[go: up one dir, main page]

WO2007125961A1 - 静電容量式センサ - Google Patents

静電容量式センサ Download PDF

Info

Publication number
WO2007125961A1
WO2007125961A1 PCT/JP2007/058960 JP2007058960W WO2007125961A1 WO 2007125961 A1 WO2007125961 A1 WO 2007125961A1 JP 2007058960 W JP2007058960 W JP 2007058960W WO 2007125961 A1 WO2007125961 A1 WO 2007125961A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable electrode
capacitive sensor
semiconductor layer
electrode
detection unit
Prior art date
Application number
PCT/JP2007/058960
Other languages
English (en)
French (fr)
Inventor
Eiichi Furukubo
Daisuke Wakabayashi
Hisakazu Miyajima
Masao Ohbuchi
Ryo Aoki
Original Assignee
Panasonic Electric Works Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006126873A external-priority patent/JP4605087B2/ja
Priority claimed from JP2006126437A external-priority patent/JP4600344B2/ja
Application filed by Panasonic Electric Works Co., Ltd. filed Critical Panasonic Electric Works Co., Ltd.
Priority to EP07742395A priority Critical patent/EP2023152A4/en
Priority to CN2007800154915A priority patent/CN101432627B/zh
Priority to US12/296,554 priority patent/US8176782B2/en
Publication of WO2007125961A1 publication Critical patent/WO2007125961A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration

Definitions

  • the present invention relates to a capacitance type sensor that detects a predetermined physical quantity by detecting a capacitance between a fixed electrode and a movable electrode.
  • the elastic element is formed as a beam (beam) extending spirally from the fixed part, and is movable and supported by the fixed part via the elastic element.
  • the electrode is mainly configured to be displaced in a direction along the surface of the sensor (semiconductor layer).
  • the capacitive sensors of Patent Document 2 and Patent Document 3 are designed to break the mass balance by using a torsion beam extending symmetrically in the horizontal direction, with the fixed part force called anchor part at the asymmetrically formed mass part.
  • the physical quantity can be detected by the displacement of the mass portion due to torsion of the torsion beam corresponding to the physical quantity applied in the vertical direction.
  • Patent Document 2 such a capacitive sensor is formed by processing a metal material.
  • Patent Document 3 a semiconductor substrate such as silicon is formed using a known semiconductor process. It is formed by processing.
  • a device is formed by processing silicon by a semiconductor process as in Patent Document 3, it is possible to perform fine processing. Therefore, it is smaller and more accurate than when processing a metal material as in Patent Document 3. It can be a capacitive sensor.
  • the movable electrode is supported by the fixed portion via the beam.
  • the stress generated in the beam changes depending on the maximum displacement and weight of the movable electrode, the shape of the beam as an elastic element, the maximum acceleration acting on the sensor, etc.
  • the stress generated in the beam increases and the specs such as the displacement amount and weight of the movable electrode are set to the desired values immediately. was there.
  • each part including an anchor part has a taper.
  • the device size is increased, the member is lost due to movement of the movable electrode, and sticking is caused.
  • crystal anisotropic etching there is a problem that it is difficult to form a mass portion that has a certain mass and improves detection sensitivity.
  • the present invention has been proposed in view of the above-described situation, and in a capacitive sensor in which a movable electrode is movably supported by a fixed part via a beam, the stress of the beam is reduced. Objective.
  • the present invention also provides a capacitive sensor having a structure capable of improving detection sensitivity and avoiding loss of members, staging, etc. caused by increase in device size and movement of movable electrodes. For the purpose.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-28634
  • Patent Document 2 US Patent No. 4736629
  • Patent Document 3 US Patent No. 6000287 Specification
  • the capacitive sensor according to the first aspect of the present invention includes a fixed electrode and a movable electrode that is movably supported by a fixed portion of the semiconductor layer via a beam.
  • the detection unit is configured by disposing the movable electrode to face each other with a gap.
  • a stress relaxation portion for relaxing local stress concentration is provided at least one of an end portion connected to the fixed portion and an end portion connected to the movable electrode.
  • the capacitance type sensor includes a beam portion on the fixed portion of the semiconductor layer. And a first movable electrode that is movable and supported so as to have an asymmetric mass balance via the substrate and operates in accordance with a physical quantity displacement in the thickness direction of the semiconductor layer, and is formed on a support substrate that supports the semiconductor layer.
  • the first fixed electrode is arranged opposite to each other with a gap, and the physical quantity is detected based on the capacitance detected according to the size of the gap between the first movable electrode and the first fixed electrode.
  • the semiconductor layer is a single crystal silicon layer, and the fixed portion, the beam unit, and the first movable portion formed by vertically etching the single crystal silicon layer.
  • the movable mechanism of the said 1st movable electrode which consists of an electrode is provided, It is characterized by the above-mentioned.
  • the capacitive sensor According to the capacitive sensor according to the first aspect of the present invention, it is connected to the portion where the stress is likely to be large in the beam, that is, the end on the side connected to the fixed portion of the beam and the movable electrode. Since the stress relaxation portion for relaxing the stress is provided at least one of the end portions on the side to be formed, the stress generated in the beam can be reduced.
  • the detection sensitivity is improved, the device size is increased, the member is lost due to the movable electrode being moved, the sticking, etc. Can be avoided.
  • the movable mechanism by vertical etching, it is possible to obtain a uniform cross-sectional shape, which makes it possible to greatly reduce the sensitivity of other axes.
  • the semiconductor layer is made of single crystal silicon, it can be easily processed without film stress.
  • FIG. 1 is a plan view of a semiconductor layer of a capacitance type sensor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the capacitive sensor taken along line AA in FIG.
  • FIG. 3 is a cross-sectional view of the capacitive sensor taken along line BB in FIG. 1.
  • FIG. 4 is a cross-sectional view (CC cross-sectional view of FIG. 2) of the beam portion of the capacitance type sensor that works according to the embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a state in which the movable electrode of the capacitive sensor that works according to the embodiment of the present invention swings, in which (a) is not swinging, and (b) is on one side.
  • (C) is a diagram showing a state in which the other side approaches the fixed electrode.
  • FIG. 6 shows the potential as a part of the semiconductor layer of the capacitive sensor according to the embodiment of the present invention. It is an enlarged view showing a take-out part, where (a) is a plan view, (b) is a sectional view taken along the line DD of (a), and (c) is a view showing a state before the thread is erected.
  • FIG. 7 is a plan view ((a) to (c)) showing examples of the stress relaxation portion of the capacitive sensor according to the embodiment of the present invention.
  • FIG. 8 is a plan view ((a) and (b)) showing another example of the stress relaxation portion of the capacitance type sensor that works on the embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a configuration of a semiconductor layer of the capacitive sensor shown as the first embodiment of the present invention.
  • FIG. 10 is a cross-sectional view for explaining a recess formed in a semiconductor layer of the capacitive sensor.
  • FIG. 11 is a cross-sectional view showing a state in which the concave portion of the semiconductor layer of the capacitive sensor is formed by crystal anisotropic etching.
  • FIG. 12 is a diagram for explaining the formation of the capacitive sensor using an SOI (Silicon On Insulator) substrate.
  • SOI Silicon On Insulator
  • FIG. 13 is a view showing a state in which the movable electrode of the capacitance type sensor is displaced in the vertical direction without twisting.
  • FIG. 14 is a diagram for explaining an installation position of a fixed electrode of the capacitance type sensor.
  • FIG. 15 is a view showing that the center of the twisting operation for operating the movable electrode of the capacitance type sensor is deviated.
  • FIG. 16 is a diagram for explaining the shape of the fixed electrode of the capacitive sensor.
  • ⁇ 17 The configuration of the semiconductor layer of the capacitive sensor shown as the second embodiment of the invention will be explained.
  • FIG. 18 is a cross-sectional view for explaining a state in which the capacitance type sensor is cut along the DD line shown in FIG.
  • FIG. 19 is a diagram for explaining a detailed configuration of a detection unit included in a horizontal direction detection unit of the capacitance type sensor.
  • FIG. 20 is a diagram for explaining another shape of the movable electrode of the capacitance type sensor.
  • a capacitive sensor 1 (hereinafter simply referred to as sensor 1) according to a first embodiment of the present invention includes glass substrates on both sides of a semiconductor layer 2 obtained by processing a semiconductor substrate.
  • the insulating layers 20 and 21 are joined by anodic bonding or the like.
  • a relatively shallow recess 22 is formed at the joint surface between the semiconductor layer 2 and the insulating layers 20, 21, thereby ensuring insulation of each part of the semiconductor layer 2 and operability of the movable electrode 5.
  • the bonding surface between the semiconductor layer 2 and the insulating layer 20 is provided with a recess 22 on the semiconductor layer 2 side, while the bonding surface between the semiconductor layer 2 and the insulating layer 21 is provided with a recess on the insulating layer 21 side. 22 is provided.
  • a conductor layer 23 is formed on the surface 20a of the insulating layer 20, and is used as an electrode for obtaining the potential of each part of the semiconductor layer 2.
  • the through-hole 24 is formed in the insulating layer 20 by sandblasting calorie or the like to expose a part of the surface of the semiconductor layer 2 (the surface on the insulating layer 20 side), and the surface force of the insulating layer 20 is also increased.
  • a series of electrically connected conductor layers 23 are formed on the inner peripheral surface of the through-hole 24 and on the surface of the semiconductor layer 2 (the surface of the anchor portion 3 in FIG. 2). The potential of each part in the semiconductor layer 2 can be detected.
  • the surface of the insulating layer 20 is preferably covered (molded) with a resin layer (not shown).
  • the gap 10 is formed on the semiconductor substrate by a known semiconductor process, so that the anchor portion 3, the beam portion 4, the movable electrode 5, A frame part 7, a potential extraction part 8, etc. are formed.
  • the semiconductor layer 2 is formed in a substantially rectangular shape as a whole in plan view, and the frame portion 7 is substantially constant along the four peripheral edges (four sides) of the semiconductor layer 2. It is provided in a frame shape with a width.
  • the gap 10 is formed so that the side wall surface of the gap 10 is perpendicular to the surface of the semiconductor layer 2 by performing a vertical etching cache such as reactive ion etching (RIE). .
  • RIE reactive ion etching
  • ICP force by an etching apparatus equipped with inductively coupled plasma (ICP) can be used. Since the large plate portion 5a and the small plate portion 5b are each formed with a single-crystal silicon substrate force, the size of the large plate portion 5a is larger than that of the small plate portion 5b.
  • ICP inductively coupled plasma
  • a rectangular cross section (in the present embodiment) is located on the inner side of the frame portion 7 at a position slightly shifted from the substantially center position in plan view of the semiconductor layer 2 to one long side of the frame portion 7 (upper side in FIG. 1).
  • a columnar anchor portion 3 having a substantially square cross-section) is provided, and a pair of side wall force beam portions 4, 4 facing the short side of the frame portion 7 of the anchor portion 3 are substantially the same as the long side of the frame portion 7. Stretched in parallel.
  • the beam portion 4 is configured as a beam having a certain rectangular (substantially rectangular) cross section as shown in FIG. Force depending on the overall size
  • the height h in the thickness direction of the semiconductor layer 2 is 10 micrometers or more (500 micrometers or less)
  • the width w along the surface of the semiconductor layer 2 is several micrometers. It can be a meter (about 3-10 micrometers).
  • the beam section 4 extends in a direction along the long side of the frame section 7 with a constant cross section, and the end section 4b opposite to the end section 4a on the anchor section 3 side is connected to the movable electrode 5. ing.
  • the movable electrode 5 has a substantially rectangular outer peripheral surface 5d in plan view opposed to the inner peripheral surface 7a of the frame portion 7 with a gap 10, and a gap 10 is provided outside the anchor portion 3 and the beam portions 4 and 4. It is formed so as to surround it. That is, as shown in FIG. 1, the movable electrode 5 has a gap 10 on one long side (lower side in FIG. 1) of the frame portion 7 with respect to the anchor portion 3 and the beam portions 4 and 4.
  • the large rectangular plate 5a is provided with a substantially rectangular small plate 5b with a gap 10 on the other long side of the frame 7 (upper side in FIG. 1).
  • the plate portion 5a and the small plate portion 5b are connected to each other via a pair of connection portions 5c and 5c along the short side of the frame portion 7.
  • the beam portions 4 and 4 are connected to the substantially central portions of the corresponding connection portions 5c and 5c, respectively.
  • the large plate portion 5a and the small plate portion 5b are each formed with a single-crystal silicon substrate force, and thus are larger in size than the small plate portion 5b.
  • the mass of the large plate portion 5a is large.
  • the structure in which the movable electrode 5 is movably supported by the anchor portion 3 serving as the fixed portion of the sensor 1 with the asymmetric mass balance via the beam portions 4 and 4 has an appropriate gap 10 in the semiconductor layer 2. It can be obtained by forming the recess 22 appropriately in at least one of the semiconductor layer 2 and the insulating layers 20 and 21. Therefore, the anchor part 3, the beam parts 4, 4, and the movable electrode 5 are integrally formed as a part of the semiconductor layer 2, and the potentials of the anchor part 3, the beam parts 4, 4, and the movable electrode 5 are It can be regarded as almost equipotential.
  • the beam parts 4 and 4 function as panel elements for inertially moving and supporting the movable electrode 5 with respect to the frame part 7.
  • the beam portions 4 and 4 have a long cross section in the thickness direction of the sensor 1 (a cross section perpendicular to the extending axis of the beam portion 4).
  • the movable electrode 5 is provided with a large plate portion 5a and a small plate portion 5b having different masses facing each other with the beam portions 4 and 4 interposed therebetween, on both sides of the beam portions 4 and 4.
  • the beam portions 4 and 4 are twisted due to the difference in inertial force acting on the large plate portion 5a and the small plate portion 5b, and the movable electrode 5 swings around the beam portions 4 and 4. That is, in the present embodiment, the beam sections 4 and 4 function as a twisting beam (torsion beam).
  • the fixed electrodes 6A and 6B are provided on the lower surface 20b of the insulating layer 20 so as to face the large plate portion 5a and the small plate portion 5b of the movable electrode 5, respectively.
  • FIG. 5A shows a state in which the movable electrode 5 is in a posture parallel to the lower surface 20b of the insulating layer 20 without swinging.
  • the size of the gap 25a between the large plate portion 5a and the fixed electrode 6A is equal to the size of the gap 25b between the small plate portion 5b and the fixed electrode 6B.
  • FIG. 5 (b) shows that the movable electrode 5 swings and tilts with respect to the lower surface 20b of the insulating layer 20, and the large plate portion 5a Shows a state in which the small plate portion 5b is close to the fixed electrode 6B while being separated from the fixed electrode 6A.
  • the gap 25a is larger and the gap 25b is smaller than the state of FIG. 5A, so the electrostatic capacitance between the large plate portion 5a and the fixed electrode 6A is smaller and smaller.
  • the capacitance between the plate portion 5b and the fixed electrode 6B is increased.
  • FIG. 5 (c) shows that the movable electrode 5 swings and tilts with respect to the lower surface 20b of the insulating layer 20, the large plate portion 5a is close to the fixed electrode 6A, and the small plate portion 5b is fixed electrode.
  • 6B force shows the separated state. In this state, the gap 25a is smaller and the gap 25b is larger than in the state of FIG. 5 (a), so that the capacitance between the large plate portion 5a and the fixed electrode 6A is larger and smaller. The electrostatic capacitance between the plate part 5b and the fixed electrode 6B becomes small.
  • the voltage waveform obtained by CV conversion can be obtained from the differential output with the capacitance, and various physical quantities (acceleration, angular acceleration, etc.) applied to the sensor 1 can be detected.
  • Such a capacitance can be obtained from the potentials of the movable electrode 5 and the fixed electrodes 6A and 6B.
  • the insulating layer 20 on the anchor portion 3 has a through hole 24, and the potential of the movable electrode 5 is formed on the inner surface of the through hole 24.
  • the conductor layer 23 is taken out.
  • the fixed electrode 6 is formed on the lower surface 20b of the insulating layer 20 as a substantially rectangular conductor layer (for example, an aluminum alloy layer).
  • the wiring pattern 11 and the terminal portion 9 are simultaneously formed as a continuous conductive layer with the fixed electrode 6. Therefore, the potential of the fixed electrode 6 passes through the wiring pattern 11 and the terminal portion 9, the potential extraction portion 8 formed in the semiconductor layer 2, and the conductor layer 23 formed in the insulating layer 20 on the potential extraction portion 8. And get out! /
  • FIG. Fig. 6 (a) is an enlarged view of the potential extraction section 8
  • Fig. 6 (b) is a cross-sectional view showing a state cut along the CC line shown in Fig. 6 (a).
  • (c) is a cross-sectional view showing a state before the insulating layer 20 and the semiconductor layer 2 are joined.
  • the potential extraction portion 8 is formed in the gap 10 formed in the semiconductor layer 2 or in the semiconductor layer 2 or the insulating layer 21.
  • the formed recess 22 is isolated from the other portions of the semiconductor layer 2 such as the movable electrode 5 and the frame portion 7, and is formed into a substantially columnar pad portion 8 a and from the pad portion 8 a to the short side of the frame portion 7. And a pedestal portion 8b extending along the long side.
  • a recess 26 having a flat bottom surface 8c is formed so as to cut out a portion corresponding to the terminal portion 9 of the pedestal portion 8b.
  • An underlayer 27 (for example, a layer of silicon dioxide (SiO 2)) is formed on the bottom surface 8c.
  • a conductor layer 28 having substantially the same height is formed at a position adjacent to the underlying layer 27, and a frame-shaped peak 12a is continuously provided from the upper surface of the underlying layer 27 to the upper surface of the conductive layer 28.
  • a substantially ladder-like contact portion 12 is formed in plan view.
  • the conductor layer 28 and the contact portion 12 can be formed as layers made of the same conductor material (for example, an aluminum alloy).
  • the crest 12a of the contact portion 12 is formed so as to protrude above the upper surface 2a of the semiconductor layer 2 by a height ⁇ h.
  • the peak portion 12a is pressed by the terminal portion 9 to be plastically deformed to increase the degree of adhesion, and the peak portion 12a (contact point portion 12) and the terminal portion 9 are increased. The contact and continuity with each other is ensured.
  • a stagger 13 is provided at an appropriate position on the surface of the large plate portion 5a and the small plate portion 5b so that the movable electrode 5 and the fixed electrodes 6A, 6B are in direct contact ( Force to suppress damage due to collision) If this stopper 13 is formed of the same material as the underlying layer 27 in the same process, it will take less time to manufacture compared to the case where they are formed separately. The manufacturing cost can be reduced.
  • FIG. 7A is a plan view of the stress relaxation portion 30 that is applied to the present embodiment.
  • the frame portion 4 is provided with a rectangular frame-shaped structure 31 in plan view at the end on the side where the beam portion 4 is connected to the connection portion 5 c of the movable electrode 5.
  • an elongated frame-like structure 31 including a short side portion 32 along the extending direction of the beam portion 4 and a long side portion 33 extending in a direction orthogonal to the extending direction in plan view is connected to the connecting portion 5c.
  • the end portion of the beam portion 4 is connected to the central portion in the longitudinal direction of the frame-like structure 31.
  • the end of the connecting portion 5c and the long side portion 33 are integrated with each other, while the height of the frame-like structure 31 is Is the same as the beam section 4.
  • the area that is squeezed with the operation of the movable electrode 5 can be increased by the strong structure, so the corner part (base part) 4b, The local stress concentration in 5d can be reduced.
  • the strong frame-like structure 31 is formed to be elongated in a direction perpendicular to the extending direction of the beam portion 4, a torsion beam in which the beam portion 4 is twisted about its extending axis as in this embodiment.
  • the long side portion 33 is particularly effective because it can take a large amount of stagnation.
  • FIG. 7B is a plan view of the stress relaxation portion 30A that is applied to the modification of the present embodiment.
  • frame-like structures 31 similar to (a) in FIG. 7 are arranged in a plurality of stages (in this example, two stages) in the extending direction of the beam section 4, and between these frame-like structures 31, 31 are arranged. It is connected by a connecting piece 34 provided on the extended line of the beam part 4.
  • the frame-like structure 31 is provided in multiple layers, the stress can be further relaxed compared to the example of FIG.
  • Fig. 7 (c) is a plan view of a stress relieving portion 30B that is applied to another modification of the present embodiment.
  • a meandering structure 35 is provided between the beam section 4 and the connection section 5c as a stress relaxation section 30B, in which the beam section 4 is repeatedly diffracted multiple times with a predetermined width in a direction orthogonal to the extending direction. is there.
  • Providing such a meandering structure 35 also increases the area that crawls along with the operation of the movable electrode 5 as compared with the case where the beam part 4 is directly connected to the connection part 5c.
  • the local stress concentration in the part (root part) 4b, 5d can be relaxed.
  • the above example shows an example in which the stress relaxation portions 30, 30A, and 30B are provided at the end portion 4b of the beam portion 4 on the side connected to the movable electrode 5 (the connection portion 5c).
  • These stress relaxation parts 30, 30A, 30B can be provided in the same way on the other end of the beam part 4, that is, the end part 4a on the side connected to the anchor part 3 of the beam part 4, A similar effect can be obtained at the end 4a.
  • the stress relaxation portions 30, 30A, 30B are provided at both longitudinal ends of the beam portion 4, the stress generated in the beam portion 4 can be further reduced. It should be noted that different stress relaxation portions 30, 30A, 30B may be provided at both ends, or a combination of these may be used as appropriate.
  • the beam 4 is connected to the end 4a on the side connected to the anchor 3 and the movable electrode 5.
  • the degree of freedom for setting specifications such as the amount of displacement and weight of 5 can be increased.
  • the stress relieving parts 30, 30A, 30B are provided with stress at both the end part 4a connected to the anchor part 3 of the beam part 4 and the end part 4b connected to the movable electrode 5. This can be further reduced.
  • the stress relaxation portions 30, 30A, 30B can be easily formed as one frame-like structure 31, a structure including the frame-like structure 31 in multiple stages, or a meandering structure 35.
  • the stress relaxation parts 30, 30A, 30B are structured as one frame-like structure 31 and multiple frame-like structures 31 as exemplified in the present embodiment, or
  • the amount of stagnation per unit length of the beam part 4 (and the stress relaxation parts 30, 30A, 30B) is reduced by the relatively long part perpendicular to the axial direction. It is possible to reduce the stress even more effectively.
  • the cross section of the beam portion 4 is a substantially rectangular cross section, so that the direction S of the beam portion 4 is easy to bend and the direction that is difficult to bend is defined, and the movable electrode 5 is set in a desired mode. It can be operated to prevent problems caused by unintentional operation.
  • the thickness of the sensor 1 is measured with respect to the cross-sectional shape perpendicular to the extending axis of the beam portion 4 as shown in FIG.
  • the movable electrode 5 is entirely in the thickness direction of the sensor 1 (the vertical direction in FIG. 2). Therefore, the large plate portion 5a and the small plate portion 5b can be operated so as to be close to the fixed electrodes 6A and 6B, and the detection accuracy can be prevented from being lowered.
  • the present invention can be similarly implemented even when used as a force bending beam exemplifying the case where the beam is used as a torsion beam, and there are various shapes such as a spiral shape and a folded shape. It can be similarly applied to a beam of the shape.
  • the specifications of the frame structure and the meander structure (for example, the number of steps of the frame structure, the number of turns of the meander structure, the size and shape of each part, etc.) can be variously modified.
  • the frame-like structure may have a triangular shape (for example, an equilateral triangular shape or an isosceles triangular shape) as shown in FIG. 8, or (b)
  • the triangular unit frames may be overlapped in a truss shape. According to such a configuration, stress concentration can be further reduced as compared with a rectangular frame-like structure in plan view.
  • the sensor 1 according to the second embodiment of the present invention is different from the first embodiment in that the stress relaxation portion 30 is not provided at the longitudinal ends of the beam portions 4 and 4. This is different from the structure of sensor 1.
  • the recess 22 is formed by various etching processes such as wet etching and dry etching before joining the semiconductor layer 2 to the insulating layer 20 and forming the gap 10. It is formed by. After the semiconductor layer 2 is etched away in this way to form the recesses 22, the insulating layer 20, which is a glass substrate, is bonded as shown in FIG. 10 (b), and vertical etching is performed. A gap 10 as shown in FIG. 10 (c) is formed.
  • the stopper 13 is formed of an oxide film or an aluminum alloy after the recess 22 is formed by etching.
  • a concave portion 22 is formed in advance, and the surface on which the concave portion 22 is formed is opposed to the insulating layer 20 which is a support substrate. Then, since the etching residue generated by the etching process can be removed satisfactorily, it can be prevented from sticking to the insulating layer 20 due to the swing of the movable electrode 5, The quality of the sensor 1 can be improved.
  • an insulating substrate such as a glass substrate can be used as the insulating layer 20 serving as a support substrate. Therefore, other than the insulating substrate, for example, the movable electrode 5 It is possible to reduce the parasitic capacitance generated when using a substrate having the same silicon material strength.
  • the recess 22 formed by the etching process can be easily formed by forming a resist film pattern according to the shape of the recess 22 and setting only the etching time according to the depth of the recess 22.
  • a glass substrate can be used as the insulating layer 20
  • the torsional motion of the beam part 4 due to the swinging of the movable electrode 5 made of single-crystal silicon as a mirror surface can be visually recognized as light reflection, making it easy to inspect the appearance. Can be done.
  • the recess 22 is formed by crystal anisotropic etching using the property that the etching rate depends on the crystal direction, the etching process can be easily managed, so that there is little variation and detection with very high accuracy.
  • a gap 25a and a gap 25b to be a gap can be formed.
  • FIG. 11 shows a state in which the semiconductor layer 2 is cut along the line AA in FIG. 9 when the recess 22 is formed by crystal anisotropic etching.
  • the anchor portion 3 and the frame portion 7 have surfaces that have a plane orientation of a predetermined angle with respect to the crystal plane of the cut single crystal silicon substrate.
  • the concave portion 26 having the flat bottom surface 8c formed so as to cut out the pedestal portion 8b also has crystal anisotropy when the concave portion 22 is formed. It is formed by etching process.
  • the concave portion 26 needs to be formed with high accuracy in order to ensure contact between the terminal portion 9 and the contact portion 12 in the potential extraction portion 8 that extracts the potential of the fixed electrode 6. Therefore, if the recess 26 is formed by the crystal anisotropic etching as the recess 22 is formed by the crystal anisotropic etching, the recess 26 can be formed with very high accuracy with little variation.
  • the anchor portion 3, the beam portion 4, the movable electrode 5 and the like of the sensor 1 described above are formed as an intermediate oxide film 42 between the silicon support substrate 41 and the silicon active layer 43 as shown in FIG. Inserted
  • FIG. 12 is a cross-sectional view corresponding to the BB cross section of FIG.
  • this SOI substrate 40 When this SOI substrate 40 is used, first, as shown in FIG. Then, the gap 10 is formed, and the recess 22 is formed by removing the intermediate oxide film 42 as shown in FIG. 12B by sacrificial layer etching. That is, the silicon active layer 43 corresponds to the semiconductor layer 2 described above. As described above, when the SOI substrate 40 is used, one step of bonding the semiconductor layer 2 and another substrate can be omitted, so that there is an advantage that it can be easily formed.
  • the recess 22 is formed by sacrificial layer etching, when the semiconductor layer 2 is formed on the single crystal silicon substrate as described above, the recess 22 is formed before bonding to the insulating layer 20 such as a glass substrate. There is a high possibility that the amount of etching residue will increase as compared to the case where 22 is formed by etching. In addition, since the insulating layer 20 cannot be a glass substrate, the effects as described above cannot be obtained! /.
  • the beam part 4 Since the beam part 4 has a long cross section in the thickness direction of the sensor 1 (a cross section perpendicular to the extending axis of the beam part 4), the beam part 4 is difficult to stagnate in the thickness direction.
  • the beam portion 4 is configured as a beam having a certain rectangular (substantially rectangular) cross section as shown in FIG. 4, and the thickness h along the thickness direction of the semiconductor layer 2 is set to m or more.
  • the lower limit value 10 m of the thickness h is a value calculated based on the above-described distance between the detection gaps of 3 m or more.
  • the movable electrode is moved by a predetermined displacement amount. 5 needs to be displaced.
  • the thickness of the movable electrode 5 that is, the thickness of the beam portion 4 to 10 m or more, which is about three times the minimum distance between the detection gaps of 3 m, it is sufficient to obtain the required sensitivity. It is possible to secure a mass for displacing the movable electrode 5 to some extent.
  • the upper limit of the thickness of the movable electrode 5 and the thickness of the beam portion 4 can be set to, for example, 500 m according to the thickness of the single crystal silicon substrate on which the semiconductor layer 2 is formed.
  • the thickness h of the beam portion 4 shown in FIG. 4 is 3.16 times or more than the width w of the beam portion 4.
  • the movable electrode 5 may be in line contact or contact even if it contacts the insulating layers 20 and 21 that support the semiconductor layer 2. Point contact.
  • the movable electrode 5 is displaced in the z-axis direction while keeping the surface horizontal, as shown in Fig. 13. Contact with layers 20 and 21 may cause staging. In order to prevent such displacement of the movable electrode 5 in the z-axis direction, that is, in the vertical direction, it is necessary to reduce the mode in which the movable electrode 5 is lifted without being twisted.
  • the mode in which the movable electrode 5 is lifted as it is without being twisted can be greatly reduced. Therefore, the movable electrode 5 is a physical quantity that does not cause surface sticking due to surface contact with the insulating layers 20, 21. Therefore, it is possible to perform a good torsional motion with the beam section 4 as the center.
  • the fixed electrodes 6A and 6B are not provided so as to be vertically symmetrical with the beam portion 4 serving as the center of the twisting operation of the movable electrode 5 as the symmetry axis. It is provided so as to be shifted to the small plate part 5b side.
  • FIGS. 15 (a) and 15 (b) show how the center of the torsional movement is shifted before and after applying the acceleration G when the force in the direction indicated by the arrow L shown in FIG.
  • This phenomenon in which the center of torsional movement is shifted becomes asymmetric with respect to the beam part 4 which is the center of the torsional operation of the movable electrode 5 functioning as a mass, and the members having different masses of the large plate part 5a and small plate part 5b. So formed and attributed to that! / I think.
  • the fixed electrode 6A is provided on the lower surface 20b of the insulating layer 20 in a direction in which the fixed electrode 6A is brought closer to the beam part 4, while the fixed electrode 6B is provided in a direction away from the beam part 4.
  • the displacement amount of the fixed electrodes 6A and 6B that is, the installation position of the fixed electrodes 6A and 6B on the lower surface 20b of the insulating layer 20 is determined according to the acceleration detection range guaranteed by the sensor 1.
  • the center position of the torsional motion of the movable electrode 5 that changes when a physical quantity is added. Accordingly, if the positions of the fixed electrodes 6A and 6B are determined, the linearity of the capacitance detected according to the added physical quantity can be improved, so that the physical quantity can be detected with high accuracy.
  • the detection sensitivity of the physical quantity detected by the sensor 1 can be increased, so that as shown in FIG.
  • the anchor portion 3 and the beam portion 4 are formed.
  • the fixed electrodes 6A and 6B are formed on the lower surface 20b of the insulating layer 20 facing the large plate portion 5a and the small plate portion 5b so as to follow the shape of the gap 10 while avoiding the gap 10 provided in this case. Try to earn an area.
  • the area facing the movable electrode 5 defined by the fixed electrodes 6A and 6B can be secured to the maximum, so that the physical quantity applied to the sensor 1 can be detected with very high sensitivity.
  • the sensor 1 shown as this embodiment includes the anchor portion 3, the beam portion 4, and the movable electrode 5 by vertically etching the semiconductor layer 2 that is a single crystal silicon substrate.
  • a movable mechanism of the movable electrode 5 is formed. Therefore, the movable electrode 5 can be formed using the semiconductor layer 2 having a sufficient thickness.
  • the mass of the movable electrode 5 can be sufficiently secured, the movable electrode 5 is largely displaced according to the physical quantity, so that the detection sensitivity of the capacitance can be improved.
  • the displacement amount of the movable electrode 5 is large, a wide force detection gap can be secured, so that the sticking of the movable electrode 5 and the insulating layer 20 provided with the fixed electrode 6 can be prevented.
  • the etching is performed by an etching apparatus equipped with an ICP, so the device size is reduced.
  • the taper is not formed on the machined surface, even if the beam part 4 and the movable electrode 5 come into contact with each other due to an excessive physical quantity, it is always in surface contact, so that the structure is not lost. it can.
  • the etched surface subjected to the vertical etching is not a mirror surface, even if it comes into contact with the surface, it does not cause sticking.
  • the cross-sectional shape of the etched portion is substantially symmetrical in the upper and lower directions, and thus the sensitivity is generated in the other axis direction with respect to the main axis direction as the detection direction. It can be avoided. Furthermore, the sensor 1 shown as the present embodiment can realize easy processing because the semiconductor layer 2 is a single crystal silicon substrate with a low film stress.
  • the sensor 1 shown as the third embodiment is a sensor 1 that detects a physical quantity in the vertical direction that is the thickness direction of the semiconductor layer 2 shown as the second embodiment, and is further in the plane direction of the semiconductor layer 2 It is configured so that a physical quantity in the horizontal direction can be detected.
  • FIG. 17 is a plan view showing the semiconductor layer 2 of the sensor 1.
  • the semiconductor layer 2 forms a gap 10 on a semiconductor substrate by a known semiconductor process, thereby detecting a vertical direction detection unit 50A that detects a physical quantity in the vertical direction and a physical quantity in the horizontal direction.
  • a horizontal direction detecting portion 50B and a frame portion 7 surrounding these are formed.
  • the vertical direction detection unit 50A has the same configuration as that of the sensor 1, and therefore will be described as appropriate as necessary, and detailed description thereof will be omitted.
  • the gap 10 is subjected to vertical etching by reactive ion etching or the like, so that the side wall surface of the gap 10 is formed on the semiconductor layer 2. It is formed to be perpendicular to the surface. In this manner, the side wall surfaces of the gap 10 formed by the vertical etching cache face each other substantially in parallel.
  • reactive ion etching for example, ICP processing by an etching apparatus equipped with inductively coupled plasma can be used.
  • a support unit 53 As shown in FIG. 17, in the semiconductor layer 2 of the horizontal direction detection unit 50B, a support unit 53, a beam unit 54, a movable electrode 55, and a fixed electrode 56 are formed.
  • FIG. 18 is a cross-sectional view showing a state in which the sensor 1 is cut so that the semiconductor layer 2 is cut along the line DD in FIG.
  • the sensor 1 is formed by bonding insulating layers 20, 21 such as a glass substrate on both the front and back surfaces of the semiconductor layer 2 by, for example, anodic bonding. Is done.
  • a relatively shallow recess 62 is formed at the joint surface between the semiconductor layer 2 and the insulating layers 20 and 21 to ensure insulation of each part of the semiconductor layer 2 and operability of the movable electrode 55. .
  • the recess 62 is provided on the semiconductor layer 2 side of the joint surface between the semiconductor layer 2 and the insulating layer 20 of the horizontal direction detection unit 50B, while the horizontal direction detection unit 50B On the bonding surface between the semiconductor layer 2 and the insulating layer 21, a recess 62 is provided on the insulating layer 21 side.
  • one support portion 53 is provided on each of the long sides of the movable electrode 55 via the movable electrode 55, and is parallel to the long side of the movable electrode 55. It is extended with a substantially constant width.
  • One pair of support portions 53 provided in this way is narrower and longer than the other.
  • Each support portion 53 has a beam portion 54 force extending from the side facing the movable electrode 55 toward the center while being bent so as to meander in the middle in parallel with the long side of the support portion 53. Two each are provided. As shown in FIG. 17, the other end of the beam portion 4 is connected to a corner portion of the movable electrode 55 and functions as a panel element that supports the movable electrode 55 in a movable manner.
  • the horizontal direction detection unit 50B a function as a mass element (mass) supported by the beam unit 54 as a panel element and the support unit 53 connected to the beam unit 54 with respect to the movable electrode 55.
  • These panel elements and mass elements constitute a panel-mass system.
  • Such a horizontal detection unit 50B detects a change in capacitance between the movable electrode 55 and the fixed electrode 56 due to the displacement of the movable electrode 55 as a mass element.
  • the horizontal direction detection unit 50B can detect the acceleration applied to the sensor 1 based on the voltage waveform force obtained by CV conversion of the detected change in capacitance.
  • this change in capacitance is caused by the detection units 58A, 58B including a plurality of comb-like detection movable electrodes 55a and detection fixed electrodes 56a formed on the movable electrode 55 and the fixed electrode 56, respectively.
  • the detection unit 58 the collective name is simply called the detection unit 58.
  • the movable electrode 5 when acceleration is applied in the Y-axis direction shown in FIG. 17, the movable electrode 5 is displaced in the Y-axis direction, and the capacitance detected by the detection movable electrode 55a and the detection fixed electrode 56a of the detection unit 58A. And the capacitance detected by the detection movable electrode 55a and the detection fixed electrode 56a of the detection unit 58B. There is a difference.
  • the acceleration in the Y-axis direction can be detected from the difference in capacitance.
  • a through hole 24 is formed on the corner portion 56b of the fixed electrode 56 shown in FIG. 17 through the insulating layer 20 by sandblasting or the like. Then, a metal thin film or the like is formed on the semiconductor layer 2 exposed through the through hole 24, the inner peripheral surface of the through hole 24, and the surface 20a of the insulating layer 20 to thereby set the potential of the fixed electrode 56 on the insulating layer 20. It can be taken out with.
  • the surface of the insulating layer 20 is preferably covered (molded) with a resin layer (not shown).
  • the potential of the movable electrode 55 is taken out from the support portion 53 that supports the movable electrode 55 via the beam portion 54.
  • a through hole is formed by penetrating the insulating layer 20 by a sandblasting cage or the like.
  • a metal thin film or the like is formed over the semiconductor layer 2 exposed through the through hole 24, the inner peripheral surface of the through hole 24, and the surface 20a of the insulating layer 20, thereby making the potential of the movable electrode 55 the insulating layer 20 So that it can be taken out above.
  • the detection unit 58 will be described using a plan view in which the movable electrode 55 and the fixed electrode 56 are enlarged with the detection unit 58 of the horizontal direction detection unit 50B shown in FIG. 19 as the center.
  • the movable electrode 55 is formed with a strip-shaped movable detection electrode 55a that extends from the central portion to the electrode support portion 56c of the fixed electrode 56 and extends substantially perpendicularly to the side thereof.
  • a plurality of detection movable electrodes 55a are formed in a comb shape so as to be parallel to each other at a predetermined pitch. Further, the detection movable electrodes 55a are aligned so that the tip portions thereof are parallel to each other and have the same length.
  • the fixed electrode 56 is formed with a band-shaped detection fixed electrode 56a extending in an elongated manner parallel to the detection movable electrode 55a from the electrode support portion 56c toward the center of the movable electrode 55.
  • the detection fixed electrode 56a has a predetermined pitch (for example, the detection movable electrode 55a) so as to face the detection movable electrode 55a in parallel with the detection movable electrode 55a between the plurality of comb-shaped detection movable electrodes 55a. Are formed in a comb-like shape at the same pitch).
  • each detection fixed electrode 56a is aligned so as to have the same length corresponding to the detection movable electrode 55a, and the opposing area of the opposing surface where the detection movable electrode 55a and the detection fixed electrode 56a face each other is as much as possible. Widely secured.
  • the gap 10 provided for forming the detection movable electrode 55a and the detection fixed electrode 56a is a narrow gap 10a on one side and a wide gap 10b on the other side.
  • the detection unit 58 detects the electrostatic capacitance between the detection movable electrode 55a and the detection fixed electrode 56a using the narrow gap 10a as a detection gap (electrode gap).
  • the stopper 13 As shown in FIG. 17, at the appropriate position on the surface of the movable electrode 55, the stopper 13 exactly the same as the stopper 13 provided on the movable electrode 5 of the vertical direction detection unit 50A is provided. Although 5 prevents direct contact (collision) with the insulating layer 20 and damage, the stubber 13 is formed of the same material as the underlying layer 27 of the potential extraction portion 8 in the same process. In this way, manufacturing labor can be reduced and manufacturing costs can be reduced compared to the case where these are formed separately.
  • the bonding surface between the semiconductor layer 2 and the insulating layer 20 is provided with the recess 42 on the semiconductor layer 2 side.
  • the recess 42 is formed by various etching processes such as wet etching or dry etching before the semiconductor layer 2 is bonded to the insulating layer 20 and the gap 10 is formed.
  • the semiconductor layer 2 is etched away in this way to form the recess 52, the insulating layer 20 which is a glass substrate is joined, and the gap 10 is formed by vertical etching.
  • the semiconductor layer 2 on which the movable electrode 55 and the fixed electrode 56 are formed has the same thickness h2.
  • the step of forming the recess 62 and the step of forming the recess 22 that defines the detection gap in the vertical direction detection unit 50A are the same process. Can be formed.
  • the amount of through etching can be kept constant, so the etching time is the same and overetching is performed. Can be prevented.
  • the gap 10a has the same width w2.
  • the width wl of the gap 10 and the width w2 of the gap 10a are set to the same width, the etching rate during the vertical etching process can be made uniform. Therefore, it is possible to greatly reduce the shape variation of each part formed after the etching process by the vertical etching cage.
  • the detection sensitivity of the vertical direction detection unit 50A can be improved by setting the width wl of the gap 10 and the width w2 of the gap 10a to the same width and reducing the variation in shape.
  • the width w3 of the beam unit 4 of the vertical direction detection unit 50A and the width w4 of the beam unit 54 of the horizontal direction detection unit 50B shown in FIG. 18 are made the same.
  • the width w3 of the beam portion 4 and the width w4 of the beam portion 54 are set to the same width, it becomes easy to manage overetching when performing the vertical etching cache.
  • the width w3 of the beam section 4 and the width w4 of the beam section 54 are the same, it is possible to facilitate visual inspection such as device image recognition performed after the semiconductor process is completed. it can.
  • the sensor 1 shown as the third embodiment can also be configured as shown in FIG.
  • the movable electrode 5 of the vertical direction detection unit 50A has a frame shape surrounding the horizontal direction detection unit 50B. Specifically, the large plate portion 5a of the movable electrode 5 is reduced to reduce the mass, and the reduced large plate portion 5a is parallel to the longitudinal direction of the electrode support portion 56c of the fixed electrode 56 of the horizontal detection unit 50B.
  • the horizontal direction detection unit 50B is surrounded by the two arm portions 5d extending in the direction and the connection portion 5e connecting the arm portions 5d.
  • the sensor 1 shown as the third embodiment of the present invention includes a vertical direction detection unit 50A for detecting a physical quantity in the thickness direction of the semiconductor layer 2 and the semiconductor layer 2 on the same semiconductor layer 2.
  • a horizontal direction detection unit 50B for detecting a physical quantity in the surface direction is formed by a vertical etching cache.
  • the vertical direction detection unit 50A and the horizontal direction detection unit 50B can be formed in the same process, the reduction power of the manufacturing process can be reduced, and the shape can be reduced in size. it can.
  • the thickness hi of the semiconductor layer 2 on which the anchor part 3, the beam part 4, and the movable electrode 5 of the vertical direction detection part 50A are formed, and the beam part 54, the movable electrode 55, and the fixed electrode 56 of the horizontal direction detection part 50B are provided.
  • the thickness h2 of the formed semiconductor layer 2 is all the same, if there are variations in characteristics such as the sensitivity of the vertical direction detection unit 50A and the horizontal direction detection unit 50B of the manufactured sensor 1, It can be determined that there is a variation in the single crystal silicon wafer itself before cutting out the crystalline silicon substrate.
  • the present invention can be applied to a capacitive sensor that detects a predetermined physical quantity by detecting a capacitance between a fixed electrode and a movable electrode.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

 固定電極6と、アンカ部3にビーム部4を介して可動支持された可動電極5と、を備えるとともに、固定電極6と可動電極5とを間隙をもって相互に対向配置させて検出部が構成され、当該間隙の大きさに応じた静電容量を検出することで所定の物理量を検出する静電容量式センサ1において、ビーム部4のアンカ部3に接続される側の端部4aおよび可動電極5に接続される側の端部4bのうち少なくともいずれか一方に、応力を緩和する応力緩和部30を設けた。

Description

明 細 書
静電容量式センサ
技術分野
[0001] 本発明は、固定電極と可動電極との間の静電容量を検出することにより所定の物 理量を検出する静電容量式センサに関する。
背景技術
[0002] 従来より、固定部に弾性要素を介して可動電極が支持された構造を形成し、作用し た外力等に応じて可動電極が固定電極に対して接離可能となるようにして、これら電 極間の静電容量の変化を検出することで加速度や角速度等の種々の物理量を検出 できるようにした静電容量式センサが知られて 、る(特許文献 1参照)。またこのような 静電容量式センサとして、加速度などの物理量により変位する 1個のマス部により、 垂直軸方向の物理量を検出することができるように構成された静電容量式センサも 知られている (特許文献 2、特許文献 3参照。 )0
[0003] 特許文献 1の静電容量式センサでは、弾性要素は、固定部から渦巻き状に伸びる ビーム (梁)として形成されており、この弾性要素を介して固定部に可動支持された可 動電極は、主として、センサ(半導体層)の表面に沿う方向に変位するように構成され ている。また特許文献 2、特許文献 3の静電容量式センサは、非対称に形成されたマ ス部をアンカ部と呼ばれる固定部力 水平方向へと対称に伸びたトーシヨンビームに より質量バランスを崩すように支持し、垂直方向へと加わる物理量に応じたトーシヨン ビームのねじれによるマス部の位置変位により物理量を検出することができる。
[0004] また特許文献 2では、このような静電容量式センサを、金属材料を加工することによ り形成し、特許文献 3では、公知の半導体プロセスを用いてシリコンなどの半導体基 板を加工することにより形成している。特許文献 3のように半導体プロセスによりシリコ ンを加工してデバイスを形成した場合、微細な加工が可能となるため、特許文献 3の ように金属材料を加工した場合より小型で精度の高 ヽ静電容量式センサとすることが できる。
[0005] し力しながら、特許文献 1のように、可動電極がビームを介して固定部に可動支持さ れる構造では、可動電極の最大変位量や重さ、弾性要素としてのビームの形状、セ ンサに作用する最大加速度等によって、ビームに生じる応力が変化することになるが 、特にセンサの小型化やパネ定数の設定に伴って細長いビームを設ける場合等に おいては、ビームに生じる応力が大きくなりやすぐ可動電極の変位量や重さ等のス ペックを所望の値に設定しに《なる場合があった。
[0006] また特許文献 3で開示されている静電容量式センサは、単結晶シリコン基板を結晶 異方性エッチングにより加工することで形成しているため、アンカ部をはじめ各部がテ 一パーを有する形状となり、デバイスサイズの大型化や可動電極の可動により生ずる 部材の欠損、ステイツキングなどを招来してしまうといった問題がある。また、結晶異 方性エッチングにより加工した場合、ある程度の質量を有することで検出感度を向上 させるようなマス部を形成することが困難であるといった問題もある。
[0007] そこで本発明は、上述した実情に鑑みて提案されたものであり、可動電極がビーム を介して固定部に可動支持される静電容量式センサにおいて、ビームの応力を低減 することを目的とする。また本発明は、検出感度を向上させるとともに、デバイスサイ ズの大型化や可動電極の可動により生ずる部材の欠損、ステイツキングなどを回避す ることができる構造を有する静電容量式センサを提供することを目的とする。
特許文献 1:特開 2000— 28634号公報
特許文献 2:米国特許第 4736629号明細書
特許文献 3:米国特許第 6000287号明細書
発明の開示
[0008] 本発明の第 1の態様に係る静電容量式センサは、固定電極と、半導体層の固定部 分にビームを介して可動支持された可動電極と、を備えるとともに、当該固定電極と 可動電極とを間隙をもって相互に対向配置させて検出部が構成され、当該間隙の大 きさに応じた静電容量を検出することで所定の物理量を検出する静電容量式センサ において、上記ビームの固定部分に接続される側の端部および可動電極に接続さ れる側の端部のうち少なくともいずれか一方に、局所的な応力集中を緩和する応力 緩和部を設けたことを特徴とする。
[0009] 本発明の第 2の態様に係る静電容量式センサは、半導体層の固定部分にビーム部 を介して非対称な質量バランスとなるように可動支持され、前記半導体層の厚み方向 の物理量の変位に応じて動作する第 1可動電極と、前記半導体層を支持する支持基 板上に形成された第 1固定電極とを相互に間隙を介して対向配置し、前記第 1可動 電極と前記第 1固定電極との間隙の大きさに応じて検出される静電容量に基づき物 理量を検出する第 1検出部を備える静電容量式センサにおいて、前記半導体層を単 結晶シリコン層とし、前記単結晶シリコン層を垂直エッチング加工することで形成され た前記固定部分、前記ビーム部、前記第 1可動電極からなる当該第 1可動電極の可 動機構を備えることを特徴とする。
[0010] 本発明の第 1の態様に係る静電容量式センサによれば、ビームにおいて応力が大 きくなりやすい部分、すなわち、ビームの固定部分に接続される側の端部および可動 電極に接続される側の端部のうち少なくともいずれか一方に、応力を緩和する応力 緩和部を設けたため、ビームに生じる応力を低減することができる。
[0011] 本発明の第 2の態様に係る静電容量式センサによれば、検出感度を向上させるとと もに、デバイスサイズの大型化や可動電極の可動により生ずる部材の欠損、ステイツ キングなどを回避することを可能とする。また、垂直エッチング加工により可動機構を 形成することで、一様な断面形状とすることができるため、他軸感度を大幅に低減す ることを可能とする。さらに、半導体層を単結晶シリコンとするため膜応力がなく容易 な加工を可能とする。
図面の簡単な説明
[0012] [図 1]本発明の実施形態に力かる静電容量式センサの半導体層の平面図である。
[図 2]図 1の A— A線における静電容量式センサの断面図である。
[図 3]図 1の B— B線における静電容量式センサの断面図である。
[図 4]本発明の実施形態に力かる静電容量式センサのビーム部の断面図(図 2の C C断面図)である。
[図 5]本発明の実施形態に力かる静電容量式センサの可動電極が揺動する様子を 示す模式図であって、(a)は揺動していない状態、(b)は一方側が固定電極に近付 いた状態、(c)は他方側が固定電極に近付いた状態を示す図である。
[図 6]本発明の実施形態にカゝかる静電容量式センサの半導体層の一部としての電位 取出部を示す拡大図であって、(a)は平面図、(b)は(a)の D— D断面図、(c)は糸且 立前の状態を示す図である。
圆 7]本発明の実施形態にカゝかる静電容量式センサの応力緩和部の各実施例を示 す平面図((a)〜(c) )である。
[図 8]本発明の実施形態に力かる静電容量式センサの応力緩和部の別の実施例を 示す平面図((a)および (b) )である。
圆 9]本発明の第 1の実施の形態として示す静電容量式センサの半導体層の構成に ついて説明するための図である。
[図 10]前記静電容量式センサの半導体層に形成する凹部について説明するための 断面図である。
圆 11]前記静電容量式センサの半導体層の凹部を結晶異方性エッチングにより形成 した様子を示した断面図である。
[図 12]前記静電容量式センサを SOI (Silicon On Insulator)基板を用いて形成するこ とについて説明するための図である。
[図 13]前記静電容量式センサの可動電極がねじれ動作をせずに垂直方向へと位置 変位した様子を示した図である。
[図 14]前記静電容量式センサの固定電極の設置位置について説明するための図で ある。
[図 15]前記静電容量式センサの可動電極を動作させるねじれ動作の中心がずれるこ とにつ 、て示した図である。
[図 16]前記静電容量式センサの固定電極の形状について説明するための図である 圆 17]本発明の第 2の実施の形態として示す静電容量式センサの半導体層の構成 について説明するための図である。
[図 18]前記静電容量式センサを図 14に示す D— D線で切断した様子について説明 するための断面図である。
圆 19]前記静電容量式センサの水平方向検出部が備える検出部の詳細な構成につ いて説明するための図である。 [図 20]前記静電容量式センサの可動電極の別な形状について説明するための図で ある。
発明を実施するための最良の形態
[0013] 以下、本発明の実施形態について図面を参照しながら詳細に説明する。
[0014] 〔第 1の実施形態〕
本発明の第 1の実施形態となる静電容量式センサ 1 (以下、単にセンサ 1と記す)は 、図 2に示すように、半導体基板を処理してなる半導体層 2の表裏両側にガラス基板 等の絶縁層 20, 21を陽極接合等によって接合して構成されている。半導体層 2と絶 縁層 20, 21との接合面には比較的浅い凹部 22が形成され、半導体層 2各部の絶縁 性や可動電極 5の動作性の確保が図られている。なお本実施形態では、半導体層 2 と絶縁層 20との接合面については、半導体層 2側に凹部 22を設ける一方、半導体 層 2と絶縁層 21との接合面については絶縁層 21側に凹部 22を設けている。
[0015] 絶縁層 20の表面 20a上には導体層 23が成膜され、半導体層 2の各部の電位を取 得するための電極として用いられる。本実施形態では、絶縁層 20にサンドブラストカロ ェ等によって貫通孔 24を形成して半導体層 2の表面 (絶縁層 20側の表面)の一部を 露出させておき、絶縁層 20の表面上力も貫通孔 24の内周面上および半導体層 2の 表面(図 2ではアンカ部 3の表面)上にかけて電気的に接続された一連の導体層 23 を成膜するようにして、当該導体層 23から半導体層 2内の各部の電位を検出できる ようにしてある。なお、絶縁層 20の表面上は榭脂層(図示せず)によって被覆 (モー ルド成形)するのが好適である。
[0016] そして図 1〜図 3等に示すように、半導体基板に公知の半導体プロセスによって間 隙 10を形成することにより、半導体層 2に、アンカ部 3や、ビーム部 4、可動電極 5、フ レーム部 7、電位取出部 8等が形成される。半導体層 2は、図 1に示すように、全体と して平面視で略長方形状に形成されており、フレーム部 7が、その半導体層 2の四つ の周縁(四辺)に沿って略一定幅で枠状に設けられている。
[0017] 間隙 10は、反応性イオンエッチング (RIE: Reactive Ion Etching)などにより垂直ェ ツチングカ卩ェをすることで、間隙 10の側壁面を半導体層 2の表面と垂直となるように 形成される。このようにして、垂直エッチングカ卩ェにより形成された間隙 10の側壁面 同士は、互いに略平行に対向することになる。
[0018] 反応性イオンエッチングとしては、例えば、誘導結合型プラズマ (ICP: Inductively Coupled Plasma)を備えたエッチング装置による ICP力卩ェを利用することができる。大 板部 5a、小板部 5bは、それぞれ 1枚の単結晶シリコン基板力も形成されているため、 小板部 5bよりサイズの大き 、大板部 5aの質量が大きくなつて 、る。
[0019] フレーム部 7の内側には、半導体層 2の平面視略中央位置よりフレーム部 7の一長 辺側(図 1の上側)に僅かにずれた位置に、矩形断面 (本実施形態では略正方形断 面)を有する柱状のアンカ部 3が設けられており、このアンカ部 3のフレーム部 7の短 辺に対向する一対の側壁力 ビーム部 4, 4がフレーム部 7の長辺と略平行に延伸し ている。なお、本実施形態では、図 2および図 3に示すように、アンカ部 3を絶縁層 20 のみに当接 (接合)させている力 さらにもう一方の絶縁層 21に当接 (接合)させるよう にしてもよい。
[0020] ビーム部 4は、図 4に示すような一定の矩形 (略長方形)断面を有する梁として構成 されている。全体的な大きさにもよる力 一例としては、半導体層 2の厚み方向の高さ hは 10マイクロメートル以上(500マイクロメートル以下)、半導体層 2の表面に沿う方 向の幅 wは数マイクロメートル(3〜10マイクロメートル程度)とすることができる。そし てこのビーム部 4は、一定の断面でフレーム部 7の長辺に沿う方向に延伸し、アンカ 部 3側の端部 4aに対して反対側となる端部 4bが可動電極 5に接続されている。
[0021] 可動電極 5は、フレーム部 7の内周面 7aに間隙 10をもって対向する平面視略矩形 状の外周面 5dを備えるとともに、アンカ部 3およびビーム部 4, 4の外側を間隙 10をも つて囲むように形成されている。すなわち、可動電極 5は、図 1に示すように、アンカ 部 3およびビーム部 4, 4に対して、フレーム部 7の一長辺側(図 1の下側)には、間隙 10を空けて略矩形状の大板部 5aを備える一方、フレーム部 7の他の長辺側(図 1の 上側)には、間隙 10を空けて略矩形状の小板部 5bを備えており、これら大板部 5aと 小板部 5bとが、フレーム部 7の短辺に沿う一対の接続部 5c, 5cを介して相互に接続 された形状となっている。そして、ビーム部 4, 4はそれぞれ対応する接続部 5c, 5cの 略中央部に接続されている。なお、上記構成では、大板部 5a、小板部 5bはそれぞ れ 1枚の単結晶シリコン基板力も形成されているため、小板部 5bよりサイズの大きい 大板部 5aの質量が大きくなつて 、る。
[0022] このように可動電極 5がセンサ 1の固定部としてのアンカ部 3にビーム部 4, 4を介し て非対称な質量バランスで可動支持された構造は、半導体層 2に適宜に間隙 10を 形成するとともに半導体層 2および絶縁層 20, 21のうち少なくともいずれか一方に適 宜に凹部 22を形成することで得ることができる。よって、アンカ部 3、ビーム部 4, 4、 および可動電極 5は、半導体層 2の一部として一体に構成されており、それらアンカ 部 3、ビーム部 4, 4、および可動電極 5の電位はほぼ等電位とみなすことができる。
[0023] ビーム部 4, 4は、フレーム部 7に対して可動電極 5を弹性的に可動支持するパネ要 素として機能する。本実施形態では、図 4に示すように、ビーム部 4, 4は、センサ 1の 厚み方向に長い断面 (ビーム部 4の延伸軸に垂直な断面)を有して 、るため、当該厚 み方向には橈みにくぐまた、可動電極 5はビーム部 4, 4を挟んで相互に対向する質 量の異なる大板部 5aと小板部 5bとを備えており、ビーム部 4, 4の両側での質量が異 なっているため、センサ 1に厚み方向の加速度が生じると、大板部 5aおよび小板部 5 bに作用する慣性力の差によってビーム部 4, 4がねじられ、可動電極 5はビーム部 4 , 4を中心として揺動することになる。すなわち、本実施形態では、ビーム部 4, 4はね じりビーム(トーシヨンビーム)として機能することになる。
[0024] そして本実施形態では、可動電極 5の大板部 5aおよび小板部 5bのそれぞれに対 向するように絶縁層 20の下面 20bに固定電極 6A, 6Bを設け、大板部 5aと固定電極 6Aとの間の静電容量、および小板部 5bと固定電極 6Bとの間の静電容量を検出する ことで、これら間隙の変化、ひいてはセンサ 1の固定部に対する可動電極 5の揺動姿 勢の変化を検出することができるようになって 、る。
[0025] 図 5の(a)は、可動電極 5が揺動することなく絶縁層 20の下面 20bに対して平行な 姿勢にある状態を示している。この状態では、大板部 5aと固定電極 6Aとの間の間隙 25aの大きさと、小板部 5bと固定電極 6Bとの間の間隙 25bの大きさとが等しくなるた め、大板部 5aおよび固定電極 6Aの相互対向面積と、小板部 5bおよび固定電極 6B の相互対向面積とを等しくしてある場合には、大板部 5aと固定電極 6Aとの間の静電 容量と、小板部 5bと固定電極 6Bとの間の静電容量とは等しくなる。
[0026] 図 5の(b)は、可動電極 5が揺動して絶縁層 20の下面 20bに対して傾き、大板部 5a が固定電極 6Aから離間するとともに、小板部 5bが固定電極 6Bに近接した状態を示 している。この状態では、図 5の(a)の状態に比べて、間隙 25aは大きくなり、間隙 25 bは小さくなるから、大板部 5aと固定電極 6Aとの間の静電容量は小さくなり、小板部 5bと固定電極 6Bとの間の静電容量は大きくなる。
[0027] 図 5の(c)は、可動電極 5が揺動して絶縁層 20の下面 20bに対して傾き、大板部 5a が固定電極 6Aに近接するとともに、小板部 5bが固定電極 6B力 離間した状態を示 している。この状態では、図 5の(a)の状態に比べて、間隙 25aは小さくなり、間隙 25 bは大きくなるから、大板部 5aと固定電極 6Aとの間の静電容量は大きくなり、小板部 5bと固定電極 6Bとの間の静電容量は小さくなる。
[0028] したがって、大板部 5aと固定電極 6Aとの間の間隙 25aを検知ギャップとする静電 容量と、小板部 5bと固定電極 6Bとの間の間隙 25bを検知ギャップとする静電容量と の差動出力から、 C—V変換することで得られる電圧波形を求めセンサ 1に加えられ た種々の物理量 (加速度や角加速度等)を検出することができる。
[0029] このような静電容量は、可動電極 5および固定電極 6A, 6Bの電位から取得するこ とができる。本実施形態では、図 1および図 2に示すように、アンカ部 3上の絶縁層 20 には貫通孔 24が形成されており、可動電極 5の電位は、この貫通孔 24の内面に形 成した導体層 23を介して取り出される。
[0030] 一方、固定電極 6は、絶縁層 20の下面 20b上に略矩形状の導体層(例えばアルミ -ゥム合金の層)として形成してある。固定電極 6を成膜する工程では、固定電極 6と 一続きの導体層として、配線パターン 11および端子部 9も同時に成膜される。したが つて、固定電極 6の電位は、配線パターン 11および端子部 9、半導体層 2に形成され た電位取出部 8、ならびに電位取出部 8上の絶縁層 20に形成された導体層 23を介 して取り出されるようになって!/、る。
[0031] ここで、図 6を参照して、電位取出部 8の構成について説明する。図 6 (a)は、電位 取出部 8を拡大して示した図であり、図 6 (b)は、図 6 (a)に示す C C線で切断した 様子を示す断面図であり、図 6 (c)は、絶縁層 20と半導体層 2とを接合する前段にお ける様子を示した断面図である。
[0032] 電位取出部 8は、半導体層 2に形成した間隙 10や半導体層 2または絶縁層 21に形 成した凹部 22によって、可動電極 5やフレーム部 7等の半導体層 2の他の部分と絶 縁され、略円柱状に形成されるパッド部 8aと、パッド部 8aからフレーム部 7の短辺に 沿って細長く伸びる台座部 8bとを備えている。そして、この台座部 8bの端子部 9に対 応する部分を切り欠くように平坦な底面 8cを備える凹部 26が形成されている。そして 、この底面 8c上には下敷層 27 (例えば、二酸化珪素(SiO )の層)が形成され、さら
2
に、この下敷層 27と隣接した位置にほぼ同じ高さの導体層 28が形成されるとともに、 下敷層 27の上面から導体層 28の上面にかけて、フレーム状の山部 12aを連設して なる平面視で略梯子状の接点部 12が形成される。このとき、導体層 28および接点部 12は、同一の導体材料 (例えばアルミニウム合金等)による層として形成することがで きる。
[0033] ここで本実施形態では、図 6の(c)に示すように、接点部 12の山部 12aを、半導体 層 2の上面 2aより上に高さ δ hだけ突出するように高く形成し、これにより、半導体層 2 と絶縁層 20との接合により、端子部 9によって山部 12aを押圧して塑性変形させて密 着度を高め、山部 12a (接点部 12)と端子部 9との間での接触および導通がより確実 なものとなるようにしている。
[0034] なお図 1に示すように、大板部 5aおよび小板部 5bの表面上の適宜位置にはストツ ノ 13を設け、可動電極 5と固定電極 6A, 6Bとが直接的に接触 (衝突)して損傷する のを抑制するようになっている力 このストッパ 13を下敷層 27と同一材料として同じ 工程で形成するようにすれば、これらを別途形成する場合に比べて製造の手間が減 り、製造コストを低減することができる。
[0035] 次に、図 7を参照して、ビーム部 4, 4の長手方向端部に設けられる応力緩和部 30 , 30A, 30B【こつ!/ヽて説明する。
[0036] 図 7の(a)は、本実施形態に力かる応力緩和部 30の平面図である。この例では、ビ ーム部 4が可動電極 5の接続部 5cに接続される側の端部に、平面視で矩形の枠状 構造 31を設けてある。具体的には、平面視でビーム部 4の延伸方向に沿う短辺部 32 と当該延伸方向と直交する方向に伸びる長辺部 33とを含む細長い枠状構造 31を接 続部 5cに連設し、この枠状構造 31の長手方向中央部にビーム部 4の端部を接続し てある。なお、接続部 5cの端部と長辺部 33とは一体ィ匕する一方、枠状構造 31の高さ は、ビーム部 4と同じにしてある。力かる構造により、ビーム部 4が接続部 5cに直接に 接続される場合に比べて、可動電極 5の動作に伴って橈む領域を増大させることが できるため、隅部 (根元部分) 4b, 5dにおける局所的な応力集中を緩和することがで きる。
[0037] 力かる枠状構造 31は、ビーム部 4の延伸方向と垂直な方向に細長く形成してある ため、本実施形態のように、ビーム部 4がその延伸軸を中心にねじられるねじりビーム である場合には、長辺部 33で橈み代を大きくとることができる分、特に有効となる。
[0038] 図 7の (b)は、本実施形態の変形例に力かる応力緩和部 30Aの平面図である。こ の例では、図 7の(a)と同様の枠状構造 31を、ビーム部 4の延伸方向に複数段 (この 例では 2段)並べて配置し、それら枠状構造 31, 31間を、ビーム部 4の延長線上に設 けた接続片部 34によって接続してある。この例では、枠状構造 31を多重に設けた分 、図 7の(a)の例に比べてより一層応力を緩和することができる。
[0039] 図 7の(c)は、本実施形態の別の変形例に力かる応力緩和部 30Bの平面図である 。この例では、ビーム部 4と接続部 5cとの間に、応力緩和部 30Bとして、ビーム部 4を その延伸方向と直交する方向に所定幅で反復的に複数回折り返した蛇行構造 35を 設けてある。このような蛇行構造 35を設けることによつても、ビーム部 4が接続部 5cに 直接に接続される場合に比べて、可動電極 5の動作に伴って橈む領域が増大するた め、隅部 (根元部分) 4b, 5dにおける局所的な応力集中を緩和することができる。
[0040] なお上記例では、 V、ずれも、ビーム部 4の可動電極 5 (の接続部 5c)に接続される 側の端部 4bに応力緩和部 30, 30A, 30Bを設けた例を示した力 これら応力緩和 部 30, 30A, 30Bは、ビーム部 4の他方側の端部、すなわち、ビーム部 4のアンカ部 3に接続される側の端部 4aにも同様に設けることができ、当該端部 4aにおいて同様 の効果を得ることができる。そして、ビーム部 4の長手方向両端部に応力緩和部 30, 30A, 30Bを設けるようにすれば、さらにビーム部 4に生じる応力を低減することがで きる。なお、両端部で相異なる応力緩和部 30, 30A, 30Bを設けてもよいし、これら を適宜に組み合わせて構成してもよ 、。
[0041] 以上の説明から明らかなように、本発明の第 1の実施形態となるセンサ 1によれば、 ビーム部 4のアンカ部 3に接続される側の端部 4aおよび可動電極 5に接続される側の 端部 4bのうち少なくともいずれか一方に、応力を緩和する応力緩和部 30, 30A, 30 Bを設けたため、ビーム部 4に生じる応力を低減して耐久性を向上することができる上 、可動電極 5の変位量や重さ等のスペックの設定自由度を増大することができる。か かる応力緩和部 30, 30A, 30Bは、ビーム部 4のアンカ部 3に接続される側の端部 4 aおよび可動電極 5に接続される側の端部 4bの双方に設けると、応力をより一層低減 することができる。
[0042] このとき、応力緩和部 30, 30A, 30Bは、一つの枠状構造 31、枠状構造 31を多段 に含む構造、あるいは蛇行構造 35として、容易に形成することができる。特に、ビー ム部 4をねじりビームとして用いる場合、応力緩和部 30, 30A, 30Bを、本実施形態 で例示したような、一つの枠状構造 31、枠状構造 31を多段に含む構造、あるいは蛇 行構造 35として構成すると、軸方向と直交する部分を比較的長く設けることができる 分、ビーム部 4 (および応力緩和部 30, 30A, 30B)の単位長さあたりの橈み量を小 さくすることができて、より一層効果的な応力低減が可能となる。
[0043] また本実施形態では、ビーム部 4の断面を略矩形断面とすることで、ビーム部 4の曲 力 Sりやすい方向および曲がりにくい方向を規定して、可動電極 5を所望のモードで動 作させ、不本意なモードでの動作による不具合を抑制することができる。特に本実施 形態のように、可動電極 5を揺動させビーム部 4をねじりビームとして構成する場合、 図 4に示すように、ビーム部 4の延伸軸に垂直な断面形状について、センサ 1の厚み 方向の長さ(高さ h)を、センサ 1の表面に沿う方向の長さ(幅 w)より長くすることで、可 動電極 5が全体的にセンサ 1の厚み方向(図 2の上下方向)に橈んで大板部 5aおよ び小板部 5bともに固定電極 6A, 6B側に近接するように動作して検出精度が低下す るのを抑 ff¾することができる。
[0044] なお本実施形態では、ビームをねじりビームとして用いる場合を例示した力 曲げビ ームとして用いる場合にも本発明は同様に実施することが可能であるし、渦巻き形状 や折り返し形状など種々の形状のビームに対しても同様に実施可能である。また、枠 状構造や蛇行構造のスペック (例えば枠状構造の段数や、蛇行構造の折り返し数、 各部の大きさ、形状等)も種々に変形可能である。例えば、枠状構造を、図 8のように 、平面視で三角形状 (例えば、正三角形状や二等辺三角形状)としてもよいし、 (b) のように、当該三角形状の単位枠をトラス状に多重に重ねてもよい。かかる構成によ れば、平面視矩形状の枠状構造に比べて、応力集中をより一層低減することができ る。
[0045] [第 2の実施形態]
本発明の第 2の実施形態となるセンサ 1は、図 9に示すように、ビーム部 4, 4の長手 方向端部に応力緩和部 30が設けられていない点が上記第 1の実施形態となるセン サ 1の構造と異なる。そして本実施形態では、凹部 22は、図 10 (a)に示すように、半 導体層 2を絶縁層 20に接合し、間隙 10を形成する前段において、ウエットエッチング やドライエッチングといった種々のエッチング処理により形成しておく。このようにして 半導体層 2をエッチング処理により削り取ることにより凹部 22を形成した後、図 10 (b) に示すようにガラス基板である絶縁層 20を接合させ、垂直エッチングカ卩ェをすること で、図 10 (c)に示すような間隙 10を形成する。なお、ストッパ 13は、エッチング処理 により凹部 22を形成した後に、酸ィ匕膜やアルミニウム合金などで形成する。
[0046] このように、単結晶シリコン基板である半導体層 2をエッチング処理することで、あら 力じめ凹部 22を形成し、凹部 22が形成された面を支持基板となる絶縁層 20に対向 させて接合させると、エッチング処理に伴い生成されるエッチング残渣を良好に除去 することができるため、可動電極 5の揺動により絶縁層 20とステイツキングしてしまうこ とを防止することができ、センサ 1の品質を向上させることができる。
[0047] また、あらかじめ半導体層 2に凹部 22を形成してしまうことから、支持基板となる絶 縁層 20としてガラス基板などの絶縁基板を利用できるため、絶縁基板以外、例えば、 可動電極 5と同様のシリコン材料力もなる基板などを利用した場合に発生する寄生容 量を低減することができる。
[0048] さらに、エッチング処理により形成する凹部 22は、凹部 22の形状に応じたレジスト 膜パターンを形成し、凹部 22の深さに応じたエッチング時間のみを設定するだけで、 容易に形成することができるという利点がある。また、絶縁層 20としてガラス基板を利 用できるため、鏡面となる単結晶シリコンで形成された可動電極 5の揺動によるビー ム部 4のねじれ動作を光の反射として視認できるため外観検査を容易に行うことがで きる。 [0049] この凹部 22は、図 5を用いて説明した検知ギャップである大板部 5aと固定電極 6A との間の間隙 25a、小板部 5bと固定電極 6Bとの間の間隙 25bの検知ギャップ間の距 離を規定することになる。静電容量を C、対向面積を S、検知ギャップ間の距離を d、 誘電率を εとした場合の静電容量 Cの基本式である" C = ε S/d "からも分力るよう に、検知ギャップ間の距離は、高い精度で形成する必要がある。一般的には、このよ うな半導体プロセスにより形成する静電容量式センサにおいては、製造プロセス中の ステイツキングや、実使用時のステイツキングを防止するために検知ギャップ間の距離 として 3 μ m以上が必要となる。
[0050] そこで結晶方向にエッチング速度が依存する性質を利用した結晶異方性エツチン グにて、凹部 22を形成するとエッチング処理の管理が容易となるため、ばらつきが少 なく非常に高い精度の検知ギャップとなる間隙 25a、間隙 25bを形成することができ る。
[0051] 図 1 1に、結晶異方性エッチングにより凹部 22を形成した場合の、図 9の A— A線で 半導体層 2を切断した様子を示す。図 1 1の領域 Pに示すように、アンカ部 3、フレー ム部 7は、切り出した単結晶シリコン基板の結晶面に対して所定の角度の面方位とな る面が現れることになる。
[0052] ところで、図 6を用いて説明した電位取出部 8において、台座部 8bを切り欠くように 形成された平坦な底面 8cを備える凹部 26も、凹部 22を形成する際に結晶異方性ェ ツチング処理により形成するようにする。この凹部 26は、固定電極 6の電位を取り出 す電位取出部 8において、端子部 9と接点部 12とを確実に接触して導通させるため に高い精度で形成される必要がある。したがって、結晶異方性エッチングにより凹部 22を形成するのに伴い、同じく結晶異方性エッチングにより凹部 26を形成すると、ば らつきが少なく非常に高い精度の凹部 26を形成することができる。
[0053] 上述したセンサ 1のアンカ部 3、ビーム部 4、可動電極 5などを、図 12に示すようなシ リコン支持基板 41とシリコン活性層 43との間に中間酸ィ匕膜 42として SiOを挿入した
2 構造の SOI (Silicon On Insulator)基板 40から形成することもできる。図 12は、図 9の B— B断面に相当する断面図である。
[0054] この SOI基板 40を用いる場合、まず、垂直エッチングカ卩ェにより図 12 (a)に示すよ うに間隙 10を形成し、犠牲層エッチングにより図 12 (b)に示すように中間酸ィ匕膜 42 を除去することで凹部 22を形成する。つまり、シリコン活性層 43が、上述した半導体 層 2に相当する。このように、 SOI基板 40を用いる場合、半導体層 2と他の基板とを接 合するという工程を一つ省略できるため、容易に形成することができるという利点があ る。
[0055] 一方、犠牲層エッチングにより凹部 22を形成するため、上述したように半導体層 2 を単結晶シリコン基板にて形成する際に、ガラス基板などの絶縁層 20との接合の前 段で凹部 22をエッチング処理によりあら力じめ形成する場合と比較して、エッチング 残渣の量が多くなつてしまう可能性が高い。また、絶縁層 20をガラス基板とすることが できな 、ため、上述したような効果を得ることができな!/、。
[0056] ビーム部 4は、センサ 1の厚み方向に長い断面(ビーム部 4の延伸軸に垂直な断面 )を有しているため、当該厚み方向には橈みにくい形状となっている。またビーム部 4 は、図 4に示すような一定の矩形 (略長方形)断面を有する梁として構成されており、 半導体層 2の厚み方向に沿った厚み hが m以上とされる。この厚み hの下限値 である 10 mは、上述した検知ギャップの一般的な検知ギャップ間の距離である 3 m以上に基づき算出された値である。このように、検知ギャップ間の距離を 3 m以上 とした場合、センサ 1で検出された値を信号処理する信号処理回路の能力に基づく 感度を確保するためには、所定の変位量だけ可動電極 5を変位させる必要がある。
[0057] そこで、可動電極 5の厚み、つまりビーム部 4の厚みを検知ギャップ間の最低距離 である 3 mの約 3倍である 10 m以上とすることで、必要な感度を得るために充分 な程度、可動電極 5を変位させる質量を確保することができる。可動電極 5の厚み、ビ ーム部 4の厚みの上限値は、半導体層 2を形成する単結晶シリコン基板の厚みに準 じた、例えば、 500 mなどとすることができる。
[0058] また図 4に示すビーム部 4の厚み hは、ビーム部 4の幅 wに対して 3. 16倍以上とす る。例えば、垂直方向の加速度に応じてビーム部 4がねじれることで可動電極 5が正 常に変位する場合、可動電極 5は、半導体層 2を支持する絶縁層 20, 21に接触した としても線接触や点接触となる。しかしながら、過大な加速度が加わった場合には、 図 13に示すように可動電極 5が z軸方向に、表面を水平に保ちながら変位して絶縁 層 20, 21に面接触し、ステイツキングを起こしてしまう可能性がある。このような z軸方 向、つまり垂直方向への可動電極 5の変位を防止するには、ねじれずにそのまま持 ち上がってしまうモードを減らしてやる必要がある。
[0059] 具体的には、ビーム部 4の垂直方向のたわみをビーム部 4の水平方向のたわみの 1 0分の 1以下にすると、上述したようなねじれずにそのまま持ち上がってしまうモードを 大幅に減らすことができる。そこで、断面 2次モーメントに基づく最大たわみを算出し 、ビーム部 4の垂直方向のたわみが、ビーム部 4の水平方向のたわみの 10分の 1以 下となるように、ビーム部 4の厚み hを決定すると、ビーム部 4の厚み hは、ビーム部 4 の幅 wに対して 3. 16 (= 101/2)倍以上とする必要がある。
[0060] これにより、可動電極 5が、ねじれずにそのまま持ち上がってしまうモードを大幅に 減らすことができるため、可動電極 5は、絶縁層 20, 21に面接触してステイツキングを 起こすことなぐ物理量に応じてビーム部 4を中心とした良好なねじれ動作をすること ができる。
[0061] 固定電極 6A, 6Bは、図 14に示すように、可動電極 5のねじれ動作の中心となるビ ーム部 4を対称軸として上下対称となるように設けるのではなぐ可動電極 5の小板部 5b側へとずらすように設けられて 、る。
[0062] 図 15 (a) , (b)に、図 14に示す矢印 L方向力もセンサ 1を見た場合の加速度 Gを垂 直下方より加える前後においてねじれ動作の中心がずれる様子を示す。このねじれ 動作の中心がずれる現象は、マスとして機能する可動電極 5を、大板部 5a、小板部 5 bという質量の異なる部材をねじれ動作の中心となるビーム部 4に対して非対称となる ように形成して 、ることに起因して!/、ると考えられる。
[0063] そこで、固定電極 6A, 6Bをビーム部 4を対称軸とし対称に配置した状態を基準とし て、このようなねじれ動作の中心がずれる量を考慮し、図 15 (a)に示すように、固定 電極 6Aは、ビーム部 4へと近付ける方向に、一方、固定電極 6Bは、ビーム部 4から 遠ざける方向に、それぞれ絶縁層 20の下面 20bに設けるようにする。このとき、固定 電極 6A, 6Bのずれ量、つまり、固定電極 6A, 6Bの絶縁層 20の下面 20bにおける 設置位置は、センサ 1で保証されている加速度の検知範囲に応じて決定される。
[0064] このように、物理量を加えた場合に変化する可動電極 5のねじれ動作の中心位置 に応じて、固定電極 6A, 6Bの位置を決定すると、加えられる物理量に応じて検出さ れる静電容量の直線性を高めることができるため精度よく物理量を検出することがで きる。
[0065] また、絶縁層 20に設ける固定電極 6と可動電極 5との対向面積が増えれば、センサ 1で検出する物理量の検出感度を上げることができるため、図 16 (a)に示すように、 単純に可動電極 5の大板部 5a、小板部 5bの長辺に沿った短冊形状とするのではな く、図 16 (b)に示すように、アンカ部 3、ビーム部 4を形成するにあたり設けた間隙 10 を避けながら、この間隙 10の形状に沿うように固定電極 6A, 6Bを、大板部 5a、小板 部 5bに対向する絶縁層 20の下面 20b上に形成して対向面積を稼ぐようにする。これ により、固定電極 6A, 6Bにより規定される可動電極 5との対向面積を最大限確保す ることができるため、センサ 1に加えられる物理量を非常に感度よく検出することがで きる。
[0066] 上述したように、本実施形態として示すセンサ 1は、単結晶シリコン基板である半導 体層 2を垂直エッチングカ卩ェすることでアンカ部 3、ビーム部 4、可動電極 5からなる 当該可動電極 5の可動機構を形成している。したがって、充分な厚みがある半導体 層 2を用いて可動電極 5を形成することができる。
[0067] これにより、可動電極 5の質量を十分確保できることから、物理量に応じて大きく可 動電極 5が変位するため、静電容量の検出感度を向上させることができる。また、可 動電極 5の変位量が大きいこと力 検知ギャップを広く確保できるため可動電極 5と、 固定電極 6が設けられた絶縁層 20とのステイツキングの発生を防止することができる
[0068] また、 ICPを搭載したエッチング装置による垂直エッチングカ卩ェであることから、半 導体層 2をカ卩ェしたカ卩工面にテーパーが形成されるといったことがないため、デバイ スサイズを小型化することができる。また、加工面にテーパーが形成されていないた め、過大な物理量によりビーム部 4と可動電極 5とが接触したとしても必ず面接触とな るため構造が欠けてしまうことなどを防止することができる。さらに、垂直エッチングカロ ェされたエッチング面は、鏡面ではないため、面接触したとしてもステイツキングを発 生してしまうこともない。 [0069] 垂直エッチング加工をした場合には、エッチング処理された部位の断面形状が上 下においてほぼ対称形状となるため、検出方向である主軸方向に対する他軸方向に 感度を発生してしまうことを回避することができる。さらに、本実施形態として示すセン サ 1は、半導体層 2を膜応力の少ない単結晶シリコン基板としているため容易な加工 処理を実現することができる。
[0070] [第 3の実施形態]
続いて、図 17,図 18を用いて、本発明の第 3の実施形態として示すセンサ 1の構成 について説明する。第 3の実施の形態として示すセンサ 1は、上述した第 2の実施の 形態として示す半導体層 2の厚み方向である垂直方向の物理量を検出するセンサ 1 に、さらに半導体層 2の面方向である水平方向の物理量を検出することができるよう に構成したものである。
[0071] 図 17は、センサ 1の半導体層 2を示した平面図である。図 17に示すように、半導体 層 2は、半導体基板に公知の半導体プロセスにより間隙 10を形成することで、垂直方 向の物理量を検出する垂直方向検出部 50Aと、水平方向の物理量を検出する水平 方向検出部 50Bと、これらを囲むフレーム部 7とが形成されている。なお、垂直方向 検出部 50Aは、センサ 1と全く同一の構成であるため、必要に応じて適宜説明をする ものとし詳細な説明を省略する。
[0072] 間隙 10は、第 2の実施形態として示すセンサ 1における間隙 10と同様に、反応性ィ オンエッチングなどにより垂直エッチング加工をすることで、間隙 10の側壁面を半導 体層 2の表面と垂直となるように形成される。このようにして、垂直エッチングカ卩ェによ り形成された間隙 10の側壁面同士は、互いに略平行に対向することになる。反応性 イオンエッチングとしては、例えば、誘導結合型プラズマを備えたエッチング装置によ る ICP加工を利用することができる。
[0073] 図 17に示すように、水平方向検出部 50Bの半導体層 2は、支持部 53、ビーム部 54 、可動電極 55、固定電極 56とが形成されている。
[0074] 図 18は、図 17の D— D線で半導体層 2を切断するようにセンサ 1を切断した様子を 示した断面図である。図 18に示すように、センサ 1は、この半導体層 2の表裏両面に ガラス基板などの絶縁層 20, 21を、例えば、陽極接合などをして接合することで形成 される。これら半導体層 2と絶縁層 20, 21との接合面には、比較的浅い凹部 62が形 成されており、半導体層 2各部の絶縁性や可動電極 55の動作性の確保が図られて いる。なお、本発明の第 2の実施の形態では、水平方向検出部 50Bの半導体層 2と 絶縁層 20との接合面については、半導体層 2側に凹部 62を設ける一方、水平方向 検出部 50Bの半導体層 2と絶縁層 21との接合面については、絶縁層 21側に凹部 6 2を設けている。
[0075] 図 17に示すように、支持部 53は、可動電極 55を介して可動電極 55の長辺側にそ れぞれ 1つずつ設けられ、可動電極 55の長辺に沿って平行に略一定幅で延設され ている。このように設けられた 1対の支持部 53は、一方が他方に較べ細く長くなつて いる。
[0076] 各支持部 53には、可動電極 55に対向する側から、当該支持部 53の長辺と平行に 、かつ中途で蛇行するように折れ曲がりながら中心に向けて伸びるビーム部 54力 そ れぞれ 2本ずつ設けられている。図 17に示すように、ビーム部 4の他端は、可動電極 55の隅部に接続されており、支持部 53に対して可動電極 55を弹性的に可動支持 するパネ要素として機能する。
[0077] これにより、水平方向検出部 50Bでは、可動電極 55に対し、パネ要素としてのビー ム部 54、ビーム部 54に接続された支持部 53により支持される質量要素(マス)として の機能を与え、これらパネ要素と質量要素とによってパネ—マス系を構成している。 このような水平方検出部 50Bは、質量要素としての可動電極 55の位置変位による可 動電極 55、固定電極 56間の静電容量の変化を検出する。そして、水平方向検出部 50Bは、検出された静電容量の変化を C—V変換することで得られる電圧波形力ゝらセ ンサ 1に加えられた加速度を検出することができる。
[0078] 具体的には、この静電容量の変化は、可動電極 55、固定電極 56にそれぞれ形成 された櫛歯状の複数の検出可動電極 55a、検出固定電極 56aからなる検出部 58A, 58B (以下、総称する場合は、単に検出部 58と呼ぶ。)によって検出される。
[0079] 例えば、図 17に示す Y軸方向に加速度が与えられると、可動電極 5が Y軸方向に 変位し、検出部 58Aの検出可動電極 55a、検出固定電極 56aで検出される静電容 量と、検出部 58Bの検出可動電極 55a、検出固定電極 56aで検出される静電容量に 差が生じる。この静電容量の差から Y軸方向の加速度を検出することができる。
[0080] 図 17に示す固定電極 56の隅部 56b上には、絶縁層 20をサンドブラスト加工等によ つて貫通させた貫通孔 24を形成する。そして、貫通孔 24を介して露出された半導体 層 2、貫通孔 24の内周面、絶縁層 20の表面 20aにかけて金属薄膜などを成膜するこ とで固定電極 56の電位を絶縁層 20上で取り出せるようにしている。なお、絶縁層 20 の表面上は、榭脂層(図示せず)によって被覆 (モールド成形)するのが好適である。
[0081] 一方、可動電極 55の電位は、当該可動電極 55をビーム部 54を介して支持する支 持部 53から取り出すようにする。図 17に示す可動電極 55に対して上側に配置され た支持部 53には、絶縁層 20をサンドブラストカ卩ェ等によって貫通させた貫通孔を形 成する。そして、貫通孔 24を介して露出された半導体層 2、貫通孔 24の内周面、絶 縁層 20の表面 20aにかけて金属薄膜などを成膜することで可動電極 55の電位を絶 縁層 20上で取り出せるようにして 、る。
[0082] 続いて、図 19に示す水平方向検出部 50Bの検出部 58を中心に可動電極 55、固 定電極 56を拡大した平面図を用いて、検出部 58の詳細な構成について説明をする
[0083] 図 19に示すように、可動電極 55には、その中央部から固定電極 56の電極支持部 56cに向けてその辺と略垂直に細長く伸びる帯状の検出可動電極 55aが形成されて いる。検出可動電極 55aは、所定のピッチで、互いに平行となるように櫛歯状に複数 形成される。また、各検出可動電極 55aは、先端部が互いに平行に、同一の長さとな るように揃えられている。
[0084] 一方、固定電極 56には、電極支持部 56cから可動電極 55の中央部に向けて、検 出可動電極 55aと平行に細長く伸びる帯状の検出固定電極 56aが形成されている。 検出固定電極 56aは、上述した櫛歯状の複数の検出可動電極 55aの間に、検出可 動電極 55aと 1対 1で平行に対向するように、所定のピッチ (例えば、検出可動電極 5 5aと同一のピッチ)で櫛歯状に複数形成される。また、各検出固定電極 56aは、検出 可動電極 55aに対応させて同一の長さとなるように揃えられ、検出可動電極 55a、検 出固定電極 56a同士が相互に対向する対向面の対向面積をできるだけ広く確保で さるようにしてある。 [0085] 図 19に示すように、検出可動電極 55a、検出固定電極 56aを形成する上で設けら れた間隙 10は、一方側で狭い間隙 10a、他方側で広い間隙 10bとなっている。検出 部 58は、狭い側の間隙 10aを検知ギャップ (電極ギャップ)として検出可動電極 55a 、検出固定電極 56a間の静電容量を検出する。
[0086] なお、図 17に示すように、可動電極 55の表面上の適宜位置には、垂直方向検出 部 50Aの可動電極 5に設けたストッパ 13と全く同一のストッパ 13を設け、可動電極 5 5が絶縁層 20に直接的に接触 (衝突)して損傷するのを抑制するようになっているが 、このストツバ 13を電位取出部 8の下敷層 27と同一材料として同じ工程で形成するよ うにすれば、これらを別途形成する場合に比べて製造の手間が減り、製造コストを低 減することができる。
[0087] ところで図 17を用いて説明したように、水平方向検出部 50Bでは、半導体層 2と絶 縁層 20との接合面は、半導体層 2側に凹部 42を設けるようにしている。凹部 42は、 半導体層 2を絶縁層 20に接合し、間隙 10を形成する前段において、ウエットエツチン グゃドライエッチングと 、つた種々のエッチング処理により形成しておく。このようにし て半導体層 2をエッチング処理により削り取ることにより凹部 52を形成した後、ガラス 基板である絶縁層 20を接合させ、垂直エッチング加工をすることで、間隙 10を形成 する。
[0088] このとき図 18に示すように、垂直方向検出部 50Aのアンカ部 3、ビーム部 4、可動 電極 5が形成された半導体層 2の厚み hiと、水平方向検出部 50Bのビーム部 54、可 動電極 55、固定電極 56が形成された半導体層 2の厚み h2とを全て同一にする。こ のように、厚み hiと、厚み h2とを同一の厚さとすると、凹部 62を形成する工程と、垂 直方向検出部 50Aにおいて検知ギャップを規定する凹部 22を形成する工程とを同 一工程にて形成することができる。また、厚み hiと、厚み h2とを同一の厚さとすると、 間隙 10を形成する際の垂直エッチングカ卩ェにおいて、貫通エッチング量を一定に保 つことができるためエッチング時間が同じになりオーバーエッチングを防止することが できる。
[0089] また図 17に示す垂直方向検出部 50Aのビーム部 4を形成するために貫通させる間 隙 10の幅 wlと、図 16に示す水平方向検出部 50Bの検出部 58の検知ギャップであ る間隙 10aの幅 w2とを同一にする。このように、間隙 10の幅 wlと、間隙 10aの幅 w2 とを同一の幅とすると、垂直エッチング加工時のエッチング速度を均一化することが できる。したがって、垂直エッチングカ卩ェによるエッチング処理後に形成される各部 位の形状ばらつきを大幅に低減させることができる。
[0090] 特に、垂直方向検出部 50Aのビーム部 4は、ねじれ動作を伴うため当該ビーム部 4 の幅のばらつきが検出感度に悪影響を与えてしまう。したがって、間隙 10の幅 wlと、 間隙 10aの幅 w2とを同一の幅とし、形状ばらつきを低減させることで、垂直方向検出 部 50Aの検出感度を向上させることができる。
[0091] さらに図 18に示す垂直方向検出部 50Aのビーム部 4の幅 w3と、水平方向検出部 50Bのビーム部 54の幅 w4とを同一にする。このように、ビーム部 4の幅 w3と、ビーム 部 54の幅 w4とを同一の幅とすると、垂直エッチングカ卩ェをする際のオーバーエッチ ングの管理が容易になる。また、ビーム部 4の幅 w3と、ビーム部 54の幅 w4とを同一 の幅とすると、半導体プロセスが終了した後に行われるデバイスの画像認識などによ る外観検査を容易なものとすることができる。
[0092] 第 3の実施形態として示すセンサ 1は、図 20に示すような構成とすることもできる。
図 20に示すセンサ 1は、垂直方向検出部 50Aの可動電極 5を、水平方向検出部 50 Bを囲むような枠形状としている。具体的には、可動電極 5の大板部 5aを縮小し質量 を減らし、この縮小した大板部 5aから水平方向検出部 50Bの固定電極 56の電極支 持部 56cの長手方向に沿って平行に伸びる 2本の腕部 5dと、腕部 5dとを接続する接 続部 5eによって水平方向検出部 50Bが囲まれることになる。
[0093] このように、水平方向検出部 50Bを囲むように可動電極 5を形成すると、ねじれ動作 の中心となるビーム部 4から遠い質量成分である腕部 5d、接続部 5eにより慣性モー メントを稼ぐことができるため、大板部 5aを縮小して質量を減らしたとしても充分な検 出感度を確保、さらには検出感度を向上させることができる。また、垂直方向検出部 50A、水平方向検出部 50Bとを効率的に配置することができるため、センサ 1を小型 化することができるという利点もある。
[0094] このように本発明の第 3の実施の形態として示すセンサ 1は、同一の半導体層 2に、 半導体層 2の厚み方向の物理量を検出する垂直方向検出部 50Aと、半導体層 2の 面方向の物理量を検出する水平方向検出部 50Bとが、垂直エッチングカ卩ェにより形 成されている。例えば、それぞれ 1軸方向の物理量を検出するセンサを単純に 2つ配 置するなどして互いに垂直な他軸方向の物理量を検出するようにしたセンサなどで は、実装時の位置ずれや、実装浮きなどにより 2軸間の直角性を損なってしまうが、 本発明の第 3の実施の形態として示すセンサ 1では、互いの検知軸の直角性を高い 精度で確保できるため、非常に高い精度で双方の物理量を検出することができる。
[0095] また、同一のプロセスで垂直方向検出部 50Aと、水平方向検出部 50Bとを形成で きるため、製造プロセスの削減力 製造コストを低減することができるとともに、形状を 小型化することもできる。また、垂直方向検出部 50Aのアンカ部 3、ビーム部 4、可動 電極 5が形成された半導体層 2の厚み hiと、水平方向検出部 50Bのビーム部 54、可 動電極 55、固定電極 56が形成された半導体層 2の厚み h2とを全て同一にしている ため、製造されたセンサ 1の垂直方向検出部 50A、水平方向検出部 50Bの感度など の特性にばらつきがあった場合には、単結晶シリコン基板を切り出す前の単結晶シリ コンウェハそのものにばらつきが存在すると判断することができる。
[0096] したがって、製造されたセンサ 1の性能から、単結晶シリコンウェハの製造ばらつき などの特性をつかみやすぐ単結晶シリコンウェハの製造プロセスに異常が発生した 場合には迅速に発見することができ品質向上を実現できる。
[0097] また、垂直方向検出部 50A、水平方向検出部 50Bを一体で形成し、厚みを一定と することで、全体的な重量バランスを確保できるため、垂直方向、水平方向の物理量 を混在して検出するセンサでありながら、実装浮きを大幅に低減することができるた め、他軸感度を向上させることができる。
[0098] なお、上述の実施の形態は本発明の一例である。このため、本発明は、上述の実 施の形態に限定されることはなぐこの実施の形態以外であっても、本発明に係る技 術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であること は勿論である。
産業上の利用可能性
[0099] 本発明は、固定電極と可動電極との間の静電容量を検出することにより所定の物 理量を検出する静電容量式センサに適用することができる。

Claims

請求の範囲
[1] 固定電極と、半導体層の固定部分にビームを介して可動支持された可動電極と、 を備えるとともに、当該固定電極と可動電極とを間隙をもって相互に対向配置させて 検出部が構成され、当該間隙の大きさに応じた静電容量を検出することで所定の物 理量を検出する静電容量式センサにおいて、前記ビームの固定部分に接続される 側の端部および可動電極に接続される側の端部のうち少なくともいずれか一方に、 局所的な応力集中を緩和する応力緩和部を設けたことを特徴とする静電容量式セン サ。
[2] 前記応力緩和部を、前記ビームの固定部分に接続される側の端部および可動電 極に接続される側の端部の双方に設けたことを特徴とする請求項 1に記載の静電容 量式センサ。
[3] 前記応力緩和部は、枠状構造を含むことを特徴とする請求項 1または 2に記載の静 電容量式センサ。
[4] 前記応力緩和部は、蛇行構造を含むことを特徴とする請求項 1または 2に記載の静 電容量式センサ。
[5] 前記ビームは、可動電極の動作に伴ってねじられる略矩形断面を有するねじりビー ムであることを特徴とする請求項 1〜4のうちいずれか一つに記載の静電容量式セン サ。
[6] 前記可動電極は、前記ねじりビームを介して揺動可能に支持され、前記検出部は、 揺動する可動電極の表面とそれに対向する固定電極の表面との間隙の大きさに応じ た静電容量を検出することを特徴とする請求項 5に記載の静電容量式センサ。
[7] 半導体層の固定部分にビーム部を介して非対称な質量バランスとなるように可動支 持され、前記半導体層の厚み方向の物理量の変位に応じて動作する第 1可動電極 と、前記半導体層を支持する支持基板上に形成された第 1固定電極とを相互に間隙 を介して対向配置し、前記第 1可動電極と前記第 1固定電極との間隙の大きさに応じ て検出される静電容量に基づき物理量を検出する第 1検出部を備える静電容量式セ ンサにおいて、前記半導体層を単結晶シリコン層とし、前記単結晶シリコン層を垂直 エッチング加工することで形成された前記固定部分、前記ビーム部、前記第 1可動電 極からなる当該第 1可動電極の可動機構を備えることを特徴とする静電容量式セン サ。
[8] 前記支持基板上に形成された前記第 1固定電極と対向する領域を含む、前記半導 体層の前記支持基板との対向面に凹部が形成されていることを特徴とする請求項 7 記載の静電容量式センサ。
[9] 前記凹部が結晶異方性エッチングにより形成されていることを特徴とする請求項 8 記載の静電容量式センサ。
[10] シリコン支持基板とシリコン活性層との間に中間酸ィ匕膜を挿入した構造の SOI (Silic on On Insulator)基板を用い、前記半導体層を前記 SOI基板のシリコン活性層とする ことを特徴とする請求項 7記載の静電容量式センサ。
[11] 前記ビーム部の厚みが、当該ビーム部の幅よりも大きいことを特徴とする請求項 7記 載の静電容量式センサ。
[12] 前記第 1可動電極の厚み、前記ビーム部の厚みがそれぞれ 10 μ m以上であること を特徴とする請求項 11記載の静電容量式センサ。
[13] 前記ビーム部の厚み力 当該ビーム部の幅の 3. 16倍以上であることを特徴とする 請求項 11記載の静電容量式センサ。
[14] 前記第 1固定電極は、前記ビーム部を介して非対称な質量バランスとされた前記第 1可動電極の質量の小さ 、部材である小板部と、質量の大き 、部材である大板部に それぞれ独立して対向配置され、さらに、前記小板部と対向する前記第 1固定電極 は、前記ビーム部力 遠ざけるように配置され、前記大板部と対向する前記第 1固定 電極は、前記ビーム部に近付けるように前記支持基板上に配置されて ヽることを特 徴とする請求項 7記載の静電容量式センサ。
[15] 前記第 1固定電極は、前記ビーム部を介して非対称な質量バランスとされた前記第 1可動電極の質量の小さ 、部材である小板部と、質量の大き 、部材である大板部に それぞれ独立して対向配置され、さらに、前記第 1固定電極は、垂直エッチング加工 によって前記固定部、前記ビーム部を形成するにあたり設けられた間隙と対向するこ とを避けながら、一部が前記間隙の形状に沿うように前記支持基板上に形成されて V、ることを特徴とする請求項 7記載の静電容量式センサ。
[16] 前記半導体層の固定部分にビーム部を介して可動支持され、前記半導体層の面 方向の物理量の変位に応じて動作する第 2可動電極と、前記半導体層によって形成 された第 2固定電極とを相互に間隙を介して対向配置し、前記第 2可動電極と前記 第 2可動電極との間隙の大きさに応じて検出される静電容量に基づき物理量を検出 する第 2検出部を備えることを特徴とする請求項 7記載の静電容量式センサ。
[17] 前記第 1検出部の半導体層の厚みと、前記第 2検出部の半導体層の厚みとが略同 一であることを特徴とする請求項 16記載の静電容量式センサ。
[18] 前記第 1検出部のビーム部の厚みと、前記第 2検出部のビーム部の厚みが略同一 であることを特徴とする請求項 16記載の静電容量式センサ。
[19] 前記第 1検出部のビーム部の幅と、前記第 2検出部のビーム部の幅とが略同一で あることを特徴とする請求項 16記載の静電容量式センサ。
[20] 前記第 1検出部の前記ビーム部を形成するにあたり垂直エッチング加工によって設 けられた間隙と、前記第 2検出部の第 2可動電極と第 2固定電極とを相互に対向配置 させる際に設けた間隙とが略同一であることを特徴とする請求項 16記載の静電容量 式センサ。
[21] 前記第 1検出部の前記第 1可動電極は、前記第 2検出部の周囲を囲む形状である ことを特徴とする請求項 16記載の静電容量式センサ。
PCT/JP2007/058960 2006-04-28 2007-04-25 静電容量式センサ WO2007125961A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07742395A EP2023152A4 (en) 2006-04-28 2007-04-25 CAPACITIVE SENSOR
CN2007800154915A CN101432627B (zh) 2006-04-28 2007-04-25 电容式传感器
US12/296,554 US8176782B2 (en) 2006-04-28 2007-04-25 Capacitive sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006126873A JP4605087B2 (ja) 2006-04-28 2006-04-28 静電容量式センサ
JP2006-126437 2006-04-28
JP2006-126873 2006-04-28
JP2006126437A JP4600344B2 (ja) 2006-04-28 2006-04-28 静電容量式センサ

Publications (1)

Publication Number Publication Date
WO2007125961A1 true WO2007125961A1 (ja) 2007-11-08

Family

ID=38655487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058960 WO2007125961A1 (ja) 2006-04-28 2007-04-25 静電容量式センサ

Country Status (6)

Country Link
US (1) US8176782B2 (ja)
EP (1) EP2023152A4 (ja)
KR (1) KR101012248B1 (ja)
CN (1) CN102654409A (ja)
TW (2) TWI417547B (ja)
WO (1) WO2007125961A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088995A1 (de) * 2009-02-04 2010-08-12 Robert Bosch Gmbh Beschleunigungssensor und verfahren zum betreiben eines beschleunigungssensors
WO2018088065A1 (ja) * 2016-11-11 2018-05-17 ソニーセミコンダクタソリューションズ株式会社 センサ素子、慣性センサ及び電子機器

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114130B2 (ja) * 2007-08-24 2013-01-09 新光電気工業株式会社 配線基板及びその製造方法、及び半導体装置
CN102124352B (zh) * 2008-11-25 2013-04-17 松下电器产业株式会社 加速度传感器及其构造体
DE102009045645B4 (de) 2009-10-13 2023-01-19 Robert Bosch Gmbh Sensorvorrichtung und Herstellungsverfahren für eine Sensorvorrichtung
US9261530B2 (en) 2009-11-24 2016-02-16 Panasonic Intellectual Property Management Co., Ltd. Acceleration sensor
DE102010039069B4 (de) 2010-08-09 2023-08-24 Robert Bosch Gmbh Beschleunigungssensor mit einer Dämpfungseinrichtung
JP5750867B2 (ja) * 2010-11-04 2015-07-22 セイコーエプソン株式会社 機能素子、機能素子の製造方法、物理量センサーおよび電子機器
US8978452B2 (en) * 2011-08-11 2015-03-17 3M Innovative Properties Company Wetness sensor using RF circuit with frangible link
DE102011080982B4 (de) * 2011-08-16 2020-03-05 Robert Bosch Gmbh Sensoranordnung
US8887573B2 (en) * 2012-02-21 2014-11-18 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS vacuum level monitor in sealed package
WO2014057623A1 (ja) * 2012-10-12 2014-04-17 パナソニック株式会社 加速度センサ
JP6155832B2 (ja) 2013-05-16 2017-07-05 セイコーエプソン株式会社 センサー素子、電子機器、および移動体
WO2015042700A1 (en) 2013-09-24 2015-04-02 Motion Engine Inc. Mems components and method of wafer-level manufacturing thereof
WO2015003264A1 (en) 2013-07-08 2015-01-15 Motion Engine Inc. Mems device and method of manufacturing
WO2015013828A1 (en) 2013-08-02 2015-02-05 Motion Engine Inc. Mems motion sensor and method of manufacturing
CN103486956B (zh) * 2013-10-10 2015-12-23 中国计量科学研究院 一种实现高精度测量竖直移动方向的装置及方法
JP6590812B2 (ja) 2014-01-09 2019-10-16 モーション・エンジン・インコーポレーテッド 集積memsシステム
WO2015154173A1 (en) 2014-04-10 2015-10-15 Motion Engine Inc. Mems pressure sensor
US11674803B2 (en) 2014-06-02 2023-06-13 Motion Engine, Inc. Multi-mass MEMS motion sensor
US11287486B2 (en) 2014-12-09 2022-03-29 Motion Engine, Inc. 3D MEMS magnetometer and associated methods
JP6279464B2 (ja) * 2014-12-26 2018-02-14 株式会社東芝 センサおよびその製造方法
WO2016112463A1 (en) 2015-01-15 2016-07-21 Motion Engine Inc. 3d mems device with hermetic cavity
KR102560535B1 (ko) * 2016-07-01 2023-07-28 주식회사 로보터스 정전 용량형 센서
KR101919906B1 (ko) * 2017-02-16 2018-11-19 한국과학기술원 생체 모방형 고신축성 전도성 건식 접착 패치, 이의 제조 방법 및 이를 포함하는 웨어러블 기기
JP6691882B2 (ja) * 2017-03-03 2020-05-13 株式会社日立製作所 加速度センサ
CN113678000B (zh) * 2019-03-27 2024-04-09 松下知识产权经营株式会社 物理量传感器
CN113631882B (zh) * 2019-03-29 2023-12-12 松下知识产权经营株式会社 角速度传感器
JP7331881B2 (ja) * 2021-04-20 2023-08-23 株式会社豊田中央研究所 加速度センサ及び加速度センサ装置
DE102021209027A1 (de) 2021-08-18 2023-02-23 Robert Bosch Gesellschaft mit beschränkter Haftung Mikromechanischer Beschleunigungssensor
CN117490733B (zh) * 2022-07-25 2024-11-19 准懋(杭州)科技有限公司 一种mems器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810661A (ja) * 1981-07-02 1983-01-21 サートル・エレクトロニク・オルロジュール・ソシエテ・アノニム 加速度測定器
US4736629A (en) 1985-12-20 1988-04-12 Silicon Designs, Inc. Micro-miniature accelerometer
US5220835A (en) * 1991-09-12 1993-06-22 Ford Motor Company Torsion beam accelerometer
JPH08178952A (ja) * 1994-12-20 1996-07-12 Zexel Corp 加速度センサ
JPH09189716A (ja) * 1995-11-07 1997-07-22 Temic Telefunken Microelectron Gmbh 超小型機械的加速度センサ
JPH09512904A (ja) * 1994-03-08 1997-12-22 ニューカーマンズ、アーモンド、ピー. 一体化センサを備えたモノリシックシリコン・レートジャイロ
US6000287A (en) 1998-08-28 1999-12-14 Ford Motor Company Capacitor center of area sensitivity in angular motion micro-electromechanical systems
JP2000028634A (ja) 1998-07-07 2000-01-28 Denso Corp 容量式物理量検出装置
JP2003014778A (ja) * 2001-04-26 2003-01-15 Samsung Electronics Co Ltd 垂直変位測定及び駆動構造体とその製造方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623630A (ja) 1985-06-29 1987-01-09 Teraoka Seiko Co Ltd 荷重検出用振動子
US5016072A (en) 1988-01-13 1991-05-14 The Charles Stark Draper Laboratory, Inc. Semiconductor chip gyroscopic transducer
JPH05333052A (ja) 1992-05-28 1993-12-17 Omron Corp 静電容量型加速度センサ
US5461916A (en) * 1992-08-21 1995-10-31 Nippondenso Co., Ltd. Mechanical force sensing semiconductor device
FR2700014B1 (fr) 1992-12-08 1995-04-28 Commissariat Energie Atomique Capteur capacitif sensible aux accélérations orientées dans toutes les directions d'un plan.
US6426013B1 (en) 1993-10-18 2002-07-30 Xros, Inc. Method for fabricating micromachined members coupled for relative rotation
US6044705A (en) 1993-10-18 2000-04-04 Xros, Inc. Micromachined members coupled for relative rotation by torsion bars
US6467345B1 (en) 1993-10-18 2002-10-22 Xros, Inc. Method of operating micromachined members coupled for relative rotation
US5629790A (en) 1993-10-18 1997-05-13 Neukermans; Armand P. Micromachined torsional scanner
DE19547642A1 (de) 1994-12-20 1996-06-27 Zexel Corp Beschleunigungssensor und Verfahren zu dessen Herstellung
US5587518A (en) 1994-12-23 1996-12-24 Ford Motor Company Accelerometer with a combined self-test and ground electrode
US6073484A (en) 1995-07-20 2000-06-13 Cornell Research Foundation, Inc. Microfabricated torsional cantilevers for sensitive force detection
US5900550A (en) 1997-06-16 1999-05-04 Ford Motor Company Capacitive acceleration sensor
JPH1133751A (ja) 1997-07-23 1999-02-09 Hitachi Ltd 構造体の製作方法
DE19750350C1 (de) * 1997-11-13 1999-08-05 Univ Dresden Tech Dreidimensionaler Chip-Beschleunigungssensor und Verfahren zu seiner Herstellung mittels UV-unterstützter Mikrogalvanik
DE19938206A1 (de) 1999-08-12 2001-02-15 Bosch Gmbh Robert Mikromechanischer Drehbeschleunigungssensor
AU7130800A (en) 1999-09-17 2001-04-17 Kionix, Inc. Electrically decoupled micromachined gyroscope
DE19945859A1 (de) 1999-09-24 2001-03-29 Bosch Gmbh Robert Mikromechanischer Drehratensensor
US6739189B2 (en) 2001-04-26 2004-05-25 Samsung Electronics Co., Ltd. Micro structure for vertical displacement detection and fabricating method thereof
KR100416763B1 (ko) * 2001-04-26 2004-01-31 삼성전자주식회사 수직변위 측정 및 구동 구조체와 그 제조방법
US6955086B2 (en) * 2001-11-19 2005-10-18 Mitsubishi Denki Kabushiki Kaisha Acceleration sensor
US6725719B2 (en) * 2002-04-17 2004-04-27 Milli Sensor Systems And Actuators, Inc. MEMS-integrated inertial measurement units on a common substrate
DE10227662B4 (de) 2002-06-20 2006-09-21 Eads Deutschland Gmbh Mikromechanisches Bauelement für Beschleunigungs-oder Drehratensensoren und Sensor
US6912902B2 (en) * 2003-03-26 2005-07-05 Honeywell International Inc. Bending beam accelerometer with differential capacitive pickoff
TWI266877B (en) * 2003-05-28 2006-11-21 Au Optronics Corp Capacitive acceleration sensor
US6845670B1 (en) 2003-07-08 2005-01-25 Freescale Semiconductor, Inc. Single proof mass, 3 axis MEMS transducer
US7073380B2 (en) * 2004-02-17 2006-07-11 Honeywell International, Inc. Pyramid socket suspension
ATE368863T1 (de) 2004-03-02 2007-08-15 Colibrys S A Mikroelektromechanisches system
US7146856B2 (en) 2004-06-07 2006-12-12 Honeywell International, Inc. Dynamically balanced capacitive pick-off accelerometer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810661A (ja) * 1981-07-02 1983-01-21 サートル・エレクトロニク・オルロジュール・ソシエテ・アノニム 加速度測定器
US4736629A (en) 1985-12-20 1988-04-12 Silicon Designs, Inc. Micro-miniature accelerometer
US5220835A (en) * 1991-09-12 1993-06-22 Ford Motor Company Torsion beam accelerometer
JPH09512904A (ja) * 1994-03-08 1997-12-22 ニューカーマンズ、アーモンド、ピー. 一体化センサを備えたモノリシックシリコン・レートジャイロ
JPH08178952A (ja) * 1994-12-20 1996-07-12 Zexel Corp 加速度センサ
JPH09189716A (ja) * 1995-11-07 1997-07-22 Temic Telefunken Microelectron Gmbh 超小型機械的加速度センサ
JP2000028634A (ja) 1998-07-07 2000-01-28 Denso Corp 容量式物理量検出装置
US6000287A (en) 1998-08-28 1999-12-14 Ford Motor Company Capacitor center of area sensitivity in angular motion micro-electromechanical systems
JP2003014778A (ja) * 2001-04-26 2003-01-15 Samsung Electronics Co Ltd 垂直変位測定及び駆動構造体とその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2023152A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088995A1 (de) * 2009-02-04 2010-08-12 Robert Bosch Gmbh Beschleunigungssensor und verfahren zum betreiben eines beschleunigungssensors
US8752431B2 (en) 2009-02-04 2014-06-17 Robert Bosch Gmbh Acceleration sensor method for operating an acceleration sensor
WO2018088065A1 (ja) * 2016-11-11 2018-05-17 ソニーセミコンダクタソリューションズ株式会社 センサ素子、慣性センサ及び電子機器
US11137248B2 (en) 2016-11-11 2021-10-05 Sony Semiconductor Solutions Corporation Sensor element, inertial sensor, and electronic apparatus

Also Published As

Publication number Publication date
KR101012248B1 (ko) 2011-02-08
TW201024737A (en) 2010-07-01
TWI343480B (ja) 2011-06-11
US8176782B2 (en) 2012-05-15
EP2023152A4 (en) 2011-11-02
EP2023152A1 (en) 2009-02-11
KR20090016550A (ko) 2009-02-16
US20090266164A1 (en) 2009-10-29
TWI417547B (zh) 2013-12-01
CN102654409A (zh) 2012-09-05
TW200804814A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
WO2007125961A1 (ja) 静電容量式センサ
JP4605087B2 (ja) 静電容量式センサ
US7624638B2 (en) Electrostatic capacitance type acceleration sensor
US6928872B2 (en) Integrated gyroscope of semiconductor material with at least one sensitive axis in the sensor plane
JP2007298405A (ja) 静電容量式センサ
CN101481084B (zh) 一种可变间距电容的微惯性传感器
JPH11344507A (ja) マイクロマシンの構成エレメント
US20160320425A1 (en) Integrated piezoelectric sensor for detecting in-plane forces, such as shocks, accelerations, rotational forces
WO2005062060A1 (ja) 半導体型3軸加速度センサ
JP2575939B2 (ja) 半導体加速度センサ
TW200914832A (en) Acceleration sensor
KR20040054548A (ko) 가속도 센서
JPH1090299A (ja) 静電容量式加速度センサ
CN107356785B (zh) 一种具有柔性铰链结构的mems扭摆式加速度计
CN101792108B (zh) 一种基于滑膜阻尼的大电容微惯性传感器及其制作方法
KR20130143553A (ko) 진동 미러 소자
CN101792109A (zh) 一种嵌入横向可动电极的微惯性传感器及其制作方法
JP4600344B2 (ja) 静電容量式センサ
US9146254B2 (en) Dynamic sensor
JP4637074B2 (ja) ピエゾ抵抗型加速度センサー
US11867714B2 (en) Accelerometer with two seesaws
JP2009270944A (ja) 静電容量型加速度センサ
JP2010139263A (ja) 角加速度センサ
JP2001121499A (ja) マイクロマシン構造体および製造方法
JP2010078421A (ja) 加速度センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780015491.5

Country of ref document: CN

Ref document number: 2007742395

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087027013

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12296554

Country of ref document: US