[go: up one dir, main page]

WO2009000831A1 - Bromsubstituierte rylentetracarbonsäurederivate und deren verwendung - Google Patents

Bromsubstituierte rylentetracarbonsäurederivate und deren verwendung Download PDF

Info

Publication number
WO2009000831A1
WO2009000831A1 PCT/EP2008/058011 EP2008058011W WO2009000831A1 WO 2009000831 A1 WO2009000831 A1 WO 2009000831A1 EP 2008058011 W EP2008058011 W EP 2008058011W WO 2009000831 A1 WO2009000831 A1 WO 2009000831A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compounds
radicals
cyano
halogen
Prior art date
Application number
PCT/EP2008/058011
Other languages
English (en)
French (fr)
Inventor
Martin KÖNEMANN
Gabriele Mattern
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2009000831A1 publication Critical patent/WO2009000831A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems

Definitions

  • the present invention relates to bromine substituted, especially perbrominated, rylenetetracarboxylic acid derivatives and their use as emitter materials, charge transport materials or exciton transport materials.
  • organic semiconductors based on low-molecular or polymeric materials will increasingly be used in addition to the classical inorganic semiconductors.
  • These have many advantages over the classical inorganic semiconductors, for example a better substrate compatibility and a better processability of the semiconductor components based on them. They allow processing on flexible substrates and make it possible to precisely adapt their frontier orbital energies to the respective field of application using the methods of modular modeling. The significantly reduced cost of such components has brought a renaissance to the field of organic electronics research.
  • Organic Electronics "focuses on the development of new materials and manufacturing processes for the fabrication of electronic devices based on organic semiconductor layers, including organic field-effect transistors (OFETs) and organic light-emitting diodes (organic light-emitting diodes).
  • organic light-emitting diodes (OLEDs) and photovoltaics are attributed a great development potential, for example in memory elements and integrated optoelectronic devices
  • OLEDs organic light-emitting diodes
  • the property of materials is used to emit light as they pass through OLEDs are of particular interest as an alternative to cathode ray tubes and liquid crystal displays for the production of flat screens, because of their very compact design and intrinsic never Drigeren power consumption are suitable devices that contain OLEDs, especially for mobile applications, for example for applications in mobile phones, laptops, etc.
  • R 1 , R 2 , R 3 or R 4 is a substituent selected from Br, F and CN,
  • Y 1 is O or NR a , where R a is hydrogen or an organyl radical,
  • Y 2 is O or NR b , where R b is hydrogen or an organyl radical,
  • Z 1 and Z 2 independently of one another are O or NR C , where R c is an organyl radical,
  • Z 3 and Z 4 independently of one another are O or NR d , where R d is an organyl radical,
  • R a with a radical R c also together represent a bridging group having 2 to 5 atoms between the flanking bonds can
  • R b with a radical R d together also represent a bridging group having 2 to 5 atoms between the flanking bonds
  • n 2, 3 or 4
  • R n1 , R n2 , R n3 or R n4 is fluorine
  • R n1 , R n2 , R n3 and R n4 is a substituent which is independently selected from Cl and Br, and the other radicals are hydrogen,
  • Y 1 is O or NR a , where R a is hydrogen or an organyl radical,
  • Y 2 is O or NR b , where R b is hydrogen or an organyl radical,
  • Z 1 , Z 2 , Z 3 and Z 4 are O
  • one of the radicals Z 1 and Z 2 may also represent NR C , wherein the radicals R a and R c together represent a bridging group having 2 to 5 atoms between the flanking bonds stand, and
  • one of the radicals Z 3 and Z 4 may also represent NR d , where the radicals R b and R d together represent a bridging group having 2 to 5 atoms between the radicals flanking bonds,
  • perbrominated rylenetetracarboxylic acid derivatives of formula I described below are particularly advantageously suitable as emitter materials, charge transport materials or exciton transport materials. They are characterized in particular as air-stable n-type semiconductors with extraordinarily high charge mobilities.
  • a first subject of the present invention therefore relates to compounds of general formula I,
  • n 2, 3 or 4
  • R n1 , R n2 , R n3 and R n4 are halogen or cyano and especially bromine, where at least one of R n1 , R n2 , R n3 or R n4 is bromine,
  • Y 1 is O or NR a , where R a is hydrogen or an organyl radical,
  • Y 2 is O or NR b , where R b is hydrogen or an organyl radical,
  • Z 1 , Z 2 , Z 3 and Z 4 are O
  • one of the radicals Z 1 or Z 2 may also represent NR C , wherein the radicals R a and R c together represent a bridging group having 2 to 5 atoms between the flanking bonds stand, and
  • one of the radicals Z 3 or Z 4 may also represent NR d , where the radicals R b and R d together represent a bridging group having 2 to 5 atoms between the flanking bonds stand.
  • Another object of the invention relates to the use of the compounds of formula I as emitter materials, charge transport materials or Excitetonransport- materials.
  • n denotes the number of naphthalene units linked in the peri-position, which form the skeleton of the rylene compounds according to the invention.
  • n denotes the particular naphthalene group of the rylene skeleton to which the radicals are bonded.
  • Radicals R n1 to R n4 which are bonded to different naphthalene groups may each have the same or different meanings. Accordingly, the compounds of general formula I may be perylenes, terrylenes or quaterrylenes of the following formulas:
  • alkyl includes straight-chain or branched alkyl. It is preferably straight-chain or branched C 1 -C 30 -alkyl, in particular C 1 -C 20 -alkyl and very particularly preferably C 1 -C 12 -alkyl.
  • alkyl groups are in particular methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl , n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-hexadecyl, n-octadecyl and n-eicosyl.
  • R e is preferably hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl.
  • alkyl also includes substituted alkyl radicals. Substituted alkyl groups may have one or more (eg 1, 2, 3, 4, 5 or more than 5) substituents depending on the length of the alkyl chain.
  • cycloalkyl preferably selected independently from among cycloalkyl, heterocycloalkyl, aryl, hetaryl, halogen, hydroxy, mercapto (-SH), COOH, carboxylate, SO 3 H, sulfonate, NE 1 E 2 , nitro and cyano, wherein E 1 and E 2 independently of one another represent hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl.
  • Halogen substituents are preferably fluorine, chlorine or bromine.
  • Alkylene is divalent straight or branched hydrocarbon radicals having usually 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms and especially 1 to 12 carbon atoms.
  • Carboxylate and sulfonate represent a derivative of a carboxylic acid function or a sulfonic acid function, in particular a metal carboxylate or sulfonate, a carboxylic acid ester or sulfonic acid ester function or a carboxylic acid or sulfonic acid amide function.
  • Cycloalkyl, heterocycloalkyl, aryl and hetaryl substituents of the alkyl groups may themselves be unsubstituted or substituted; suitable substituents are those mentioned below for these groups.
  • alkyl also apply to the alkyl moieties in alkoxy, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, etc.
  • Aryl substituted alkyl (“arylalkyl”) groups have at least one unsubstituted or substituted aryl group as defined below.
  • the alkyl group in "arylalkyl” may carry at least one further substituent and / or may be substituted by one or more nonadjacent groups which are selected from -O-, -S-, -NR e -, -CO- and / or - SO2 be interrupted.
  • Arylalkyl is preferably phenyl-Ci-Cio-alkyl, particularly preferably phenyl-Ci-C4-alkyl, for.
  • benzyl 1-phenethyl, 2-phenethyl, 1-phenprop-1-yl, 2-phenprop-1-yl, 3-phenprop-1-yl, 1-phenbut-1-yl, 2-phenbut-1 -yl, 3-phenbut-1-yl, 4-phenbut-1-yl, 1-phenbut-2-yl, 2-phenbut-2-yl, 3-phenbut-2-yl, 4-phenbut-2-yl , 1- (phenmeth) eth-1-yl,
  • alkenyl in the context of the present invention comprises straight-chain and branched alkenyl groups which, depending on the chain length, may carry one or more double bonds (eg 1, 2, 3, 4 or more than 4). Preference is given to C 2 -C 18, particularly preferably C 2 -C 12 -alkenyl groups. In the context of the present invention alkenyl, which carries two double bonds in arbitrary positions, is also referred to as alkadienyl.
  • alkenyl also includes substituted alkenyl groups which may carry one or more (eg, 1, 2, 3, 4, 5 or more than 5) substituents. Suitable substituents are, for. B. selected from cycloalkyl, heterocycloalkyl, aryl, hetaryl, halogen, hydroxy, mercapto (-SH), COOH, carboxylate, SO3H, sulfonate, NE 3 E 4 , nitro and cyano, wherein E 3 and E 4 are independently Hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl.
  • substituents are, for. B. selected from cycloalkyl, heterocycloalkyl, aryl, hetaryl, halogen, hydroxy, mercapto (-SH), COOH, carboxylate, SO3H, sulfonate, NE 3 E 4 , nitro and cyano, wherein E 3 and E 4 are independently
  • Alkenyl is then, for example, ethenyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-hexenyl, 2-hexenyl , 3-hexenyl, 4-hexenyl, 5-hexenyl, penta-1,3-dien-1-yl, hexa-1, 4-dien-1-yl, hexa-1, 4-dien-3-yl, hexa -1, 4-dien-6-yl, hexa-1, 5-dien-1-yl, hexa-1, 5-dien-3-yl, hexa-1, 5-dien-4-yl, hepta-1 , 4-dien-1-yl, hepta-1, 4-dien-3-yl, hepta-1, 4-dien-6-yl, hepta-1
  • alkynyl includes unsubstituted or substituted alkynyl groups having one or more non-adjacent triple bonds, such as ethynyl,
  • alkynyl 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4- Hexynyl, 5-hexynyl, and the like.
  • the remarks on alkynyl also apply to the alkynyl groups in alkynyloxy, alkynylthio, etc.
  • Substituted alkynyls preferably carry one or more (eg 1, 2, 3, 4, 5 or more than 5) of the substituents previously mentioned for alkyl.
  • cycloalkyl in the context of the present invention comprises unsubstituted as well as substituted cycloalkyl groups, preferably Cs-Cs-cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl, in particular particular Cs-Cs-cycloalkyl.
  • Substituted cycloalkyl groups may have one or more (eg 1, 2, 3, 4, 5 or more than 5) substituents. These are preferably selected independently of one another from alkyl and the substituents mentioned above for the alkyl groups.
  • the cycloalkyl groups preferably carry one or more, for example one, two, three, four or five
  • cycloalkyl groups are cyclopentyl, 2- and 3-methylcyclopentyl, 2- and 3-ethylcyclopentyl, cyclohexyl, 2-, 3- and 4-methylcyclohexyl, 2-, 3- and 4-ethylcyclohexyl, 3- and 4- Propylcyclohexyl, 3- and 4-isopropylcyclohexyl, 3- and 4-butylcyclohexyl, 3- and 4-sec-butylcyclohexyl, 3- and 4-tert-butylcyclohexyl, cycloheptyl, 2-, 3- and 4-methylcycloheptyl, 2 , 3- and 4-ethylcycloheptyl, 3- and 4-propylcycloheptyl, 3- and 4-isopropylcycloheptyl, 3- and 4-butylcycloheptyl, 3- and 4-sec-butylcycloheptyl, 3- and 4-tert-butylcycloo
  • cycloalkenyl includes unsubstituted and substituted monounsaturated hydrocarbon groups having 3 to 8, preferably 5 to 6 carbon ring members, such as cyclopenten-1-yl, cyclopenten-3-yl, cyclohexen-1-yl, cyclohexen-3-yl, cyclohexene 4-yl and the like. Suitable substituents are those previously mentioned for cycloalkyl.
  • bicycloalkyl preferably includes bicyclic hydrocarbon radicals having 5 to 10 C atoms, such as bicyclo [2.2.1] hept-1-yl, bicyclo [2.2.1] hept-2-yl, bicyclo [2.2.1] hept-7-yl , Bicyclo [2.2.2] oct-1-yl, bicyclo [2.2.2] oct-2-yl, bicyclo [3.3.0] octyl, bicyclo [4.4.0] decyl and the like.
  • aryl in the context of the present invention comprises mononuclear or polynuclear aromatic hydrocarbon radicals which may be unsubstituted or substituted.
  • Aryl is preferably unsubstituted. Or substituted phenyl,
  • aryl may have one or more (eg 1, 2, 3, 4, 5 or more than 5) substituents depending on the number and size of their ring systems.
  • E 5 and E 6 are independently hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl.
  • Halogen substituents are preferably fluorine, chlorine or bromine.
  • Aryl is particularly preferably Phenyl, which in the case of a substitution generally 1, 2, 3, 4 or 5, preferably 1, 2 or 3 substituents can carry.
  • Aryl which carries one or more radicals is, for example, 2-, 3- and 4-methylphenyl, 2,4-, 2,5-, 3,5- and 2,6-dimethylphenyl, 2,4,6-trimethylphenyl , 2-, 3- and 4-ethylphenyl, 2,4-, 2,5-, 3,5- and 2,6-diethylphenyl, 2,4,6-triethylphenyl, 2-, 3- and 4-propylphenyl, 2,4-, 2,5-, 3,5- and 2,6-dipropylphenyl, 2,4,6-tripropylphenyl, 2-, 3- and 4-isopropylphenyl, 2,4-, 2,5-, 3 , 5- and 2,6-diisopropylphenyl, 2,4,6-triisopropylphenyl, 2-, 3- and 4-butylphenyl, 2,4-, 2,5-, 3,5- and 2,6-dibutylphenyl , 2,4,6-Tributylphenyl
  • heterocycloalkyl in the context of the present invention comprises non-aromatic, unsaturated or fully saturated, cycloaliphatic groups having generally 5 to 8 ring atoms, preferably 5 or 6 ring atoms, in which 1, 2 or 3 of the ring carbon atoms are substituted by heteroatoms selected from oxygen, Nitrogen, sulfur and a group -NR e - are replaced and which is unsubstituted or substituted by one or more, for example, 1, 2, 3, 4, 5 or 6 d-C ⁇ -alkyl groups.
  • heterocycloaliphatic groups are pyrrolidinyl, piperidinyl, 2,2,6,6-tetramethylpiperidinyl, imidazolidinyl, pyrazolidinyl, oxazolidinyl, morpholidinyl, thiazolidinyl, isothiazolidinyl, isoxazolidinyl, piperazinyl, tetrahydrothiophenyl, dihydrothien-2 -yl, tetrahydrofuranyl, dihydrofuran-2-yl, tetrahydropyranyl, 1, 2-oxazolin-5-yl, 1, 3-oxazolin-2-yl and dioxanyl.
  • heteroaryl in the context of the present invention comprises unsubstituted or substituted, heteroaromatic, mono- or polynuclear groups, preferably the groups pyridyl, quinolinyl, acridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, pyrrolyl, imidazolyl, pyrazolyl, indolyl, purinyl, Indazolyl, benzotriazolyl, 1, 2,3-triazolyl, 1, 3,4-triazolyl and carbazolyl, these heterocycloaromatic groups in the case of a substitution generally 1, 2 or 3 substituents can carry.
  • the substituents are preferably selected from C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, hydroxy, carboxy, halogen and cyano.
  • Nitrogen-containing 5- to 7-membered heterocycloalkyl or heteroaryl radicals which optionally contain further heteroatoms selected from oxygen and sulfur include, for example, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, pyrrolidinyl, pyrazolinyl, pyrazolidinyl, imidazolinyl, imidazolidinyl, pyridinyl, pyridazinyl, pyrimidinyl , Pyrazinyl, triazinyl, piperidinyl, piperazinyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, indolyl, quinolinyl, isoquinolinyl or quinaldinyl
  • Halogen is fluorine, chlorine, bromine or iodine.
  • Carboxymethyl 2-carboxyethyl, 3-carboxypropyl, 4-carboxybutyl, 5-carboxypentyl, 6-carboxyhexyl, 8-carboxyctyl, 10-carboxydecyl, 12-carboxydodecyl and 14-carboxy-tetradecyl;
  • Sulfomethyl 2-sulfoethyl, 3-sulfopropyl, 4-sulfobutyl, 5-sulfopentyl, 6-sulfohexyl, 8-sulfooctyl, 10-sulfodecyl, 12-sulfododecyl and 14-sulfotetradecyl;
  • Carbamoyl methylaminocarbonyl, ethylaminocarbonyl, propylaminocarbonyl, butylaminocarbonyl, pentylaminocarbonyl, hexylaminocarbonyl, heptylaminocarbonyl, octylaminocarbonyl, nonylaminocarbonyl, decylaminocarbonyl and phenylaminocarbonyl;
  • Aminosulfonyl N-dodecylaminosulfonyl, N, N-diphenylaminosulfonyl, and N, N-bis (4-chlorophenyl) aminosulfonyl;
  • 2-dioxanyl 1-morpholinyl, 1-thiomorpholinyl, 2- and 3-tetrahydrofuryl, 1-, 2- and 3-pyrrolidinyl, 1-piperazyl, 1-diketopiperazyl and 1-, 2-, 3- and 4-piperidyl;
  • Preferred fluorine-containing radicals R a and R b are the following:
  • 2,6-Dibromo-4- (trifluoromethyl) phenyl 4-trifluoromethyl-2,3,5,6-tetrafluorophenyl, 3-fluoro-4-trifluoromethylphenyl, 2,5-difluoro-4-trifluoromethylphenyl, 3,5-difluoro 4-trifluoromethylphenyl, 2,3-difluoro-4-trifluoromethylphenyl, 2,4-bis (trifluoromethyl) phenyl, 3-chloro-4-trifluoromethylphenyl, 2-bromo-4,5-di (trifluoromethyl) phenyl, 5-chloro 2-nitro-4- (trifluoromethyl) phenyl, 2,4,6-tris (trifluoromethyl) phenyl, 3,4-bis (trifluoromethyl) phenyl, 2-fluoro-3-trifluoromethylphenyl, 2-iodo-4-trifluoromethylphenyl, 2-nitro-4,5
  • 3-fluorophenethyl 4-trifluoromethylphenethyl, 2,3-difluorophenethyl, 3,4-difluorophenethyl, 2,4-difluorophenethyl, 2,5-difluorophenethyl, 3,5-difluorophenethyl, 2,6-difluorophenethyl, 4- (4-fluorophenyl ) phenethyl, 3,5-di (trifluoromethyl) phenethyl, pentafluorophenethyl, 2,4-di (trifluoromethyl) phenethyl, 2-nitro-4- (trifluoromethyl) phenethyl, (2-fluoro-3-trifluoromethyl) phenethyl, (2- Fluoro-5-trifluoromethyl) phenethyl, (3-fluoro-5-trifluoromethyl) phenethyl, (4-fluoro
  • a further embodiment of the invention relates to compounds of the formula (I), where the groups R a and R b are groups of the formula (A) (so-called dovetail radicals).
  • the radicals R e are selected from C 4 -Ce-Al kyl, preferably Cs-Cz-alkyl.
  • the groups R a and R b then both represent a group of the formula
  • radicals R e are selected from C 4 -Ce-Al kyl, preferably Cs-Cz-alkyl. At the leftovers
  • R e are then in particular linear alkyl radicals which are not interrupted by oxygen atoms.
  • a preferred example of a group of formula (A) is
  • R n1 , R n2 , R n3 and R n4 are bromine.
  • Rylenetetracarboxylic dianhydrides are referred to below as compounds I.A.
  • Rylenetetracarboxylic diimides are referred to below as compounds I.B, where compounds I. Ba
  • radicals R 11 , R 12 , R 13 , R 14 , R 21 , R 22 , R 23 and R 24 are halogen or cyano, especially bromine, where at least one of the radicals R 11 , R 12 , R 13 , R 14 , R 21 , R 22 , R 23 or R 24 is bromine and R a and R b independently of one another have one of the abovementioned meanings.
  • At least one of R a or R b is an electron-withdrawing substituted radical.
  • At least one of the radicals R a and R b is a radical mono- or polysubstituted with fluorine. Particularly preferably, both R a and R b are a radical mono- or polysubstituted with fluorine.
  • suitable fluorinated radicals Reference will also be made to the statements made at the outset.
  • radicals R a and R b are the same.
  • a further preferred embodiment is compounds of the general formulas I.Bbi and I.Bb2 where n and R n1 , R n2 , R n3 and R n4 have the meanings given above and X see for a divalent bridging group having 2 to 5 atoms between the flanking bonds stands.
  • the bridging groups X are selected from groups of the formulas (III.a) to (III.d)
  • R ⁇ v , R v , R v ⁇ , R v “, R v ⁇ " and R ⁇ x independently of one another are hydrogen, alkyl, alkoxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, heterocycloalkoxy, aryl, aryloxy, hetaryl, hetaryloxy, halogen, hydroxyl, mercapto ( -SH), COOH, carboxylate, SO 3 H, sulfonate, NE 1 E 2 , alkylene-NE 1 E 2 , nitro, alkoxycarbonyl, acyl or cyano, where E 1 and E 2 are each independently hydrogen, alkyl, cycloalkyl, Heterocycloalkyl, aryl or hetaryl are available.
  • the compounds of the general formula I according to the invention can be prepared starting from known compounds having the same skeletal skeleton and carrying at least one hydrogen atom as radicals R n1 , R n2 , R n3 and R n4 .
  • Another object of the present invention relates to processes for the preparation of compounds of formula I,
  • n, R n1 , R n2 , R n3 , R n4 , Y 1 , Y 2 , Z 1 , Z 2 , Z 3 and Z 4 have one of the meanings given above,
  • R n1 , R n2 , R n3 or R n4 is hydrogen
  • the remaining radicals R n1 , R n2 , R n3 and R n4 are halogen or cyano and especially bromine and n
  • Y 1 , Y 2 , Z 1 , Z 2 , Z 3 and Z 4 have one of the previously given meaning of a bromination with N, N'-dibromoisocyanuric acid.
  • N, N'-dibromoisocyanuric acid is preferably used in an amount of about 0.8: 1 to 4: 1, more preferably about 0.9: 1 to 2: 1, based on one mole of the radicals R n1 contained in the compounds of formula II , R n2 , R n3 and R n4 , which are hydrogen.
  • the bromination is preferably carried out in the presence of oleum.
  • oleum will be used as a solvent for the bromination reaction.
  • the oleum used for the bromination is preferably at least 20%, more preferably at least 25% and most preferably at least 28%, such as. B. 30% oleum.
  • bromination with N, N'-dibromoisocyanuric acid may also be carried out in the presence of an inorganic or organic acid other than oleum.
  • organic acids such as acetic acid, propionic acid or butyric acid, in particular acetic acid.
  • the organic acid is used as a solvent.
  • the reaction temperature is usually in the range of -10 to 120 ° C.
  • the upper limit of the reaction temperature is usually determined by the boiling point of the solvent or the organic or inorganic acid used.
  • the products may be advantageous to subject the products to further purification.
  • these include, for example, column chromatographic methods, wherein the products z. B. dissolved in a halogenated carbon hydrogen such as methylene chloride or a toluene / or petroleum ether / ethyl acetate mixture, a separation or filtration are subjected to silica gel.
  • a purification by sublimation or crystallization is possible.
  • R n1 , R n2 , R n3 and R n4 are halogen or cyano, especially bromine, in which a rylenetetracarboxylic dianhydride of the formula ILA,
  • R n1 , R n2 , R n3 or R n4 is hydrogen, the remaining radicals R n1 , R n2 , R n3 and R n4 are halogen or cyano, especially bromine, and n is 2, 3 or 4, subjected to bromination with N, N'-dibromoisocyanuric acid.
  • Suitable process conditions for the bromination of the rylene dianhydride are those described above, to which reference is hereby made.
  • the rylenetetracarboximides of the formulas I.Ba, I.Bbi and I.Bb2 are likewise known from the bromination of the corresponding rylenetetracarboximides, in which at least one of R n1 , R n2 , R n3 or R n4 is hydrogen
  • N, N'-dibromoisocyanuric acid can be produced. Usually, however, they will be based on the known rylenetetracarboxylic dianhydrides of the formula ILA for their preparation.
  • a further subject of the present invention relates to processes for the preparation of compounds of the formula I. Ba,
  • R n1 , R n2 , R n3 , R n4 , R a and R b have one of the meanings given above , wherein
  • R n1 , R n2 , R n3 or R n4 is hydrogen, the remaining radicals R n1 , R n2 , R n3 and R n4 are halogen or cyano, especially bromine, and n is 2, 3 or 4 is subjected to bromination with N, N'-dibromoisocyanuric acid, and
  • step b1) the compound obtained in step a1) of a reaction with an amine of
  • the compounds of formula I.Ba can be prepared by a process wherein
  • step b2) subjecting the compound obtained in step a2) to bromination with N, N'-dibromoisocyanuric acid. getting produced.
  • a further subject of the present invention relates to a process for the preparation of compounds of the formulas I.Bbi and / or I.Bb2,
  • n, R n1 , R n2 , R n3 , R n4 and X have one of the meanings given above , in which one
  • R n1 , R n2 , R n3 or R n4 is hydrogen, the remaining radicals R n1 , R n2 , R n3 and R n4 are halogen or cyano, especially bromine, and n is 2, 3 or 4 is subjected to bromination with N, N'-dibromoisocyanuric acid, and
  • step b3) subjecting the compound obtained in step a3) to a reaction with an amine of the formula H 2 NX-NH 2 .
  • the compounds of formulas I.Bbi and / or I.Bb2 can be prepared by a process in which
  • step a4) subjecting a rylene dianhydride of the formula ILA to a reaction with an amine of the formula H 2 NX-NH 2 , and b4) subjecting the compound obtained in step a4) to bromination with N, N'-dibromocyanuric acid.
  • Suitable process conditions for the bromination of the rylene skeleton in steps a1), b2), a3) and b4) are those described above, to which reference is hereby made.
  • the imidation of the carboxylic anhydride groups in the reaction steps b1), a2), b3) and a4) is known in principle and z. B. in DE 10 2004 007 382 A1.
  • the reaction of the dianhydride with the primary amine is carried out in the presence of an aromatic solvent such as toluene, xylene, mesitylene, phenol or a polar aprotic solvent.
  • aromatic solvent such as toluene, xylene, mesitylene, phenol or a polar aprotic solvent.
  • Suitable polar aprotic solvents are nitrogen heterocycles, such as pyridine, pyrimidine, quinoline, isoquinoline, quinaldine, N-methylpiperidine, N-methylpiperidone and N-methylpyrrolidone.
  • the reaction can be carried out in the presence of an imidation catalyst.
  • Suitable imidation catalysts are organic and inorganic acids, eg. For example, formic acid, acetic acid, propionic acid and phosphoric acid.
  • Suitable imidation catalysts are also organic and inorganic salts of transition metals, such as zinc, iron, copper and magnesium. These include z. As zinc acetate, zinc propionate, zinc oxide, iron (II) acetate, iron (III) chloride, iron (II) sulfate, copper (II) acetate, copper (II) oxide and magnesium acetate.
  • an imidation catalyst is preferably carried out in the reaction of aromatic amines and is generally also advantageous for the reaction of cycloaliphatic amines.
  • the use of an imidation catalyst can generally be dispensed with.
  • the amount used of the imidation catalyst is preferably 5 to 80 wt .-%, particularly preferably 10 to 75 wt .-%, based on the total weight of the compound to be amidated.
  • the molar ratio of amine to dianhydride is about 2: 1 to 10: 1, more preferably 2: 1 to 4: 1, e.g. From 2.2: 1 to 3: 1.
  • organic acids previously mentioned as imidation catalysts are also suitable as solvents.
  • the reaction temperature is in the steps b1), a2), b3) or a4) is generally ambient temperature to 200 0 C, preferably 40 to 160 0 C.
  • the reaction of aliphatic and cycloaliphatic amines is preferably carried out in a temperature range of about 60 0 C to 100 0 C.
  • the reaction of aromatic amines is preferably carried out in a temperature range of about 120 to 160 0 C.
  • the reaction in the reaction steps b1), a2), b3) or a4) under a protective gas atmosphere, such. Nitrogen.
  • reaction steps b1), a2), b3) or a4) can be carried out under atmospheric pressure or, if desired, under elevated pressure.
  • a suitable pressure range is in the range of about 0.8 to 10 bar.
  • the use is under increased pressure.
  • the water formed in the reaction in steps b1), a2), b3) or a4) can be separated by distillation by methods known to the person skilled in the art.
  • the diimides obtained in reaction step b1), a2), b3) or a4) can be used without further purification.
  • the products for use of the products as semiconductors, however, it may be advantageous to subject the products to further purification.
  • These include, for example, column chromatographic methods, wherein the products are preferably dissolved in a halogenated hydrocarbon, such as methylene chloride, subjected to separation or filtration on silica gel.
  • the compounds of the formula I are particularly advantageous as organic semiconductors. They usually act as n-semiconductors. If the compounds of the formula I used according to the invention are combined with other semiconductors and if it results from the position of the energy levels that the other semiconductors function as n-semiconductors, the compounds I can also function as p-type semiconductors by way of exception.
  • the compounds of the formula I are distinguished by their air stability. Furthermore, they have a high charge transport mobility, which clearly knew about organic semiconductor materials. They also have a high on / off ratio.
  • the compounds of the formula I are suitable in a particularly advantageous manner for organic field effect transistors. They can be used, for example, for the production of integrated circuits (ICs), for which hitherto usual n-channel MOSFET (metal oxide semiconductor field-effect transistor) are used. These are then CMOS analog semiconductor devices, eg. For microprocessors, microcontrollers, static RAM, and other digital logic cireuits.
  • CMOS analog semiconductor devices eg.
  • the compounds of the formula I can be further processed by one of the following methods: printing (offset, flexo, gravure, screen, inkjet, electrophotography), evaporation, laser transfer, photolithography, drop casting. They are particularly suitable for use in displays (especially large and / or flexible displays) and RFI D tags.
  • the compounds of the formula I are particularly advantageous as electron conductors in organic field effect transistors, organic solar cells and in organic light emitting diodes. They are furthermore particularly advantageous as exciton-transport material in excitonic solar cells.
  • the compounds of the formula I are furthermore particularly advantageously suitable as fluorescent dye in a display based on fluorescence conversion.
  • Such displays generally include a transparent substrate, a fluorescent dye on the substrate, and a radiation source.
  • Common sources of radiation emit blue (color by blue) or UV (color by uv) light.
  • the dyes absorb either the blue or the UV light and are used as a green emitter.
  • z. B. the red light is generated by the red emitter is excited by a blue or UV light-absorbing green emitter.
  • Suitable color-by-blue displays are z.
  • Suitable color-by-uv displays are z. From W.A. Crossland, I.D. Sprigle and A.B.
  • the compounds of formula I are also particularly suitable for laser welding or thermal management.
  • the invention furthermore relates to organic field-effect transistors, comprising a substrate having at least one gate structure, a source electrode and a drain electrode and at least one compound of the formula I, as defined above, as a semiconductor, especially as an n-type semiconductor.
  • the invention further substrates with a plurality of organic field effect transistors, wherein at least a portion of the Feldcouransistoren at least one compound of formula I, as defined above, contains as n-type semiconductor.
  • the invention also relates to semiconductor devices which comprise at least such a substrate.
  • a particular embodiment is a substrate having a pattern (topography) of organic field effect transistors, each transistor
  • an organic semiconductor on the substrate a gate structure for controlling the conductivity of the conductive channel; and conductive source and drain electrodes at both ends of the channel
  • the organic semiconductor consists of at least one compound of the formula I or comprises a compound of the formula I.
  • the organic field effect transistor usually comprises a dielectric.
  • Another specific embodiment is a substrate having a pattern of organic field-effect transistors, each transistor forming an integrated circuit or forming part of an integrated circuit, and wherein at least a portion of the transistors comprise at least one compound of Formula I.
  • Suitable substrates are in principle the known materials.
  • Suitable substrates include, for. Metals (preferably metals of groups 8, 9, 10 or 11 of the periodic table such as Au, Ag, Cu), oxidic materials (such as glass, ceramics, SiO 2, especially quartz), semiconductors (eg doped Si, doped Ge), metal alloys (eg based on Au, Ag, Cu, etc.), semiconductor alloys, polymers (eg polyvinyl chloride, polyolefins, such as polyethylene and polypropylene, polyesters, fluoropolymers, polyamides, polyimides, Polyurethanes, polyalkyl (meth) acrylates, polystyrene, and mixtures and composites thereof), inorganic solids (eg, ammonium chloride), paper, and combinations thereof.
  • the substrates may be flexible or inflexible, with curved or planar geometry, depending on the desired application.
  • a typical substrate for semiconductor devices comprises a matrix (eg, a quartz or polymer matrix) and, optional
  • Suitable dielectrics are SiO 2, polystyrene, poly- ⁇ -methylstyrene, polyolefins (such as polypropylene, polyethylene, polyisobutene) polyvinylcarbazole, fluorinated polymers (eg Cytop), cyanopulluans (eg CYMM), polyvinylphenol, poly-p xylene, polyvinyl chloride, or thermally or moisture crosslinkable polymers.
  • Special dielectrics are "seif assembled nanodielectrics", ie polymers derived from SiCI functionalities containing monomers such.
  • Dilution can be crosslinked with solvents (see, for example, Faccietti Adv. Mat. 2005, 17, 1705-1725).
  • solvents see, for example, Faccietti Adv. Mat. 2005, 17, 1705-1725.
  • hydroxyl-containing polymers such as polyvinylphenol or polyvinyl alcohol or copolymers of vinylphenol and styrene can serve as crosslinking components.
  • the substrate may additionally include electrodes, such as gate, drain, and source electrodes of OFETs, which are normally located on the substrate (eg, deposited on or embedded in a nonconductive layer on the dielectric).
  • the substrate may additionally include conductive gate electrodes of the OFETs, which are typically disposed below the dielectric capping layer (i.e., the gate dielectric).
  • an insulator layer (gate insulating layer) is located on at least one part of the substrate surface.
  • the insulator layer comprises at least one insulator which is preferably selected from inorganic insulators such as SiO 2 , Si 3 N 4 , etc., ferroelectric insulators such as AbO 3 , Ta 2 Os, La 2 Os, TiO 2 , Y 2 O 3 , etc., organic insulators such as polyimides, benzocyclobutene (BCB), polyvinyl alcohols, polyacrylates, etc., and combinations thereof.
  • inorganic insulators such as SiO 2 , Si 3 N 4 , etc.
  • ferroelectric insulators such as AbO 3 , Ta 2 Os, La 2 Os, TiO 2 , Y 2 O 3 , etc.
  • organic insulators such as polyimides, benzocyclobutene (BCB), polyvinyl alcohols, polyacrylates, etc., and combinations thereof.
  • Preferred electrically conductive materials have a resistivity of less than 10 " 3 , preferably less than 10 " 4 , especially less than 10 "6 or 10 " 7 ohms x meters.
  • drain and source electrodes are at least partially on the organic semiconductor material.
  • the substrate may include other components commonly used in semiconductor materials or ICs, such as insulators, resistors, capacitors, printed conductors, etc.
  • the electrodes can be applied by conventional methods such as evaporation, lithographic methods or another patterning process.
  • the semiconductor materials can also be processed with suitable auxiliaries (polymers, surfactants) in disperse phase by printing.
  • the deposition of at least one compound of the general formula I is carried out by a vapor deposition method (Physical Vapor Deposition PVD).
  • PVD processes are performed under high vacuum conditions and include the following steps: evaporation, transport, deposition.
  • At least one compound of general formula I is heated to a temperature above its vaporization temperature for PVD and deposited on a substrate by cooling below the crystallization temperature.
  • the temperature of the substrate during the deposition is preferably in a range from about 20 to 250 ° C., particularly preferably 50 to 200 ° C.
  • the resulting semiconductor layers generally have a thickness sufficient for an ohmic contact between the source and drain electrodes.
  • the deposition may be carried out under an inert atmosphere, e.g. B. under nitrogen, argon or helium.
  • the deposition is usually carried out at ambient pressure or under reduced pressure.
  • a suitable pressure range is about 10 " 7 to 1, 5 bar.
  • the compound of the formula I is deposited on the substrate in a thickness of 10 to 1000 nm, more preferably 15 to 250 nm.
  • the compound of the formula I is deposited at least partially in crystalline form.
  • the PVD method described above is suitable.
  • the deposition of at least one compound of general formula I (and optionally other semiconductor materials) by a spin coating can therefore also be used in a wet processing method (wet processing) for the production of semiconductor substrates.
  • the compounds of the formula I should therefore also be suitable for the production of semiconductor elements, especially OFETs or based on OFETs, by a printing process. Standard printing processes (inkjet, flexo, offset, engraving, rotogravure, nano print) can be used.
  • Preferred solvents for the use of the compounds of the formula I in a printing process are aromatic solvents such as toluene, xylene, etc. It is possible to add to these "semiconductor inks" thickening substances, such as polymers, for. As polystyrene, etc. It uses as a dielectric, the aforementioned compounds.
  • the field effect transistor according to the invention is a thin film transistor (TFT).
  • TFT thin film transistor
  • a thin-film transistor has a gate electrode located on the substrate, a gate insulating layer located thereon and the substrate, a semiconductor layer located on the gate insulating layer, an ohmic contact layer on the semiconductor layer, and a source Electrode and a drain electrode on the ohmic contact layer.
  • the surface of the substrate prior to the separation of at least one compound of general formula I (and optionally at least one further semiconductor material) is subjected to a modification.
  • This modification serves to form regions that bond the semiconductor materials and / or regions where no semiconductor materials can be deposited.
  • the surface of the substrate is preferred with at least one compound (C1) which is suitable for binding to the surface of the substrate and to the compounds of the formula I.
  • a part of the surface or the complete surface of the substrate is coated with at least one compound (C1) in order to allow an improved deposition of at least one compound of general formula I (and optionally other semiconducting compounds).
  • Another embodiment comprises depositing a pattern of compounds of the general formula (C1) on the substrate according to a corresponding production method. These include the well-known mask processes as well as so-called "patterning" method, as z. In US Pat. No. 11 / 353,934, which is hereby incorporated by reference in its entirety.
  • Suitable compounds of the formula (C1) are capable of a binding interaction both with the substrate and with at least one semiconductor compound of the general formula I.
  • binding interaction includes the formation of a chemical bond (covalent bond), ionic bonding, coordinative interaction, van der Waals interactions, eg. Dipole-dipole interactions) etc. and combinations thereof.
  • Suitable compounds of the general formula (C1) are:
  • alkyltrialkoxysilanes such as n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane, n-octadecyltri- (n-propyl) oxysilane, n-octadecyltri- (isopropyl) oxysilane;
  • Trialkoxyaminoalkylsilanes such as triethoxyaminopropylsilane and N [(3-triethoxysilyl) -propyl] -ethylenediamine;
  • Trialkoxyalkyl-3-glycidyl ether silanes such as triethoxypropyl
  • Trialkoxyallylsilanes such as allyltrimethoxysilane; Trialkoxy (isocyanatoalkyl) silanes; Trialkoxysilyl (meth) acryloxyalkanes and trialkoxysilyl (meth) acrylamidoalkanes such as 1-triethoxysilyl-3-acryloxypropane.
  • Amines, phosphines and sulfur containing compounds especially thiols.
  • the compound (C1) is selected from alkyltrialkoxysilanes, especially n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane; Hexaalkyldisilazanes, and especially hexamethyldisilazane (HMDS); Cs-Cso-alkylthiols, especially hexadecanethiol; Mercaptocarboxylic acids and mercaptosulphonic acids, especially mercaptoacetic acid,
  • Top Contact Top Gate
  • Bottom Contact Bottom Gate
  • B. a VOFET Very organic field effect transistor
  • the layer thicknesses are in semiconductors z. B. 10 nm to 5 microns, the dielectric 50 nm to 10 microns, the electrodes may, for. B. 20 nm to 1 micron thick.
  • the OFETs can also be combined to other components such as ring oscillators or inverters.
  • Another aspect of the invention is the provision of electronic components comprising a plurality of semiconductor components, which may be n- and / or p-type semiconductors.
  • semiconductor components which may be n- and / or p-type semiconductors.
  • FETs field effect transistors
  • BJTs bipolar junction transistors
  • tunnel diodes inverters
  • light-emitting components biological and chemical detectors or sensors
  • temperature-dependent detectors photodetectors such as polarization-sensitive photodetectors, gates , AND, NAND, NOT, OR, TOR, and NOR gates, registers, switches, time blocks, static or dynamic memories, and other dynamic or sequential logical or other digital components including programmable circuits.
  • a special semiconductor element is an inverter.
  • the inverter In digital logic, the inverter is a gate that inverts an input signal.
  • the inverter is also called NOT-gate.
  • Real inverter circuits have an output current that is the opposite of the input current. Usual values are z. B. (0, + 5V) for TTL circuits.
  • the performance of a digital inverter reflects the Voltage Transfer Curve (VTC); H. the order of input current versus output current. Ideally, it is a step function, and the closer the real measured curve approaches to such a step, the better the inverter.
  • the compounds of the formula I are used as organic n-semiconductors in an inverter.
  • the compounds of the formula I are furthermore particularly advantageous for use in organic photovoltaics (OPV).
  • OOV organic photovoltaics
  • these compounds are suitable for use in dye-sensitized solar cells.
  • solar cells which are characterized by a diffusion of excited states (exciton diffusion)
  • One or both of the semiconductor materials used is characterized by a diffusion of excited states (exciton mobility).
  • Such solar cells are referred to as excitonic solar cells within the meaning of the invention.
  • the direct conversion of solar energy into electrical energy in solar cells is based on the internal photoelectric effect of a semiconductor material, ie the generation of electron-hole pairs by absorption of photons and the separation of the negative and positive charge carriers at a pn junction or a Schottky contact .
  • An exciton can z. B. arise when a photon penetrates into a semiconductor and an electron to excite the transition from the valence band in the conduction band.
  • the excited state created by the absorbed photons must reach a pn junction to create a hole and an electron, which then flows to the anode and cathode.
  • the photovoltaic voltage thus generated can cause a photocurrent in an external circuit, through which the solar cell gives off its power.
  • Suitable organic solar cells are generally layered and generally comprise at least the following layers: anode, photoactive layer and cathode. These layers are usually on a conventional substrate.
  • the structure of organic solar cells is z. As described in US 2005/0098726 A1 and US 2005/0224905 A1, which is incorporated herein by reference in its entirety.
  • Suitable substrates are for.
  • oxidic materials such as glass, ceramic, SiÜ2, especially quartz, etc.
  • polymers eg., Polyvinyl chloride, polyolefins, such as polyethylene and polypropylene, polyesters, fluoropolymers, polyamides, polyurethanes, polyalkyl (meth) - acrylates, polystyrene and mixtures and composites thereof
  • combinations thereof eg., Polyvinyl chloride, polyolefins, such as polyethylene and polypropylene, polyesters, fluoropolymers, polyamides, polyurethanes, polyalkyl (meth) - acrylates, polystyrene and mixtures and composites thereof.
  • metals preferably groups 2, 8, 9, 10, 11 or 13 of the Periodic Table, eg Pt, Au, Ag, Cu, Al, In, Mg, Ca
  • electrodes cathode, anode.
  • Semiconductors eg doped Si, doped Ge, indium tin oxide (ITO), gallium indium tin oxide (GITO), zinc indium tin oxide (ZITO), etc.
  • metal alloys eg based on Pt, Au, Ag, Cu, etc., especially Mg / Ag alloys
  • an essentially transparent material is used as the anode with respect to incident light. This includes z.
  • the cathode used is preferably a material that essentially reflects the incident light.
  • These include z. As metal films, z. B. from Al, Ag, Au, In, Mg, Mg / Al, Ca, etc.
  • the photoactive layer in turn comprises at least one or at least one layer containing as organic semiconductor material at least one compound selected from compounds of the formula I as defined above.
  • the photoactive layer comprises at least one organic acceptor material.
  • there may be one or more further layers e.g. for example, a layer with electron-conducting properties (ETL) and a layer containing a hole-transporting material (HTL) that need not absorb, excitons and hole-blocking layers (eg, exciton blocking layers, EBL) that are not supposed to absorb multiplication layers. Suitable excitons and holes blocking layers are for. As described in US 6,451, 415.
  • Suitable Excitonenblocker für z. B. Bathocuproine (BCP), 4,4 ', 4 "-Tris [3-methylphenyl (phenyl) amino] triphenylamine (m-MTDATA) or Polyethylendioxythiophen (PEDOT), as described in US 7,026,041.
  • BCP Bathocuproine
  • m-MTDATA 4,4 ', 4 "-Tris [3-methylphenyl (phenyl) amino] triphenylamine
  • PEDOT Polyethylendioxythiophen
  • the excitonic solar cells according to the invention are based on photoactive donor-acceptor heterojunctions. If at least one compound of the formula I is used as HTM (hole transport material, hole transport material), the corresponding ETM (exciton transport material, exciton transport material) must be selected such that, after excitation of the compounds, rapid electron transfer to the ETM occurs. Suitable ETMs are z. B. C60 and other fullerenes, perylene-3,4: 9,10-bis (dicarboximide) (PTCDI), etc. If at least one compound of formula I is used as ETM, the complementary HTM must be chosen so that after excitation of the Connecting a fast hole transfer to the HTM takes place.
  • the heterojunction can be carried out flatly (compare Two layer organic photovoltaic cell, CW Tang, Appl. Phys. Lett, 48 (2), 183-185 (1986) or N. Karl, A. Bauer, J. Holzäpfel, J. Cryst., 252, 243-258 (1994).) Or as a bulk heterojunction or interpenetrated donor-acceptor network, cf., for example, Messner, M. Möbus, F. Stölzle, Mol. BCJ Brabec, NS Sariciftci, JC Hummelen, Adv. Funct. Mater., 11 (1), 15 (2001).).
  • Thin layers of the compounds and of all other layers can be obtained by vacuum evaporation or in an inert gas atmosphere, by laser ablation or by solution or dispersion processable methods such as spin coating, knife coating, casting, spraying, dip coating or printing (eg InkJet , Flexo, offset, engraving, gravure, nanoimprint).
  • the layer thicknesses of the M, n, i and p layers are typically 10 to 1000 nm, preferably 10 to 400 nm.
  • a substrate z As a substrate z.
  • metal or polymer films are used, which are usually coated with a transparent, conductive layer (such as Sn ⁇ 2: F, Sn ⁇ 2: In, ZnO: Al, carbon nanotubes, thin metal layers).
  • a transparent, conductive layer such as Sn ⁇ 2: F, Sn ⁇ 2: In, ZnO: Al, carbon nanotubes, thin metal layers.
  • Acenes such as anthracene, tetracene, pentacene and substituted acenes.
  • Substituted acetals include at least one substituent selected from electron-donating substituents (eg, alkyl, alkoxy, ester, carboxylate or thioalkoxy), electron withdrawing substituents (eg, halogen, nitro, or cyano) and combinations thereof. These include 2,9-dialkylpentacenes and 2,10-dialkylpentacenes, 2,10-dialkoxypentacenes, 1, 4,8,1-tetraalkoxypentacenes and rubrene (5,6,11,12-tetraphenylnaphthacene). Suitable substituted pentacenes are described in US 2003/0100779 and US Pat. No. 6,864,396.
  • a preferred acene is rubrene (5,6,1 1, 12-tetraphenylnaphthacene).
  • Phthalocyanines such as hexadecachlorophthalocyanines and hexadecafluorophthalocyanines, containing metal-free and divalent metals, in particular those of titanyloxy, vanadyloxy, iron, copper, zinc, in particular copper phthalocyanine, zinc phthalocyanine cyanine and metal-free phthalocyanine, hexadecachloro copper phthalocyanine, hexadecachlorozinc phthalocyanine, metal-free hexadechlorophthacocyanine, hexadecafluoro copper phthalocyanine, hexadecafluorophthalocyanine or metal-free hexafluorophathocyanocyanine.
  • metal-free and divalent metals in particular those of titanyloxy, vanadyloxy, iron, copper, zinc, in particular copper phthalocyanine, zinc phthalocyanine cyanine and metal-free phthalocyanine,
  • Porphyrins such as. 5,10,15,20-tetra (3-pyridyl) porphyrin (TpyP).
  • Liquid crystalline (LC) materials such as. Hexabenzocoronene (HBC-PhCl 2) or other coronene, coronodiimides, or triphenylenes such as 2,3,6,7,10,1-hexahexylthiotriphenylene (HTT6) or 2,3,6,7,10,11-hexakis - (4-n-nonylphenyl) -triphenylene (PTP9), 2,3,6,7,10,11-hexakis- (undecyloxy) -triphenylenes (HAT11).
  • HBC-PhCl 2 Hexabenzocoronene
  • HTT6 2,3,6,7,10,1-hexahexylthiotriphenylene
  • PTP9 2,3,6,7,10,11-hexakis- (undecyloxy) -triphenylenes
  • Particularly preferred are LCs that are discotic.
  • oligothiophenes are quaterthiophenes, quinquethiophenes, sexithiophenes, ⁇ , ⁇ -di (C 1 -C 8) -alkyloligothiophenes, such as ⁇ , ⁇ -dihexylquaterthiophenes, ⁇ , ⁇ -dihexylquinquethiophenes and ⁇ , ⁇ -dihexylsexithiophenes, poly (alkylthiophenes), such as poly (3-hexylthiophene), bis (dithienothiophenes), anthradithiophenes and dialkylanthra- dithiophenes such as dihexylanthradithiophene, phenylene-thiophene (PT) oligomers and derivatives thereof, especially ⁇ , ⁇ -di (C 1 -C 8) -alkyloligothiophenes
  • Preferred thiophenes, oligothiophenes and substituted derivatives thereof are poly-3-hexylthiophene (P3HT) or compounds of the type ⁇ , ⁇ '-bis (2,2-dicyanovinyl) quinethiophene (DCV5T), poly (3- (4-octylphenyl) - 2,2'-bithiophene) (PTOPT), poly (3- (4 '- (1 ", 4", 7 "-trioxaoctyl) phenyl) thiophene) (PEOPT), (poly (3- (2'-methoxy-) 5'-octylphenyl) -thiophene)) (POMeOPT), poly (3-octylthiophene) (P3OT), pyridine-containing polymers such as poly (pyridopyrazine vinylene), poly (pyridopyrazine vinylene) modified with alkyl groups, e
  • PCPDTBT Poly [2,6- (4,4-bis (2-ethylhexyl) -4 H -cyclopenta [2,1-b; 3,4 -b '] - dithiophene) -4,7- (2,1,3-benzothiadiazole).
  • Paraphenylenevinylene and paraphenylenevinylene containing oligomers or polymers such.
  • PPE-PPV hybrid polymers phenylene-ethynylene / phenylene-vinylene hybrid polymers).
  • Polyfluorene and alternating polyfluorene copolymers such. With 4,7-dithien-2'-yl-2,1,3-benzothiadiazole, and further poly (9,9'-dioctylfluorene-co-benzothiadiazole) (F 8 BT), poly (9,9'- dioctylfluorene-co-bis-N, N '- (4-butylphenyl) -bis-N, N'-phenyl-1, 4-phenylenediamine) (PFB).
  • Polycarbazoles d. H. Carbazole containing oligomers and polymers such as (2,7) and (3,6).
  • Triarylamines polytriarylamines, polycyclopentadienes, polypyrroles, polyfuran, polysilanes, polyphospholes, N, N'-bis (3-methylphenyl) -N, N'-bis (phenyl) benzidine (TPD), 4,4'-bis ( carbazol-9-yl) biphenyl (CBP), 2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenylamine) - 9,9'-spirobifluorene (spiro-MeOTAD).
  • PCBM [6,6] -phenyl-C6i-butyric acid methyl ester
  • p-n mixed materials d. H. Donor and acceptor in one material, polymer, block polymers, polymers with C60s, C60 azo dyes, trimeric mixed material containing carotenoid type compounds, porphyrin type and quinoidal liquid crystalline compounds as donor / acceptor systems, as described by Kelly in S. Adv. Mater. 2006, 18, 1754.
  • All of the aforementioned semiconductor materials may also be doped.
  • dopants Br 2, tetrafluorotetracyanoquinodimethane (F 4 -TCNQ), etc.
  • OLED organic light-emitting diode
  • the compounds of the formula I can serve as charge transport material (electron conductor).
  • Organic light emitting diodes are basically made up of several layers. These include: 1. anode 2. hole-transporting layer 3. light-emitting layer 4. electron-transporting layer 5. cathode. It is also possible that the organi- see light-emitting diode does not have all of the layers mentioned, for example, an organic light-emitting diode with the layers (1) (anode), (3) (light-emitting layer) and (5) (cathode) is also suitable, the functions of the layers ( 2) (hole-transporting layer) and (4) (electron-transporting layer) are taken over by the adjacent layers. OLEDs comprising layers (1), (2), (3) and (5) or layers (1), (3), (4) and (5) are also suitable.
  • OLEDs organic light-emitting diodes and methods for their preparation are known in principle to those skilled in the art, for example from WO 2005/019373. Suitable materials for the individual layers of OLEDs are z. As disclosed in WO 00/70655. The disclosure of these documents is hereby incorporated by reference.
  • the production of OLEDs according to the invention can be carried out by methods known to the person skilled in the art. Generally, an OLED is made by sequential vapor deposition of the individual layers onto a suitable substrate. Suitable substrates are, for example, glass or polymer films. For vapor deposition, conventional techniques can be used such as thermal evaporation, chemical vapor deposition and others.
  • the organic layers may be coated from solutions or dispersions in suitable solvents using coating techniques known to those skilled in the art.
  • Compositions which, in addition to a compound of the general formula I, comprise a polymeric material in one of the layers of the OLEDs, preferably in the light-emitting layer, are generally applied as a layer by processing from solution.
  • OLEDs can be obtained with high efficiency.
  • the OLEDs according to the invention can be used in all devices in which electroluminescence is useful. Suitable devices are preferably selected from stationary and mobile screens. Stationary screens are z. For example, screens of computers, televisions, screens in printers, kitchen appliances, and billboards, lights, and billboards. Mobile screens are z. For example, screens in cell phones, laptops, digital cameras, vehicles, and destination displays on buses and trains.
  • the compounds I can be used in OLEDs with inverse structure. The compounds I are preferably used in these inverse OLEDs again in the light-emitting layer. The construction of inverse OLEDs and the materials usually used therein are known to the person skilled in the art.
  • Suitable purification methods include transferring the compounds gene of formula I in the gas phase. These include cleaning by sublimation or PVD (physical vapor deposition). Preference is given to a fractional sublimation. For fractional sublimation and / or deposition of the compound, a temperature gradient is used. Preferably, the compound of the formula I is sublimated with heating in a carrier gas stream. The carrier gas then flows through a separation chamber. A suitable separation chamber has at least two different separation zones with different temperatures. Preferably, a so-called "three-zone furnace” is used. A suitable method and apparatus for fractional sublimation is described in US 4,036,594.
  • Another object of the invention is a method for the deposition or application of at least one compound of formula I on a (em) substrate by a gas phase deposition method or a wet application method.
  • N, N'-dimethyl-perylene-3,4: 9,10-tetracarboxylic acid imide was obtained as a red solid in an amount of 3.4 g (yield 77%).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft bromsubstituierte Rylentetracarbonsäurederivate der allgemeinen Formel (I) wobei n für 2, 3 oder 4 steht; Rn1, Rn2, Rn3 und Rn4 für Halogen oder Cyano, speziell Br, stehen, wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4 für Br steht; Y1 und Y2 für O oder NRb stehen, wobei Rb für Wasserstoff oder einen Organylrest steht; Z1, Z2, Z3 und Z4 für O stehen, wobei für den Fall, dass Y1 für NRa steht, auch einer der Reste Z1 und Z2 für NRC stehen kann, wobei die Reste Ra und Rc gemeinsam für eine verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen stehen, und wobei für den Fall, dass Y2 für NRb steht, auch einer der Reste Z3 und Z4 für NRd stehen kann, wobei die Reste Rb und Rd gemeinsam für eine verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen stehen; die Herstellung von Verbindungen der allgemeinen Formel I durch Umsetzung einer entsprechenden Verbindung, worin wenigstens einer der Reste Rn1, Rn2, Rn3 und oder Rn4 für Wasserstoff steht, mit N,N'-Dibromisocyanursäure sowie die Verwendung von Verbindungen der allgemeinen Formel I als Emittermaterialien, Ladungstransportmaterialien oder Excitonentransportmaterialien.

Description

Bromsubstituierte Rylentetracarbonsäurederivate und deren Verwendung
Beschreibung
Die vorliegende Erfindung betrifft bromsubstituierte, speziell perbromierte, Rylentetracarbonsäurederivate und deren Verwendung als Emittermaterialien, Ladungstransportmaterialien oder Excitonentransportmaterialien.
Es wird erwartet, dass zukünftig in vielen Bereichen der Elektronikindustrie neben den klassischen anorganischen Halbleitern zunehmend auch organische Halbleiter auf Basis von niedermolekularen oder polymeren Materialien eingesetzt werden. Diese weisen vielfach Vorteile gegenüber den klassischen anorganischen Halbleitern auf, beispielsweise eine bessere Substratkompatibilität und eine bessere Verarbeitbarkeit der auf ihnen basierenden Halbleiterbauteile. Sie erlauben die Verarbeitung auf flexiblen Substraten und ermöglichen es, ihre Grenzorbitalenergien mit den Methoden des Mo- lecular Modellings auf den jeweiligen Anwendungsbereich genau anzupassen. Die deutlich verringerten Kosten derartiger Bauteile haben dem Forschungsgebiet der organischen Elektronik eine Renaissance gebracht. Die Organische Elektronik" beschäftigt sich schwerpunktmäßig mit der Entwicklung neuer Materialien und Fertigungspro- zesse für die Herstellung elektronischer Bauelemente auf der Basis organischer Halbleiterschichten. Dazu zählen vor allem organische Feldeffekttransistoren (Organic Field-Effect Transistors, OFET) sowie organische Leuchtdioden (organische lichtemittierende Dioden, organic light emitting diods, OLED) und die Photovoltaik. Organischen Feldeffekttransistoren wird ein großes Entwicklungspotential, beispielsweise in Spei- cherelementen und integrierten optoelektronischen Vorrichtungen zugeschrieben. In organischen lichtemittierenden Dioden (OLED) wird die Eigenschaft von Materialien ausgenutzt, Licht zu emittieren, wenn sie durch elektrischen Strom angeregt werden. OLEDs sind insbesondere interessant als Alternative zu Kathodenstrahlröhren und Flüssigkristalldisplays zur Herstellung von Flachbildschirmen. Aufgrund der sehr kom- pakten Bauweise und des intrinsisch niedrigeren Stromverbrauchs eignen sich Vorrichtungen, die OLEDs enthalten, insbesondere für mobile Anwendungen, zum Beispiel für Anwendungen in Mobiltelefonen, Laptops usw. Ein großes Entwicklungspotential wird auch Materialien zugeschrieben, die möglichst große Transportweiten und hohe Mobilitäten für lichtinduzierte angeregte Zustände (hohe Excitonendiffusionslängen) besitzen und die sich somit vorteilhaft für einen Einsatz als aktives Material in so genannten excitonischen Solarzellen eignen. Mit Solarzellen auf Basis solcher Materialien lassen sich in der Regel sehr gute Quantenausbeuten erzielen. Es besteht daher ein großer Bedarf an organischen Verbindungen, die sich als Emittermaterialien, Ladungstransportmaterialien oder Excitonentransportmaterialien eignen.
Die am Prioritätstag der vorliegenden Anmeldung unveröffentlichte PCT/EP 2006/070143 (= WO 2007/074137) beschreibt Verbindungen der allgemeinen Formel (A),
Figure imgf000003_0001
wobei
wenigstens einer der Reste R1, R2, R3 oder R4 für einen Substituenten steht, der ausgewählt ist unter Br, F und CN,
Y1 für O oder NRa steht, wobei Ra für Wasserstoff oder einen Organylrest steht,
Y2 für O oder NRb steht, wobei Rb für Wasserstoff oder einen Organylrest steht,
Z1 und Z2 unabhängig voneinander für O oder NRC stehen, wobei Rc für einen Organylrest steht,
Z3 und Z4 unabhängig voneinander für O oder NRd stehen, wobei Rd für einen Organylrest steht,
wobei für den Fall, dass Y1 für NRa steht und wenigstens einer der Reste Z1 und Z2 für NRC steht, Ra mit einem Rest Rc auch gemeinsam für eine verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen stehen kann, und
wobei für den Fall, dass Y2 für NRb steht und wenigstens einer der Reste Z3 und Z4 für NRd steht, Rb mit einem Rest Rd auch gemeinsam für eine verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen stehen kann,
und deren Verwendung als n-Halbleiter in organischen Feldeffekttransistoren. Die Verbindungen der Formel (A), worin R1, R2, R3 oder R4 für Brom stehen, werden hierin unter anderem durch eine Umsetzung entsprechender Verbindungen, worin die ent- sprechenden Reste R1, R2, R3 oder R4 für Wasserstoff stehen, mit N,N'-Dibromisocya- nursäure in Gegenwart von Oleum erhalten.
Die am Prioritätstag der vorliegenden Anmeldung unveröffentlichte PCT/EP 2007/051532 (= WO2007/093643) beschreibt die Verwendung von Verbindungen der allgemeinen Formel (B),
Figure imgf000004_0001
wobei
n für 2, 3 oder 4 steht,
wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4 für Fluor steht,
gegebenenfalls wenigstens ein weiterer Rest Rn1, Rn2, Rn3 und Rn4 für einen Substi- tuenten steht, der unabhängig ausgewählt ist unter Cl und Br, und die übrigen Reste für Wasserstoff stehen,
Y1 für O oder NRa steht, wobei Ra für Wasserstoff oder einen Organylrest steht,
Y2 für O oder NRb steht, wobei Rb für Wasserstoff oder einen Organylrest steht,
Z1, Z2, Z3 und Z4 für O stehen,
wobei für den Fall, dass Y1 für NRa steht, auch einer der Reste Z1 und Z2 für NRC stehen kann, wobei die Reste Ra und Rc gemeinsam für eine verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen stehen, und
wobei für den Fall, dass Y2 für NRb steht, auch einer der Reste Z3 und Z4 für NRd ste- hen kann, wobei die Reste Rb und Rd gemeinsam für eine verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen stehen,
als Halbleiter, insbesondere n-Halbleiter, in der organischen Elektronik, insbesondere für organische Feldeffekttransistoren, Solarzellen und organische Leuchtdioden. Überraschenderweise wurde nun gefunden, dass perbromierte Rylentetracarbonsäure- derivate der im Folgenden beschriebenen Formel I besonders vorteilhaft als Emittermaterialien, Ladungstransportmaterialien oder Excitonentransportmaterialien eignen. Sie zeichnen sich dabei insbesondere als luftstabile n-Halbleiter mit außerordentlich hohen Ladungsmobilitäten aus.
Ein erster Gegenstand der vorliegenden Erfindung betrifft daher Verbindungen der allgemeinen Formel I,
Figure imgf000005_0001
wobei
n für 2, 3 oder 4 steht,
Rn1, Rn2, Rn3 und Rn4 für Halogen oder Cyano und speziell für Brom stehen, wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4für Brom steht,
Y1 für O oder NRa steht, wobei Ra für Wasserstoff oder einen Organylrest steht,
Y2 für O oder NRb steht, wobei Rb für Wasserstoff oder einen Organylrest steht,
Z1, Z2, Z3 und Z4 für O stehen,
wobei für den Fall, dass Y1 für NRa steht, auch einer der Reste Z1 oder Z2 für NRC stehen kann, wobei die Reste Ra und Rc gemeinsam für eine verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen stehen, und
wobei für den Fall, dass Y2 für NRb steht, auch einer der Reste Z3 oder Z4 für NRd stehen kann, wobei die Reste Rb und Rd gemeinsam für eine verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen stehen. Ein weiterer Gegenstand der Erfindung betrifft die Verwendung der Verbindungen der Formel I als Emittermaterialien, Ladungstransportmaterialien oder Excitonentransport- materialien.
In den Verbindungen der Formel I bezeichnet n die Anzahl der in der peri-Position verknüpften Naphthalineinheiten, die das Grundgerüst der erfindungsgemäßen Rylenver- bindungen bilden. In den einzelnen Resten Rn1 bis Rn4 bezeichnet n die jeweilige Naphthalingruppe des Rylengerüsts, an das die Reste gebunden sind. Reste Rn1 bis Rn4, die an unterschiedliche Naphthalingruppen gebunden sind, können jeweils gleiche oder verschiedene Bedeutungen aufweisen. Demgemäß kann es sich bei den Verbindungen der allgemeinen Formel I um Perylene, Terrylene oder Quaterrylene der folgenden Formeln handeln:
Figure imgf000006_0001
(n = 4)
Die höheren Homologen (n = 5, 6, 7, 8) werden analog gebildet.
Im Rahmen der vorliegenden Erfindung umfasst der Ausdruck "Alkyl" geradkettiges oder verzweigtes Alkyl. Vorzugsweise handelt es sich um geradkettiges oder verzweigtes Ci-C3o-Alkyl, insbesondere um Ci-C2o-Alkyl und ganz besonders bevorzugt Ci-Ci2-Alkyl. Beispiele für Alkylgruppen sind insbesondere Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl und n-Eicosyl. Der Ausdruck Alkyl umfasst auch Alkylreste, deren Kohlenstoffketten durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O-, -S-, -NRe-, -C(=O)-, -S(=O)- und/oder -S(=O)2- unterbrochen sein kann. Re steht vorzugsweise für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl. Der Ausdruck Alkyl umfasst auch substituierte Alkylreste. Substituierte Alkylgruppen können in Abhängigkeit von der Länge der Alkylkette einen oder mehrere (z. B. 1 , 2, 3, 4, 5 oder mehr als 5) Substituenten aufweisen. Diese sind vorzugsweise unabhängig voneinander ausgewählt unter Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl, Halogen, Hydroxy, Mercapto (-SH), COOH, Carboxylat, SO3H, Sulfonat, NE1E2, Nitro und Cyano, wobei E1 und E2 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen. Halogensubstituenten sind vorzugsweise Fluor, Chlor oder Brom.
Alkylen steht für divalente unverzweigte oder verzweigte Kohlenwasserstoffreste mit in der Regel 1 bis 30 Kohlenstoffatomen, vorzugsweise 1 bis 20 Kohlenstoffatomen und insbesondere 1 bis 12 Kohlenstoffatomen.
Carboxylat und Sulfonat stehen für ein Derivat einer Carbonsäurefunktion bzw. einer Sulfonsäurefunktion, insbesondere für ein Metallcarboxylat oder -sulfonat, eine Carbonsäureester- oder Sulfonsäureesterfunktion oder eine Carbonsäure- oder Sulfonsäu- reamidfunktion. Cycloalkyl-, Heterocycloalkyl-, Aryl- und Hetarylsubstituenten der Alkylgruppen können ihrerseits unsubstituiert oder substituiert sein; geeignete Substituenten sind die nachfolgend für diese Gruppen genannten.
Die vorstehenden Ausführungen zu Alkyl gelten auch für die Alkylteile in Alkoxy, Alkyl- amino, Alkylthio, Alkylsulfinyl, Alkylsulfonyl, etc.
Durch Aryl substituierte Alkylreste ("Arylalkyl") weisen wenigstens eine, wie nachfolgend definierte, unsubstituierte oder substituierte Arylgruppe auf. Dabei kann die Al- kylgruppe in "Arylalkyl" wenigstens einen weiteren Substituenten tragen und/oder durch eine oder mehrere nicht benachbarte Gruppen, die ausgewählt sind unter -O-, -S-, -NRe-, -CO- und/oder -SO2- unterbrochen sein. Arylalkyl steht vorzugsweise für Phenyl-Ci-Cio-alkyl, besonders bevorzugt für Phenyl-Ci-C4-alkyl, z. B. für Benzyl, 1-Phenethyl, 2-Phenethyl, 1-Phenprop-1-yl, 2-Phenprop-1-yl, 3-Phenprop-1-yl, 1-Phenbut-1-yl, 2-Phenbut-1-yl, 3-Phenbut-1-yl, 4-Phenbut-1-yl, 1-Phenbut-2-yl, 2-Phenbut-2-yl, 3-Phenbut-2-yl, 4-Phenbut-2-yl, 1-(Phenmeth)-eth-1-yl,
1-(Phenmethyl)-1-(methyl)-eth-1-yl oder -(Phenmethyl)-1-(methyl)-prop-1-yl; vorzugsweise für Benzyl und 2-Phenethyl. Der Ausdruck "Alkenyl" umfasst im Sinne der vorliegenden Erfindung geradkettige und verzweigte Alkenylgruppen, die in Abhängigkeit von der Kettenlänge eine oder mehrere Doppelbindungen (z. B. 1 , 2, 3, 4 oder mehr als 4) tragen können. Bevorzugt sind C2-C18-, besonders bevorzugt C2-Ci2-Alkenylgruppen. Im Rahmen der vorliegenden Erfindung wird Alkenyl, das zwei Doppelbindungen in beliebigen Positionen trägt, auch als Alkadienyl bezeichnet. Der Ausdruck "Alkenyl" umfasst auch substituierte Alkenylgruppen, welche einen oder mehrere (z. B. 1 , 2, 3, 4 5 oder mehr als 5) Substituenten tragen können. Geeignete Substituenten sind z. B. ausgewählt unter Cycloalkyl, Hete- rocycloalkyl, Aryl, Hetaryl, Halogen, Hydroxy, Mercapto (-SH), COOH, Carboxylat, SO3H, Sulfonat, NE3E4, Nitro und Cyano, wobei E3 und E4 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen.
Alkenyl steht dann beispielsweise für Ethenyl, 1-Propenyl, 2-Propenyl, 1-Butenyl, 2-Butenyl, 3-Butenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, Penta-1 ,3-dien-1-yl, Hexa-1 ,4-dien-1-yl, Hexa-1 ,4-dien-3-yl, Hexa-1 ,4-dien-6-yl, Hexa-1 ,5-dien-1-yl, Hexa-1 ,5-dien-3-yl, Hexa-1 ,5-dien-4-yl, Hepta-1 ,4-dien-1-yl, Hepta-1 ,4-dien-3-yl, Hepta-1 ,4-dien-6-yl, Hepta-1 ,4-dien-7-yl, Hepta-1 ,5-dien-1-yl, Hepta-1 ,5-dien-3-yl, Hepta-1 ,5-dien-4-yl, Hepta-1 ,5-dien-7-yl, Hepta-1 ,6-dien-1-yl, Hepta-1 ,6-dien-3-yl, Hepta-1 ,6-dien-4-yl, Hepta-1 ,6-dien-5-yl, Hepta-1 ,6-dien-2-yl, Octa-1 ,4-dien-1 -yl, Octa-1 ,4-dien-2-yl, Octa-1 ,4-dien-3-yl, Octa-1 ,4-dien-6-yl, Octa-1 ,4-dien-7-yl, Octa-1 ,5-dien-1-yl, Octa-1 ,5-dien-3-yl, Octa-1 ,5-dien-4-yl, Octa-1 ,5-dien-7-yl, Octa-1 ,6-dien-1-yl, Octa-1 ,6-dien-3-yl, Octa-1 ,6-dien-4-yl, Octa-1 ,6-dien-5-yl, Octa-1 ,6-dien-2-yl, Deca-1 ,4-dienyl, Deca-1 ,5-dienyl, Deca-1 ,6-dienyl, Deca-1 ,7-dienyl, Deca-1 ,8-dienyl, Deca-2,5-dienyl, Deca-2,6-dienyl, Deca-2,7-dienyl, Deca-2,8-dienyl und dergleichen. Die Ausführungen zu Alkenyl gelten auch für die Alkenylgruppen in Alkenyloxy, Alke- nylthio, etc.
Der Ausdruck "Alkinyl" umfasst unsubstituierte oder substituierte Alkinylgruppen, die eine oder mehrere nicht benachbarte Dreifachbindungen aufweisen, wie Ethinyl,
1-Propinyl, 2-Propinyl, 1-Butinyl, 2-Butinyl, 3-Butinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, und dergleichen. Die Ausführungen zu Alkinyl gelten auch für die Alkinylgruppen in Alkinyloxy, Alkinylthio, etc. Substituierte Alkinyle tragen vorzugsweise einen oder mehrere (z. B. 1 , 2, 3, 4, 5 oder mehr als 5) der zuvor für Alkyl genannten Substituenten.
Der Ausdruck "Cycloalkyl" umfasst im Rahmen der vorliegenden Erfindung unsubstituierte als auch substituierte Cycloalkylgruppen, vorzugsweise Cs-Cs-Cycloalkylgruppen wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl, ins- besondere Cs-Cs-Cycloalkyl. Substituierte Cycloalkylgruppen können einen oder mehrere (z. B. 1 , 2, 3, 4, 5 oder mehr als 5) Substituenten aufweisen. Diese sind vorzugsweise unabhängig voneinander ausgewählt unter Alkyl sowie den zuvor für die Alkyl- gruppen genannten Substituenten. Die Cycloalkylgruppen tragen im Falle einer Substi- tution vorzugsweise eine oder mehrere, beispielsweise eine, zwei, drei, vier oder fünf
Figure imgf000009_0001
Beispiele für bevorzugte Cycloalkylgruppen sind Cyclopentyl, 2- und 3-Methyl- cyclopentyl, 2- und 3-Ethylcyclopentyl, Cyclohexyl, 2-, 3- und 4-Methylcyclohexyl, 2-, 3- und 4-Ethylcyclohexyl, 3- und 4-Propylcyclohexyl, 3- und 4-lsopropylcyclohexyl, 3- und 4-Butylcyclohexyl, 3- und 4-sec-Butylcyclohexyl, 3- und 4-tert.-Butylcyclohexyl, Cyclo- heptyl, 2-, 3- und 4-Methylcycloheptyl, 2-, 3- und 4-Ethylcycloheptyl, 3- und 4-Propyl- cycloheptyl, 3- und 4-lsopropylcycloheptyl, 3- und 4-Butylcycloheptyl, 3- und 4-sec- Butylcycloheptyl, 3- und 4-tert.-Butylcycloheptyl, Cyclooctyl, 2-, 3-, 4- und 5-Methyl- cyclooctyl, 2-, 3-, 4- und 5-Ethylcyclooctyl, 3-, 4- und 5-Propylcyclooctyl.
Der Ausdruck Cycloalkenyl umfasst unsubstituierte und substituierte einfach ungesättigte Kohlenwasserstoffgruppen mit 3 bis 8, vorzugsweise 5 bis 6 Kohlenstoffringgliedern, wie Cyclopenten-1-yl, Cyclopenten-3-yl, Cyclohexen-1-yl, Cyclohexen-3-yl, Cyc- lohexen-4-yl und dergleichen. Geeignete Substituenten sind die zuvor für Cycloalkyl genannten.
Der Ausdruck Bicycloalkyl umfasst vorzugsweise bicyclische Kohlenwasserstoffreste mit 5 bis 10 C-Atomen wie Bicyclo[2.2.1]hept-1-yl, Bicyclo[2.2.1]hept-2-yl, Bicyclo[2.2.1]hept-7-yl, Bicyclo[2.2.2]oct-1-yl, Bicyclo[2.2.2]oct-2-yl, Bicyclo[3.3.0]octyl, Bicyclo[4.4.0]decyl und dergleichen.
Der Ausdruck "Aryl" umfasst im Rahmen der vorliegenden Erfindung ein- oder mehrkernige aromatische Kohlenwasserstoffreste, die unsubstituiert oder substituiert sein können. Aryl steht vorzugsweise für unsubstituiert.es oder substituiertes Phenyl,
Naphthyl, Indenyl, Fluorenyl, Anthracenyl, Phenanthrenyl, Naphthacenyl, Chrysenyl, Pyrenyl, etc., und besonders bevorzugt für Phenyl oder Naphthyl. Substituierte Aryle können in Abhängigkeit von der Anzahl und Größe ihrer Ringsysteme einen oder mehrere (z. B. 1 , 2, 3, 4, 5 oder mehr als 5) Substituenten aufweisen. Diese sind vorzugs- weise unabhängig voneinander ausgewählt unter Alkyl, Alkoxy, Cycloalkyl, Heterocyc- loalkyl, Aryl, Hetaryl, Halogen, Hydroxy, Mercapto (-SH), COOH, Carboxylat, SO3H, Sulfonat, NE5E6, Nitro und Cyano, wobei E5 und E6 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen. Halogensubsti- tuenten sind vorzugsweise Fluor, Chlor oder Brom. Besonders bevorzugt steht Aryl für Phenyl, das im Falle einer Substitution im Allgemeinen 1 , 2, 3, 4 oder 5, vorzugsweise 1 , 2 oder 3 Substituenten tragen kann.
Aryl, das einen oder mehrere Reste trägt, steht beispielsweise für 2-, 3- und 4-Methylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 2-, 3- und 4-Ethylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diethylphenyl, 2,4,6-Triethylphenyl, 2-, 3- und 4-Propylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dipropylphenyl, 2,4,6-Tripropylphenyl, 2-, 3- und 4-lsopropylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diisopropylphenyl, 2,4,6-Triisopropylphenyl, 2-, 3- und 4-Butylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dibutyl- phenyl, 2,4,6-Tributylphenyl, 2-, 3- und 4-lsobutylphenyl, 2,4-, 2,5-, 3,5- und
2,6-Diisobutylphenyl, 2,4,6-Triisobutylphenyl, 2-, 3- und 4-sec-Butylphenyl, 2,4-, 2,5-, 3,5- und 2,6-Di-sec-butylphenyl, 2,4,6-Tri-sec-butylphenyl, 2-, 3- und 4-tert.-Butyl- phenyl, 2,4-, 2,5-, 3,5- und 2,6-Di-tert.-butylphenyl und 2,4,6-Tri-tert.-butylphenyl; 2-, 3- und 4-Methoxyphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dimethoxyphenyl, 2,4,6-Trimethoxy- phenyl, 2-, 3- und 4-Ethoxyphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diethoxyphenyl, 2,4,6-Tri- ethoxyphenyl, 2-, 3- und 4-Propoxyphenyl, 2,4-, 2,5-, 3,5- und 2,6-Dipropoxyphenyl, 2-, 3- und 4-lsopropoxyphenyl, 2,4-, 2,5-, 3,5- und 2,6-Diisopropoxyphenyl und 2-, 3- und 4-Butoxyphenyl; 2-, 3- und 4-Cyanophenyl.
Der Ausdruck "Heterocycloalkyl" umfasst im Rahmen der vorliegenden Erfindung nichtaromatische, ungesättigte oder vollständig gesättigte, cycloaliphatische Gruppen mit im Allgemeinen 5 bis 8 Ringatomen, vorzugsweise 5 oder 6 Ringatomen, in denen 1 , 2 oder 3 der Ringkohlenstoffatome durch Heteroatome, ausgewählt unter Sauerstoff, Stickstoff, Schwefel und einer Gruppe -NRe- ersetzt sind und das unsubstituiert ist oder mit einer oder mehreren, beispielsweise 1 , 2, 3, 4, 5 oder 6 d-Cβ-Alkylgruppen substituiert ist. Beispielhaft für solche heterocycloaliphatischen Gruppen seien Pyrroli- dinyl, Piperidinyl, 2,2,6,6-Tetramethyl-piperidinyl, Imidazolidinyl, Pyrazolidinyl, Oxazoli- dinyl, Morpholidinyl, Thiazolidinyl, Isothiazolidinyl, Isoxazolidinyl, Piperazinyl-, Tetra- hydrothiophenyl, Dihydrothien-2-yl, Tetrahydrofuranyl, Dihydrofuran-2-yl, Tetrahydropyranyl, 1 ,2-Oxazolin-5-yl, 1 ,3-Oxazolin-2-yl und Dioxanyl genannt.
Der Ausdruck "Heteroaryl" umfasst im Rahmen der vorliegenden Erfindung unsubstitu- ierte oder substituierte, heteroaromatische, ein- oder mehrkernige Gruppen, vorzugsweise die Gruppen Pyridyl, Chinolinyl, Acridinyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Indolyl, Purinyl, Indazolyl, Benzotriazolyl, 1 ,2,3-Triazolyl, 1 ,3,4-Triazolyl und Carbazolyl, wobei diese heterocycloaromatischen Gruppen im Falle einer Substitution im Allgemeinen 1 , 2 oder 3 Substituenten, tragen können. Die Substituenten sind vorzugsweise ausgewählt unter d-Cε-Alkyl, C-i-Cβ-Alkoxy, Hydroxy, Carboxy, Halogen und Cyano. Stickstoffhaltige 5- bis 7-gliedrige Heterocycloalkyl- oder Heteroarylreste, die gegebenenfalls weitere unter Sauerstoff und Schwefel ausgewählte Heteroatome enthalten, umfassen beispielsweise Pyrrolyl, Pyrazolyl, Imidazolyl, Triazolyl, Pyrrolidinyl, Pyrazo- linyl, Pyrazolidinyl, Imidazolinyl, Imidazolidinyl, Pyridinyl, Pyridazinyl, Pyrimidinyl, Pyra- zinyl, Triazinyl, Piperidinyl, Piperazinyl, Oxazolyl, Isooxazolyl, Thiazolyl, Isothiazolyl, Indolyl, Chinolinyl, Isochinolinyl oder Chinaldinyl.
Halogen steht für Fluor, Chlor, Brom oder lod.
Konkrete Beispiele für die in den folgenden Formeln genannten Reste Ra und Rb sind im Einzelnen:
Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sec.-Butyl, tert.-Butyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Hexadecyl, n-Octadecyl und n-Eicosyl, 2-Methoxyethyl, 2-Ethoxyethyl, 2-Propoxyethyl, 2-Butoxyethyl, 3-Methoxypropyl, 3-Ethoxypropyl, 3-Propoxypropyl, 3-Butoxypropyl, 4-Methoxybutyl, 4-Ethoxybutyl, 4-Propoxybutyl, 3,6-Dioxaheptyl, 3,6-Dioxaoctyl, 4,8-Dioxanonyl, 3,7-Dioxaoctyl, 3,7-Dioxanonyl, 4,7-Dioxaoctyl, 4,7-Dioxanonyl, 2- und 4-Butoxybutyl, 4,8-Dioxadecyl, 3,6,9-Trioxadecyl, 3,6,9-Trioxaundecyl, 3,6,9-Trioxadodecyl, 3,6,9, 12-Tetraoxatridecyl und 3,6,9,12-Tetraoxatetradecyl;
2-Methylthioethyl, 2-Ethylthioethyl, 2-Propylthioethyl, 2-Butylthio-ethyl, 3-Methylthiopropyl, 3-Ethylthiopropyl, 3-Propylthiopropyl, 3-Butylthiopropyl,
4-Methylthiobutyl, 4-Ethylthiobutyl, 4-Propylthiobutyl, 3,6-Dithiaheptyl, 3,6-Dithiaoctyl, 4,8-Dithianonyl, 3,7-Dithiaoctyl, 3,7-Di-thianonyl, 2- und 4-Butylthiobutyl, 4,8-Dithiadecyl, 3,6,9-Trithiadecyl, 3,6,9-Trithia-undecyl, 3,6,9-Trithiadodecyl, 3,6,9,12-Tetrathiatridecyl und 3,6,9, 12-Tetrathiatetradecyl;
2-Monomethyl- und 2-Monoethylaminoethyl, 2-Dimethylaminoethyl, 2- und 3-Dimethyl-aminopropyl, 3-Monoisopropylaminopropyl, 2- und 4-Monopropyl- aminobutyl, 2- und 4-Dimethylaminobutyl, 6-Methyl-3,6-diazaheptyl, 3,6-Dimethyl- 3,6-diazaheptyl, 3,6-Di-azaoctyl, 3,6-Dimethyl-3,6-diazaoctyl, 9-Methyl-3,6,9-triaza- decyl, 3,6,9-Trimethyl-3,6,9-triazadecyl, 3,6,9-Triazaundecyl, 3,6,9-Trimethyl-
3,6,9-triazaundecyl, 12-Methyl-3,6,9,12-tetraazatridecyl und 3,6,9, 12-Tetramethyl- 3,6,9, 12-tetraazatridecyl; (1 -Ethylethyliden)aminoethylen, (1 -Ethylethyliden)aminopropylen, (1 -Ethylethyliden)- aminobutylen, (I-Ethylethyliden)aminodecylen und (I-Ethylethyliden)aminododecylen;
Propan-2-on-1-yl, Butan-3-on-1-yl, Butan-3-on-2-yl und 2-Ethylpentan-3-on-1-yl;
2-Methylsulfinylethyl, 2-Ethylsulfinylethyl, 2-Propylsulfinylethyl, 2-lsopropylsulfinylethyl, 2-Butylsulfinylethyl, 2- und 3-Methylsulfinylpropyl, 2- und 3-Ethylsulfinylpropyl, 2- und 3-Propylsulfinylpropyl, 2- und 3-Butylsulfinylpropyl, 2- und 4-Methylsulfinylbutyl, 2- und 4-Ethylsulfinylbutyl, 2- und 4-Propylsulfinylbutyl und 4-Butylsulfinylbutyl;
2-Methylsulfonylethyl, 2-Ethylsulfonylethyl, 2-Propylsulfonylethyl, 2-lsopropylsulfonylethyl, 2-Butylsulfonylethyl, 2- und 3-Methylsulfonylpropyl, 2- und 3-Ethylsulfonylpropyl, 2- und 3-Propylsulfonylpropyl, 2- und 3-Butylsulfonylproypl, 2- und 4-Methylsulfonylbutyl, 2- und 4-Ethylsulfonylbutyl, 2- und 4-Propylsulfonylbutyl und 4-Butylsulfonylbutyl;
Carboxymethyl, 2-Carboxyethyl, 3-Carboxypropyl, 4-Carboxybutyl, 5-Carboxypentyl, 6-Carboxyhexyl, 8-Carboxyoctyl, 10-Carboxydecyl, 12-Carboxydodecyl und 14-Carboxy-tetradecyl;
Sulfomethyl, 2-Sulfoethyl, 3-Sulfopropyl, 4-Sulfobutyl, 5-Sulfopentyl, 6-Sulfohexyl, 8-Sulfooctyl, 10-Sulfodecyl, 12-Sulfododecyl und 14-Sulfotetradecyl;
2-Hydroxyethyl, 2- und 3-Hydroxypropyl, 3- und 4-Hydroxybutyl und 8-Hydroxy-4-oxaoctyl;
2-Cyanoethyl, 3-Cyanopropyl, 3- und 4-Cyanobutyl;
2-Chlorethyl, 2- und 3-Chlorpropyl, 2-, 3- und 4-Chlorbutyl, 2-Bromethyl, 2- und 3-Brompropyl und 2-, 3- und 4-Brombutyl;
2-Nitroethyl, 2- und 3-Nitropropyl und 2-, 3- und 4-Nitrobutyl;
Methoxy, Ethoxy, Propoxy, Butoxy, Pentoxy und Hexoxy;
Methylthio, Ethylthio, Propylthio, Butylthio, Pentylthio und Hexylthio;
Ethinyl, 1- und 2-Propinyl, 1-, 2- und 3-Butinyl, 1-, 2-, 3- und 4-Pentinyl, 1-, 2-, 3-, 4- und 5-Hexinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- und 9-Decinyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10- und 1 1 -Dodecinyl und 1 -, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11 -, 12-, 13-, 14-, 15-, 16- und 17-Octadecinyl;
Ethenyl, 1- und 2-Propenyl, 1-, 2- und 3-Butenyl, 1-, 2-, 3- und 4-Pentenyl, 1-, 2-, 3-, 4- und 5-Hexenyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- und 9-Decenyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10- und 1 1 -Dodecenyl und 1 -, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11 -, 12-, 13-, 14-, 15-, 16- und 17-Octadecenyl;
Methylamino, Ethylamino, Propylamino, Butylamino, Pentylamino, Hexylamino, Dicyc- lopentylamino, Dicyclohexylamino, Dicycloheptylamino, Diphenylamino und Dibenzyl- amino;
Formylamino, Acetylamino, Propionylamino und Benzoylamino;
Carbamoyl, Methylaminocarbonyl, Ethylaminocarbonyl, Propylaminocarbonyl, Butyl- aminocarbonyl, Pentylaminocarbonyl, Hexylaminocarbonyl, Heptylaminocarbonyl, Octylaminocarbonyl, Nonylaminocarbonyl, Decylaminocarbonyl und Phenylamino- carbonyl;
Aminosulfonyl, N-Dodecylaminosulfonyl, N,N-Diphenylaminosulfonyl, und N,N-Bis(4-Chlorphenyl)aminosulfonyl;
Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl Hexoxycarbonyl, Dodecyloxycar- bonyl, Octadecyloxycarbonyl, Phenoxycarbonyl, (4-tert-Butyl-phenoxy)carbonyl und (4-Chlorphenoxy)carbonyl;
Methoxysulfonyl, Ethoxysulfonyl, Propoxysulfonyl, Butoxysulfonyl, Hexoxysulfonyl, Do- decyloxysulfonyl, Octadecyloxysulfonyl, Phenoxysulfonyl, 1- und 2-Naphthyloxysulfonyl, (4-tert.-Butylphenoxy)-sulfonyl und (4-Chlorphenoxy)sulfonyl;
Diphenylphosphino, Di-(o-tolyl)phosphino und Diphenylphosphinoxido;
Fluor, Chlor, Brom und lod;
Phenylazo, 2-Napthylazo, 2-Pyridylazo und 2-Pyrimidylazo;
Cyclopropyl, Cyclobutyl, Cyclopentyl, 2- und 3-Methylcyclopentyl, 2- und 3-Ethylcyclo- pentyl, Cyclohexyl, 2-, 3- und 4-Methylcyclohexyl, 2-, 3- und 4-Ethylcyclohexyl, 3- und 4-Propylcyclohexyl, 3- und 4-lsopropylcyclohexyl, 3- und 4-Butylcyclohexyl, 3- und 4-sec-Butylcyclohexyl, 3- und 4-tert.-Butylcyclohexyl, Cycloheptyl, 2-, 3- und 4-Methyl-cycloheptyl, 2-, 3- und 4-Ethylcycloheptyl, 3- und 4-Propylcycloheptyl, 3- und 4-lso-propylcycloheptyl, 3- und 4-Butylcycloheptyl, 3- und 4-sec-Butylcycloheptyl, 3- und 4-tert.-Butylcycloheptyl, Cyclooctyl, 2-, 3-, 4- und 5-Methylcyclooctyl, 2-, 3-, 4- und 5-Ethylcyclooctyl und 3-, 4- und 5-Propylcyclooctyl; 3- und 4-Hydroxycyclohexyl, 3- und 4-Nitrocyclohexyl und 3- und 4-Chlorcyclohexyl;
1-, 2- und 3-Cyclopentenyl, 1-, 2-, 3- und 4-Cyclohexenyl, 1-, 2- und 3-Cycloheptenyl und 1-, 2-, 3- und 4-Cyclooctenyl;
2-Dioxanyl, 1-Morpholinyl, 1-Thiomorpholinyl, 2- und 3-Tetrahydrofuryl, 1-, 2- und 3-Pyrrolidinyl, 1-Piperazyl, 1-Diketopiperazyl und 1-, 2-, 3- und 4-Piperidyl;
Phenyl, 2-Naphthyl, 2- und 3-Pyrryl, 2-, 3- und 4-Pyridyl, 2-, 4- und 5-Pyrimidyl, 3-, 4- und 5-Pyrazolyl, 2-, 4- und 5-lmidazolyl, 2-, 4- und 5-Thiazolyl, 3-(1 ,2,4-Triazyl), 2-(1 ,3,5-Triazyl), 6-Chinaldyl, 3-, 5-, 6- und 8-Chinolinyl, 2-Benzoxazolyl, 2-Benzothiazolyl, 5-Benzothiadiazolyl, 2- und 5-Benzimidazolyl und 1- und 5-lsochinolyl;
1-, 2-, 3-, 4-, 5-, 6- und 7-lndolyl, 1-, 2-, 3-, 4-, 5-, 6- und 7-lsoindolyl, 5-(4-Methyliso-indolyl), 5-(4-Phenylisoindolyl), 1-, 2-, 4-, 6-, 7- und 8-(1 ,2,3,4-Tetrahydroisochinolinyl), 3-(5-Phenyl)-(1 ,2,3,4-tetrahydroisochinolinyl), 5-(3-Dodecyl)-(1 ,2,3,4-tetrahydroiso-chinolinyl), 1-, 2-, 3-, 4-, 5-, 6-, 7- und 8-(1 ,2,3,4-Tetrahydrochinolinyl) und 2-, 3-, 4-, 5-, 6-, 7- und 8-Chromanyl, 2-, 4- und 7-Chinolinyl, 2-(4-Phenylchinolinyl) und 2-(5-Ethyl-chinolinyl);
2-, 3- und 4-Methylphenyl, 2,4-, 3,5- und 2,6-Dimethylphenyl, 2,4,6-Trimethylphenyl, 2-, 3- und 4-Ethylphenyl, 2,4-, 3,5- und 2,6-Diethylphenyl, 2,4,6-Triethylphenyl, 2-, 3- und 4-Propylphenyl, 2,4-, 3,5- und 2,6-Dipropylphenyl, 2,4,6-Tripropylphenyl, 2-, 3- und 4-lsopropylphenyl, 2,4-, 3,5- und 2,6-Diisopropylphenyl, 2,4,6-Triisopropylphenyl, 2-, 3- und 4-Butylphenyl, 2,4-, 3,5- und 2,6-Dibutylphenyl, 2,4,6-Tributylphenyl, 2-, 3- und 4-lsobutylphenyl, 2,4-, 3,5- und 2,6-Diisobutylphenyl, 2,4,6-Triisobutylphenyl, 2-, 3- und 4-sec-Butylphenyl, 2,4-, 3,5- und 2,6-Di-sec-butylphenyl und 2,4,6-Tri-sec-butyl-phenyl; 2-, 3- und 4-Methoxyphenyl, 2,4-, 3,5- und 2,6-Dimethoxyphenyl, 2,4,6-Tri-methoxyphenyl, 2-, 3- und 4-Ethoxyphenyl, 2,4-, 3,5- und 2,6-Diethoxyphenyl, 2,4,6-Triethoxyphenyl, 2-, 3- und 4-Propoxyphenyl, 2,4-, 3,5- und 2,6-Dipropoxyphenyl, 2-, 3- und 4-lsopropoxyphenyl, 2,4- und 2,6-Diisopropoxyphenyl und 2-, 3- und 4-Butoxy-phenyl; 2-, 3- und 4-Chlorphenyl und 2,4-, 3,5- und 2,6-Dichlorphenyl; 2-, 3- und 4-Hydroxyphenyl und 2,4-, 3,5- und 2,6-Dihydroxyphenyl; 2-, 3- und 4-Cyanophenyl; 3- und 4-Carboxyphenyl; 3- und 4-Carboxamidophenyl, 3- und 4-N-Methylcarboxamido-phenyl und 3- und 4-N-Ethylcarboxamidophenyl; 3- und 4-Acetylaminophenyl, 3- und 4-Propionylaminophenyl und 3- und 4-Buturylaminophenyl; 3- und 4-N-Phenylamino- phenyl, 3- und 4-N-(o-Tolyl)aminophenyl, 3- und 4-N-(m-Tolyl)aminophenyl und 3- und 4-(p-Tolyl)aminophenyl; 3- und 4-(2-Pyridyl)aminophenyl, 3- und 4-(3-Pyridyl)amino- phenyl, 3- und 4-(4-Pyridyl)aminophenyl, 3- und 4-(2-Pyrimidyl)aminophenyl und 4-(4-Pyrimidyl)aminophenyl;
4-Phenylazophenyl, 4-(1-Naphthylazo)phenyl, 4-(2-Naphthylazo)phenyl, 4-(4-Naphthyl-azo)phenyl,4-(2-Pyriylazo)phenyl, 4-(3-Pyridylazo)phenyl, 4-(4-Pyridylazo)phenyl, 4-(2-Pyrimidylazo)phenyl, 4-(4-Pyrimidylazo)phenyl und 4-(5-Pyrimidylazo)phenyl;
Phenoxy, Phenylthio, 2-Naphthoxy, 2-Naphthylthio, 2-, 3- und 4-Pyridyloxy, 2-, 3- und 4-Pyridylthio, 2-, 4- und 5-Pyrimidyloxy und 2-, 4- und 5-Pyτimidylthio.
Bevorzugte fluorhaltige Reste Ra und Rb sind die Folgenden:
2,2,2-Trifluorethyl, 2,2,3,3,3-Pentafluorpropyl, 2,2-Difluorethyl, 2,2,3,3,4,4,4-Hepta- fluorbutyl, 2,2,3,3,3-Pentafluorpropyl, 1 H,1 H-Pentadecafluoroctyl, 3-Brom-3,3-difluor- propyl, 3,3,3-Trifluorpropyl, 3,3,3-Trifluorpropyl, 1 H,1 H,2H,2H-Perfluorodecyl, 3-(Perfluoroctyl)propyl, 4,4-Difluorbutyl-, 4,4,4-Trifluorbutyl, 5,5,6,6,6-Pentafluorhexyl, 2,2-Difluorpropyl, 2,2,2-Trifluor-1 -phenylethylamino, 1 -Benzyl-2,2,2-trifluorethyl, 2-Brom-2,2-difluorethyl, 2,2,2-Trifluor-1-pyridin-2-ylethyl, 2,2-Difluorpropyl,
2,2,2-Trifluor-1 -(4-methoxyphenyl)ethylamino, 2,2,2-Trifluor-1 -phenylethyl, 2,2-Difluor- 1 -phenylethyl, 1 -(4-Brom-phenyl)-2,2,2-trifluorethyl, 3-Brom-3,3-difluorpropyl, 3,3,3-Trifluorpropylamin, 3,3,3-Trifluor-n-propyl, 1 H,1 H,2H,2H-Perfluordecyl, 3-(Perfluorctyl)propyl, Pentafluorphenyl, 2,3,5,6-Tetrafluorphenyl, 4-Cyano-(2,3,5,6)-Tetrafluorphenyl, 4-Carboxy-2,3,5,6-Tetrafluorphenyl,
2,4-Difluorphenyl, 2,4,5-Trifluorphenyl, 2,4,6-Trifluorphenyl, 2,5-Difluorphenyl, 2-Fluor-5-Nitrophenyl, 2-Fluor-5-trifluormethylphenyl, 2-Fluor-5-methylphenyl, 2,6-Difluorphenyl, 4-Carboxamido-2,3,5,6-tetrafluorphenyl, 2-Brom-4,6-difluorphenyl, 4-Brom-2-fluorphenyl, 2,3-Difluorphenyl, 4-Chlor-2-fluorphenyl, 2,3,4-Trifluorphenyl, 2-Fluor-4-iodphenyl, 4-Brom-2,3,5,6-tetrafluorphenyl, 2,3,6-Trifluorphenyl,
2-Brom-3,4,6-trifluorphenyl, 2-Brom-4,5,6-trifluorphenyl, 4-Brom-2,6-difluorphenyl, 2,3,4,5-Tetrafluorphenyl, 2,4-Difluor-6-nitrophenyl, 2-Fluor-4-nitrophenyl, 2-Chlor-6-fluorphenyl, 2-Fluor-4-methylphenyl, 3-Chlor-2,4-difluorphenyl, 2,4-Dibrom-6-fluorphenyl, 3,5-Dichlor-2,4-difluorphenyl, 4-Cyano-2-fluorphenyl, 2-Chlor-4-fluorphenyl, 2-Fluor-3-trifluormethylphenyl, 2-Trifluormethyl-6-fluorphenyl, 2,3,4, 6-Tetrafluorphenyl, 3-Chlor-2-fluorphenyl, 5-Chlor-2-fluorphenyl, 2-Brom-4-chlor-6-fluorphenyl, 2,3-Dicyano-4,5,6-trifluorphenyl, 2,4,5-Trifluor-3-carboxyphenyl, 2,3,4-Trifluor-6-carboxyphenyl, 2,3,5-Trifluorphenyl, 4-Trifluormethyl2,3,5,6-tetrafluorphenyl, 2-Fluor-5-carboxyphenyl,
2-Chlor-4,6-difluorphenyl, 6-Brom-3-chlor-2,4-difluorphenyl, 2,3,4-Trifluor-6-nitrophenyl, 2,5-Difluor-4-cyanophenyl, 2,5-Difluor-4-trifluormethylphenyl, 2,3-Difluor-6-nitrophenyl, 4-Trifluormethyl-2,3-difluorphenyl, 2-Brom-4,6-difluorphenyl, 4-Brom-2-fluorphenyl, 2-Nitrotetrafluorphenyl, 2,2',3,3',4',5,5',6,6'-Nonafluorbiphenyl, 2-Nitro-3,5,6-trifluorphenyl, 2-Brom-6-fluorphenyl, 4-Chlor-2-fluor-6-iodphenyl, 2-Fluor-6-carboxyphenyl, 2,4-Difluor-3-trifluorphenyl, 2-Fluor-4-trifluorphenyl, 2-Fluor-4-carboxyphenyl, 4-Brom-2,5-difluorphenyl, 2,5-Dibrom-3,4,6-trifluorphenyl, 2-Fluor-5-methylsulphonylpenyl, 5-Brom-2-fluorphenyl, 2-Fluor-4-hydroxymethylphenyl, 3-Fluor-4-brommethylphenyl, 2-Nitro-4-trifluormethylphenyl, 4-Trifluormethylphenyl, 2-Brom-4-trifluormethylphenyl, 2-Brom-6-Chlor-4-(trifluormethyl)phenyl, 2-Chlor-4-trifluormethylphenyl, 3-Nitro-4-(trifluormethyl)phenyl, 2,6-Dichlor-4-(trifluormethyl)phenyl, 4-Trifluorphenyl,
2,6-Dibrom-4-(trifluormethyl)phenyl, 4-Trifluormethyl-2,3,5,6-tetrafluorphenyl, 3-Fluor-4-trifluormethylphenyl, 2,5-Difluor-4-trifluormethylphenyl, 3,5-Difluor-4-trifluormethylphenyl, 2,3-Difluor-4-trifluormethylphenyl, 2,4-Bis(trifluormethyl)phenyl, 3-Chlor-4-trifluormethylphenyl, 2-Brom-4,5-di(trifluormethyl)phenyl, 5-Chlor-2-nitro-4-(trifluormethyl)phenyl, 2,4,6-Tris(trifluormethyl)phenyl, 3,4-Bis(trifluormethyl)phenyl, 2-Fluor-3-trifluormethylphenyl, 2-lod-4-trifluormethylphenyl, 2-Nitro-4,5-bis(trifluormethyl)phenyl, 2-Methyl-4-(trifluormethyl)phenyl,
3,5-Dichlor-4-(trifluormethyl)phenyl, 2,3,6-Trichlor-4-(trifluormethyl)phenyl, 4-(Trifluormethyl)benzyl, 2-Fluor-4-(trifluormethyl)benzyl,
3-Fluor-4-(trifluormethyl)benzyl, 3-Chlor-4-(trifluormethyl)benzyl, 4-Fluorphenethyl, 3-(Trifluormethyl)phenethyl, 2-Chlor-6-fluorphenethyl, 2,6-Dichlorphenethyl, 3-Fluorphenethyl, 2-Fluorphenethyl, (2-Trifluormethyl)phenethyl, 4-Fluorphenethyl,
3-Fluorphenethyl, 4-Trifluormethylphenethyl, 2,3-Difluorphenethyl, 3,4-Difluorphenethyl, 2,4-Difluorphenethyl, 2,5-Difluorphenethyl, 3,5-Difluorphenethyl, 2,6-Difluorphenethyl,4-(4-Fluorphenyl)phenethyl, 3,5-Di(trifluormethyl)phenethyl, Pentafluorphenethyl, 2,4-Di(trifluormethyl)phenethyl, 2-Nitro-4-(trifluormethyl)phenethyl, (2-Fluor-3-trifluormethyl)phenethyl, (2-Fluor-5-trifluormethyl)phenethyl, (3-Fluor-5-trifluormethyl)phenethyl, (4-Fluor-2-trifluormethyl)phenethyl, (4-Fluor-3-trifluormethyl)phenethyl, (2-Fluor-6-trifluormethyl)phenethyl, (2,3,6-Trifluor)phenethyl, (2,4,5-Trifluor)phenethyl, (2,4,6-Trifluor)phenethyl, (2,3,4-Trifluor)phenethyl, (3,4,5-Trifluor)phenethyl, (2,3,5-Trifluor)phenethyl, (2-Chlor-5-fluor)phenethyl, (3-Fluor-4-trifluormethyl)phenethyl, (2-Chlor-5-trifluormethyl)phenethyl, (2-Fluor-3-chlor-5-trifluormethyl)phenethyl, (2-Fluor-3-chlor)phenethyl, (4-Fluor-3-chlor)phenethyl, (2-Fluor-4-chlor)phenethyl, (2,3-Difluor-4-methyl)phenethyl-, 2,6-Difluor-3-chlorphenethyl, (2,6-Difluor-3-methyl)phenethyl, (2-Trifluormethyl-5-chlor)phenethyl, (6-Chlor-2-fluor-5-methyl)phenethyl, (2,4-Dichlor-5-fluor)phenethyl, 5-Chlor-2-fluorphenethyl, (2,5-Difluor-6-chlor)phenethyl, (2,3,4,5-Tetrafluor)phenethyl, (2-Fluor-4-trifluormethyl)phenethyl, 2,3-(Difluor-4-trifluormethyl)phenethyl, (2,5-Di(trifluormethyl))phenethyl, 2-Fluor-3,5-dibromphenethyl, (3-Fluor-4-nitro)phenethyl, (2-Brom-4-trifluormethyl)phenethyl, 2-(Brom-5-fluor)phenethyl, (2,6-Difluor-4-brom)phenethyl, (2,6-Difluor-4-chlor)phenethyl, (3-Chlor-5-fluor)phenethyl, (2-Brom-5-trifluormethyl)phenethyl und dergleichen.
Eine weitere Ausführungsform der Erfindung betrifft Verbindungen der Formel (I), wobei die Gruppen Ra und Rb für Gruppen der Formel (A) stehen (sogenannte Schwalbenschwanzreste). Bevorzugt sind in den Gruppen der Formel (A) die Reste Re ausgewählt sind unter C4-Ce-Al kyl, bevorzugt Cs-Cz-Alkyl. Bevorzugt stehen die Gruppen Ra und Rb dann beide für eine Gruppe der Formel
Figure imgf000017_0001
(A) worin
# für die Verknüpfungsstelle zum Imidstickstoffatom steht, und
die Reste Re ausgewählt sind unter C4-Ce-Al kyl, bevorzugt Cs-Cz-Alkyl. Bei den Resten
Re handelt es sich dann speziell um lineare Alkylreste, die nicht durch Sauerstoffatome unterbrochen sind. Ein bevorzugtes Beispiel für eine Gruppe der Formel (A) ist
1-Hexylhept-1-yl.
Bevorzugt sind Verbindungen der Formel I, wobei n für 2 steht und 5, 6, 7 oder 8 der
Reste Rn1, Rn2, Rn3 und Rn4 für Brom stehen.
Des Weiteren bevorzugt sind Verbindungen der Formel I, wobei n für 3 steht und 7, 8, 9, 10, 1 1 oder 12 der Reste Rn1, Rn2, Rn3 und Rn4 für Brom stehen. Des Weiteren bevorzugt sind Verbindungen der Formel I, wobei n für 4 steht und 9, 10, 1 1 , 12, 13, 14, 15 oder 16 der Reste Rn1, Rn2, Rn3 und Rn4 für Brom stehen.
Rylentetracarbonsäuredianhydride werden im Folgenden als Verbindungen I. A bezeichnet.
Figure imgf000018_0001
Rylentetracarbonsäurediimide werden im Folgenden als Verbindungen I.B bezeichnet, wobei Verbindungen I. Ba
Figure imgf000018_0002
keine zusätzliche verbrückende Gruppe X aufweisen und Verbindungen I.Bbi und I.Bb2
Figure imgf000018_0003
eine solche zusätzliche verbrückende Gruppe X aufweisen. Bevorzugt unter den Verbindungen der Formeln I.A und I. Ba sind die im Folgenden gezeigten Verbindungen:
Figure imgf000019_0001
worin die Reste R11, R12, R13, R14, R21, R22, R23 und R24 für Halogen oder Cyano, speziell für Brom stehen, wobei wenigstens einer der Reste R11, R12, R13, R14, R21, R22, R23 oder R24 für Brom steht und Ra und Rb unabhängig voneinander eine der zuvor genannten Bedeutungen aufweisen.
Besonders bevorzugt steht wenigstens einer der Reste Ra oder Rb für einen elektronenziehend substituierten Rest.
In einer speziellen Ausführungsform steht wenigstens einer der Reste Ra und Rb für einen ein- oder mehrfach mit Fluor substituierten Rest. Besonders bevorzugt stehen sowohl Ra als auch Rb für einen ein- oder mehrfach mit Fluor substituierten Rest. Bezüglich geeigneter fluorierter Reste wird ebenfalls auf die eingangs gemachten Ausführungen Bezug genommen.
In einer weiteren speziellen Ausführungsform sind die Reste Ra und Rb gleich.
Eine weitere bevorzugte Ausführungsform sind Verbindungen der allgemeinen Formeln I.Bbi und I.Bb2 wobei n und Rn1, Rn2, Rn3 und Rn4 die zuvor angegebenen Bedeutungen besitzen und X für eine zweiwertige verbrückende Gruppe mit 2 bis 5 Atomen zwi- sehen den flankierenden Bindungen steht.
Bevorzugt stehen die verbrückenden Gruppen X gemeinsam mit der N-C=N-Gruppe, an die sie gebunden sind für einen 5- bis 8-gliedrigen Heterocyclus steht, der gegebenenfalls ein-, zwei- oder dreifach mit Cycloalkyl, Heterocycloalkyl, Aryl und/oder Hetaryl anelliert ist, wobei die anellierten Gruppen unabhängig voneinander je einen, zwei, drei oder vier Substituenten, ausgewählt unter Alkyl, Alkoxy, Cycloalkyl, Aryl, Halogen, Hydroxy, Mercapto (-SH), COOH, Carboxylat, SO3H, Sulfonat, NE1E2, Alkylen-NE1E2, Nitro und Cyano tragen können, wobei E1 und E2 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen, und/oder X einen, zwei oder drei Substituenten, die ausgewählt sind unter gegebenenfalls substituiertem Alkyl, gegebenenfalls substituiertem Cycloalkyl und gegebenenfalls substituiertem Aryl, aufweisen kann und/oder X durch 1 , 2 oder 3 gegebenenfalls substituierte Heteroato- me unterbrochen sein kann.
Vorzugsweise sind die verbrückenden Gruppen X ausgewählt unter Gruppen der Formeln (lll.a) bis (lll.d)
Figure imgf000020_0001
worin
Rιv, Rv, R, Rv", R" und Rιx unabhängig voneinander für Wasserstoff, Alkyl, Alkoxy, Cycloalkyl, Cycloalkoxy, Heterocycloalkyl, Heterocycloalkoxy, Aryl, Aryloxy, Hetaryl, Hetaryloxy, Halogen, Hydroxy, Mercapto (-SH), COOH, Carboxylat, SO3H, Sulfonat, NE1E2, Alkylen-NE1E2, Nitro, Alkoxycarbonyl, Acyl oder Cyano stehen, wobei E1 und E2 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen.
In einer speziellen Ausführung stehen in den Gruppen (lll.a) bis (lll.d) die Reste Rιv, Rv, R, Rv", R" und Rιx für Wasserstoff.
Im Folgenden werden einige besonders bevorzugte erfindungsgemäße Verbindungen wiedergegeben:
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Die Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel I kann ausgehend von bekannten Verbindungen mit gleichem Rylengrundgerüst, die als Reste Rn1, Rn2, Rn3 und Rn4 wenigstens ein Wasserstoffatom tragen, erfolgen.
Demzufolge betrifft ein weiterer Gegenstand der vorliegenden Erfindung Verfahren zur Herstellung von Verbindungen der Formel I,
Figure imgf000024_0002
wobei n, Rn1, Rn2, Rn3, Rn4, Y1, Y2, Z1, Z2, Z3 und Z4 eine der zuvor gegebenen Bedeutung aufweisen,
bei dem man eine Verbindung der Formel Il
Figure imgf000024_0003
wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4 für Wasserstoff steht, die übri- gen Reste Rn1, Rn2, Rn3 und Rn4 für Halogen oder Cyano und speziell für Brom stehen und n, Y1, Y2, Z1, Z2, Z3 und Z4 eine der zuvor gegebenen Bedeutung aufweisen einer Bromierung mit N,N'-Dibromisocyanursäure unterwirft.
N,N'-Dibromisocyanursäure wird bevorzugt in einer Menge von etwa 0,8 : 1 bis 4 : 1 , besonders bevorzugt etwa 0,9 : 1 bis 2 : 1 bezogen auf ein Mol der in den Verbindungen der Formel Il enthaltenen Reste Rn1, Rn2, Rn3 und Rn4, die für Wasserstoff stehen, verwendet.
Die Bromierung erfolgt vorzugsweise in Gegenwart von Oleum. Insbesondere wird man Oleum als Lösungsmittel für die Bromierungsreaktion verwenden.
Das für die Bromierung verwendete Oleum ist bevorzugt wenigstens 20%ig, besonders bevorzugt wenigstens 25%ig und ganz besonders bevorzugt wenigstens 28%ig, wie z. B. 30%iges Oleum.
Alternativ kann die Bromierung mit N,N'-Dibromisocyanursäure auch in Gegenwart einer von Oleum verschiedenen anorganischen oder organischen Säure durchgeführt werden. Hierfür eignen sich speziell organische Säuren, wie Essigsäure, Propionsäure oder Buttersäure, insbesondere Essigsäure. Bevorzugt wird die organische Säure als Lösungsmittel verwendet.
Die Reaktionstemperatur liegt üblicherweise in einem Bereich von -10 bis 120 0C. Die obere Grenze der Reaktionstemperatur wird in der Regel durch den Siedepunkt des verwendeten Lösungsmittels bzw. der verwendeten organischen oder anorganischen Säure bestimmt.
Für einen Einsatz der Produkte als Halbleiter kann es von Vorteil sein, die Produkte einer weiteren Aufreinigung zu unterziehen. Dazu zählen beispielsweise säulenchro- matographische Verfahren, wobei die Produkte z. B. in einem halogenierten Kohlen- Wasserstoff, wie Methylenchlorid oder einem Toluol/ oder Petrolether/Essigester- Gemisch gelöst, einer Auftrennung bzw. Filtration an Kieselgel unterzogen werden. Des Weiteren ist eine Reinigung durch Sublimation oder Kristallisation möglich.
Üblicherweise wird man bei der erfindungsgemäßen Herstellung der Verbindungen der Formel I von den entsprechenden Verbindungen der Formel Il ausgehen, worin alle Reste Rn1, Rn2, Rn3 und Rn4für Wasserstoff stehen. Es kann jedoch auch vorteilhaft sein, von halogen- oder cyanosubstituierten, speziell von teilbromierten, Verbindungen der Formel Il auszugehen. Ein spezieller Gegenstand der vorliegenden Erfindung betrifft Verfahren zur Herstellung von Rylentetracarbonsäuredianhydriden der Formel I. A,
Figure imgf000026_0001
worin Rn1, Rn2, Rn3 und Rn4 für Halogen oder Cyano, speziell für Brom, stehen, bei dem man ein Rylentetracarbonsäuredianhydrid der Formel ILA,
Figure imgf000026_0002
worin wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4für Wasserstoff steht, die übrigen Reste Rn1, Rn2, Rn3 und Rn4 Halogen oder Cyano, speziell für Brom, stehen und n für 2, 3 oder 4 steht, einer Bromierung mit N,N'-Dibromisocyanursäure unterwirft.
Geeignete Verfahrensbedingungen für die Bromierung des Rylendianhydrids sind die zuvor beschriebenen, worauf hier Bezug genommen wird.
Die Rylentetracarbonsäurediimide der Formeln I. Ba, I.Bbi und I.Bb2 sind ebenfalls durch Bromierung der entsprechenden Rylentetracarbonsäurediimide, worin wenigs- tens einer der Reste Rn1, Rn2, Rn3 oder Rn4für Wasserstoff steht, mit
N,N'-Dibromisocyanursäure herstellbar. Üblicherweise wird man für deren Herstellung jedoch von den an sich bekannten Rylentetracarbonsäuredianhydriden der Formel ILA ausgehen.
Demzufolge betrifft ein weiterer Gegenstand der vorliegenden Erfindung Verfahren zur Herstellung von Verbindungen der Formel I. Ba,
Figure imgf000027_0001
worin Rn1, Rn2, Rn3, Rn4, Ra und Rb eine der zuvor gegebenen Bedeutungen aufweisen, bei dem man
a1 ) ein Rylendianhydrid der Formel ILA,
Figure imgf000027_0002
worin wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4für Wasserstoff steht, die übrigen Reste Rn1, Rn2,Rn3 und Rn4für Halogen oder Cyano, speziell für Brom, stehen und n für 2, 3 oder 4 steht, einer Bromierung mit N,N'-Dibromisocyanur- säure unterwirft, und
b1 ) die in Schritt a1 ) erhaltene Verbindung einer Umsetzung mit einem Amin der
Formel Ra-NH2 und gegebenenfalls einem davon verschiedenen Amin der Formel Rb-NH2 unterwirft.
Alternativ können die Verbindungen der Formel I. Ba durch ein Verfahren, wobei man
a2) ein Rylendianhydrid der Formel ILA, zunächst einer Umsetzung mit einem Amin der Formel Ra-NH2 und gegebenenfalls einem davon verschiedenen Amin der Formel Rb-NH2 unterwirft, und
b2) die in Schritt a2) erhaltene Verbindung einer Bromierung mit N,N'-Dibromisocyanursäure unterwirft. hergestellt werden.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung von Verbindungen der Formeln I.Bbi und/oder I.Bb2,
Figure imgf000028_0001
wobei n, Rn1, Rn2, Rn3, Rn4 und X eine der zuvor gegebenen Bedeutungen aufweisen, bei dem man
a3) ein Rylendianhydrid der Formel ILA,
Figure imgf000028_0002
wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4 für Wasserstoff steht, die übrigen Reste Rn1, Rn2, Rn3 und Rn4 für Halogen oder Cyano, speziell für Brom, stehen und n für 2, 3 oder 4 steht, einer Bromierung mit N,N'-Dibromisocyanur- säure unterwirft, und
b3) die in Schritt a3) erhaltene Verbindung einer Umsetzung mit einem Amin der Formel H2N-X-NH2 unterwirft.
Alternativ können die Verbindungen der Formeln I.Bbi und/oder I.Bb2 durch ein Verfahren, bei dem man
a4) ein Rylendianhydrid der Formel ILA, einer Umsetzung mit einem Amin der Formel H2N-X-NH2 unterwirft, und b4) die in Schritt a4) erhaltene Verbindung einer Bromierung mit N,N'-Dibrom- isocyanursäure unterwirft.
Schritte a1 ), b2), a3) und b4):
Geeignete Verfahrensbedingungen für die Bromierung des Rylengerüstes in den Schritten a1), b2), a3) und b4) sind die zuvor beschriebenen, worauf hier Bezug genommen wird.
Schritte b1 ), a2), b3) und a4):
Die Imidierung der Carbonsäureanhydridgruppen in den Reaktionsschritten b1), a2), b3) und a4) ist prinzipiell bekannt und z. B. in der DE 10 2004 007 382 A1 beschrieben. Vorzugsweise erfolgt die Umsetzung des Dianhydrids mit dem primären Amin in Gegenwart eines aromatischen Lösungsmittels, wie Toluol, XyIoI, Mesitylen, Phenol oder eines polaren aprotischen Lösungsmittels. Geeignete polare aprotische Lösungsmittel sind Stickstoffheterocyclen, wie Pyridin, Pyrimidin, Chinolin, Isochinolin, Chinaldin, N- Methylpiperidin, N-Methylpiperidon und N-Methylpyrrolidon. Zur Umsetzung mit einem aromatischen Diamin der Formel H2N-X-NH2 wird vorzugsweise ein Stickstoffhetero- cyclus oder Phenol als Lösungsmittel eingesetzt. Geeignete Katalysatoren sind die im Folgenden genannten. Bei Verwendung von Phenol als Lösungsmittel wird als Katalysator vorzugsweise Piperazin eingesetzt.
Die Reaktion kann in Gegenwart eines Imidierungskatalysators vorgenommen werden. Als Imidierungskatalysatoren eignen sich organische und anorganische Säuren, z. B. Ameisensäure, Essigsäure, Propionsäure und Phosphorsäure. Geeignete Imidierungskatalysatoren sind weiterhin organische und anorganische Salze von Übergangsmetallen, wie Zink, Eisen, Kupfer und Magnesium. Dazu zählen z. B. Zinkacetat, Zinkpropio- nat, Zinkoxid, Eisen(ll)-acetat, Eisen(lll)-chlorid, Eisen(ll)-sulfat, Kupfer(ll)acetat, Kup- fer(ll)-oxid und Magnesiumacetat. Der Einsatz eines Imidierungskatalysators erfolgt vorzugsweise bei der Umsetzung aromatischer Amine und ist im Allgemeinen auch zur Umsetzung cycloaliphatischer Amine vorteilhaft. Bei der Umsetzung aliphatischer Amine, insbesondere kurzkettiger aliphatischer Amine, kann in der Regel auf den Einsatz eines Imidierungskatalysators verzichtet werden. Die Einsatzmenge des Imidierungskatalysators beträgt vorzugsweise 5 bis 80 Gew.-%, besonders bevorzugt 10 bis 75 Gew.-%, bezogen auf das Gesamtgewicht der zu amidierenden Verbindung. Vorzugsweise liegt das Molmengenverhältnis von Amin zu Dianhydrid bei etwa 2 : 1 bis 10 : 1 , besonders bevorzugt 2 : 1 bis 4 : 1 , z. B. 2,2 : 1 bis 3 : 1.
Die zuvor als Imidierungskatalysatoren genannten organischen Säuren eignen sich auch als Lösungsmittel.
Die Reaktionstemperatur beträgt in den Schritten b1), a2), b3) bzw. a4) im Allgemeinen Umgebungstemperatur bis 200 0C, vorzugsweise 40 bis 160 0C. Die Umsetzung ali- phatischer und cycloaliphatischer Amine erfolgt vorzugsweise in einem Temperaturbe- reich von etwa 60 0C bis 100 0C. Die Umsetzung aromatischer Amine erfolgt vorzugsweise in einem Temperaturbereich von etwa 120 bis 160 0C.
Vorzugsweise erfolgt die Umsetzung in den Reaktionsschritte b1), a2), b3) bzw. a4) unter einer Schutzgasatmosphäre, wie z. B. Stickstoff.
Die Reaktionsschritte b1), a2), b3) bzw. a4) können bei Normaldruck oder gewünsch- tenfalls unter erhöhtem Druck erfolgen. Ein geeigneter Druckbereich liegt im Bereich von etwa 0,8 bis 10 bar. Vorzugsweise beim Einsatz flüchtiger Amine (Siedepunkt etwa ≤ 180 0C) bietet sich der Einsatz unter erhöhtem Druck an.
Das bei der Reaktion in den Schritten b1), a2), b3) bzw. a4) entstehende Wasser kann durch Destillation nach dem Fachmann bekannten Verfahren abgetrennt werden.
In der Regel können die im Reaktionsschritt b1 ), a2), b3) bzw. a4) erhaltenen Diimide ohne weitere Reinigung verwendet werden. Für einen Einsatz der Produkte als Halbleiter kann es jedoch von Vorteil sein, die Produkte einer weiteren Aufreinigung zu unterziehen. Dazu zählen beispielsweise säulenchromatographische Verfahren, wobei die Produkte vorzugsweise in einem halogenierten Kohlenwasserstoff, wie Methylenchlorid, gelöst, einer Auftrennung bzw. Filtration an Kieselgel unterzogen werden.
Die Verbindungen der Formel I eignen sich besonders vorteilhaft als organische Halbleiter. Sie fungieren dabei in der Regel als n-Halbleiter. Werden die erfindungsgemäß eingesetzten Verbindungen der Formel I mit anderen Halbleitern kombiniert und ergibt sich aus der Lage der Energieniveaus, dass die anderen Halbleiter als n-Halbleiter fungieren, so können die Verbindungen I auch ausnahmsweise als p-Halbleiter fungieren.
Die Verbindungen der Formel I zeichnen sich durch ihre Luftstabilität aus. Weiterhin verfügen sie über eine hohe Ladungstransportmobilität, die sie deutlich gegenüber be- kannten organischen Halbleitermaterialen heraushebt. Sie haben zudem ein hohes on/off-Verhältnis.
Die Verbindungen der Formel I eignen sich in besonders vorteilhafter Weise für organi- sehe Feldeffekttransistoren. Sie können beispielsweise zur Herstellung von integrierten Schaltkreisen (ICs) eingesetzt werden, für die bislang übliche n-Kanal MOSFET (metal oxide semiconductor field-effect transistor) zum Einsatz kommen. Dabei handelt es sich dann um CMOS-analoge Halbleiterbausteine, z. B. für Mikroprozessoren, Mikro- kontroller, statische RAM, und andere digitale logic cireuits. Zur Herstellung von HaIb- leitermaterialien können die Verbindungen der Formel I nach einem der folgenden Verfahren weiterverarbeitet werden: Drucken (Offset, Flexo, Gravur, Screen, InkJet, Elekt- rofotografie), Verdampfen, Lasertransfer, Fotolithografie, Dropcasting. Sie eignen sich insbesondere für einen Einsatz in Displays (speziell großflächigen und/oder flexiblen Displays) und RFI D-Tags.
Die Verbindungen der Formel I eignen sich besonders vorteilhaft als Elektronenleiter in organischen Feldeffekttransistoren, organischen Solarzellen und in organischen Leuchtdioden. Sie eignen sich weiterhin besonders vorteilhaft als Excitonentransport- material in excitonischen Solarzellen.
Die Verbindungen der Formel I eignen sich weiterhin besonders vorteilhaft als Fluoreszenzfarbstoff in einem auf Fluoreszenzkonversion beruhenden Display. Derartige Displays umfassen im Algemeinen ein transparentes Substrat, einen auf dem Substrat befindlichen Fluoreszenzfarbstoff und eine Strahlungsquelle. Übliche Strahlungsquel- len senden blaues (color by blue) oder UV-Licht (color by uv) aus. Die Farbstoffe absorbieren entweder das blaue oder das UV-Licht und werden als Grünemitter eingesetzt. In diesen Displays wird z. B. das rote Licht erzeugt, indem der Rotemitter durch einen blaues oder UV-Licht absorbierenden Grünemitter angeregt wird. Geeignete color-by-blue-Displays sind z. B. in der WO 98/28946 beschrieben. Geeignete color-by- uv-Displays werden z. B. von W.A. Crossland, I.D. Sprigle und A.B. Davey in Photoluminescent LCDs (PL-LCD) using phosphors Cambridge University and Screen Technology Ltd., Cambridge, UK beschrieben. Die Verbindungen der Formel I eignen sich weiterhin besonders in Displays, welche basierend auf einem elektrophoretischen Effekt über geladene Pigmentfarbstoffe Farben an- und ausschalten. Derartige elek- trophoretische Displays sind z. B. in der US 2004/0130776 beschrieben.
Die Verbindungen der Formel I eignen sich weiterhin besonders zum Laserschweißen oder zum Wärmemanagement. Gegenstand der Erfindung sind weiterhin organische Feldeffekttransistoren, umfassend ein Substrat mit wenigstens einer Gate-Struktur, einer Source-Elektrode und einer Drain-Elektrode und wenigstens einer Verbindung der Formel I, wie zuvor definiert, als Halbleiter, speziell als n-Halbleiter.
Gegenstand der Erfindung sind weiterhin Substrate mit einer Vielzahl von organischen Feldeffekttransistoren, wobei zumindest ein Teil der Feldeffektransistoren wenigstens einer Verbindung der Formel I, wie zuvor definiert, als n-Halbleiter enthält.
Gegenstand der Erfindung sind auch Halbleiterbausteine, die wenigstes ein solches Substrat umfassen.
Eine spezielle Ausführungsform ist ein Substrat mit einem Muster (Topographie) von organischen Feldeffekttransistoren, wobei jeder Transistor
einen auf dem Substrat befindlichen organischen Halbleiter; eine Gate-Struktur zur Steuerung der Leitfähigkeit des leitenden Kanals; und leitfähige Source- und Drain-Elektroden an den beiden Enden des Kanals
enthält, wobei der organische Halbleiter aus wenigstens einer Verbindung der Formel I besteht oder eine Verbindung der Formel I umfasst. Des Weiteren umfasst der organische Feldeffekttransistor in der Regel ein Dielektrikum.
Eine weitere spezielle Ausführungsform ist ein Substrat mit einem Muster von organi- sehen Feldeffekttransistoren, wobei jeder Transistor einen integrierten Schaltkreis bildet oder Teil eines integrierten Schaltkreises ist und wobei zumindest ein Teil der Transistoren wenigstens eine Verbindung der Formel I umfasst.
Als Substrate eignen sich prinzipiell die dafür bekannten Materialien. Geeignete Sub- strate umfassen z. B. Metalle (vorzugsweise Metalle der Gruppen 8, 9, 10 oder 1 1 des Periodensystems, wie Au, Ag, Cu), oxidische Materialien (wie Glas, Keramiken, SiÜ2, insbesondere Quarz), Halbleiter (z. B. dotiertes Si, dotiertes Ge), Metalllegierungen (z. B. auf Basis von Au, Ag, Cu, etc.), Halbleiterlegierungen, Polymere (z. B. Polyvinylchlorid, Polyolefine, wie Polyethylen und Polypropylen, Polyester, Fluoropolymere, Po- lyamide, Polyimide, Polyurethane, Polyalkyl(meth)acrylate, Polystyrol und Mischungen und Komposite davon), anorganische Feststoffe (z. B. Ammoniumchlorid), Papier und Kombinationen davon. Die Substrate können flexibel oder unflexibel, mit gekrümmter oder planarer Geometrie sein, abhängig von der gewünschten Anwendung. Ein typisches Substrat für Halbleiterbausteine umfasst eine Matrix (z. B. eine Quartz- oder Polymermatrix) und, optional, eine dielektrische Deckschicht.
Geeignete Dielektrika sind Siθ2, Polystyrol, Poly-α-methylstyrol, Polyolefine (wie Po- lypropylen, Polyethylen, Polyisobuten) Polyvinylcarbazol, fluorierte Polymere (z. B. Cytop), Cyanopulluane (z. B. CYMM), Polyvinylphenol, Poly-p-xylol, Polyvinylchlorid oder thermisch oder durch Luftfeuchtigkeit vernetzbare Polymere. Spezielle Dielektrika sind "seif assembled nanodielectrics", d. h. Polymere, welche aus SiCI-Funktionalitäten enthaltenden Monomeren wie z. B. CI3SiOSiCI3, CI3Si-(CH2)6-SiCI3 , CI3Si-(CH2)^-SiCI3 erhalten und/oder welche durch Luftfeuchtigkeit oder durch Zugabe von Wasser in
Verdünnung mit Lösungsmitteln vernetzt werden (siehe z. B. Faccietti Adv. Mat. 2005, 17, 1705-1725). An Stelle von Wasser können auch Hydroxylgruppen-haltige Polymere wie Polyvinylphenol oder Polyvinylalkohol oder Copolymere aus Vinylphenol und Styrol als Vernetzungskomponenten dienen. Es kann auch wenigstens ein weiteres Polymer während des Vernetzungsvorgangs zugegen sein, wie z. B. Polystyrol, welches dann mitvernetzt wird (siehe Facietti, US-Patentanmeldung 2006/0202195).
Das Substrat kann zusätzlich Elektroden aufweisen, wie Gate-, Drain- und Source- Elektroden von OFETs, die normalerweise auf dem Substrat lokalisiert sind (z. B. ab- geschieden auf oder eingebettet in eine nichtleitende Schicht auf dem Dielektrikum). Das Substrat kann zusätzlich leitfähige Gate-Elektroden der OFETs enthalten, die üblicherweise unterhalb der dielektrischen Deckschicht (d. h. dem Gate-Dielektrikum) angeordnet sind.
Nach einer speziellen Ausführung befindet sich eine Isolatorschicht (gate insulating layer) auf wenigstes einem Teil der Substratoberfläche. Die Isolatorschicht umfasst wenigstens einen Isolator, der vorzugsweise ausgewählt ist unter anorganischen Isolatoren, wie SiO2, Si3N4, etc., ferroelektrischen Isolatoren, wie AbO3, Ta2Os, La2Os, TiO2, Y2O3, etc., organischen Isolatoren, wie Polyimiden, Benzocyclobuten (BCB), Polyvinyl- alkoholen, Polyacrylaten, etc. und Kombinationen davon.
Geeignete Materialien für Source- und Drain-Elektroden sind prinzipiell elektrisch leitfähige Materialien. Dazu zählen Metalle, vorzugsweise Metalle der Gruppen 6, 7, 8, 9, 10 oder 11 des Periodensystems, wie Pd, Au, Ag, Cu, AI, Ni, Cr, etc. Geeignet sind weiterhin leitfähige Polymere, wie PEDOT (=Poly(3,4-ethylendioxythiophen):PSS
(= Poly(styrolsulfonat), Polyanilin, oberflächenmodifiziertes Gold, etc. Bevorzugte elektrisch leitfähige Materialien haben einen spezifischen Widerstand von weniger als 10"3, vorzugsweise weniger als 10"4, insbesondere weniger als 10"6 oder 10"7 Ohm x Meter. Nach einer speziellen Ausführung befinden sich Drain- und Source-Elektroden zumindest teilweise auf dem organischen Halbleitermaterial. Selbstverständlich kann das Substrat weitere Komponenten umfassen, wie sie üblicherweise in Halbleitermaterialien oder ICs eingesetzt werden, wie Isolatoren, Widerstände, Kondensatoren, Leiter- bahnen, etc.
Die Elektroden können nach üblichen Verfahren, wie Verdampfen, lithographische Verfahren oder einen anderen Strukturierungsprozess aufgebracht werden.
Die Halbleitermaterialien können auch mit geeigneten Hilfsmitteln (Polymere, Tenside) in disperser Phase durch Verdrucken verarbeitet werden.
In einer ersten bevorzugten Ausführungsform erfolgt die Abscheidung wenigstens einer Verbindung der allgemeinen Formel I (und gegebenenfalls weiterer Halbleitermateria- lien) durch ein Gasphasenabscheidungsverfahren (Physical Vapor Deposition PVD). PVD-Verfahren werden unter Hochvakuumbedingungen durchgeführt und umfassen die folgenden Schritte: Verdampfen, Transport, Abscheidung. Überraschenderweise wurde gefunden, dass sich die Verbindungen der allgemeinen Formel I besonders vorteilhaft für einen Einsatz in einem PVD-Verfahren eignen, da sie sich im Wesentlichen nicht zersetzen und/oder unerwünschte Nebenprodukte bilden. Das abgeschiedene Material wird in hoher Reinheit erhalten. In einer speziellen Ausführung wird das abgeschiedene Material in Form von Kristallen erhalten oder enthält einen hohen kristallinen Anteil. Allgemein wird zur PVD wenigstens eine Verbindung der allgemeinen Formel I auf eine Temperatur oberhalb ihrer Verdampfungstemperatur erhitzt und durch Abküh- len unterhalb der Kristallisationstemperatur auf einem Substrat abgeschieden. Die Temperatur des Substrats bei der Abscheidung liegt vorzugsweise in einem Bereich von etwa 20 bis 250 0C, besonders bevorzugt 50 bis 200 0C. Überraschenderweise wurde gefunden, dass erhöhte Substrattemperaturen bei der Abscheidung der Verbindungen der Formel I vorteilhafte Auswirkungen auf die Eigenschaften der erzielten Halbleiterelemente haben können.
Die erhaltenen Halbleiterschichten weisen im Allgemeinen eine Dicke auf, die für einen ohmschen Kontakt zwischen Source- und Drain-Elektrode ausreicht. Die Abscheidung kann unter einer Inertatmosphäre, z. B. unter Stickstoff, Argon oder Helium, erfolgen.
Die Abscheidung erfolgt üblicherweise bei Umgebungsdruck oder unter reduziertem Druck. Ein geeigneter Druckbereich beträgt etwa 10"7 bis 1 ,5 bar. Vorzugsweise wird die Verbindung der Formel I auf dem Substrat in einer Dicke von 10 bis 1000 nm, besonders bevorzugt 15 bis 250 nm, abgeschieden. In einer speziellen Ausführung wird die Verbindung der Formel I zumindest teilweise in kristalliner Form abgeschieden. Hierfür eignet sich speziell das zuvor beschriebene PVD-Verfahren. Weiterhin ist es möglich, zuvor hergestellte organische Halbleiterkristalle einzusetzen. Geeignete Verfahren zur Gewinnung von derartigen Kristallen werden von R. A. Laudi- se et al. in "Physical Vapor Growth of Organic Semi-Conductors", Journal of Crystal Growth 187 (1998), Seiten 449-454, und in "Physical Vapor Growth of Centimeter- sized Crystals of α-Hexathiophene", Journal of Cystal Growth 1982 (1997), Seiten 416- 427, beschrieben, worauf hier Bezug genommen wird.
In einer zweiten bevorzugten Ausführungsform erfolgt die Abscheidung wenigstens einer Verbindung der allgemeinen Formel I (und gegebenenfalls weiterer Halbleitermaterialien) durch eine Rotationsbeschichtung (spin coating). Überraschenderweise las- sen sich die erfindungsgemäß verwendeten Verbindungen der Formel I somit auch in einem Nassverarbeitungsverfahren (wet processing) zur Herstellung von Halbleitersubstraten einsetzen. Die Verbindungen der Formel I sollten sich somit auch zur Herstellung von Halbleiterelementen, speziell OFETs oder auf der Basis von OFETs, durch ein Druckverfahren eignen. Es können dafür übliche Druckprozesse (InkJet, Flexo, Off- set, Gravur; Tiefdruck, Nanoprint) verwendet werden. Bevorzugte Lösungsmittel für den Einsatz der Verbindungen der Formel I in einem Druckverfahren sind aromatische Lösungsmittel wie Toluol, XyIoI, etc. Man kann zu diesen "Halbleitertinten" verdickend wirkende Substanzen, wie Polymere zusetzen, z. B. Polystyrol, etc. Dabei verwendet man als Dielektrikum die zuvor genannten Verbindungen.
In einer bevorzugten Ausführungsform handelt es sich bei dem erfindungsgemäßen Feldeffekttransistor um einen Dünnschichttransistor (thin film transistor, TFT). Gemäß einem üblichen Aufbau verfügt ein Dünnschichttransistor über eine auf dem Substrat befindliche Gate-Elektrode, eine auf dieser und dem Substrat befindliche Gate- Isolierschicht, eine auf der Gate-Isolierschicht befindliche Halbleiterschicht, eine ohm- sche Kontaktschicht auf der Halbleiterschicht sowie über eine Source-Elektrode und eine Drain-Elektrode auf der ohmschen Kontaktschicht.
In einer bevorzugten Ausführungsform wird die Oberfläche des Substrats vor der Ab- Scheidung wenigstens einer Verbindung der allgemeinen Formel I (und gegebenenfalls wenigstens eines weiteren Halbleitermaterials) einer Modifizierung unterzogen. Diese Modifizierung dient der Bildung von die Halbleitermaterialien bindenden Bereichen und/oder von Bereichen, auf denen keine Halbleitermaterialien abgeschieden werden können. Bevorzugt wird die Oberfläche des Substrats mit wenigstens einer Verbindung (C1 ) modifiziert, die geeignet ist, an die Oberfläche des Substrats sowie an die Verbindungen der Formel I zu binden. In einer geeigneten Ausführungsform wird ein Teil der Oberfläche oder die komplette Oberfläche des Substrats mit wenigstens einer Verbindung (C1 ) beschichtet, um eine verbesserte Abscheidung wenigstens einer Verbindung der allgemeinen Formel I (und gegebenenfalls weiterer halbleitender Verbindungen) zu ermöglichen. Eine weitere Ausführungsform umfasst die Abscheidung eines Musters von Verbindungen der allgemeinen Formel (C1 ) auf dem Substrat nach einem entsprechenden Herstellungsverfahren. Dazu zählen die dafür bekannten Maskenprozesse sowie sogenannte "Patterning"-Verfahren, wie sie z. B. in der US 11/353,934 beschrie- ben sind, worauf hier in vollem Umfang Bezug genommen wird.
Geeignete Verbindungen der Formel (C1) sind zu einer bindenden Wechselwirkung sowohl mit dem Substrat als auch mit wenigstens einer Halbleiterverbindung der allgemeinen Formel I befähigt. Der Begriff "bindende Wechselwirkung" umfasst die BiI- düng einer chemischen Bindung (kovalenten Bindung), ionischen Bindung, koordinati- ven Wechselwirkung, Van der Waals-Wechselwirkungen, z. B. Dipol-Dipol-Wechselwirkungen) etc. und Kombinationen davon. Geeignete Verbindungen der allgemeinen Formel (C1 ) sind:
- Silane, Phosphonsäuren, Carbonsäuren, Hydroxamsäuren, wie Alkyltrichlorsila- ne, z. B. n-(Octadecyl)trichlorsilan; Verbindungen mit Trialkoxysilan-Gruppen, z. B. Alkyltrialkoxysilane, wie n-Octadecyltrimethoxysilan, n-Octadecyltriethoxy- silan, n-Octadecyltri-(n-propyl)oxysilan, n-Octadecyltri-(isopropyl)oxysilan; Tri- alkoxyaminoalkylsilane, wie Triethoxyaminopropylsilan und N[(3-triethoxysilyl)- propyl]-ethylen-diamin; Trialkoxyalkyl-3-glycidylethersilane, wie Triethoxypropyl-
3-glycidylethersilan; Trialkoxyallylsilane wie Allyltrimethoxysilan; Trialkoxy- (isocyanatoalkyl)silane; Trialkoxysilyl(meth)acryloxyalkane und Trialkoxysilyl- (meth)acrylamidoalkane, wie 1-Triethoxysilyl-3-acryloxypropan.
- Amine, Phosphine und Schwefel enthaltende Verbindungen, speziell Thiole.
Bevorzugt ist die Verbindung (C1) ausgewählt unter Alkyltrialkoxysilanen, speziell n-Octadecyltrimethoxysilan, n-Octadecyltriethoxysilan; Hexaalkyldisilazanen, und speziell Hexamethyldisilazan (HMDS); Cs-Cso-Alkylthiolen, speziell Hexadecanthiol; Mer- captocarbonsäuren und Mercaptosulfonsäuren, speziell Mercaptoessigsäure,
3-Mercaptopropionsäure, Mercaptobernsteinsäure, 3-Mercapto-1 -propansulfonsäure und den Alkalimetall- und Ammoniumsalzen davon.
Es sind auch verschiedene Halbleiterarchitekturen mit den erfindungsgemäßen Halblei- tern denkbar wie z. B. Top Contact, Top Gate, Bottom Contact, Bottom Gate, oder aber ein vertikaler Aufbau wie z. B. ein VOFET (Vertical organic field effect transistor) wie z. B. in US 2004/0046182 beschrieben.
Die Schichtdicken betragen bei Halbleitern z. B. 10 nm bis 5 μm, beim Dielektrikum 50 nm bis 10 μm, die Elektroden können z. B. 20 nm bis 1 μm dick sein. Die OFETs können auch zu anderen Bauteilen wie Ringoszillatoren oder Inverter kombiniert werden.
Ein weiterer Aspekt der Erfindung ist die Bereitstellung elektronischer Bauteile, die mehrere Halbleiterkomponenten umfassen, wobei es sich um n- und/oder p-Halbleiter handeln kann. Beispiele solcher Bauteile sind Feldeffekttransistoren (FETs), bipolare Flächentransistoren (bipolar junction transistors, BJTs), Tunneldioden, Wechselrichter, Licht-emittierende Bauteile, biologische und chemische Detektoren oder Sensoren, Temperatur-abhängige Detektoren, Photodetektoren wie Polarisations-sensitive Pho- todetektoren, Gatter, AND-, NAND-, NOT-, OR-, TOR-, und NOR-Gatter, Register, Schalter, Zeitbausteine, statische oder dynamische Speicher und andere dynamische oder sequentielle logische oder andere digitale Bauteile einschließlich programmierbarer Schaltungen.
Ein spezielles Halbleiterelement ist ein Inverter. In der digitalen Logik ist der Inverter ein Gatter, das ein Eingangssignal invertiert. Der Inverter wird auch als NOT-Gate bezeichnet. Reale Inverterschaltungen weisen einen Ausgangsstrom auf, der das Gegenteil zum Eingangsstrom darstellt. Übliche Werte sind z. B. (0, +5V) für TTL- Schaltungen. Die Leistungsfähigkeit eines digitalen Inverters gibt die Spannungtrans- ferkurve (Voltage Transfer Curve VTC) wieder, d. h. der Auftrag von Inputstrom gegen Outputstrom. Idealerweise handelt es sich um eine Stufenfunktion und je näher sich die real gemessene Kurve einer solchen Stufe annähert, desto besser ist der Inverter. In einer speziellen Ausführung der Erfindung werden die Verbindungen der Formel I als organischer n-Halbleiter in einem Inverter eingesetzt.
Die Verbindungen der Formel I eignen sich weiterhin besonders vorteilhaft für einen Einsatz in der organischen Photovoltaik (OPV). Prinzipiell eignen sich diese Verbindungen dabei für einen Einsatz in Farbstoff-sensibilisierten Solarzellen. Bevorzugt ist jedoch ihr Einsatz in Solarzellen, die durch eine Diffusion von angeregten Zuständen (Excitonendiffusion) gekennzeichnet sind. Dabei zeichnet sich eines oder beide der eingesetzten Halbleitermaterialien durch eine Diffusion von angeregten Zuständen (Excitonenbeweglichkeit) aus. Geeignet ist auch die Kombination wenigstens eines Halbleitermaterials, das durch eine Diffusion von angeregten Zuständen gekennzeichnet ist, mit Polymeren, die eine Leitung der angeregten Zustände entlang der Polymer- kette zulassen. Derartige Solarzellen werden im Sinne der Erfindung als excitonische Solarzellen bezeichnet. Die Direktumwandlung von Solarenergie in elektrische Energie in Solarzellen beruht auf dem inneren Photoeffekt eines Halbleitermaterials, d. h. der Erzeugung von Elektron-Loch-Paaren durch Absorption von Photonen und der Tren- nung der negativen und positiven Ladungsträger an einem p-n-Übergang oder einem Schottky-Kontakt. Ein Exciton kann z. B. entstehen, wenn ein Photon in einen Halbleiter eindringt und ein Elektron zum Übergang aus dem Valenzband in das Leitungsband anregt. Um Strom zu erzeugen, muss der durch die absorbierten Photonen erzeugte angeregte Zustand jedoch einen p-n-Übergang erreichen, um ein Loch und ein Elek- tron zu erzeugen, welches dann zur Anode und Kathode fließt. Die so erzeugte Photospannung kann in einem äußeren Stromkreis einen Photostrom bewirken, durch den die Solarzelle ihre Leistung abgibt. Von dem Halbleiter können dabei nur solche Photonen absorbiert werden, die eine Energie aufweisen, die größer als seine Bandlücke ist. Die Größe der Halbleiterbandlücke bestimmt also den Anteil des Sonnenlichts, der in elektrische Energie umgewandelt werden kann. Solarzellen bestehen normalerweise aus zwei absorbierenden Materialien mit unterschiedlichen Bandlücken, um die Sonnenenergie möglichst effektiv zu nutzen. Die meisten organischen Halbleiter haben Excitonen-Diffusionslängen von bis zu 10 nm. Hier besteht weiterhin ein Bedarf an organischen Halbleitern, über die der angeregte Zustand über möglichst große Distanzen weitergeleitet werden kann. Überraschenderweise wurde nun gefunden, dass sich die zuvor beschriebenen Verbindungen der allgemeinen Formel I besonders vorteilhaft für einen Einsatz in excitonischen Solarzellen eignen.
Geeignete organische Solarzellen sind in der Regel schichtförmig aufgebaut und um- fassen in der Regel zumindest die folgenden Schichten: Anode, photoaktive Schicht und Kathode. Diese Schichten befinden sich in der Regel auf einem dafür üblichen Substrat. Der Aufbau organischer Solarzellen ist z. B. in US 2005/0098726 A1 und US 2005/0224905 A1 beschrieben, worauf hier in vollem Umfang Bezug genommen wird.
Geeignete Substrate sind z. B. oxidische Materialien (wie Glas, Keramik, SiÜ2, insbesondere Quarz, etc.), Polymere (z. B. Polyvinylchlorid, Polyolefine, wie Polyethylen und Polypropylen, Polyester, Fluorpolymere, Polyamide, Polyurethane, Polyalkyl(meth)- acrylate, Polystyrol und Mischungen und Komposite davon) und Kombinationen davon.
Als Elektroden (Kathode, Anode) eignen sich prinzipiell Metalle (vorzugsweise der Gruppen 2, 8, 9, 10, 1 1 oder 13 des Periodensystems, z. B. Pt, Au, Ag, Cu, AI, In, Mg, Ca), Halbleiter (z. B. dotiertes Si, dotiertes Ge, Indium-Zinn-Oxid (ITO), Gallium- Indium-Zinn-Oxid (GITO), Zink-Indium-Zinn-Oxid (ZITO), etc.), Metalllegierungen (z. B. auf Basis Pt, Au, Ag, Cu, etc., speziell Mg/Ag-Legierungen), Halbleiterlegierungen, etc. Bevorzugt wird als Anode ein gegenüber einfallendem Licht im Wesentlichen transparentes Material eingesetzt. Dazu zählt z. B. ITO, dotiertes ITO, ZnO, TiÜ2, Ag, Au, Pt. Bevorzugt wird als Kathode ein das einfallende Licht im Wesentlichen reflektierendes Material eingesetzt. Dazu zählen z. B. Metallfilme, z. B. aus AI, Ag, Au, In, Mg, Mg/AI, Ca, etc.
Die photoaktive Schicht ihrerseits umfasst wenigstens eine oder besteht aus wenigstens einer Schicht, die als organisches Halbleitermaterial wenigsten eine Verbindung enthält, die ausgewählt ist unter Verbindungen der Formel I, wie zuvor definiert. In einer Ausführung umfasst die photoaktive Schicht wenigstens ein organisches Akzeptormaterial. Zusätzlich zu der photoaktiven Schicht kann es eine oder mehrere weitere Schichten geben, z. B. eine Schicht mit Elektronen leitenden Eigenschaften (ETL, electron transport layer) und eine Schicht, die ein löcherleitendes Material (hole trans- port layer, HTL) enthält, die nicht absorbieren müssen, Excitonen und Löcher blockierende Schichten (z. B. excition blocking layers, EBL), die nicht absorbieren sollen, Multiplikatorschichten (multiplication layers). Geeignete Excitonen und Löcher blockierende Schichten sind z. B. in US 6,451 ,415 beschrieben.
Geeignete Excitonenblockerschichten sind z. B. Bathocuproine (BCP), 4,4',4"-Tris[3- methylphenyl(phenyl)amino]triphenylamin (m-MTDATA) oder Polyethylendioxythiophen (PEDOT), wie in US 7,026,041 beschrieben.
Die erfindungsgemäßen excitonischen Solarzellen basieren auf photoaktiven Donor- Akzeptor-HeteroÜbergängen. Wird wenigstens eine Verbindung der Formel I als HTM (hole transport material, Lochtransportmaterial) eingesetzt, muss das entsprechende ETM (exciton transport material, Excitonentransportmaterial) so gewählt werden, dass nach Anregung der Verbindungen ein schneller Elektronenübergang auf das ETM stattfindet. Geeignete ETM sind z. B. C60 und andere Fullerene, Perylen-3,4:9,10- bis(dicarboximide) (PTCDI), etc. Wird wenigstens eine Verbindung der Formel I als ETM eingesetzt, muss das komplementäre HTM so gewählt werden, dass nach Anregung der Verbindung ein schneller Löcherübertrag auf das HTM stattfindet. Der HeteroÜbergang kann flach ausgeführt werden (vgl. Two layer organic photovoltaic cell, C. W. Tang, Appl. Phys. Lett, 48 (2), 183-185 (1986) oder N. Karl, A. Bauer, J. Holzäpfel, J. Marktanner, M. Möbus, F. Stölzle, Mol. Cryst. Liq. Cryst., 252, 243-258 (1994).) oder als Volumen-HeteroÜbergang (bulk heterojunction bzw. interpenetrierenes Donor- akzeptor-Netzwerk, vgl. z. B. C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Funct. Mater., 11 (1), 15 (2001 ).) realisiert werden. Die photoaktive Schicht auf Basis eines HeteroÜbergangs zwischen wenigstens eine Verbindung der Formel I und einem HTL (hole transport layer, Lochtransportschicht) oder ETL (exciton transport layer, Ex- citontransportschicht) kann in Solarzellen mit MiM-, pin-, pn-, Mip- oder Min-Aufbau zum Einsatz kommen (M=Metall, p=p-dotierter organischer oder anorganischer Halbleiter, n=n-dotierter organischer oder anorganischer Halbleiter, i=intrinsisch leitfähiges System organischer Schichten, vgl. z. B. J. Drechsel et al., Org. Eletron., 5 (4), 175 (2004) oder Maennig et al., Appl. Phys. A 79, 1-14 (2004)). Sie kann auch in Tandemzellen, wie von P. Peumnas, A. Yakimov, S. R. Forrest in J. Appl. Phys, 93 (7), 3693- 3723 (2003) (vgl. Patente US 4,461 ,922, US 6,198,091 und US 6,198,092) beschrieben, verwendet werden. Sie kann auch in Tandemzellen aus zwei oder mehreren auf- einandergestapelten MiM-, pin-, Mip- oder Min-Dioden (vgl. Patentanmeldung DE 103 13 232.5) verwendet werden (J. Drechsel et al., Thin Solid Films, 451452, 515-517 (2004)).
Dünne Schichten der Verbindungen und aller anderer Schichten können durch Auf- dampfen im Vakuum oder in Inertgasatmosphäre, durch Laserablation oder durch lö- sungs- oder dispersionsprozessierbare Verfahren wie Spin-Coating, Rakeln, Gießverfahren, Aufsprühen, Tauchbeschichtung oder Drucken (z. B. InkJet, Flexo, Offset, Gravur; Tiefdruck, Nanoimprint) hergestellt werden. Die Schichtdicken der M, n, i und p- Schichten betragen typischerweise 10 bis 1000 nm, bevorzugt 10 bis 400 nm.
Als Substrat werden z. B. Glas, Metall- oder Polymerfolien verwendet, die in der Regel mit einer transparenten, leitfähigen Schicht (wie z. B. Snθ2:F, Snθ2:ln, ZnO:AI, Car- bon-Nanotubes, dünne Metallschichten) beschichtet sind.
Neben den Verbindungen der allgemeinen Formel I eignen sich die folgenden Halbleitermaterialien für einen Einsatz in der organischen Photovoltaik:
Acene, wie Anthracen, Tetracen, Pentacen und substituierte Acene. Substituierte Ace- ne umfassen wenigstens einen Substituenten, ausgewählt unter elektronschiebenden Substituenten (z. B. Alkyl, Alkoxy, Ester, Carboxylat oder Thioalkoxy), elektronziehenden Substituenten (z. B. Halogen, Nitro oder Cyano) und Kombinationen davon. Dazu zählen 2,9-Dialkylpentacene und 2,10-Dialkylpentacene, 2,10-Dialkoxypentacene, 1 ,4,8,1 1-Tetraalkoxypentacene und Rubren (5,6,11 ,12-Tetraphenylnaphthacen). Geeignete substituierte Pentacene sind in US 2003/0100779 und US 6,864,396 beschrie- ben. Ein bevorzugtes Acen ist Rubren (5,6,1 1 ,12-Tetraphenylnaphthacen).
Phthalocyanine, wie Hexadecachlorophthalocyanine und Hexadecafluorophthalocyani- ne, metallfreie und zweiwertige Metalle enthaltende, insbesondere die des Titanyloxy, Vanadyloxy, Eisens, Kupfers, Zinks, insbesondere Kupferphthalocyanin, Zinkphthalo- cyanin und metallfreies Phthalocyanin, Hexadecachlorokupferphthalocyanin, Hexade- cachlorozinkphthalocyanin, metallfreies Hexadechlorophathlocyanin, Hexadeca- fluorokupferphthalocyanin, Hexadecafluorophthalocyanin oder metallfreies Hexadefluo- rophathlocyanin.
Porphyrine, wie z. B. 5,10,15,20-Tetra(3-pyridyl)porphyrin (TpyP).
Flüssigkristalline (LC-) Materialien, wie z. B. Hexabenzocoronen (HBC-PhCI 2) oder andere Coronene, Coronendiimide, oder Triphenylene, wie 2,3,6,7,10,1 1-Hexahexylthiotriphenylen (HTT6) oder 2,3,6,7,10,11-Hexakis-(4-n- nonylphenyl)-triphenylen (PTP9), 2,3,6,7,10,11-hexakis-(undecyloxy)-triphenylene (HAT11 ). Besonders bevorzugt sind LCs, die diskotisch sind.
Thiophene, Oligothiophene und substituierte Derivate davon. Geeignete Oligothiophe- ne sind Quaterthiophene, Quinquethiophene, Sexithiophene, α,ω-Di(Ci-C8)-alkyloligothiophene, wie α,ω-Dihexylquaterthiophene, α,ω-Dihexylquinquethiophene und α,ω-Dihexylsexithiophene, Poly(alkylthiophene), wie Poly(3-hexylthiophen), Bis(dithienothiophene), Anthradithiophene und Dialkylanthra- dithiophene, wie Dihexylanthradithiophen, Phenylene-Thiophen- (P-T-) Oligomere und Derivate davon, speziell α,ω-Alkyl-substituierte Phenylen-Thiophen-Oligomere.
Bevorzugte Thiophene, Oligothiophene und substituierte Derivate davon sind PoIy- 3-hexylthiophen (P3HT) oder Verbindungen des Typs α α'-Bis (2,2-dicyanovinyl)quin- quethiophen (DCV5T), Poly(3-(4-Octylphenyl)-2,2'-bithiophen) (PTOPT), Poly(3-(4'- (1 ",4",7"-trioxaoctyl)phenyl)thiophen) (PEOPT), (Poly(3-(2'-methoxy-5'-octylphenyl)- thiophen)) (POMeOPT), Poly(3-octylthiophen) (P3OT), Pyridin enthaltende Polymere wie Poly(pyridopyrazinvinylen), Poly(pyridopyrazinvinylen) modifiziert mit Alkylgruppen, z. B. EHH-PpyPz, Copolymere PTPTB, Polybenzimidazobenzophenanthrolin (BBL), Poly(9,9-dioctylfluoren-co-bis-N,N'-(4-methoxyphenyl)-bis-N,N'-phenyl-1 ,4-phenylene- diamin) (PFMO), siehe Brabec C, Adv. Mater., 2996, 18, 2884. (PCPDTBT) Poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophen)-4,7- (2,1 ,3-benzothiadiazol).
Paraphenylenvinylen und Paraphenylenvinylen enthaltende Oligomere oder Polymere wie z. B. Polyparaphenylenvinylen (PPV), MEH-PPV (Poly(2-methoxy-5-(2'-ethyl- hexyloxy)-1 ,4-phenylenvinylen, MDMO-PPV (Poly(2-methoxy-5-(3',7'-dimethyloctyl- oxy)-1 ,4-phenylenvinylen)), Cyano-Paraphenylenvinylen (CN-PPV), CN-PPV modifiziert mit verschiedenen Alkoxy-Gruppen. PPE-PPV-Hybridpolymere (Phenylen-ethinylen/Phenylen-vinylen-Hybridpolymere).
Polyfluorene und alternierende Polyfluoren-Copolymere wie z. B. mit 4,7-Dithien-2'-yl- 2,1 ,3-benzothiadiazol, und weiterhin Poly(9,9'-dioctylfluoren-co-benzothiadiazol) (F8BT), Poly(9,9'-dioctylfluoren-co-bis-N,N '-(4-butylphenyl)-bis-N,N '-phenyl-1 ,4- phenylendiamin) (PFB).
Polycarbazole, d. h. Carbazol enthaltende Oligomere und Polymere, wie (2,7) und (3,6).
Polyaniline, d. h. Anilin enthaltende Oligomere und Polymere.
Triarylamine, Polytriarylamine, Polycyclopentadiene, Polypyrrole, Polyfuran, Polysilole, Polyphosphole, N,N'-Bis-(3-methylphenyl)-N,N'-bis-(phenyl)-benzidin (TPD), 4,4'-Bis(carbazol-9-yl)biphenyl (CBP), 2,2',7,7'-Tetrakis-(N,N-di-p-methoxyphenylamin)- 9,9'-spirobifluoren (Spiro-MeOTAD).
Fullerene, speziell C60 und seine Derivate wie PCBM (= [6,6]-Phenyl-C6i-buttersäure- methylester). In derartigen Zellen wäre das Fullerenderivat ein Lochleiter.
Kupfer(l)-iodid, Kupfer(l)-thiocyanat.
p-n-Mischmaterialien, d. h. Donor und Akzeptor in einem Material, Polymer, Blockpolymere, Polymere mit C60s, C60-Azofarben, trimeres Mischmaterial, das Verbindungen vom Carotenoidtyp, Porphyrintyp und chinoide flüssigkristalline Verbindungen als Do- nor/Akzeptor-Systeme enthält, wie von Kelly in S. Adv. Mater. 2006, 18, 1754, beschrieben.
Alle zuvor genannten Halbleitermaterialien können auch dotiert sein. Beispiele von Dotierstoffen: Br2, Tetrafluortetracyanochinodimethan (F4-TCNQ), etc.
Ein weiterer Gegenstand der Erfindung ist eine organische Leuchtdiode (OLED), die wenigstens eine Verbindung der allgemeinen Formel I, wie zuvor definiert, enthält. Die Verbindungen der Formel I können dabei als Ladungstransportmaterial (Elektronenlei- ter) dienen.
Organische Leuchtdioden sind grundsätzlich aus mehreren Schichten aufgebaut. Dazu zählen: 1. Anode 2. Löcher-transportierende Schicht 3. Licht-emittierende Schicht 4. Elektronen-transportierende Schicht 5. Kathode. Es ist auch möglich, dass die organi- sehe Leuchtdiode nicht alle der genannten Schichten aufweist, zum Beispiel ist eine organische Leuchtdiode mit den Schichten (1 ) (Anode), (3) (Licht-emittierende Schicht) und (5) (Kathode) ebenfalls geeignet, wobei die Funktionen der Schichten (2) (Löchertransportierende Schicht) und (4) (Elektronen-transportierende Schicht) durch die an- grenzenden Schichten übernommen werden. OLEDs, die die Schichten (1 ), (2), (3) und (5) bzw. die Schichten (1), (3), (4) und (5) aufweisen, sind ebenfalls geeignet. Der Aufbau von organischen Leuchtdioden und Verfahren zu ihrer Herstellung sind dem Fachmann prinzipiell bekannt, z.B. aus der WO 2005/019373. Geeignete Materialien für die einzelnen Schichten von OLEDs sind z. B. in WO 00/70655 offenbart. Auf die Offenbarung dieser Dokumente wird hier Bezug genommen. Die Herstellung von erfindungsgemäßen OLEDs kann nach dem Fachmann bekannten Methoden erfolgen. Im Allgemeinen wird eine OLED durch aufeinanderfolgende Dampfabscheidung (Vapor deposition) der einzelnen Schichten auf ein geeignetes Substrat hergestellt. Geeignete Substrate sind zum Beispiel Glas oder Polymerfilme. Zur Dampfabscheidung können übliche Techniken eingesetzt werden wie thermische Verdampfung, Chemical Vapor Deposition und andere. In einem alternativen Verfahren können die organischen Schichten aus Lösungen oder Dispersionen in geeigneten Lösungsmitteln beschichtet werden, wobei dem Fachmann bekannte Beschichtungstechniken angewendet werden. Zusammensetzungen, die neben einer Verbindung der allgemeinen Formel I ein polymeres Material in einer der Schichten der OLEDs, bevorzugt in der Lichtemittierenden Schicht, aufweisen, werden im Allgemeinen durch Verarbeitung aus Lösung als Schicht aufgebracht.
Durch die erfindungsgemäße Verwendung der Verbindungen I können OLEDs mit ho- her Effizienz erhalten werden. Die erfindungsgemäßen OLEDs können in allen Vorrichtungen eingesetzt werden, bei denen Elektrolumineszenz nützlich ist. Geeignete Vorrichtungen sind bevorzugt ausgewählt aus stationären und mobilen Bildschirmen. Stationäre Bildschirme sind z. B. Bildschirme von Computern, Fernsehern, Bildschirme in Druckern, Küchengeräten sowie Reklametafeln, Beleuchtungen und Hinweistafeln. Mobile Bildschirme sind z. B. Bildschirme in Handys, Laptops, Digitalkameras, Fahrzeugen sowie Zielanzeigen an Bussen und Bahnen. Weiterhin können die Verbindungen I in OLEDs mit inverser Struktur eingesetzt werden. Bevorzugt werden die Verbindungen I in diesen inversen OLEDs wiederum in der Licht-emittierenden Schicht eingesetzt. Der Aufbau von inversen OLEDs und die üblicherweise darin eingesetzten Materialien sind dem Fachmann bekannt.
Vor ihrem Einsatz als Ladungstransportmaterialien oder Excitonentransportmaterialien kann es sinnvoll sein, die Verbindungen der Formel I einem Reinigungsverfahren zu unterziehen. Geeignete Reinigungsverfahren umfassen ein Überführen der Verbindun- gen der Formel I in die Gasphase. Dazu zählen die Reinigung durch Sublimation oder PVD (physical vapor deposition). Bevorzugt ist eine fraktionierte Sublimation. Zur fraktionierten Sublimation und/oder Abscheidung der Verbindung wird ein Temperaturgradient eingesetzt. Vorzugsweise wird die Verbindung der Formel I unter Erhitzen in ei- nem Trägergasstrom sublimiert. Das Trägergas strömt dann durch eine Trennkammer. Eine geeignete Trennkammer weist wenigstens zwei verschiedene Trennzonen mit unterschiedlichen Temperaturen auf. Bevorzugt wird ein so genanntes "three-zone furnace" eingesetzt. Ein geeignetes Verfahren und eine Vorrichtung zur fraktionierten Sublimation ist in der US 4,036,594 beschrieben.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Abscheidung oder Auftragung wenigstens einer Verbindung der Formel I auf ein(em) Substrat durch ein Gas- phasenabscheidungsverfahren oder ein Nassauftragungsverfahren.
Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.
Beispiele
Synthesebeispiele:
Beispiel 1 :
Figure imgf000044_0001
Zu einer Lösung von 1 ,6,7,12-Tetrabromperylen-3,4:9,10-tetracarbonsäuranhydrid (15,0 g, 0,021 mol) in Oleum (30%ig, 250 ml) wird bei einer Temperatur von 40 0C über einen Zeitraum von 2 Stunden eine Lösung von N,N'-Dibromisocyanursäure (21 ,5 g, 0,075 mol) in Oleum (30%ig, 250 ml) zugetropft. Nach beendeter Zugabe wird das Re- aktionsgemisch auf 50 0C erhitzt und 16 Stunden bei dieser Temperatur gerührt. Weitere N,N'-Dibromisocyanursäure (6,1 g, 0,02 mol) wird zugesetzt und weitere 16 Stunden gerührt. Anschließend wird das Reaktionsgemisch auf Eiswasser gegeben, der ausfallende Feststoff abfiltriert, neutral gewaschen und im Vakuum getrocknet. Octabrompe- rylen-3,4:9,10-tetracarbonsäuranhydrid wurde als roter Feststoff in einer Menge von 18,2 g erhalten (Ausbeute 85 %). Beispiel 2:
Figure imgf000045_0001
Zu einer Lösung von N,N'-Dimethyl-perylen-3,4:9,10-tetracarbonsäureimid (1 ,76 g, 4,2 mmol) in Oleum (30%ig, 50 ml) gibt man bei einer Temperatur von 50 0C N,N'-Dibromisocyanursäure (8,6 g, 30 mmol) und rührt 16 Stunden. Anschließend gibt man weitere N,N'-Dibromisocyanursäure (1 ,23 g) hinzu und rührt weitere 70 Stunden. Anschließend wird das Reaktionsgemisch auf Eiswasser gegeben, der ausfallende Feststoff abfiltriert, neutral gewaschen und im Vakuum getrocknet. N,N'-Dimethyl- octabromperylen-3,4:9,10-tetracarbonsäureimid wurde als roter Feststoff in einer Menge von 3,4 g erhalten (Ausbeute 77 %).

Claims

Patentantsprüche
1. Verwendung von Verbindungen der allgemeinen Formel I,
Figure imgf000046_0001
wobei
n für 2, 3 oder 4 steht,
Rn1, Rn2, Rn3 und Rn4 für Halogen oder Cyano stehen, wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4 für Brom steht,
Y1 für O oder NRa steht, wobei Ra für Wasserstoff oder einen Organylrest steht,
Y2 für O oder NRb steht, wobei Rb für Wasserstoff oder einen Organylrest steht,
Z1, Z2, Z3 und Z4 für O stehen,
wobei für den Fall, dass Y1 für NRa steht, auch einer der Reste Z1 oder Z2 für NRC stehen kann, wobei die Reste Ra und Rc gemeinsam für eine verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen stehen, und
wobei für den Fall, dass Y2 für NRb steht, auch einer der Reste Z3 oder Z4 für NRd stehen kann, wobei die Reste Rb und Rd gemeinsam für eine verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen stehen,
als Emittermaterialien, Ladungstransportmaterialien oder Excitonentransportma- terialien.
2. Verwendung nach Anspruch 1 , wobei n für 2 steht.
3. Verwendung nach Anspruch 1 , wobei n für 3 steht.
4. Verwendung nach Anspruch 1 , wobei n für 4 steht.
5. Verwendung nach einem der vorhergehenden Ansprüche von Verbindungen der Formeln I. A
Figure imgf000047_0001
worin Rn1, Rn2, Rn3 und Rn4 für Brom stehen.
6. Verwendung nach einem der Ansprüche 1 bis 4 von Verbindungen der Formel I. Ba
Figure imgf000047_0002
worin Rn1, Rn2, Rn3 und Rn4 für Brom stehen und Ra und Rb unabhängig voneinander für Wasserstoff oder für unsubstituiertes oder substituiertes Alkyl, Alkenyl, Al- kadienyl, Alkinyl, Cycloalkyl, Bicycloalkyl, Cycloalkenyl, Heterocycloalkyl, Aryl oder Heteroaryl stehen.
Verwendung nach einem der Ansprüche 1 bis 4 von Verbindungen der Formeln I.Bbi und I.Bb2
Figure imgf000048_0001
wobei
n und Rn1, Rn2, Rn3 und Rn4 die zuvor angegebenen Bedeutungen besitzen und
X für eine zweiwertige verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen steht.
8. Verwendung von Verbindungen der allgemeinen Formel I, wie in einem der An- sprüche 1 bis 7 definiert, als Elektronenleiter in organischen Feldeffekttransistoren, organischen Solarzellen und in organischen Leuchtdioden.
9. Verwendung nach Anspruch 8 als Halbleitermaterial in organischen Feldeffekttransistoren.
10. Verwendung von Verbindungen der allgemeinen Formel I, wie in einem der Ansprüche 1 bis 7 definiert, als Emittermaterial in organischen Leuchtdioden.
1 1. Verwendung von Verbindungen der allgemeinen Formel I, wie in einem der An- sprüche 1 bis 7 definiert, als aktives Material in der organischen Photovoltaik, insbesondere als Excitonentransportmaterial in excitonischen Solarzellen.
12. Verwendung von Verbindungen der allgemeinen Formel I, wie in einem der Ansprüche 1 bis 7 definiert, als Lichtabsorber oder Lichtemitter.
13. Verwendung einer Verbindung der allgemeinen Formel I, wie in einem der Ansprüche 1 bis 7 definiert, für optische Label, zur unsichtbaren Markierung von Produkten, als Fluoreszenzfarbstoffe, als Fluoreszenzlabel für Biomoleküle und als Pigmente.
14. Verwendung einer Verbindung der allgemeinen Formel I, wie in einem der Ansprüche 1 bis 7 definiert, als Fluoreszenzfarbstoff in einem auf Fluoreszenzkon- version beruhenden Display; in einem lichtsammelnden Kunststoffteil, welches gegebenenfalls mit einer Solarzelle kombiniert ist; als Pigmentfarbstoff in elektro- phoretischen Displays; als Fluoreszenzfarbstoff in einer auf Chemolumineszenz basierenden Anwendung.
15. Verfahren zur Herstellung von Verbindungen der Formel I,
Figure imgf000049_0001
wobei n, Rn1, Rn2, Rn3, Rn4, Y1, Y2, Z1, Z2, Z3 und Z4 eine der in einem der Ansprüche 1 bis 7 gegebenen Bedeutungen aufweisen,
bei dem man eine Verbindung der Formel Il
Figure imgf000049_0002
wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4 für Wasserstoff steht, die übrigen Reste Rn1, Rn2, Rn3 und Rn4 für Halogen oder Cyano stehen und n, Y1, Y2, Z1, Z2, Z3 und Z4 eine der in einem der Ansprüche 1 bis 7 gegebene Bedeutung aufweisen einer Bromierung mit N,N'-Dibromisocyanursäure in Gegenwart einer anorganischen oder organischen Säure unterwirft.
16. Verfahren gemäß Anspruch 15, wobei die Reste Rn1, Rn2, Rn3 und Rn4 in der Verbindung der Formel Il für Wasserstoff stehen.
17. Verfahren zur Herstellung von Verbindungen der Formel I. A,
Figure imgf000050_0001
worin die Reste Rn1, Rn2, Rn3 und Rn4 für Halogen oder Cyano stehen, wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4 für Brom steht,
bei dem man ein Rylentetracarbonsäuredianhydrid der Formel ILA,
Figure imgf000050_0002
wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4für Wasserstoff steht, die übrigen Reste Rn1, Rn2, Rn3 und Rn4für Halogen oder Cyano stehen und n für 2, 3 oder 4 steht, einer Bromierung mit N,N'-Dibromisocyanursäure unterwirft.
18. Verfahren zur Herstellung von Verbindungen der Formel I. Ba,
Figure imgf000050_0003
worin n für 2, 3, oder 4 steht, Rn1, Rn2, Rn3, Rn4für Halogen oder Cyano stehen und Ra und Rb unabhängig voneinander für Wasserstoff oder für unsubstituiertes oder substituiertes Alkyl, Alkenyl, Alkadienyl, Alkinyl, Cycloalkyl, Bicycloalkyl, Cycloalkenyl, Heterocycloalkyl, Aryl oder Heteroaryl stehen, bei dem man a1 ) ein Rylentetracarbonsäuredianhydrid der Formel ILA,
Figure imgf000051_0001
wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4für Wasserstoff steht, die übrigen Reste Rn1, Rn2, Rn3 und Rn4für Halogen oder Cyano stehen und n für 2, 3 oder 4 steht, einer Bromierung mit N,N'-Dibrom- isocyanursäure unterwirft, und
b1 ) die in Schritt a1 ) erhaltene Verbindung einer Umsetzung mit einem Amin der Formel Ra-NH2 und gegebenenfalls einem davon verschiedenen Amin der Formel Rb-NH2 unterwirft.
19. Verfahren zur Herstellung von Verbindungen der Formel LBa,
Figure imgf000051_0002
worin n für 2, 3 oder 4 steht, Rn1, Rn2, Rn3, Rn4für Halogen oder Cyano stehen und Ra und Rb unabhängig voneinander für Wasserstoff oder für unsubstituiertes oder substituiertes Alkyl, Alkenyl, Alkadienyl, Alkinyl, Cycloalkyl, Bicycloalkyl, Cycloalkenyl, Heterocycloalkyl, Aryl oder Heteroaryl stehen, bei dem man
a2) ein Rylentetracarbonsäuredianhydrid der Formel ILA,
Figure imgf000052_0001
wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4für Wasserstoff steht, die übrigen Reste Rn1, Rn2, Rn3 und Rn4 für Halogen oder Cyano stehen und n für 2, 3 oder 4 steht, einer Umsetzung mit einem Amin der Formel Ra-NH2 und gegebenenfalls einem davon verschiedenen Amin der Formel Rb-NH2 unterwirft, und
b2) die in Schritt a2) erhaltene Verbindung einer Bromierung mit N,N'-Dibromisocyanursäure unterwirft.
20. Verfahren zur Herstellung von Verbindungen der Formeln I.Bbi und/oder I.Bb2,
Figure imgf000052_0002
wobei n für 2, 3 oder 4 steht, Rn1, Rn2, Rn3, Rn4 für Halogen oder Cyano stehen und X für eine zweiwertige verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen steht, bei dem man
a3) ein Rylentetracarbonsäuredianhydrid der Formel ILA,
Figure imgf000053_0001
wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4 für Wasserstoff steht, die übrigen Reste Rn1, Rn2, Rn3 und Rn4 für Halogen oder Cyano stehen und n für 2, 3 oder 4 steht, einer Bromierung mit N,N'-Dibrom- isocyanursäure unterwirft, und
b3) die in Schritt a3) erhaltene Verbindung einer Umsetzung mit einem Amin der Formel H2N-X-NH2 unterwirft.
21. Verfahren zur Herstellung von Verbindungen der Formeln I.Bbi und/oder I.Bb2,
Figure imgf000053_0002
wobei n für 2, 3, oder 4 steht, Rn1, Rn2, Rn3, Rn4 für Halogen oder Cyano stehen und X für eine zweiwertige verbrückende Gruppe mit 2 bis 5 Atomen zwischen den flankierenden Bindungen steht, bei dem man
a4) ein Rylentetracarbonsäuredianhydrid der Formel ILA,
Figure imgf000054_0001
wobei wenigstens einer der Reste Rn1, Rn2, Rn3 oder Rn4 für Wasserstoff steht, die übrigen Reste Rn1, Rn2, Rn3 und Rn4 für Halogen oder Cyano stehen und n für 2, 3 oder 4 steht, einer Umsetzung mit einem Amin der Formel H2N-X-NH2 unterwirft, und
b4) die in Schritt a4) erhaltene Verbindung einer Bromierung mit N,N'-Dibrom- isocyanursäure unterwirft.
22. Verbindungen der allgemeinen Formel I wie in einem der Ansprüche 1 bis 7 definiert.
23. Organischer Feldeffekttransistor, umfassend ein Substrat mit wenigstens einer Gate-Struktur, einer Source-Elektrode und einer Drain-Elektrode und wenigstens einer Verbindung der Formel I, wie in einem der Ansprüche 1 bis 7 definiert, als n-Halbleiter.
24. Substrat mit einer Vielzahl von organischen Feldeffekttransistoren, wobei zumin- dest ein Teil der Feldeffektransistoren wenigstens eine Verbindung der Formel I, wie in einem der Ansprüche 1 bis 7 definiert, als n-Halbleiter enthält.
25. Halbleiterbaustein, umfassend wenigstes ein Substrat, wie in Anspruch 24 definiert.
26. OLED enthaltend wenigstens einer Verbindung der Formel I, wie in einem der Ansprüche 1 bis 7 definiert.
PCT/EP2008/058011 2007-06-25 2008-06-24 Bromsubstituierte rylentetracarbonsäurederivate und deren verwendung WO2009000831A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07110995.3 2007-06-25
EP07110995 2007-06-25

Publications (1)

Publication Number Publication Date
WO2009000831A1 true WO2009000831A1 (de) 2008-12-31

Family

ID=39790418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/058011 WO2009000831A1 (de) 2007-06-25 2008-06-24 Bromsubstituierte rylentetracarbonsäurederivate und deren verwendung

Country Status (1)

Country Link
WO (1) WO2009000831A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8674104B2 (en) 2007-08-17 2014-03-18 Basf Se Halogen-containing perylenetetracarboxylic acid derivatives and the use thereof
TWI598349B (zh) * 2011-05-11 2017-09-11 巴地斯顏料化工廠 以鹵化苝為基質之半導體材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104232A1 (de) * 2002-06-07 2003-12-18 Basf Aktiengesellschaft 1,6,9,14-tetrasubstituierte terrylentetracarbonsäurediimide
WO2006037539A1 (de) * 2004-10-05 2006-04-13 Basf Aktiengesellschaft Halogenierung von rylencarbonsäureimiden mit elementarem halogen in einem zweiphasengemisch bestehend aus organischem lösungsmittel und wasser, wobei der sich bildende halogenwasserstoff dem organischen lösungsmittel kontinuierlich entzogen wird
WO2006058674A1 (de) * 2004-11-29 2006-06-08 Basf Aktiengesellschaft Durch cyclische aminogruppen substituierte rylentetracarbonsäurediimide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104232A1 (de) * 2002-06-07 2003-12-18 Basf Aktiengesellschaft 1,6,9,14-tetrasubstituierte terrylentetracarbonsäurediimide
WO2006037539A1 (de) * 2004-10-05 2006-04-13 Basf Aktiengesellschaft Halogenierung von rylencarbonsäureimiden mit elementarem halogen in einem zweiphasengemisch bestehend aus organischem lösungsmittel und wasser, wobei der sich bildende halogenwasserstoff dem organischen lösungsmittel kontinuierlich entzogen wird
WO2006058674A1 (de) * 2004-11-29 2006-06-08 Basf Aktiengesellschaft Durch cyclische aminogruppen substituierte rylentetracarbonsäurediimide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SADRAI, MAHIN ET AL: "Lasing action in a family of perylene derivatives: singlet absorption and emission spectra, triplet absorption and oxygen quenching constants, and molecular mechanics and semiempirical molecular orbital calculations", JOURNAL OF PHYSICAL CHEMISTRY , 96(20), 7988-96 CODEN: JPCHAX; ISSN: 0022-3654, 1992, XP002499019 *
TACHIKAWA ET AL: "Hybrid density functional theory (DFT) study on electronic states of halogen-substituted organic-inorganic hybrid compounds: Al-NTCDA", JAPANESE JOURNAL OF APPLIED PHYSICS, JAPAN SOCIETY OF APPLIED PHYSICS, TOKYO.; JP, vol. 44, no. 6A, 1 January 2005 (2005-01-01), pages 3769 - 3773, XP002429103, ISSN: 0021-4922 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8674104B2 (en) 2007-08-17 2014-03-18 Basf Se Halogen-containing perylenetetracarboxylic acid derivatives and the use thereof
TWI598349B (zh) * 2011-05-11 2017-09-11 巴地斯顏料化工廠 以鹵化苝為基質之半導體材料

Similar Documents

Publication Publication Date Title
EP1987092B1 (de) Fluorierte rylentetracarbonsäurederivate und deren verwendung
US8674104B2 (en) Halogen-containing perylenetetracarboxylic acid derivatives and the use thereof
EP2401254B1 (de) Chinonverbindungen als dotierstoff in der organischen elektronik
US10214525B2 (en) Chlorinated napthalenetetracarboxylic acid derivatives, preparation thereof and use thereof in organic electronics
US7910736B2 (en) Method for producing organic field-effect transistors
EP2742112B1 (de) Carbazolocarbazol-bis(dicarboximide) und ihre verwendung als halbleiter
US20150179954A1 (en) Substituted terrylene and quaterrylene derivates and use as semiconductors thereof
EP2029573B1 (de) Dibenzorylentetracarbonsäurediimide als infrarotabsorber
US20080090325A1 (en) Method for producing organic field-effect transistors
WO2009000831A1 (de) Bromsubstituierte rylentetracarbonsäurederivate und deren verwendung
WO2008113753A1 (de) Verfahren zur herstellung von rylentetracarbonsäurediimiden, deren imidstickstoffe wasserstoffatome tragen, und deren verwendung
WO2011000939A1 (de) Verwendung von substituierten periflanthenen in organischen solarzellen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08774252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08774252

Country of ref document: EP

Kind code of ref document: A1