WO2009093711A1 - 液晶配向剤、及び液晶表示素子 - Google Patents
液晶配向剤、及び液晶表示素子 Download PDFInfo
- Publication number
- WO2009093711A1 WO2009093711A1 PCT/JP2009/051119 JP2009051119W WO2009093711A1 WO 2009093711 A1 WO2009093711 A1 WO 2009093711A1 JP 2009051119 W JP2009051119 W JP 2009051119W WO 2009093711 A1 WO2009093711 A1 WO 2009093711A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- formula
- aligning agent
- crystal aligning
- group
- Prior art date
Links
- 0 *C(OC(CC(CC(O1)=O)C1=O)=O)=S Chemical compound *C(OC(CC(CC(O1)=O)C1=O)=O)=S 0.000 description 11
- VSGLWXLSDYKHBR-FPLPWBNLSA-N CC(CC/C=C\C)C(CC1)C(C)(CC2)C1C(CC1)C2C(C)(CC2)C1C(C)(C)C2Oc(cc(cc1)N)c1N Chemical compound CC(CC/C=C\C)C(CC1)C(C)(CC2)C1C(CC1)C2C(C)(CC2)C1C(C)(C)C2Oc(cc(cc1)N)c1N VSGLWXLSDYKHBR-FPLPWBNLSA-N 0.000 description 1
- NFROUSPEUVHXGI-UHFFFAOYSA-N CCCCCC(C)C(CC1)C(CC2)C1(C)C(CC1)C2C(C)(CC2)C1C(C)(C)C2Oc(cc(cc1)N)c1N Chemical compound CCCCCC(C)C(CC1)C(CC2)C1(C)C(CC1)C2C(C)(CC2)C1C(C)(C)C2Oc(cc(cc1)N)c1N NFROUSPEUVHXGI-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1042—Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1046—Polyimides containing oxygen in the form of ether bonds in the main chain
- C08G73/105—Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1075—Partially aromatic polyimides
- C08G73/1078—Partially aromatic polyimides wholly aromatic in the diamino moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/14—Polyamide-imides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/56—Aligning agents
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
Definitions
- the present invention relates to a liquid crystal aligning agent used for producing a liquid crystal alignment film and a liquid crystal display element using the same.
- a liquid crystal display element As a liquid crystal display element, the major axis of nematic liquid crystal having positive dielectric anisotropy between two electrode substrates in which a liquid crystal alignment film is formed on an electrode is continuous from one substrate to the other substrate.
- IPS in-plane switching
- VA vertical
- a liquid crystal alignment film used in these liquid crystal display elements a polyimide-based liquid crystal alignment film is mainly used, and polyimide-based alignment films having various structures (for example, see Patent Document 1) have been developed.
- liquid crystal filling has been generally performed by a vacuum injection method in which a liquid crystal is filled between two substrates using a pressure difference between atmospheric pressure and vacuum.
- the liquid crystal injection port is provided only on one side of the substrate, it takes a long time to fill the liquid crystal between the substrates having a cell gap of 3 to 5 ⁇ m. It was difficult to simplify the manufacturing process. This has been a big problem particularly in the production of liquid crystal TVs and large monitors that have been put into practical use in recent years.
- a liquid crystal dropping method (ODF method) was developed in order to solve the problems in the above-described vacuum injection method.
- ODF method a liquid crystal dropping method
- a liquid crystal is dropped on a substrate on which a liquid crystal alignment film is formed, bonded to the other substrate in a vacuum, and then the sealing material is UV cured to fill the liquid crystal.
- the liquid crystal dripping method has been solved by optimizing the manufacturing process so as to reduce the influence of adsorbed water and impurities, such as reducing the amount of liquid crystal dripped and improving the degree of vacuum during bonding.
- the liquid crystal display element production line becomes larger, it has become impossible to suppress display unevenness by optimizing the manufacturing process so far, and a liquid crystal alignment film that can reduce alignment unevenness more than before has been demanded.
- This alignment unevenness is caused by the adsorbed water and impurities adhering to the surface of the liquid crystal alignment film formed on the substrate being swept away by the liquid crystal dropped in the ODF process, so that the liquid crystal dropping part and the liquid crystal droplets are in contact with each other. It is thought that it occurs due to the difference in the amount of adsorbed water and impurities.
- the present invention has been made in view of the above circumstances. That is, the problem to be solved by the present invention is to provide a liquid crystal aligning agent that can reduce liquid crystal alignment unevenness generated by the ODF method. Furthermore, it is providing the liquid crystal display element which reduced the display nonuniformity resulting from the liquid crystal alignment nonuniformity which generate
- a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride represented by the following formula [1] is reacted with a diamine component containing a diamine compound having a carboxyl group or a hydroxyl group in the molecule.
- Liquid crystal aligning agent containing the polymer obtained.
- Y 1 is a tetravalent organic group having 4 to 15 carbon atoms having a non-aromatic cyclic structure having 4 to 8 carbon atoms.
- (2) [1] in the liquid crystal aligning agent according to the above (1) having the structure Y 1 is selected from formula [11] according to the following formula [2].
- Y 2 to Y 5 are each independently a group selected from a hydrogen atom, a methyl group, a chlorine atom and a benzene ring, and may be the same or different
- the formula [8 ] Y 6 and Y 7 are each independently a hydrogen atom or a methyl group, and may be the same or different.
- m1 is an integer of 1 to 4
- X 2 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2-, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 -, - COO -, - OCO -, - CON (CH 3) - or -N (CH 3) a CO-, m @ 2 and m3 represents an integer of from 0 respectively 4, and m @ 2 + m3 is from 1 to 4
- m4 and m5 are each an integer of 1 to 5
- X 3 is a linear or branched alkyl group having 1 to 5 carbon atoms
- m6 is
- X 2 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO— or —OCO—, wherein m2 and m3 are both integers of 1, the liquid crystal aligning agent according to (9) above.
- X 4 represents a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —. , —COO— or —OCO—, and m7 is an integer of 1 to 2, according to (9) above.
- liquid crystal aligning agent according to any one of (1) to (14), wherein the polymer in the liquid crystal aligning agent is a polyimide obtained by dehydrating and ring-closing polyamic acid.
- a liquid crystal alignment film obtained using the liquid crystal aligning agent according to any one of (1) to (15).
- a liquid crystal display device having the liquid crystal alignment film according to (16).
- the liquid crystal aligning agent of the present invention can be obtained by a relatively simple method. Moreover, the liquid crystal aligning agent of this invention can obtain the liquid crystal aligning film which can reduce the liquid crystal aligning nonuniformity generate
- a liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
- the present invention relates to a tetracarboxylic dianhydride component including a tetracarboxylic dianhydride having a specific structure represented by the formula [1] (hereinafter also referred to as a specific acid dianhydride), and a carboxyl in the molecule.
- a liquid crystal aligning agent containing a polymer obtained by reacting a diamine component containing a specific diamine compound having a group or a hydroxyl group hereinafter also referred to as a specific diamine compound
- It is a liquid crystal display element which has a liquid crystal aligning film and also this liquid crystal aligning film.
- the polymer contained in the liquid crystal aligning agent of the present invention uses a specific dianhydride and a specific diamine compound having a highly polar carboxyl group or hydroxyl group as a raw material.
- the liquid crystal alignment film obtained from the liquid crystal alignment agent containing such a polymer easily adsorbs water and impurities adsorbed on the surface of the liquid crystal alignment film, and adhered to the liquid crystal alignment film surface when the liquid crystal was dropped in the ODF process. Sweeping of adsorbed water and impurities can be suppressed, and display unevenness associated therewith can be reduced.
- the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can provide a liquid crystal display element having high display quality that does not cause liquid crystal alignment unevenness generated by the ODF method.
- the polymer used in the present invention comprises polyamic acid obtained by reacting a tetracarboxylic dianhydride component containing a specific acid dianhydride and a diamine component containing a specific diamine compound, and dehydrating and ring-closing the polyamic acid. It is at least one polymer of the obtained polyimide.
- the tetracarboxylic dianhydride component used in the present invention includes a tetracarboxylic dianhydride represented by the formula [1], that is, a specific acid dianhydride, and a tetracarboxylic acid other than the specific acid dianhydride. Acid dianhydride can be used in combination. In the case where the tetracarboxylic dianhydride component is at least one compound selected from the group consisting of a specific acid dianhydride, the effect exhibited by the present invention can be made more remarkable, which is preferable.
- the specific acid dianhydride used in the present invention is a tetracarboxylic dianhydride represented by the following formula [1].
- Y 1 is a tetravalent organic group having 4 to 15 carbon atoms, preferably 4 to 12 carbon atoms, having a non-aromatic cyclic structure (alicyclic structure) having 4 to 8 carbon atoms. If Y 1 is specifically shown in the formula [1], groups of the following formulas [2] to [11] are exemplified.
- Y 2 to Y 5 are each independently a group selected from a hydrogen atom, a methyl group, a chlorine atom and a benzene ring, and may be the same or different
- Y 6 and Y 7 are each independently a hydrogen atom or a methyl group, and may be the same or different.
- a particularly preferred structure of Y 1 is Formula [2], Formula [4], Formula [5], Formula [7] or Formula [8] because of polymerization reactivity and ease of synthesis. .
- the specific acid dianhydride illustrated above can be used alone or in combination of two or more.
- pyromellitic dianhydride 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalene Tetracarboxylic dianhydride, 2,3,6,7-anthracene tetracarboxylic dianhydride, 1,2,5,6-anthracene tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl Tetracarboxylic dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid Dianhydrides, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,
- the diamine compound used in the present invention contains a diamine compound having a carboxyl group or a hydroxyl group in the molecule, that is, a specific diamine compound, and a diamine compound other than the specific diamine compound, that is, other diamine compounds may be used in combination. it can.
- the diamine compound is at least one compound selected from the group consisting of specific diamine compounds, the effect of the present invention can be more remarkable, which is preferable.
- the specific diamine compound of the present invention is a diamine compound having a carboxyl group or a hydroxyl group in the molecule.
- the specific structure of the diamine compound having a carboxyl group in the molecule is not particularly limited, but is preferably a compound represented by the following formula [12].
- X 1 is an organic group having an aromatic ring having 6 to 30 carbon atoms, and n is an integer of 1 to 4.
- Preferred X 1 is a structure represented by the formula [12a], having 6 to 30 carbon atoms, and additionally having 1 to 4 of arbitrary hydrogen atoms substituted with a carboxyl group.
- g represents an integer of 0 to 2
- Q represents a single bond, an ether bond, a carbonyl group, a carboxyl group, an amino group, an amide bond, or an alkylene group having 1 to 11 carbon atoms.
- the hydrogen atom may be substituted with a fluorine atom or a methyl group.
- More preferable compounds include compounds of the following formulas [13] to [17].
- m1 is an integer of 1 to 4
- X 2 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, — CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 -, - COO -, - OCO -, - CON (CH 3) - or -N (CH 3) a CO-, m @ 2 and m3 are each an integer of 0 to 4, and m @ 2 + m3 is an integer of 1 to 4 are shown, where [15], m4 and m5 is an integer of from respectively 1 5, wherein [16], X 3 is a straight-chain or branched alkyl group having 1 to 5 carbon atoms,
- m1 is an integer of 1 to 2
- X 2 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO— or —OCO—
- m2 and m3 are both integers of 1.
- X 4 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO— or —OCO—, and m7 is a diamine compound which is an integer of 1 to 2.
- diamine compounds represented by the formulas [13] to [17] preferred specific examples include diamine compounds of the following formulas [18] to [28].
- X 5 represents a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO.
- X 6 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—. , —OCH 2 —, —COO— or —OCO—.
- the specific structure of the diamine compound having a hydroxyl group in the molecule is not particularly limited, but preferred compounds include compounds of the following formulas [29] to [33].
- m8 is an integer of 1 to 4
- X 7 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, — CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 -, - COO -, - OCO -, - CON (CH 3) - or, -N (CH 3) a CO-, in m9 and m10 are each an integer of 0 to 4, and m9 + m10 is from 1 4 an integer, wherein [31], m11 and m12 are integers from each 1 5, wherein [32], X 8 is a straight-chain or branched alkyl group having 1 to 5 carbon atoms, m13
- m8 is an integer of 1 to 2
- X 7 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO— or —OCO—
- both m9 and m10 are integers of 1.
- X 9 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO— or —OCO—, and m14 is a diamine compound which is an integer of 1 to 2.
- diamine compounds represented by the formulas [29] to [33] preferred specific examples include diamine compounds of the following formulas [34] to [44].
- X 10 represents a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO.
- X 11 represents a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—. , —OCH 2 —, —COO— or —OCO—.
- the specific diamine compound illustrated above can use together 1 type, or 2 or more types.
- p-phenylenediamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diamino Biphenyl, 3,3′-difluoro-4,4′-biphenyl, 3,3′-trifluoromethyl-4,4′-diaminobiphenyl, 3,4′-diaminobiphenyl, 3,3′-diaminobiphenyl, 2 , 2'-diaminobiphenyl, 2,3'-diaminobiphenyl, 4, 4,4'
- diamine examples include a diamine having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, and a macrocyclic substituent composed of these in the side chain of the diamine.
- R 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
- R 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or —NH—
- R 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
- R 4 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
- R 5 represents one or more carbon atoms. 22 or less alkyl group, alkoxy group, fluorine-containing alkyl group or fluorine-containing alkoxy group.
- R 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH. 2 — or —CH 2 —
- R 7 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
- R 8 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH. 2 —, —CH 2 —, —O— or —NH—, wherein R 9 is a fluorine group, cyano group, trifluoromethane group, nitro group, azo group, formyl group, acetyl group, acetoxy group or hydroxyl group .
- diaminosiloxanes represented by the following formula [DA27] can also be exemplified.
- m is an integer of 1 to 10.
- the other diamine compounds exemplified above can be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
- the polymer used in the present invention is at least one polymer of polyamic acid and polyimide.
- This polyamic acid is a polyamic acid obtained by reaction of a tetracarboxylic dianhydride component containing a specific acid dianhydride and a diamine component containing a specific diamine compound.
- the polyimide is a polyimide obtained by dehydrating and ring-closing the polyamic acid. Both the polyamic acid and the polyimide are useful as a polymer for obtaining a liquid crystal alignment film.
- the content of the specific diamine compound in the diamine component is preferably 5 mol% to 100 mol%. More preferably, it is 10 mol% to 100 mol%, More preferably, it is 10 mol% to 80 mol%, Most preferably, it is 20 mol% to 80 mol%.
- the content of the specific acid dianhydride in the tetracarboxylic dianhydride component is preferably 5 mol% to 100 mol%. More preferably, it is 10 mol% to 100 mol%, More preferably, it is 20 mol% to 100 mol%, Most preferably, it is 50 mol% to 100 mol%.
- a known polymerization method can be used for the polyamic acid used in the present invention.
- a tetracarboxylic dianhydride component and a diamine compound are reacted in an organic solvent.
- the reaction between the tetracarboxylic dianhydride and the diamine compound is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is produced.
- the organic solvent used in that case will not be specifically limited if the produced
- a solvent that does not dissolve the polyamic acid may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate.
- water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
- a solution in which the diamine compound is dispersed or dissolved in an organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent.
- a method of adding by dispersing or dissolving a method of adding a diamine compound to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine compound. And any of these methods may be used.
- the tetracarboxylic dianhydride or the diamine compound when they are composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed and reacted to form a high molecular weight product.
- the temperature at the time of synthesizing the polyamic acid can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
- the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
- the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
- the ratio of the number of moles of the diamine component to the number of moles of the tetracarboxylic dianhydride component is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
- the polyimide used in the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
- the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the use and purpose.
- Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
- the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
- the catalytic imidation of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
- the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
- Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, etc. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
- Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
- the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
- the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose. Particularly preferably, it is 50% or more.
- the reaction solution may be poured into a poor solvent and precipitated.
- the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
- the polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating.
- impurities in the polymer can be reduced.
- it is preferable to use three or more kinds of poor solvents such as alcohols, ketones, and hydrocarbons as the poor solvent because the purification efficiency is further increased.
- the molecular weights of the polyamic acid and polyimide used in the present invention are weight average molecular weights measured by a GPC (Gel Permeation Chromatography) method in consideration of the strength of the coating film, workability when forming the coating film, and uniformity of the coating film. 5,000 to 1,000,000, respectively, more preferably 10,000 to 150,000.
- the liquid crystal aligning agent of this invention is a coating liquid for producing a liquid crystal aligning film
- the main component consists of the resin component for forming a resin film, and the organic solvent which dissolves this resin component.
- the resin component is a resin component containing the polymer used in the present invention. In that case, the content of the resin component is 1% by mass to 20% by mass, preferably 2% by mass to 10% by mass.
- all of the above resin components may be a polymer used in the present invention, or the polymer of the present invention may be used in combination with another polymer.
- the content of the polymer other than the polymer of the present invention in the resin component is 0.5% by mass to 15% by mass, preferably 1% by mass to 10% by mass.
- examples of such other polymers include polyamic acid or polyimide obtained by reacting other acid dianhydrides other than the specific acid dianhydride with other diamine compounds other than the specific diamine compound.
- the organic solvent for dissolving the resin component is not particularly limited. Specific examples include N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide.
- Tetramethyl urea pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, Examples thereof include ethylene carbonate, propylene carbonate, diglyme and 4-hydroxy-4-methyl-2-pentanone. Two or more kinds of these solvents may be mixed and used.
- the concentration of the specific polyimide solution is not particularly limited. However, since it is easy to mix uniformly with the specific amine compound, the specific polyimide concentration in the solution is preferably 1 to 20% by mass, more preferably 3 to 15% by mass. Preferably, it is 3 to 10% by mass.
- the liquid crystal aligning agent of this invention may contain components other than the above.
- examples thereof may include a solvent and a compound that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, a compound that improves the adhesion between the liquid crystal aligning film and the substrate, and the like.
- Specific examples of the solvent (poor solvent) that improves the uniformity of the film thickness and the surface smoothness include the following.
- butyl cellosolve propylene glycol monomethyl ether or ethyl lactate is more preferred.
- Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) ), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.).
- the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent.
- Specific examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
- the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin component contained in the liquid crystal aligning agent.
- the amount is preferably 1 to 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
- liquid crystal aligning agent of the present invention in addition to the above, as long as the effects of the present invention are not impaired, a dielectric or conductive material for the purpose of changing electrical characteristics such as dielectric constant or conductivity of the liquid crystal aligning film, Furthermore, a crosslinkable compound for the purpose of increasing the hardness and density of the film when the liquid crystal alignment film is formed may be added.
- the concentration of the solid content in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the film thickness of the target liquid crystal aligning film. From the reason that it can be obtained, the content is preferably 1 to 20% by mass, and more preferably 2 to 10% by mass.
- the liquid crystal aligning agent of the present invention can be used as a liquid crystal alignment film after being applied and baked on a substrate and then subjected to alignment treatment by rubbing treatment, light irradiation or the like, or without alignment treatment in vertical alignment applications.
- the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used.
- an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
- the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
- Calcination after applying the liquid crystal aligning agent on the substrate can form a coating film by evaporating the solvent at 50 to 300 ° C., preferably 80 to 250 ° C., by a heating means such as a hot plate. If the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
- the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then producing a liquid crystal cell by a known method.
- liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spray spacers on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside.
- Examples include a method of bonding the other substrate and injecting the liquid crystal under reduced pressure, or a method of sealing the liquid crystal after dropping the liquid crystal on the liquid crystal alignment film surface on which the spacers are dispersed, and the like.
- the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
- the liquid crystal display element manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen high-definition liquid crystal television.
- the molecular weight of the polyimide in the synthesis example was measured as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Showa Denko KK and a column (KD-803, KD-805) manufactured by Shodex.
- GPC normal temperature gel permeation chromatography
- the imidation ratio of polyimide in the synthesis example was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard ⁇ 5 manufactured by Kusano Kagaku Co., Ltd.) and add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture). The solution was completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum.
- JNW-ECA500 JNW-ECA500
- the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing near 9.5 to 10.0 ppm. It calculated
- Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
- x is the proton peak integrated value derived from the NH group of the amic acid
- y is the peak integrated value of the reference proton
- ⁇ is one NH group proton of the amic acid in the case of polyamic acid (imidation rate is 0%). Is the number ratio of the reference proton to.
- This reaction solution was poured into methanol (600 ml), and the resulting precipitate was separated by filtration. This deposit was wash
- the imidation ratio of this polyimide was 80%, the number average molecular weight was 19,500, and the weight average molecular weight was 62,200.
- This deposit was wash
- the imidation ratio of this polyimide was 88%, the number average molecular weight was 17,700, and the weight average molecular weight was 65,700.
- polyimide powder (I) This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain polyimide powder (I).
- the imidation ratio of this polyimide was 88%, the number average molecular weight was 18,000, and the weight average molecular weight was 72,900.
- Example 1 By adding NMP (12.5 g) and BCS (25.5 g) to the polyamic acid solution (A) (10.0 g) obtained in Synthesis Example 1, and stirring at 25 ° C. for 2 hours, a liquid crystal aligning agent [1] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
- the liquid crystal aligning agent [1] obtained above is spin-coated on a glass substrate with an ITO electrode, dried on an 80 ° C. hot plate for 5 minutes, and then baked for 15 minutes in a 220 ° C. hot air circulation oven.
- a liquid crystal alignment film having a thickness of 100 nm was prepared. After preparing two substrates with the liquid crystal alignment film and spraying a spacer of 6 ⁇ m on the surface of the liquid crystal alignment film, the sealant is printed and bonded together, and then the sealant is cured to be emptied. A cell was produced.
- a liquid crystal MLC-6608 manufactured by Merck Japan Co., Ltd.
- the liquid crystal aligning agent [1] obtained above is spin-coated on a glass substrate with an ITO electrode, dried on an 80 ° C. hot plate for 5 minutes, and then baked for 15 minutes in a 220 ° C. hot air circulation oven.
- a liquid crystal alignment film having a thickness of 100 nm was prepared.
- the contact angle between pure water and methylene iodide was measured.
- the literature [JOURNAL OF APPLIED POLYMER SCIENCE VOL. 13, PP. 1741-1747 (1969)].
- K. According to the method of OWENS et al. Surface free energy (also referred to as surface tension) polarity term was calculated.
- the contact angle was measured by dropping 3 ⁇ l of water and 1 ⁇ l of methylene iodide onto the coating film using a contact angle measuring device CA-W (manufactured by Kyowa Interface Chemical Co., Ltd.) and measuring the contact angle after 5 seconds. Asked. The results are shown in Table 2 described later.
- NMP (24.3 g) was added to the polyimide powder (B) (5.0 g) obtained in Synthesis Example 2, and dissolved by stirring at 70 ° C. for 40 hours.
- NMP (12.3g) and BCS (41.5g) were added to this solution, and it stirred at 25 degreeC for 2 hours, and obtained liquid crystal aligning agent [2].
- Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
- a liquid crystal cell was produced in the same manner as in Example 1 using the obtained liquid crystal aligning agent [2]. As a result, the liquid crystal was uniformly vertically aligned and no alignment defects were observed. Further, the surface free energy polarity term was evaluated in the same manner as in Example 1. The results are shown in Table 2 described later.
- NMP (24.3 g) was added to the polyimide powder (C) (5.1 g) obtained in Synthesis Example 3, and dissolved by stirring at 70 ° C. for 40 hours.
- NMP (27.1g) and BCS (26.3g) were added to this solution, and it stirred at 25 degreeC for 2 hours, and obtained liquid crystal aligning agent [3].
- Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
- a liquid crystal cell was produced in the same manner as in Example 1 using the obtained liquid crystal aligning agent [3]. As a result, the liquid crystal was uniformly vertically aligned and no alignment defects were observed. Further, the surface free energy polarity term was evaluated in the same manner as in Example 1. The results are shown in Table 2 described later.
- Example 4 NMP (24.2 g) was added to the polyimide powder (D) (5.0 g) obtained in Synthesis Example 4 and dissolved by stirring at 70 ° C. for 40 hours. NMP (26.0 g) and BCS (27.5 g) were added to this solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent [4]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved. A liquid crystal cell was produced in the same manner as in Example 1 using the obtained liquid crystal aligning agent [4]. As a result, the liquid crystal was uniformly vertically aligned and no alignment defects were observed. Further, the surface free energy polarity term was evaluated in the same manner as in Example 1. The results are shown in Table 2 described later.
- Example 5 NMP (25.0 g) was added to the polyimide powder (E) (5.0 g) obtained in Synthesis Example 5 and dissolved by stirring at 70 ° C. for 40 hours. NMP (16.5g) and BCS (37.1g) were added to this solution, and the liquid crystal aligning agent [5] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved. A liquid crystal cell was produced in the same manner as in Example 1 using the obtained liquid crystal aligning agent [5]. As a result, the liquid crystal was uniformly vertically aligned and no alignment defects were observed. Further, the surface free energy polarity term was evaluated in the same manner as in Example 1. The results are shown in Table 2 described later.
- NMP (24.5 g) was added to the polyimide powder (F) (5.1 g) obtained in Synthesis Example 6 and dissolved by stirring at 70 ° C. for 40 hours.
- NMP (28.1g) and BCS (25.1g) were added to this solution, and the liquid crystal aligning agent [6] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
- a liquid crystal cell was produced in the same manner as in Example 1 using the obtained liquid crystal aligning agent [6]. As a result, the liquid crystal was uniformly vertically aligned and no alignment defects were observed. Further, the surface free energy polarity term was evaluated in the same manner as in Example 1. The results are shown in Table 2 described later.
- Example 7 NMP (24.1 g) was added to the polyimide powder (G) (5.0 g) obtained in Synthesis Example 7, and the mixture was dissolved by stirring at 70 ° C. for 40 hours. NMP (22.0 g) and BCS (31.5 g) were added to this solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent [7]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved. A liquid crystal cell was produced in the same manner as in Example 1 using the obtained liquid crystal aligning agent [7]. As a result, the liquid crystal was uniformly vertically aligned and no alignment defects were observed. Further, the surface free energy polarity term was evaluated in the same manner as in Example 1. The results are shown in Table 2 described later.
- NMP (24.0 g) was added to the polyimide powder (H) (5.0 g) obtained in Synthesis Example 8, and dissolved by stirring at 70 ° C. for 40 hours.
- NMP (22.0 g) and BCS (41.1 g) were added to this solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent [8]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
- the liquid crystal aligning agent [8] obtained above is spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 80 ° C. for 5 minutes, and then baked in a hot air circulation oven at 220 ° C. for 15 minutes.
- a liquid crystal alignment film having a thickness of 100 nm was prepared.
- the surface of the coating film was rubbed with a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.5 mm to obtain a substrate with a liquid crystal alignment film.
- Example 9 NMP (25.1 g) was added to the polyimide powder (I) (5.1 g) obtained in Synthesis Example 9 and dissolved by stirring at 70 ° C. for 40 hours. NMP (22.2g) and BCS (40.9g) were added to this solution, and the liquid crystal aligning agent [9] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved. A liquid crystal cell was produced in the same manner as in Example 8 using the obtained liquid crystal aligning agent [9]. As a result, the liquid crystal was uniformly aligned, and no alignment defects were observed. Further, the surface free energy polarity term was evaluated in the same manner as in Example 1. The results are shown in Table 2 described later.
- the liquid crystal aligning agent of this invention can obtain the liquid crystal aligning film which can reduce the liquid crystal alignment nonuniformity generate
- IPS vertical alignment type and horizontal alignment type
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nonlinear Science (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Liquid Crystal (AREA)
Abstract
Description
(1)下記の式[1]で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、分子内にカルボキシル基又は水酸基を有するジアミン化合物を含むジアミン成分とを反応させて得られる重合体を含有する液晶配向剤。
(2)式[1]中、Y1が下記の式[2]から式[11]より選ばれる構造を有する上記(1)に記載の液晶配向剤。
(3)式[1]中、Y1が式[2]である上記(2)に記載の液晶配向剤。
(4)式[1]中、Y1が式[4]である上記(2)に記載の液晶配向剤。
(5)式[1]中、Y1が式[5]である上記(2)に記載の液晶配向剤。
(6)式[1]中、Y1が式[7]である上記(2)に記載の液晶配向剤。
(7)式[1]中、Y1が式[8]である上記(2)に記載の液晶配向剤。
(8)カルボキシル基を有するジアミン化合物が、下記の式[12]で表されるジアミン化合物である上記(1)から上記(7)のいずれか一項に記載の液晶配向剤。
(9)式[12]のジアミン化合物が、下記の式[13]から式[17]より選ばれるジアミン化合物である上記(8)に記載の液晶配向剤。
(10)式[13]中、m1が1から2の整数である上記(9)に記載の液晶配向剤。
(11)式[14]中、X2が単結合、-CH2-、-C2H4-、-C(CH3)2-、-O-、-CO-、-NH-、-N(CH3)-、-CONH-、-NHCO-、-COO-又は-OCO-であり、m2及びm3は共に1の整数である上記(9)に記載の液晶配向剤。
(12)式[17]中、X4は単結合、-CH2-、-O-、-CO-、-NH-、-CONH-、-NHCO-、-CH2O-、-OCH2-、-COO-又は-OCO-であり、m7は1から2の整数である上記(9)に記載の液晶配向剤。
(13)カルボキシル基又は水酸基を有するジアミン化合物が、ジアミン成分中の5から100モル%である上記(1)から上記(12)のいずれか一項に記載の液晶配向剤。
(14)液晶配向剤に含まれる溶媒中の5から80質量%が貧溶媒である上記(1)から上記(13)のいずれか一項に記載の液晶配向剤。
(15)液晶配向剤中の重合体がポリアミド酸を脱水閉環させて得られるポリイミドである上記(1)から上記(14)のいずれか一項に記載の液晶配向剤。
(16)上記(1)から上記(15)のいずれか一項に記載の液晶配向剤を用いて得られる液晶配向膜。
(17)上記(16)に記載の液晶配向膜を有する液晶表示素子。
本発明に用いるテトラカルボン酸二無水物成分は、式[1]で表されるテトラカルボン酸二無水物、即ち、特定酸二無水物を含むものであり、特定酸二無水物以外のテトラカルボン酸二無水物を併用することができる。テトラカルボン酸二無水物成分が特定酸二無水物からなる群より選ばれる少なくとも一種の化合物の場合、本発明が奏する効果をより顕著とすることができるので好ましい。
本発明に用いる特定酸二無水物は、下記の式[1]で表されるテトラカルボン酸二無水物である。
式[1]中、Y1を具体的に示すとすれば、下記の式[2]から式[11]の基が挙げられる。
式[1]中、Y1の特に好ましい構造は、重合反応性や合成の容易さから、式[2]、式[4]、式[5]、式[7]又は式[8]である。
以上で例示した特定酸二無水物は、1種類または2種類以上を併用することができる。
本発明においては、本発明の効果を損なわない限りにおいて、特定酸二無水物以外のその他のテトラカルボン酸二無水物を、テトラカルボン酸二無水物成分として併用することができる。その具体例を以下に挙げる。
以上で例示したその他酸二無水物は、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上を併用することができる。
本発明に用いるジアミン化合物は、分子内にカルボキシル基又は水酸基を有するジアミン化合物、即ち、特定ジアミン化合物を含むものであり、特定ジアミン化合物以外のジアミン化合物、即ち、その他のジアミン化合物を併用することができる。ジアミン化合物が特定ジアミン化合物からなる群より選ばれる少なくとも一種の化合物の場合、本発明が奏する効果をより顕著とすることができるので好ましい。
本発明の特定ジアミン化合物は、分子内にカルボキシル基又は水酸基を有するジアミン化合物である。
分子内にカルボキシル基を有するジアミン化合物は、その具体的構造は特に限定されないが、好ましくは下記の式[12]で表される化合物である。
好ましいX1は、式[12a]で表され、炭素数が6から30であり、加えて任意の水素原子のうちの1から4個はカルボキシル基で置換された構造である。
以上で例示した特定ジアミン化合物は、1種類または2種類以上を併用することができる。
本発明においては、本発明の効果を損なわない限りにおいて、特定ジアミン化合物以外のその他のジアミン化合物を、ジアミン成分として併用することができる。その具体例を以下に挙げる。
以上で例示したその他ジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類または2種類以上を併用することもできる。
本発明に用いる重合体はポリアミド酸及びポリイミドのうちの少なくとも一種の重合体である。このポリアミド酸は、特定酸二無水物を含むテトラカルボン酸二無水物成分と特定ジアミン化合物を含有するジアミン成分との反応によって得られるポリアミド酸である。そして、ポリイミドは前記のポリアミド酸を脱水閉環させて得られるポリイミドである。かかるポリアミド酸及びポリイミドのいずれも液晶配向膜を得るための重合体として有用である。
そのため、ジアミン成分中における特定ジアミン化合物の含有量は、5モル%から100モル%であることが好ましい。より好ましくは10モル%から100モル%であり、更に好ましくは10モル%から80モル%であり、最も好ましくは20モル%から80モル%である。
本発明に用いるポリアミド酸は、公知の重合方法を用いることができる。一般的には、テトラカルボン酸二無水物成分とジアミン化合物とを有機溶媒中で反応させる方法である。テトラカルボン酸二無水物とジアミン化合物との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が生成しない点で有利である。
その際に用いる有機溶媒は、生成したポリアミド酸が溶解するものであれば特に限定されない。以下にその具体例を挙げる。
ポリアミド酸を溶液中で熱イミド化させる場合の温度は、100℃から400℃、好ましくは120℃から250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
本発明の液晶配向剤は、液晶配向膜を作製するための塗布液であり、その主成分が、樹脂被膜を形成するための樹脂成分と、この樹脂成分を溶解させる有機溶媒とからなる。本発明においては、前記の樹脂成分は、上記した本発明に用いる重合体を含む樹脂成分である。その際、樹脂成分の含有量は1質量%から20質量%、好ましくは2質量%から10質量%である。
かかる他の重合体は、例えば、特定酸二無水物以外のその他酸ニ無水物と特定ジアミン化合物以外のその他ジアミン化合物とを反応させて得られるポリアミド酸又はポリイミドなどが挙げられる。
膜厚の均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては次のものが挙げられる。
より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含有される樹脂成分の100質量部に対して、好ましくは0.01から2質量部、より好ましくは0.01から1質量部である。
本発明の液晶配向剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、又は垂直配向用途などでは配向処理無しで液晶配向膜として用いることができる。この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
以上のようにして、本発明の液晶配向剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
以下に、実施例で使用した化合物の略号と構造式を示す。
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
TDA:3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物
PMDA:ピロメリット酸二無水物
p-PDA:p-フェニレンジアミン
m-PDA:m-フェニレンジアミン
PCH7DAB:1,3-ジアミノ-4-[4-(4-ヘプチルシクロヘキシル)フェノキシ]ベンゼン
DBA:3,5-ジアミノ安息香酸
2,4-DAA:2,4-ジアミノ-N,N-ジアリルアニリン
DADPA:4,4’-ジアミノジフェニルアミン
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
GBL:γ-ブチロラクトン
合成例におけるポリイミドの分子量は、昭和電工社製 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量900,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製ポリエチレングリコール(分子量約12,000、4,000、1,000)。
合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5から10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
上記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
BODA(3.75g,15mmol)、DBA(2.3g,15mmol)、及びPCH7DAB(3.8g,10mmol)をNMP(16.5g)中で混合し、50℃で5時間反応させた後、CBDA(1.96g,10mmol)とNMP(13.0g)を加え、40℃で12時間反応させて樹脂含有量が29質量%のポリアミド酸溶液(A)を得た。このポリアミド酸の数平均分子量は22,700、重量平均分子量は45,100であった。
TDA(3.0g,10mmol)、DBA(2.3g,15mmol)、及びPCH7DAB(3.8g,10mmol)をNMP(28.8g)中で混合し、50℃で5時間反応させた後、CBDA(2.9g,15mmol)とNMP(19.3g)を加え、40℃で12時間反応させポリアミド酸溶液を得た。
合成例2で得られたポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.4g)、及びピリジン(1.0g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(C)を得た。このポリイミドのイミド化率は82%であり、数平均分子量は13,600、重量平均分子量は31,400であった。
CBDA(5.0g,25mmol)、2,4-DAA(1.6g,8.0mmol)、DBA(1.2g,8.0mmol)、及びPCH7DAB(4.0g,10mmol)をNMP(47.3g)中で混合し、23℃で15時間反応させたポリアミド酸溶液を得た。
BODA(24.4g,100mmol)、DBA(13.8g,91mmol)、及びPCH7DAB(14.8g,39mmol)をNMP(141.6g)中で混合し、80℃で5時間反応させた後、CBDA(6.0g,31mmol)とNMP(94.4g)を加え、40℃で12時間反応させポリアミド酸溶液を得た。
BODA(24.4g,100mmol)、DBA(11.9g,78mmol)、及びPCH7DAB(19.8g,52mmol)をNMP(149.0g)中で混合し、80℃で5時間反応させた後、CBDA(6.0g,31mmol)とNMP(99.2g)を加え、40℃で12時間反応させポリアミド酸溶液を得た。
このポリアミド酸溶液(80.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(17.9g)、及びピリジン(13.8g)を加え、90℃で3時間反応させた。この反応溶液をメタノール(1000ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(F)を得た。このポリイミドのイミド化率は81%であり、数平均分子量は20,100、重量平均分子量は68,100であった。
BODA(24.4g,100mmol)、DBA(13.8g,91mmol)、及びPCH7DAB(14.8g,39mmol)をNMP(141.6g)中で混合し、80℃で5時間反応させた後、CBDA(6.0g,31mmol)とNMP(94.4g)を加え、40℃で12時間反応させポリアミド酸溶液を得た。
このポリアミド酸溶液(50.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(11.2g)、及びピリジン(8.7g)を加え、90℃で3.5時間反応させた。この反応溶液をメタノール(600ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(G)を得た。このポリイミドのイミド化率は80%であり、数平均分子量は19,500、重量平均分子量は62,200であった。
TDA(12.0g,40mmol)、DBA(3.0g,20mmol)、及びp-PDA(2.2g,20mmol)、をNMP(68.8g)中で混合し、50℃で15時間反応させポリアミド酸溶液を得た。
このポリアミド酸溶液(50.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(23.7g)、及びピリジン(11.0g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(820ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(H)を得た。このポリイミドのイミド化率は88%であり、数平均分子量は17,700、重量平均分子量は65,700であった。
TDA(6.0g,20mmol)、DBA(1.5g,10mmol)、及びDADPA(2.0g,10mmol)をNMP(38.1g)中で混合し、50℃で15時間反応させポリアミド酸溶液を得た。
このポリアミド酸溶液(30.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(12.9g)、及びピリジン(6.0g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(I)を得た。このポリイミドのイミド化率は88%であり、数平均分子量は18,000、重量平均分子量は72,900であった。
CBDA(3.0g,16mmol)、p-PDA(0.9g,8mmol)、及びPCH7DAB(3.0g,8mmol)をNMP(39.4g)中で混合し、23℃で20時間反応させて樹脂含有量が15質量%のポリアミド酸溶液(J)を得た。このポリアミド酸の数平均分子量は27,000、重量平均分子量は63,000であった。
PMDA(2.6g,12mmol)、p-PDA(0.7g,6mmol)、及びPCH7DAB(2.3g,6mmol)をNMP(32.0g)中で混合し、23℃で20時間反応させてて樹脂含有量が15質量%のポリアミド酸溶液(K)を得た。このポリアミド酸の数平均分子量は28,300、重量平均分子量は71,200であった。
TDA(3.1g,10mmol)、m-PDA(1.7g,16mmol)、及びPCH7DAB(4.0g,10mmol)をNMP(28.4g)中で混合し、50℃で5時間反応させた後、CBDA(3.0g,16mmol)とNMP(18.9g)を加え、40℃で12時間反応させポリアミド酸溶液を得た。
このポリアミド酸溶液(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.6g)、及びピリジン(1.1g)を加え、50℃で3時間反応させた。この反応溶液をメタノール(250ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(L)を得た。このポリイミドのイミド化率は79%であり、数平均分子量は12,000、重量平均分子量は27,900であった。
合成例1で得られたポリアミド酸溶液(A)(10.0g)にNMP(12.5g)、及びBCS(25.5g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[1]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
上記で得た液晶配向剤[1]をITO電極付きガラス基板にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、220℃の熱風循環式オーブンで15分間焼成を行い、膜厚100nmの液晶配向膜を作製した。この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布した後、その上からシール剤を印刷し、張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-6608(メルク・ジャパン社製)を注入し、注入口を封止して、ネマティック液晶セルを得た。
本発明において、液晶配向膜表面の吸着水や不純物を吸着し易く、ODF工程において液晶が滴下された際に、液晶配向膜表面に付着した吸着水や不純物が掃き寄せられることを抑制する評価方法として、液晶配向膜の表面自由エネルギー極性項の値に注目した。この値が大きいものほど、その効果が高い。
(1+COSθ)×γL=2(γSd×γLd)1/2+2(γSp×γLp)1/2 式[i]
ここで、γL=γLd+γLp、γS=γSd+γSp
θ:塗膜上の液体の接触角
γL:液体の表面自由エネルギー
γLd:液体の表面自由エネルギー分散項
γLp:液体の表面自由エネルギー極性項
γS:塗膜の表面自由エネルギー
γSd:塗膜の表面自由エネルギー分散項
γSp:塗膜の表面自由エネルギー極性項
さらに、20℃における水の表面張力(γL=72.8、γLd=21.8、γLp=51.0)(mPa・s)とヨウ化メチレンの表面張力(γL=50.8、γLd=49.5、γLp=1.3)(mPa・s)を式[i]に代入すると、純水の場合には下記式[ii]が、ヨウ化メチレンの場合には式[iii]が得られる。ここで、θ1、θ2はそれぞれ、水の接触角とヨウ化メチレン(CH2I2)の接触角である。
(1+COSθ1)×72.8=2(γSd×21.8)1/2+2(γSp×51.0)1/2 式[ii]
(1+COSθ2)×50.8=2(γSd×49.5)1/2+2(γSp×1.3)1/2 式[iii]
従って、式[ii]、式[iii]に純水とヨウ化メチレンの接触角を代入し、この連立方程式からγSpを求めた。
なお、接触角は、接触角測定装置CA―W(協和界面化学社製)を用いて、水3μl、ヨウ化メチレン1μlを塗膜上に滴下し、5秒後の接触角を測定することにより求めた。結果は、後述する表2に示す。
合成例2で得られたポリイミド粉末(B)(5.0g)にNMP(24.3g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(12.3g)、及びBCS(41.5g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[2]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
得られた液晶配向剤[2]を用い、実施例1と同様に液晶セルを作製した。結果、液晶は均一に垂直配向しており、配向欠陥などは見られなかった。さらに、実施例1と同様に表面自由エネルギー極性項を評価した。結果は、後述する表2に示す。
合成例3で得られたポリイミド粉末(C)(5.1g)にNMP(24.3g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(27.1g)、及びBCS(26.3g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[3]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
得られた液晶配向剤[3]を用い、実施例1と同様に液晶セルを作製した。結果、液晶は均一に垂直配向しており、配向欠陥などは見られなかった。さらに、実施例1と同様に表面自由エネルギー極性項を評価した。結果は、後述する表2に示す。
合成例4で得られたポリイミド粉末(D)(5.0g)にNMP(24.2g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(26.0g)、及びBCS(27.5g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[4]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
得られた液晶配向剤[4]を用い、実施例1と同様に液晶セルを作製した。結果、液晶は均一に垂直配向しており、配向欠陥などは見られなかった。さらに、実施例1と同様に表面自由エネルギー極性項を評価した。結果は、後述する表2に示す。
合成例5で得られたポリイミド粉末(E)(5.0g)にNMP(25.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(16.5g)、及びBCS(37.1g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[5]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
得られた液晶配向剤[5]を用い、実施例1と同様に液晶セルを作製した。結果、液晶は均一に垂直配向しており、配向欠陥などは見られなかった。さらに、実施例1と同様に表面自由エネルギー極性項を評価した。結果は、後述する表2に示す。
合成例6で得られたポリイミド粉末(F)(5.1g)にNMP(24.5g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(28.1g)、及びBCS(25.1g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[6]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
得られた液晶配向剤[6]を用い、実施例1と同様に液晶セルを作製した。結果、液晶は均一に垂直配向しており、配向欠陥などは見られなかった。さらに、実施例1と同様に表面自由エネルギー極性項を評価した。結果は、後述する表2に示す。
合成例7で得られたポリイミド粉末(G)(5.0g)にNMP(24.1g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(22.0g)、及びBCS(31.5g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[7]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
得られた液晶配向剤[7]を用い、実施例1と同様に液晶セルを作製した。結果、液晶は均一に垂直配向しており、配向欠陥などは見られなかった。さらに、実施例1と同様に表面自由エネルギー極性項を評価した。結果は、後述する表2に示す。
合成例8で得られたポリイミド粉末(H)(5.0g)にNMP(24.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(22.0g)、及びBCS(41.1g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[8]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
上記で得た液晶配向剤[8]をITO電極付きガラス基板にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、220℃の熱風循環式オーブンで15分間焼成を行い、膜厚100nmの液晶配向膜を作製した。この塗膜面をロール径120mmのラビング装置でレーヨン布を用いて、ロール回転数300rpm、ロール進行速度20mm/sec、押し込み量0.5mmの条件でラビングし、液晶配向膜付き基板を得た。液晶セルの配向状態を評価するために、上記液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布した後、その上からシール剤を印刷し、張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2003(メルク・ジャパン社製)を注入し、注入口を封止して、ネマティック液晶セルを得た。
この液晶セルを偏光顕微鏡で観察したところ、液晶は均一に配向しており、配向欠陥などは見られなかった。さらに、実施例1と同様に表面自由エネルギー極性項を評価した。結果は、後述する表2に示す。
合成例9で得られたポリイミド粉末(I)(5.1g)にNMP(25.1g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(22.2g)、及びBCS(40.9g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[9]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
得られた液晶配向剤[9]を用い、実施例8と同様に液晶セルを作製した。結果、液晶は均一に配向しており、配向欠陥などは見られなかった。さらに、実施例1と同様に表面自由エネルギー極性項を評価した。結果は、後述する表2に示す。
合成例10で得られたポリアミド酸溶液(J)(10.3g)にNMP(13.1g)、及びBCS(11.5g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[10]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
得られた液晶配向剤[10]を用い、実施例1と同様に液晶セルを作製した。結果、液晶は均一に垂直配向しており、配向欠陥などは見られなかった。さらに、実施例1と同様に表面自由エネルギー極性項を評価した。結果は、後述する表2に示す。
合成例11で得られたポリアミド酸溶液(K)(10.0g)にNMP(11.1g)、及びBCS(13.2g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[11]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
得られた液晶配向剤[11]を用い、実施例1と同様に液晶セルを作製した。結果、液晶は均一に垂直配向しており、配向欠陥などは見られなかった。さらに、実施例1と同様に表面自由エネルギー極性項を評価した。結果は、後述する表2に示す。
合成例12で得られたポリイミド粉末(L)(5.1g)にNMP(25.1g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.2g)、及びBCS(46.1g)を加え、25℃にて2時間攪拌することにより、液晶配向剤[12]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
得られた液晶配向剤[12]を用い、実施例1と同様に液晶セルを作製した。結果、液晶は均一に垂直配向しており、配向欠陥などは見られなかった。さらに、実施例1と同様に表面自由エネルギー極性項を評価した。結果は、後述する表2に示す。
なお、表2中、イミド化率の項の「-」は、イミド化率を算出しなかったことを意味する。
Claims (17)
- 式[1]中、Y1が式[2]である請求項2に記載の液晶配向剤。
- 式[1]中、Y1が式[4]である請求項2に記載の液晶配向剤。
- 式[1]中、Y1が式[5]である請求項2に記載の液晶配向剤。
- 式[1]中、Y1が式[7]である請求項2に記載の液晶配向剤。
- 式[1]中、Y1が式[8]である請求項2に記載の液晶配向剤。
- 式[12]のジアミン化合物が、下記の式[13]から式[17]より選ばれるジアミン化合物である請求項8に記載の液晶配向剤。
- 式[13]中、m1が1から2の整数である請求項9に記載の液晶配向剤。
- 式[14]中、X2が単結合、-CH2-、-C2H4-、-C(CH3)2-、-O-、-CO-、-NH-、-N(CH3)-、-CONH-、-NHCO-、-COO-又は-OCO-であり、m2及びm3は共に1の整数である請求項9に記載の液晶配向剤。
- 式[17]中、X4は単結合、-CH2-、-O-、-CO-、-NH-、-CONH-、-NHCO-、-CH2O-、-OCH2-、-COO-又は-OCO-であり、m7は1から2の整数である請求項9に記載の液晶配向剤。
- カルボキシル基又は水酸基を有するジアミン化合物が、ジアミン成分中の5から100モル%である請求項1から請求項12のいずれか一項に記載の液晶配向剤。
- 液晶配向剤に含まれる溶媒中の5から80質量%が貧溶媒である請求項1から請求項13のいずれか一項に記載の液晶配向剤。
- 液晶配向剤中の重合体がポリアミド酸を脱水閉環させて得られるポリイミドである請求項1から請求項14のいずれか一項に記載の液晶配向剤。
- 請求項1から請求項15のいずれか一項に記載の液晶配向剤を用いて得られることを特徴とする液晶配向膜。
- 請求項16に記載の液晶配向膜を有することを特徴とする液晶表示素子。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980103201.1A CN101925851B (zh) | 2008-01-25 | 2009-01-23 | 液晶取向剂及液晶显示元件 |
JP2009550584A JP5651953B2 (ja) | 2008-01-25 | 2009-01-23 | 液晶配向剤、及び液晶表示素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008015308 | 2008-01-25 | ||
JP2008-015308 | 2008-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009093711A1 true WO2009093711A1 (ja) | 2009-07-30 |
Family
ID=40901214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/051119 WO2009093711A1 (ja) | 2008-01-25 | 2009-01-23 | 液晶配向剤、及び液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5651953B2 (ja) |
KR (1) | KR101589320B1 (ja) |
CN (1) | CN101925851B (ja) |
TW (1) | TWI444407B (ja) |
WO (1) | WO2009093711A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012098715A (ja) * | 2010-10-06 | 2012-05-24 | Hitachi Displays Ltd | 配向膜、配向膜形成用組成物、および液晶表示装置 |
WO2014133043A1 (ja) * | 2013-02-28 | 2014-09-04 | 日産化学工業株式会社 | 液晶配向処理剤、液晶配向膜および液晶表示素子 |
KR101861067B1 (ko) * | 2013-08-30 | 2018-05-28 | 동우 화인켐 주식회사 | 흑색 감광성 수지 조성물 |
CN111196929A (zh) * | 2018-11-19 | 2020-05-26 | 捷恩智株式会社 | 用以形成液晶取向膜的液晶取向剂、液晶取向膜的形成方法及液晶显示元件的制造方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8886106B2 (en) * | 2011-03-02 | 2014-11-11 | Konica Minolta Business Technologies, Inc. | Intermediate transfer belt and method for producing the same |
JP5292438B2 (ja) * | 2011-05-23 | 2013-09-18 | 株式会社ジャパンディスプレイ | 液晶表示装置 |
CN103782231B (zh) * | 2011-09-08 | 2017-05-10 | 日产化学工业株式会社 | 液晶取向处理剂、液晶取向膜及液晶显示元件 |
JP6319581B2 (ja) * | 2012-08-10 | 2018-05-09 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
KR101515527B1 (ko) | 2012-08-21 | 2015-04-27 | 주식회사 엘지화학 | 광학 이방성 필름 |
JP2014059545A (ja) * | 2012-08-21 | 2014-04-03 | Jsr Corp | 液晶配向剤、液晶配向膜及び液晶表示素子 |
TWI508998B (zh) * | 2012-10-03 | 2015-11-21 | Chi Mei Corp | Liquid crystal aligning agent and its application |
JP6281568B2 (ja) * | 2013-05-01 | 2018-02-21 | 日産化学工業株式会社 | 液晶配向処理剤、液晶配向膜及び液晶表示素子 |
CN110590798A (zh) * | 2014-01-17 | 2019-12-20 | 日产化学工业株式会社 | 环丁烷四羧酸衍生物的制造方法 |
JPWO2018025872A1 (ja) * | 2016-08-03 | 2019-06-20 | 日産化学株式会社 | 曲面形状を有する液晶パネルを備える液晶表示素子及びそのための液晶配向剤 |
KR102097811B1 (ko) * | 2017-07-27 | 2020-04-07 | 주식회사 엘지화학 | 광학 디바이스의 제조 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0369922A (ja) * | 1989-08-10 | 1991-03-26 | Japan Synthetic Rubber Co Ltd | 液晶配向剤 |
JPH03261915A (ja) * | 1990-03-13 | 1991-11-21 | Japan Synthetic Rubber Co Ltd | 液晶配向剤 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07309351A (ja) * | 1994-05-17 | 1995-11-28 | Idemitsu Petrochem Co Ltd | 咬合具付き袋 |
JP4171851B2 (ja) | 1997-12-02 | 2008-10-29 | 日産化学工業株式会社 | 液晶配向処理剤 |
KR100734933B1 (ko) * | 2001-06-12 | 2007-07-03 | 한라공조주식회사 | 전자동식 공기조화장치의 냉방기동 제어방법 |
JP2005097377A (ja) * | 2003-09-24 | 2005-04-14 | Fuji Photo Film Co Ltd | 配向膜、重合体、それを用いた位相差板およびその作製方法、ならびに液晶表示装置 |
-
2009
- 2009-01-23 JP JP2009550584A patent/JP5651953B2/ja active Active
- 2009-01-23 CN CN200980103201.1A patent/CN101925851B/zh active Active
- 2009-01-23 WO PCT/JP2009/051119 patent/WO2009093711A1/ja active Application Filing
- 2009-01-23 TW TW98103105A patent/TWI444407B/zh active
- 2009-01-23 KR KR1020107014845A patent/KR101589320B1/ko active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0369922A (ja) * | 1989-08-10 | 1991-03-26 | Japan Synthetic Rubber Co Ltd | 液晶配向剤 |
JPH03261915A (ja) * | 1990-03-13 | 1991-11-21 | Japan Synthetic Rubber Co Ltd | 液晶配向剤 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012098715A (ja) * | 2010-10-06 | 2012-05-24 | Hitachi Displays Ltd | 配向膜、配向膜形成用組成物、および液晶表示装置 |
US8906474B2 (en) | 2010-10-06 | 2014-12-09 | Japan Display Inc. | Alignment film, composition for forming alignment film and liquid crystal display device |
JP2015111304A (ja) * | 2010-10-06 | 2015-06-18 | 株式会社ジャパンディスプレイ | 配向膜、配向膜形成用組成物、および液晶表示装置 |
CN105754098A (zh) * | 2010-10-06 | 2016-07-13 | 株式会社日本显示器 | 取向膜形成用组合物 |
WO2014133043A1 (ja) * | 2013-02-28 | 2014-09-04 | 日産化学工業株式会社 | 液晶配向処理剤、液晶配向膜および液晶表示素子 |
CN105190415A (zh) * | 2013-02-28 | 2015-12-23 | 日产化学工业株式会社 | 液晶取向处理剂、液晶取向膜和液晶表示元件 |
JPWO2014133043A1 (ja) * | 2013-02-28 | 2017-02-02 | 日産化学工業株式会社 | 液晶配向処理剤、液晶配向膜および液晶表示素子 |
CN105190415B (zh) * | 2013-02-28 | 2017-11-10 | 日产化学工业株式会社 | 液晶取向处理剂、液晶取向膜和液晶表示元件 |
KR101861067B1 (ko) * | 2013-08-30 | 2018-05-28 | 동우 화인켐 주식회사 | 흑색 감광성 수지 조성물 |
CN111196929A (zh) * | 2018-11-19 | 2020-05-26 | 捷恩智株式会社 | 用以形成液晶取向膜的液晶取向剂、液晶取向膜的形成方法及液晶显示元件的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5651953B2 (ja) | 2015-01-14 |
KR20100103550A (ko) | 2010-09-27 |
KR101589320B1 (ko) | 2016-01-27 |
JPWO2009093711A1 (ja) | 2011-05-26 |
TWI444407B (zh) | 2014-07-11 |
TW200944553A (en) | 2009-11-01 |
CN101925851A (zh) | 2010-12-22 |
CN101925851B (zh) | 2013-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5651953B2 (ja) | 液晶配向剤、及び液晶表示素子 | |
KR101589322B1 (ko) | 액정 배향제, 액정 배향막 및 액정 표시 소자 | |
JP5729299B2 (ja) | ジアミン化合物、ポリアミド酸、ポリイミド及び液晶配向処理剤 | |
JP5713009B2 (ja) | 液晶配向処理剤、液晶配向膜及び液晶表示素子 | |
JP5387793B2 (ja) | 液晶配向剤 | |
KR101613751B1 (ko) | 액정 배향 처리제 및 그것을 사용한 액정 표시 소자 | |
JP6233309B2 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JP6593603B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP6183616B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP6065074B2 (ja) | ジアミン化合物、ポリイミド前駆体及びポリイミド | |
WO2012008464A1 (ja) | 液晶配向処理剤、液晶配向膜及び液晶表示素子 | |
WO2011155577A1 (ja) | 液晶配向処理剤、液晶配向膜、及び液晶表示素子 | |
KR102146140B1 (ko) | 액정 배향제, 액정 배향막 및 액정 표시 소자 | |
WO2014189104A1 (ja) | 液晶配向剤、液晶配向膜およびそれを用いた液晶表示素子 | |
JP5614412B2 (ja) | 液晶配向処理剤、液晶配向膜、及びそれを用いた液晶表示素子 | |
WO2014024892A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980103201.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09703418 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2009550584 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20107014845 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09703418 Country of ref document: EP Kind code of ref document: A1 |