is increasing.
- the raw material of the positive electrode active material contains a large amount of rare metal elements such as lithium and cobalt, and there is concern about the supply of the raw material to meet the increasing demand for large power sources. ing.
- sodium secondary batteries have been studied as secondary batteries that can solve the above supply concerns.
- Sodium secondary batteries can be made of abundant and inexpensive materials, and it is expected that large-scale power supplies can be supplied in large quantities by putting them into practical use.
- Patent Document 1 discloses a raw material having a composition ratio of Na, Mn and Co (Na: Mn: Co) of 0.7: 0.5: 0.5. A positive electrode active material obtained by firing is specifically described.
- An object of the present invention is to reduce the amount of rare metal elements such as lithium and cobalt, and to increase the discharge capacity after repeated charge and discharge, as compared with the prior art, and its positive electrode
- An object of the present invention is to provide a composite metal oxide that can be used as an active material.
- the present invention provides the following inventions.
- ⁇ 1> Including Na, Mn and M 1 (wherein M 1 is Fe or Ni), the molar ratio of Na: Mn: M 1 is a: (1-b): b (where a is a value in the range of more than 0.5 and less than 1, and b is a value in the range of 0.001 to 0.5.
- ⁇ 2> A composite metal oxide represented by the following formula (1).
- a positive electrode for a sodium secondary battery comprising the positive electrode active material according to ⁇ 6>.
- the present invention it is possible to reduce the amount of rare metal elements such as lithium and cobalt, and a sodium secondary battery having a larger discharge capacity after repeated charge and discharge compared to the prior art, and its A composite metal oxide that can be used as a positive electrode active material can be provided, and the present invention is extremely useful industrially.
- the composite metal oxide of the present invention contains Na, Mn and M 1 (where M 1 is Fe or Ni), and the molar ratio of Na: Mn: M 1 is a: (1-b) : B (here, a is a value in the range of more than 0.5 and less than 1, and b is a value in the range of 0.001 to 0.5).
- a is preferably a value in the range of 0.6 to 0.8.
- b is in the range of 0.001 or more and 0.5 or less that the Mn component (mol) is the same as or greater than the M1 component (mol). means.
- Examples of the composite metal oxide of the present invention include those represented by the following formula (1).
- Na a Mn 1-b M 1 b O 2 (1) (Here, each of M 1 , a and b has the same meaning as described above.)
- M 1 is Fe.
- a is preferably a value in the range of 0.6 to 0.8.
- M 1 is Ni, which is preferable from the viewpoint of further increasing the average discharge voltage of the obtained sodium secondary battery and increasing the energy density of the battery.
- a is preferably a value in the range of 0.6 to 0.8.
- b is preferably a value in the range of 0.03 or more and 0.3 or less from the viewpoint of further suppressing the decrease in discharge capacity accompanying the charge / discharge cycle of the sodium secondary battery. .
- the composite metal oxide of the present invention can be produced by firing a mixture of metal-containing compounds having a composition capable of becoming the composite metal oxide of the present invention by firing.
- the metal-containing compound containing the corresponding metal element can be produced by weighing and mixing so as to have a predetermined composition, and then firing the resulting mixture.
- a composite metal oxide having a metal element ratio represented by Na: Mn: Fe 0.7: 0.95: 0.05, which is one of the preferred metal element ratios, is Na 2 CO 3 , MnO 2.
- Fe 3 O 4 raw materials are weighed so that the molar ratio of Na: Mn: Fe is 0.7: 0.95: 0.05, they are mixed, and the resulting mixture is fired. Can be manufactured.
- Metal-containing compounds that can be used to produce the composite metal oxides of the present invention include oxides and compounds that can become oxides when decomposed and / or oxidized at high temperatures, such as hydroxides and carbonates. , Nitrates, halides, and oxalates can be used.
- As the sodium compound Na 2 CO 3 , NaHCO 3 , and Na 2 O 2 are preferable, and Na 2 CO 3 is more preferable from the viewpoint of handleability.
- the manganese compound is preferably MnO 2
- the iron compound is preferably Fe 3 O 4
- the nickel compound is preferably NiO.
- These metal-containing compounds may be hydrates.
- an apparatus usually used industrially such as a ball mill, a V-type mixer or a stirrer, can be used.
- the mixing at this time may be either dry mixing or wet mixing.
- a mixture of metal-containing compounds having a predetermined composition may be obtained by a crystallization method.
- a preferable firing temperature range is a temperature range of 600 ° C. to 900 ° C., more preferably a temperature range of 650 ° C. to 850 ° C.
- a compound that can be decomposed and / or oxidized at a high temperature such as a hydroxide, carbonate, nitrate, halide, or oxalate, is used as a mixture of metal-containing compounds, it is maintained at a temperature range of 400 ° C. to 1600 ° C.
- the atmosphere in which the calcination is performed may be any of an inert gas atmosphere, an oxidizing atmosphere, or a reducing atmosphere. Moreover, it can also grind
- the atmosphere during firing examples include an inert atmosphere such as nitrogen and argon; an oxidizing atmosphere such as air, oxygen, oxygen-containing nitrogen, and oxygen-containing argon; and hydrogen containing 0.1% to 10% by volume of hydrogen Any of reducing atmospheres such as nitrogen containing hydrogen and hydrogen containing argon containing 0.1 vol% to 10 vol% may be used.
- an appropriate amount of carbon may be contained in a mixture of metal-containing compounds and fired. Baking is preferably performed in an oxidizing atmosphere such as air.
- the halide may play a role as a reaction accelerator (flux).
- the flux include NaF, MnF 3 , FeF 2 , NiF 2 , NaCl, MnCl 2 , FeCl 2 , FeCl 3 , NiCl 2 , Na 2 CO 3 , NaHCO 3 , NH 4 Cl, NH 4 I, B 2 O 3. H 3 BO 3 and the like can be used, and these can be used as a raw material (metal-containing compound) of the mixture or by adding an appropriate amount to the mixture.
- These fluxes may be hydrates.
- the composite metal oxide of the present invention When the composite metal oxide of the present invention is used as a positive electrode active material for a sodium secondary battery, the composite metal oxide obtained as described above is optionally subjected to pulverization, washing, classification, etc. using a ball mill or a jet mill. It may be preferable to go and adjust the particle size. Moreover, you may perform baking twice or more. Further, a surface treatment such as coating the particle surface of the composite metal oxide with an inorganic substance containing Si, Al, Ti, Y or the like may be performed.
- the composite metal oxide of the present invention preferably has a crystal structure that is not a tunnel structure.
- the composite metal oxide of the present invention can be used alone or as a positive electrode active material for a sodium secondary battery by performing a surface treatment such as coating.
- the positive electrode active material contains the composite metal oxide of the present invention.
- the composite metal oxide of the present invention is used for a sodium secondary battery, the obtained sodium secondary battery has a large discharge capacity after repeated charge and discharge as compared with the conventional one.
- the internal resistance of the sodium secondary battery obtained can be reduced, and the overvoltage during charging and discharging can also be reduced. If the overvoltage at the time of charging / discharging can be made small, the large current discharge characteristic of a secondary battery can be improved more. Moreover, the stability of the battery when the secondary battery is overcharged can be improved.
- the positive electrode for sodium secondary batteries of the present invention contains the positive electrode active material of the present invention.
- the positive electrode for a sodium secondary battery of the present invention can be produced by supporting a positive electrode mixture containing the positive electrode active material of the present invention, a conductive material and a binder on a positive electrode current collector.
- Examples of the conductive material include carbon materials such as natural graphite, artificial graphite, cokes, and carbon black.
- binder include thermoplastic resins, and specifically, polyvinylidene fluoride (hereinafter also referred to as “PVDF”), polytetrafluoroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoride.
- PVDF polyvinylidene fluoride
- Fluorine resins such as vinylidene copolymers, propylene hexafluoride / vinylidene fluoride copolymers, tetrafluoroethylene / perfluorovinyl ether copolymers; and polyolefin resins such as polyethylene and polypropylene .
- As the positive electrode current collector Al, Ni, stainless steel, or the like can be used.
- a method for supporting the positive electrode mixture on the positive electrode current collector it is fixed by press molding or pasting using an organic solvent, coating on the positive electrode current collector, drying and pressing. A method is mentioned.
- a slurry composed of a positive electrode active material, a conductive material, a binder, and an organic solvent is prepared.
- organic solvents include amines such as N, N-dimethylaminopropylamine and diethyltriamine; ethers such as ethylene oxide and tetrahydrofuran; ketones such as methyl ethyl ketone; esters such as methyl acetate; dimethylacetamide and N-methyl- Examples include aprotic polar solvents such as 2-pyrrolidone.
- Examples of the method for coating the positive electrode mixture on the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spray method.
- the sodium secondary battery of this invention has the positive electrode for sodium secondary batteries of this invention.
- the sodium secondary battery of the present invention includes, for example, a positive electrode for the sodium secondary battery of the present invention, a separator, and a negative electrode in which a negative electrode mixture is supported on a negative electrode current collector.
- the electrode group can be accommodated in a battery can and manufactured by impregnating the electrode group with an electrolytic solution composed of an organic solvent containing an electrolyte.
- a cross section when the electrode group is cut in a direction perpendicular to the winding axis is a circle, an ellipse, an ellipse, a rectangle, a rectangle with rounded corners, or the like.
- examples of the shape of the battery include a paper shape, a coin shape, a cylindrical shape, and a square shape.
- a negative electrode that can be used in the sodium secondary battery of the present invention a negative electrode mixture containing a negative electrode active material is supported on a negative electrode current collector, and sodium ions such as sodium metal or sodium alloy can be occluded / desorbed.
- An electrode can be used.
- the negative electrode active material include carbon materials such as natural graphite, artificial graphite, coke, carbon black, pyrolytic carbon, carbon fiber, and organic polymer compound fired body capable of absorbing and desorbing sodium ions. .
- the shape of the carbon material may be any of a flake shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
- the carbon material may play a role as a conductive material.
- chalcogen compounds such as oxides and sulfides that can absorb and desorb sodium ions at a lower potential than the positive electrode can be used.
- the negative electrode mixture may contain a binder and a conductive material as necessary. Therefore, the negative electrode of the sodium secondary battery of the present invention may contain a mixture of a negative electrode active material and a binder.
- the binder include a thermoplastic resin, and specific examples include PVDF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene, and polypropylene.
- Examples of the negative electrode current collector include Cu, Ni, and stainless steel.
- Cu is preferable because it is difficult to form an alloy with sodium and it is easy to process into a thin film.
- the method of supporting the negative electrode mixture on the negative electrode current collector is the same as in the case of the positive electrode.
- the method of pressure molding, pasting with a solvent, etc., coating on the negative electrode current collector, and pressing after drying For example, a method of fixing by, for example.
- Examples of the separator that can be used in the sodium secondary battery of the present invention include porous films, nonwoven fabrics, woven fabrics, and the like made of materials such as polyolefin resins such as polyethylene and polypropylene, fluororesins, and nitrogen-containing aromatic polymers. A material having a form can be used. Moreover, it is good also as a single layer or laminated separator which used 2 or more types of these materials. Examples of the separator include separators described in JP 2000-30686 A, JP 10-324758 A, and the like.
- the thickness of the separator is preferably as thin as possible as long as the mechanical strength is maintained in that the volume energy density of the battery is increased and the internal resistance is reduced.
- the thickness of the separator is preferably about 5 to 200 ⁇ m, more preferably about 5 to 40 ⁇ m.
- the separator preferably has a porous film containing a thermoplastic resin.
- the separator is placed between the positive electrode and the negative electrode, and when an abnormal current flows in the battery due to a short circuit between the positive electrode and the negative electrode, the current is cut off and an excessive current flows. It preferably plays the role of blocking (shuts down).
- the shutdown is performed by closing the micropores of the porous film in the separator when the normal use temperature is exceeded. After the shutdown, even if the temperature in the battery rises to a certain high temperature, it is preferable to maintain the shutdown state without breaking the film due to the temperature, in other words, high heat resistance.
- a porous film having a heat resistant material such as a laminated porous film in which a heat resistant porous layer and a porous film are laminated, preferably a heat resistant porous layer containing a heat resistant resin and a porous material containing a thermoplastic resin.
- a laminated porous film obtained by laminating a porous film can be used, and by using a porous film having such a heat-resistant material as a separator, it is possible to further prevent thermal breakage of the secondary battery of the present invention. It becomes possible.
- the heat-resistant porous layer may be laminated on both surfaces of the porous film.
- a separator made of a laminated porous film in which a heat resistant porous layer and a porous film are laminated will be described.
- the thickness of this separator is usually 5 ⁇ m or more and 40 ⁇ m or less, preferably 20 ⁇ m or less.
- the value of A / B is preferably 0.1 or more and 1 or less.
- this separator preferably has an air permeability of 50 to 300 seconds / 100 cc, more preferably 50 to 200 seconds / 100 cc, from the viewpoint of ion permeability.
- the separator has a porosity of usually 30 to 80% by volume, preferably 40 to 70% by volume.
- the heat resistant porous layer preferably contains a heat resistant resin.
- the heat-resistant porous layer is preferably a thin heat-resistant porous layer having a thickness of 1 ⁇ m to 10 ⁇ m, further 1 ⁇ m to 5 ⁇ m, particularly 1 ⁇ m to 4 ⁇ m.
- the heat-resistant porous layer has fine pores, and the size (diameter) of the pores is usually 3 ⁇ m or less, preferably 1 ⁇ m or less.
- the heat resistant porous layer can also contain a filler described later.
- the heat resistant porous layer may be formed from an inorganic powder.
- the heat-resistant resin contained in the heat-resistant porous layer examples include polyamide, polyimide, polyamideimide, polycarbonate, polyacetal, polysulfone, polyphenylene sulfide, polyether ketone, aromatic polyester, polyether sulfone, and polyetherimide. From the viewpoint of further improving heat resistance, polyamide, polyimide, polyamideimide, polyethersulfone, and polyetherimide are preferable, and polyamide, polyimide, and polyamideimide are more preferable. Even more preferably, the heat-resistant resin is a nitrogen-containing aromatic polymer such as aromatic polyamide (para-oriented aromatic polyamide, meta-oriented aromatic polyamide), aromatic polyimide, aromatic polyamideimide, and particularly preferably aromatic.
- polyamide particularly preferably para-oriented aromatic polyamide (hereinafter sometimes referred to as “para-aramid”).
- the heat resistant resin include poly-4-methylpentene-1 and cyclic olefin polymers.
- the thermal film breaking temperature depends on the type of heat-resistant resin, and is selected and used according to the usage scene and purpose. Usually, the thermal film breaking temperature is 160 ° C. or higher. When the nitrogen-containing aromatic polymer is used as the heat-resistant resin, the temperature is about 400 ° C., when poly-4-methylpentene-1 is used, about 250 ° C., and when the cyclic olefin polymer is used, 300 ° C. The thermal film breaking temperature can be controlled to about 0 ° C., respectively. In addition, when the heat resistant porous layer is made of an inorganic powder, the thermal film breaking temperature can be controlled to, for example, 500 ° C. or higher.
- the para-aramid is obtained by condensation polymerization of a para-oriented aromatic diamine and a para-oriented aromatic dicarboxylic acid halide, and the amide bond is in the para position of the aromatic ring or an oriented position equivalent thereto (for example, 4,4′- It consists essentially of repeating units bonded at opposite orientations, such as biphenylene, 1,5-naphthalene, 2,6-naphthalene, etc., oriented in the opposite direction coaxially or in parallel.
- para-aramid having a para-orientation type or a structure according to para-orientation type, specifically, poly (paraphenylene terephthalamide), poly (parabenzamide), poly (4,4′-benzanilide terephthalamide) , Poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloro-paraphenylene terephthalamide), paraphenylene terephthalamide / 2 , 6-dichloroparaphenylene terephthalamide copolymer and the like.
- the aromatic polyimide is preferably a wholly aromatic polyimide produced by condensation polymerization of an aromatic dianhydride and a diamine.
- the dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid Examples thereof include dianhydrides, 2,2′-bis (3,4-dicarboxyphenyl) hexafluoropropane, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and the like.
- diamines examples include oxydianiline, paraphenylenediamine, benzophenonediamine, 3,3'-methylenedianiline, 3,3'-diaminobenzophenone, 3,3'-diaminodiphenylsulfone, 1,5'-naphthalenediamine Etc.
- a polyimide soluble in a solvent can be preferably used. Examples of such a polyimide include a polycondensate polyimide of 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride and an aromatic diamine.
- aromatic polyamideimide examples include those obtained from condensation polymerization using aromatic dicarboxylic acid and aromatic diisocyanate, and those obtained from condensation polymerization using aromatic diacid anhydride and aromatic diisocyanate.
- aromatic dicarboxylic acid examples include isophthalic acid and terephthalic acid.
- aromatic dianhydride examples include trimellitic anhydride.
- aromatic diisocyanate examples include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, orthotolylane diisocyanate, m-xylene diisocyanate, and the like.
- the heat resistant porous layer may contain one or more fillers.
- the filler that may be contained in the heat-resistant porous layer may be selected from any of organic powder, inorganic powder, or a mixture thereof.
- the particles constituting the filler preferably have an average particle size of 0.01 ⁇ m or more and 1 ⁇ m or less.
- Examples of the shape of the filler include a substantially spherical shape, a plate shape, a columnar shape, a needle shape, a whisker shape, and a fiber shape, and any particle can be used. It is preferable that Examples of the substantially spherical particles include particles having a particle aspect ratio (particle major axis / particle minor axis) in the range of 1 to 1.5. The aspect ratio of the particles can be measured by an electron micrograph.
- organic powder as the filler examples include, for example, styrene, vinyl ketone, acrylonitrile, methyl methacrylate, ethyl methacrylate, glycidyl methacrylate, glycidyl acrylate, methyl acrylate, and the like, or two or more kinds of copolymers; polytetrafluoroethylene, Fluororesin such as tetrafluoroethylene-6-propylene copolymer, tetrafluoroethylene-ethylene copolymer, polyvinylidene fluoride, etc .; melamine resin; urea resin; polyolefin; powder made of organic matter such as polymethacrylate Can be mentioned.
- An organic powder may be used independently and can also be used in mixture of 2 or more types. Among these organic powders, polytetrafluoroethylene powder is preferable from the viewpoint of chemical stability.
- the inorganic powder as the filler examples include powders made of inorganic materials such as metal oxides, metal nitrides, metal carbides, metal hydroxides, carbonates, sulfates, etc. Among these, inorganic materials having low conductivity The powder consisting of is preferably used. Specific examples include powders made of alumina, silica, titanium dioxide, barium sulfate, calcium carbonate, or the like. An inorganic powder may be used independently and can also be used in mixture of 2 or more types. Among these inorganic powders, alumina powder is preferable from the viewpoint of chemical stability.
- all of the particles constituting the filler are alumina particles, and it is even more preferable that all of the particles constituting the filler are alumina particles, and part or all of them are substantially spherical alumina particles.
- the inorganic powder exemplified above may be used, and may be mixed with a binder as necessary.
- the filler content depends on the specific gravity of the filler material.
- the weight of the filler is usually 5 or more and 95 or less, preferably 20 or more and 95 or less, more preferably 30 or more and 90 or less. These ranges can be appropriately set depending on the specific gravity of the filler material.
- the porous film In the laminated porous film, the porous film preferably has micropores and is preferably shut down.
- the porous film contains a thermoplastic resin.
- the thickness of this porous film is usually 3 to 30 ⁇ m, more preferably 3 to 25 ⁇ m.
- the porous film Similar to the heat resistant porous layer, the porous film has fine pores, and the pore size is usually 3 ⁇ m or less, preferably 1 ⁇ m or less.
- the porosity of the porous film is usually 30 to 80% by volume, preferably 40 to 70% by volume. In the nonaqueous electrolyte secondary battery, when the normal use temperature is exceeded, the porous film can close the micropores by softening the thermoplastic resin constituting the porous film.
- thermoplastic resin contained in the porous film examples include those that soften at 80 to 180 ° C., and those that do not dissolve in the electrolyte solution in the nonaqueous electrolyte secondary battery may be selected.
- thermoplastic resin examples include polyolefin resins such as polyethylene and polypropylene, and thermoplastic polyurethane resins, and a mixture of two or more of these may be used.
- the thermoplastic resin preferably contains polyethylene.
- polyethylene include polyethylene such as low density polyethylene, high density polyethylene, and linear polyethylene, and ultra high molecular weight polyethylene having a molecular weight of 1,000,000 or more.
- the thermoplastic resin preferably contains at least ultrahigh molecular weight polyethylene.
- the thermoplastic resin contains a wax made of polyolefin having a low molecular weight (weight average molecular weight of 10,000 or less).
- a porous film having a heat resistant material different from the above laminated porous film a porous film made of a heat resistant resin and / or an inorganic powder, or a heat resistant resin and / or an inorganic powder is a polyolefin resin or a thermoplastic polyurethane resin. Examples thereof include a porous film dispersed in a thermoplastic resin film.
- a heat resistant resin and inorganic powder is a polyolefin resin or a thermoplastic polyurethane resin.
- electrolytes include NaClO 4 , NaPF 6 , NaAsF 6 , NaSbF 6 , NaBF 4 , NaCF 3 SO 3 , NaN (SO 2 CF 3 ) 2 , lower Examples thereof include aliphatic carboxylic acid sodium salt and NaAlCl 4, and a mixture of two or more of these may be used.
- examples of the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, isopropyl methyl carbonate, vinylene carbonate, 4-trifluoromethyl.
- Carbonates such as -1,3-dioxolan-2-one and 1,2-di (methoxycarbonyloxy) ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2 , 3,3-tetrafluoropropyldifluoromethyl ether, ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; esters such as methyl formate, methyl acetate and ⁇ -butyrolactone; Nitriles such as nitrile and butyronitrile; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; carbamates such as 3-methyl-2-oxazolidone; sulfolane, dimethyl sulfoxide and 1,3-propane sultone Sulfur-containing compounds such as those described above; or those obtained by further introducing a fluorine substituent into
- a solid electrolyte instead of the said electrolyte solution.
- the solid electrolyte for example, an organic solid electrolyte such as a polyethylene oxide polymer compound, a polymer compound containing at least one of a polyorganosiloxane chain or a polyoxyalkylene chain can be used.
- maintained the nonaqueous electrolyte solution in the high molecular compound can also be used.
- Solid electrolytes such as Fe 2 (MoO 4 ) 3 may be used. Using these solid electrolytes, safety may be further improved.
- the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be required.
- the electrode and secondary battery fabrication method for charge / discharge test and the powder X-ray diffraction measurement method are as follows.
- electrode positive electrode
- conductive material: binder 85: 10: 5 (weight ratio).
- the mixed metal oxide and acetylene black are first thoroughly mixed in an agate mortar, and an appropriate amount of N-methyl-2-pyrrolidone (NMP: manufactured by Tokyo Chemical Industry Co., Ltd.) is added to this mixture, and then PVDF is further added.
- NMP N-methyl-2-pyrrolidone
- the mixture was mixed to make a uniform slurry.
- the obtained slurry is applied to an aluminum foil having a thickness of 40 ⁇ m, which is a current collector, with a thickness of 100 ⁇ m using an applicator, and this is put into a dryer and sufficiently dried while removing NMP.
- an electrode sheet was obtained. This electrode sheet was punched out to a diameter of 1.5 cm with an electrode punching machine, and then sufficiently pressed with a hand press to obtain a positive electrode.
- Charging / discharging conditions Charging was performed by CC (Constant Current: constant current) at a rate of 0.1 C up to 4.0 V (speed of complete charging in 10 hours). For discharging, CC discharging was performed at the same speed as the charging speed, and cut off at a voltage of 1.5V. Charging and discharging after the next cycle were performed at the same rate as the charging rate, and cut off at a charging voltage of 4.0 V and a discharging voltage of 1.5 V as in the first cycle.
- CC Constant Current: constant current
- CC discharging was performed at the same speed as the charging speed, and cut off at a voltage of 1.5V.
- Charging and discharging after the next cycle were performed at the same rate as the charging rate, and cut off at a charging voltage of 4.0 V and a discharging voltage of 1.5 V as in the first cycle.
- the obtained metal-containing compound mixture was filled in an alumina boat, heated in an air atmosphere using an electric furnace, and held at 800 ° C. for 2 hours to obtain a composite metal oxide C2 of Comparative Example 2.
- the powder X-ray diffraction pattern of the composite metal oxide C2 of Comparative Example 2 is shown in FIG.
- the obtained metal-containing compound mixture was filled in an alumina boat, heated in an air atmosphere using an electric furnace, and held at 800 ° C. for 2 hours to obtain a composite metal oxide E1 of Example 1. .
- the powder X-ray diffraction pattern of the mixed metal oxide E1 of Example 1 is shown in FIG.
- the powder X-ray diffraction pattern of the mixed metal oxide E2 of Example 2 is shown in FIG.
- (1) Production of composite metal oxide Except that the metal-containing compound was used in an amount such that the molar ratio of Na: Mn: Fe was 0.7: 0.75: 0.25, A composite metal oxide E3 of Example 3 was obtained. The powder X-ray diffraction pattern of the mixed metal oxide E3 of Example 3 is shown in FIG.
- M 1 is Ni
- a 0.7
- b is 0.01.
- (1) Manufacture of complex metal oxide Sodium carbonate (Na 2 CO 3 : Wako Pure Chemical Industries, Ltd .: purity 99.8%), manganese oxide (IV) (MnO 2 : Taka Co., Ltd.) as metal-containing compounds Purity Chemical Laboratory: purity 99.9%) and nickel oxide (II, III) (NiO: High Purity Chemical Laboratory, Inc .: purity 99%), Na: Mn: Ni molar ratio is 0.00. 7: 0.99: 0.01 and weighed with a dry ball mill for 4 hours to obtain a mixture of metal-containing compounds.
- the obtained metal-containing compound mixture was filled in an alumina boat, heated in an air atmosphere using an electric furnace, and held at 800 ° C. for 2 hours to obtain a composite metal oxide E4 of Example 4. .
- the powder X-ray diffraction pattern of the composite metal oxide E4 of Example 4 is shown in FIG.
- the powder X-ray diffraction pattern of the mixed metal oxide E5 of Example 5 is shown in FIG.
- Production example Production of laminated porous film
- (1) Manufacture of coating solution for heat-resistant porous layer After 272.7 g of calcium chloride was dissolved in 4200 g of NMP, 132.9 g of paraphenylenediamine was added and completely dissolved. To the obtained solution, 243.3 g of terephthalic acid dichloride was gradually added and polymerized to obtain para-aramid, which was further diluted with NMP to obtain a para-aramid solution having a concentration of 2.0% by weight.
- a polyethylene porous film (film thickness 12 ⁇ m, air permeability 140 seconds / 100 cc, average pore diameter 0.1 ⁇ m, porosity 50%) was used. .
- the polyethylene porous film was fixed on a PET film having a thickness of 100 ⁇ m, and the slurry-like coating liquid for heat-resistant porous layer was applied onto the porous film by a bar coater manufactured by Tester Sangyo Co., Ltd. While the coated porous film on the PET film is integrated, it is immersed in a poor solvent of water to deposit a para-aramid porous film (heat-resistant porous layer), and then the solvent is dried to obtain a PET film.
- the laminated porous film in which the heat resistant porous layer and the porous film were laminated was obtained.
- the thickness of the laminated porous film was 16 ⁇ m, and the thickness of the para-aramid porous film (heat resistant porous layer) was 4 ⁇ m.
- the laminated porous film had an air permeability of 180 seconds / 100 cc and a porosity of 50%.
- SEM scanning electron microscope
- (A) Thickness measurement The thickness of the laminated porous film and the thickness of the porous film were measured in accordance with JIS standards (K7130-1992). Moreover, as the thickness of the heat resistant porous layer, a value obtained by subtracting the thickness of the porous film from the thickness of the laminated porous film was used.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
<1>Na、MnおよびM1(ここで、M1はFeまたはNiである。)を含み、Na:Mn:M1のモル比が、a:(1-b):b(ここで、aは0.5を超え1未満の範囲の値であり、bは0.001以上0.5以下の範囲の値である。)である複合金属酸化物。
<2>以下の式(1)で表される複合金属酸化物。
NaaMn1-bM1 bO2 (1)
(ここで、M1、aおよびbのそれぞれは、前記と同じ意味を有する。)
<3>M1がFeである前記<1>または<2>記載の複合金属酸化物。
<4>M1がNiである前記<1>または<2>記載の複合金属酸化物。
<5>aが0.6以上0.8以下の範囲の値である前記<1>~<4>のいずれかに記載の複合金属酸化物。
<6>前記<1>~<5>のいずれかに記載の複合金属酸化物を含有するナトリウム二次電池用正極活物質。
<7>前記<6>記載の正極活物質を含有するナトリウム二次電池用正極。
<8>前記<7>記載の正極を有するナトリウム二次電池。
<9>セパレータを更に有する前記<8>記載のナトリウム二次電池。
<10>セパレータが、耐熱樹脂を含有する耐熱多孔層と熱可塑性樹脂を含有する多孔質フィルムとが積層されてなる積層多孔質フィルムを有するセパレータである請求項9記載のナトリウム二次電池。
本発明の複合金属酸化物は、Na、MnおよびM1(ここで、M1はFeまたはNiである。)を含み、Na:Mn:M1のモル比が、a:(1-b):b(ここで、aは0.5を超え1未満の範囲の値であり、bは0.001以上0.5以下の範囲の値である。)であることを特徴とする。本発明の効果をより高める意味で、aは、0.6以上0.8以下の範囲の値であることが好ましい。また、本発明において、bは0.001以上0.5以下の範囲であることは、Mn成分(モル)が、M1成分(モル)に比して同じであるか、それよりも多いことを意味する。
NaaMn1-bM1 bO2 (1)
(ここで、M1、aおよびbのそれぞれは、前記と同じ意味を有する。)
本発明の複合金属酸化物は、焼成により本発明の複合金属酸化物となり得る組成を有する金属含有化合物の混合物を焼成することによって製造できる。具体的には、対応する金属元素を含有する金属含有化合物を所定の組成となるように秤量し混合した後に、得られた混合物を焼成することによって製造できる。例えば、好ましい金属元素比の一つであるNa:Mn:Fe=0.7:0.95:0.05で表される金属元素比を有する複合金属酸化物は、Na2CO3、MnO2およびFe3O4の各原料を、Na:Mn:Feのモル比が0.7:0.95:0.05となるように秤量し、それらを混合し、得られた混合物を焼成することによって製造できる。
本発明のナトリウム二次電池用正極は、本発明の正極活物質を含有してなる。本発明のナトリウム二次電池用正極は、本発明の正極活物質、導電材およびバインダーを含む正極合剤を、正極集電体に担持させて製造することができる。
本発明のナトリウム二次電池は、本発明のナトリウム二次電池用正極を有する。本発明のナトリウム二次電池は例えば、本発明のナトリウム二次電池用正極、セパレータおよび負極集電体に負極合剤が担持されてなる負極、をこの順に積層および巻回することによって電極群を得、この電極群を電池缶内に収納し、電解質を含有する有機溶媒からなる電解液を電極群に含浸させることによって、製造することができる。
本発明のナトリウム二次電池で用いることができる負極としては、負極活物質を含む負極合剤を負極集電体に担持したもの、ナトリウム金属またはナトリウム合金などのナトリウムイオンを吸蔵・脱離可能な電極を用いることができる。負極活物質としては、ナトリウムイオンを吸蔵・脱離することのできる天然黒鉛、人造黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維、有機高分子化合物焼成体などの炭素材料が挙げられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、または微粉末の凝集体などのいずれでもよい。ここで、炭素材料は、導電材としての役割を果たす場合もある。
本発明のナトリウム二次電池で用いることができるセパレータとしては例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質フィルム、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いた単層または積層セパレータとしてもよい。セパレータとしては、例えば特開2000-30686号公報、特開平10-324758号公報等に記載のセパレータを挙げることができる。セパレータの厚みは、電池の体積エネルギー密度が上がり、内部抵抗が小さくなるという点で、機械的強度が保たれる限り薄いほど好ましい。セパレータの厚みは一般に、5~200μm程度が好ましく、より好ましくは5~40μm程度である。
以下、耐熱多孔層と多孔質フィルムとが積層されてなる積層多孔質フィルムからなるセパレータについて説明する。ここで、このセパレータの厚みは、通常5μm以上40μm以下、好ましくは20μm以下である。また、耐熱多孔層の厚みをA(μm)、多孔質フィルムの厚みをB(μm)としたときには、A/Bの値が、0.1以上1以下であることが好ましい。また更に、このセパレータは、イオン透過性の観点から、ガーレー法による透気度において、透気度が50~300秒/100ccであることが好ましく、50~200秒/100ccであることがさらに好ましい。このセパレータの空孔率は、通常30~80体積%、好ましくは40~70体積%である。
積層多孔質フィルムにおいて、耐熱多孔層は、耐熱樹脂を含有することが好ましい。イオン透過性をより高めるために、耐熱多孔層の厚みは、1μm以上10μm以下、さらには1μm以上5μm以下、特に1μm以上4μm以下という薄い耐熱多孔層であることが好ましい。また、耐熱多孔層は微細孔を有し、その孔のサイズ(直径)は通常3μm以下、好ましくは1μm以下である。さらに、耐熱多孔層は、後述のフィラーを含有することもできる。また、耐熱多孔層は、無機粉末から形成されていてもよい。
積層多孔質フィルムにおいて、多孔質フィルムは、微細孔を有し、シャットダウンすることが好ましい。この場合、多孔質フィルムは、熱可塑性樹脂を含有する。この多孔質フィルムの厚みは、通常、3~30μmであり、さらに好ましくは3~25μmである。多孔質フィルムは、上記耐熱多孔層と同様に、微細孔を有し、その孔のサイズは通常3μm以下、好ましくは1μm以下である。多孔質フィルムの空孔率は、通常30~80体積%、好ましくは40~70体積%である。非水電解質二次電池において、通常の使用温度を越えた場合には、多孔質フィルムは、それを構成する熱可塑性樹脂の軟化により、微細孔を閉塞することができる。
本発明のナトリウム二次電池で用いることができる電解液において、電解質としては、NaClO4、NaPF6、NaAsF6、NaSbF6、NaBF4、NaCF3SO3、NaN(SO2CF3)2、低級脂肪族カルボン酸ナトリウム塩、NaAlCl4などが挙げられ、これらの2種以上の混合物を使用してもよい。これらの中でもフッ素を含むNaPF6、NaAsF6、NaSbF6、NaBF4、NaCF3SO3およびNaN(SO2CF3)2からなる群から選ばれた少なくとも1種を含むものを用いることが好ましい。
正極活物質としての複合金属酸化物、導電材としてのアセチレンブラック(電気化学工業株式会社製)、およびバインダーとしてのPVDF(株式会社クレハ製、PolyVinylideneDiFluoridePolyflon)を、正極活物質:導電材:バインダー=85:10:5(重量比)の組成となるようにそれぞれ秤量した。その後、まず複合金属酸化物とアセチレンブラックをメノウ乳鉢で十分に混合し、この混合物に、N-メチル-2-ピロリドン(NMP:東京化成工業株式会社製)を適量加え、さらにPVDFを加えて引き続き均一になるように混合して、スラリー化した。得られたスラリーを、集電体である厚さ40μmのアルミ箔上に、アプリケータを用いて100μmの厚さで塗布し、これを乾燥機に入れ、NMPを除去させながら、十分に乾燥することによって電極シートを得た。この電極シートを電極打ち抜き機で直径1.5cmに打ち抜いた後、ハンドプレスにて十分に圧着し、正極を得た。
コインセル(宝泉株式会社製)の下側パーツの窪みに、アルミ箔を下に向けて正極を置き、そして電解液としての1MのNaClO4/プロピレンカーボネート、セパレータとしてのポリプロピレン多孔質フィルム(厚み20μm)、および負極としての金属ナトリウム(アルドリッチ社製)を組み合わせて、電池を作製した。なお、電池の組み立てはアルゴン雰囲気のグローブボックス内で行った。
測定は、株式会社リガク製の粉末X線回折測定装置RINT2500TTR型を用いて、以下の条件で行った:
X線 :CuKα
電圧-電流 :40kV-140mA
測定角度範囲:2θ=10~60°
ステップ :0.02°
スキャンスピード:4°/分
(1)複合金属酸化物の製造
金属含有化合物としての、炭酸ナトリウム(Na2CO3:和光純薬工業株式会社製:純度99.8%)、および酸化マンガン(IV)(MnO2:株式会社高純度化学研究所製:純度99.9%)を、Na:Mnのモル比が0.7:1.00となるように秤量し、乾式ボールミルで4時間にわたって混合して、金属含有化合物の混合物を得た。得られた金属含有化合物の混合物を、アルミナボートに充填し、電気炉を用いて空気雰囲気において加熱して800℃で2時間にわたって保持することによって、比較例1の複合金属酸化物C1を得た。比較例1の複合金属酸化物C1の粉末X線回折図形を図1に示している。
比較例1の複合金属酸化物C1をナトリウム二次電池用の正極活物質として用いて、電池を作製し、以下の条件で定電流充放電試験を実施した。
充電は、4.0Vまで0.1Cレート(10時間で完全充電する速度)でCC(コンスタントカレント:定電流)充電を行った。放電は、該充電速度と同じ速度で、CC放電を行い、電圧1.5Vでカットオフした。次サイクル以降の充電、放電は、該充電速度と同じ速度で行い、1サイクル目と同様に、充電電圧4.0V、放電電圧1.5Vでカットオフした。
(1)複合金属酸化物の製造
金属含有化合物としての、炭酸ナトリウム(Na2CO3:和光純薬工業株式会社製:純度99.8%)、酸化マンガン(IV)(MnO2:株式会社高純度化学研究所製:純度99.9%)、および四三酸化コバルト(Co3O4:正同化学工業株式会社製:純度99%)を、Na:Mn:Coのモル比が0.7:0.50:0.50となるように秤量し、乾式ボールミルで4時間にわたって混合して金属含有化合物の混合物を得た。得られた金属含有化合物の混合物を、アルミナボートに充填し、電気炉を用いて空気雰囲気において加熱して800℃で2時間にわたって保持することによって、比較例2の複合金属酸化物C2を得た。比較例2の複合金属酸化物C2の粉末X線回折図形を図2に示している。
比較例2の複合金属酸化物C2をナトリウム二次電池用の正極活物質として用いて、電池を作製し、比較例1の場合と同様の条件で、定電流充放電試験を実施した。この電池について、充放電を10サイクル繰り返した10サイクル目の放電容量は104mAh/gであり、1サイクル目の放電容量に対する10サイクル目の放電容量の維持率は76%であった。結果を表1に示している。
(1)複合金属酸化物の製造
金属含有化合物としての、炭酸ナトリウム(Na2CO3:和光純薬工業株式会社製:純度99.8%)、酸化マンガン(IV)(MnO2:株式会社高純度化学研究所製:純度99.9%)、および酸化鉄(II、III)(Fe3O4:株式会社高純度化学研究所製:純度99%)を、Na:Mn:Feのモル比が0.7:0.95:0.05となるように秤量し、乾式ボールミルで4時間にわたって混合して金属含有化合物の混合物を得た。得られた金属含有化合物の混合物を、アルミナボートに充填し、電気炉を用いて空気雰囲気において加熱して800℃で2時間にわたって保持することによって、実施例1の複合金属酸化物E1を得た。実施例1の複合金属酸化物E1の粉末X線回折図形を図3に示している。
実施例1の複合金属酸化物E1をナトリウム二次電池用の正極活物質として用いて、電池を作製し、比較例1の場合と同様の条件で、定電流充放電試験を実施した。この電池について、充放電を10サイクル繰り返した10サイクル目の放電容量は130mAh/gであり、1サイクル目の放電容量に対する10サイクル目の放電容量の維持率は84%であり、Feをわずかに含有させるだけで、ナトリウム二次電池としての性能が極めて向上することがわかった。結果を表1に示している。
(1)複合金属酸化物の製造
Na:Mn:Feのモル比が0.7:0.90:0.10となる量で金属含有化合物を用いた以外は、実施例1と同様にして、実施例2の複合金属酸化物E2を得た。実施例2の複合金属酸化物E2の粉末X線回折図形を図4に示している。
実施例2の複合金属酸化物E2をナトリウム二次電池用の正極活物質として用いて、電池を作製し、比較例1の場合と同じ条件で、定電流充放電試験を実施した。この電池について、充放電を10サイクル繰り返した10サイクル目の放電容量は124mAh/gであり、1サイクル目の放電容量に対する10サイクル目の放電容量の維持率は81%であった。結果を表1に示している。
(1)複合金属酸化物の製造
Na:Mn:Feのモル比が0.7:0.75:0.25となる量で金属含有化合物を用いた以外は、実施例1と同様にして、実施例3の複合金属酸化物E3を得た。実施例3の複合金属酸化物E3の粉末X線回折図形を図5に示している。
実施例3の複合金属酸化物E3をナトリウム二次電池用の正極活物質として用いて、電池を作製し、比較例1の場合と同じ条件で、定電流充放電試験を実施した。この電池について、充放電を10サイクル繰り返した10サイクル目の放電容量は120mAh/gであり、1サイクル目の放電容量に対する10サイクル目の放電容量の維持率は85%であった。結果を表1に示している。
(1)複合金属酸化物の製造
金属含有化合物としての、炭酸ナトリウム(Na2CO3:和光純薬工業株式会社製:純度99.8%)、酸化マンガン(IV)(MnO2:株式会社高純度化学研究所製:純度99.9%)、および酸化ニッケル(II、III)(NiO:株式会社高純度化学研究所製:純度99%)を、Na:Mn:Niのモル比が0.7:0.99:0.01となるように秤量し、乾式ボールミルで4時間にわたって混合して金属含有化合物の混合物を得た。得られた金属含有化合物の混合物を、アルミナボートに充填し、電気炉を用いて空気雰囲気において加熱して800℃で2時間にわたって保持することによって、実施例4の複合金属酸化物E4を得た。実施例4の複合金属酸化物E4の粉末X線回折図形を図6に示している。
実施例4の複合金属酸化物E4をナトリウム二次電池用の正極活物質として用いて、電池を作製し、比較例1の場合と同じ条件で、定電流充放電試験を実施した。この電池について、充放電を10サイクル繰り返した10サイクル目の放電容量は123mAh/gであり、1サイクル目の放電容量に対する10サイクル目の放電容量の維持率は76%であった。結果を表1に示している。
(1)複合金属酸化物の製造
Na:Mn:Niのモル比が0.7:0.95:0.05となる量で金属含有化合物を用いた以外は、実施例4と同様にして、実施例5の複合金属酸化物E5を得た。実施例5の複合金属酸化物E5の粉末X線回折図形を図7に示している。
実施例5の複合金属酸化物E5をナトリウム二次電池用の正極活物質として用いて、電池を作製し、比較例1の場合と同じ条件で、定電流充放電試験を実施した。この電池について、充放電を10サイクル繰り返した10サイクル目の放電容量は129mAh/gであり、1サイクル目の放電容量に対する10サイクル目の放電容量の維持率は82%であった。結果を表1に示している。
(1)複合金属酸化物の製造
Na:Mn:Niのモル比が0.7:0.90:0.10となる量で金属含有化合物を用いた以外は、実施例4と同様にして、実施例6の複合金属酸化物E6を得た。実施例6の複合金属酸化物E6の粉末X線回折図形を図8に示している。
実施例6の複合金属酸化物E6をナトリウム二次電池用の正極活物質として用いて、電池を作製し、比較例1の場合と同じ条件で、定電流充放電試験を実施した。この電池について、充放電を10サイクル繰り返した10サイクル目の放電容量は128mAh/gであり、1サイクル目の放電容量に対する10サイクル目の放電容量の維持率は83%であった。結果を表1に示している。
(1)複合金属酸化物の製造
Na:Mn:Niのモル比が0.7:0.75:0.25となる量で金属含有化合物を用いたことを除いて実施例4と同様にして、実施例7の複合金属酸化物E7を得た。実施例7の複合金属酸化物E7の粉末X線回折図形を図9に示している。
実施例7の複合金属酸化物E7をナトリウム二次電池用の正極活物質として用いて、電池を作製し、比較例1の場合と同じ条件で、定電流充放電試験を実施した。この電池について、充放電を10サイクル繰り返した10サイクル目の放電容量は119mAh/gであり、1サイクル目の放電容量に対する10サイクル目の放電容量の維持率は82%であった。結果を表1に示している。
(1)耐熱多孔層用塗工液の製造
NMP4200gに塩化カルシウム272.7gを溶解した後、パラフェニレンジアミン132.9gを添加して完全に溶解させた。得られた溶液に、テレフタル酸ジクロライド243.3gを徐々に添加して重合し、パラアラミドを得て、さらにNMPで希釈して、濃度2.0重量%のパラアラミド溶液を得た。得られたパラアラミド溶液100gに、第1のアルミナ粉末2g(日本アエロジル社製、アルミナC,平均粒子径0.02μm)と第2のアルミナ粉末2g(住友化学株式会社製スミコランダム、AA03、平均粒子径0.3μm)とをフィラーとして計4g添加して混合し、ナノマイザーで3回処理し、さらに1000メッシュの金網で濾過、減圧下で脱泡して、耐熱多孔層用スラリー状塗工液を製造した。パラアラミドおよびアルミナ粉末の合計重量に対するアルミナ粉末(フィラー)の重量は、67重量%となる。
多孔質フィルムとしては、ポリエチレン製多孔質フィルム(膜厚12μm、透気度140秒/100cc、平均孔径0.1μm、空孔率50%)を用いた。厚み100μmのPETフィルムの上に上記ポリエチレン製多孔質フィルムを固定し、テスター産業株式会社製バーコーターにより、該多孔質フィルムの上に耐熱多孔層用スラリー状塗工液を塗工した。PETフィルム上の塗工された該多孔質フィルムを一体にしたまま、貧溶媒である水中に浸漬させ、パラアラミド多孔質膜(耐熱多孔層)を析出させた後、溶媒を乾燥させて、PETフィルムをはがして、耐熱多孔層と多孔質フィルムとが積層された積層多孔質フィルムを得た。積層多孔質フィルムの厚みは16μmであり、パラアラミド多孔質膜(耐熱多孔層)の厚みは4μmであった。積層多孔質フィルムの透気度は180秒/100cc、空孔率は50%であった。積層多孔質フィルムにおける耐熱多孔層の断面を走査型電子顕微鏡(SEM)により観察をしたところ、0.03μm~0.06μm程度の比較的小さな微細孔と0.1μm~1μm程度の比較的大きな微細孔とを有することがわかった。なお、積層多孔質フィルムの評価は、以下の(A)~(C)のようにして行った。
積層多孔質フィルムの厚み、多孔質フィルムの厚みは、JIS規格(K7130-1992)に従い、測定した。また、耐熱多孔層の厚みとしては、積層多孔質フィルムの厚みから多孔質フィルムの厚みを差し引いた値を用いた。
(B)ガーレー法による透気度の測定
積層多孔質フィルムの透気度は、JIS P8117に基づいて、株式会社安田精機製作所製のデジタルタイマー式ガーレー式デンソメータで測定した。
(C)空孔率
得られた積層多孔質フィルムのサンプルを一辺の長さ10cmの正方形に切り取り、重量W(g)と厚みD(cm)を測定した。サンプル中のそれぞれの層の重量(Wi(g))を求め、Wiとそれぞれの層の材質の真比重(真比重i(g/cm3))とから、それぞれの層の体積を求めて、次式より空孔率(体積%)を求めた。
空孔率(体積%)=100×{1-(W1/真比重1+W2/真比重2+・・+Wn/真比重n)/(10×10×D)}
Claims (10)
- Na、MnおよびM1(ここで、M1はFeまたはNiである。)を含み、Na:Mn:M1のモル比が、a:(1-b):b(ここで、aは0.5を超え1未満の範囲の値であり、bは0.001以上0.5以下の範囲の値である。)である複合金属酸化物。
- 以下の式(1)で表される複合金属酸化物。
NaaMn1-bM1 bO2 (1)
(ここで、M1、aおよびbのそれぞれは、前記と同じ意味を有する。) - M1がFeである請求項1または2記載の複合金属酸化物。
- M1がNiである請求項1または2記載の複合金属酸化物。
- aが0.6以上0.8以下の範囲の値である請求項1~4のいずれかに記載の複合金属酸化物。
- 請求項1~5のいずれかに記載の複合金属酸化物を含有するナトリウム二次電池用正極活物質。
- 請求項6記載の正極活物質を含有するナトリウム二次電池用正極。
- 請求項7記載の正極を有するナトリウム二次電池。
- セパレータを更に有する請求項8記載のナトリウム二次電池。
- セパレータが、耐熱樹脂を含有する耐熱多孔層と熱可塑性樹脂を含有する多孔質フィルムとが積層されてなる積層多孔質フィルムを有するセパレータである請求項9記載のナトリウム二次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09709219A EP2242131A1 (en) | 2008-02-04 | 2009-02-03 | Composite metal oxide and sodium rechargeable battery |
CN200980103861.XA CN101933179B (zh) | 2008-02-04 | 2009-02-03 | 复合金属氧化物及钠二次电池 |
US12/865,993 US9142860B2 (en) | 2008-02-04 | 2009-02-03 | Mixed metal oxide and sodium secondary battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008023673A JP5309581B2 (ja) | 2008-02-04 | 2008-02-04 | 正極活物質用粉末、正極活物質およびナトリウム二次電池 |
JP2008-023673 | 2008-02-04 | ||
JP2008026153 | 2008-02-06 | ||
JP2008-026153 | 2008-02-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009099061A1 true WO2009099061A1 (ja) | 2009-08-13 |
Family
ID=40952136
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/051784 WO2009099061A1 (ja) | 2008-02-04 | 2009-02-03 | 複合金属酸化物およびナトリウム二次電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9142860B2 (ja) |
EP (1) | EP2242131A1 (ja) |
KR (1) | KR20100120138A (ja) |
CN (1) | CN101933179B (ja) |
WO (1) | WO2009099061A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010024304A1 (ja) * | 2008-08-27 | 2010-03-04 | 住友化学株式会社 | 電極活物質およびその製造方法 |
WO2012060295A1 (ja) * | 2010-11-05 | 2012-05-10 | 学校法人東京理科大学 | 複合金属酸化物、当該複合金属酸化物の製造方法、ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、及びナトリウム二次電池 |
JP2012126633A (ja) * | 2009-12-28 | 2012-07-05 | Sumitomo Chemical Co Ltd | リチウム複合金属酸化物の製造方法 |
JP2012201588A (ja) * | 2011-03-28 | 2012-10-22 | Tokyo Univ Of Science | 複合金属酸化物、ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、及びナトリウム二次電池 |
WO2014091687A1 (ja) * | 2012-12-14 | 2014-06-19 | パナソニック株式会社 | 複合金属酸化物、複合金属酸化物の製造方法およびナトリウム二次電池 |
JP2015525730A (ja) * | 2012-07-10 | 2015-09-07 | ファラディオン リミテッド | ドープされたニッケル酸塩化合物 |
JP2016511730A (ja) * | 2012-07-10 | 2016-04-21 | ファラディオン リミテッド | ドープされたニッケル酸塩 |
US9653731B2 (en) | 2014-12-23 | 2017-05-16 | Sharp Kabushiki Kaisha | Layered oxide materials for batteries |
US9660263B2 (en) | 2014-12-23 | 2017-05-23 | Sharp Kabushiki Kaisha | Layered oxide materials for batteries |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9007742B2 (en) * | 2009-03-31 | 2015-04-14 | Battelle Memorial Institute | Supercapacitor materials and devices |
JP5775330B2 (ja) * | 2011-03-02 | 2015-09-09 | 住友電気工業株式会社 | 溶融塩電池 |
KR20140064681A (ko) * | 2012-11-19 | 2014-05-28 | 한양대학교 산학협력단 | 나트륨 이차전지용 양극활물질 및 이의 제조 방법 |
US20150333325A1 (en) | 2012-11-19 | 2015-11-19 | Iucf-Hyu(Industry-University Cooperation Foundation Hanyang University) | Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same |
WO2014077663A1 (ko) * | 2012-11-19 | 2014-05-22 | 한양대학교 산학협력단 | 나트륨 이차전지용 양극활물질 및 이의 제조 방법 |
CN103840149A (zh) * | 2012-11-27 | 2014-06-04 | 中国科学院物理研究所 | 钠离子二次电池及其用的层状含锰氧化物活性物质、正极和活性物质的制备方法 |
KR102144996B1 (ko) | 2013-09-30 | 2020-08-18 | 삼성전자주식회사 | 양극활물질, 및 이를 포함하는 양극 및 나트륨이차전지 |
KR102192082B1 (ko) | 2013-10-18 | 2020-12-16 | 삼성전자주식회사 | 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지 |
KR102149334B1 (ko) | 2013-10-21 | 2020-08-28 | 삼성전자주식회사 | 양극활물질, 및 이를 포함하는 양극 및 나트륨이차전지 |
US10270104B2 (en) * | 2014-08-08 | 2019-04-23 | Sumitomo Electric Industries, Ltd. | Positive electrode for sodium ion secondary battery and sodium ion secondary battery |
GB2540626A (en) * | 2015-07-24 | 2017-01-25 | Sharp Kk | Sodium transition metal oxide compounds for na-ion batteries |
TWI570989B (zh) * | 2015-08-21 | 2017-02-11 | 財團法人工業技術研究院 | 電解液組合物、與鈉二次電池 |
WO2018181461A1 (ja) * | 2017-03-29 | 2018-10-04 | 住友化学株式会社 | ナトリウム二次電池用電極活物質、ナトリウム二次電池用電極、ナトリウム二次電池及び複合金属酸化物の製造方法 |
CN109694646A (zh) * | 2017-10-24 | 2019-04-30 | 住友化学株式会社 | 作为非水电解液二次电池用多孔层的材料的组合物 |
CN108110236A (zh) * | 2017-12-14 | 2018-06-01 | 东北大学 | 一种钠离子电池正极材料及其制备方法 |
WO2020059902A1 (ko) * | 2018-09-19 | 2020-03-26 | 전자부품연구원 | 실리콘산화물 코팅층이 형성된 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법 |
CN113078308B (zh) * | 2021-06-04 | 2021-08-24 | 蜂巢能源科技有限公司 | 一种无钴无镍正极材料、其制备方法以及电池 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10324758A (ja) | 1997-03-26 | 1998-12-08 | Sumitomo Chem Co Ltd | パラアラミド系多孔質フィルムおよびそれを用いた電池用セパレーターとリチウム二次電池 |
JPH1140156A (ja) * | 1997-07-16 | 1999-02-12 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2000030686A (ja) | 1998-04-27 | 2000-01-28 | Sumitomo Chem Co Ltd | 非水電解質電池セパレ―タ―とリチウム二次電池 |
JP2001332262A (ja) * | 2000-05-24 | 2001-11-30 | Sanyo Electric Co Ltd | 非水電解質二次電池用正極活物質 |
JP2002025555A (ja) * | 2000-07-05 | 2002-01-25 | Toyota Central Res & Dev Lab Inc | マグネシウム二次電池正極活物質用マグネシウム複合酸化物、その製造方法およびそれを用いたマグネシウム二次電池 |
JP2002069221A (ja) * | 2000-06-14 | 2002-03-08 | Sumitomo Chem Co Ltd | 多孔質フィルムおよびそれを用いた電池用セパレータ |
JP2006179473A (ja) * | 2004-11-26 | 2006-07-06 | Kyushu Univ | 非水電解質二次電池用正極活物質 |
JP2007053081A (ja) * | 2005-07-21 | 2007-03-01 | Sumitomo Chemical Co Ltd | 非水電解質二次電池用正極活物質 |
JP2007112674A (ja) * | 2005-10-21 | 2007-05-10 | National Institute Of Advanced Industrial & Technology | アルカリマンガン複合酸化物及びその製造方法 |
JP2007287661A (ja) | 2006-03-20 | 2007-11-01 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01260767A (ja) | 1988-04-08 | 1989-10-18 | Showa Denko Kk | 二次電池 |
JPH03291863A (ja) | 1990-04-10 | 1991-12-24 | Showa Denko Kk | 二次電池 |
US5558961A (en) | 1994-06-13 | 1996-09-24 | Regents, University Of California | Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material |
JPH1025117A (ja) | 1996-07-09 | 1998-01-27 | Japan Metals & Chem Co Ltd | 水酸化ニッケルの製造方法 |
JP3842348B2 (ja) | 1996-09-02 | 2006-11-08 | 日本化学工業株式会社 | Ni−Mn系複合水酸化物の製造方法 |
JPH1081520A (ja) | 1996-09-02 | 1998-03-31 | Nippon Chem Ind Co Ltd | Mn−Co系複合水酸化物、その製造方法及びリチウム二次電池用正極活物質用原料 |
TW460505B (en) | 1998-04-27 | 2001-10-21 | Sumitomo Chemical Co | Separator for nonaqueous electrolyte battery and lithium secondary battery made from the same |
JPH11317226A (ja) | 1998-04-30 | 1999-11-16 | Mitsubishi Materials Corp | リチウム二次電池用正極活物質およびその製造方法 |
JP3032757B1 (ja) | 1999-02-18 | 2000-04-17 | 株式会社東芝 | 非水電解液二次電池 |
TWI315591B (en) | 2000-06-14 | 2009-10-01 | Sumitomo Chemical Co | Porous film and separator for battery using the same |
CA2442257C (en) | 2001-04-06 | 2013-01-08 | Valence Technology, Inc. | Sodium ion batteries |
US6921609B2 (en) * | 2001-06-15 | 2005-07-26 | Kureha Chemical Industry Co., Ltd. | Gradient cathode material for lithium rechargeable batteries |
JP4620926B2 (ja) | 2002-03-19 | 2011-01-26 | 戸田工業株式会社 | 非水電解質二次電池用正極活物質の製造法 |
JP2004362934A (ja) | 2003-06-04 | 2004-12-24 | Sony Corp | 正極材料および電池 |
US7794879B2 (en) | 2004-03-31 | 2010-09-14 | Jun-ichi Yamaki | Positive electrode active material for non-aqueous electrolyte secondary cell |
US7635536B2 (en) | 2004-09-03 | 2009-12-22 | Uchicago Argonne, Llc | Manganese oxide composite electrodes for lithium batteries |
CN103762342A (zh) | 2004-09-03 | 2014-04-30 | 芝加哥大学阿尔贡有限责任公司 | 锂电池用氧化锰复合电极 |
JP4929674B2 (ja) | 2004-10-27 | 2012-05-09 | 住友化学株式会社 | 球状ニッケル酸リチウム粒子の製造方法および球状の複合酸化物粒子の製造方法 |
TW200624385A (en) | 2004-10-27 | 2006-07-16 | Sumitomo Chemical Co | Nickel hydroxide powder and method for making same |
CN101065867B (zh) * | 2004-11-26 | 2010-06-16 | 住友化学株式会社 | 用于非水电解质二次电池的正极活性材料 |
KR100672506B1 (ko) | 2004-12-22 | 2007-01-24 | 엘지전자 주식회사 | 프로젝터의 투사 장치 |
US8815449B2 (en) | 2005-02-07 | 2014-08-26 | Sanyo Electric Co., Ltd. | Positive electrode and non-aqueous electrolyte secondary battery |
JP4739769B2 (ja) | 2005-02-07 | 2011-08-03 | 三洋電機株式会社 | 非水電解質二次電池 |
JP4739770B2 (ja) | 2005-02-07 | 2011-08-03 | 三洋電機株式会社 | 非水電解質二次電池 |
JP4854982B2 (ja) | 2005-04-15 | 2012-01-18 | Agcセイミケミカル株式会社 | リチウム二次電池正極用のリチウム含有複合酸化物の製造方法 |
CN1719639A (zh) | 2005-05-13 | 2006-01-11 | 北京化工大学 | 一种高锂离子含量层状锰酸锂正极材料的制备方法 |
JP5082300B2 (ja) | 2005-05-27 | 2012-11-28 | 住友化学株式会社 | 活性炭及びその製造方法 |
CN101184691A (zh) | 2005-05-27 | 2008-05-21 | 住友化学株式会社 | 双电层电容器 |
US20090050841A1 (en) | 2005-07-21 | 2009-02-26 | Sumitomo Chemical Company, Limited | Positive electrode active material for non-aqueous electrolyte secondary battery |
JP4963806B2 (ja) | 2005-07-29 | 2012-06-27 | 三洋電機株式会社 | 非水電解質二次電池 |
JP2007073424A (ja) | 2005-09-08 | 2007-03-22 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2007188703A (ja) | 2006-01-12 | 2007-07-26 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
JP2007234512A (ja) | 2006-03-03 | 2007-09-13 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP5095121B2 (ja) | 2006-04-28 | 2012-12-12 | パナソニック株式会社 | 非水電解質二次電池用セパレータおよび非水電解質二次電池 |
JP5521266B2 (ja) | 2006-11-21 | 2014-06-11 | 住友化学株式会社 | 正極活物質用粉末および正極活物質 |
EP2139058B1 (en) | 2006-12-27 | 2012-02-01 | Sanyo Electric Co., Ltd. | Nonaqueous electrolyte secondary battery and method for production thereof |
JP5094144B2 (ja) | 2007-01-31 | 2012-12-12 | 日立マクセルエナジー株式会社 | リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、およびリチウム二次電池 |
US7846585B2 (en) | 2007-06-29 | 2010-12-07 | Uchicago Argonne, Llc | Silver manganese vanadium oxide electrodes for lithium batteries |
JP4595987B2 (ja) | 2007-10-25 | 2010-12-08 | トヨタ自動車株式会社 | 正極活物質 |
KR101135491B1 (ko) | 2009-02-13 | 2012-04-13 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지 |
KR20110136001A (ko) | 2010-06-13 | 2011-12-21 | 삼성에스디아이 주식회사 | 리튬 이차전지용 양극 활물질의 제조 방법 및 이를 이용한 리튬 이차전지 |
US8298701B2 (en) | 2011-03-09 | 2012-10-30 | Aquion Energy Inc. | Aqueous electrolyte energy storage device |
-
2009
- 2009-02-03 CN CN200980103861.XA patent/CN101933179B/zh active Active
- 2009-02-03 WO PCT/JP2009/051784 patent/WO2009099061A1/ja active Application Filing
- 2009-02-03 KR KR20107017298A patent/KR20100120138A/ko not_active Abandoned
- 2009-02-03 US US12/865,993 patent/US9142860B2/en active Active
- 2009-02-03 EP EP09709219A patent/EP2242131A1/en not_active Withdrawn
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10324758A (ja) | 1997-03-26 | 1998-12-08 | Sumitomo Chem Co Ltd | パラアラミド系多孔質フィルムおよびそれを用いた電池用セパレーターとリチウム二次電池 |
JPH1140156A (ja) * | 1997-07-16 | 1999-02-12 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP2000030686A (ja) | 1998-04-27 | 2000-01-28 | Sumitomo Chem Co Ltd | 非水電解質電池セパレ―タ―とリチウム二次電池 |
JP2001332262A (ja) * | 2000-05-24 | 2001-11-30 | Sanyo Electric Co Ltd | 非水電解質二次電池用正極活物質 |
JP2002069221A (ja) * | 2000-06-14 | 2002-03-08 | Sumitomo Chem Co Ltd | 多孔質フィルムおよびそれを用いた電池用セパレータ |
JP2002025555A (ja) * | 2000-07-05 | 2002-01-25 | Toyota Central Res & Dev Lab Inc | マグネシウム二次電池正極活物質用マグネシウム複合酸化物、その製造方法およびそれを用いたマグネシウム二次電池 |
JP2006179473A (ja) * | 2004-11-26 | 2006-07-06 | Kyushu Univ | 非水電解質二次電池用正極活物質 |
JP2007053081A (ja) * | 2005-07-21 | 2007-03-01 | Sumitomo Chemical Co Ltd | 非水電解質二次電池用正極活物質 |
JP2007112674A (ja) * | 2005-10-21 | 2007-05-10 | National Institute Of Advanced Industrial & Technology | アルカリマンガン複合酸化物及びその製造方法 |
JP2007287661A (ja) | 2006-03-20 | 2007-11-01 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010024304A1 (ja) * | 2008-08-27 | 2010-03-04 | 住友化学株式会社 | 電極活物質およびその製造方法 |
JP2012126633A (ja) * | 2009-12-28 | 2012-07-05 | Sumitomo Chemical Co Ltd | リチウム複合金属酸化物の製造方法 |
KR101677229B1 (ko) * | 2010-11-05 | 2016-11-17 | 도쿄 유니버시티 오브 사이언스 에듀케이셔널 파운데이션 애드미니스트레이티브 오거니제이션 | 복합 금속 산화물, 당해 복합 금속 산화물의 제조방법, 나트륨 2차 전지용 정극 활물질, 나트륨 2차 전지용 정극, 및 나트륨 2차 전지 |
US9203088B2 (en) | 2010-11-05 | 2015-12-01 | Tokyo University Of Science Educational Foundation Administrative Organization | Composite metal oxide, process for producing the composite metal oxide, positive active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery |
CN103261099A (zh) * | 2010-11-05 | 2013-08-21 | 学校法人东京理科大学 | 复合金属氧化物、该复合金属氧化物的制造方法、钠二次电池用正极活性物质、钠二次电池用正极及钠二次电池 |
KR20130105676A (ko) * | 2010-11-05 | 2013-09-25 | 도쿄 유니버시티 오브 사이언스 에듀케이셔널 파운데이션 애드미니스트레이티브 오거니제이션 | 복합 금속 산화물, 당해 복합 금속 산화물의 제조방법, 나트륨 2차 전지용 정극 활물질, 나트륨 2차 전지용 정극, 및 나트륨 2차 전지 |
US20140014873A1 (en) * | 2010-11-05 | 2014-01-16 | Tokyo University Of Science Educational Foundation Administrative Organization | Composite metal oxide, process for producing the composite metal oxide, positive active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery |
WO2012060295A1 (ja) * | 2010-11-05 | 2012-05-10 | 学校法人東京理科大学 | 複合金属酸化物、当該複合金属酸化物の製造方法、ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、及びナトリウム二次電池 |
JP5870930B2 (ja) * | 2010-11-05 | 2016-03-01 | 学校法人東京理科大学 | 複合金属酸化物、当該複合金属酸化物の製造方法、ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、及びナトリウム二次電池 |
JP2012201588A (ja) * | 2011-03-28 | 2012-10-22 | Tokyo Univ Of Science | 複合金属酸化物、ナトリウム二次電池用正極活物質、ナトリウム二次電池用正極、及びナトリウム二次電池 |
JP2015525730A (ja) * | 2012-07-10 | 2015-09-07 | ファラディオン リミテッド | ドープされたニッケル酸塩化合物 |
JP2016511730A (ja) * | 2012-07-10 | 2016-04-21 | ファラディオン リミテッド | ドープされたニッケル酸塩 |
WO2014091687A1 (ja) * | 2012-12-14 | 2014-06-19 | パナソニック株式会社 | 複合金属酸化物、複合金属酸化物の製造方法およびナトリウム二次電池 |
JPWO2014091687A1 (ja) * | 2012-12-14 | 2017-01-05 | パナソニックIpマネジメント株式会社 | 複合金属酸化物、複合金属酸化物の製造方法およびナトリウム二次電池 |
US9786949B2 (en) | 2012-12-14 | 2017-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Composite metal oxide, method for producing composite metal oxide, and sodium secondary battery |
US9653731B2 (en) | 2014-12-23 | 2017-05-16 | Sharp Kabushiki Kaisha | Layered oxide materials for batteries |
US9660263B2 (en) | 2014-12-23 | 2017-05-23 | Sharp Kabushiki Kaisha | Layered oxide materials for batteries |
Also Published As
Publication number | Publication date |
---|---|
US20110003192A1 (en) | 2011-01-06 |
CN101933179A (zh) | 2010-12-29 |
CN101933179B (zh) | 2014-05-28 |
US9142860B2 (en) | 2015-09-22 |
KR20100120138A (ko) | 2010-11-12 |
EP2242131A1 (en) | 2010-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5625390B2 (ja) | 複合金属酸化物、電極およびナトリウム二次電池 | |
WO2009099061A1 (ja) | 複合金属酸化物およびナトリウム二次電池 | |
WO2009099062A1 (ja) | 複合金属酸化物およびナトリウム二次電池 | |
JP5383217B2 (ja) | 正極活物質およびナトリウム二次電池、ならびにオリビン型リン酸塩の製造方法 | |
JP5515306B2 (ja) | 複合金属酸化物およびナトリウム二次電池 | |
JP2009135092A (ja) | 複合金属酸化物およびナトリウム二次電池 | |
JP5720389B2 (ja) | 複合金属酸化物およびナトリウム二次電池 | |
WO2010024304A1 (ja) | 電極活物質およびその製造方法 | |
WO2009099068A1 (ja) | ナトリウム二次電池 | |
US20100266900A1 (en) | Sodium-manganese mixed metal oxide, production method thereof and sodium secondary battery | |
JP5391709B2 (ja) | 複合金属酸化物およびナトリウム二次電池 | |
JP2011129410A (ja) | 電極活物質、電極および非水電解質二次電池 | |
JP2010040311A (ja) | 電極活物質、電極およびナトリウム二次電池 | |
JP2009224320A (ja) | ナトリウム二次電池 | |
JP2009259601A (ja) | ナトリウムイオン二次電池用電極活物質およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980103861.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09709219 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20107017298 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12865993 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4865/CHENP/2010 Country of ref document: IN Ref document number: 2009709219 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |