WO2009024089A1 - A system for implementing back compatibility with network, an attaching method and a detaching method - Google Patents
A system for implementing back compatibility with network, an attaching method and a detaching method Download PDFInfo
- Publication number
- WO2009024089A1 WO2009024089A1 PCT/CN2008/072067 CN2008072067W WO2009024089A1 WO 2009024089 A1 WO2009024089 A1 WO 2009024089A1 CN 2008072067 W CN2008072067 W CN 2008072067W WO 2009024089 A1 WO2009024089 A1 WO 2009024089A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target
- emsc
- address information
- network
- mme
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 130
- 230000008569 process Effects 0.000 claims description 82
- 230000011664 signaling Effects 0.000 claims description 51
- 238000012790 confirmation Methods 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 11
- 230000000977 initiatory effect Effects 0.000 claims description 4
- 238000009795 derivation Methods 0.000 claims 1
- 230000005012 migration Effects 0.000 abstract description 2
- 238000013508 migration Methods 0.000 abstract description 2
- SVRXCFMQPQNIGW-UHFFFAOYSA-N [2-(dimethylcarbamothioylsulfanylamino)ethylamino] n,n-dimethylcarbamodithioate Chemical compound CN(C)C(=S)SNCCNSC(=S)N(C)C SVRXCFMQPQNIGW-UHFFFAOYSA-N 0.000 description 35
- 230000004044 response Effects 0.000 description 23
- 102000018059 CS domains Human genes 0.000 description 20
- 108050007176 CS domains Proteins 0.000 description 20
- 238000010586 diagram Methods 0.000 description 19
- 238000007726 management method Methods 0.000 description 18
- 230000007246 mechanism Effects 0.000 description 14
- 230000001960 triggered effect Effects 0.000 description 12
- CSRZQMIRAZTJOY-UHFFFAOYSA-N trimethylsilyl iodide Substances C[Si](C)(C)I CSRZQMIRAZTJOY-UHFFFAOYSA-N 0.000 description 11
- 230000008859 change Effects 0.000 description 7
- 230000003993 interaction Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000010295 mobile communication Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 101000845005 Macrovipera lebetina Disintegrin lebein-2-alpha Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000003370 grooming effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W60/00—Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
Definitions
- the present invention relates to a third generation mobile communication technology, and more particularly to a system for implementing network backward compatibility and an attaching and detaching method. Background technique
- the Universal Mobile Telecommunications System is the third generation mobile communication system using Wideband Code Division Multiple Access (WCDMA) air interface technology.
- WCDMA Wideband Code Division Multiple Access
- RAN Radio Access Network
- CN Core Network
- the RAN is used to handle all functions related to wireless services
- the CN handles all voice calls and data connections in the UTMS system, and implements exchange and routing functions with external networks.
- the CN is logically divided into a Circuit Switched Domain (CS Domain) and a Packet Switched Domain (PS Domain).
- CS Domain Circuit Switched Domain
- PS Domain Packet Switched Domain
- the UMTS Territorial Radio Access Network (UTRAN) and the CN together with User Equipment (UE) constitute the entire UMTS system.
- the above network architecture is based on the previous version of 3GPP Re 16 architecture.
- 3GPP is researching a new evolution network architecture to meet the application requirements of mobile networks in the next ten years or longer.
- SAE Sys tern Architecture Evolution
- LTE Long Term Evolution
- E-UTRAN Evolved-UTRAN
- IP Internet Protocol
- the Packet Data Network Gateway (PDN GW) 102 is an anchor point of the user plane and remains unchanged during the session time period of the user. Meanwhile, the Policy and Charging Enforcement Function (PCEF) is also implemented. Located on this entity.
- PCEF Policy and Charging Enforcement Function
- the UE is attached to the target eMSC/VLR according to the obtained target eMSC address information.
- An obtaining module configured to obtain target eMSC address information
- the eMSC/VLR is configured to exchange the user information with the HSS, determine the UE according to the user information, and process the control plane signaling.
- a method for UE attachment comprising:
- FIG. 2 is a schematic structural diagram of a network structure of a first network architecture when a UE is located in a home network according to a preferred embodiment of the present invention
- EMSC 504 further includes eMGCF 5041 and eMSC/VLR 5042
- EMGW 505 further includes e I M-MGW 5051 and eMGW 5052.
- the functions of the parts and the connection relationship between them are similar to those in the first embodiment.
- Step 1016 The S-GW returns to establish a default bearer response message to the target MN, the response message includes: S-GW user plane address, S-GW user plane TEID, S-GW context ID, if the PDN address information is reallocated The address information will also be included in the response message.
- the eMSC discovery mechanism mainly has the following methods:
- the network sends a broadcast to the UE located within its coverage, including whether the network supports CSoPS capability and eMSC address.
- Step 1224 The HSS sends an update location confirmation message to the target eMSC/VLR.
- step 1212 is to establish a part of the dedicated bearer wired link.
- step 1212 is to establish a proprietary bearer wireless link portion.
- the Attach Type parameter, the S-TMSI, and the TAI or IMSL Attach Type parameter associated with the S-TMSI are used to indicate to the network side which type of attachment, for example: only attached to the evolved network, which has been attached to the IMSI before.
- the UE attaches to the evolved network and the joint network to the evolved network and the CS network.
- the UE will instruct the network to perform joint attach, and the parameter also indicates that the UE has the capability of CSoPS.
- the UE determines whether to initiate according to whether the UE has the CSoPS capability.
- the corresponding flowchart is as shown in FIG. 14, and includes the following steps:
- Step 1523 to step 1526 The same as steps 1019 to 1024 in FIG.
- Step 1527 If the TMSI of the UE is reassigned, the target MME to the target eMSC/VLR Send a TMS I Reassign Complete message.
- Step 1906 If the PCC architecture is deployed in the network, the PDN GW interacts with the PCRF to notify the PCRF that the bearer has been released.
- Step 1907 The PDN GW sends a delete bearer response message to the S-GW, and the S-GW further sends a delete bearer response message to the MME.
- Step 1908 If the shutdown is not caused by the exhaustion of the UE, the MME sends a detach accept message to the UE, otherwise step 1909 is directly performed.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
The invention provides a system for implementing back compatibility with network, which includes: an evolved mobile switching center eMSC/VLR, a home subscriber server HSS and a mobility management entity MME; furthermore, the invention provides an attaching method, which includes: attaching a UE to a target MME; obtaining the address information of the target eMSC; according to the obtained address information of the target eMSC, attaching the UE to the target eMSC/VLR. In addition, the invention provides a detaching method. With the invention, the circuit domain service could be employed in the evolved network continuously, the back compatibility could be implemented, the traditional circuit domain entity could be further employed, a smooth migration of the system upgrade could be guaranteed, and the existing investment of the operator could be protected.
Description
一种实现网络后向兼容的系统和附着、 去附着方法 技术领域 System for implementing network backward compatibility and attachment and de-attachment method
本发明涉及第三代移动通信技术, 特别涉及一种实现网络后向兼容的系 统和附着、 去附着方法。 背景技术 The present invention relates to a third generation mobile communication technology, and more particularly to a system for implementing network backward compatibility and an attaching and detaching method. Background technique
目前, 随着通信技术的发展, 第三代移动通信技术已经日趋成熟。 通用 移动通信系统 ( Universal Mobile Telecommunications System, UTMS )是 釆用宽带码分多址接入(Wideband Code Division Multiple Access, WCDMA ) 空中接口技术的第三代移动通信系统, 该系统釆用了与第二代移动通信系统 类似的结构, 包括无线接入网络 ( Radio Access Network, RAN)和核心网络 (Core Network, CN ) 。 其中, RAN 用于处理所有与无线业务有关的功能, 而 CN处理 UTMS系统内所有的话音呼叫和数据连接, 并实现与外部网络的交 换和路由功能。 CN从逻辑上分为电路交换域 (Circuit Switched Domain, CS域)和分组交换域 (Packet Switched Domain, PS域) 。 陆地无线接入网 (UMTS Territorial Radio Access Network, UTRAN ) 、 CN与用户设备(User Equipment, UE )一起构成了整个 UMTS系统。 At present, with the development of communication technology, the third generation of mobile communication technology has become increasingly mature. The Universal Mobile Telecommunications System (UTMS) is the third generation mobile communication system using Wideband Code Division Multiple Access (WCDMA) air interface technology. A similar structure for a mobile communication system, including a Radio Access Network (RAN) and a Core Network (CN). Among them, the RAN is used to handle all functions related to wireless services, and the CN handles all voice calls and data connections in the UTMS system, and implements exchange and routing functions with external networks. The CN is logically divided into a Circuit Switched Domain (CS Domain) and a Packet Switched Domain (PS Domain). The UMTS Territorial Radio Access Network (UTRAN) and the CN together with User Equipment (UE) constitute the entire UMTS system.
上述的网络架构是基于 3GPP Re 16以前的版本的架构, 考虑到未来网络 的竟争力, 3GPP正在研究一种全新的演进网络架构以满足未来十年或更长时 间内移动网络的应用需求, 包括系统架构演进 ( Sys tern Architecture Evolution, SAE )和接入网的长期演进 ( Long Term Evolution, LTE ) , 其 中演进的接入网称为 Evolved-UTRAN ( E-UTRAN ) 。 网络演进的目标是能够提 供一种低时延、 高数据速率、 高系统容量和覆盖率、 低成本、 完全基于网际 协议 ( Internet Protocol, IP) 的网络。 The above network architecture is based on the previous version of 3GPP Re 16 architecture. Considering the competitiveness of the future network, 3GPP is researching a new evolution network architecture to meet the application requirements of mobile networks in the next ten years or longer. Including the Sys tern Architecture Evolution (SAE) and the Long Term Evolution (LTE) of the access network, where the evolved access network is called Evolved-UTRAN (E-UTRAN). The goal of network evolution is to provide a network with low latency, high data rate, high system capacity and coverage, low cost, and full Internet Protocol (IP).
目前在 3GPP中, 各厂商都在积极研究 SAE、 LTE, LTE目的是提供一种能
够降低时延、 提高用户数据速率、 系统容量和覆盖率得以改进的低成本的网 络。 因此, 在 UMTS向 SAE演进的过程中, 将存在 UMTS和 SAE两种网络并存 的阶段, 3GPP标准中 TS23.401-vllO中规定的演进网络架构如图 1所示, 各 模块之间的连接关系详见于 3GPP标准中的相关章节描述,此处仅就与本发明 相关模块的功能进行简单介绍, 其中包括: Currently in 3GPP, various vendors are actively studying SAE and LTE. The purpose of LTE is to provide a capability. A low-cost network with reduced latency, improved user data rates, improved system capacity and coverage. Therefore, in the process of UMTS evolution to SAE, there will be a phase in which UMTS and SAE networks coexist. The evolved network architecture specified in TS23.401-vllO in the 3GPP standard is as shown in Figure 1, and the connection relationship between the modules. For details, refer to the relevant chapters in the 3GPP standard. Here, only the functions of the modules related to the present invention are briefly introduced, including:
服务网关(Serving Gateway, S-GW) 101是 idle状态的 UE终结下行数 据的实体, 触发寻呼并同时保存 UE的上下文信息, 如 UE的 IP地址和路由信 息等。 The serving gateway (S-GW) 101 is an entity that terminates the downlink data by the UE in the idle state, triggers the paging and simultaneously saves the context information of the UE, such as the IP address and routing information of the UE.
分组数据网网关(Packet Data Network Gateway, PDN GW ) 102是用户 面的锚点, 在用户的会话时间段内保持不变; 同时, 策略和计费执行功能 (Policy and Charging Enforcement Function, PCEF )也位于该实体上。 The Packet Data Network Gateway (PDN GW) 102 is an anchor point of the user plane and remains unchanged during the session time period of the user. Meanwhile, the Policy and Charging Enforcement Function (PCEF) is also implemented. Located on this entity.
策格和计费规贝 ij功能实体 (Policy and Charging Rules Function, PCRF ) 103, 用于生成策略和计费控制 (Policy and Charging Control, PCC )规则 并将其下发到 PCEF上, 并由 PCEF来执行该规则, 在图 1所示网络架构下, 即为 PCRF103将规则下发到 PDN GW102上, 并由其来执行该规则。 The Policy and Charging Rules Function (PCRF) 103 is used to generate a Policy and Charging Control (PCC) rule and deliver it to the PCEF, and is sent by the PCEF. To implement the rule, in the network architecture shown in FIG. 1, the PCRF 103 sends the rule to the PDN GW 102, and the rule is executed by the PCRF 103.
归属用户月良务器(Home Subscriber Server, HSS ) 105, 用于支持用户 注册并存放用户身份、 位置数据和过滤策略信息, 以及对于用户进行网络接 入的认证和授权控制信息的管理。 The Home Subscriber Server (HSS) 105 is configured to support user registration and store user identity, location data, and filtering policy information, as well as management of authentication and authorization control information for network access by users.
移动性管理实体 (Mobility Management Entity, MME ) 104, 用于保存 UE的移动性管理上下文,如用户的标识、移动性状态 艮踪区( Tracking Area, TA )信息等, 并对用户进行认证。 The Mobility Management Entity (MME) 104 is configured to save the mobility management context of the UE, such as the identifier of the user, the Tracking Area (TA) information, and the like, and authenticate the user.
MME104通过 S3接口与服务 GPRS支撑节点(Serving GPRS Support Node, SGSN )相连, 2G/3G 用户可以通过 UTRAN/GERAN ( GSM/EDGE Radio Access Network , GSM/EDGE 无线接入网; GSM : Global system for mobile communications, 全球移动通信系统; EDGE: Enhanced data rates for GSM evolution, GSM 演进的增强型数据速率)接入 SGSN, 演进网络架构是兼容
2G/ 3G 的, 这主要是为了系统的平滑演进。 因为在演进网络的布网初期只能 进行 E-UTRAN 的热点覆盖, 在热点覆盖区域以外, 用户将只能通过 UTRAN/GERAN接入到网络。 The MME 104 is connected to the Serving GPRS Support Node (SGSN) through the S3 interface, and the 2G/3G users can pass the UTRAN/GERAN (GSM/EDGE Radio Access Network, GSM/EDGE Radio Access Network; GSM: Global system for mobile) Communications, Global System for Mobile Communications; EDGE: Enhanced data rates for GSM evolution, GSM Evolution Enhanced Data Rate) Access to SGSN, Evolved Network Architecture is compatible 2G/ 3G, this is mainly for the smooth evolution of the system. Because only the E-UTRAN hotspot coverage can be performed in the initial stage of the evolution network, users will only be able to access the network through UTRAN/GERAN outside the hotspot coverage area.
因此, 在这种情况下, 必然会涉及到 UE在演进网络覆盖区域内和 2G/ 3G 网络之间移动而引发的切换问题, 也就要求网络在域和无线接入技术(Radio Acces s Technology, RAT ) 改变时保证业务的连续性。 Therefore, in this case, it is inevitable that the handover problem caused by the UE moving between the evolved network coverage area and the 2G/3G network, and the network in the domain and radio access technology (Radio Acces s Technology, RAT) Ensure continuity of business when changing.
由以上可见, 演进网络对于现有网络的后向兼容能力的高低也是一个重 要的技术指标。 为了保护运营商的现有投资和设备, 并最大限度的利用传统 的电路域的实体, 目前 3GPP提出了一种在演进网络 PS域中承载 CS域数据、 信令的方案, 该方案目前被称为演进移动交换中心 ( evolved Mobi le Swi tching Center , eMSC ) , 且在 3GPP标准的 TR23. 882中对此进行了专门 的讨论, 并提出: 在 LTE/SAE中, 釆用控制实体 eMSC来控制来自不同接入区 域的业务, 从而将 CS域和 LTE/SAE间业务连续性的问题简单化; 同时语音和 并行 IP多媒体子系统(IP Mul t imedia Sub-sys tem, IMS )会话的交互是由 终端实现的, 并建议了新的接口, 给出了原理性的建议, 但目前标准中并未 涉及 eMSC方案的架构细节, 同时对于该架构下的各种相关业务流程, 如: UE 附着到 eMSC的细节、 idle状态下移动性管理的细节以及去附着细节等, 也 未涉及。 It can be seen from the above that the evolved network is also an important technical indicator for the backward compatibility of existing networks. In order to protect the existing investment and equipment of the operator and make full use of the entities of the traditional circuit domain, 3GPP proposes a scheme for carrying CS domain data and signaling in the PS domain of the evolved network, which is currently called This is specifically discussed in the evolved Mobi le Swi tching Center (eMSC) and in TR23.882 of the 3GPP standard, and it is proposed that: In LTE/SAE, the control entity eMSC is used to control the The services of different access areas simplify the problem of service continuity between the CS domain and the LTE/SAE; at the same time, the interaction between the voice and the parallel IP multimedia subsystem (IP Mul t imedia Sub-system, IMS) session is terminated by the terminal. Implemented, and proposed a new interface, given the principle of advice, but the current standard does not cover the architectural details of the eMSC solution, and for the various related business processes under the architecture, such as: UE attached to eMSC Details, details of mobility management in idle state, and details of detachment are not covered.
由以上所述可知,现有技术并未解决演进网络对于 UMTS网络的后向兼容 性问题, 无法实现保持 UE在演进网络和 2G/ 3G网络间移动时业务的连续性, 也无法实现各种相应的业务流程, 比如 UE附着到 eMSC、 idle状态下移动性 管理以及去附着等,而这势必会影响到运营商网络的部署和用户业务的使用。 发明内容 It can be seen from the above that the prior art does not solve the backward compatibility problem of the evolved network for the UMTS network, and cannot maintain the continuity of the service when the UE moves between the evolved network and the 2G/3G network, and cannot implement various corresponding The business processes, such as the UE attaching to the eMSC, the mobility management in the idle state, and the detachment, etc., are bound to affect the deployment of the operator network and the use of the user service. Summary of the invention
本发明的实施例提供一种实现网络后向兼容的系统,使得 UE能够在演进 网络中继续使用传统电路域业务。
本发明的实施例还提供一种附着方法和附着装置,使得 UE能够顺利接入 所述网络后向兼容的系统。 Embodiments of the present invention provide a system that implements network backward compatibility, enabling a UE to continue to use legacy circuit domain services in an evolved network. Embodiments of the present invention also provide an attaching method and an attaching apparatus, so that the UE can smoothly access the network backward compatible system.
本发明的实施例还提供一种网络后向兼容的系统中进行 UE 去附着的方 法, 使得 UE能够在不使用时顺利从所述网络后向兼容的系统中注销。 Embodiments of the present invention also provide a method for UE detaching in a network backward compatible system, so that the UE can smoothly log out from the network backward compatible system when not in use.
为达到上述目的, 本发明的技术方案具体是这样实现的: In order to achieve the above object, the technical solution of the present invention is specifically implemented as follows:
一种附着方法, 包括: An attachment method comprising:
将 UE附着到目标移动性管理实体 MME ; Attaching the UE to the target mobility management entity MME;
获取目标演进移动交换中心 eMSC地址信息; Obtaining the eMSC address information of the target evolved mobile switching center;
根据获取的目标 eMSC地址信息, 将 UE附着到目标 eMSC/VLR。 The UE is attached to the target eMSC/VLR according to the obtained target eMSC address information.
一种附着装置, 其特征在于, 包括: An attachment device, comprising:
第一附着模块, 用于将 UE附着到目标丽 E; a first attaching module, configured to attach the UE to the target E;
获取模块, 用于获取目标 eMSC地址信息; An obtaining module, configured to obtain target eMSC address information;
第二附着模块, 用于根据获取的目标 eMSC地址信息, 将 UE附着到目标 eMSC/VLR。 And a second attaching module, configured to attach the UE to the target eMSC/VLR according to the obtained target eMSC address information.
一种实现网络后向兼容的系统, 包括: eMSC/VLR、 HSS和 MME; A system for implementing network backward compatibility, including: eMSC/VLR, HSS, and MME;
HSS , 用于保存用户信息; HSS for saving user information;
MME , 用于与 HSS交互所述用户信息, 并与 eMSC/VLR通过 Gs+接口交互 控制面信令; The MME is configured to exchange the user information with the HSS, and interact with the eMSC/VLR through the Gs+ interface to control plane signaling;
eMSC/VLR , 用于与 HSS交互所述用户信息, 才艮据所述用户信息确定 UE , 并处理所述控制面信令。 The eMSC/VLR is configured to exchange the user information with the HSS, determine the UE according to the user information, and process the control plane signaling.
一种 UE去附着的方法, 包括: A method for UE attachment, comprising:
UE删除 MME到 PDN GW之间的承载, 然后由 MME向 eMSC/VLR发送 IMS I 去附着请求, eMSC/VLR接收所述 IMS I去附着请求, 删除 eMSC/VLR到 MME的 连接信息, 并向丽 E发送 IMS I去附着接受消息。 The UE deletes the bearer between the MME and the PDN GW, and then the MME sends an IMS I detach request to the eMSC/VLR, and the eMSC/VLR receives the IMS I detach request, deletes the connection information of the eMSC/VLR to the MME, and sends the connection information to the MME. E sends an IMS I detach attachment message.
由上述的技术方案可见, 本发明通过在演进网络中引入演进后的传统电 路域中的移动交换中心 MSC和媒体网关 MGW, 实现了在演进网络中继续使用
传统电路域业务的功能, 使得演进网络中的分组域用户能够和传统电路域用 户进行通信, 因此实现了良好的后向兼容性, 同时通过附着、 去附着的方法, 使得用户能够在演进网络和传统网络中切换, 实现了更大限度的利用传统电 路域实体, 保证系统升级的平滑过渡并保护了运营商的现有投资。 附图说明 It can be seen from the foregoing technical solutions that the present invention implements continuous use in an evolved network by introducing a mobile switching center MSC and a media gateway MGW in an evolved legacy circuit domain in an evolved network. The function of the traditional circuit domain service enables the packet domain users in the evolved network to communicate with the traditional circuit domain users, thus achieving good backward compatibility, and at the same time, by means of attaching and detaching, the user can be in the evolved network and Switching in the traditional network enables a greater use of traditional circuit domain entities, ensuring a smooth transition of system upgrades and protecting the operator's existing investments. DRAWINGS
图 1为现有技术中演进网络组成结构示意图; 1 is a schematic structural diagram of an evolution network in the prior art;
图 2为本发明较佳实施例中第一种网络架构当 UE位于归属网络时的网络 组成结构示意图; 2 is a schematic structural diagram of a network structure of a first network architecture when a UE is located in a home network according to a preferred embodiment of the present invention;
图 3为本发明较佳实施例中第一种网络架构当 UE位于拜访网络且用户业 务 Loca l Breakout (本地疏导) 时的网络组成结构示意图; 3 is a schematic diagram of a network structure of a first network architecture in a preferred embodiment of the present invention when a UE is located in a visited network and a user service Loca l Breakout (local grooming);
图 4为本发明较佳实施例中第一种网络架构当 UE位于拜访网络且用户业 务 Home-Routed (路由回归属网络) 时的网络组成结构示意图; 4 is a schematic diagram of a network structure of a first network architecture in a preferred embodiment of the present invention when a UE is located in a visited network and a user service Home-Routed (route back to the network);
图 5为本发明较佳实施例中第二种网络架构当 UE位于归属网络时的网络 组成结构示意图; FIG. 5 is a schematic structural diagram of a network structure of a second network architecture when a UE is located in a home network according to a preferred embodiment of the present invention; FIG.
图 6为本发明较佳实施例中第二种网络架构当 UE位于拜访网络且用户业 务 Loca l Breakout时的网络组成结构示意图; 6 is a schematic diagram of a network structure of a second network architecture in a preferred embodiment of the present invention when a UE is located in a visited network and a user service Loca l Breakout;
图 7为本发明较佳实施例中第二种网络架构当 UE位于拜访网络且用户业 务 Home-Routed时的网络组成结构示意图; FIG. 7 is a schematic structural diagram of a network structure of a second network architecture when a UE is located in a visited network and a user service Home-Routed according to a preferred embodiment of the present invention;
图 8为本发明较佳实施例中第三种网络架构当 UE位于归属网络时的网络 组成结构示意图; FIG. 8 is a schematic structural diagram of a network structure of a third network architecture when a UE is located in a home network according to a preferred embodiment of the present invention; FIG.
图 9为本发明较佳实施例中第四种网络架构当 UE位于归属网络时的网络 组成结构示意图; FIG. 9 is a schematic structural diagram of a network structure of a fourth network architecture when a UE is located in a home network according to a preferred embodiment of the present invention; FIG.
图 10为现有技术中 UE附着到演进网络的流程示意图; 10 is a schematic flowchart of attaching a UE to an evolved network in the prior art;
图 11为本发明较佳实施例中 UE以缺省承载为信令承载并通过 IP层面的 连通性附着到 eMSC的流程示意图;
图 12为本发明较佳实施例中 UE以专有承载为信令承载并通过 IP层面的 连通性附着到 eMSC的流程示意图; FIG. 11 is a schematic flowchart of a UE carrying a default bearer as a signaling bearer and attaching to an eMSC through connectivity at an IP level according to a preferred embodiment of the present invention; FIG. 12 is a schematic flowchart of a UE carrying a dedicated bearer as a signaling bearer and attaching to an eMSC through connectivity at an IP level according to a preferred embodiment of the present invention; FIG.
图 1 3为本发明较佳实施例中联合附着方式下由 UE汇报自身 CSoPS的能 力并附着到 eMSC的流程示意图; FIG. 13 is a schematic flowchart of reporting, by the UE, the capability of the CSoPS and attaching to the eMSC in the joint attach mode according to the preferred embodiment of the present invention;
图 14为本发明较佳实施例中联合附着方式下由网络汇报自身 CSoPS的能 力并附着到 eMSC的流程示意图; 14 is a schematic flowchart of reporting the capability of the CSoPS by the network and attaching to the eMSC in the joint attach mode according to the preferred embodiment of the present invention;
图 15为本发明较佳实施例中通过 PCC方式附着到 eMSC的流程示意图; 图 16为本发明较佳实施例中通过联合位置更新重附着到新 eMSC的流程 示意图; 15 is a schematic flowchart of attaching to an eMSC by means of a PCC according to a preferred embodiment of the present invention; FIG. 16 is a schematic diagram of a process of reattaching to a new eMSC by joint location update according to a preferred embodiment of the present invention;
图 17为本发明较佳实施例中通过 IP层面连通性重附着到新 eMSC的流程 示意图; 17 is a schematic diagram of a process of reattaching to a new eMSC through IP layer connectivity according to a preferred embodiment of the present invention;
图 18为本发明较佳实施例中由 UE发起的联合去附着方式的流程示意图; 的流程示意图; FIG. 18 is a schematic flowchart of a joint detachment manner initiated by a UE according to a preferred embodiment of the present invention;
图 20为本发明较佳实施例中在 PS域运行 CS业务且通过 IP连通性进行 信令交互时含有 IP Sec层的控制面协议栈结构示意图; 20 is a schematic structural diagram of a control plane protocol stack including an IP Sec layer when a CS service is run in a PS domain and signaling interaction is performed through IP connectivity according to a preferred embodiment of the present invention;
图 21为本发明较佳实施例中在 PS域运行 CS业务且通过 IP连通性进行 信令交互时没有 IP Sec层的控制面协议栈结构示意图; FIG. 21 is a schematic structural diagram of a control plane protocol stack without an IP Sec layer when a CS service is run in a PS domain and signaling interaction is performed through IP connectivity according to a preferred embodiment of the present invention;
图 22为本发明较佳实施例中在 PS域运行 CS业务时含有 IP Sec层的用 户面协议栈的结构示意图; FIG. 22 is a schematic structural diagram of a user plane protocol stack including an IP Sec layer when a CS service is run in a PS domain according to a preferred embodiment of the present invention; FIG.
图 23为本发明较佳实施例中在 PS域运行 CS业务时没有 IP Sec层的用 户面协议栈的结构示意图。 具体实施方式 FIG. 23 is a schematic structural diagram of a user plane protocol stack without an IP Sec layer when a CS service is run in a PS domain according to a preferred embodiment of the present invention. detailed description
本发明实施例通过提出具体的 eMSC 架构方案, 使得 UE 在演进网络和 The embodiment of the present invention provides a specific eMSC architecture solution, so that the UE is in an evolved network and
2G/ 3G 网络间移动时业务连续性能够得到保持, 从而可以实施各种相应的业
务流程, 并确保通过 PS域可以承载 CS域业务 ( CS over PS, 简称 CSoPS ) 。 使用本方案在网络侧增加一个新的功能实体 eMSC, 并对 UE进行支持 CSoPS 的升级后, 则 UE和网络侧都可以支持 CSoPS能力, 从而可保障 UE在演进网 络和 2G/3G网络间移动时的业务连续性。 Business continuity can be maintained when moving between 2G/ 3G networks, so that various industries can be implemented The process, and ensure that the CS domain service (CS over PS, CSoPS for short) can be carried through the PS domain. After the UE is added to the network to support the CSoPS upgrade, the UE and the network side can support the CSoPS capability, thereby ensuring that the UE moves between the evolved network and the 2G/3G network. Business continuity.
其中, 引入 eMSC实体后的演进网络可以釆用以下几种网络架构: 实施例一 The evolved network after the eMSC entity is introduced may use the following network architectures: Embodiment 1
图 2示出了第一种网络架构当 UE位于归属网络时的网络组成结构,包括: PDN GW202, PCRF203, EMSC204, EMGW205 (evolved Media GateWay, 演 进的媒体网关) 、 HSS206、 S-GW207, MME209和 SGSN208, 其中 EMSC204进一 步包括 eMGCF2041 模块和 eMSC/VLR2042 模块, EMGW205 进一步包括 eIM-MGW2051模块和 eMGW2052模块。 2 shows a network structure of a first network architecture when a UE is located in a home network, including: PDN GW 202, PCRF 203, EMSC 204, EMGW 205 (evolved Media GateWay, evolved media gateway), HSS 206, S-GW 207, MME 209, and The SGSN 208, wherein the EMSC 204 further includes an eMGCF2041 module and an eMSC/VLR2042 module, the EMGW 205 further includes an eIM-MGW2051 module and an eMGW2052 module.
其中, UE201通过接口 L1与 EMSC204中的 eMSC/VLR2042相连, 该接口 用以进行模拟 CS域的注册、位置更新、 移动性管理以及语音呼叫控制信令等 CS控制面信令的交互。 The UE 201 is connected to the eMSC/VLR 2042 in the EMSC 204 through the interface L1, and the interface is used for interaction of CS control plane signaling such as registration of the simulated CS domain, location update, mobility management, and voice call control signaling.
EMSC204通过接口 C与 HSS206相连, 用于从 HSS206请求用户身份、 位 置数据和过滤策略信息等 CS域相关信息, 同时根据接收到的由 UE201通过接 口 L1发送的语音呼叫控制信令,通过 Mn接口向 eIM-MGW2051发送控制消息, 该消息中包含 Codec业务类型、 UE 的媒体面参数、 承载比特率等; 根据 UE 的承载业务请求,通过接口 Rx+触发 PCRF203建立保障比特率( Guaranteed Bi t Rate, GBR )承载, 以实现语音呼叫的媒体面数据从 UE到 PDN GW间的 QoS保 证, 此外, 还通过 Rx+接口为 PCRF203制订策略和计费控制规则提供其他应 用层会话信息; 如果呼叫为出局呼叫, 则 EMSC204通过 ISUP/BICC接口与对 端实体交互呼叫信令, 否则如果呼叫为局内呼叫, 则 EMSC204通过 Iu-CS/A 接口与接入网实体交互呼叫信令(该种情况在图中未示出)。 EMSC204 进一步 包括 eMGCF2041模块和 eMSC/VLR2042模块, eMGCF2041用于控制 EMGW205实 体中的 eIM-MGW2051模块和 eMGW2052模块进行媒体流的编解码格式转换,
eMSC/VLR2042根据接收到的由 UE201通过接口 L1发送的语音呼叫控制信令, 通过 Mc接口控制 eMGW2052进行媒体面的相关操作。 The EMSC 204 is connected to the HSS 206 through the interface C, and is configured to request CS domain related information such as user identity, location data, and filtering policy information from the HSS 206, and according to the received voice call control signaling sent by the UE 201 through the interface L1, through the Mn interface. The eIM-MGW2051 sends a control message, which includes the Codec service type, the media plane parameter of the UE, the bearer bit rate, and the like. According to the bearer service request of the UE, the PCRF 203 is triggered by the interface Rx+ to establish a Guaranteed Bit Rate (GBR). Carrying, to realize the QoS guarantee of the media plane data of the voice call from the UE to the PDN GW, and further providing other application layer session information for the PCRF 203 to formulate the policy and charging control rules through the Rx+ interface; if the call is an outgoing call, the EMSC 204 The call signaling is exchanged with the peer entity through the ISUP/BICC interface. Otherwise, if the call is an intra-office call, the EMSC 204 exchanges call signaling with the access network entity through the Iu-CS/A interface (this case is not shown in the figure). . The EMSC 204 further includes an eMGCF2041 module and an eMSC/VLR2042 module, where the eMGCF 2041 is configured to control the eIM-MGW2051 module and the eMGW2052 module in the EMGW 205 entity to perform codec format conversion of the media stream. The eMSC/VLR 2042 controls the eMGW 2052 to perform related operations on the media plane according to the received voice call control signaling sent by the UE 201 through the interface L1.
EMGW205为演进的媒体网关, 按照功能可以划分为 e IM-MGW2051模块和 eMGW2052模块, 两者分别为 PS域逻辑模块和 CS域逻辑模块, 该实体对外分 别与 PS域实体和 CS域实体相连, 对内, 两个逻辑模块之间通过内部接口 Nb 相连。 e IM-MGW2051通过 SG i接口与 PDN GW202交互媒体面数据; 如果呼叫 为出局呼叫, 则 eMGW2052通过 Nb接口与对端实体交互媒体面数据, 否则如 果呼叫为局内呼叫,则 eMGW2052通过 Iu-CS/A接口与接入网实体交互媒体面 数据 (图中未示出该情况); e IM-MGW2051和 eMGW2052之间通过内部接口 Nb 进行媒体面数据的交互时, 需要将媒体面数据在 PS域媒体面数据和 CS域媒 体面数据间做一个转换, 即: e l M-MGW2051向 eMGW2052发送媒体面数据时要 转换为 CS域媒体面数据, 反之, eMGW2052向 e IM_MGW2051发送媒体面数据 时要转换为 PS域媒体面数据。 The EMGW 205 is an evolved media gateway, and can be divided into an e IM-MGW2051 module and an eMGW2052 module according to functions, and the two are respectively a PS domain logic module and a CS domain logic module, and the entity is externally connected to the PS domain entity and the CS domain entity respectively, Within, two logic modules are connected by an internal interface Nb. e IM-MGW2051 interacts with the PDN GW 202 via the SG i interface. If the call is an outgoing call, the eMGW2052 interacts with the peer entity through the Nb interface. Otherwise, if the call is an intra-office call, the eMGW2052 passes the Iu-CS/ The A interface interacts with the access network entity to exchange media plane data (this is not shown in the figure). When the IM-MGW2051 and the eMGW2052 interact with the media plane data through the internal interface Nb, the media plane data needs to be in the PS domain media. A conversion is made between the face data and the CS domain media surface data, that is, el M-MGW2051 is converted to CS domain media plane data when transmitting media plane data to eMGW2052, and conversely, eMGW2052 is converted to PS when transmitting media plane data to e IM_MGW2051. Domain media surface data.
PCRF203通过 Rx+接口与 EMSC204相连,用于接收 EMSC204下发的各种应 用层会话信息, 进而得到用户接入网络的限制、 用户当前正在进行的应用业 务及用户签约信息等, 然后制订相应的策略和计费规则, 并将制订的规则通 过 S7接口下发 PDN GW202执行。 The PCRF 203 is connected to the EMSC 204 through the Rx+ interface, and is configured to receive various application layer session information delivered by the EMSC 204, thereby obtaining restrictions on the user accessing the network, application services currently being performed by the user, and user subscription information, and then formulating corresponding policies and The charging rule is executed, and the established rule is sent to the PDN GW 202 through the S7 interface.
PDN GW202通过 S7接口与 PCRF203相连, 接收由 PCRF203制订下发的规 则并执行, 建立所需的媒体面承载; 通过 SG i接口与 e IM-MGW2051相连, 用 于对 PS域内的用户数据流进行过滤并向 e IM-MGW2051发送; 通过 S5接口与 The PDN GW 202 is connected to the PCRF 203 through the S7 interface, receives the rules and is executed by the PCRF 203, and establishes the required media plane bearer. The SG i interface is connected to the e IM-MGW2051 for filtering the user data stream in the PS domain. And send to e IM-MGW2051; through S5 interface
S-GW207相连。 The S-GW 207 is connected.
S-GW207为演进网络的服务网关, MME209为演进网络的核心网控制面实 体, SGSN208为 2G/ 3G 网络的核心网控制面实体并具有用户面实体的功能, 这三个实体功能及其与相邻实体的接口在现有标准中均有描述, 本处不再赘 述。 The S-GW 207 is a serving gateway of the evolved network, the MME 209 is a core network control plane entity of the evolved network, and the SGSN 208 is a core network control plane entity of the 2G/3G network and has the function of a user plane entity, and the three entity functions and their phases The interfaces of neighboring entities are described in the existing standards, and will not be described here.
图 3 所示为第一种网络架构当 UE 位于拜访网络且用户业务 Loca l
Breakout时的网络组成结构, 在这种场景下, HSS 306位于归属网络, 其余所 有模块均为位于拜访网络中的功能实体, 且其中各部分连接关系与功能均与 图 2所述相同, 此处不再赘述。 Figure 3 shows the first network architecture. When the UE is on the visited network and the user service Loca l The network structure of the breakout network. In this scenario, the HSS 306 is located in the home network, and all other modules are functional entities located in the visited network, and the connection relationships and functions of the parts are the same as those described in FIG. 2, where No longer.
图 4所示为第一种网络架构当 UE位于拜访网络且用户业务 Home-Routed 时的网络组成结构, 在这种场景下, HSS406和 PDN GW402位于归属网络, 网 络中还包含归属网络中的 H-PCRF4031 , H-PCRF4031 和拜访网络中的 V-PCRF4032通过接口 S9通讯, 其余所有实体均为位于拜访网络中的功能实 体, 且其中各部分连接关系与功能均与图 2所述相同, 此处不再赘述。 Figure 4 shows the network structure of the first network architecture when the UE is located in the visited network and the user service is Home-Routed. In this scenario, the HSS 406 and the PDN GW 402 are located in the home network, and the network also includes the H in the home network. - PCRF4031, H-PCRF4031 and V-PCRF4032 in the visited network communicate through interface S9, all other entities are functional entities located in the visited network, and the connection relationships and functions of each part are the same as described in Figure 2, where No longer.
从以上描述可以得出, 第一种网络架构具有如下特点: It can be concluded from the above description that the first network architecture has the following characteristics:
1、 该架构引入了新功能实体 eMSC , 其具有电路域传统 MSC-Server的功 能, 同时还具备与 PCC系统的接口, 因此其功能类似于 IMS域中的代理呼叫 服务器控制功能(Proxy Ca l l Server Cont ro l Func t ion , P-CSCF ) , 可以 通过 Rx+接口触发建立专有 GBR承载(模拟电路域业务的分组域承载) , 用 以传输语音呼叫媒体流, 从而使语音流从 UE到 PDN GW间的传输得到 QoS保 障; 1. The architecture introduces a new functional entity eMSC, which has the functions of a traditional MSC-Server in the circuit domain and also has an interface with the PCC system, so its function is similar to the proxy call server control function in the IMS domain (Proxy Ca ll Server) Cont ro l Func t ion , P-CSCF ) , can trigger the establishment of a proprietary GBR bearer (packet domain bearer of analog circuit domain service) through the Rx+ interface to transmit the voice call media stream, so that the voice stream from the UE to the PDN GW The transmission between the two is guaranteed by QoS;
1、 语音呼叫的媒体面数据由 eMGW直接发送到 UE , 在 PS域内媒体面数 据将承载在通过 eMSC触发建立的 GBR承载 (模拟电路域业务的分组域承载) 上; 1. The media plane data of the voice call is directly sent by the eMGW to the UE, and the media plane data in the PS domain will be carried on the GBR bearer (the packet domain bearer of the analog circuit domain service) triggered by the eMSC;
3、 UE可以通过到 eMSC的接口 L1发送模拟 CS域的注册信令、 位置更新 消息、 切换消息以及语音呼叫信令等。 3. The UE may send registration signaling, location update message, handover message, and voice call signaling of the analog CS domain through the interface L1 to the eMSC.
可见, 该架构具有以下优点: As you can see, the architecture has the following advantages:
只需建立承载语音呼叫的信令面和数据面逻辑通路, EMSC 类似 IMS 域 P-CSCF实体, EMGW为通信对端实体, 可重用 IMS域呼叫架构; It is only necessary to establish a signaling plane and a data plane logical path for carrying a voice call, the EMSC is similar to the IMS domain P-CSCF entity, and the EMGW is a communication peer entity, and the IMS domain call architecture can be reused;
1 )对现有演进网络设备的改动很小,因此对现有 LTE/SAE系统影响最小; 2 )可重用 PCC系统, 对各个接口的改动较小; 1) The changes to the existing evolved network equipment are small, so the impact on the existing LTE/SAE system is minimal; 2) The PCC system can be reused, and the changes to each interface are small;
3 )通过固 E , 屏蔽 eMSC对 UE的移动性管理, 即: eMSC上不需要知道
UE所在的位置信息。 当然, 我们不排除 UE和 eMSC之间通过 I P层面的连接 时, 虽然 UE的 IP地址没有发生变化, 但由于 UE位置区的变换, 仍然会触发 引起 eMSC的重新选择过程, 即 eMSC需要获知 UE的物理位置信息。 3) By means of solid E, the eMSC is shielded from the mobility management of the UE, ie: the eMSC does not need to know Location information of the UE. Of course, we do not exclude the connection between the UE and the eMSC through the IP plane. Although the IP address of the UE does not change, due to the change of the location area of the UE, the eMSC reselection process is triggered, that is, the eMSC needs to know the UE. Physical location information.
实施例二 Embodiment 2
图 5示出了第二种网络架构当 UE位于归属网络时的网络组成结构,包括: FIG. 5 shows a network structure of a second network architecture when the UE is located in the home network, including:
PDN GW502 , PCRF503 , EMSC504 , EMGW505 , HSS506 , MME507 , S-GW508 和 SGSN509 , 其中 EMSC504进一步包括 eMGCF5041和 eMSC/VLR5042 , EMGW505 进一步包括 e I M-MGW5051和 eMGW5052。 其中各部分功能及相互间的连接关系 与实施例一中类似, 区别在于, EMSC504与 MME507之间通过 Gs+接口(该接口 类似于 2G/ 3G中的 Gs接口)相连,该接口用于在 EMSC504和 MME507之间交互 信令, 例如: 切换消息、 上报 UE位置消息或附着消息、 位置更新、 移动性管 理等控制面信令等, 还可以通过该接口交互语音呼叫控制信令, 此时, 当语 音呼叫控制信令在 UE501和 EMSC504间交互时, 语音呼叫控制信令可以通过 UE501和 MME507间的非接入层消息( Non-Acce s s S t ra tum, NAS )以及 MME507 与 EMSC504之间的 Gs+接口进行桥接。 PDN GW 502, PCRF 503, EMSC 504, EMGW 505, HSS 506, MME 507, S-GW 508 and SGSN 509, wherein EMSC 504 further includes eMGCF 5041 and eMSC/VLR 5042, and EMGW 505 further includes e I M-MGW 5051 and eMGW 5052. The functions of the parts and the connection relationship between them are similar to those in the first embodiment. The difference is that the EMSC 504 and the MME 507 are connected through a Gs+ interface (the interface is similar to the Gs interface in 2G/3G), and the interface is used in the EMSC 504 and The MME 507 exchanges signaling, such as: handover message, reporting UE location message or attached message, location update, mobility management, etc., and can also perform voice call control signaling through the interface. When the call control signaling is performed between the UE 501 and the EMSC 504, the voice call control signaling may pass through a non-access stratum message between the UE 501 and the MME 507 (Non-Acce ss Node, NAS) and a Gs+ interface between the MME 507 and the EMSC 504. Bridge.
EMSC504通过接口 C与 HSS506相连, 用于从 HSS506请求用户身份、 位 置数据和过滤策略信息等 CS 域相关信息, 同时根据接收到的通过丽 E 和 EMSC504之间的 Gs+接口发送的控制信令, 通过 Mn接口控制 e IM-MGW5051建 立 UE和 e lM - MGW间的媒体流关联。 该 Gs+接口也可仅仅用作转发 UE从 PS 域切换到 CS域间的切换信令。 The EMSC 504 is connected to the HSS 506 through the interface C, and is configured to request CS domain related information such as user identity, location data, and filtering policy information from the HSS 506, and according to the received control signaling sent through the Gs+ interface between the MN and the EMSC 504. The Mn interface controls the e IM-MGW 5051 to establish a media stream association between the UE and the e lM - MGW. The Gs+ interface can also be used only as a handover signaling for forwarding UEs from the PS domain to the CS domain.
S-GW为演进网络的服务网关,丽 E为演进网络的核心网控制面实体, SGSN 为 2G/ 3G网络的核心网控制面实体并具有用户面实体的功能, 这三个实体功 能及其与相邻实体的接口在现有标准中均有描述, 本处不再赘述。 The S-GW is the service gateway of the evolved network, the MN is the core network control plane entity of the evolved network, and the SGSN is the core network control plane entity of the 2G/3G network and has the function of the user plane entity. The interfaces of adjacent entities are described in the existing standards, and will not be described here.
图 6 所示为第二种网络架构当 UE 位于拜访网络且用户业务 Loca l Breakou t时的网络组成结构, 图 7所示为第二种网络架构当 UE位于拜访网 络且用户业务 Home-Routed时的网络组成结构, 与实施例一类似, 这两种情
况与图 5所述网络架构的关系与实施例一中各图间关系相同, 本领域技术人 员完全可以根据实施例一中的描述合理导出, 故此处不再赘述。 Figure 6 shows the network structure of the second network architecture when the UE is located on the visited network and the user service Loca l Breakout. Figure 7 shows the second network architecture. When the UE is located on the visited network and the user service is Home-Routed. Network composition, similar to the first embodiment, these two situations The relationship between the network architecture and the network architecture in FIG. 5 is the same as that in the first embodiment. Those skilled in the art can reasonably derive the description according to the description in the first embodiment, and therefore no further details are provided herein.
从以上描述可以看出, 第二种网络架构具有如下特点: As can be seen from the above description, the second network architecture has the following characteristics:
1)引入了新功能实体 eMSC , 其具有电路域传统 MSC-Server 的功能, 同 时还具备与 PCC系统的接口, 因此其类似于 IMS域中的 P-CSCF功能实体, 可 以通过 Rx+接口触发建立专有 GBR承载(模拟电路域业务的分组域承载) , 用以传输语音呼叫媒体流, 从而使语音流从 UE到 PDN GW间的传输得到 QoS 保障; 1) Introducing a new functional entity eMSC, which has the function of the traditional MSC-Server in the circuit domain, and also has an interface with the PCC system, so it is similar to the P-CSCF functional entity in the IMS domain, and can be triggered by the Rx+ interface. There is a GBR bearer (the packet domain bearer of the analog circuit domain service) for transmitting the voice call media stream, so that the voice stream is guaranteed by the QoS between the UE and the PDN GW;
2)语音呼叫的媒体面数据由 eMGW直接发送到 UE , 在 PS域媒体面数据将 承载在通过 eMSC触发建立的 GBR承载上; 2) The media plane data of the voice call is directly sent by the eMGW to the UE, and the data in the PS domain media plane is carried on the GBR bearer triggered by the eMSC;
3) UE可以建立到 eMSC间的逻辑通道 /接口, 用以进行模拟 CS域的注册 和发送语音呼叫信令等, 比如: 可以通过建立 UE和 eMSC之间的专有信令面 承载实现该逻辑通道 /接口,则可以通过 IP连通性发送 CS控制面信令;这时, 丽 E和 eMSC之间的 Gs+接口仅用做转发切换消息时使用 . 3) The UE may establish a logical channel/interface between the eMSCs for performing the registration of the analog CS domain and transmitting voice call signaling, for example: the logic may be implemented by establishing a dedicated signaling plane bearer between the UE and the eMSC. Channel/interface, CS control plane signaling can be sent through IP connectivity; at this time, the Gs+ interface between MN and eMSC is only used for forwarding switching messages.
4)引入固 E和 eMSC间的接口 G s+ , 以传递附着消息、 位置更新消息、 切 换消息等。 4) Introduce the interface G s+ between the solid E and the eMSC to deliver the attached message, the location update message, the switch message, and the like.
该架构具有以下优点: This architecture has the following advantages:
1)当 Gs +接口仅在切换过程中使用时, 只需建立承载语音呼叫的信令面 和数据面逻辑通路, eMSC类似 IMS域 P-CSCF实体, MGW为通信对端实体, 可 重用 IMS域呼叫架构; 1) When the Gs+ interface is only used in the handover process, only the signaling plane and the data plane logical path carrying the voice call need to be established, the eMSC is similar to the IMS domain P-CSCF entity, the MGW is the communication peer entity, and the IMS domain can be reused. Call architecture
2)可重用 PCC系统, 对各个接口的改动较小; 2) Reusable PCC system, with minor changes to each interface;
3)当 Gs +接口仅在切换过程中使用时, 通过丽 E , 可屏蔽 eMSC对 UE的 移动性管理; 3) When the Gs+ interface is only used during the handover process, the mobility management of the eMSC can be blocked by the EMSC;
4)当 Gs+接口还用来做为移动性管理接口时, 不需要建立 UE和 eMSC间 CS域呼叫的信令面通道(如该接口用来传递 UE模拟的 CS域附着, 呼叫等各 种电路域业务的信令, 并可用做传递切换消息时使用) ;
5)当 Gs+接口还用来做为移动性管理接口时, 可重用目前 TS23. 060中关 于联合附着、 联合位置更新的流程。 4) When the Gs+ interface is also used as the mobility management interface, there is no need to establish a signaling plane channel for the CS domain call between the UE and the eMSC (for example, the interface is used to transmit the UE simulated CS domain attachment, call, etc. Signaling of domain services, and can be used when delivering handover messages); 5) When the Gs+ interface is also used as a mobility management interface, the current process of joint attachment and joint location update in TS23.060 can be reused.
实施例三 Embodiment 3
图 8所示为第三种网络架构下当 UE位于归属网络时的网络组成结构, 包 括: Figure 8 shows the network structure of the UE when the UE is located in the home network in the third network architecture, including:
PCRF803 , EMSC804 , EMGW805 , HSS806 , MME807 , S-GW808和 SGSN809 , 其中 EMSC804进一步包括 eMGCF8041和 eMSC/VLR8042 , EMGW805进一步包括 eIM-MGW805 eMGW8052和 PDN GW802 o PCRF803, EMSC804, EMGW805, HSS806, MME807, S-GW808 and SGSN809, which further comprises eMGCF8041 EMSC804 and eMSC / VLR8042, EMGW805 further comprising eIM-MGW805 eMGW8052 and PDN GW802 o
其中, eMGW8052中包括 PDN GW802实体, 分别与 S-GW808及 PCRF803相 连, 在 EMGW805 内部, PDN GW802还与 eIM-MGW8051通过 SGi接口相连, 用 于保证媒体面承载通路的连通。 所述 PDN GW802与与实施例一、 二中单独的 PDN GW作用相同, 只不过本实施例将 PDN GW集成到 EMGW805当中, PDN GW802 通过 S7+接口与 PCRF803相连, 接收由 PCRF803制订下发的策略并执行, 建 立所需的媒体面承载, 通过 SG i接口与 eIM-MGW8051相连, 对 PS域内的用户 数据流进行过滤并向 e IM-MGW8051发送。 The eMGW8052 includes a PDN GW 802 entity, which is connected to the S-GW 808 and the PCRF 803 respectively. Within the EMGW 805, the PDN GW 802 is also connected to the eIM-MGW8051 through the SGi interface, so as to ensure connectivity of the media plane bearer path. The PDN GW 802 is the same as the PDN GW in the first embodiment and the second embodiment, except that the PDN GW is integrated into the EMGW 805, and the PDN GW 802 is connected to the PCRF 803 through the S7+ interface, and receives the policy issued by the PCRF 803. Execute, establish the required media plane bearer, connect to the eIM-MGW8051 through the SG i interface, filter the user data stream in the PS domain and send it to the e IM-MGW8051.
除此之外, 所有模块的连接关系、 工作方式及功能等均与实施例二当 UE 位于归属网络时的网络组成结构相同, 此处不再赘述。 In addition, the connection structure, the working mode, and the functions of all the modules are the same as those of the second embodiment when the UE is located in the home network, and details are not described herein.
从以上分析可以看出, 第三种网络架构具有如下特点: As can be seen from the above analysis, the third network architecture has the following characteristics:
引入了新功能实体 eMSC, 其具有电路域传统 MSC-Server 的功能, 同时 还具备与 PCC系统的接口, 因此其角色类似于 IMS域中的 P-CSCF功能实体, 可以通过 Rx+接口触发建立专有 GBR承载, 用以传输语音呼叫媒体流, 从而 使语音流从 UE到 PDN GW间的传输得到 QoS保障; A new functional entity eMSC is introduced, which has the function of the traditional MSC-Server in the circuit domain, and also has an interface with the PCC system. Therefore, its role is similar to the P-CSCF functional entity in the IMS domain, and can be triggered to be established through the Rx+ interface. The GBR bearer is used to transmit the voice call media stream, so that the voice stream is secured by the QoS between the UE and the PDN GW;
引入新功能实体 eMGW, 做为用户语音呼叫的锚点, 类似 PS域 PDN GW, 具有与 S-GW间的 S5+接口; The new functional entity eMGW is introduced as an anchor for the user's voice call, similar to the PS domain PDN GW, having an S5+ interface with the S-GW;
语音呼叫的媒体面数据由 eMGW直接发送到 UE, 在 PS域媒体面数据将承 载在通过 eMSC触发建立的 GBR承载上;
引入丽 E和 eMSC间的接口 Gs+ , 以传递附着消息、 位置更新消息、 切换 消息等; The media plane data of the voice call is directly sent by the eMGW to the UE, and the data in the PS domain media plane is carried on the GBR bearer triggered by the eMSC. Introducing an interface Gs+ between the MN and the eMSC to deliver an attach message, a location update message, a handover message, and the like;
在切换时, eMSC在 PS域内具有 MME的角色, 此时需要丽 E注册自身地 址到 eMSC; At the time of handover, the eMSC has the role of the MME in the PS domain, and at this time, the EI needs to register its own address to the eMSC;
eMSC可以通过 Gs+接口获知 UE的位置信息; The eMSC can learn the location information of the UE through the Gs+ interface.
UE通过建立的逻辑通道模拟 CS域的注册, 发送语音呼叫信令或通过信 令面发送注册, 呼叫信息; The UE simulates the registration of the CS domain through the established logical channel, sends voice call signaling or sends registration and call information through the signaling plane;
PDN-GW功能集成于 EMGW中, UE附着时, MME需要根据签约数据(比如: 缺省 APN )直接选择这个 PDN GW; 当存在多 APN的情况下, 需要通过一个特 殊标识(可以是类似 APN的特殊标识)来选择 PDN GW; The PDN-GW function is integrated in the EMGW. When the UE is attached, the MME needs to directly select the PDN GW according to the subscription data (for example, the default APN). When there are multiple APNs, the MME needs to pass a special identifier (which may be similar to the APN). Special identification) to select PDN GW;
以上提到的丽 E选择 PDN - GW实体的情况时, 不仅仅考虑在该架构下可 以使用, 在本专利的其它架构下也可适用。 这样, MME 可以选择一个更合适 的 PDN - GW来满足更好的承载服务需求, 选择的条件可以参考用户的签约数 据, 运营商的偏好, 设备的负载, 网络的拓朴等, 但不局限这些方式。 The above mentioned case of selecting a PDN-GW entity is not only considered to be usable under this architecture, but also applicable under other architectures of this patent. In this way, the MME can select a more suitable PDN-GW to meet better bearer service requirements. The selected conditions can refer to the user's subscription data, the operator's preference, the device load, the network topology, etc., but not limited to these. the way.
引入 UE和 eMSC间的 L 1接口, 用以传递模拟 CS域的呼叫信令, 但该框 架下该接口可以省去, UE和 eMSC间的 CS域呼叫信令可以通过 UE和固 E间 的 NAS消息, 由 MME桥接到 eMSC。 The L1 interface between the UE and the eMSC is introduced to transmit the call signaling of the simulated CS domain, but the interface can be omitted in the framework, and the CS domain call signaling between the UE and the eMSC can pass through the NAS between the UE and the solid E. The message is bridged by the MME to the eMSC.
该架构具有以下优点: This architecture has the following advantages:
EMGW与 PDN GW合一, 直接做为用户面语音数据锚点, 可实现更好的 QoS 保证。 The EMGW is integrated with the PDN GW and directly acts as a user-side voice data anchor to achieve better QoS guarantee.
实施例四 Embodiment 4
图 9所示为第四种网络架构当 UE位于归属网络时的网络组成结构,包括: PDN GW902 , PCRF903 , EMSC904 , EMGW905 , HSS906 , MME907 , S-GW908 和 SGSN909此外, 该架构中的 Gs+接口并非必需的接口。 其中各部分功能及 相互间的连接关系与实施例一或二类似, 区别在于: 在 EMSC和 PDN GW之间 引入 I u-CP-C s +接口, 在 eMGW和 PDN GW之间引入 I u-UP-C s +接口, 所以 PDN
GW扮演了类似 RNC的角色, 且 PDN-GW和 eMGW间的 QoS保证可以釆用现有的 Iu-CS接口机制来实现。 对是否部署 PCC架构没有要求, 该架构下, 可通过 PCC系统建立 GBR承载, 也可通过目前 Iu - CS接口的方式建立承载。 这里我 们不局限 EMSC和 PDN - GW之间仅仅是 I u - CS接口。 在该架构下, EMSC可以 根据收到的电路域呼叫指令,直接控制 PDN - GW发起 CsoverPS业务的承载建 立。 另外, 该架构对现有演进网络所作改动很小。 Figure 9 shows the network structure of the fourth network architecture when the UE is located in the home network, including: PDN GW902, PCRF903, EMSC904, EMGW905, HSS906, MME907, S-GW908 and SGSN909. In addition, the Gs+ interface in the architecture is not Required interface. The functions of the various parts and the connection relationship between them are similar to those of the first or second embodiment. The difference is that: the Iu-CP-C s + interface is introduced between the EMSC and the PDN GW, and the Iu- is introduced between the eMGW and the PDN GW. UP-C s + interface, so PDN The GW plays an RNC-like role, and the QoS guarantee between the PDN-GW and the eMGW can be implemented using the existing Iu-CS interface mechanism. There is no requirement for deploying the PCC architecture. Under this architecture, the GBR bearer can be established through the PCC system, or the bearer can be established through the current Iu-CS interface. Here we do not limit the only I u - CS interface between EMSC and PDN-GW. Under the framework, the EMSC can directly control the bearer establishment of the CsoverPS service initiated by the PDN-GW according to the received circuit domain call instruction. In addition, the architecture makes minor changes to existing evolution networks.
在上述四种网络架构中, 当 UE和 EMSC之间通过 IP连通性进行信令交互 时, 根据控制面协议栈是否具有 IP Sec层可以分为两种, 具体包括: In the foregoing four network architectures, when the UE and the EMSC perform the signaling interaction through the IP connectivity, the IP Sec layer can be classified into two types according to the control plane protocol stack, including:
图 20为有 IP Sec层的控制面协议栈结构示意图, 该协议栈结构下接口 L1的控制面协议栈为图 20中所示 IP Sec层到 CC/SS/SMS层, 其承载于 IP 层之上。 20 is a schematic structural diagram of a control plane protocol stack with an IP Sec layer. The control plane protocol stack of the interface L1 in the protocol stack structure is an IP Sec layer to a CC/SS/SMS layer shown in FIG. 20, which is carried in an IP layer. on.
图 21为没有 IP Sec层的控制面协议栈结构示意图, 该协议栈结构下接 口 L1的控制面协议栈为图 21中所示 UDP层到 CC/SS/SMS层,其承载于 IP层 之上。 21 is a schematic diagram of a control plane protocol stack structure without an IP Sec layer. The control plane protocol stack of the interface L1 in the protocol stack structure is a UDP layer to CC/SS/SMS layer shown in FIG. 21, which is carried on the IP layer. .
需要说明的是, 由于该协议栈架构下的控制面协议栈承载于 IP层之上, 而接口 L1用于传输电路域信令, 因此所述控制面协议栈结构, 无论是否具有 IP Sec层, 都仅能用于前文所述的通过 IP连通性承载信令传输的网络架构。 It should be noted that, since the control plane protocol stack under the protocol stack architecture is carried on the IP layer, and the interface L1 is used to transmit circuit domain signaling, the control plane protocol stack structure, whether or not it has an IP Sec layer, Both can only be used for the network architecture transmitted by IP connectivity bearer signaling as described above.
在拥有 L1接口时,也可以直接封装 CC, SS, SM/MM/RANAP协议栈到一种隧 道协议中 (例如 GRE P遂道, GRE: Gener ic Rout ing Encapsula t ion, 通用路 由封装) , 然后将封装好的报文封装到 IP层面的报文中。 When the L1 interface is available, the CC, SS, SM/MM/RANAP protocol stack can be directly encapsulated into a tunneling protocol (for example, GRE: GRE: Gener ic Routing Encapsulation), and then The encapsulated packet is encapsulated into a packet at the IP level.
类似地, 在上述四种网络架构中, 媒体面数据都是承载在 IP层之上的, 根据用户面协议栈是否具有 IP Sec层也可以分为两种, 具体包括: Similarly, in the above four network architectures, media plane data is carried on the IP layer. According to whether the user plane protocol stack has an IP Sec layer, it can also be divided into two types, including:
图 11为有 IP Sec层的用户面协议栈的结构示意图, 该协议栈结构下媒 体面数据通过 RTP、 UDP和 IP Sec协议承载于 IP层之上。 FIG. 11 is a schematic structural diagram of a user plane protocol stack with an IP Sec layer. The media surface data of the protocol stack structure is carried on the IP layer through RTP, UDP, and IP Sec protocols.
图 23为没有 IP Sec层的用户面协议栈的结构示意图, 该协议栈结构下 媒体面数据通过 RTP和 UDP协议承载于 IP层之上。
需要说明的是, 由于电路域的媒体面数据都承载在 IP层之上,因此所述 用户面协议栈架构, 无论是否具有 IP Sec层, 都适用于前文所述的所有网络 架构。 FIG. 23 is a schematic structural diagram of a user plane protocol stack without an IP Sec layer. The media plane data of the protocol stack structure is carried on the IP layer by using RTP and UDP protocols. It should be noted that, since the media plane data of the circuit domain is carried on the IP layer, the user plane protocol stack architecture, whether or not having the IP Sec layer, is applicable to all network architectures described above.
此外, 需要特别说明的是, 对于本发明上述所有实施例中所述的 EMSC和 EMGW, 是本发明实施例中统一设定并使用的名称, 并不能仅局限于字面的理 解。 EMSC和 EMGW可以是独立设置的两个实体, 所述 EMSC和 EMGW之间可以 通过上述架构中 Mn和 Mc接口相连,也可以通过一个增强的接口,诸如 H. 248 这样的协议进行连接。 所述 EMSC和 EMGW也可以是功能上进行区分、 物理上 并未严格分离的单个实体。 同样地, 对于 EMSC中的 eMGCF和 eMSC/VLR而言, 它们可以是独立设置的两个实体, 组合完成所述 EMSC的功能, 也可以是功能 上进行区分、 物理上并未严格分离的单个实体; 同时, 对于 EMGW中的 elM - MGW和 eMGW而言, 它们可以是独立设置的两个实体, 组合完成所述 EMSC的 功能, 也可以是功能上进行区分、 物理上并未严格分离的单个实体, 且所述 EMSC与 EMGW不存在实体的对应关系, 即, 当所述 EMSC为单个实体时, 所述 EMGW可以为独立设置的两个实体。 因此应该理解, 对于该架构的任何等同、 替换的结构都应视为包含在本发明保护范围之内。 In addition, it should be noted that the EMSC and the EMGW described in all the foregoing embodiments of the present invention are names that are uniformly set and used in the embodiments of the present invention, and are not limited to the literal understanding. The EMSC and the EMGW may be two entities that are independently configured. The EMSC and the EMGW may be connected through the Mn and Mc interfaces in the above architecture, or may be connected through an enhanced interface such as H.248. The EMSC and EMGW may also be a single entity that is functionally differentiated and not physically separated. Similarly, for the eMGCF and the eMSC/VLR in the EMSC, they may be two entities that are independently configured to perform the functions of the EMSC in combination, or may be functionally distinguished and physically separated from each other. At the same time, for the elM-MGW and the eMGW in the EMGW, they may be two entities that are independently set, and the functions of the EMSC are combined to complete, or may be functionally distinguished and physically separated from each other. And the EMSC has no physical correspondence with the EMGW, that is, when the EMSC is a single entity, the EMGW may be two entities that are independently set. Therefore, it should be understood that any equivalent and alternative constructions of the architecture are considered to be included within the scope of the present invention.
在移动通信系统中, 用户要使用网络提供的业务, 必须首先附着到网络, 也就是用户注册到网络的过程, UE开机时所进行的附着过程称为初始附着。 3GPP的 TS23. 401-vl l O中 5. 3. 2章节给出了 UE在演进网络中的附着流程, 如图 10所示, 包括: In the mobile communication system, the user must use the service provided by the network, and must first attach to the network, that is, the process of the user registering to the network, and the attaching process performed when the UE is powered on is called initial attachment. 3GPP TS23. 401-vl l O 5. 3. 2 gives the UE attachment process in the evolved network, as shown in Figure 10, including:
步骤 1001 : UE向演进基站 eNodeB发起附着请求, 在该请求中将携带自 身的网络能力信息及 PDN地址信息,若 UE没有有效的系统架构演进临时移动 用户标识 ( SAE Temporary Mobi le Subscr iber Ident i ty, S-TMSI ) , 贝' J携 带国际移动用户标识 ( Interna t iona l Mobi le Subscr iber Ident i ty, IMSI ) , 否则携带 S-TMSI 以及同这个 S-TMSI相关联的跟踪区标识(Tracking Area Ident if ica t ion, TAI ) 。
步骤 1002: eNodeB根据预定机制选择一个 MME, 并将附着请求消息转发 到该 MME。 Step 1001: The UE initiates an attach request to the evolved base station eNodeB, where the request will carry its own network capability information and PDN address information, if the UE does not have a valid system architecture evolution temporary mobile subscriber identity (SAE Temporary Mobi le Subscr iber Ident i ty , S-TMSI), Bei' J carries the International Mobile Subscriber Identity (IMSI), otherwise carries the S-TMSI and the tracking area identifier associated with this S-TMSI (Tracking Area) Ident if ica t ion, TAI ). Step 1002: The eNodeB selects an MME according to a predetermined mechanism, and forwards an attach request message to the MME.
步骤 1003: 如果 UE使用 S-TMSI做标识, 且前次与本次附着的为不同的 MME时, 称前次附着的 MME为源 MME, 本次附着的为目标 MME, 则目标 MME向 源丽 E发送包含 S-TMS I及与之相关的 TA I的标识请求消息以请求 UE的 IMS I , 源匪 E将 UE的 IMSI与鉴权五元组包含在标识响应消息中返回目标固8。 如 果 UE在源固 E内不可知, 则源丽 E返回一个适当的错误原因。 Step 1003: If the UE uses the S-TMSI for the identity, and the MME that is attached to the previous MME is the source MME, the MME that is attached last time is the target MME, and the target MME is the source MME. E sends an identification request message including S-TMS I and its associated TA I to request the IMS I of the UE, and the source E includes the IMSI of the UE and the authentication quintuple in the identification response message to return the target 8. If the UE is not known in the source solid E, then the source E returns an appropriate error cause.
步骤 1004: 如果 UE在目标 MME和源 MME内均不可知, 则目标 MME向 UE 发送标识请求消息以请求 IMSI , UE将返回 IMSI。 Step 1004: If the UE is unknown in both the target MME and the source MME, the target MME sends an identifier request message to the UE to request IMSI, and the UE will return the IMSI.
步骤 1005 : 如果在网络中并不存在任何 UE的上下文信息, 则必须进行 鉴权流程, 否则该流程是可选的。 Step 1005: If there is no context information of any UE in the network, the authentication process must be performed, otherwise the process is optional.
步骤 1006 : 如果在目标丽 E存在该 UE激活的承载上下文, 则目标丽 E 将向网关 (包括 S-GW和 PDN GW )发送删除承载消息以删除这些承载上下文, 网关将返回删除承载响应消息。 Step 1006: If there is a bearer context activated by the UE in the target, the target E will send a delete bearer message to the gateway (including the S-GW and the PDN GW) to delete the bearer context, and the gateway will return a delete bearer response message.
步骤 1007: 如果丽 E自从上次去附着之后发生了改变, 或者本次附着为 该 UE第一次附着到网络, 则目标丽 E发送更新位置消息给 HSS。 Step 1007: If the MN has changed since the last detachment, or the attachment is the first time that the UE is attached to the network, the target EI sends an update location message to the HSS.
步骤 1008: HSS删除源 MME上的用户上下文。 Step 1008: The HSS deletes the user context on the source MME.
步骤 1009: 如果在源 MME上存在这个 UE的激活态的承载上下文, 则源 丽 E 向网关发送删除承载请求消息以删除这些承载上下文。 网关返回删除承 载响应消息给源 MME。 Step 1009: If there is a bearer context of the active state of the UE on the source MME, the source E sends a delete bearer request message to the gateway to delete the bearer context. The gateway returns to delete the bearer response message to the source MME.
步骤 1010: HSS向目标丽 E发送插入用户签约数据消息, 丽 E将对该 UE 在新跟踪区 ( Tracking Area , TA ) 下的存在性进行确认, 如果确认成功, 目 标丽 E将构建用户上下文并返回插入用户签约数据确认消息给 HSS。 Step 1010: The HSS sends an insert user subscription data message to the target MN. The MN will confirm the presence of the UE under the new tracking area (TA). If the confirmation is successful, the target MN will construct the user context and Returns the Insert User Contract Data Confirmation message to the HSS.
步骤 1011 : HS S向目标固 E发送更新位置确认消息。 Step 1011: The HS S sends an update location confirmation message to the target solid E.
步骤 1012: 目标丽 E根据 S-GW选择功能选择一个 S-GW, 并发送建立缺 省承载请求消息给选定的 S-GW, 该请求消息中包括: IMSI、 MME上下文 ID、
RAT类型、 缺省承载 QoS和 PDN地址信息, 其中的 RAT类型将在后续的 PCC 决策时使用。 Step 1012: The target E selects an S-GW according to the S-GW selection function, and sends a default bearer request message to the selected S-GW, where the request message includes: IMSI, MME context ID, RAT type, default bearer QoS, and PDN address information, where the RAT type will be used in subsequent PCC decisions.
步骤 101 3: S-GW在其 EPS承载表格中创建一个新条目并发送建立缺省承 载请求消息给 PDN GW, 该请求消息中包括: 用户面的 S-GW地址、 S-GW用户 面 TEID、 S-GW控制面 TEID、 RAT类型、 缺省承载 QoS、 PDN地址信息。 从该 步骤起直至步骤 1021 , S-GW将緩存任何来自 PDN GW的下行分组数据。 Step 101: The S-GW creates a new entry in the EPS bearer table and sends a default bearer request message to the PDN GW. The request message includes: an S-GW address of the user plane, an S-GW user plane TEID, S-GW control plane TEID, RAT type, default bearer QoS, PDN address information. From this step to step 1021, the S-GW will buffer any downstream packet data from the PDN GW.
步骤 1014 : 根据情况, 比如: 是否布置了 PCC系统, PDN GW可能需要同 PCRF交互以获取缺省 PCC规则, 该交互可能导致多个专用承载的建立。 Step 1014: Depending on the situation, for example: Whether the PCC system is deployed, the PDN GW may need to interact with the PCRF to obtain a default PCC rule, which may result in the establishment of multiple dedicated bearers.
步骤 1015 : PDN GW返回建立缺省承载响应消息给 S-GW, 该响应消息包 括: PDN GW用户面地址、 PDN GW用户面 TEID、 PDN GW控制面 TEID, 如果 PDN 地址信息被重新分配则在该响应消息中还将包含该地址信息。 Step 1015: The PDN GW returns a default bearer response message to the S-GW, where the response message includes: a PDN GW user plane address, a PDN GW user plane TEID, and a PDN GW control plane TEID, if the PDN address information is reassigned The address information will also be included in the response message.
步骤 1016 : S-GW返回建立缺省承载响应消息给目标丽 E , 该响应消息包 括: S-GW用户面地址、 S-GW用户面 TEID、 S-GW上下文 ID, 如果 PDN地址信 息被重新分配则在该响应消息中还将包含该地址信息。 Step 1016: The S-GW returns to establish a default bearer response message to the target MN, the response message includes: S-GW user plane address, S-GW user plane TEID, S-GW context ID, if the PDN address information is reallocated The address information will also be included in the response message.
步骤 1017 : 目标丽 E发送附着接受消息给 eNodeB,该消息包括: S-TMS I、 Step 1017: The target E sends an attach accept message to the eNodeB, and the message includes: S-TMS I,
TA列表, 如果 PDN地址信息被重新分配则在该响应消息中还将包含该地址信 息。 The TA list, if the PDN address information is reassigned, will also include the address information in the response message.
步骤 1018 : eNodeB发送无线承载建立请求消息给 UE , 同时, 附着接受 消息也将被一同发送给 UE。 Step 1018: The eNodeB sends a radio bearer setup request message to the UE, and the attach accept message is also sent to the UE.
步骤 1019 : UE 发送包含附着完成信息的无线承载建立响应消息给 eNodeB。 Step 1019: The UE sends a radio bearer setup response message including attach completion information to the eNodeB.
步骤 1020: eNodeB转发附着完成消息给目标丽 E。 SI控制面消息将包含 eNodeB的 TE ID和 eNodeB的地址用以进行 S1接口的下行数据传输。 在附着 接受消息之后, 一旦 UE获得了 PDN地址信息, 则 UE可以向 eNodeB发送上行 分组数据, 并被隧道传输到 S-GW和 PDN网关。 Step 1020: The eNodeB forwards the attach complete message to the target MN. The SI control plane message will contain the TE ID of the eNodeB and the address of the eNodeB for downlink data transmission on the S1 interface. After attaching the accept message, once the UE obtains the PDN address information, the UE may send the uplink packet data to the eNodeB and tunnel to the S-GW and the PDN gateway.
步骤 1021 : 目标 MME发送更新承载请求消息给 S-GW0
步骤 1022: S-GW返回更新承载响应消息到目标丽 E。 S-GW随后将发送緩 存在其上的下行分组数据。 Step 1021: The target MME sends an update bearer request message to the S-GW 0 Step 1022: The S-GW returns an update bearer response message to the target MN. The S-GW will then send the downstream packet data buffered thereon.
步骤 1023: 目标丽 E在接收到更新承载响应消息后,如果已经建立了 EPS 承载, 则目标丽 E可以发送包含 PDN GW地址的更新位置请求消息给 HSS, 以 为非 3GPP的接入做准备。 Step 1023: After receiving the update bearer response message, if the EPS bearer has been established, the target E can send an update location request message including the PDN GW address to the HSS to prepare for non-3GPP access.
步骤 1024: HSS存储 PDN GW地址并发送更新位置响应给目标丽6。 Step 1024: The HSS stores the PDN GW address and sends an update location response to the target MN6.
当系统引入 eMSC实体后, 为在 PS域继续使用 CS域的业务, UE也需要 附着到 eMSC。 在附着过程中, 网络侧需要获知 UE是否支持 CSoPS的能力, 从而在网络侧也支持 CSoPS能力的前提下进一步根据 UE是否支持 CSoPS的能 力判决是否在附着到 MME的同时进一步附着到 eMSC, 以便后续可以在 PS域 发起 CSoPS业务; 另一方面, 如果附着到 eMSC的请求是由 UE发起的, 则 UE 也需要获知网络侧是否支持 CSoPS的能力。对于网络侧获知 UE是否支持 CSoPS 的能力,可以通过 UE在附着请求消息中携带,也可以由网络侧保存 UE的 CSoPS 能力, 比如: 保存在 HSS中; 对于 UE获知网络侧是否支持 CSoPS的能力, 可 以通过网络侧向其覆盖范围内的 UE发送的系统广播消息携带该能力, 比如: 通过在系统广播消息中增力口 MIB (Master information block, 主信息块) 广播块来广播网络网络侧、 无线侧的能力, 还可以通过在 UE附着到丽 E之后 发送给 UE的 Attach Accept消息中携带网络侧是否支持 CSoPS的能力,此外, 如果 UE为类似 SIP终端的智能终端,则 UE知道其目前位于 LTE内需要向 eMSC 发起注册, 从而主动发起到 eMSC的附着过程。 After the system introduces the eMSC entity, the UE also needs to attach to the eMSC in order to continue to use the CS domain service in the PS domain. In the attaching process, the network side needs to know whether the UE supports the CSoPS capability, and further determines whether the UE supports the CSoPS capability according to whether the UE supports the CSoPS capability, and further attaches to the eMSC while attaching to the MME. The CSoPS service can be initiated in the PS domain. On the other hand, if the request attached to the eMSC is initiated by the UE, the UE also needs to know whether the network side supports CSoPS. The ability of the network to learn whether the UE supports CSoPS may be carried by the UE in the attach request message, or may be saved by the network side, such as: saving in the HSS; for the UE to know whether the network side supports CSoPS, The system broadcast message sent by the UE to the UE in its coverage may carry the capability, for example: by broadcasting a broadcast block in the system broadcast message MIB (Master information block) broadcast block to broadcast the network network side, wireless The ability of the side can also carry the ability of the network side to support CSoPS in the Attach Accept message sent to the UE after the UE is attached to the MN. In addition, if the UE is an intelligent terminal like a SIP terminal, the UE knows that it is currently located in the LTE. It is necessary to initiate registration with the eMSC, thereby actively initiating an attach procedure to the eMSC.
针对 UE初始附着到 eMSC, 不同的网络架构及应用场景下会有不同的初 始附着方式及流程, 流程中各消息的时序关系也会根据情况有所调整。 按照 附着到 eMSC的方式不同, 该附着过程大致分为以下几种: 一、 通过 IP层面 的连通性附着; 二、 联合附着; 三、 通过 PCC系统附着。 以下分别对上述几 种情况作具体说明: For the initial attachment of the UE to the eMSC, different initial architectures and processes will be used in different network architectures and application scenarios. The timing relationship of each message in the process will also be adjusted according to the situation. According to the way of attaching to the eMSC, the attaching process is roughly divided into the following types: 1. Attachment through connectivity at the IP level; 2. Joint attachment; 3. Attachment through the PCC system. The following is a detailed description of the above situations:
方式一:
当演进网络中不存在 Gs+接口时, 可以通过 IP层面的连通性进行 UE初 始附着到 eMSC的过程,具体可分为 UE通过缺省承载或专用承载来承载 CS控 制面信令以附着到 eMSC。 method one: When there is no Gs+ interface in the evolved network, the UE may be initially attached to the eMSC through the connectivity of the IP layer. Specifically, the UE may be configured to carry the CS control plane signaling by using the default bearer or the dedicated bearer to attach to the eMSC.
实施例五 Embodiment 5
图 11示出了通过 IP层面的连通性进行附着的方式下, UE通过缺省承载 附着到 eMSC的流程图, 其中包括以下步骤: Figure 11 is a flow chart showing the UE attaching to the eMSC by default bearer in the manner of attaching through the connectivity of the IP layer, including the following steps:
步骤 1101〜步骤 1117: 与图 10中步骤 1001〜步骤 1024相同, 如果 eMSC 的发现由网络侧进行, 则需在步骤 1112、 步骤 1113中将 eMSC的地址包含在 附着接受消息中发送给 UE。此外, eMSC的发现也可以由 UE进行,具体的 eMSC 发现机制会在下文中进一步说明。 Steps 1101 to 1117 are the same as steps 1001 to 1024 in FIG. 10. If the discovery of the eMSC is performed by the network side, the address of the eMSC is included in the attach accept message and sent to the UE in step 1112 and step 1113. In addition, the discovery of the eMSC can also be performed by the UE, and the specific eMSC discovery mechanism will be further explained below.
步骤 1118: UE收到步骤 1113中携带的消息后判断需要发起到 eMSC的附 着, 如果控制面协议栈中含有 IP Sec层, 则需要根据收到的 eMSC地址建立 UE到 eMSC之间的安全关联。 Step 1118: After receiving the message carried in step 1113, the UE determines that the attachment to the eMSC needs to be initiated. If the control plane protocol stack contains the IP Sec layer, the UE needs to establish a security association between the UE and the eMSC according to the received eMSC address.
步骤 1119: UE通过 IP连通性向目标 eMSC/VLR发送 IMSI附着请求消息, 其中 UE到 PDN GW这段承载为缺省承载。 Step 1119: The UE sends an IMSI attach request message to the target eMSC/VLR through the IP connectivity, where the UE to the PDN GW is the default bearer.
步骤 1120: 目标 eMSC/VLR向 HSS发送更新位置消息。 Step 1120: The target eMSC/VLR sends an update location message to the HSS.
步骤 1121 : 如果 eMSC/VLR发生改变, 则 HSS删除源 eMSC/VLR上的用户 上下文。 Step 1121: If the eMSC/VLR changes, the HSS deletes the user context on the source eMSC/VLR.
步骤 1122: HSS向目标 eMSC/VLR插入用户签约数据。 Step 1122: The HSS inserts user subscription data to the target eMSC/VLR.
步骤 1123: HSS向目标 eMSC/VLR发送更新位置确认消息。 Step 1123: The HSS sends an update location confirmation message to the target eMSC/VLR.
步骤 1124: 目标 eMSC/VLR向 UE发送 IMSI附着接受消息。 Step 1124: The target eMSC/VLR sends an IMSI Attach Accept message to the UE.
步骤 1125:如果 UE的 TMSI被重新分配,则 UE向目标 eMSC/VLR发送 IMSI 附着完成消息。 Step 1125: If the TMSI of the UE is reassigned, the UE sends an IMSI Attach Complete message to the target eMSC/VLR.
其中, eMSC发现机制主要有以下方式: Among them, the eMSC discovery mechanism mainly has the following methods:
1、 在附着请求消息或在发起建立承载的建立承载请求消息中, 在该请求 消息的信元协议配置选项 ( Protocol Conf igura t ion Opt ions , PC0选项)
中携带请求 eMSC地址的信息, PDN GW或丽 E通过解析 PC0选项中的参数来 查询 eMSC 地址, 例如配置 eMSC 的地址或 PDN GW通过动态主机配置协议 ( Dynamic Hos t Conf igura t ion Protocol , DHCP )查询机制获取 eMSC地址。 1. In the attach request message or in the setup bearer request message for initiating the setup bearer, the protocol protocol configuration option of the request message (Protocol Cong ionic input configuration, PC0 option) The information carrying the eMSC address is requested, and the PDN GW or the MN E queries the eMSC address by parsing the parameters in the PC0 option, for example, configuring the address of the eMSC or the PDN GW through the Dynamic Hosting Protocol (DHCP). The query mechanism obtains the eMSC address.
2、 在 HSS中为用户配置或保存 eMSC地址信息, 并由 HSS提供该信息给 丽8。 比如: HSS直接提供 eMSC 的地址, 即预先在网络规划时, 在一个丽 E 池内配置相应的 eMSC及其地址信息, 当 UE附着到网络后, 丽 E从 HSS中获 取到 eMSC地址, 当发生位置更新后, 如果丽 E发生了变换, HSS会提供相关 的更新后的目标 eMSC的地址信息。 2. The eMSC address information is configured or saved for the user in the HSS, and the information is provided by the HSS to the MN 8. For example, the HSS directly provides the address of the eMSC, that is, in the network planning, the corresponding eMSC and its address information are configured in a Li E pool. When the UE is attached to the network, the E E obtains the eMSC address from the HSS. After the update, if the E is changed, the HSS will provide the updated address information of the updated target eMSC.
3、 MME根据预设的机制, 比如: 根据位置信息、 运营商策略、 网络拓朴 或网络侧配置的丽 E和 eMSC间的对应关系等, 为 UE选择一个 eMSC , 并将其 保存在 MM context 中, 以便丽 E在切换时可以发现 eMSC。 其中, 两种可能 的方法为: A、 HSS 指示一个类似接入点名 (Acces s Point Name , APN ) 的 指示, 该指示携带是否允许漫游或位置区标识, 丽 E 根据这些信息去发现 eMSC; B、 为了实现 MME与 eMSC的移动性的关联, 丽 E可以根据目标侧 ID信 息, 通过配置查询发现控制实体 eMSC, 比如: MME将在请求 eMSC地址时携带 一个位置的标识, 例如在 DNS查询过程中, 在域名后增加一个位置区的标识, 以便可以查询到一个更合理的 eMSC。 3. The MME selects an eMSC for the UE according to a preset mechanism, for example, according to the location information, the operator policy, the network topology, or the correspondence between the E and eMSCs configured on the network side, and saves the MSC in the MM context. In order, the EMSC can be found when switching. The two possible methods are as follows: A. The HSS indicates an indication of an Access Point Name (APN), which carries whether to allow roaming or location area identification, and the E E discovers the eMSC according to the information; In order to implement the association between the MME and the mobility of the eMSC, the MN can perform the query to the control entity eMSC according to the target side ID information. For example, the MME will carry an identifier of the location when requesting the eMSC address, for example, in the DNS query process. Add a location area identifier after the domain name so that a more reasonable eMSC can be queried.
4、 UE 自行发起类似 DHCP或域名服务器(Doma in Name Server, DNS ) 的过程, 获取 eMSC的地址。 比如: 在 DHCP请求报文中扩展来指示获取 eMSC 的地址, 或通过分配给 UE 的移动台国际 ISDN 号码 ( Mobi le Sta t ion Interna t iona l ISDN Number , MS I SDN ) , 用面向电话呼叫的统一资源定位 ( Te lephone Uniform Resource Loca tor , Te l -URL ) 的格式在 DHCP中请求。 4. The UE initiates a process similar to a DHCP or Name Server (DNS) to obtain the address of the eMSC. For example, the DHCP request message is extended to indicate the address of the eMSC, or the mobile station's international ISDN number (MS I SDN) is allocated to the UE, and is used for a telephone call. The format of Te lephone Uniform Resource Loca tor (Te l -URL ) is requested in DHCP.
5、 网络向位于其覆盖范围内的 UE 发送广播, 其中包括网络是否支持 CSoPS的能力以及 eMSC地址。 5. The network sends a broadcast to the UE located within its coverage, including whether the network supports CSoPS capability and eMSC address.
6、 当 Gs+接口用在重定位时, MME需要重定位到一个正确的 eMSC, 可根 据目标小区标识 ( Target Ce l l ID )等参数判断一个正确的 eMSC, 但要确
保这个选择的 eMSC和 UE注册的 eMSC是同一个实体。 因此在这种情况下, 可 以将 eMSC的地址做为移动性管理上下文 (Mobility Management Context, 丽 context ) 的内容保存在丽 E中, 以便丽 E在重定位 eMSC的时候能够发现 正确的 eMSC。 6. When the Gs+ interface is used for relocation, the MME needs to relocate to a correct eMSC, and can determine a correct eMSC according to parameters such as the target cell identifier (Target Ce ll ID), but The eMSC that guarantees this selection is the same entity as the eMSC registered by the UE. Therefore, in this case, the content of the eMSC can be stored in the MN as the content of the mobility management context (Mobility Management Context), so that the MME can find the correct eMSC when relocating the eMSC.
7、 MME指示分组数据网网关(PDN GW, Packet Data Network GateWay ) 按现有技术中 P - CSCF的发现机制去发现 eMSC, 为了实现固 E与 eMSC的移 动性的关联,丽 E将携带一个位置的指示,如 TA等,请求 PDN GW去发现 eMSC, 并返回结果给 MME。 7. The MME instructs the packet data network gateway (PDN GW, Packet Data Network GateWay) to discover the eMSC according to the discovery mechanism of the P-CSCF in the prior art. In order to realize the mobility association between the solid E and the eMSC, the MN will carry a location. The indication, such as TA, requests the PDN GW to discover the eMSC, and returns the result to the MME.
实施例六 Embodiment 6
利用缺省承载来承载 CS控制面信令,其 QoS无法保障,比如时延比较大、 带宽难以保障等, 因此还可以釆用专有承载来承载 CS控制面信令的方法来完 成 UE附着到 eMSC的过程, 图 12示出了通过 IP层面的连通性进行附着的方 式下, UE通过专有承载附着到 eMSC的流程图, 其中包括以下步骤: The default bearer is used to carry the CS control plane signaling, and the QoS cannot be guaranteed. For example, the delay is relatively large, and the bandwidth is difficult to guarantee. Therefore, the method of carrying the CS control plane signaling by using the dedicated bearer may be used to complete the UE attaching to the UE. The process of the eMSC, FIG. 12 shows a flow chart of the UE attaching to the eMSC through a dedicated bearer in the manner of attaching through the connectivity of the IP layer, which includes the following steps:
步骤 1201〜步骤 1211: 与图 10中步骤 1001—步骤 1016相同。 Steps 1201 to 1211: The same as steps 1001 to 1016 in Fig. 10.
步骤 1212: 建立用于承载 eMSC信令的专用承载, 该步骤将建立专用承 载的有线链路部分。 Step 1212: Establish a dedicated bearer for carrying eMSC signaling, this step will establish a dedicated bearer wired link portion.
步骤 1213: 目标 MME向 eNodeB发送附着接受消息,该消息包括: S-TMS I、 TA列表,如果 PDN地址信息被重新分配还将在该响应消息中包含该地址信息, 此外, 该消息中还进一步包括 eMSC地址以及专用承载参数。 Step 1213: The target MME sends an attach accept message to the eNodeB, where the message includes: S-TMS I, TA list, if the PDN address information is re-allocated, the address information is also included in the response message, and further, the message further Includes eMSC address and dedicated bearer parameters.
步骤 1214: eNodeB发送无线承载建立请求消息给 UE, 同时, 附着接受 消息也将被一同发送给 UE。 所述无线承载建立请求消息将包含 eMSC地址以 及专用承载参数。 Step 1214: The eNodeB sends a radio bearer setup request message to the UE, and the attach accept message is also sent to the UE. The radio bearer setup request message will contain the eMSC address and the dedicated bearer parameters.
步骤 1215〜步骤 1218: 与图 10中步骤 1019~1024相同, 同时还将进行专 用承载无线链路的建立。 Steps 1215 to 1218: The same as steps 1019 to 1024 in FIG. 10, and the establishment of a dedicated bearer radio link will also be performed.
步骤 1219: UE收到 1114步骤的消息后判断需要发起到 eMSC的附着, 如 果控制面协议栈中含有 IP Sec层, 则需要根据收到的 eMSC地址建立 UE到
eMSC的安全关联。 Step 1219: After receiving the message of step 1114, the UE determines that the attach to the eMSC needs to be initiated. If the control plane protocol stack contains the IP Sec layer, the UE needs to establish the UE according to the received eMSC address. The security association of the eMSC.
步骤 1220: UE通过 IP连通性向目标 eMSC/VLR发送 IMS I附着请求消息, 其中 UE到 PDN GW这段承载为前述步骤所建立的专用承载。 Step 1220: The UE sends an IMS I attach request message to the target eMSC/VLR through the IP connectivity, where the UE to the PDN GW is a dedicated bearer established in the foregoing step.
步骤 1221 : 目标 eMSC/VLR向 HSS发送更新位置消息。 Step 1221: The target eMSC/VLR sends an update location message to the HSS.
步骤 1222 : 如果 eMSC/VLR发生改变, 则 HSS删除源 eMSC/VLR上的用户 上下文。 Step 1222: If the eMSC/VLR changes, the HSS deletes the user context on the source eMSC/VLR.
步骤 1223: HSS向目标 eMSC/VLR插入用户签约数据。 Step 1223: The HSS inserts user subscription data into the target eMSC/VLR.
步骤 1224 : HSS向目标 eMSC/VLR发送更新位置确认消息。 Step 1224: The HSS sends an update location confirmation message to the target eMSC/VLR.
步骤 1225 : 目标 eMSC/VLR向 UE发送 IMS I附着接受消息。 Step 1225: The target eMSC/VLR sends an IMS I Attach Accept message to the UE.
步骤 1226 :如果 UE的 TMS I被重新分配,则 UE向目标 eMSC/VLR发送 IMS I 附着完成消息。 Step 1226: If the TMS I of the UE is reassigned, the UE sends an IMS I Attach Complete message to the target eMSC/VLR.
需要说明的是, 本流程中, eMSC的发现机制与实施例五中所述的方法相 同。 此外, 本流程中要建立承载 CS控制面信令的专有承载, 步骤 1212为专 有承载有线链路部分的建立, 步骤 121 3〜步骤 1218中除了缺省承载无线链路 部分的建立外, 还要建立专有承载无线链路部分。 It should be noted that, in this process, the discovery mechanism of the eMSC is the same as that described in the fifth embodiment. In addition, in this process, a dedicated bearer carrying CS control plane signaling is to be established, and step 1212 is to establish a part of the dedicated bearer wired link. In addition to the establishment of the default bearer radio link part in steps 121 3 to 1218, It is also necessary to establish a proprietary bearer wireless link portion.
上述 CS控制面专有承载的建立是由丽 E触发的,类似于演进网络中缺省 承载的建立方法, 除此之外, CS控制面专有承载建立的触发机制还包括以下 几种: The establishment of the CS bearer-specific bearer is triggered by the E-E, similar to the default bearer establishment method in the evolved network. In addition, the CS bearer-specific bearer establishment trigger mechanism includes the following:
1、 在附着过程中, 由 PDN GW触发自上而下的建立该专有承载以承载 CS 控制面信令。 1. During the attach process, the PDN GW triggers the top-down setup of the dedicated bearer to carry CS control plane signaling.
1、 在 UE附着到 MME之后, 在附着接受消息中携带 eMSC地址并由 UE发 起向该 eMSC附着的过程,首先通过缺省承载来承载 CS控制面信令向 eMSC发 起附着请求, 进而 eMSC通过 PCRF触发建立该专用承载, 当该专用承载建立 完成之后, CS控制面承载将由缺省承载转移到专用承载。 After the UE is attached to the MME, the eMSC address is carried in the attach accept message and the UE initiates the process of attaching to the eMSC. First, the default bearer is used to carry the CS control plane signaling to initiate the attach request to the eMSC, and then the eMSC passes the PCRF. The dedicated bearer is triggered to be established. After the dedicated bearer is established, the CS control plane bearer is transferred from the default bearer to the dedicated bearer.
3、 由 UE触发建立该专有承载, 类似于演进网络中由 UE触发的专有承载 建立过程。
方式二: 3. The UE is triggered to establish the dedicated bearer, which is similar to the proprietary bearer setup procedure triggered by the UE in the evolved network. Method 2:
当演进网络中存在 Gs+接口时, UE 初始附着到 丽 E 的同时初始附着到 eMSC, 也称联合附着, 并进一步根据是由 UE主动汇报 CSoPS的能力还是由网 络汇 CSoPS的能力而分成两种情况。 When there is a Gs+ interface in the evolved network, the UE initially attaches to the EMSC and is initially attached to the eMSC, which is also called joint attachment, and further divided into two cases according to whether the UE actively reports the CSoPS capability or the network sinks the CSoPS capability. .
实施例七 Example 7
如果 UE在附着请求消息中通过其中的参数 Attach Type表示 UE是否具 备 CSoPS的能力, 如是, 则进而由网络侧根据自身是否支持 CSoPS的能力判 断是否发起到 eMSC的附着过程, 相应流程如图 13所示, 包括以下步骤: 步骤 1301: UE向 eNodeB发起附着请求, eNodeB为 UE选择固 E实体, 并将该附着请求转发给相应的丽 E, 该附着请求消息中包括: UE的网络能力、 PDN地址、 Attach Type参数、 S-TMSI以及同这个 S-TMSI相关联的 TAI或者 IMSL Attach Type 参数用于向网络侧指示进行哪种类型的附着, 比如: 仅 附着到演进网络、在此前已经 IMSI附着的情况下附着到演进网络以及联合附 着到演进网络和 CS网络, 在本实施例中 UE将指示网络进行联合附着, 该参 数同时也表示 UE具备 CSoPS的能力。 If the UE indicates whether the UE has the CSoPS capability by using the parameter Attach Type in the attach request message, if yes, the network side determines whether to initiate the attach procedure to the eMSC according to whether the UE supports the CSoPS, and the corresponding process is as shown in FIG. The method includes the following steps: Step 1301: The UE initiates an attach request to the eNodeB, and the eNodeB selects a solid E entity for the UE, and forwards the attach request to the corresponding MN. The attach request message includes: the network capability and the PDN address of the UE. The Attach Type parameter, the S-TMSI, and the TAI or IMSL Attach Type parameter associated with the S-TMSI are used to indicate to the network side which type of attachment, for example: only attached to the evolved network, which has been attached to the IMSI before. In this case, the UE attaches to the evolved network and the joint network to the evolved network and the CS network. In this embodiment, the UE will instruct the network to perform joint attach, and the parameter also indicates that the UE has the capability of CSoPS.
步骤 1302〜步骤 1310: 与图 10中步骤 1002〜步骤 1011相同。 Steps 1302 to 1310: The same as steps 1002 to 1011 in Fig. 10.
步骤 1311: 网络侧进行自身是否支持 CSoPS能力的判断, 如果支持, 则 目标 MME向目标 eMSC/VLR发送位置更新请求以进行联合附着。 Step 1311: The network side determines whether it supports CSoPS capability. If supported, the target MME sends a location update request to the target eMSC/VLR for joint attach.
步骤 1312: 目标 eMSC/VLR向 HSS发送更新位置消息。 Step 1312: The target eMSC/VLR sends an update location message to the HSS.
步骤 1313: 如果 eMSC/VLR发生改变, 则 HSS删除源 eMSC/VLR的用户上 下文。 Step 1313: If the eMSC/VLR changes, the HSS deletes the user context of the source eMSC/VLR.
步骤 1314: HSS向目标 eMSC/VLR插入用户签约数据。 Step 1314: The HSS inserts user subscription data into the target eMSC/VLR.
步骤 1315: HSS向目标 eMSC/VLR发送更新位置确认消息。 Step 1315: The HSS sends an update location confirmation message to the target eMSC/VLR.
步骤 1316: 目标 eMSC/VLR向目标丽 E发送位置更新接受消息。 Step 1316: The target eMSC/VLR sends a location update accept message to the target.
步骤 1317〜步骤 1319: 建立缺省承载, 相关步骤与图 10中步骤 1012〜步 骤 1016相同。
步骤 1 320〜步骤 1 321: 流程与图 10步骤 1 017〜步骤 1018相同, 区别在 于, 在这两个步骤中, 将携带 UE是否已经成功联合附着到 eMSC的信息。 Steps 1317 to 1319: The default bearer is established, and the related steps are the same as steps 1012 to 1016 in FIG. Step 1 320 to Step 1 321: The procedure is the same as Step 1 017 to Step 1018 of FIG. 10, except that in these two steps, information about whether the UE has successfully joined to the eMSC is carried.
步骤 1 322〜步骤 1 325 : 流程与图 10步骤 1019〜步骤 1 024相同。 Step 1 322 to Step 1 325: The flow is the same as that of FIG. 10, Step 1019 to Step 1 024.
步骤 1 326: 如果 UE的 TMS I被重新分配, 则目标 MME将向目标 eMSC/VLR 发送 TMS I重新分配完成消息。 Step 1 326: If the UE's TMS I is reassigned, the target MME will send a TMS I Reallocation Complete message to the target eMSC/VLR.
需要说明的是, 本流程的 UE附着方式为联合附着方式, 因此需要知道目 标 eMSC的地址, eMSC的发现机制与前文所述相同。 此外, 步骤 1 311〜步骤 1 316为联合附着到 eMSC的过程, 步骤 1 317〜步骤 1 319为建立缺省承载的过 程, 两个过程并不具有严格的时序上的先后性, 本实施例中所描述的是先进 行联合附着再建立缺省承载, 但也可以先建立缺省承载再进行联合附着。 It should be noted that the UE attachment mode of the process is a joint attachment mode, so the address of the target eMSC needs to be known, and the discovery mechanism of the eMSC is the same as described above. In addition, step 1 311 to step 1 316 are processes for jointly attaching to the eMSC, and steps 1 317 to 1 319 are procedures for establishing a default bearer, and the two processes do not have strict timing sequence. In this embodiment, What is described is that the joint bearer is first established and then the default bearer is established, but the default bearer may be established first and then the joint attach is performed.
实施例八 Example eight
如果 UE在附着请求消息中不携带 UE是否具备 CSoPS能力的标识, 而是 在 UE附着到 MME之后由网络告知 UE该网络是否支持 CSoPS的能力, 进而由 UE根据自身是否具备 CSoPS的能力判断是否发起到 eMSC的初始附着流程, 则相应的流程图如图 14所示, 包括以下步骤: If the UE does not carry the CSoPS-capable identifier in the attach request message, but the UE notifies the UE whether the network supports the CSoPS capability after the UE attaches to the MME, and then the UE determines whether to initiate according to whether the UE has the CSoPS capability. To the initial attachment process of the eMSC, the corresponding flowchart is as shown in FIG. 14, and includes the following steps:
步骤 1401〜步骤 141 3: 流程与图 10中步骤 1001〜步骤 1016相同。 Steps 1401 to 141 3: The flow is the same as steps 1001 to 1016 in FIG.
步骤 1414 : 目标 MME向 eNodeB发送附着接受消息,该消息包括: S-TMS I、 TA列表, 如果 PDN地址信息被重新分配则在该消息中还将包含该地址信息, 此外, 如果网络侧支持 CSoPS的能力, 则将在该消息中包括该信息, 进一步 地, 如果 eMSC地址由网络侧来发现, 该消息中还将包括 eMSC地址。 Step 1414: The target MME sends an attach accept message to the eNodeB, where the message includes: S-TMS I, TA list, if the PDN address information is re-allocated, the address information is also included in the message, and if the network side supports CSoPS The capability will include the information in the message. Further, if the eMSC address is discovered by the network side, the message will also include the eMSC address.
步骤 1415 : eNodeB发送无线承载建立请求消息给 UE , 同时, 附着接受 消息也将被一同发送给 UE , 如果步骤 1414所述附着接受消息包含了网络具 备 CSoPS能力的标识和 /或 eMSC地址等信息, 则该步骤中也在附着接受消息 中包含相应信息。 Step 1415: The eNodeB sends a radio bearer setup request message to the UE, and the attach accept message is also sent to the UE. If the attach accept message includes the CSoPS-capable identifier and/or the eMSC address of the network, In this step, the corresponding information is also included in the attach accept message.
步骤 1416〜步骤 1419: 流程与图 1 0中步骤 1 019〜步骤 1024相同, 如果 Step 1416~Step 1419: The flow is the same as the step 1 0 019~step 1024 in Figure 10.
UE接收到步骤 1415所示消息后, 判断得知网络侧支持 CSoPS的能力, 且 UE
也具备 CSoPS的能力,则在步骤 1416〜步骤 1417中携带 IMSI附着到指定 eMSC 的请求信息。 After receiving the message shown in step 1415, the UE determines that the network side supports the CSoPS capability, and the UE If the CSoPS capability is also available, the request information of the IMSI attached to the designated eMSC is carried in steps 1416 to 1417.
步骤 1420: 目标 MME向目标 eMSC/VLR发送 IMSI附着请求消息。 Step 1420: The target MME sends an IMSI attach request message to the target eMSC/VLR.
步骤 1421: 目标 eMSC/VLR向 HSS发送更新位置消息。 Step 1421: The target eMSC/VLR sends an update location message to the HSS.
步骤 1422: 如果 eMSC/VLR发生改变, 则 HSS删除源 eMSC/VLR上的用户 上下文。 Step 1422: If the eMSC/VLR changes, the HSS deletes the user context on the source eMSC/VLR.
步骤 1423: HSS向目标 eMSC/VLR插入用户签约数据。 Step 1423: The HSS inserts user subscription data to the target eMSC/VLR.
步骤 1424: HSS向目标 eMSC/VLR发送更新位置确认消息。 Step 1424: The HSS sends an update location confirmation message to the target eMSC/VLR.
步骤 1425: 目标 eMSC/VLR向目标丽 E发送 IMSI附着接受消息,并由丽 E 转发给 UE。 Step 1425: The target eMSC/VLR sends an IMSI Attach Accept message to the target MN, and forwards it to the UE by MN.
步骤 1426: 如果 UE的 TMSI被重新分配, 则 UE经由目标 MME向目标 eMSC/VLR发送 IMSI附着完成消息。 Step 1426: If the TMSI of the UE is reassigned, the UE sends an IMSI Attach Complete message to the target eMSC/VLR via the target MME.
需要说明的是, 本流程中的 eMSC发现机制与前文所述相同。 It should be noted that the eMSC discovery mechanism in this process is the same as described above.
方式三: Method three:
网络中不存在 G s +接口, UE还可以通过 PCC系统附着到 eMSC。 There is no G s + interface in the network, and the UE can also attach to the eMSC through the PCC system.
实施例九 Example nine
在本实施例中, UE通过 NAS消息向丽 E发送请求附着到 eMSC的信息, 丽 E进而将该请求通过 GPRS隧道控制面协议 (GPRS Tunneling Protocol for Control plane, GTP-C ) 消息发送给 PDN GW, 再通过 PCC系统将该请求发送 给 eMSC。 在这种附着过程中, UE在附着请求消息中通过 Attach Type参数携 带 UE具备 CSoPS能力的标识,然后由网络侧根据自身是否具备 CSoPS的能力, 来判断是否发起到 eMSC的初始附着过程, 相应的流程如图 15所示, 包括以 下步骤: In this embodiment, the UE sends a request to the EMSC to send information to the eMSC through the NAS message, and the E further sends the request to the PDN GW through a GPRS Tunneling Protocol for Control Plane (GTP-C) message. The request is sent to the eMSC through the PCC system. In the attaching process, the UE carries the CSoPS-capable identifier of the UE by using the Attach Type parameter in the attach request message, and then the network side determines whether to initiate the initial attach process to the eMSC according to whether the UE has the capability of CSoPS, and correspondingly The process shown in Figure 15 includes the following steps:
步骤 1501: UE向 eNodeB发起附着请求, eNodeB为 UE选择固 E实体, 并将该附着请求转发给相应的丽 E, 该附着请求消息中包括: UE的网络能力、 PDN地址、 Attach Type参数、 S-TMSI以及同这个 S-TMSI相关联的 TAI或者
IMSI。 At tach Type 参数用于向网络侧指示进行哪种类型的附着, 比如: 仅 附着到演进网络、在此前已经 IMSI附着的情况下附着到演进网络以及联合附 着到演进网络和 CS网络, 在本实施例中 UE将指示网络进行联合附着, 该参 数同时也表示 UE具备 CSoPS的能力。 Step 1501: The UE initiates an attach request to the eNodeB, and the eNodeB selects a solid E entity for the UE, and forwards the attach request to the corresponding MN. The attach request message includes: the network capability, the PDN address, the Attach Type parameter, and the S of the UE. -TMSI and the TAI associated with this S-TMSI or IMSI. The At tach Type parameter is used to indicate to the network side which type of attachment is to be performed, for example: attaching only to the evolved network, attaching to the evolved network if the IMSI is attached before, and jointly attaching to the evolved network and the CS network, in this implementation In the example, the UE will instruct the network to perform joint attachment, and the parameter also indicates that the UE has the capability of CSoPS.
步骤 1502〜步骤 1510: 流程与图 10步骤 1003〜步骤 1011相同。 Step 1502 to Step 1510: The flow is the same as that of FIG. 10, step 1003 to step 1011.
步骤 1511 : 本步骤中, 在目标固 E发往 S-GW并进一步发送到 PDN GW的 建立缺省承载请求消息中携带 IMS I附着请求消息。 Step 1511: In this step, the IMS I attach request message is carried in the setup default bearer request message sent by the target E to the S-GW and further sent to the PDN GW.
步骤 1512: 本步骤中, 在 PDN GW向 PCRF发送的 PCRF交互消息中携带 IMSI附着请求消息。 Step 1512: In this step, the IMSI attach request message is carried in the PCRF interaction message sent by the PDN GW to the PCRF.
步骤 1513: PCRF向目标 eMSC/VLR发送 IMSI附着请求消息。 Step 1513: The PCRF sends an IMSI attach request message to the target eMSC/VLR.
步骤 1514: 目标 eMSC/VLR向 HSS发送更新位置消息。 Step 1514: The target eMSC/VLR sends an update location message to the HSS.
步骤 1515: 如果 eMSC/VLR发生改变, 则 HSS删除源 eMSC/VLR上的用户 上下文。 Step 1515: If the eMSC/VLR changes, the HSS deletes the user context on the source eMSC/VLR.
步骤 1516: HSS向目标 eMSC/VLR插入用户签约数据。 Step 1516: The HSS inserts user subscription data into the target eMSC/VLR.
步骤 1517: HSS向目标 eMSC/VLR发送更新位置确认消息。 Step 1517: The HSS sends an update location confirmation message to the target eMSC/VLR.
步骤 1518: 目标 eMSC/VLR向 PCRF发送 IMSI附着接受消息。 Step 1518: The target eMSC/VLR sends an IMSI Attach Accept message to the PCRF.
步骤 1519: PCRF向 PDN GW发送 PCRF交互确认消息, 同时携带 IMSI附 着接受消息。 Step 1519: The PCRF sends a PCRF interaction confirmation message to the PDN GW, and carries an IMSI attach accept message.
步骤 1520: 本步骤中, 在 PDN GW发往 S-GW并进一步发送到目标丽 E的 建立缺省承载确认消息中携带 IMS I附着接受消息。 Step 1520: In this step, the IMS I attach accept message is carried in the setup default bearer acknowledgement message sent by the PDN GW to the S-GW and further sent to the target MN.
步骤 1521 : 本步骤中, 在附着接受消息中包括: 表示不仅 UE附着到了 MME、 IMS I也附着到了 eMSC的信息。 Step 1521: In this step, the attach accept message includes: indicating that not only the UE is attached to the MME, but also the IMS I is attached to the eMSC.
步骤 1522: 本步骤中, 在无线承载建立请求消息中包括: 表示不仅 UE 附着到了隱、 IMSI也附着到了 eMSC的信息。 Step 1522: In this step, the radio bearer setup request message includes: indicating that not only the UE is attached to the implicit, but the IMSI is also attached to the eMSC.
步骤 1523〜步骤 1526: 与图 10中步骤 1019~1024相同。 Step 1523 to step 1526: The same as steps 1019 to 1024 in FIG.
步骤 1527: 如果 UE的 TMSI被重新分配, 则目标 MME向目标 eMSC/VLR
发送 TMS I重新分配完成消息。 Step 1527: If the TMSI of the UE is reassigned, the target MME to the target eMSC/VLR Send a TMS I Reassign Complete message.
需要说明的是, 本流程中的 eMSC发现机制与前文所述相同。 It should be noted that the eMSC discovery mechanism in this process is the same as described above.
在上述附着流程中, 都存在如何去发现一个最优的 PDN GW来承载 CS语 音呼叫的问题, 在实际应用中, 有关 PDN GW的选择有如下可能方法: In the above attach procedure, there is a problem of how to find an optimal PDN GW to carry CS voice calls. In practical applications, the following options are available for the selection of the PDN GW:
1 ) 当 eMSC完全做为一个上层实体时, 与 PDN GW无关, 仅需要保持 UE 和 eMSC的 IP层连通性; 1) When the eMSC is completely an upper layer entity, it has nothing to do with the PDN GW, and only needs to maintain the IP layer connectivity between the UE and the eMSC;
2 ) 附着时, 丽 E根据签约数据或 APN的指示能够查询到一个特定的 PDN 2) When attached, 丽 E can query a specific PDN according to the contract data or the APN indication.
GW, 这个 PDN GW和各 eMSC之间有更优的物理区域的配置, 或基于用户的签 约数据 HSS直接提供一个合适的 PDN GW的地址给 MME; GW, the PDN GW and each eMSC have a better physical area configuration, or based on the user's subscription data HSS directly provides an appropriate PDN GW address to the MME;
3 ) 当 mu l t i - APN存在时, UE发起呼叫时直接选择一个新的 PDN GW (不 同于缺省承载的 PDN GW ) , 并据此 PDN GW来建立专有承载以承载 CS控制面 信令。 3) When mu l t i - APN exists, the UE directly selects a new PDN GW (different from the default bearer PDN GW) when the UE initiates the call, and according to the PDN GW, establishes a dedicated bearer to carry the CS control plane signaling.
在上述附着流程中, 当 MME和 eMSC间存在接口时, 还存在如何选择一个 正确的丽 E来完成后续的切换流程的问题, 可能选择方法有: In the above attach procedure, when there is an interface between the MME and the eMSC, there is also a problem of how to select a correct MN to complete the subsequent handover process. Possible selection methods are:
1) 所有丽 E的功能一致, 可以确保执行统一的功能; 1) All Li E's functions are consistent, ensuring uniform functions are performed;
2 )在 eNodeB选择一个 MME后, 判断该 MME是否支持 CSoPS的能力, 如 果不支持可根据自身的配置参数 re - rout e到一个支持 CSoPS能力的丽 E上; 2) After the eNodeB selects an MME, it is determined whether the MME supports the CSoPS capability, and if it does not support re-rout e according to its own configuration parameter, it can be used to support a CSoPS capable E.
3 ) eNB上配置相关的参数, 来选择到一个正确的 MME , 即支持 CSoPS能 力的 MME。 3) Configure the relevant parameters on the eNB to select a correct MME, that is, the MME supporting CSoPS capability.
在向 eMSC附着的过程中, eMSC有可能会对 UE进行鉴权 (该操作在上述 附着实施例中均未示出), 比如: UE通过 I P连通性注册到 eMSC时, eMSC将 发起和 UE间的安全的认证以协商安全参数,则 eMSC可通知 UE后续不需要建 立 UE和 eMSC的安全关联。 In the process of attaching to the eMSC, the eMSC may authenticate the UE (the operation is not shown in the above-mentioned attachment embodiment). For example, when the UE registers with the eMSC through IP connectivity, the eMSC will initiate and inter-UE. The secure authentication to negotiate the security parameters, the eMSC can inform the UE that there is no need to establish a security association between the UE and the eMSC.
上述附着流程为初始附着流程, 即: UE开机时附着到网络的流程。 下面, 对已附着到网络的 UE由于移动导致其需要重新附着到新的 eMSC的场景进行 说明。
在 UE附着到 eMSC后, 若用户在 Idle状态下移动时, 有可能导致其服务 当前为 UE提供服务的 MME发生改变, 进而会导致 eMSC的改变, 为了应对这 种情况, 就需要进行 idle状态下的移动性管理, 也就是重新附着到新的目标 丽 E和目标 eMSC的过程。 根据网络架构可能存在的区别, 类似于初始附着流 程的划分方法, 可以分为有 Gs+接口情况下的 Idle状态下的移动性管理和没 有 Gs+接口情况下的 Idle状态下的移动性管理两种情况。 The above attaching process is an initial attaching process, that is, a process of attaching to the network when the UE is powered on. In the following, a description will be given of a scenario in which a UE that has been attached to a network needs to reattach to a new eMSC due to mobility. After the UE is attached to the eMSC, if the user moves in the Idle state, the MME whose service is currently serving the UE may be changed, which may cause the eMSC to change. In order to cope with this situation, the idle state is required. The mobility management, that is, the process of reattaching to the new target E and the target eMSC. According to the possible differences in the network architecture, the partitioning method similar to the initial attaching process can be divided into two cases: mobility management in the Idle state with the Gs+ interface and mobility management in the Idle state without the Gs+ interface. .
实施例十 Example ten
当网络架构中存在 Gs+接口时, 将进行联合位置更新, 本实施例以 丽 E 和 S-GW同时改变的情况为例进行说明, 其重附着流程如图 16所示, 包括以 下步骤: When there is a Gs+ interface in the network architecture, the joint location update will be performed. In this embodiment, the case where the E and S-GW are simultaneously changed is taken as an example. The reattachment process is as shown in FIG. 16, and includes the following steps:
1601: UE经由 eNodeB向目标丽 E发起跟踪区更新请求。 1601: The UE initiates a tracking area update request to the target MME via the eNodeB.
1602: 目标 MME向源 MME请求用户上下文。 1602: The target MME requests a user context from the source MME.
步¾ .1? 1604: 目标 MME向源 MME发送上下文确认消息。 Step 3:1? 1604: The target MME sends a context confirmation message to the source MME.
步¾ .1? 1605: 由于 S-GW发生改变, 目标 MME向目标 S-GW发送创建承载请 求消息, Step 3⁄4 .1? 1605: The target MME sends a create bearer request message to the target S-GW due to the change of the S-GW.
1606: 目标 S-GW与 PDN GW之间更新承载信息。 1606: Update the bearer information between the target S-GW and the PDN GW.
步¾ .1? 1607: 目标 S-GW向目标丽 E发送创建承载响应消息。 Step 3⁄4 .1? 1607: The target S-GW sends a Create Bearer Response message to the target.
步¾ .1? 1608: 目标 MME向 HSS发送更新位置消息。 Step 3⁄4 .1? 1608: The target MME sends an update location message to the HSS.
1609: HSS删除源 MME上的用户上下文。 1609: The HSS deletes the user context on the source MME.
1610: 源 MME向 S-GW发送删除承载请求消息以删除这些承载上下 文。 S-GW返回删除承载响应消息给源固6。 1610: The source MME sends a delete bearer request message to the S-GW to delete the bearer context. The S-GW returns a delete bearer response message to the source 6.
步骤 1611 : HSS向目标 MME插入用户签约数据。 Step 1611: The HSS inserts user subscription data into the target MME.
步骤 1612 : HS S向目标固 E发送更新位置确认消息。 Step 1612: The HS S sends an update location confirmation message to the target solid E.
步骤 161 3: 目标 MME向目标 eMSC/VLR发送位置更新请求以进行联合位 置更新。
步骤 1614 : 目标 eMSC/VLR向 HSS发送更新位置消息。 Step 161 3: The target MME sends a location update request to the target eMSC/VLR for joint location update. Step 1614: The target eMSC/VLR sends an update location message to the HSS.
步骤 1615 : 如果 eMSC/VLR发生改变, 则 HSS删除源 eMSC/VLR上的用户 上下文。 Step 1615: If the eMSC/VLR changes, the HSS deletes the user context on the source eMSC/VLR.
步骤 1616 : HSS向目标 eMSC/VLR插入用户签约数据。 Step 1616: The HSS inserts user subscription data into the target eMSC/VLR.
步骤 1617 : HSS向目标 eMSC/VLR发送更新位置确认消息。 Step 1617: The HSS sends an update location confirmation message to the target eMSC/VLR.
步骤 1618 : 目标 eMSC/VLR向目标丽 E发送位置更新接受消息。 Step 1618: The target eMSC/VLR sends a location update accept message to the target.
步骤 1619: 目标 MME向 UE发送跟踪区更新接受消息。 Step 1619: The target MME sends a tracking area update accept message to the UE.
步骤 1620: UE向目标 MME发送跟踪区更新完成消息。 Step 1620: The UE sends a tracking area update complete message to the target MME.
步骤 1621 : 如果 UE的 TMS I被重新分配, 则目标 MME向目标 eMSC/VLR 发送 TMS I重新分配完成消息。 Step 1621: If the TMS I of the UE is reassigned, the target MME sends a TMS I Reallocation Complete message to the target eMSC/VLR.
需要说明的是, 本方法釆用联合位置更新, 在处理过程中需要确定目标 eMSC的地址, eMSC的发现机制与前文所述方法相同。 It should be noted that the method uses joint location update, and needs to determine the address of the target eMSC in the process, and the discovery mechanism of the eMSC is the same as that described above.
此外, 本实施例是假定丽 E和 S-GW同时改变的情况, 实际应用中也可能 In addition, this embodiment assumes that Li E and S-GW are simultaneously changed, and may be used in practical applications.
S-GW并未发生改变, 此时对应的流程应为: 步骤 1605和步骤 1 607改为目标 丽 E向 S-GW通知 UE的服务丽 E实体发生了改变, 由 S-GW记录该变化并回复 响应消息, 该操作是为了后续对 I d l e状态下的 UE发起寻呼之用, 相应地, 不必再进行步骤 1606和步骤 161 0的操作, 其余部分均与前文所述相同。 The S-GW does not change. The corresponding process should be: Step 1605 and Step 1 607 are changed to target E. The S-GW notifies the UE that the service E entity has changed, and the change is recorded by the S-GW. The response message is sent for subsequent paging of the UE in the I dle state. Accordingly, the operations of step 1606 and step 1610 need not be performed, and the rest are the same as described above.
实施例十一 Embodiment 11
如果网络架构中不存在 Gs+接口时, 就需要通过 I P连通性来进行重附着 过程, 本实施例以 MME和 S-GW同时改变的情况为例进行说明, 这种情况下的 重附着流程如图 17所示, 包括以下步骤: If the Gs+ interface does not exist in the network architecture, the re-attachment process needs to be performed through IP connectivity. In this embodiment, the case where the MME and the S-GW are simultaneously changed is taken as an example. The re-attachment process in this case is as shown in the figure. 17, including the following steps:
步骤 1701〜步骤 1712: 与图 16步骤 1601〜步骤 1612相同, 在此过程中 要判断 eMSC是否发生变化, 并获得其地址。 Steps 1701 to 1712: The same as steps 1601 to 1612 of Fig. 16, in which it is judged whether the eMSC has changed and its address is obtained.
步骤 1 71 3 : 目标 MME向 UE发送跟踪区更新接受消息, 同时将新的 eMSC 地址反馈给 UE。 Step 1 71 3: The target MME sends a tracking area update accept message to the UE, and feeds back the new eMSC address to the UE.
步骤 1714 : UE向目标 MME发送跟踪区更新完成消息。
步骤 1715 : 如果控制面协议栈中含有 IP Sec层, 则 UE需要根据收到的 eMSC地址, 建立 UE到目标 eMSC之间的安全关联。 Step 1714: The UE sends a tracking area update complete message to the target MME. Step 1715: If the IP Sec layer is included in the control plane protocol stack, the UE needs to establish a security association between the UE and the target eMSC according to the received eMSC address.
步骤 1716 : UE通过 IP连通性向目标 eMSC/VLR发送位置区更新请求消息, 其中 UE到 PDN GW这段承载是此前为承载 CS控制面信令建立的承载, 该承载 可能是缺省承载也可能是专用承载。 Step 1716: The UE sends a location area update request message to the target eMSC/VLR through the IP connectivity, where the UE to the PDN GW is a bearer previously established for bearer CS control plane signaling, and the bearer may be a default bearer or may be Dedicated bearer.
步骤 1717 : 目标 eMSC/VLR向 HSS发送更新位置消息。 Step 1717: The target eMSC/VLR sends an update location message to the HSS.
步骤 1718 : 如果 eMSC/VLR发生改变, 则 HSS删除源 eMSC/VLR上的用户 上下文。 Step 1718: If the eMSC/VLR changes, the HSS deletes the user context on the source eMSC/VLR.
步骤 1719 : HSS向目标 eMSC/VLR插入用户签约数据。 Step 1719: The HSS inserts user subscription data to the target eMSC/VLR.
步骤 1720: HSS向目标 eMSC/VLR发送更新位置确认消息。 Step 1720: The HSS sends an update location confirmation message to the target eMSC/VLR.
步骤 1721 : 目标 eMSC/VLR向 UE发送位置区更新接受消息。 Step 1721: The target eMSC/VLR sends a location area update accept message to the UE.
步骤 1722 : UE向目标 eMSC/VLR发送位置区更新完成消息。 Step 1722: The UE sends a location area update complete message to the target eMSC/VLR.
需要说明的是, 本方法处理过程中需要确定 eMSC的地址, 其发现机制与 前文所述相同。此外,还需要补充说明的是,在 SAE中没有位置区(Loca t ion Area , LA ) 的概念, 在 TA发生变化时, UE可以触发一个逻辑的 LAU的过程, 或由网络侧实体通知 UE去做相关模拟 CS域的位置更新,以实现 eMSC的迁移。 eMSC上保存有 UE所在 TA的信息, 或保存有 UE所在 LA的信息, LA可从 TA 推导出。 eMSC将根据运营商的策略、 数据的配置等条件确定是否下发模拟的 TMS I给 UE。 New eMSC会根据 UE所在的位置关系、 标识等条件确定 o ld eMSC。 甚至 UE在位置更新消息中自行上 o ld eMSC的 ID。 It should be noted that the address of the eMSC needs to be determined during the processing of the method, and the discovery mechanism is the same as described above. In addition, it should be additionally noted that there is no concept of a location area (LA) in the SAE. When the TA changes, the UE may trigger a logical LAU process, or the network side entity notifies the UE to go. Perform location update of the associated analog CS domain to implement eMSC migration. The information of the TA where the UE is located is saved on the eMSC, or the information of the LA where the UE is located is saved, and LA can be derived from the TA. The eMSC determines whether to send the simulated TMS I to the UE according to the policy of the operator, the configuration of the data, and the like. The new eMSC determines o ld eMSC according to the location relationship, identity, and the like of the UE. Even the UE itself advertises the ID of the eMSC in the location update message.
此外, 本实施例是假定丽 E和 S-GW同时改变的情况, 实际应用中也可能 S-GW并未发生改变, 此时对应的流程应为: 步骤 1705和步骤 1707改为目标 丽 E向 S-GW通知 UE的服务丽 E实体发生了改变, 由 S-GW记录该变化并回复 响应消息, 该操作是为了后续对 Idle状态下的 UE发起寻呼之用, 相应地, 不必再进行步骤 1706和步骤 171 0的操作, 其余部分均与前文所述相同。 In addition, this embodiment assumes that the MN and S-GW are changed at the same time. In actual application, the S-GW may not be changed. In this case, the corresponding process should be: Step 1705 and Step 1707 are changed to target E-direction. The S-GW informs the UE that the service E entity has changed, and the S-GW records the change and replies with a response message, which is used for subsequent paging of the UE in the Idle state, and accordingly, no further steps are required. The operations of 1706 and step 171 0 are the same as described above.
在上述 I dle状态下移动性管理流程中, 与附着流程类似, 也存在如何去
发现一个最优的 PDN GW 以承载 CS 语音呼叫的问题、 发现一个最优的支持 CSoPS能力的丽 E的问题以及 eMSC可能需要对 UE进行鉴权的问题, 其方法 同附着流程类似, 此处不再赘述。 In the above mobility management process in the I dle state, similar to the attach process, there is also how to go The problem of finding an optimal PDN GW to carry CS voice calls, discovering an optimal CSoPS-capable problem, and eMSC may need to authenticate the UE, the method is similar to the attach procedure, here is not Let me repeat.
当用户不再使用网络服务, 例如关机或电池电量用尽, 或网络通知用户 不能继续接入网络时, 将由用户或网络发起去附着流程。 When the user no longer uses the network service, such as shutdown or the battery is exhausted, or the network notifies the user that the network cannot continue to be connected, the detach process will be initiated by the user or the network.
根据触发去附着业务的实体的不同, 可以将去附着过程分为两种情况, 即: UE发起的去附着过程和网络侧发起的去附着过程。 According to different entities that trigger the detachment service, the detachment process can be divided into two situations, namely, the detachment process initiated by the UE and the detachment process initiated by the network side.
首先讨论由 UE发起的去附着过程: 根据网络架构的不同, 与前文的分类 标准类似, 可以根据网络中是否存在 Gs+接口, 把去附着过程进一步分为两 种情况: 有 Gs+接口时釆用联合去附着的方式; 没有 Gs+接口时通过 IP连通 性先从 eMSC去附着进而从演进网络去附着。 Firstly, the detachment process initiated by the UE is discussed. According to the network architecture, similar to the previous classification criteria, the detachment process can be further divided into two cases according to whether there is a Gs+ interface in the network: When there is a Gs+ interface, the association is used. The way to attach; when there is no Gs+ interface, the IP connectivity is first removed from the eMSC and then detached from the evolved network.
实施例十二 Example twelve
如果网络中存在 Gs+接口, 则釆用联合去附着的方式, 具体去附着流程 如图 18所示, 包括以下步骤: If there is a Gs+ interface on the network, the joint de-attach method is used. The specific detach process is as shown in Figure 18. The following steps are included:
步骤 1801 : UE向 MME发送去附着请求消息。 Step 1801: The UE sends a detach request message to the MME.
步骤 1802 : 丽 E向 S-GW发送删除承载请求消息, S-GW进而向 PDN GW发 送删除承载请求消息。 Step 1802: The MN sends a delete bearer request message to the S-GW, and the S-GW further sends a delete bearer request message to the PDN GW.
步骤 1803 : 如果网络中布置了 PCC架构, 则 PDN GW同 PCRF进行交互, 通知 PCRF承载已经释放, 否则直接执行步骤 1804。 Step 1803: If the PCC architecture is configured in the network, the PDN GW interacts with the PCRF to notify the PCRF that the bearer has been released. Otherwise, step 1804 is directly performed.
步骤 1804 : PDN GW向 S-GW发送删除承载响应消息, S-GW进而向 MME发 送删除承载响应消息。 Step 1804: The PDN GW sends a delete bearer response message to the S-GW, and the S-GW further sends a delete bearer response message to the MME.
步骤 1805 : 丽 E向 eMSC/VLR发送 IMS I去附着请求消息。 Step 1805: The MN sends an IMS I detach request message to the eMSC/VLR.
步骤 1806: eMSC/VLR向 MME发送 IMS I去附着接受消息。 Step 1806: The eMSC/VLR sends an IMS I detach accept message to the MME.
步骤 1807 : 如果不是由于 UE电量用尽所引起的关机, 则 MME向 UE发送 去附着接受消息, 否则直接执行步骤 1808。 Step 1807: If the shutdown is not caused by the exhaustion of the UE, the MME sends a detach accept message to the UE, otherwise step 1808 is directly performed.
步骤 1 808 : MME发起信令连接释放过程。
需要说明的是, 步骤 1802〜步骤 1804为删除承载的过程, 步骤 1805〜步 骤 1806为 IMSI去附着过程, 这两个过程在时序上并无严格的先后, 也没有 顺序上的相互关联性。 可以如实施例中所述删除承载过程在前, IMSI去附着 过程在后, 也可能是 IMSI去附着过程在先, 删除承载过程在后, 还可能是两 个过程同时进行。 Step 1 808: The MME initiates a signaling connection release procedure. It should be noted that the steps 1802 to 1804 are the process of deleting the bearer, and the steps 1805 to 1806 are the IMSI detachment process. The two processes have no strict sequence in sequence, and there is no order correlation. The bearer process may be deleted as described in the embodiment, the IMSI detach process may be followed, or the IMSI detach process may be preceded, the bearer process may be deleted, or the two processes may be performed simultaneously.
实施例十三 Example thirteen
如果网络中不存在 Gs+接口, 则需要通过 IP连通性先进行去附着 eMSC 的过程,进而进行去附着演进网络的过程,流程如图 19所示, 包括以下步骤: 步骤 1901 :如果控制面协议栈中含有 IP Sec层,且 UE和其服务 eMSC/VLR 之间不存在安全关联, 则由 UE触发建立到目标 eMSC之间的安全关联, 否则 直接执行步骤 1902。 If the Gs+ interface does not exist in the network, the process of de-attaching the eMSC is performed through the IP connectivity, and then the process of detaching the evolved network is performed. The process is as shown in FIG. 19, and the following steps are included: Step 1901: If the control plane protocol stack If the IP Sec layer is included, and there is no security association between the UE and its serving eMSC/VLR, the security association between the UE and the target eMSC is triggered by the UE. Otherwise, step 1902 is directly performed.
步骤 1902: UE通过 IP连通性向 eMSC/VLR发起 IMSI去附着请求消息, 其中, 从 UE到 PDN GW之间的承载是此前为 UE建立的承载 CS控制面信令的 承载。 Step 1902: The UE initiates an IMSI detachment request message to the eMSC/VLR through the IP connectivity, where the bearer between the UE and the PDN GW is a bearer that carries the CS control plane signaling established for the UE.
步骤 1903: eMSC/VLR通过 IP连通性向 UE发送 IMSI去附着接受消息。 步骤 1904: UE向 MME发起去附着请求消息。 Step 1903: The eMSC/VLR sends an IMSI detach accept message to the UE by using IP connectivity. Step 1904: The UE initiates a detach request message to the MME.
步骤 1905: 丽 E向 S-GW发送删除承载请求消息, S-GW进而向 PDN GW发 送删除承载请求消息。 Step 1905: The MN sends a delete bearer request message to the S-GW, and the S-GW further sends a delete bearer request message to the PDN GW.
步骤 1906: 如果网络中布置了 PCC架构, 则 PDN GW同 PCRF进行交互, 通知 PCRF承载已经释放。 Step 1906: If the PCC architecture is deployed in the network, the PDN GW interacts with the PCRF to notify the PCRF that the bearer has been released.
步骤 1907: PDN GW向 S-GW发送删除承载响应消息, S-GW进而向 MME发 送删除承载响应消息。 Step 1907: The PDN GW sends a delete bearer response message to the S-GW, and the S-GW further sends a delete bearer response message to the MME.
步骤 1908: 如果不是因为 UE电量用尽所引起的关机, 则 MME向 UE发送 去附着接受消息, 否则直接执行步骤 1909。 Step 1908: If the shutdown is not caused by the exhaustion of the UE, the MME sends a detach accept message to the UE, otherwise step 1909 is directly performed.
步骤 1909: MME发起信令连接释放过程。 Step 1909: The MME initiates a signaling connection release process.
需要说明的是, 本方法是通过 IP连通性 IMSI去附着 eMSC, 因此必须先
IMSI去附着 eMSC, 才能进一步去附着演进网络。 否则, 如果先去附着演进网 络, 则 UE到 PDN GW之间的承载会被释放, 从而就无法通过 IP连通性完成 IMSI去附着 eMSC的过程。 It should be noted that the method is to attach the eMSC through the IP connectivity IMSI, so it must first The IMSI is attached to the eMSC to further attach the evolved network. Otherwise, if the evolved network is first attached, the bearer between the UE and the PDN GW is released, so that the process of the IMSI detaching the eMSC cannot be completed through the IP connectivity.
对于由网络侧发起的去附着流程, 即: 丽 E 发起的去附着流程或者 HSS 发起的去附着流程, 与由 UE发起的去附着流程类似, 也分为有 Gs+接口情况 下的联合去附着和无 Gs+接口情况下的通过 IP连通性去附着两种流程。 对于 通过 IP连通性去附着 eMSC, 同样必须先 IMSI去附着 eMSC再去附着演进网 络, 此时, 可以由丽 E通知 UE发起 IMS I去附着 eMSC的过程, 也可以由丽 E 向 S-GW发起 IMSI去附着请求, 进而通过 PDN GW发送到 eMSC。 具体流程与 实施例十二、 十三类似, 只是去附着请求是有网络侧发起的, 此处不再赘述。 For the detachment process initiated by the network side, that is, the detachment process initiated by MN E or the detach process initiated by the HSS is similar to the detach process initiated by the UE, and is also classified into a joint detachment with a Gs+ interface. The two processes are detached by IP connectivity without a Gs+ interface. For the de-attachment of the eMSC through the IP connectivity, the IMSI must first be attached to the eMSC to detach the egress network. In this case, the UE may notify the UE to initiate the process of attaching the eMSC to the eMSC, or may initiate the process from the E-E to the S-GW. The IMSI de-attach request, which in turn is sent to the eMSC through the PDN GW. The specific process is similar to that in the twelfth and thirteenth embodiments, except that the detach request is initiated by the network side, and details are not described herein again.
应该理解, 以上所述仅为本发明的较佳实施例, 并非用于列举本发明的 所有技术特征。 因此, 以上所述并非用于限定本发明的精神和保护范围, 任 何熟悉本领域的技术人员所做出的等同变化或替换, 都应视为涵盖在本发明 的保护范围之内。
It should be understood that the above description is only a preferred embodiment of the invention and is not intended to illustrate all of the technical features of the invention. Therefore, the above description is not intended to limit the spirit and scope of the invention, and any equivalent changes or substitutions made by those skilled in the art are considered to be within the scope of the present invention.
Claims
权 利 要 求 书 Claims
1、 一种附着方法, 其特征在于, 包括: What is claimed is: 1. An attachment method, comprising:
将 UE附着到目标移动性管理实体 MME ; Attaching the UE to the target mobility management entity MME;
获取目标演进移动交换中心 eMSC地址信息; Obtaining the eMSC address information of the target evolved mobile switching center;
根据获取的目标 eMSC地址信息, 将 UE附着到目标 eMSC/拜访位置寄存 器 VLR。 The UE is attached to the target eMSC/visit location register VLR according to the acquired target eMSC address information.
1、 根据权利要求 1所述的方法, 其特征在于, 所述获取目标 eMSC地址 信息具体包括: The method according to claim 1, wherein the acquiring the target eMSC address information specifically includes:
在目标丽 E与归属用户服务器 HSS交互进行位置更新时, 目标丽 E在向 HSS发送的位置更新请求信息中携带有跟踪区标识 TAI ; When the target MN interacts with the home subscriber server HSS to perform location update, the target MN sends the tracking area identifier TAI in the location update request information sent to the HSS;
目标丽 E收到所述返回的更新位置确认消息, 所述更新位置确认消息包 含所述 HSS才艮据 TAI查询出的目标 eMSC地址信息。 The target E receives the returned update location confirmation message, and the update location confirmation message includes the target eMSC address information queried by the HSS according to the TAI.
3、 根据权利要求 1所述的方法, 其特征在于, 所述获取目标 eMSC地址 信息具体包括: The method according to claim 1, wherein the acquiring the target eMSC address information specifically includes:
在 UE向目标丽 E发起的附着请求消息的信元协议配置 PC0选项中或者目 标丽 E向分组数据网网关 PDN GW发起的建立承载请求消息的 PC0选项中携带 有请求 eMSC地址信息的消息, 目标 MME或者 PDN GW通过解析 PC0选项查询 出 eMSC地址信息。 The PC0 option of the establishment of the bearer request message initiated by the UE in the cell protocol configuration PC0 option of the attach request message initiated by the UE to the target MN E or the target MME E to the packet data network gateway PDN GW carries the message requesting the eMSC address information, the target The MME or the PDN GW queries the eMSC address information by parsing the PC0 option.
4、 根据权利要求 1所述的方法, 其特征在于, 所述获取目标 eMSC地址 信息具体包括: The method according to claim 1, wherein the acquiring the target eMSC address information specifically includes:
在目标 MME与 HSS交互进行位置更新时, 目标 MME从 HSS获取预先保存 的 eMSC地址信息。 When the target MME interacts with the HSS for location update, the target MME obtains pre-saved eMSC address information from the HSS.
5、 根据权利要求 1所述的方法, 其特征在于, 所述获取目标 eMSC地址 信息具体包括: The method according to claim 1, wherein the acquiring the target eMSC address information specifically includes:
在 UE 自行发起的动态主机配置协议 DHCP请求报文中扩展指示获取目标 eMSC地址信息。
6、 根据权利要求 1所述的方法, 其特征在于, 所述获取目标 eMSC地址 信息具体包括: The indication of obtaining the target eMSC address information is extended in the dynamic host configuration protocol DHCP request message initiated by the UE. The method according to claim 1, wherein the acquiring the target eMSC address information specifically includes:
网络侧向 UE发送包括目标 eMSC地址信息的广播消息以使 UE获取目标 eMSC地址信息。 The network side transmits a broadcast message including the target eMSC address information to the UE to obtain the target eMSC address information.
7、 根据权利要求 1所述的方法, 其特征在于, 所述获取目标 eMSC地址 信息具体包括: The method according to claim 1, wherein the acquiring the target eMSC address information specifically includes:
当目标丽 E 重定位到目标 eMSC/VLR , 可根据目标小区标识判断出目标 eMSC/VLR地址信息。 When the target E is relocated to the target eMSC/VLR, the target eMSC/VLR address information can be determined according to the target cell identity.
8、 根据权利要求 1所述的方法, 其特征在于, 所述获取目标 eMSC地址 信息具体包括: The method according to claim 1, wherein the acquiring the target eMSC address information specifically includes:
目标丽 E根据位置信息、运营商策略、网络拓朴或网络侧配置的目标丽 E 和目标 eMSC/VLR之间的对应关系为 UE选择出目标 eMSC地址信息。 The target E selects the target eMSC address information for the UE according to the location information, the operator policy, the network topology, or the correspondence between the target MME and the target eMSC/VLR configured on the network side.
9、 根据权利要求 8所述的方法, 其特征在于, 所述位置信息为接入点名 APN的信息, 所述目标 MME根据位置信息、 运营商策略、 网络拓朴或网络侧 配置的目标 MME和目标 eMSC/VLR之间的对应关系为 UE选择出目标 eMSC地址 信息具体包括: The method according to claim 8, wherein the location information is information of an access point name APN, and the target MME is configured according to location information, an operator policy, a network topology, or a target MME configured on the network side. The correspondence between the target eMSC/VLRs for the UE to select the target eMSC address information specifically includes:
目标固 E从 HSS指示的携带是否允许漫游或位置区标识的 APN的信息中 获取目标 eMSC地址信息。 The target solid E obtains the target eMSC address information from the information of the APN indicated by the HSS that carries the roaming or location area identification.
1 0、 根据权利要求 8所述的方法, 其特征在于, 所述位置信息为目标侧 ID信息, 所述目标 MME根据位置信息、 运营商策略、 网络拓朴或网络侧配置 的目标 MME和目标 eMSC/VLR之间的对应关系为 UE选择出目标 eMSC地址信息 具体包括: The method according to claim 8, wherein the location information is target side ID information, and the target MME is configured according to location information, a carrier policy, a network topology, or a target MME configured on a network side. The correspondence between the eMSC/VLRs for the UE to select the target eMSC address information includes:
目标丽 E根据目标侧 ID信息通过配置查询获取目标 eMSC地址信息。 The target MN obtains the target eMSC address information through the configuration query according to the target side ID information.
1 1、 根据权利要求 1 0所述的方法, 其特征在于, 所述目标侧 I D信息包 括位置标识, 所述目标丽 E根据目标侧 ID信息通过配置查询获取目标 eMSC 地址信息具体包括:
目标 MME在请求目标 eMSC地址时携带有位置标识,通过所述位置标识查 询到目标 eMSC地址信息。 The method according to claim 10, wherein the target side ID information includes a location identifier, and the target MN obtains the target eMSC address information by using the configuration query according to the target side ID information, and specifically includes: The target MME carries a location identifier when requesting the target eMSC address, and queries the target eMSC address information by using the location identifier.
12、 根据权利要求 1所述的方法, 其特征在于, 还包括: 12. The method according to claim 1, further comprising:
目标固 E根据跟踪区域 TA推导出位置区域 LA。 The target solid E derives the position area LA from the tracking area TA.
1 3、 根据权利要求 1 - 1 2任一所述的方法, 其特征在于, 所述将 UE附 着到目标丽 E具体包括: 通过向目标丽 E发起附着请求消息, UE初始附着到 目标丽 E;则所述根据获取的目标 eMSC地址信息,将 UE附着到目标 eMSC/VLR 具体包括: The method according to any one of claims 1 to 2, wherein the attaching the UE to the target MN specifically comprises: initially attaching to the target MN by initiating an attach request message to the target MME And the attaching the UE to the target eMSC/VLR according to the obtained target eMSC address information includes:
目标丽 E根据获取的目标 eMSC地址信息向目标 eMSC/VLR发起位置更新 请求; The target MN E initiates a location update request to the target eMSC/VLR according to the obtained target eMSC address information;
目标 eMSC/VLR与 HSS交互进行位置更新; The target eMSC/VLR interacts with the HSS to perform location update;
目标 MME接收目标 eMSC/VLR返回的位置更新接受消息; The target MME receives the location update accept message returned by the target eMSC/VLR;
目标 MME向 UE返回附着接受消息。 The target MME returns an attach accept message to the UE.
14、 根据权利要求 1 -1 2任一所述的方法, 其特征在于, 所述将 UE附 着到目标丽 E具体包括: 通过向目标丽 E发起跟踪区域更新请求消息, UE重 附着到目标丽 E; 则所述根据获取的目标 eMSC地址信息, 将 UE附着到目标 eMSC/VLR具体包括: The method according to any one of claims 1 to 2, wherein the attaching the UE to the target MN specifically comprises: by initiating a tracking area update request message to the target MME, the UE reattaching to the target MN E: The attaching the UE to the target eMSC/VLR according to the obtained target eMSC address information specifically includes:
目标丽 E根据获取的目标 eMSC地址信息向目标 eMSC/VLR发起位置更新 请求; The target MN E initiates a location update request to the target eMSC/VLR according to the obtained target eMSC address information;
目标 eMSC/VLR与 HSS交互进行位置更新; The target eMSC/VLR interacts with the HSS to perform location update;
目标 MME接收目标 eMSC/VLR返回的位置更新接受消息; The target MME receives the location update accept message returned by the target eMSC/VLR;
目标丽 E向 UE返回跟踪区域更新接受消息。 The target MN returns a tracking area update accept message to the UE.
15、 一种附着装置, 其特征在于, 包括: 15. An attachment device, comprising:
第一附着模块, 用于将 UE附着到目标丽 E ; a first attaching module, configured to attach the UE to the target MN;
获取模块, 用于获取目标 eMSC地址信息; An obtaining module, configured to obtain target eMSC address information;
第二附着模块, 用于根据获取的目标 eMSC地址信息, 将 UE附着到目标
eMSC/VLR。 a second attaching module, configured to attach the UE to the target according to the acquired target eMSC address information eMSC/VLR.
16、根据权利要求 15所述的附着装置,其特征在于,所述获取模块包括: 请求模块, 用于向目标 HSS发送携带有 TAI的位置更新请求信息; 接收模块, 用于接收 HSS返回的更新位置确认消息, 该更新位置确认消 息中携带有 HSS根据 TAI查询出的目标 eMSC地址信息。 The apparatus according to claim 15, wherein the obtaining module comprises: a requesting module, configured to send, to the target HSS, location update request information carrying a TAI; and a receiving module, configured to receive an update returned by the HSS a location confirmation message, where the update location confirmation message carries the target eMSC address information that the HSS queries according to the TAI.
17、 根据权利要求 15所述的附着装置, 其特征在于, 还包括: 17. The attachment device of claim 15, further comprising:
推导模块, 用于根据跟踪区域 TA推导出位置区域 LA。 The derivation module is configured to derive the location area LA according to the tracking area TA.
18、 一种实现网络后向兼容的系统, 其特征在于, 包括: eMSC/VLR、 HSS 和 MME; 18. A system for implementing network backward compatibility, comprising: eMSC/VLR, HSS, and MME;
HSS , 用于保存用户信息; HSS for saving user information;
MME , 用于与 HSS交互所述用户信息, 并与 eMSC/VLR通过 Gs+接口交互 控制面信令; The MME is configured to exchange the user information with the HSS, and interact with the eMSC/VLR through the Gs+ interface to control plane signaling;
eMSC/VLR, 用于与 HSS交互所述用户信息, 才艮据所述用户信息确定 UE , 并处理所述控制面信令。 The eMSC/VLR is configured to exchange the user information with the HSS, determine the UE according to the user information, and process the control plane signaling.
19、 根据权利要求 18所述的系统, 其特征在于, 所述控制面信令包括切 换消息、 附着消息、 位置更新消息、 移动性管理消息、 UE 的位置信息和 /或 呼叫控制信令。
The system according to claim 18, wherein the control plane signaling comprises a handover message, an attach message, a location update message, a mobility management message, location information of the UE, and/or call control signaling.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200710141466.3 | 2007-08-20 | ||
CN2007101414663A CN101374258B (en) | 2007-08-20 | 2007-08-20 | System for implementing network backward compatibility, and adherence, de-adherence method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009024089A1 true WO2009024089A1 (en) | 2009-02-26 |
Family
ID=40377870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2008/072067 WO2009024089A1 (en) | 2007-08-20 | 2008-08-20 | A system for implementing back compatibility with network, an attaching method and a detaching method |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101374258B (en) |
WO (1) | WO2009024089A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102238532A (en) * | 2010-04-30 | 2011-11-09 | 中兴通讯股份有限公司 | Machine type communication (MTC) server address acquisition method and system |
CN104238720A (en) * | 2014-09-22 | 2014-12-24 | 联想(北京)有限公司 | Control method and control device of electronic equipment and electronic equipment |
CN106464743A (en) * | 2014-04-11 | 2017-02-22 | 诺基亚通信管理国际两合公司 | Multi tenancy in software defined networking |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8023944B2 (en) * | 2008-09-29 | 2011-09-20 | Via Telecom, Inc. | Apparatus and method for performing attach procedure in mobile communication system |
CN101873567B (en) * | 2009-04-27 | 2013-08-14 | 华为终端有限公司 | De-adherence method, system and device for mobile terminal |
CN101931932A (en) * | 2009-06-22 | 2010-12-29 | 中兴通讯股份有限公司 | Switching method and system of circuit domain business as well as switching test method and system |
CN101932026B (en) * | 2009-06-26 | 2012-06-06 | 华为终端有限公司 | Business processing method, communication equipment and communication system |
KR20140046085A (en) * | 2009-08-12 | 2014-04-17 | 닛본 덴끼 가부시끼가이샤 | Mobile communication system, base station, higher-order apparatus, gateway apparatus, and communication method |
CN102056334A (en) * | 2009-10-30 | 2011-05-11 | 中兴通讯股份有限公司 | Access control method and system of machine type communication (MTC) terminals |
CN102076113B (en) * | 2009-11-19 | 2015-06-03 | 中兴通讯股份有限公司 | Optimization method and system for to-adhering of terminal from network side, and access gateway |
CN102143585B (en) * | 2010-01-29 | 2014-06-04 | 上海华为技术有限公司 | Channel distribution method, base station controller and mobile station |
CN102158922B (en) * | 2010-02-11 | 2015-07-08 | 华为技术有限公司 | Method for rolling back to 2G/3G (2nd generation/3rd generation) network as well as relevant equipment and communication system |
CN102196403B (en) * | 2010-03-05 | 2014-04-30 | 华为技术有限公司 | Method, equipment and communication system capable of anchoring local gateway of access network |
CN102378393B (en) * | 2010-08-11 | 2014-04-16 | 电信科学技术研究院 | Relay node non-access stratum processing method and equipment |
CN102413445A (en) * | 2010-09-26 | 2012-04-11 | 电信科学技术研究院 | Data transmission method and equipment |
CN102421071A (en) * | 2010-09-28 | 2012-04-18 | 电信科学技术研究院 | Data transmission method and equipment |
CN102595368B (en) * | 2011-01-17 | 2015-01-07 | 华为技术有限公司 | Method, system and device for registering |
CN102075912B (en) * | 2011-02-15 | 2014-07-30 | 华为技术有限公司 | User state notifying method, device and system |
CN105264987B (en) * | 2014-01-29 | 2019-11-12 | 华为技术有限公司 | Indication method and base station of cell coverage enhancement mode |
CN106471830B (en) * | 2014-07-04 | 2021-01-29 | 瑞典爱立信有限公司 | Policy and Charging Rules Function (PCRF) selection |
WO2016109953A1 (en) * | 2015-01-07 | 2016-07-14 | 华为技术有限公司 | Control signalling transmission method in mcptt structure, and related device |
CN107211472B (en) | 2015-09-14 | 2020-10-09 | 华为技术有限公司 | Paging method, device and system |
CN106572496A (en) * | 2015-10-09 | 2017-04-19 | 中兴通讯股份有限公司 | Load reporting and control method, eMSC apparatus, MME apparatus and communication system |
CN106792615B (en) * | 2016-12-31 | 2019-07-05 | 中国移动通信集团江苏有限公司 | For restoring the method and system of the online charging state of user |
CN109729042B (en) * | 2017-10-27 | 2021-03-12 | 大唐移动通信设备有限公司 | Information transmission and processing method and device |
CN110839233B (en) * | 2018-08-17 | 2022-06-17 | 中国电信股份有限公司 | Flow statistical method, device and computer readable storage medium |
CN114339845B (en) * | 2020-09-30 | 2024-12-31 | 北京小米移动软件有限公司 | Method, device, user equipment and storage medium for updating NR capability of UE |
CN113260042A (en) * | 2021-05-31 | 2021-08-13 | 荣耀终端有限公司 | Terminal equipment attachment method and terminal equipment |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7069022B2 (en) * | 2000-12-01 | 2006-06-27 | Nokia Corporation | Method of performing an area update for a terminal equipment in a communication network |
CN1859775A (en) * | 2006-01-26 | 2006-11-08 | 华为技术有限公司 | User's device attaching method |
CN101009609A (en) * | 2006-01-25 | 2007-08-01 | 华为技术有限公司 | A network binding method and network binding system |
-
2007
- 2007-08-20 CN CN2007101414663A patent/CN101374258B/en not_active Expired - Fee Related
-
2008
- 2008-08-20 WO PCT/CN2008/072067 patent/WO2009024089A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7069022B2 (en) * | 2000-12-01 | 2006-06-27 | Nokia Corporation | Method of performing an area update for a terminal equipment in a communication network |
CN101009609A (en) * | 2006-01-25 | 2007-08-01 | 华为技术有限公司 | A network binding method and network binding system |
CN1859775A (en) * | 2006-01-26 | 2006-11-08 | 华为技术有限公司 | User's device attaching method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102238532A (en) * | 2010-04-30 | 2011-11-09 | 中兴通讯股份有限公司 | Machine type communication (MTC) server address acquisition method and system |
CN106464743A (en) * | 2014-04-11 | 2017-02-22 | 诺基亚通信管理国际两合公司 | Multi tenancy in software defined networking |
CN106464743B (en) * | 2014-04-11 | 2019-10-01 | 诺基亚通信有限责任两合公司 | More leases in software definition networking |
CN104238720A (en) * | 2014-09-22 | 2014-12-24 | 联想(北京)有限公司 | Control method and control device of electronic equipment and electronic equipment |
CN104238720B (en) * | 2014-09-22 | 2017-03-29 | 联想(北京)有限公司 | The control method of electronic equipment, control device and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN101374258A (en) | 2009-02-25 |
CN101374258B (en) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009024089A1 (en) | A system for implementing back compatibility with network, an attaching method and a detaching method | |
US11889465B2 (en) | Paging cause value | |
US8817751B2 (en) | Method, device and system of handover | |
US8289937B2 (en) | Internetworking between WLAN and a mobile communications system | |
US9769852B2 (en) | Maintaining current cell location information in a cellular access network | |
CN101431780B (en) | Method, equipment and system for implementing network optimization switch | |
US20110235605A1 (en) | Radio resource allocation method and device of henb in evolved packet system | |
CN101772969B (en) | Technique for performing GSM/WCDMA circuit switched services over a long term evolution radio access | |
CN100407876C (en) | A user equipment attachment method | |
WO2007147345A1 (en) | A method for selecting the user plane entity in network side and the control plane entity | |
WO2011015140A1 (en) | Method, system and apparatus for mobile telecommunication paging | |
WO2011026392A1 (en) | Method and system for acquiring route strategies | |
JPWO2016190369A1 (en) | Terminal device and PCRF | |
EP4248680A1 (en) | Handover for communication networks | |
WO2009026835A1 (en) | A system, apparatus and method for user service handover | |
WO2018066234A1 (en) | Terminal device, mobility management entity (mme), cotrol plane function (cpf), and communication control method | |
WO2010133107A1 (en) | Method and system for home node b gateway forwarding messages to home node b | |
WO2013033883A1 (en) | Switchover processing method, mobility management network element, and wireless access network element and system | |
CN105307222A (en) | Source network resource release method, gateway entity and network device | |
WO2018066235A1 (en) | Terminal device, mobility management entity (mme), control plane function (cpf), and communication control method | |
CN101998540B (en) | A method, device and system for realizing network optimal switching | |
CN101577674B (en) | Method for user terminal to access to home network PDN and visit network PDN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08784058 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08784058 Country of ref document: EP Kind code of ref document: A1 |