WO2009084670A1 - 半導体発光素子およびその製造方法 - Google Patents
半導体発光素子およびその製造方法 Download PDFInfo
- Publication number
- WO2009084670A1 WO2009084670A1 PCT/JP2008/073821 JP2008073821W WO2009084670A1 WO 2009084670 A1 WO2009084670 A1 WO 2009084670A1 JP 2008073821 W JP2008073821 W JP 2008073821W WO 2009084670 A1 WO2009084670 A1 WO 2009084670A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- convex
- light emitting
- semiconductor
- emitting device
- electrode
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 248
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 28
- 238000000605 extraction Methods 0.000 claims abstract description 77
- 239000000758 substrate Substances 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims description 24
- 238000005530 etching Methods 0.000 claims description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 239000007772 electrode material Substances 0.000 claims description 7
- 238000013459 approach Methods 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 abstract description 26
- 239000010410 layer Substances 0.000 description 127
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 41
- 239000010931 gold Substances 0.000 description 31
- 230000000052 comparative effect Effects 0.000 description 15
- 229910052737 gold Inorganic materials 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 229910002601 GaN Inorganic materials 0.000 description 13
- 230000001681 protective effect Effects 0.000 description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 229910052697 platinum Inorganic materials 0.000 description 12
- 239000010936 titanium Substances 0.000 description 12
- 238000001039 wet etching Methods 0.000 description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 11
- 238000001465 metallisation Methods 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 7
- -1 gallium nitride compound Chemical class 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000010948 rhodium Substances 0.000 description 5
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000010980 sapphire Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910008484 TiSi Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910021352 titanium disilicide Inorganic materials 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
- H10H20/01335—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/018—Bonding of wafers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/82—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/032—Manufacture or treatment of electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
- H10H20/0363—Manufacture or treatment of packages of optical field-shaping means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8312—Electrodes characterised by their shape extending at least partially through the bodies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
Definitions
- the present invention relates to a semiconductor light-emitting device, and more particularly to a semiconductor light-emitting device having a concavo-convex shape formed on a light extraction surface and a manufacturing method thereof in order to increase light extraction efficiency.
- an electrode is formed on a part of the surface of the semiconductor layer on the light extraction side, and a plurality of concave and convex shapes are formed to improve the light extraction efficiency from the semiconductor layer.
- a semiconductor light emitting device such as an LED
- an electrode is formed on a part of the surface of the semiconductor layer on the light extraction side, and a plurality of concave and convex shapes are formed to improve the light extraction efficiency from the semiconductor layer.
- the techniques described in JP 2000-196152 A, JP 2005-5679 A, JP 2003-69075 A, JP 2005-244201 A, and JP 2006-147787 A are known. Yes.
- a large number of hemispherical irregularities are formed on the surface of the semiconductor layer on the light extraction side at intervals, a transparent electrode is formed thereon, and a bonding pad is formed thereon.
- the method for forming the irregularities is as follows. In other words, by melting and softening a plurality of resists arranged side by side at a predetermined interval by heat treatment, the cross section is transformed into a “semispherical shape” with a semicircular shape, and transferred to the semiconductor layer surface on the light extraction side. , Forming irregularities.
- unevenness of a two-dimensional periodic structure is formed by etching on the surface of the semiconductor layer on the light extraction side.
- an n-side electrode and a p-side electrode are formed with a step in a portion where the unevenness is not formed.
- the light-emitting element described in Japanese Patent Laid-Open No. 2003-69075 is formed by stacking a gallium nitride compound semiconductor on a gallium nitride compound semiconductor substrate, and is opposite to the surface on which the elements of the gallium nitride compound semiconductor substrate are stacked. Asperities are formed by etching on the surface. An electrode is formed on the unevenness.
- a light emitting element described in Japanese Patent Application Laid-Open No. 2005-244201 has a porous structure in which a number of elongated voids are formed on the surface of a semiconductor layer on the light extraction side, and an electrode surrounding the porous structure.
- the method for forming this porous structure is as follows. That is, an n-type semiconductor layer, an active layer, a p-type electron barrier layer, a p-type strained superlattice layer, and a p-type contact layer are sequentially formed on a sapphire substrate made of a wafer and become the periphery of the aperture-shaped light extraction portion.
- the wafer on which each semiconductor layer is laminated is immersed in a chemical solution. Thereby, a porous structure is formed in the light extraction portion of the p-type contact layer. At this time, the p-side ohmic electrode remains at the peripheral portion surrounding the porous structure. Note that after the formation of the porous structure, the n-side electrode is formed by etching.
- Japanese Patent Application Laid-Open No. 2007-88277 discloses a light-emitting element in which irregularities are formed on the light extraction side surface, in which a p-side electrode and an n-side electrode are formed on the opposite side of the light extraction side surface. ing.
- a light emitting element described in Japanese Patent Application Laid-Open No. 2007-88277 is formed by laminating a semiconductor including a light emitting layer on a sapphire substrate, and a surface opposite to the surface on which the light emitting layer of the sapphire substrate is formed (light extraction side). The surface) has a convex portion. This convex part is produced using a type
- a light-emitting element on the assumption that irregularities are formed on the surface of a nitride semiconductor layer directly under an electrode is described in Japanese Patent Application Laid-Open No. 2007-67209.
- the light-emitting element described in Japanese Patent Application Laid-Open No. 2007-67209 is formed by stacking a gallium nitride compound semiconductor on a gallium nitride substrate, and unevenness is formed on the surface opposite to the surface on which the elements of the gallium nitride substrate are stacked.
- the method for forming the irregularities is as follows. That is, after forming macro unevenness by polishing, micro unevenness is formed thereon by etching. As a result, the contact resistance between the nitride semiconductor and the electrode laminated thereon can be reduced and the adhesion can be improved.
- the conventional technique is a technique of providing a concavo-convex shape for the purpose of improving the light extraction efficiency from the semiconductor layer. Therefore, when the light output is increased together with the light extraction efficiency, the following problems occur. For example, when it is intended to increase the light output by providing a protrusion on the surface of the semiconductor layer, the light output tends to increase as the height of the protrusion increases. In other words, the light output tends to increase as the surface of the semiconductor layer is dug deeper (shaved or eroded).
- control of the light distribution of the light emitting element is an important factor in designing.
- the light emitting element described in Japanese Patent Application Laid-Open No. 2000-196152 has poor light distribution because the unevenness formed on the surface of the semiconductor layer is formed in a hemispherical shape. That is, the light extraction efficiency directly above the light emitted from the unevenness to the outside is weakened. Therefore, there is a demand for a technique that does not reduce the light distribution when increasing the light output.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a semiconductor light emitting device having high reliability and good light distribution. It is another object of the present invention to provide a manufacturing method for manufacturing a semiconductor light emitting device with high reliability and good light distribution.
- the semiconductor light emitting device of the present invention includes a semiconductor stacked body having a light emitting layer between an n-type semiconductor layer and a p-type semiconductor layer, a substrate on which the semiconductor stacked body is mounted, and the semiconductor stacked body mounted on the substrate. And a plurality of convex portions on the light extraction surface, wherein the plurality of convex portions are first convex regions.
- the second convex region is a region adjacent to the interface between the electrode and the semiconductor stacked body between the first convex region and the electrode, and A base end of the first convex portion provided in the first convex region is positioned on the light emitting layer side with respect to the interface, and a base end of the second convex portion provided in the second convex region is the first It is located in the said interface side rather than the base end of a convex part.
- the semiconductor light emitting device includes the first convex region and the second convex region on the light extraction surface, and the second convex region is disposed adjacent to the electrode. Therefore, it is possible to reduce electrode peeling and to reduce the current in the semiconductor layer as compared with a light emitting device in which only the first convex portion formed from a relatively deep position is uniformly provided on the light extraction surface.
- the spread can be made uniform.
- the light extraction surface is uniformly provided with only the first convex portion formed from a relatively deep position, and the light distribution is improved as compared with the light emitting element in which the uneven shape is not provided in the region adjacent to the electrode. Can be better.
- the light output can be increased as compared with a light emitting device in which only the second convex portion formed from a relatively shallow position is uniformly provided on the light extraction surface.
- the height from the base end to the tip end of the first convex portion is larger than the height from the base end to the tip end of the second convex portion. According to such a configuration, on the light extraction surface, the first convex region where the convex portion is formed high from a relatively deep position, and the second convex region where the convex portion is formed low from a relatively shallow position, And the second convex region is disposed adjacent to the electrode. Therefore, by being configured in this manner, the semiconductor light emitting device can reduce electrode peeling and improve light distribution.
- the height of the first convex portion is twice or more the height of the second convex portion.
- the first convex portion and the second convex portion have a tapered tip. According to such a configuration, the light extraction efficiency right above the light emitted to the outside from the first convex portion and the second convex portion is improved. Therefore, the light distribution is improved as compared with the case where the tip is not tapered.
- the semiconductor light emitting device of the present invention can be configured such that at least the second convex region is provided surrounding the electrode. According to such a configuration, the light distribution is improved as compared with the case where the second convex region is adjacent to only a part of the electrode.
- region should just surround the electrode at least, and may have the 2nd convex part in the outer periphery of a 1st convex area
- the first convex region is provided so as to surround the second convex region and the electrode. According to such a configuration, the first convex region is disposed at a high density while being separated from the electrode, so that the light output is increased.
- the electrodes are separated from each other on the light extraction surface, and the first convex region and the second convex are formed in a region sandwiched by the spaced electrodes. It can be configured to have a region. According to such a configuration, when a plurality of electrodes are arranged on the light extraction surface at a predetermined interval, it is possible to prevent the electrodes from peeling and improve the light distribution.
- the first convex portion and the second convex portion are formed in a non-flat shape. According to such a configuration, it is possible to improve the light distribution as compared with the case where the tip is flat.
- the non-flat tip includes those having a curved tip, those having a sharp tip, and those having an uneven tip.
- the first convex portion and the second convex portion are provided so that the base ends are adjacent to the base ends of the adjacent convex portions. According to such a configuration, the light extraction efficiency directly above the light emitted to the outside from the convex portion becomes stronger than in the case where there is a gap as a flat surface between the base ends of the adjacent convex portions. . Therefore, the light distribution is improved. Further, the contact between the base ends of the adjacent convex portions corresponds to digging deeply from a state where there is a gap between the base ends of the adjacent convex portions, so that the light output becomes high.
- the first convex portion in the first convex region, can be formed such that the base end approaches the light emitting layer as the distance from the electrode increases.
- the light extraction surface is not only formed so that the convex portion is deepened in two steps, ie, the second convex region and the first convex region, from the side close to the electrode, but also in the first convex region.
- it since it is formed to be deeper as it is separated from the electrode stepwise or continuously, it is possible to increase the light output while reducing the peeling of the electrode.
- the semiconductor light emitting device of the present invention can be configured to further have a third convex portion at the interface between the electrode and the semiconductor laminate. According to such a configuration, in addition to increasing the light output, the contact resistance with the electrode stacked on the third convex portion after the third convex portion is formed on the surface of the semiconductor stacked body on the light extraction side is reduced. Thus, the adhesion between the surface on the light extraction side and the electrode can be improved.
- the third convex portion may be the same shape and size as the first convex portion, or may be the same shape and size as the second convex portion. Furthermore, it may be different from them.
- the method for manufacturing a semiconductor light emitting device of the present invention includes a step of forming a semiconductor stacked body having a light emitting layer between an n-type semiconductor layer and a p-type semiconductor layer, and a side of the semiconductor stacked body mounted on a substrate.
- a step of laminating a mask material on the surface of the semiconductor layer from above the resist, a step of removing the resist on which the mask material is laminated, and a step of etching the surface of the semiconductor layer using the electrode formation scheduled region as a mask It is characterized by having.
- the method for manufacturing a semiconductor light emitting element includes a step of forming a resist having an opening that closes in the stacking direction. Therefore, when a mask material is laminated on the surface of the semiconductor layer from above the resist thus formed, the mask material injected from the opening thinly wraps around the resist side on the surface of the semiconductor layer, and is larger than the size of the opening. A bowl-shaped region is formed. Then, when the resist on which the mask material is laminated is removed, the mask material having a cross section similar to the opening of the resist remains in the electrode formation planned region on the surface of the semiconductor layer, and further, surrounds the electrode formation planned region. A bowl-shaped region made of a mask material is formed thin.
- the mask material is an electrode material.
- the method for manufacturing a semiconductor light-emitting device has a step of removing the resist on which the electrode material as a mask material is laminated. As a result, an electrode having a cross section with the same shape can be formed, and the process can be shortened.
- the semiconductor light emitting device can reduce the peeling of the electrode on the light extraction surface side and increase the current spread in the semiconductor layer when increasing the light extraction efficiency. Therefore, a semiconductor light emitting device with high reliability and high light output can be provided. Further, the light output becomes the largest at a directivity angle of 0 degree, and further, a light distribution close to Lambert's cosine law can be obtained. As a result, a semiconductor light emitting element suitable for illumination or the like can be provided. In addition, according to the present invention, it is possible to manufacture a semiconductor light emitting device with high reliability and good light distribution by shortening the manufacturing process.
- the favorable light distribution in the present invention means that the light output becomes the largest at a directivity angle of 0 degree, and further that a light distribution close to Lambert's cosine law can be obtained.
- a light distribution close to Lambert's cosine law can be obtained.
- FIG. 3 is a cross-sectional view (part 1) schematically showing a manufacturing process of the semiconductor light-emitting element shown in FIG.
- FIG. 3 is a cross-sectional view (part 2) schematically showing a manufacturing process of the semiconductor light emitting element shown in FIG. FIG.
- FIG. 3 is a cross-sectional view (part 3) schematically showing a manufacturing process of the semiconductor light-emitting element shown in FIG. It is a graph which shows an example of the directivity of the semiconductor light-emitting device concerning the embodiment of the present invention. It is a figure which shows a 1st convex area
- the semiconductor light emitting device according to the embodiment of the present invention has a light extraction surface opposite to the surface mounted on the substrate of the semiconductor laminate having the light emitting layer between the n-type semiconductor layer and the p-type semiconductor layer.
- the present invention relates to a device including a plurality of convex portions and an electrode on a light extraction surface.
- FIG. 1 is a cross-sectional view schematically showing a configuration of a semiconductor light emitting device according to an embodiment of the present invention
- FIG. 2 is a plan view showing an example of an n-side electrode shown in FIG. 3 is a perspective view schematically showing the first convex region and the second convex region shown in FIG. 1, and
- FIG. 4 is a cross-sectional view taken along the line AA shown in FIG.
- the semiconductor light emitting device 1 mainly includes a substrate 10, a metallized layer 20, a p-side electrode 30, a semiconductor stacked body 40, an n-side electrode 50, and a protective film 60. And a back metallized layer 70.
- the substrate 10 is made of silicon (Si).
- Si silicon
- a metal substrate made of a composite of two or more kinds of metals having a small size can be used.
- Cu can be used as the single metal substrate.
- the material for the metal substrate is specifically selected from one or more metals selected from highly conductive metals such as Ag, Cu, Au, and Pt, and high hardness metals such as W, Mo, Cr, and Ni.
- the substrate 10 can be provided with an element function, for example, a Zener diode. Further, it is preferable to use a Cu—W or Cu—Mo composite as the metal substrate.
- the metallized layer 20 is a eutectic that bonds two substrates together in the process of manufacturing the semiconductor light emitting device 1. Specifically, the epitaxial (growth) side metallization layer 21 shown in FIG. 5C and the substrate side metallization layer 22 shown in FIG. 5D are bonded together. Among these, as the material of the epitaxial side metallized layer 21, for example, in the order of titanium (Ti) / platinum (Pt) / gold (Au) / tin (Sn) / gold (Au) in FIG. The thing which was done is mentioned. The material of the substrate-side metallization layer 22, for example, FIG.
- the p-side electrode 30 is provided on the mounting surface of the semiconductor laminate 40 on the substrate 10 side.
- the p-side electrode 30 includes a p-electrode first layer (not shown) on the semiconductor stacked body 40 side and a p-electrode second layer (not shown) below the p-electrode first layer. It is composed of at least a two-layer structure.
- the p-electrode first layer can be exemplified by a material that can be usually used as an electrode.
- a material that can be usually used as an electrode for example, silver (Ag), zinc (Zn), nickel (Ni), platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), osmium (Os), iridium (Ir), titanium (Ti ), Zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), cobalt (Co), iron (Fe), manganese (Mn), molybdenum (Mo), chromium (Cr ), Tungsten (W), lanthanum (La), copper (Cu), yttrium (Y) and other metals, alloys; single layer films or laminated films of conductive oxides such as ITO, ZnO and SnO 2 It is done.
- the p-side electrode 30 is not illustrated, but in the case of a two-layer structure of p-electrode first layer / p-electrode second layer, platinum (Pt) / gold (Au), palladium (Pd) / There are gold (Au), rhodium (Rh) / gold (Au), nickel (Ni) / gold (Au), and the like. Further, a three-layer structure having a third layer between the p-electrode first layer and the p-electrode second layer includes nickel (Ni) / platinum (Pt) / gold (Au), palladium (Pd) / platinum.
- a four-layer structure having a third layer and a fourth layer between the p-electrode first layer and the p-electrode second layer includes silver (Ag) / nickel (Ni) / titanium (Ti) / platinum ( Pt).
- the semiconductor stacked body 40 is made of a gallium nitride compound semiconductor represented by a general formula In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). Specifically, for example, GaN, AlGaN, InGaN, AlGaInN and the like. In particular, GaN is preferable in that the crystallinity of the etched surface is good.
- the semiconductor stacked body 40 is configured by stacking an n-type semiconductor layer 41, a light emitting layer 42, and a p-type semiconductor layer 43 in this order from the light extraction surface side opposite to the surface mounted on the substrate 10. Yes.
- a plurality of convex portions are formed on the light extraction surface.
- the light extraction surface is the surface of the n-type semiconductor layer 41. That is, the plurality of convex portions are provided in the n-type semiconductor layer 41.
- the plurality of convex portions are provided in the first convex region 80 and the second convex region 90 (90a, 90b, 90c, 90d).
- the second convex region 90 is adjacent to the interface between the n-side electrode 50 and the semiconductor stacked body 40 between the first convex region 80 and the n-side electrode 50.
- the base end of the first convex portion provided in the first convex region 80 is located closer to the light emitting layer 42 than the interface between the n-side electrode 50 and the semiconductor stacked body 40.
- the base end of the second convex portion provided in the second convex region 90 is located closer to the interface side between the n-side electrode 50 and the semiconductor stacked body 40 than the base end of the first convex portion.
- the height from the proximal end to the distal end of the first convex portion is larger than the height from the proximal end to the distal end of the second convex portion.
- Two n-side electrodes 50 are provided apart from each other on the light extraction surface.
- the first convex region 80 and the second convex regions 90a and 90b are provided in a region sandwiched between the two n-side electrodes 50 provided separately. Have Details of the convex portions (first convex portion, second convex portion) formed in the first convex region 80 and the second convex region 90 will be described later.
- the n-type semiconductor layer 41 is made of, for example, GaN containing Si, Ge, O, or the like as an n-type impurity.
- the n-type semiconductor layer 41 may be formed of a plurality of layers.
- the light emitting layer 42 is made of, for example, InGaN.
- the p-type semiconductor layer 43 is made of, for example, GaN containing Mg as a p-type impurity.
- Two electrodes are formed on the light extraction surface of the semiconductor laminate 40.
- the electrode formed on the light extraction surface is the n-side electrode 50. Note that the number of electrodes formed on the light extraction surface may be one or more.
- the n-side electrode 50 is provided at a predetermined interval on the light extraction surface.
- the n-side electrode 50 is electrically connected to the upper surface of the n-type semiconductor layer 41 with a predetermined interval. Is formed.
- the n-side electrode 50 is connected to the outside by wire bonding.
- the n-side electrode 50 is formed from the upper surface side of the n-type semiconductor layer 41, for example, Ti / Pt / Au, Ti / Pt / Au / Ni, Ti / Al, Ti / Al / Pt / Au, W / Pt / Au,
- the multilayer film includes a plurality of metals such as V / Pt / Au, Ti / TiN / Pt / Au, and Ti / TiN / Pt / Au / Ni.
- the n-side electrode 50 may be composed of an ohmic electrode and a pad electrode.
- two substantially linear n-side electrodes 50 are provided in parallel at a predetermined interval on the semiconductor light emitting element 1, and wires 51 and 52 are connected to the n-side electrodes 50, respectively. ing.
- the second convex region 90 is provided surrounding the n-side electrode 50.
- the n-side electrode 50 to which the wire 51 is connected corresponds to being surrounded by the second convex regions 90a and 90c shown in FIG.
- the n-side electrode 50 to which the wire 52 is connected corresponds to being surrounded by the second convex regions 90b and 90d shown in FIG.
- the first convex region 80 is provided so as to surround the second convex region 90 and the n-side electrode 50. That is, the first convex region 80 surrounds the n-side electrode 50 to which the wire 51 is connected and the second convex region 90 around it, and the n-side electrode 50 to which the wire 52 is connected and the surrounding first convex region 90. Two convex regions 90 are surrounded.
- the protective film 60 is made of a transparent material having a refractive index lower than that of the n-type semiconductor layer 41, and includes a surface excluding the wire bonding region on the upper surface of the n-side electrode 50, the surface of the n-type semiconductor layer 41, and The side is covered.
- the protective film 60 is made of an insulating film, and is particularly preferably made of an oxide film.
- the protective film 60 is made of, for example, silicon dioxide (SiO 2 ) or a Zr oxide film (ZrO 2 ).
- the protective film 60 is formed by, for example, sputtering, ECR (Electron Cyclotron Resonance) sputtering, CVD (Chemical Vapor Deposition), ECR-CVD, ECR-one plasma CVD, vapor deposition, It can be formed by a known method such as EB method (Electron-Beam: electron beam evaporation method). Among these, it is preferable to form by ECR sputtering method, ECR-CVD method, ECR one plasma CVD method or the like.
- the back surface metallized layer 70 is formed on the side opposite to the surface on which the metallized layer 20 of the substrate 10 is formed and functions as an ohmic electrode.
- Examples of the material of the back surface metallized layer 70 include, for example, those laminated in the order of titanium disilicide (TiSi 2 ) / platinum (Pt) / gold (Au) from the top in FIG.
- the first convex portion formed in the first convex region 80 and the second convex portion formed in the second convex region 90 b (90) have a shape with a tapered tip. is there. Thereby, the light distribution is good. Moreover, the tip of the first and second convex portions is formed with a curved surface. Therefore, the light distribution is better than when the tip is formed with a flat surface. As shown in FIGS. 3 and 4, the height of the first convex portion is twice or more the height of the second convex portion. Furthermore, the first convex portion and the second convex portion are provided so that the base ends are adjacent to the base ends of the adjacent convex portions.
- the convex portion (the first convex portion, the second convex portion) does not have a flat surface between the adjacent convex portions.
- the convex parts are provided with high density, the light extraction efficiency can be increased. Therefore, the light distribution is improved. Moreover, if it is the same depth, a light output will become high compared with what has a flat surface between a convex part and an adjacent convex part.
- FIGS. 5 and 6 are cross-sectional views schematically showing manufacturing steps of the semiconductor light emitting device shown in FIG.
- an n-type semiconductor layer 41, a light emitting layer 42, and a p-type semiconductor layer 43 are stacked in this order on a semiconductor growth substrate 100 to form a semiconductor stacked body 40.
- the semiconductor growth substrate 100 is a substrate that is peeled off in a subsequent process, and is made of, for example, sapphire whose principal surface is any one of the C-plane, R-plane, and A-plane. Note that a different substrate different from sapphire may be used as the semiconductor growth substrate 100.
- an insulating substrate such as spinel (MgA1 2 O 4), (including 6H, 4H, 3C) SiC, ZnS, ZnO, oxide substrate or the like that GaAs and nitride semiconductor lattice-matched,
- a nitride semiconductor can be grown, and a conventionally known substrate material can be used.
- a p-electrode first layer and a p-electrode second layer are formed on the upper surface of the semiconductor stacked body 40 (surface of the p-type semiconductor layer 43) by using magnetron sputtering. Are stacked in this order to form the p-side electrode 30.
- the epitaxial metallization layer 21 is stacked on the p-side electrode 30.
- a substrate side metallized layer 22 is laminated on the substrate 10 as shown in FIG.
- the substrate 10 on which the substrate-side metallization layer 22 is laminated is turned over, and the substrate-side metallization layer 22 and the epitaxial-side metallization layer 21 are bonded together.
- the semiconductor growth substrate 100 is peeled from the semiconductor stacked body 40.
- the upper surface of the semiconductor stacked body 40 (the surface of the n-type semiconductor layer 41) which is the uppermost surface by turning the substrate 10 from which the semiconductor growth substrate 100 has been peeled upside down. Is polished by CMP (Chemical Mechanical Polishing).
- the upper surface (the surface of the n-type semiconductor layer 41) of the semiconductor stacked body 40 that is the uppermost surface is a surface that becomes a light extraction surface.
- first convex region 80 and the second convex region 90 on this surface either dry etching or wet etching can be used.
- wet etching is preferable in order to obtain a form in which the tip of the convex part is a curved surface or a form in which the base ends of the convex part and the adjacent convex part are adjacent to each other. Therefore, here, a formation method by wet etching will be described.
- the wet etching solution is an anisotropic etching solution such as KOH aqueous solution, 4-methyl ammonium hydroxide (TMAH: Tetramethyltraammonium hydroxide) or ethylenediamine-pyrocatechol (EDP: Ethylene diamine pyrocatechol). Etc. can be used.
- TMAH Tetramethyltraammonium hydroxide
- EDP Ethylene diamine pyrocatechol
- the n-side electrode 50 is formed on the upper surface of the semiconductor stacked body 40 (the surface of the n-type semiconductor layer 41) with a predetermined interval.
- a mask 110 is provided so as to cover the entire upper surface and side surfaces of the n-side electrode 50, and the non-mask portion is etched by wet etching.
- a non-mask part is a part used as the 1st convex area
- the amount of processing (depth) and the height of a convex part can be adjusted by changing temperature and immersion time in wet etching.
- the etching solution may be heated to 50 to 100 ° C. and immersed for 30 minutes, for example.
- the mask 110 is removed, and as shown in FIG. 6E, the non-mask portion is etched by wet etching using the n-side electrode 50 as a mask.
- a large number of first protrusions are formed by etching in a region where the incomplete first protrusions are formed in the non-mask portion. That is, a high convex portion protruding from a relatively deep position is formed.
- a large number of second convex portions are formed by this etching. That is, a low convex portion protruding from a relatively shallow position is formed.
- the upper surface of the semiconductor stacked body 40 (the surface of the n-type semiconductor layer 41) is covered with a protective film 60.
- the surface excluding the region where wire bonding is performed on the upper surface of the n-side electrode 50 and the side surface of the semiconductor stacked body 40 are covered with the protective film 60.
- a back metallized layer 70 as an ohmic electrode is formed on the surface of the substrate 10 which is the uppermost surface, and a chip is formed.
- the semiconductor light emitting device 1 shown in FIG. 1 is manufactured.
- the second manufacturing method of the semiconductor light emitting device shown in FIG. 1 includes the steps shown in FIGS. 5 (a) to 5 (e) and FIGS. 6 (a) to 6 (b), respectively, as in the first manufacturing method. Do.
- the second manufacturing method is characterized by a subsequent method for forming the n-side electrode 50.
- the second manufacturing method will be described with reference to FIG. 7 (refer to FIGS. 1 to 6 as appropriate).
- FIG. 7 is a cross-sectional view schematically showing the manufacturing process of the semiconductor light emitting device. In FIG. 7, the layers below the semiconductor stacked body 40 are not shown.
- a resist 120 is provided on the electrode non-formation portion on the upper surface of the semiconductor stacked body 40 (the surface of the n-type semiconductor layer 41).
- the resist 120 having an opening so as to surround the electrode formation scheduled region on the upper surface of the semiconductor stacked body 40 is formed so that the opening is closed in the stacking direction of the resist 120.
- the electrode material 130 is stacked on the entire upper surface of the semiconductor stacked body 40 from above the resist 120. Therefore, the electrode material 130 injected from the opening wraps thinly toward the resist 120 on the upper surface of the semiconductor stacked body 40, and forms a bowl-shaped region that is wider than the size of the opening.
- the n-side electrode 50 is formed in the electrode formation scheduled region by removing the resist 120 on which the electrode material 130 is laminated. At this time, the flange portion 50 a is formed so as to surround the n-side electrode 50.
- the non-mask portion of the semiconductor stacked body 40 is etched by wet etching using the n-side electrode 50 (electrode formation scheduled region) as a mask.
- a convex portion is formed earlier in the region where the flange portion 50a is not formed.
- the thin electrode is gradually removed, the upper surface of the semiconductor stacked body 40 is exposed, and the convex portion is formed with a delay.
- two types of convex parts (the 1st convex part and the 2nd convex part) from which height differs can be formed.
- the region where the flange 50 a is not formed becomes the first convex region 80, and the flange 50 a becomes the second convex region 90.
- the process after an etching is the same as that of the 1st manufacturing method, description is abbreviate
- the semiconductor light emitting device 1 includes, on the light extraction surface, a first convex region 80 having a relatively high first convex portion from a relatively deep position and a relatively low second convex portion from a relatively shallow position. Since the second convex region 90 having the second convex region 90 is provided, the light output can be increased as compared with the light emitting element in which only the second convex portion is provided on the entire surface. Moreover, since the electrode peeling rate is low and the light distribution is good as described below, the first convex portion can be formed high, and the light output can be increased.
- the conventional semiconductor light emitting device 200 showing Comparative Example 1 mainly includes a substrate 210, a metallized layer 220, a p-side electrode 230, a semiconductor stacked body 240, an n-side electrode 250, and a protection. It consists of a film 260 and a back metallized layer 270.
- the semiconductor stacked body 240 is configured by stacking an n-type semiconductor layer 241, a light-emitting layer 242, and a p-type semiconductor layer 243 in this order from the light extraction surface side opposite to the surface mounted on the substrate 210. Yes. Further, irregularities 280 are regularly formed in the electrode non-formation region on the surface of the n-type semiconductor layer 241.
- the n-side electrode 250 is provided on a portion other than the unevenness 280 on the light extraction surface that is the surface of the n-type semiconductor layer 241.
- FIG. 12 schematically shows an example of the unevenness 280.
- the semiconductor light emitting element 200 has a flat surface (upper surface) between adjacent recesses in the unevenness 280, or is adjacent to each other. At least one of a flat surface (bottom surface).
- the adhesion strength between the n-side electrode 250 and the n-type semiconductor layer 241 was lower than that of the semiconductor light emitting device 1 according to this embodiment. This is considered to be due to damage to the electrode joint portion due to the unevenness 280 in the semiconductor stacked body 240.
- a product hereinafter referred to as Comparative Example 2 in which a flat portion was provided without providing the unevenness 280 so as to eliminate damage was manufactured.
- the flat portion 310 is formed between the n-side electrodes 250 on the light extraction surface which is the surface of the n-type semiconductor layer 241.
- the configuration is the same as the semiconductor light emitting device 200 shown in FIG. It has been found that the adhesion strength of the electrodes of the semiconductor light emitting device 300 is improved. Specifically, in the semiconductor light emitting device 200 (Comparative Example 1) shown in FIG. 12, when wire bonding was performed on the n-side electrode 250, peeling occurred on the n-side electrode 250 at a rate of 6%. In the semiconductor light emitting device 300 (Comparative Example 2) shown in FIG. 13, no peeling occurred. However, since the semiconductor light emitting device 300 (Comparative Example 2) shown in FIG. 13 has the flat portion 310, the output is reduced overall.
- FIG. 8 is a diagram illustrating an example of directivity of the semiconductor light emitting device according to this embodiment.
- a thick solid line represents the first convex region 80 and the second convex region 90 formed by using a KOH aqueous solution as an etching solution for wet etching (hereinafter referred to as Example 1).
- a thin line (hereinafter referred to as Example 2) formed by adjusting the processing amount (depth) so that at least the height of the first convex portion is smaller than that in Example 1 is shown.
- the above-described comparative example 1 is indicated by a broken line
- the above-described comparative example 2 is indicated by a one-dot chain line.
- the horizontal axis indicates the radiation angle (°), and the vertical axis indicates the light output ( ⁇ W).
- the directivity angle of ⁇ 90 to 90 ° indicates that measured in the width direction (lateral direction) of the n-side electrode 50 shown in FIG.
- the directivity angle in the present invention is a value obtained by measuring the light intensity at each angle in the light extraction direction with the direction perpendicular to the light extraction surface being 0 degree.
- the direction perpendicular to the paper surface is the directivity angle 0 degree.
- Example 1 and Example 2 have the highest intensity at least at a directivity angle of 0 °. This shows the light distribution along or close to Lambert's law.
- Comparative Example 1 the intensity at the directivity angle ⁇ 30 ° is large and the intensity at the directivity angle 0 ° is low. That is, in terms of light distribution, the semiconductor light emitting device 1 of the present embodiment is superior to the conventional semiconductor light emitting device. Further, in Comparative Example 2, the output decreased as a whole at any directivity angle.
- the light output in the light extraction direction corresponds to the area surrounded by the curve in the graph. Specifically, if the light output of Comparative Example 2 is “1”, the light output of Comparative Example 1 is “2.57”, the light output of Example 1 is “2.70”, and the light output of Example 2 Was “2.64”.
- Example 1 and Example 2 resulted in an increase in light output due to a large processing amount (depth). The same result was obtained when the n-side electrode 50 was measured in the vertical direction (longitudinal direction) shown in FIG.
- the light extraction surface includes the first convex region 80 having the relatively high first convex portion and the second convex region 90 having the relatively low second convex portion. Since the second convex region 90 is disposed adjacent to the n-side electrode 50, peeling of the n-side electrode 50 on the light extraction surface can be reduced. Therefore, a semiconductor light emitting device with high reliability and high light output can be provided. Moreover, according to the semiconductor light emitting device 1 of the present embodiment, a semiconductor light emitting device with high light distribution and high light output can be provided. In addition, since the light extraction surface includes not only the first protrusions but also the second protrusions, the current spread in the semiconductor layer is made more uniform than when only the first protrusions are provided uniformly. be able to.
- FIG. 9 is a diagram schematically showing a partial cross section of the first convex region of the semiconductor light emitting device manufactured as described above. Note that FIG. 9 schematically shows what is observed with a scanning electron microscope (SEM) (using a “3D real surface view microscope (VE-9800, manufactured by Keyence Corporation)”). In FIG. 9, an n-side electrode 50 (not shown) is arranged on the right side.
- SEM scanning electron microscope
- VE-9800 3D real surface view microscope
- the tips of the convex portions are located at the same height as indicated by the virtual line 901.
- the base end (left side) of the cross section of the second convex part from the right is adjacent to the base end (right side) of the cross section of the third convex part from the right.
- This common base end is indicated by reference numeral 902.
- the base end (right side) 903 and the base end (left side) 904 of the cross section of the fifth convex part from the right are located at the same depth.
- the position of the base end 902 is used as a reference, the position of the base end 904 is deeper by D.
- the fifth convex portion from the right is formed higher from a relatively deep position than the second convex portion from the right.
- the light output can be increased while reducing the peeling of the electrode by forming the first convex region so as to be deeper as it is separated from the electrode stepwise or continuously.
- the n-side electrode 50 is provided after the upper surface of the semiconductor stacked body 40 (the surface of the n-type semiconductor layer 41) is polished by CMP.
- the n-side electrode 50 is formed after polishing.
- the electrode forming region may be processed before the process, and a convex part (first convex part) similar to the first convex part formed in the first convex area 80 later may be provided in advance.
- An example of the semiconductor light emitting device manufactured in this way is shown in FIG.
- the semiconductor light emitting element 1 ⁇ / b> A whose cross section is shown in FIG. 10 further has a first convex portion at the interface between the two n-side electrodes 50 and the semiconductor stacked body 40. That is, first convex regions 80a and 80b are formed immediately below the two n-side electrodes 50, respectively.
- the method for forming the first convex region 80 and the second convex region 90 is performed by wet etching using a mask, but is not limited to this method, and may be formed by dry etching. .
- dry etching in RIE, for example, etching is performed in stages so that the first convex region 80 and the second convex region 90 are generated by adjusting etching conditions such as gas type, degree of vacuum, and high frequency power. May be.
- first convex region 80 and the second convex region 90 may be formed by combining dry etching and wet etching.
- FIG. 11 An example of the semiconductor light emitting device configured as described above is shown in FIG.
- the first convex region 80 is first formed by RIE, and then the second convex region 90 is formed by wet etching.
- region 80 can be seen from two viewpoints about the cross section. In the first viewpoint, in FIG. 11, five relatively deep and high convex portions are formed in the first convex region 80.
- relatively low convex portions similar to the convex portions formed in the second convex region 90 are formed in the first convex region 80 at a deep position and a shallow position, respectively. Has been.
- This low convex portion can be formed simultaneously in the step of forming the convex portion of the second convex region 90.
- the semiconductor light emitting device 1B since the second convex region 90 is formed adjacent to the n-side electrode 50, peeling of the n-side electrode 50 on the light extraction surface can be reduced. Further, since the first convex region 80 is formed with a relatively deep and high convex portion, a semiconductor light emitting device having a high light output can be provided.
- the light extraction surface of the semiconductor stacked body 40 is the n-type semiconductor layer 41.
- the light extraction surface is the p-type semiconductor layer 43, and the first convex region 80 and the first Two convex regions 90 may be provided.
- a p-side electrode is provided on the light extraction surface. Note that the configuration as in the present embodiment is preferable because the first convex portion can be deepened in the first convex region 80.
- the p-side electrode 30 is formed on the entire top surface of the semiconductor stacked body 40 during manufacturing (see FIG. 5B). However, the p-side electrode 30 is partially formed and the p-side electrode is formed. A portion of the same plane as the electrode 30 where the p-side electrode 30 is not formed may be filled with a protective film made of the same material as the protective film 60 described above. In this case, when the semiconductor light emitting element 1 is viewed in plan from the light extraction surface side, the n-side electrodes 50 and the p-side electrodes 30 are formed alternately so that the light extraction efficiency is further increased. This is preferable.
- the same material amount means that, for example, if the protective film 60 is formed of SiO 2 , the protective film filled in the portion where the p-side electrode 30 is not formed is also formed of SiO 2 . And the composition may be slightly different depending on the production method. Such filling of the protective film can be performed by, for example, ECR sputtering.
- the material constituting the semiconductor stacked body 40 of the semiconductor light emitting device 1 is not limited to the gallium nitride compound semiconductor.
- the light extraction surface is provided so that the convex portion is deepened in two stages of the second convex region 90 and the first convex region 80 from the side close to the n-side electrode 50. If the convex region is formed so as to be higher from a relatively deep position as the convex region is further away from the electrode, the same effect can be obtained even in three or more stages.
- both the p-side electrode 30 and the n-side electrode 50 may be provided on the light extraction surface.
- the first convex portion (or the first convex region 80) and the second convex portion (second Convex regions 90) may be provided on the surface of the semiconductor layer on which the electrode (for example, the p-side electrode 30) provided on the light emitting layer 42 is formed.
- the semiconductor light-emitting device according to the present invention can be used in various fields where the semiconductor light-emitting device can be applied as a device, for example, various fields such as illumination, exposure, display, various types of analysis, and optical network.
Landscapes
- Led Devices (AREA)
- Weting (AREA)
Abstract
Description
従来の技術は、半導体層からの光取り出し効率を向上させることを目的として、凹凸形状を設ける技術なので、光取り出し効率と合わせて光出力も高める場合には、以下に示すような問題が生じる。
例えば、半導体層表面に凸部を設けることで光出力を高めようとする場合には、凸の高さが高いほど、光出力は高くなる傾向がある。言い換えると、半導体層表面を深く掘る(削る、または、侵食する)ほど、光出力は高くなる傾向がある。
また、信頼性が高く配光性が良好な半導体発光素子を製造する製造方法を提供することを他の目的とする。
[半導体発光素子の構成]
本発明の実施形態に係る半導体発光素子は、n型半導体層とp型半導体層との間に発光層を有する半導体積層体の基板に実装される側の面とは反対側の光取り出し面に複数の凸部を備えると共に、光取り出し面の上に電極を備えるものに関する。まず、半導体発光素子の構成について、図1ないし図4を参照して説明する。図1は、本発明の実施形態に係る半導体発光素子の構成を模式的に示す断面図であり、図2は、図1に示したn側電極の一例を示す平面図である。また、図3は、図1に示した第1凸領域および第2凸領域を模式的に示す斜視図であり、図4は、図3に示したA-A断面矢視図である。
基板10は、シリコン(Si)から構成される。なお、Siのほか、例えば、Ge,SiC,GaN,GaAs,GaP,InP,ZnSe,ZnS,ZnO等の半導体から成る半導体基板、または、金属単体基板、または、相互に非固溶あるいは固溶限界の小さい2種以上の金属の複合体から成る金属基板を用いることができる。このうち、金属単体基板として具体的にはCuを用いることができる。また、金属基板の材料として具体的にはAg,Cu,Au,Pt等の高導電性金属から選択された1種以上の金属と、W,Mo,Cr,Ni等の高硬度の金属から選択された1種以上の金属と、から成るものを用いることができる。半導体材料の基板10を用いる場合には、それに素子機能、例えばツェナーダイオードを付加した基板10とすることもできる。さらに、金属基板としては、Cu-WあるいはCu-Moの複合体を用いることが好ましい。
メタライズ層20は、この半導体発光素子1を製造する工程において、2つの基板を貼り合わせる共晶である。詳細には、図5(c)に示すエピタキシャル(成長)側メタライズ層21と、図5(d)に示す基板側メタライズ層22とを貼り合わせて構成される。このうちエピタキシャル側メタライズ層21の材料としては、例えば、図5(c)において下からチタン(Ti)/白金(Pt)/金(Au)/錫(Sn)/金(Au)の順番に積層したものが挙げられる。また、基板側メタライズ層22の材料としては、例えば、図5(d)において上から金(Au)/白金(Pt)/二ケイ化チタン(TiSi2)、または、二ケイ化チタン(TiSi2)/白金(Pt)/パラジウム(Pd)の順番に積層したものが挙げられる。
図1に戻って半導体発光素子1の構成についての説明を続ける。
p側電極30は、半導体積層体40の基板10側の実装面に設けられている。
p側電極30は、詳細には、半導体積層体40側のp電極第1層(図示せず)と、このp電極第1層の下側のp電極第2層(図示せず)との少なくとも2層構造で構成されている。
半導体積層体40は、一般式がInxAlyGa1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で示される窒化ガリウム系化合物半導体から成る。具体的には、例えば、GaN、AlGaN、InGaN、AlGaInN等である。特に、エッチングされた面の結晶性がよいなどの点でGaNであることが好ましい。半導体積層体40は、基板10に実装される側の面とは反対側の光取り出し面側から、n型半導体層41、発光層42およびp型半導体層43の順番に積層されて構成されている。
発光層42は、例えば、InGaNから構成される。
p型半導体層43は、例えば、p型不純物としてMgを含むGaNから構成される。
図1に示すように、n側電極50は、光取り出し面において、所定間隔を空けて設けられている。本実施形態では、光取り出し面は、n型半導体層41の表面であるので、n側電極50は、n型半導体層41の上面で、所定間隔を空けて、電気的に接続されるように形成されている。n側電極50は、ワイヤボンディングにより外部と接続される。n側電極50は、n型半導体層41の上面側から、例えば、Ti/Pt/Au、Ti/Pt/Au/Ni、Ti/Al、Ti/Al/Pt/Au、W/Pt/Au、V/Pt/Au、Ti/TiN/Pt/Au、Ti/TiN/Pt/Au/Niのような複数の金属を含む多層膜で構成される。なお、n側電極50は、オーミック電極とパッド電極とから構成されるようにしてもよい。
(保護膜)
保護膜60は、n型半導体層41よりも屈折率が低く透明な材料から構成され、n側電極50の上表面のワイヤボンディングされる領域を除いた表面と、n型半導体層41の表面および側面とを被覆している。保護膜60は、絶縁膜からなるものであって、特に酸化膜からなるものが好ましい。保護膜60は、例えば、二酸化ケイ素(SiO2)やZr酸化膜(ZrO2)からなる。
裏面メタライズ層70は、基板10のメタライズ層20が形成されている面と反対側に形成されオーミック電極として機能する。裏面メタライズ層70の材料としては、例えば、図1において上から二ケイ化チタン(TiSi2)/白金(Pt)/金(Au)の順番に積層したものが挙げられる。
図3および図4に示すように、第1凸領域80に形成された第1凸部、および、第2凸領域90b(90)に形成された第2凸部は、先端が先細りした形状である。これにより、配光性が良好となっている。また、第1凸部および第2凸部は、先端が曲面で形成されている。したがって、先端が平坦な面で形成されている場合と比較して配光性が良い。また、図3および図4に示すように、第1凸部の高さは、第2凸部の高さの2倍以上である。さらに、第1凸部および第2凸部は、基端が隣り合う凸部の基端と隣接するように設けられている。つまり、凸部(第1凸部、第2凸部)は、隣の凸部との間に平坦な面を有していない。このように凸部が高密度に設けられているので光取り出し効率を高めることができる。したがって、配光性が良くなる。また、同じ深さであれば、凸部と隣の凸部との間に平坦な面を有しているものに比べて光出力が高くなる。
(第1製造方法)
図1に示した半導体発光素子の第1製造方法について、図5および図6を参照(適宜図1ないし図4参照)して説明する。図5および図6は、図1に示した半導体発光素子の製造工程を模式的に示す断面図である。
図1に示した半導体発光素子の第2製造方法は、第1製造方法と同様に図5(a)~図5(e)および図6(a)~図6(b)にそれぞれ示す工程を行う。第2製造方法は、引き続いて行うn側電極50の形成方法に特徴がある。第2製造方法について、図7を参照(適宜図1ないし図6参照)して説明する。図7は、半導体発光素子の製造工程を模式的に示す断面図である。なお、図7では、半導体積層体40よりも下の層については図示を省略した。
本実施形態に係る半導体発光素子1の特性として、光出力、電極はがれ率、配光性について説明する。
(光出力)
本実施形態に係る半導体発光素子1は、光取り出し面に、比較的深い位置から比較的高い第1凸部を有する第1凸領域80と、比較的浅い位置から比較的低い第2凸部を有する第2凸領域90とを設けたので、第2凸部だけを全面に設けた発光素子よりも光出力を高めることができる。また、以下に示すように、電極はがれ率が低く、配光性が良いので、第1凸部を高く形成することができ、光出力を高めることができる。
比較として、第2凸部を第1凸部と同じように相対的に深い位置から高く設け、凹凸をドライエッチングにより形成したもの(以下、比較例1という)を、一例として、RIE(Reactive Ion Etching反応性イオンエッチング)で製造した。図12に示すように、比較例1を示す従来の半導体発光素子200は、主として、基板210と、メタライズ層220と、p側電極230と、半導体積層体240と、n側電極250と、保護膜260と、裏面メタライズ層270とからなる。半導体積層体240は、基板210に実装される側の面とは反対側の光取り出し面側から、n型半導体層241、発光層242およびp型半導体層243の順番に積層されて構成されている。また、n型半導体層241の表面には、電極非形成領域に凹凸280が規則的に形成されている。n側電極250は、n型半導体層241の表面である光取り出し面において、凹凸280以外の部分の上に設けられている。なお、図12では、凹凸280の一例を模式的に示しており、半導体発光素子200は、凹凸280において互いに隣り合う凹の間に平坦な面(上面)を有するか、または、互いに隣り合う凸の間に平坦な面(底面)の少なくとも一方を有する。
図8は、本実施形態に係る半導体発光素子の指向性の一例を示す図である。ここで、ウェットエッチングのエッチング溶液として、KOH水溶液を用いて第1凸領域80および第2凸領域90を形成したもの(以下、実施例1という)を太い実線で示す。また、少なくとも第1凸部の高さが実施例1よりも小さくなるように加工量(深さ)を調整して形成したもの(以下、実施例2という)を細線で示す。さらに、比較として、前記した比較例1を破線で示し、前記した比較例2を一点鎖線で示す。
Claims (12)
- n型半導体層とp型半導体層との間に発光層を有する半導体積層体と、この半導体積層体が実装される基板と、前記半導体積層体が前記基板に実装される面とは反対側の光取り出し面の上に設けられた電極とを有し、前記光取り出し面に複数の凸部を備える半導体発光素子において、
前記複数の凸部は、第1凸領域と、第2凸領域とに設けられており、
前記第2凸領域は、前記第1凸領域と前記電極との間において前記電極と前記半導体積層体との界面と隣接した領域であり、
前記第1凸領域に設けられた第1凸部の基端は、前記界面よりも前記発光層側に位置し、
前記第2凸領域に設けられた第2凸部の基端は、前記第1凸部の基端よりも前記界面側に位置することを特徴とする半導体発光素子。 - 請求の範囲第1項に記載の半導体発光素子において、
前記第1凸部の基端から先端までの高さは、前記第2凸部の基端から先端までの高さよりも大きいことを特徴とする半導体発光素子。 - 請求の範囲第1項または請求の範囲第2項に記載の半導体発光素子において、
前記第1凸部および前記第2凸部は、先端が先細りした形状であることを特徴とする半導体発光素子。 - 請求の範囲第1項ないし請求の範囲第3項のいずれか一項に記載の半導体発光素子において、
少なくとも前記第2凸領域は前記電極を囲んで設けられていることを特徴とする半導体発光素子。 - 請求の範囲第4項に記載の半導体発光素子において、
前記第1凸領域は前記第2凸領域および前記電極を囲んで設けられていることを特徴とする半導体発光素子。 - 請求の範囲第1項ないし請求の範囲第5項のいずれか一項に記載の半導体発光素子において、
前記光取り出し面には、前記電極が離間して設けられ、前記離間して設けられた電極に挟まれる領域に、前記第1凸領域および前記第2凸領域を有することを特徴とする半導体発光素子。 - 請求の範囲第1項ないし請求の範囲第6項のいずれか一項に記載の半導体発光素子において、
前記第1凸部および前記第2凸部は、先端が非平坦な形状に形成されていることを特徴とする半導体発光素子。 - 請求の範囲第1項ないし請求の範囲第7項のいずれか一項に記載の半導体発光素子において、
前記第1凸部および前記第2凸部は、基端が隣り合う凸部の基端と隣接するように設けられていることを特徴とする半導体発光素子。 - 請求の範囲第1項ないし請求の範囲第8項のいずれか一項に記載の半導体発光素子において、
前記第1凸領域において、前記第1凸部を、前記電極から離れるほど基端が前記発光層に近づくように形成したことを特徴とする半導体発光素子。 - 請求の範囲第1項ないし請求の範囲第9項のいずれか一項に記載の半導体発光素子において、
前記電極と前記半導体積層体との界面に、第3凸部をさらに有することを特徴とする半導体発光素子。 - n型半導体層とp型半導体層との間に発光層を有する半導体積層体を形成する工程と、
前記半導体積層体の基板に実装される側とは反対側の光取り出し面を形成する一方の半導体層表面の電極形成予定領域を囲むように開口を有したレジストを、前記開口が前記レジストの積層方向に向かって閉塞するように形成する工程と、
前記レジストの上から前記半導体層表面にマスク材料を積層する工程と、
前記マスク材料が積層されたレジストを除去する工程と、
前記電極形成予定領域をマスクとして前記半導体層表面をエッチングする工程と、
を有することを特徴とする半導体発光素子の製造方法。 - 請求の範囲第11項に記載の半導体発光素子の製造方法において、
前記マスク材料は、電極材料であることを特徴とする半導体発光素子の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008801229171A CN101911317B (zh) | 2007-12-28 | 2008-12-26 | 半导体发光元件及其制造方法 |
EP08867680.4A EP2234182B1 (en) | 2007-12-28 | 2008-12-26 | Semiconductor light emitting element and method for manufacturing the same |
KR1020107014047A KR101164663B1 (ko) | 2007-12-28 | 2008-12-26 | 반도체 발광 소자 및 그 제조방법 |
US12/808,472 US8552445B2 (en) | 2007-12-28 | 2008-12-26 | Semiconductor light emitting device and method for manufacturing the same |
JP2009548110A JP5310564B2 (ja) | 2007-12-28 | 2008-12-26 | 半導体発光素子およびその製造方法 |
US14/021,551 US8883529B2 (en) | 2007-12-28 | 2013-09-09 | Method for manufacturing semiconductor light emitting device |
US14/470,565 US9159868B2 (en) | 2007-12-28 | 2014-08-27 | Method for manufacturing semiconductor light emitting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007341111 | 2007-12-28 | ||
JP2007-341111 | 2007-12-28 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/808,472 A-371-Of-International US8552445B2 (en) | 2007-12-28 | 2008-12-26 | Semiconductor light emitting device and method for manufacturing the same |
US14/021,551 Continuation US8883529B2 (en) | 2007-12-28 | 2013-09-09 | Method for manufacturing semiconductor light emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009084670A1 true WO2009084670A1 (ja) | 2009-07-09 |
Family
ID=40824383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/073821 WO2009084670A1 (ja) | 2007-12-28 | 2008-12-26 | 半導体発光素子およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (3) | US8552445B2 (ja) |
EP (1) | EP2234182B1 (ja) |
JP (2) | JP5310564B2 (ja) |
KR (1) | KR101164663B1 (ja) |
CN (1) | CN101911317B (ja) |
RU (1) | RU2436195C1 (ja) |
TW (1) | TW200945631A (ja) |
WO (1) | WO2009084670A1 (ja) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011187873A (ja) * | 2010-03-11 | 2011-09-22 | Toshiba Corp | 半導体発光素子 |
KR20120002822A (ko) * | 2010-07-01 | 2012-01-09 | 삼성엘이디 주식회사 | 반도체 발광소자 및 그 제조방법 |
JP2012033695A (ja) * | 2010-07-30 | 2012-02-16 | Stanley Electric Co Ltd | 半導体発光装置 |
CN102694096A (zh) * | 2011-03-21 | 2012-09-26 | 华新丽华股份有限公司 | 发光二极管及其制造方法 |
JP2012533873A (ja) * | 2009-07-17 | 2012-12-27 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | オプトエレクトロニクス半導体コンポーネント、および無機オプトエレクトロニクス半導体コンポーネントの製造方法 |
JP2013106020A (ja) * | 2011-11-17 | 2013-05-30 | Stanley Electric Co Ltd | 半導体発光装置および半導体発光装置の製造方法 |
EP2423985A3 (en) * | 2010-08-26 | 2014-07-30 | Nichia Corporation | Semiconductor light emitting element |
US8878214B2 (en) | 2010-12-28 | 2014-11-04 | Nichia Corporation | Semiconductor light emitting device |
JP2015503849A (ja) * | 2012-01-10 | 2015-02-02 | コーニンクレッカ フィリップス エヌ ヴェ | 選択的な領域粗化による制御されたled光出力 |
US20150048380A1 (en) * | 2012-04-02 | 2015-02-19 | Asahi Kasei E-Materials Corporation | Optical substrate, semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element |
JP2015076514A (ja) * | 2013-10-09 | 2015-04-20 | エルシード株式会社 | Led素子 |
US9093356B2 (en) | 2010-12-28 | 2015-07-28 | Nichia Corporation | Semiconductor light emitting element |
WO2015156123A1 (ja) * | 2014-04-07 | 2015-10-15 | 旭化成イーマテリアルズ株式会社 | 光学基材及びその製造方法、並びに、積層体、レジスト剥離液 |
JP2018022919A (ja) * | 2017-10-06 | 2018-02-08 | エルシード株式会社 | Led素子 |
JP2018050070A (ja) * | 2017-11-21 | 2018-03-29 | ローム株式会社 | 半導体発光素子 |
CN109075223A (zh) * | 2016-04-27 | 2018-12-21 | 原子能和替代能源委员会 | 包括位于发光区的至少一个势垒层内的至少一个较宽带隙中间层的发光二极管 |
JPWO2017154973A1 (ja) * | 2016-03-08 | 2019-01-24 | アルパッド株式会社 | 半導体発光素子およびその製造方法 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200945631A (en) * | 2007-12-28 | 2009-11-01 | Nichia Corp | Semiconductor light emitting element and method for manufacturing the same |
KR100999779B1 (ko) * | 2010-02-01 | 2010-12-08 | 엘지이노텍 주식회사 | 발광소자, 발광소자의 제조방법 및 발광소자 패키지 |
JP4996706B2 (ja) | 2010-03-03 | 2012-08-08 | 株式会社東芝 | 半導体発光素子およびその製造方法 |
KR101081135B1 (ko) | 2010-03-15 | 2011-11-07 | 엘지이노텍 주식회사 | 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지 |
KR101673955B1 (ko) * | 2010-07-02 | 2016-11-08 | 삼성전자주식회사 | 반도체 발광소자 및 이를 제조하는 방법 |
KR20120092325A (ko) * | 2011-02-11 | 2012-08-21 | 서울옵토디바이스주식회사 | 광 결정 구조를 갖는 발광 다이오드 및 그것을 제조하는 방법 |
JP5603813B2 (ja) * | 2011-03-15 | 2014-10-08 | 株式会社東芝 | 半導体発光装置及び発光装置 |
US9159876B2 (en) * | 2011-10-06 | 2015-10-13 | Koninklijke Philips N.V. | Surface treatment of a semiconductor light emitting device |
KR101827975B1 (ko) * | 2011-10-10 | 2018-03-29 | 엘지이노텍 주식회사 | 발광소자 |
US9847372B2 (en) * | 2011-12-01 | 2017-12-19 | Micron Technology, Inc. | Solid state transducer devices with separately controlled regions, and associated systems and methods |
KR101894025B1 (ko) * | 2011-12-16 | 2018-09-03 | 엘지이노텍 주식회사 | 발광소자 |
JP5292456B2 (ja) | 2011-12-28 | 2013-09-18 | Dowaエレクトロニクス株式会社 | Iii族窒化物半導体素子およびその製造方法 |
WO2013141561A1 (ko) * | 2012-03-19 | 2013-09-26 | 서울옵토디바이스주식회사 | 에피층과 성장 기판 분리 방법 및 이를 이용한 반도체 소자 |
KR102099441B1 (ko) * | 2013-12-19 | 2020-04-09 | 엘지이노텍 주식회사 | 발광소자 |
JP6106120B2 (ja) * | 2014-03-27 | 2017-03-29 | 株式会社東芝 | 半導体発光装置 |
CN105023983A (zh) * | 2014-04-24 | 2015-11-04 | 展晶科技(深圳)有限公司 | 覆晶式半导体发光元件及其制造方法 |
JP2016146389A (ja) * | 2015-02-06 | 2016-08-12 | 株式会社東芝 | 半導体発光素子及びその製造方法 |
JP2016171277A (ja) * | 2015-03-16 | 2016-09-23 | 株式会社東芝 | 半導体発光素子及びその製造方法 |
JP6582738B2 (ja) * | 2015-08-26 | 2019-10-02 | 日亜化学工業株式会社 | 発光素子及び発光装置 |
JP6738169B2 (ja) | 2016-03-11 | 2020-08-12 | Dowaエレクトロニクス株式会社 | 半導体光デバイスおよびその製造方法 |
CN106784185B (zh) * | 2016-12-22 | 2019-05-14 | 天津三安光电有限公司 | 发光二极管及其制作方法 |
KR102565148B1 (ko) | 2018-06-27 | 2023-08-18 | 서울바이오시스 주식회사 | 플립칩형 발광 다이오드 칩 및 그것을 포함하는 발광 장치 |
US11271136B2 (en) * | 2018-11-07 | 2022-03-08 | Seoul Viosys Co., Ltd | Light emitting device |
RU2713908C2 (ru) * | 2018-11-23 | 2020-02-11 | Общество С Ограниченной Ответственностью "Кубик Мкм" (Ооо "Кубик-Мкм") | Микроконтакт для поверхностного монтажа и массив микроконтактов |
DE102019106546A1 (de) * | 2019-03-14 | 2020-09-17 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur herstellung von optoelektronischen halbleiterbauteilen und optoelektronisches halbleiterbauteil |
DE102020112414A1 (de) | 2020-05-07 | 2021-11-11 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Strahlung emittierendes Halbleiterbauelement und Verfahren zur Herstellung eines Strahlung emittierenden Halbleiterbauelements |
CN112133804B (zh) * | 2020-08-04 | 2022-03-18 | 华灿光电(苏州)有限公司 | 发光二极管芯片及其制作方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10200162A (ja) * | 1997-01-10 | 1998-07-31 | Sanken Electric Co Ltd | 半導体発光素子 |
JPH1154769A (ja) * | 1997-07-30 | 1999-02-26 | Toshiba Corp | 光実装部品およびその製造方法 |
JP2000196152A (ja) | 1998-12-24 | 2000-07-14 | Toshiba Corp | 半導体発光素子およびその製造方法 |
JP2003069075A (ja) | 2001-08-28 | 2003-03-07 | Nichia Chem Ind Ltd | 窒化ガリウム系化合物半導体素子 |
JP2004119839A (ja) * | 2002-09-27 | 2004-04-15 | Toshiba Corp | 光半導体装置及びその製造方法 |
JP2004356279A (ja) * | 2003-05-28 | 2004-12-16 | Hitachi Cable Ltd | 半導体発光素子の製造方法 |
JP2005005679A (ja) | 2003-04-15 | 2005-01-06 | Matsushita Electric Ind Co Ltd | 半導体発光素子およびその製造方法 |
JP2005244201A (ja) | 2004-01-28 | 2005-09-08 | Matsushita Electric Ind Co Ltd | 半導体発光素子及びその製造方法 |
JP2006147787A (ja) | 2004-11-18 | 2006-06-08 | Sony Corp | 発光素子及びその製造方法 |
JP2007067209A (ja) | 2005-08-31 | 2007-03-15 | Sanyo Electric Co Ltd | 窒化物系半導体発光素子及びその製造方法 |
JP2007088277A (ja) | 2005-09-22 | 2007-04-05 | Matsushita Electric Works Ltd | 半導体発光素子およびその製造方法 |
JP2008066554A (ja) * | 2006-09-08 | 2008-03-21 | Sanken Electric Co Ltd | 半導体発光素子 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5840872A (ja) * | 1981-09-03 | 1983-03-09 | Nec Corp | 半導体発光素子 |
JPS6254485A (ja) * | 1985-09-03 | 1987-03-10 | Toshiba Corp | 半導体発光素子の製造方法 |
JPH06334218A (ja) * | 1993-05-24 | 1994-12-02 | Matsushita Electric Ind Co Ltd | 発光ダイオード素子 |
JPH0738146A (ja) * | 1993-07-20 | 1995-02-07 | Victor Co Of Japan Ltd | 半導体発光装置 |
US5779924A (en) * | 1996-03-22 | 1998-07-14 | Hewlett-Packard Company | Ordered interface texturing for a light emitting device |
TW444417B (en) * | 2000-02-14 | 2001-07-01 | Rohm Co Ltd | Method for making a semiconductor light emitting element |
JP2003188410A (ja) | 2001-12-19 | 2003-07-04 | Daido Steel Co Ltd | 発光ダイオードチップ |
JP4077312B2 (ja) * | 2001-12-28 | 2008-04-16 | 株式会社東芝 | 発光素子の製造方法および発光素子 |
JP3802424B2 (ja) * | 2002-01-15 | 2006-07-26 | 株式会社東芝 | 半導体発光素子及びその製造方法 |
JP3782357B2 (ja) * | 2002-01-18 | 2006-06-07 | 株式会社東芝 | 半導体発光素子の製造方法 |
TW200509408A (en) * | 2003-08-20 | 2005-03-01 | Epistar Corp | Nitride light-emitting device with high light-emitting efficiency |
JP2005116615A (ja) * | 2003-10-03 | 2005-04-28 | Dowa Mining Co Ltd | 半導体発光素子及びその製造方法 |
WO2005050748A1 (ja) * | 2003-11-19 | 2005-06-02 | Nichia Corporation | 半導体素子及びその製造方法 |
DE10355581B4 (de) * | 2003-11-28 | 2010-01-14 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren und Technik zur Herstellung einer Gateelektrode unter Anwendung einer Hartmaske |
JP4332440B2 (ja) * | 2004-02-04 | 2009-09-16 | シャープ株式会社 | 発光ダイオードの製造方法、発光ダイオード |
CN100356593C (zh) * | 2004-03-30 | 2007-12-19 | 晶元光电股份有限公司 | 高效率氮化物系发光元件 |
US7534633B2 (en) * | 2004-07-02 | 2009-05-19 | Cree, Inc. | LED with substrate modifications for enhanced light extraction and method of making same |
US7476910B2 (en) * | 2004-09-10 | 2009-01-13 | Kabushiki Kaisha Toshiba | Semiconductor light emitting device and method for manufacturing the same |
RU2262156C1 (ru) * | 2004-09-14 | 2005-10-10 | Закрытое акционерное общество "Нитридные источники света" | Полупроводниковый элемент, излучающий свет в ультрафиолетовом диапазоне |
US7897420B2 (en) * | 2005-01-11 | 2011-03-01 | SemiLEDs Optoelectronics Co., Ltd. | Light emitting diodes (LEDs) with improved light extraction by roughening |
KR100631969B1 (ko) * | 2005-02-28 | 2006-10-11 | 삼성전기주식회사 | 질화물 반도체 발광소자 |
JP4297084B2 (ja) * | 2005-06-13 | 2009-07-15 | 住友電気工業株式会社 | 発光装置の製造方法および発光装置 |
JP2007165409A (ja) * | 2005-12-09 | 2007-06-28 | Rohm Co Ltd | 半導体発光素子及び半導体発光素子の製造方法 |
KR100649767B1 (ko) | 2005-12-26 | 2006-11-27 | 삼성전기주식회사 | 수직구조 질화물 반도체 발광소자 |
JP2007220865A (ja) * | 2006-02-16 | 2007-08-30 | Sumitomo Chemical Co Ltd | 3族窒化物半導体発光素子およびその製造方法 |
CN100555689C (zh) * | 2006-06-15 | 2009-10-28 | 夏普株式会社 | 氮化物半导体发光元件及其制造方法 |
US7692203B2 (en) * | 2006-10-20 | 2010-04-06 | Hitachi Cable, Ltd. | Semiconductor light emitting device |
TW200945631A (en) * | 2007-12-28 | 2009-11-01 | Nichia Corp | Semiconductor light emitting element and method for manufacturing the same |
-
2008
- 2008-12-26 TW TW097151166A patent/TW200945631A/zh unknown
- 2008-12-26 US US12/808,472 patent/US8552445B2/en active Active
- 2008-12-26 JP JP2009548110A patent/JP5310564B2/ja active Active
- 2008-12-26 KR KR1020107014047A patent/KR101164663B1/ko active Active
- 2008-12-26 RU RU2010131486/28A patent/RU2436195C1/ru active
- 2008-12-26 EP EP08867680.4A patent/EP2234182B1/en active Active
- 2008-12-26 CN CN2008801229171A patent/CN101911317B/zh active Active
- 2008-12-26 WO PCT/JP2008/073821 patent/WO2009084670A1/ja active Application Filing
-
2013
- 2013-07-03 JP JP2013139370A patent/JP5545398B2/ja active Active
- 2013-09-09 US US14/021,551 patent/US8883529B2/en active Active
-
2014
- 2014-08-27 US US14/470,565 patent/US9159868B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10200162A (ja) * | 1997-01-10 | 1998-07-31 | Sanken Electric Co Ltd | 半導体発光素子 |
JPH1154769A (ja) * | 1997-07-30 | 1999-02-26 | Toshiba Corp | 光実装部品およびその製造方法 |
JP2000196152A (ja) | 1998-12-24 | 2000-07-14 | Toshiba Corp | 半導体発光素子およびその製造方法 |
JP2003069075A (ja) | 2001-08-28 | 2003-03-07 | Nichia Chem Ind Ltd | 窒化ガリウム系化合物半導体素子 |
JP2004119839A (ja) * | 2002-09-27 | 2004-04-15 | Toshiba Corp | 光半導体装置及びその製造方法 |
JP2005005679A (ja) | 2003-04-15 | 2005-01-06 | Matsushita Electric Ind Co Ltd | 半導体発光素子およびその製造方法 |
JP2004356279A (ja) * | 2003-05-28 | 2004-12-16 | Hitachi Cable Ltd | 半導体発光素子の製造方法 |
JP2005244201A (ja) | 2004-01-28 | 2005-09-08 | Matsushita Electric Ind Co Ltd | 半導体発光素子及びその製造方法 |
JP2006147787A (ja) | 2004-11-18 | 2006-06-08 | Sony Corp | 発光素子及びその製造方法 |
JP2007067209A (ja) | 2005-08-31 | 2007-03-15 | Sanyo Electric Co Ltd | 窒化物系半導体発光素子及びその製造方法 |
JP2007088277A (ja) | 2005-09-22 | 2007-04-05 | Matsushita Electric Works Ltd | 半導体発光素子およびその製造方法 |
JP2008066554A (ja) * | 2006-09-08 | 2008-03-21 | Sanken Electric Co Ltd | 半導体発光素子 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2234182A4 |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2454763B1 (de) * | 2009-07-17 | 2017-01-18 | OSRAM Opto Semiconductors GmbH | Optoelektronisches halbleiterbauteil und verfahren zur herstellung eines anorganischen optoelektronischen halbleiterbauteils |
JP2012533873A (ja) * | 2009-07-17 | 2012-12-27 | オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング | オプトエレクトロニクス半導体コンポーネント、および無機オプトエレクトロニクス半導体コンポーネントの製造方法 |
KR101614106B1 (ko) * | 2009-07-17 | 2016-04-20 | 오스람 옵토 세미컨덕터스 게엠베하 | 광전자 반도체 소자 그리고 무기 광전자 반도체를 제조하기 위한 방법 |
US8698178B2 (en) | 2009-07-17 | 2014-04-15 | Osram Opto Semiconductors Gmbh | Optoelectronic semiconductor component and method for producing an inorganic optoelectronic semiconductor component |
US8729583B2 (en) | 2010-03-11 | 2014-05-20 | Kabushiki Kaisha Toshiba | Semiconductor light-emitting device |
JP2011187873A (ja) * | 2010-03-11 | 2011-09-22 | Toshiba Corp | 半導体発光素子 |
EP2403022A3 (en) * | 2010-07-01 | 2015-03-11 | Samsung Electronics Co., Ltd. | Semiconductor light emitting diode and manufacturing method thereof |
KR20120002822A (ko) * | 2010-07-01 | 2012-01-09 | 삼성엘이디 주식회사 | 반도체 발광소자 및 그 제조방법 |
KR101671793B1 (ko) * | 2010-07-01 | 2016-11-04 | 삼성전자주식회사 | 반도체 발광소자 및 그 제조방법 |
JP2012033695A (ja) * | 2010-07-30 | 2012-02-16 | Stanley Electric Co Ltd | 半導体発光装置 |
EP2423985A3 (en) * | 2010-08-26 | 2014-07-30 | Nichia Corporation | Semiconductor light emitting element |
US8878214B2 (en) | 2010-12-28 | 2014-11-04 | Nichia Corporation | Semiconductor light emitting device |
US9093356B2 (en) | 2010-12-28 | 2015-07-28 | Nichia Corporation | Semiconductor light emitting element |
CN102694096A (zh) * | 2011-03-21 | 2012-09-26 | 华新丽华股份有限公司 | 发光二极管及其制造方法 |
JP2013106020A (ja) * | 2011-11-17 | 2013-05-30 | Stanley Electric Co Ltd | 半導体発光装置および半導体発光装置の製造方法 |
JP2015503849A (ja) * | 2012-01-10 | 2015-02-02 | コーニンクレッカ フィリップス エヌ ヴェ | 選択的な領域粗化による制御されたled光出力 |
US9614136B2 (en) * | 2012-04-02 | 2017-04-04 | Asahi Kasei Kabushiki Kaisha | Optical substrate, semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element |
US20150048380A1 (en) * | 2012-04-02 | 2015-02-19 | Asahi Kasei E-Materials Corporation | Optical substrate, semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element |
JP2015076514A (ja) * | 2013-10-09 | 2015-04-20 | エルシード株式会社 | Led素子 |
WO2015156123A1 (ja) * | 2014-04-07 | 2015-10-15 | 旭化成イーマテリアルズ株式会社 | 光学基材及びその製造方法、並びに、積層体、レジスト剥離液 |
JPWO2015156123A1 (ja) * | 2014-04-07 | 2017-04-13 | 旭化成株式会社 | 光学基材及びその製造方法、並びに、積層体、レジスト剥離液 |
JPWO2017154973A1 (ja) * | 2016-03-08 | 2019-01-24 | アルパッド株式会社 | 半導体発光素子およびその製造方法 |
US11145790B2 (en) | 2016-03-08 | 2021-10-12 | Alpad Corporation | Semiconductor light emitting device and method for manufacturing same |
CN109075223A (zh) * | 2016-04-27 | 2018-12-21 | 原子能和替代能源委员会 | 包括位于发光区的至少一个势垒层内的至少一个较宽带隙中间层的发光二极管 |
JP2018022919A (ja) * | 2017-10-06 | 2018-02-08 | エルシード株式会社 | Led素子 |
JP2018050070A (ja) * | 2017-11-21 | 2018-03-29 | ローム株式会社 | 半導体発光素子 |
Also Published As
Publication number | Publication date |
---|---|
JP5310564B2 (ja) | 2013-10-09 |
JPWO2009084670A1 (ja) | 2011-05-19 |
JP5545398B2 (ja) | 2014-07-09 |
US20140370630A1 (en) | 2014-12-18 |
US8552445B2 (en) | 2013-10-08 |
TW200945631A (en) | 2009-11-01 |
US20100264443A1 (en) | 2010-10-21 |
EP2234182A1 (en) | 2010-09-29 |
EP2234182A4 (en) | 2014-09-03 |
JP2013211595A (ja) | 2013-10-10 |
RU2436195C1 (ru) | 2011-12-10 |
US8883529B2 (en) | 2014-11-11 |
CN101911317B (zh) | 2012-06-06 |
EP2234182B1 (en) | 2016-11-09 |
CN101911317A (zh) | 2010-12-08 |
KR101164663B1 (ko) | 2012-07-12 |
KR20100085193A (ko) | 2010-07-28 |
TWI377705B (ja) | 2012-11-21 |
US9159868B2 (en) | 2015-10-13 |
US20140038328A1 (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5545398B2 (ja) | 半導体発光素子の製造方法 | |
JP5493252B2 (ja) | 半導体発光素子 | |
JP5282503B2 (ja) | 半導体発光素子 | |
TWI545801B (zh) | 半導體發光元件及其製造方法 | |
CN101355128A (zh) | 半导体发光元件及半导体发光元件的制造方法 | |
TW202123491A (zh) | 半導體發光元件以及半導體發光元件的製造方法 | |
JP2013048200A (ja) | GaN系LED素子 | |
JP6040769B2 (ja) | 発光素子及びその製造方法 | |
CN104285307A (zh) | 高效发光二极管及其制造方法 | |
US8013353B2 (en) | Light-emitting element | |
TWI431815B (zh) | 半導體發光元件 | |
TWI568024B (zh) | Nitride semiconductor light emitting device and manufacturing method thereof | |
CN111261760A (zh) | 发光元件 | |
JP5045001B2 (ja) | 半導体発光素子 | |
WO2005027232A1 (ja) | GaN系発光ダイオード | |
EP2228837B1 (en) | Light emitting device, fabrication method thereof, and light emitting apparatus | |
JP6119906B2 (ja) | 発光素子 | |
CN113964245A (zh) | 发光元件和发光元件的制造方法 | |
WO2012091007A1 (ja) | 半導体発光素子 | |
JP2011009648A (ja) | 発光素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880122917.1 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2009548110 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08867680 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12808472 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20107014047 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5023/DELNP/2010 Country of ref document: IN |
|
REEP | Request for entry into the european phase |
Ref document number: 2008867680 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008867680 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010131486 Country of ref document: RU |