[go: up one dir, main page]

WO2007114471A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2007114471A1
WO2007114471A1 PCT/JP2007/057577 JP2007057577W WO2007114471A1 WO 2007114471 A1 WO2007114471 A1 WO 2007114471A1 JP 2007057577 W JP2007057577 W JP 2007057577W WO 2007114471 A1 WO2007114471 A1 WO 2007114471A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
domain
electrode
crystal domain
pixel
Prior art date
Application number
PCT/JP2007/057577
Other languages
English (en)
French (fr)
Inventor
Akihiro Shoraku
Toshihide Tsubata
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to CN2007800118139A priority Critical patent/CN101416105B/zh
Priority to US12/295,672 priority patent/US8334954B2/en
Publication of WO2007114471A1 publication Critical patent/WO2007114471A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device having a wide viewing angle characteristic.
  • liquid crystal display devices have been improved, and their use in television receivers and the like is advancing. Although the viewing angle characteristics of liquid crystal display devices have been improved, further improvements are desired. In particular, there is a strong demand for improving the viewing angle characteristics of a liquid crystal display device (sometimes called a VA mode liquid crystal display device) using a vertically aligned liquid crystal layer.
  • a liquid crystal display device sometimes called a VA mode liquid crystal display device
  • VA mode liquid crystal display devices currently used in large display devices such as televisions have a direction division structure in which a plurality of liquid crystal domains are formed in one pixel region in order to improve viewing angle characteristics. It has been adopted.
  • MVA mode is the main method for forming the alignment division structure.
  • a plurality of domains with different alignment directions are provided by providing an alignment control structure on the liquid crystal layer side of a pair of substrates facing each other with a vertical alignment type liquid crystal layer in between (typically the alignment direction is 4 types).
  • the alignment regulating structure slits (openings) or ribs (projection structure) provided on the electrode are used, and the alignment regulating force is exhibited from both sides of the liquid crystal layer.
  • the slits and ribs are linear, unlike the case where the pretilt direction is defined by the alignment film used in the conventional TN.
  • the response speed is distributed because the alignment regulating force on the molecules becomes non-uniform in the pixel region.
  • the light transmittance of the region provided with the slits and ribs is lowered, there is a problem that the display luminance is lowered.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-133429
  • Patent Document 2 Japanese Patent Laid-Open No. 11-352486
  • the purpose of providing the light shielding portion in the conventional alignment division structure is that the transmittance of light in a front view is less than a predetermined value due to alignment disturbance such as reverse tilt in a TN mode liquid crystal display device.
  • the transmittance of light in a front view is less than a predetermined value due to alignment disturbance such as reverse tilt in a TN mode liquid crystal display device.
  • the VA mode liquid crystal display device it is brighter than the normal alignment region in the front view, whereas the higher region, that is, the region where the liquid crystal molecules appear brighter than the normal alignment region is hidden. It was found that the display quality may not be improved sufficiently by shading the visible area.
  • the present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a VA-mode liquid crystal display device excellent in display quality.
  • a liquid crystal display device of the present invention is provided on a liquid crystal layer side of a vertical alignment type liquid crystal layer, a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween, and the first substrate.
  • a first electrode and a second electrode provided on the liquid crystal layer side of the second substrate; and at least one alignment film provided so as to be in contact with the liquid crystal layer;
  • a first liquid crystal in which the tilt direction of liquid crystal molecules in the vicinity of the center in the layer plane and in the thickness direction of the liquid crystal layer when a voltage is applied between the electrode and the second electrode is a predetermined first direction.
  • Direction and fourth direction are four directions where the difference between any two directions is approximately equal to an integral multiple of 90 °
  • the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are each adjacent to another liquid crystal domain and arranged in a matrix of 2 rows and 2 columns
  • the first substrate includes a TFT, a gate bus line, a source bus line, a drain lead wiring, An auxiliary capacitor line; and an insulating layer provided between the drain lead-out line and the first electrode, wherein the extended part of the auxiliary capacitor line includes the first liquid crystal domain and the second liquid crystal domain.
  • each of the third liquid crystal domain and the fourth liquid crystal domain constitutes at least a part of a central light shielding portion that selectively shields a border region adjacent to another liquid crystal domain, and the drain lead wiring and the first liquid crystal domain
  • the contact hole provided in the insulating layer in which the contact portion with the electrode is formed is formed on the liquid crystal layer side of the central light shielding portion.
  • the extension portion of the auxiliary capacitance wiring and the extension portion of the drain lead wiring overlap each other and have two or more rectangular portions extending in different directions.
  • the central light shielding portion includes two or more rectangular portions extending in different directions, and the contact hole is formed on the liquid crystal layer side of the intersection of the two or more rectangular portions.
  • the extension part of the storage capacitor line and the extension part of the drain extraction line overlap each other and have only a rectangular part extending in the column direction
  • the central light shielding part Includes a rectangular portion extending in the column direction
  • the contact hole is formed on the liquid crystal layer side of the rectangular portion extending in the column direction.
  • the contact portion has a cross shape formed by the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain arranged in a matrix of 2 rows and 2 columns. It is formed at the center of the boundary area.
  • a gate insulating layer and a semiconductor layer are formed on the liquid crystal layer side of the extended portion of the auxiliary capacitance wiring that constitutes the central light shielding portion, and the contact portion includes the contact portion. It is formed on the liquid crystal layer side of the semiconductor layer.
  • different voltages are applied to the liquid crystal layer in the pixel region with respect to a certain signal voltage supplied to the source bus line via a corresponding TFT.
  • Each of the two sub-pixel regions includes the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, the fourth liquid crystal domain, and the central light shielding portion, Corresponding to each of the two sub-pixel regions, the first electrode, the TFT, the drain electrode lead-out wiring and the auxiliary capacitance wiring are provided, And an auxiliary capacitor comprising an extended portion of the drain electrode lead-out wiring, an extended portion of the auxiliary capacitance wiring, and an insulating layer and a semiconductor layer provided therebetween, and the auxiliary capacitance
  • the semiconductor layer of the capacitor is formed from the same layer as the semiconductor layer of the TFT.
  • the areas of the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain in the pixel region are substantially equal to each other.
  • Another liquid crystal display device of the present invention includes a vertical alignment type liquid crystal layer, a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween, and the liquid crystal layer side of the first substrate.
  • the first substrate or the second substrate includes a light shielding member, and the light shielding member includes at least one light shielding portion that selectively shields the dark area.
  • Another liquid crystal display device of the present invention includes a vertical alignment type liquid crystal layer, a first substrate and a second substrate facing each other with the liquid crystal layer interposed therebetween, and the liquid crystal layer side of the first substrate.
  • the first liquid crystal domain has a first liquid crystal domain in which the tilt direction of liquid crystal molecules in the vicinity of the center in the layer plane and in the thickness direction of the liquid crystal layer when a voltage is applied is a predetermined first direction.
  • the first substrate or the second substrate is a light shielding member.
  • the first substrate or the second substrate is a light shielding member.
  • the pixel region includes a second liquid crystal in which a tilt direction of liquid crystal molecules in a layer plane of the liquid crystal layer and a center in a thickness direction when a voltage is applied is a second direction. Domain, third liquid crystal domain in the third direction, and fourth liquid crystal domain in the fourth direction.
  • the first direction, the second direction, the third direction, and the fourth direction are four directions in which the difference between any two directions is approximately equal to an integral multiple of 90 °, and 2
  • the liquid crystal domain is close to at least a part of the edge of the first electrode, and the at least part of the liquid crystal domain is perpendicular to the first electrode and the azimuth direction facing the inside of the first electrode is more than 90 ° with respect to the second direction.
  • the third liquid crystal domain is close to at least a part of the edge of the first electrode, and the at least part is orthogonal to the inside of the first electrode.
  • the fourth liquid crystal domain is adjacent to at least a part of the edge of the first electrode, and the at least part is orthogonal to the third edge.
  • the azimuth angle direction toward the inside of the first electrode is more than 90 ° with respect to the fourth direction.
  • the light shielding member includes a second light shielding portion that selectively shields the second edge portion, a third light shielding portion that selectively shields the third edge portion, and the first light shielding portion. Further included is a fourth light shielding portion that selectively shields the four edge portions.
  • the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain have a tilt direction that differs by about 90 ° between adjacent liquid crystal domains. Is arranged.
  • the first direction is about 225 °
  • the second direction is about 315 °
  • the third direction is about 45 °
  • the fourth direction is about 135 °
  • the first edge portion and the third edge portion are parallel to the vertical direction
  • the second edge portion and the fourth edge portion are parallel to the horizontal direction. It is.
  • the first direction is about 225 °
  • the second direction is about 315 °
  • the third direction is about 45 °
  • the fourth direction is approximately 135 °
  • the first edge portion and the third edge portion are parallel to the horizontal direction
  • the second edge portion and the fourth edge portion are parallel to the vertical direction.
  • the first direction is about 225 °
  • the second direction is about 315 °
  • the third direction is about 45 °
  • the fourth direction is a direction of about 135 °
  • the first edge portion, the second edge portion, and the third edge portion each include a first portion parallel to the horizontal direction and a second portion parallel to the vertical direction.
  • the pixel region includes a second liquid crystal in which a tilt direction of liquid crystal molecules in the layer surface of the liquid crystal layer and around the center in the thickness direction when a voltage is applied is a second direction.
  • the difference between the two directions is four directions substantially equal to an integral multiple of 90 °
  • the first direction and the second direction form an angle of about 180 °
  • the second liquid crystal domain is the first electrode
  • a second edge portion that is close to at least a part of the edge of the first electrode, and that at least a part of the edge is perpendicular to the inner side of the first electrode and the azimuth angle forms an angle of more than 90 ° with the second direction.
  • the first edge portion and the second edge portion each include a first portion parallel to the horizontal direction. Includes a flat line of the second portion in a straight direction
  • the light-shielding member further includes a second shielding portion for selectively shielding light at least a portion of the second edge portion.
  • the first direction is about 135 ° or about 225 °.
  • the first direction is about 90 °
  • the second direction is about 180 °
  • the third direction is about 0 °
  • the fourth direction is an approximately 270 ° direction
  • the first edge portion and the fourth edge portion are parallel to the horizontal direction
  • the second edge portion and the third edge portion are parallel to the vertical direction. is there.
  • the first direction is about 225 °
  • the second direction is about 315 °
  • the third direction is about 45 °
  • the fourth direction is approximately 135 °
  • the first edge portion, the second edge portion, the third edge portion, and the fourth edge portion are parallel to the vertical direction.
  • the light shielding member includes a boundary region in which each of the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain is adjacent to another liquid crystal domain.
  • a central light-shielding portion that selectively shields at least part of the light-shielding portion.
  • the light shielding member has a boundary where each of the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain is adjacent to another liquid crystal domain.
  • the boundary region includes a further light shielding portion that shields a region that intersects any one of the first edge portion, the second edge portion, the third edge portion, and the fourth edge portion.
  • the first substrate further includes a TFT, a gate bus line, a source bus line, a drain lead line, and an auxiliary capacitance line, and the first light shielding unit, the second light shielding unit,
  • the third light-shielding portion, the fourth light-shielding portion, the central light-shielding portion or the further light-shielding portion is a group of the gate bus line, the source bus line, the drain lead-out wiring, and the auxiliary capacitance wiring cable. Includes at least a portion of at least one selected wiring.
  • the at least one wiring has a portion bent in a direction intersecting the longitudinal direction or a portion having a wide width, and at least a part of the at least one wiring is , Including at least a part of the bent portion or the wide portion.
  • the second substrate further includes a black matrix layer, and the first light shielding unit, the second light shielding unit, the third light shielding unit, the fourth light shielding unit, and the central light shielding unit.
  • the further light shielding portion is formed by a part of the black matrix layer.
  • the liquid crystal layer further includes a pair of polarizing plates opposed to each other via the liquid crystal layer and arranged so that transmission axes are orthogonal to each other, and the first direction, the second direction, and the third direction
  • the fourth direction forms an angle of about 45 ° with the transmission axis of the pair of polarizing plates.
  • the vertical alignment type liquid crystal layer includes a liquid crystal material having a negative dielectric anisotropy
  • the at least one alignment film is a pair of alignment films provided on both sides of the liquid crystal layer.
  • the pretilt direction defined by one alignment film and the pretilt direction defined by the other alignment film differ from each other by approximately 90 °.
  • the at least one alignment film is a pair of alignment films provided on both sides of the liquid crystal layer, and a pretilt angle defined by the one alignment film and the other alignment film.
  • the pretilt angle defined by the film is substantially equal to each other.
  • the at least one alignment film is formed of a photo-alignment film.
  • Still another liquid crystal display device of the present invention includes a vertical alignment type liquid crystal layer, a first substrate and a second substrate facing each other through the liquid crystal layer, and the liquid crystal layer side of the first substrate.
  • Establishment And a second electrode provided on the liquid crystal layer side of the second substrate, and at least one alignment film provided so as to be in contact with the liquid crystal layer, and the pixel region has a voltage
  • the tilt direction of the liquid crystal molecules near the center in the layer plane and in the thickness direction of the liquid crystal layer is a first liquid crystal domain that is the first direction, a second liquid crystal domain that is the second direction
  • first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are adjacent to other liquid crystal domains
  • the members are the first liquid crystal domain and the second liquid crystal domain. It includes a central shielding portion each of the third liquid crystal domain and the fourth liquid crystal domains are selectively shielded at least part of a boundary area adjacent to another liquid crystal domain.
  • the first liquid crystal domain is close to at least a part of the edge of the first electrode, and the direction angle at which the at least part is perpendicular to the first electrode and faces the inside of the first electrode.
  • a first edge portion whose direction forms an angle of more than 90 ° with the first direction
  • the second liquid crystal domain is in proximity to at least a part of the edge of the first electrode, and the at least part is
  • An azimuth angle direction that is orthogonal and inward of the first electrode forms an angle of more than 90 ° with the second direction
  • the third liquid crystal domain includes at least a part of the edge of the first electrode.
  • the fourth liquid crystal includes a third edge portion adjacent to each other, wherein at least a part of the fourth liquid crystal is perpendicular to the third electrode, and a direction angle direction directed toward the inside of the first electrode forms an angle of more than 90 ° with the third direction.
  • the domain is close to at least a part of the edge of the first electrode, and the small amount
  • At least a portion includes a fourth edge portion in which an azimuth angle direction perpendicular to the inner side of the first electrode forms an angle of more than 90 ° with the fourth direction.
  • the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are arranged in a matrix of 2 rows and 2 columns.
  • the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain are arranged in a line in a predetermined direction! RU
  • the first substrate further includes a TFT, a gate bus line, a source bus line, a drain lead wiring, and an auxiliary capacitance wiring
  • the central light shielding portion includes It includes at least a part of at least one wiring selected from a group bus such as a gate bus line, the source bus line, the drain lead-out wiring, and the auxiliary capacitance wiring.
  • the at least one wiring has a portion bent in a direction intersecting the longitudinal direction or a portion having a wide width, and at least a part of the at least one wiring is , Including at least a part of the bent portion or the wide portion.
  • the second substrate further includes a black matrix layer, and the central light shielding portion is formed by a part of the black matrix layer.
  • the liquid crystal layer further includes a pair of polarizing plates opposed to each other via the liquid crystal layer and arranged such that transmission axes are orthogonal to each other, and the first direction, the second direction, and the third direction
  • the fourth direction forms an angle of about 45 ° with the transmission axis of the pair of polarizing plates.
  • the vertical alignment type liquid crystal layer includes a liquid crystal material having negative dielectric anisotropy
  • the at least one alignment film is a pair of liquid crystal layers provided on both sides of the liquid crystal layer.
  • the pretilt direction defined by one alignment film and the pretilt direction defined by the other alignment film differ from each other by approximately 90 °.
  • the at least one alignment film is a pair of alignment films provided on both sides of the liquid crystal layer, the pretilt angle defined by the one alignment film and the other alignment film.
  • the pretilt angle defined by the film is substantially equal to each other.
  • the at least one alignment film is formed of a photo-alignment film.
  • Still another liquid crystal display device of the present invention includes a vertical alignment type liquid crystal layer, a first substrate and a second substrate facing each other through the liquid crystal layer, and the liquid crystal layer side of the first substrate.
  • a first electrode provided; a second electrode provided on the liquid crystal layer side of the second substrate; and at least one alignment film provided in contact with the liquid crystal layer;
  • the first liquid crystal domain in which the tilt direction of the liquid crystal molecules in the layer plane of the liquid crystal layer and the center in the thickness direction when the is applied is the first direction, and the second liquid crystal domain in the second direction, It further has a third liquid crystal domain that is the third direction and a fourth liquid crystal domain that is the fourth direction, and the first direction, the second direction, the third direction, and the fourth direction are in any two directions.
  • the difference is four directions approximately equal to an integer multiple of 90 °
  • the first liquid crystal domain is Of the serial first electrode
  • a first edge portion that is adjacent to at least a portion of the edge, and at least a portion of which is perpendicular to the first electrode and has an azimuth direction that faces the inner side of the first electrode makes an angle of more than 90 ° with the first direction.
  • the second liquid crystal domain is close to at least a part of an edge of the first electrode, and at least a part of the second liquid crystal domain has an azimuth direction orthogonal to the second electrode and directed toward the inside of the first electrode.
  • the third liquid crystal domain is adjacent to at least a part of the edge of the first electrode, and at least a part of the third liquid crystal domain is orthogonal to the edge of the first electrode.
  • An azimuth direction facing inward includes a third edge portion forming an angle greater than 90 ° with the third direction, and the fourth liquid crystal domain is adjacent to at least a part of the edge of the first electrode, and At least a part of the first liquid crystal domain includes a fourth edge portion perpendicular to the first electrode, and an azimuth angle direction directed to the inside of the first electrode forms an angle of more than 90 ° with the fourth direction.
  • 2 Liquid crystal domain, 3rd liquid crystal domain and 4th liquid crystal domain The first substrate or the second substrate has a light shielding member, and the light shielding member is provided in each of the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain.
  • the boundary region adjacent to the other liquid crystal domain includes a light shielding portion that shields light from a region that intersects any one of the first edge portion, the second edge portion, the third edge portion, and the fourth edge portion.
  • the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain have a tilt direction that is approximately 90 ° different between adjacent liquid crystal domains. Is arranged.
  • the first direction is about 225 °
  • the second direction is about 315 °
  • the third direction is about 45 °
  • the fourth direction is about 135 °
  • the first edge portion and the third edge portion are parallel to the vertical direction
  • the second edge portion and the fourth edge portion are parallel to the horizontal direction. It is.
  • the first direction is about 225 °
  • the second direction is about 315 °
  • the third direction is about 45 °
  • the fourth direction is approximately 135 °
  • the first edge portion and the third edge portion are parallel to the horizontal direction
  • the second edge portion and the fourth edge portion are parallel to the vertical direction.
  • the first direction is about 90 °
  • the second direction is about 180 °
  • the third direction is about 0 °
  • the fourth direction is a direction of about 270 °
  • the first edge portion and the fourth edge portion are horizontal
  • the second edge portion and the third edge portion are parallel to the vertical direction.
  • the first direction is about 225 °
  • the second direction is about 315 °
  • the third direction is about 45 °
  • the fourth direction is approximately 135 °
  • the first edge portion, the second edge portion, the third edge portion, and the fourth edge portion are parallel to the vertical direction.
  • the light shielding portion has a substantially triangular shape.
  • the light shielding member includes a boundary region in which each of the first liquid crystal domain, the second liquid crystal domain, the third liquid crystal domain, and the fourth liquid crystal domain is adjacent to another liquid crystal domain.
  • a central light-shielding portion that selectively shields at least part of the light-shielding portion.
  • the first substrate further includes a TFT, a gate bus line, a source bus line, a drain lead wiring, and an auxiliary capacitance wiring, and the light shielding portion or the central light shielding portion is the gate.
  • the bus line, the source bus line, the drain lead wiring, and the auxiliary capacity wiring force include at least a part of at least one selected wiring.
  • the second substrate further includes a black matrix layer, and the light shielding part or the central light shielding part is formed by a part of the black matrix layer.
  • the liquid crystal layer further includes a pair of polarizing plates opposed to each other with the transmission axes perpendicular to each other with the liquid crystal layer interposed therebetween, and the first direction, the second direction, and the third direction
  • the fourth direction forms an angle of about 45 ° with the transmission axis of the pair of polarizing plates.
  • the vertical alignment type liquid crystal layer includes a liquid crystal material having negative dielectric anisotropy
  • the at least one alignment film is a pair of alignment films provided on both sides of the liquid crystal layer.
  • the pretilt direction defined by one alignment film and the pretilt direction defined by the other alignment film differ from each other by approximately 90 °.
  • the at least one alignment film is provided on both sides of the liquid crystal layer.
  • the pretilt angle defined by the one alignment film and the pretilt angle defined by the other alignment film are substantially equal to each other.
  • the at least one alignment film is formed of a photo-alignment film.
  • the present invention it is possible to improve the display quality of the VA mode liquid crystal display device, particularly the viewing angle dependency.
  • the present invention can particularly improve the display quality of a liquid crystal display device in which an alignment division structure is formed using an alignment film.
  • FIG. 1 is a diagram showing an example of a pixel region having an alignment division structure in a VA mode liquid crystal display device according to the present invention.
  • FIG. 2 (a) and (b) are diagrams showing an example of a pixel region having an alignment division structure in a VA mode liquid crystal display device according to the present invention.
  • FIGS. 3A and 3B are diagrams showing another example of a pixel region having an alignment division structure in a VA mode liquid crystal display device according to the present invention.
  • FIG. 4 (a) and (b) are diagrams showing still another example of a pixel region having an alignment division structure in a VA mode liquid crystal display device according to the present invention.
  • FIG. 5 (a) and (b) are diagrams showing still another example of a pixel region having an alignment division structure in a VA mode liquid crystal display device according to the present invention.
  • FIG. 6 is a cross-sectional view of a pixel region of a VA mode liquid crystal display device according to the present invention, in which equipotential lines of an electric field formed in the liquid crystal layer, alignment direction of liquid crystal molecules and transmittance were obtained by simulation. It is a figure which shows a result.
  • FIG. 7 is a cross-sectional view of a pixel region of a VA mode liquid crystal display device according to the present invention, in which equipotential lines of an electric field formed in a liquid crystal layer, alignment directions of liquid crystal molecules, and transmittance were obtained by simulation. It is a figure which shows a result.
  • FIG. 8 is a cross-sectional view of a pixel region of a VA mode liquid crystal display device according to the present invention, in which equipotential lines of an electric field formed in a liquid crystal layer, alignment directions of liquid crystal molecules, and transmittance were obtained by simulation. It is a figure which shows a result.
  • FIG. 9 is a cross-sectional view of a pixel region of a VA mode liquid crystal display device according to the present invention, in which equipotential lines of an electric field formed in a liquid crystal layer, alignment directions of liquid crystal molecules, and transmittance were obtained by simulation. It is a figure which shows a result.
  • FIG. 10 is a graph showing the transmission intensity distribution when the pixel region shown in FIG. 2 (a) is observed from an azimuth angle of 45 °.
  • FIG. 11 is a schematic diagram showing an example of a pixel structure of a liquid crystal display device according to the present invention.
  • FIG. 12 is a schematic diagram showing another example of the pixel structure of the liquid crystal display device according to the present invention.
  • FIG. 13 is a schematic diagram showing still another example of the pixel structure of the liquid crystal display device according to the present invention.
  • FIG. 14 is a schematic diagram showing still another example of the pixel structure of the liquid crystal display device according to the present invention.
  • FIG. 15 is a schematic diagram showing a cross-sectional view of the pixel structure shown in FIG.
  • FIG. 16 is a schematic diagram showing still another example of the pixel structure of the liquid crystal display device according to the present invention.
  • FIG. 17 is a schematic diagram showing a cross-sectional view of the pixel structure shown in FIG. 16.
  • FIG. 18 is a schematic view showing still another example of the pixel structure of the liquid crystal display device according to the present invention.
  • FIG. 19 is a schematic diagram showing still another example of the pixel structure of the liquid crystal display device according to the present invention.
  • FIG. 20 is a schematic diagram showing an example of another region where alignment failure occurs in a pixel region having an alignment division structure in a VA mode liquid crystal display device according to the present invention.
  • FIG. 21 is a schematic diagram showing still another example of the pixel structure of the liquid crystal display device according to the present invention.
  • FIG. 22 is a schematic view showing still another example of the pixel structure of the liquid crystal display device according to the present invention.
  • FIG. 23 is a schematic view showing still another example of the pixel structure of the liquid crystal display device according to the present invention.
  • FIG. 24 is a schematic cross-sectional view taken along the line 24A-24A in FIG.
  • FIG. 25 is a schematic diagram showing still another example of the pixel structure of the liquid crystal display device according to the present invention. Explanation of symbols
  • Pixel electrode 10 10 pixel area 11 Pixel electrode
  • the present invention is not limited to the following embodiment.
  • the display quality is improved by providing a light shielding film at a position where alignment failure occurs.
  • the alignment defect hidden by providing the light-shielding portion differs depending on the required display characteristics.
  • the description will be divided into three alignment defects occurring at three locations in the pixel region (electrode edge portion, central portion, and intersecting region). The three locations may be shielded independently, or all two or more locations that may be shielded may be shielded.
  • the “vertical alignment type liquid crystal layer” refers to a liquid crystal layer in which a liquid crystal molecular axis (also referred to as “axis orientation”) is aligned at an angle of about 85 ° or more with respect to the surface of the vertical alignment film. .
  • Liquid crystal molecules have negative dielectric anisotropy, and display in a normally black mode in combination with polarizing plates arranged in a cross-col arrangement.
  • the alignment film may be provided on at least one side, but is preferably provided on both sides from the viewpoint of alignment stability. In the following embodiments, an example in which vertical alignment films are provided on both sides will be described.
  • pixel refers to the smallest unit that expresses a specific gradation in display, and expresses each gradation of R, G, and B in color display, for example.
  • a combination of R pixel, G pixel and B pixel constitutes one color display pixel.
  • the “pixel area” refers to an area of the liquid crystal display device corresponding to the “pixel” of the display.
  • the “pretilt direction” is an alignment direction of liquid crystal molecules regulated by the alignment film, and indicates an azimuth direction in the display surface.
  • the angle formed by the liquid crystal molecules with the surface of the alignment film at this time is called a pretilt angle.
  • the pretilt direction is defined by performing a rubbing process or a photo-alignment process on the alignment film.
  • a quadrant structure can be formed by changing the combination of the pretilt directions of a pair of alignment films facing each other through the liquid crystal layer.
  • the pixel area divided into four has four liquid crystal domains (sometimes referred to simply as “domains”).
  • Each liquid crystal domain is characterized by the tilt direction (also referred to as “reference alignment direction”) of liquid crystal molecules near the center in the layer plane and thickness direction of the liquid crystal layer when a voltage is applied to the liquid crystal layer.
  • This tilt direction (reference orientation direction) has a dominant influence on the viewing angle dependence of each domain.
  • the tilt direction is also the azimuth direction.
  • the reference for the azimuth direction is the horizontal direction of the display and is positive in the counterclockwise direction (for example, if the display surface is compared to a clock face, the 3 o'clock direction is azimuth 0 ° and the counterclockwise direction is positive).
  • Tilt direction force of four liquid crystal domains The difference between any two directions is approximately equal to an integral multiple of 90 °.
  • Four directions for example, 12 o'clock direction, 9 o'clock direction, 6 o'clock direction, 3 o'clock direction
  • the viewing angle characteristics are averaged, and a good display can be obtained.
  • the areas occupied by the four liquid crystal domains in the pixel region are substantially equal to each other.
  • the highest of the four liquid crystal domains The difference between the area of the large liquid crystal domain and the area of the smallest liquid crystal domain is preferably 25% or less of the maximum area.
  • the vertical alignment type liquid crystal layer exemplified in the following embodiment includes a nematic liquid crystal material having negative dielectric anisotropy, and is defined by one alignment film of a pair of alignment films provided on both sides of the liquid crystal layer.
  • the pretilt direction and the pretilt direction defined by the other alignment film differ from each other by approximately 90 °, and the tilt angle (reference alignment direction) is defined in the middle of these two pretilt directions.
  • No chiral agent is added, and when a voltage is applied to the liquid crystal layer, the liquid crystal molecules in the vicinity of the alignment film are twisted according to the alignment regulating force of the alignment film.
  • a chiral agent may be added as necessary.
  • the VA mode in which the liquid crystal molecules are twisted is VATN (Vertical Alignment Twisted Nematic) Sometimes called a mode (for example, Patent Document 2).
  • the pretilt angles defined by the pair of alignment films are preferably substantially equal to each other.
  • an alignment film having substantially the same pretilt angle there is an advantage that display luminance characteristics can be improved.
  • the tilt direction (reference alignment direction) of the liquid crystal molecules near the center of the liquid crystal layer can be stably controlled. Luminance characteristics can be improved.
  • a method for defining the pretilt direction of the liquid crystal molecules in the alignment film a method of performing a rubbing process, a method of performing a photo-alignment process, a fine structure formed in advance on the base of the alignment film, and the fine structure
  • there are known methods for reflecting the surface of the alignment film on the surface of the alignment film and methods for forming an alignment film having a fine structure on the surface by obliquely depositing an inorganic substance such as SiO. Rubbing treatment or photo-alignment treatment is preferred.
  • the photo-alignment process can be performed without contact, it is possible to improve the yield in which the generation of static electricity due to friction does not occur as in the rubbing process.
  • the variation in pretilt angle can be controlled to 1 ° or less.
  • the photosensitive group preferably contains at least one photosensitive group selected from the group consisting of a 4-chalcone group, a 4′-chalcone group, a coumarin group, and a cinnamoyl group.
  • a TFT type liquid crystal display device is shown as a typical example, but it goes without saying that the present invention can be applied to liquid crystal display devices of other drive systems.
  • the present inventors have found that a darker area than the halftone to be displayed is formed inside the edge portion of the pixel electrode substantially in parallel with the edge portion.
  • the azimuth angle of the edge of the pixel electrode that the liquid crystal domain is close to and perpendicular to the inner side of the pixel electrode is more than 90 ° with the tilt direction of the liquid crystal domain (reference alignment direction). If there is an edge portion that forms a corner, an area darker than the halftone to be displayed is formed inside the edge portion, approximately parallel to the edge portion. This is because the liquid crystal domain tilt direction and the direction of the alignment regulating force due to the oblique electric field generated at the edge of the pixel electrode have components that oppose each other. .
  • halftone refers to any gradation except black (lowest gradation) and white (highest gradation).
  • black lowest gradation
  • white highest gradation
  • the phenomenon that the dark area is formed occurs in principle when displaying gradations other than black (including white), but the visibility of dark areas is relatively high. Occur.
  • the viewing angle direction is not particularly indicated, the display state in the front view (when viewed from the normal direction of the display surface) is represented.
  • FIG. 1 shows a pixel region 10 formed corresponding to a substantially square pixel electrode, but the present invention is not limited to the shape of the pixel region.
  • the pixel region 10 has four liquid crystal domains A, B, C, and D. If the respective tilt directions (reference alignment directions) are tl, t2, t3, and t4, this is optional. In two directions There are four directions where the difference is approximately equal to an integral multiple of 90 °.
  • the area of the liquid crystal domains A, B, C, and D is also an example of the most preferable quadrant structure in view angle characteristics that are equal to each other.
  • the four liquid crystal domains are arranged in a matrix of 2 rows and 2 columns.
  • the pixel electrode has four edges (sides) SD1, SD2, SD3, and SD4, and the oblique electric field generated during voltage application is orthogonal to each side and is directed toward the inside of the pixel electrode ( An orientation regulating force having a component of (azimuth angle direction) is generated.
  • four edges SD1, SD2, SD3, and SD4 are perpendicular to each other, and the azimuth directions that are directed toward the inside of the pixel electrode are indicated by el, e2, e3, and e4.
  • Each of the four liquid crystal domains is close to two of the four edges of the pixel electrode, and receives an alignment regulating force due to an oblique electric field generated at each edge when a voltage is applied.
  • the edge portion EG1 of the edge of the pixel electrode adjacent to the liquid crystal domain A has an azimuth angle el that is orthogonal to the edge of the pixel electrode and faces the inner side of the pixel electrode. None, alignment disorder occurs in this region. As a result, the liquid crystal domain A generates a darker region (domain line DL1) than other regions in parallel with the edge portion EG1 when a voltage is applied.
  • the transmission axes (polarization axes) of the pair of polarizing plates arranged so as to face each other through the liquid crystal layer are arranged so as to be orthogonal to each other, one in the horizontal direction and the other in the vertical direction. Is arranged.
  • the arrangement of the transmission axes of the polarizing plates is the same.
  • the inner edge portion EG2 of the edge of the pixel electrode to which the liquid crystal domain B is adjacent has an azimuth angle direction e2 perpendicular to the edge of the pixel electrode and directed toward the inner side of the pixel electrode. A corner is formed, and orientation disorder occurs in this region.
  • the liquid crystal domain B may generate a darker region (domain line DL2) in parallel with the edge portion EG2 than other regions when a voltage is applied.
  • the inner edge EG3 of the edge of the pixel electrode to which the liquid crystal domain C is adjacent has an azimuth angle direction e3 perpendicular to the edge of the pixel electrode and directed toward the inner side of the pixel electrode. A corner is formed, and orientation disorder occurs in this region. As a result, the liquid crystal domain C is darker than the other regions (domain line DL3) parallel to the edge EG3 when voltage is applied. May occur.
  • the inner edge EG4 of the edge of the pixel electrode to which the liquid crystal domain D is adjacent has an azimuth angle direction e4 perpendicular to it and directed toward the inner side of the pixel electrode, and the tilt direction t4 of the liquid crystal domain exceeds 90 °. A corner is formed, and orientation disorder occurs in this region.
  • the liquid crystal domain D may generate a region (domain line DL4) that is parallel to the edge portion EG4 and more than other regions when a voltage is applied.
  • the tilt direction tl is about 225 ° (liquid crystal domain 8), 2 is about 315 ° (liquid crystal domain B), and t3 is about 45 ° (liquid crystal domain C), t4 is about 135 ° direction (liquid crystal domain D), and liquid crystal domains A, B, C, and D are about 90 ° between adjacent liquid crystal domains. ° Arranged differently.
  • Tilt directions tl, t2, t3, and t4 of liquid crystal domains A, B, C, and D respectively Edges EG1, EG2, EG3, and EG4 The angles between e2, e3 and e4 are all about 135 °.
  • the dark regions (domain lines DL1 to DL4) formed in the pixel region 10 in parallel with the edge portions EG1, EG2, EG3, and EG4 as described below deteriorate the viewing angle characteristics as described later.
  • a light-shielding part that selectively shields at least a part of the parts EG1, EG2, EG3, and EG4, it is possible to suppress deterioration in viewing angle characteristics.
  • shading the edge portion means that a dark region (domain lines DL1 to DL4) formed in a pixel region in the vicinity of the edge portion formed only by the edge portions EG1, EG2, EG3, and EG4. Means shading.
  • the position where the domain line is formed (The distance from the edge of the pixel electrode depends on the size of the pixel electrode, etc.Typically, it is in the range of 10 ⁇ m to 20 ⁇ m from the edge of the pixel electrode.
  • the “light-shielding part that selectively shields a certain area” is a light-shielding part that is provided to shield only the area.
  • the light-shielding portion that selectively shields a certain region be formed separately from other light-shielding portions. It is preferable to provide a light-shielding part so that all of the domain line is shielded, but if the light-shielding part is provided, the light utilization efficiency (effective aperture ratio of the pixel) is reduced. At least a part of If the light shielding part is provided, it is possible to suppress the degradation of the viewing angle characteristics by at least that much, so the light shielding part is considered in consideration of the balance with the light utilization efficiency according to the characteristics required for the liquid crystal display device. You can set it.
  • the light shielding portion is provided so as to shield the domain line formed in the edge portion and the pixel region in the vicinity of the edge portion.
  • the balance between the pixel aperture ratio and the viewing angle characteristic is provided.
  • the edge portion in order to prioritize the pixel aperture ratio, in order to reduce the area of the light shielding portion, the edge portion may not be shielded, and all or a part of the domain line may be shielded.
  • embodiments in which all of the edge portions and the domain lines are shielded from light are mainly exemplified.
  • by providing a light shielding portion that selectively shields at least a part of the domain lines Angular characteristics can be improved.
  • the method of dividing the alignment into the four liquid crystal domains A to D is not limited to the example in FIG.
  • the alignment division method (arrangement of liquid crystal domains) will be described with reference to FIGS.
  • FIG. 2 (a) is a diagram for explaining a method of dividing the pixel region 10 shown in FIG.
  • This area is not a so-called discretion line.
  • These figures schematically show the orientation direction of the liquid crystal molecules when viewing the observer's side force, and the viewer is better drawn with the end (elliptical part) of the liquid crystal molecules shown in a cylindrical shape. It shows that the liquid crystal molecules are tilted so that
  • the pixel region 10 can be formed by performing an alignment process.
  • the pixel region on the TFT substrate side is divided into two, and alignment processing is performed so as to provide pretilt directions PA1 and PA2 that are antiparallel to the vertical alignment film.
  • photo-alignment processing is performed by obliquely irradiating ultraviolet rays from the direction indicated by the arrows.
  • the direction of light irradiation in the photo-alignment process is not limited to the above example,
  • the CF substrate side may be irradiated from a direction inclined in the vertical direction (column direction), and the TFT substrate side may be irradiated from a direction inclined in the horizontal direction (row direction).
  • the domain line DL1 is formed in the liquid crystal domain A in parallel with the edge portion EG1
  • the domain line DL2 is formed in the liquid crystal domain B in parallel with the edge portion EG2.
  • the domain line DL3 is formed in parallel with the edge portion EG3
  • the domain line DL4 is formed in parallel with the edge portion EG4.
  • the total length of the four domain lines DL1 to DL4 is about one-half of the total length of the edge of the pixel electrode.
  • Edge part EG1 domain line DL1
  • edge part EG3 domain line DL3
  • edge part EG2 domain line DL2
  • edge part EG4 domain line DL4
  • a dark line is observed at a position indicated by a broken line CL1 in a boundary region where each of the liquid crystal domains A to D is adjacent to another liquid crystal domain.
  • CL1 the cross-shaped darkness formed in the center of the pixel area! ⁇ Lines are not necessarily poorly aligned and do not need to be shielded positively. However, if it is necessary to place a light-shielding member in the pixel area, it is necessary to place them so as to overlap this dark line.
  • the effective aperture ratio light utilization efficiency
  • the alignment division structure of the pixel region 20 can be obtained by bonding the alignment-treated TFT substrate and the CF substrate.
  • This pixel region 20 also has four liquid crystal domains A to D.
  • the tilt directions of the liquid crystal domains A to D are the same as the liquid crystal domain of the pixel region 10 shown in FIG.
  • a domain line DL1 is formed in parallel to the edge portion EG1
  • the domain line DL2 is formed in parallel to the edge portion EG2
  • the domain line DL2 is parallel to the edge portion EG3.
  • the line DL3 is formed
  • the domain line DL4 is formed in the liquid crystal domain D in parallel with the edge portion EG4.
  • the total length of the four domain lines DL1 to DL4 is about one-half of the total length of the edge of the pixel electrode.
  • Edge part EG 1 (domain line DL 1) and edge part EG3 (domain line DL3) are parallel in the horizontal direction, and edge part E G2 (domain line DL2) and edge part EG4 (domain line DL4) are perpendicular to each other. Parallel.
  • each of the liquid crystal domains A to D has other liquids.
  • a line is observed at the position indicated by the broken line CL1 in the boundary region adjacent to the crystal domain. In this case, the line is formed in a cross shape at the center of the pixel region.
  • the alignment division structure of the pixel region 30 can be obtained by bonding the TFT substrate subjected to the alignment treatment and the CF substrate.
  • This pixel region 30 also has four liquid crystal domains A to D.
  • the tilt directions of the liquid crystal domains A to D are the same as the liquid crystal domain of the pixel region 10 shown in FIG.
  • the liquid crystal domains B and D have their tilt directions t2 and t4 forces directed toward the edge of the pixel electrode, and perpendicular to the edge and directed toward the inside of the pixel electrode.
  • the domain lines DL2 and DL4 are generated because it forms an angle of more than 90 ° with respect to. Domains inline DL2 and DL4 each include a part parallel to the horizontal direction (H) and a part parallel to the vertical direction (V).
  • the tilt directions t2 and t4 have an angle of more than 90 ° with respect to the horizontal edge and the vertical edge with respect to the azimuth angle direction that is perpendicular to the edge portion and directed toward the inside of the pixel electrode.
  • a line is observed when each of the liquid crystal domains A to D is located at a position indicated by a broken line CL1 in a boundary region adjacent to the other liquid crystal domains.
  • the line is formed in a cross shape at the center of the pixel region.
  • the alignment division structure of the pixel region 40 can be obtained by bonding the alignment-treated TFT substrate and the CF substrate.
  • This pixel region 40 also has four liquid crystal domains A to D.
  • the tilt directions of the liquid crystal domains A to D are the same as the liquid crystal domain of the pixel region 10 shown in FIG.
  • these tilt directions tl and t3 are directed toward the edge portion of the pixel electrode, and are orthogonal to the edge portion and directed toward the inside of the pixel electrode. Since it makes an angle of more than 90 ° to the direction, the domain lines DL1 and DL3 are generated.
  • the domains in-line DL1 and DL3 include portions DL1 (H) and DL3 (H) parallel to the horizontal direction and portions DL1 (V) and DL3 (V) parallel to the vertical direction, respectively.
  • the tilt directions tl and t3 are orthogonal to the horizontal and vertical edges of the pixel electrode and It forms an angle of more than 90 ° with respect to the azimuth direction toward the inside of the pole, resulting in domain lines in both directions.
  • the liquid crystal domains B and D are not directed toward the edge portions of the tilt direction t2 and t4 force pixel electrodes, domain lines are not formed in these liquid crystal domains.
  • a dark line is observed at a position indicated by a broken line CL1 in a boundary region where each of the liquid crystal domains A to D is adjacent to the other liquid crystal domains. This dark line is formed in a cross shape at the center of the pixel region.
  • the alignment division structure of the pixel region 50 can be obtained by bonding the alignment-treated TFT substrate and the CF substrate.
  • This pixel region 50 also has four liquid crystal domains A to D.
  • the tilt directions of the liquid crystal domains A to D are the same as the liquid crystal domain of the pixel region 10 shown in FIG.
  • the tilt directions tl to t4 are both greater than 90 ° with respect to the horizontal edge of the pixel electrode, the vertical edge, and the azimuth direction that is orthogonal to the inner edge of the pixel electrode. Since it forms a corner, it creates domain lines in both directions. Further, as shown in FIG. 4 (a), a line is observed when each of the liquid crystal domains A to D is located at a position indicated by a broken line CL1 in a boundary area adjacent to the other liquid crystal domains. In this case, the line is formed in a cross shape at the center of the pixel region.
  • an alignment division structure of the pixel region 60 can be obtained by bonding an alignment-treated TFT substrate and a CF substrate as shown in FIG. 4 (b).
  • This pixel region 60 also has four liquid crystal domains A to D.
  • the tilt directions of the liquid crystal domains A to D are the same as the liquid crystal domain of the pixel region 10 shown in FIG.
  • each of the liquid crystal domains A to D is dark at the position indicated by the broken line CL1 in the boundary area adjacent to the other liquid crystal domains. A line is observed. This dark line is formed in a cross shape at the center of the pixel region.
  • the above four-divided structure is an example in which four liquid crystal domains are arranged in a matrix of 2 rows and 2 columns.
  • the present invention is not limited to this, and as shown in FIGS. May be arranged in a line in the direction of.
  • an example is shown in which the rows are arranged in a row.
  • the pixel region 70 shown in Fig. 5 (a) also has four liquid crystal domains A to D.
  • the tilt directions of the liquid crystal domains A to D are the same as those of the pixel region 10 shown in FIG.
  • the liquid crystal domains A to D have these tilt directions tl to t4 force 90 degrees with respect to the azimuth angle direction toward the edge of the pixel electrode and perpendicular to the edge of the pixel electrode. Since it forms a super corner, domain lines DL1 to DL4 are generated. All of the domain lines DL1 to DL4 are parallel to the vertical direction (that is, the alignment direction of the liquid crystal domains).
  • a dark line is observed in the boundary region where each of the liquid crystal domains A to D is adjacent to the other liquid crystal domains.
  • This dark line is formed in the horizontal direction (that is, in the direction perpendicular to the arrangement direction of the liquid crystal domains) in the center of the pixel region.
  • the tilt directions of the four liquid crystal domains A ′ to D ′ are 90 °, 180 °, 0 °, and 270 ° as shown in the figure.
  • the domain lines DL1 ′ and DL4 ′ of the liquid crystal domains A and D ′ are parallel to the horizontal direction
  • the domain lines DL2 ′ and DL3 ′ are parallel to the vertical direction.
  • a line is observed when each of the liquid crystal domains A and D ′ is in a boundary region adjacent to another liquid crystal domain. This dark line is formed in the horizontal direction (that is, in the direction perpendicular to the liquid crystal domain arrangement direction) in the center of the pixel region.
  • the transmission axis of the polarizing plate is arranged in a ⁇ 45 ° direction with respect to the horizontal direction.
  • FIGS. 6 to 9 are cross-sectional views of the pixel region of the liquid crystal display device.
  • the equipotential lines of the electric field formed in the liquid crystal layer 3, the orientation direction of the liquid crystal molecules 3a, and the relative transmittance (front) are obtained by simulation. The results are shown.
  • This liquid crystal display device includes a TFT substrate 1 including a transparent substrate (eg, a glass substrate) la and a pixel electrode 11 formed on the transparent substrate la, a transparent substrate (eg, a glass substrate) 2a, and a transparent substrate.
  • a CF substrate 2 having a counter electrode 12 formed on a plate 2a, and a vertical alignment type liquid crystal layer 3 provided between the TFT substrate 1 and the CF substrate 2 are provided.
  • a vertical alignment film (not shown) is provided on the surface of the TFT substrate 1 and the CF substrate 2 on the liquid crystal layer 3 side, and the pretilt direction is regulated as indicated by arrows, arrowheads, and arrowheads in the figure.
  • the orientation treatment is as follows.
  • FIG. 6 corresponds to a cross-sectional view taken along a line in which the azimuth angle of the left half including the edge portion where the domain line DL4 of the liquid crystal domain D is formed in FIG.
  • liquid crystal molecules 3a tilt direction 135 °
  • the alignment is controlled by the oblique electric field (azimuth angle direction is 0 °) and twisted as it approaches the edge of the pixel electrode.
  • a domain line having a minimum relative transmittance is formed in the region (inside the edge of the pixel electrode). For example, this corresponds to the domain line DL4 in the liquid crystal domain D in Fig. 2 (b).
  • the twist angle of the liquid crystal molecules at the edge portion of the pixel electrode where the domain line is not formed (the liquid crystal molecules near the center of the liquid crystal domain and the edge portion of the pixel electrode 11 are generated.
  • the difference in the tilt direction of the liquid crystal molecules whose orientation is regulated by an oblique electric field is 90 ° or less, and the relative transmittance decreases monotonically from the center to the end of the pixel area. It becomes the minimum outside the pixel area without taking the minimum value (left end in Fig. 7).
  • FIGS. 8 and 9 since the twist angle of the liquid crystal molecules is 90 ° or less even in the boundary region where the liquid crystal domains are adjacent in the pixel region, the change in relative transmittance is simple and one Take the local minimum.
  • 8 corresponds to, for example, a cross-sectional view along a line where the azimuth angle of the boundary region between the liquid crystal domains D and A in FIG. 2 (b) is 0 °
  • FIG. 9 corresponds to, for example, FIG. 4 (b). This corresponds to a cross-sectional view along the line with the azimuth angle of the boundary region between liquid crystal domains B and A being 0 °.
  • FIG. 10 shows the transmission intensity distribution when the pixel region 10 is observed from the direction of the azimuth angle of 45 °.
  • the graphs showing the four transmission intensity distributions shown in FIG. 10 show the transmission intensity distributions along the lines indicated by I to IV in the figure. In each graph, the results are shown in three viewing angle directions with polar angles of 0 ° (front), 45 °, and 60 °.
  • the domain line formed at the edge portion is generated when the tilt direction of the liquid crystal molecules near the center of the liquid crystal layer has the above-described arrangement relationship with respect to the electrode edge, and thus has an alignment division structure. It can be generated even in a normal pixel region. Therefore, in order to suppress the deterioration of viewing angle characteristics due to the domain line formed at the edge portion of the pixel electrode, light shielding that selectively shields at least a part of the domain line regardless of the presence of the alignment division structure. It is preferable to have a department.
  • the dark line for example, the cross-shaped line CL1 formed in the central portion of the pixel region is not necessarily light-shielded because it is not necessarily poorly aligned, but a light-shielding member is not provided in the pixel region.
  • the effective aperture ratio (light utilization efficiency) of the pixels can be improved by arranging the pixels so as to overlap the dark lines.
  • the TFT-type liquid crystal display device includes a light-shielding member.
  • a TFT substrate has a gate nose line, a source bus line, a drain lead wiring, and an auxiliary capacitance wiring (hereinafter referred to as “CS bus line”).
  • the CF substrate is provided corresponding to the pixel area. It has a black matrix for shielding the periphery of the color filter.
  • a light shielding portion that selectively shields at least a part of the domain lines described above may be formed.
  • Examples of the pixel structure of the liquid crystal display device according to the present invention will be shown below.
  • members having substantially the same function are denoted by the same reference numerals, and redundant description is omitted.
  • the structure of the pixel in the m-th row and the n-th column among a plurality of pixels arranged in a matrix having rows and columns will be described.
  • the row corresponds to the arrangement of pixels along the gate bus line (scanning line)
  • the column corresponds to the arrangement of pixels along the source bus line (signal line).
  • the rows are the horizontal direction of the display surface and the columns are the vertical direction of the display surface.
  • the light shielding portion can be configured by using at least a part of the source bus line 114, the CS nose line 113, the drain lead wiring 117, and the gate bus line 112.
  • the m-th gate bus line 112 is referred to as a gate bus line 112 (m)
  • the n-th source bus line 114 is referred to as a source bus line 114 (n).
  • the pixel region shown in FIG. 11 represents one sub-pixel having a pixel division structure described in Japanese Patent Application Laid-Open No. 2004-62146.
  • the structure of the upper sub-pixel region including the sub-pixel electrode 11 la among the upper and lower sub-pixel regions will be mainly described.
  • the sub-pixel electrode 111a is connected to the drain electrode 116D of the TFT 116a, and is connected to the source bus line 114, the gate bus line 112, and the CS bus through an interlayer insulating film (not shown) made of a resin layer.
  • the line 113 is arranged so as to partially overlap. Further, in the central portion of the sub-pixel electrode 11 la, an auxiliary portion constituted by the extended portion 117E of the drain lead wiring 117, the extended portion 113E of the CS bus line 113, and an insulating layer (for example, a gate insulating layer) therebetween. Capacity (CS) is formed.
  • a conventional pixel electrode is divided into two subpixel electrodes, and each subpixel electrode is connected to a common source bus line 114 via corresponding TFTs 116a and 116b (two TFTs in total). Te! Two TFT116a and 116b are common gate bus lines 11 2 is ONZOFF controlled. The two TFTs 116a and 116b share the semiconductor layer 116m, the source electrode 116S, and the gate electrode (gate bus line 112), and the drain electrode 116D of each TFT is electrically connected to the corresponding subpixel electrode. Speak.
  • the electrical connection between the drain electrode 116D of the TFT 116a and the sub-pixel electrode 11 la is made by connecting the drain lead-out wiring 117 and the sub-pixel electrode 11 la extending from the drain electrode 116D to an interlayer insulating film (not shown in FIG. 11).
  • the connection is made in the contact hole 119 formed in the reference numeral 118a in FIG.
  • Each subpixel electrode (upper subpixel electrode 11 la, lower subpixel electrode is omitted) has a liquid crystal capacitance between a liquid crystal layer and a counter electrode (common electrode) facing the liquid crystal layer. It is composed.
  • a storage capacitor (CS) is formed in electrical parallel with the liquid crystal capacitor corresponding to each sub-pixel region.
  • one electrode (auxiliary capacitor electrode) that constitutes the auxiliary capacitor is composed of an extension part 117E of the drain lead wiring 117 connected to the drain 116D of the TFT 116a same as the subpixel electrode 11la.
  • the other electrode (auxiliary capacitor counter electrode) is constituted by an extended portion 113E of the CS bus line 113 provided for the upper subpixel.
  • one electrode (auxiliary capacitor electrode) constituting the auxiliary capacitor is connected to the drain (not shown) of the same TFT 116b as the lower sub-pixel electrode (not shown).
  • the other electrode (auxiliary capacitor counter electrode) is an extension portion (not shown) of a CS bus line (not shown) provided for the lower subpixel. Consists of! Speak.
  • the CS bus line 113 is provided electrically independently of each other for the two sub-pixels. For example, if the auxiliary voltage supplied from the CS bus line 113 to the auxiliary capacitor belonging to one subpixel rises after the TFT 116a is turned off, the auxiliary capacitor belonging to the other subpixel is transferred from the CS bus line 113 to the auxiliary capacitor belonging to the other subpixel. The supplied auxiliary capacitor counter voltage drops after the TFT 116b is turned off.
  • the sub-pixel region shown here has the same alignment division structure as the previous pixel region 10, the domain line is formed in the vicinity of the edge portions EG1 to EG4 of the sub-pixel electrode, and the sub-pixel In the center of the area, a cross-shaped ridge or line is formed.
  • the light shielding part that selectively shields at least part of the domain lines formed in the vicinity of the edge parts EG1 and EG3 crosses the source bus line 114 in the longitudinal direction (vertical direction).
  • the pixel electrode side) is bent and formed using the bent portion.
  • the width of the source bus line 114 may be partially increased, it is preferable to bend it because stray capacitance may increase.
  • the domain line formed in the edge portion EG2 partially increases the width of the subpixel electrode 11 la or the gate bus line 112 (for example, the wide portion 111E of the subpixel electrode 11 la in FIG. Or by bending the gate bus line 112 in the direction intersecting with the longitudinal direction (horizontal direction), the overlapping width between the edge portion of the subpixel electrode 11 la and the gate bus line 112 is increased, Shield from light.
  • the domain line formed in the edge portion EG4 partially increases the width of the subpixel electrode 11 la or the CS bus line 113 (for example, the wide portion 113A of the CS bus line 113 in FIG. Or by bending the CS bus line 113 in a direction intersecting the longitudinal direction (horizontal direction), the overlapping width between the edge portion of the sub-pixel electrode 11 la and the CS bus line 11 3 is increased and light shielding is performed. To do.
  • the light-shielding portion that is formed in the boundary region of the liquid crystal domain and selectively shields at least a part of the region includes the extension portions 113e and 113E of the CS bus line 113, and the drain lead wiring 117 and The extended portion 117E is formed.
  • CS auxiliary capacitor
  • the extended portion 113e and 113E of the CS bus line 113 shields the line from being formed at the center of the pixel area, and extends the extended portion of the CS bus line 113.
  • 113E1 and 113E2 may be further provided to shield the domain lines formed at the edge portion EG1 and the edge portion EG2, respectively.
  • the configuration shown in FIG. 13 should be adopted. I can do it.
  • the domain line (DL4 (H) in Fig. 3 (a)) formed in the horizontal part of the edge part EG4 has the extension part 111E1 by partially increasing the width of the sub-pixel electrode 11 la. The light is shielded by increasing the overlap width between the CS bus line 113 and the sub-pixel electrode 11 la.
  • the domain line (DL2 (H) in FIG. 3 (a)) formed in the horizontal part of the edge part EG2 forms the extension part 111E2 by partially increasing the width of the subpixel electrode 11 la,
  • the gate bus line 112 and the subpixel electrode 11 la are shielded from light by increasing the overlapping width.
  • the vertical parts of the edge part EG2 and the edge part EG4 (DL2 (V) and DL4 (V) in Fig. 3 (a)) are shielded by the bent part of the source bus line 114 as in the previous example.
  • a light shielding portion that shields a dark region formed in the boundary region of the liquid crystal domain is provided so as to extend the drain extraction wiring 117 as shown in FIG. It may be formed by the portion 117E and 117E ′.
  • the extended portion 117E faces the CS bus line 113 and forms an auxiliary capacitor.
  • the drain lead-out wiring 117 has a gate insulating film 115 interposed between the gate bus line 112 and another layer. Therefore, there is an advantage that a leak between the drain lead line 117 and the gate bus line 112 hardly occurs.
  • a normal pixel having no pixel division structure is illustrated, but when applied to the pixel division structure, for example, the CS bus line 113 is arranged instead of the upper gate bus line 112 in FIG.
  • the light shielding portion corresponding to the cross line in the center may be formed by the extending portions 117E and 117E ′ of the drain lead wiring 117.
  • the CS bus line 113 is formed of the same conductive layer (typically a metal layer) as the gate bus line 112, a leak failure between the drain leading self-insulating line 117 and the CS bus line 113 is unlikely to occur. That is, it is preferable to form the vertical light-shielding part constituting the cross light-shielding part in a separate layer from the light-shielding part for shielding the horizontal edge part. By adopting such a configuration, it is possible to suppress the occurrence of a leak failure compared to the configuration described in FIG.
  • the extending part 113e of the CS nose line 113 shields the domain line formed at the edge part and the cross dark line formed at the pixel central part.
  • a relatively thin inorganic insulating film in which a force such as SiN is also formed is used as the interlayer insulating film 118b provided between the pixel electrode 111 and the source nose line 114.
  • the pixel electrode 111 and the bus line 114 are arranged so as not to overlap with each other in order to prevent the voltage of the pixel electrode 111 from fluctuating due to the influence of the voltage (signal voltage) of the source bus line 114. Yes.
  • This configuration is disadvantageous from the viewpoint of pixel aperture ratio, but has a merit that the manufacturing process can be simplified because a relatively thin inorganic insulating film can be used as the interlayer insulating film 118b.
  • the drain lead wiring 117 by extending the drain lead wiring 117, the domain line formed at the edge portion and the cross dark line formed at the pixel center portion may be shielded. .
  • the drain lead wiring 117 is formed in a layer different from the gate bus line 112 and the CS bus line 113, a leak failure between them is unlikely to occur.
  • a force indicating an example in which the light shielding portion is formed by using the light shielding member provided on the TFT substrate is used for the V deviation.
  • a part or all of the light shielding portion is disposed on the CF substrate side as necessary. May be provided.
  • the wide light shielding portion may be formed by using the black matrix layer 132 of the CF substrate.
  • the side of the cross dark line formed in the center of the pixel In this example, all of the portion extending in the direction is shielded from light by the extended portion 132E of the black matrix layer 132, but a part thereof is shielded from light by the black matrix layer 132, and the other portion is shielded from light by the drain lead wiring 117.
  • it can be appropriately combined with the other light shielding structures described above.
  • light irradiation for the photo-alignment treatment is preferably performed on at least the substrate provided with the light shielding portion. Since the light shielding part is provided in a region where alignment disorder occurs in the alignment division structure, when the light shielding part is provided on the substrate opposite to the substrate irradiated with light for defining the alignment division structure, the substrates are bonded together. Therefore, it is necessary to consider the alignment error, and it is necessary to form a large light shielding portion, which is not preferable.
  • the light irradiation is preferably performed from a direction not affected by unevenness on the substrate. For example, when irradiating light to the CF substrate, if the light is irradiated from the column direction, a shadow area is not formed by the black matrix V arranged between the rows!
  • the alignment of the liquid crystal molecules is particularly unstable and the response speed is slow. Found a problem. Therefore, for applications where importance is placed on moving image display characteristics, it is preferable to shield the region where the alignment of the liquid crystal molecules is disturbed in the intersecting region OD.
  • the extension portions TR1 and TR3 are extended from the CS bus line extension portion 113E, the extension portion TR2 is extended from the gate bus line 112, and the extension portion TR4 is extended from the CS bus line 113.
  • the shape of the force extending portion exemplified by the substantially triangular extending portions TR1 to TR4 is not limited to this. However, a substantially triangular shape that is preferable in a shape that does not unnecessarily decrease the light utilization efficiency (aperture ratio) is preferable.
  • the force shown in the example in which the light shielding part that shields almost all of the edge part where the domain line is formed is not limited thereto. From the viewpoint of suppressing the deterioration of the viewing angle characteristics, it is preferable to provide a light shielding part so as to shield all the domain lines as illustrated, but if a light shielding part is provided, the light use efficiency (pixels) is reduced. Therefore, in consideration of the balance between viewing angle characteristics and light utilization efficiency, a part of the edge portion to be shielded may be shielded.
  • the pixel aperture ratio becomes small. From the viewpoint of rate, it is preferable to make the light shielding area as small as possible.
  • FIG. 15 when a relatively thick interlayer insulating film 118a that also forms a force such as photosensitive grease is provided between the pixel electrode 111 and the source bus line 114, FIG. 14, FIG. 18, FIG. As shown in FIG. 15, when a relatively thick interlayer insulating film 118a that also forms a force such as photosensitive grease is provided between the pixel electrode 111 and the source bus line 114, FIG. 14, FIG. 18, FIG. As shown in FIG.
  • the pixel electrode 111 (or subpixel electrode 11 la) and the source bus line 114 (and gate bus line 112) overlap the pixel electrode 111 (or subpixel electrode 11 la) and source bus line 114 114 (and the gate bus line 112) can be made sufficiently small, so that the voltage of the pixel electrode 111 (or the sub-pixel electrode 11 la) passes through this capacitor to the voltage of the source bus line 114 (signal voltage). ) And will not fluctuate. Therefore, the pixel aperture ratio can be increased by overlapping the pixel electrode 111 (or the sub-pixel electrode 11 la) with the source bus line 114 (and the gate bus line 112).
  • the areas occupied by the four liquid crystal domains in the pixel region are substantially equal to each other. Further, when the pixel division as described above is adopted, for example, as shown in FIGS. 11 to 14, 16, 16, 18, 19 and 21, four liquid crystal domains are provided for each sub-pixel region. It is preferable that the areas of Good.
  • FIG. 22 is a schematic diagram showing still another example of the pixel structure of the liquid crystal display device according to the present invention
  • FIG. 23 is a schematic diagram showing still another example of the pixel structure of the liquid crystal display device according to the present invention.
  • FIG. 24 is a schematic cross-sectional view taken along the line 24A-24A in FIG. 23, and shows a cross-sectional structure of the contact portion.
  • FIG. 25 is a schematic view showing still another example of the pixel structure of the liquid crystal display device according to the present invention. Note that the cross-sectional structure of the contact portion in the pixel structure shown in FIGS. 22 and 25 is the same as the cross-sectional structure shown in FIG.
  • the width of the CS bus line 113 in the portion where the auxiliary capacitance is not formed is reduced, in other words, the width of the CS bus line 113 in the portion where the auxiliary capacitance is formed is selectively reduced.
  • the aperture ratio can be increased.
  • the pixel structure shown in FIG. 22 it becomes difficult to make the areas of the four liquid crystal domains the same.
  • the auxiliary capacitance shown in FIG. 22 has the same cross-sectional structure as the cross-sectional structure shown in FIG. 24.
  • the CS bus line extending portion 113E auxiliary Capacitor functioning as counter electrode
  • gate insulating film 115 semiconductor layer (stacked structure of i layer 116m and n + layer 116 ⁇ ), drain extension line 117 extension 117E (functioning as auxiliary capacity electrode)
  • a contact portion 119 between the drain lead-out wiring 117 and the sub-pixel electrode 11la is formed.
  • the semiconductor layer (i layer 116mZn + layer 116 ⁇ ) is formed of the same layer as the semiconductor layers constituting TFTs 16a and 116b, and is patterned by the same process.
  • the i layer 116m is illustrated as a semiconductor layer constituting the TFTs 16a and 116b !, but the source electrode 116S is in contact with the source electrode 116S.
  • the n + layer 116 ⁇ is formed in the drain region in contact with the region and the drain electrode 116D.
  • FIG. 24 shows that the semiconductor layers 116m and 116 ⁇ are provided between the auxiliary capacitance counter electrode (CS bus line extension 113E) and the auxiliary capacitance electrode (drain lead wiring extension 117 ⁇ ). Since the contact hole becomes shallower by the thickness of the semiconductor layer, the occurrence of defects in which the subpixel electrode (transparent conductive layer such as a ridge) 11 la is cut by a step can be reduced.
  • the auxiliary capacitance of the sub-pixel belonging to two pixels adjacent in the vertical direction (column direction) along the source bus line 114 (lower in the upper pixel) When the n + layer 116 ⁇ is short-circuited due to a poor patterning of the semiconductor layer, the normally black mode liquid crystal In the display device, it becomes a bright spot defect.
  • the extended portion 113E of the auxiliary capacitance wiring 113 has a boundary region in which each of the four liquid crystal domains is adjacent to another liquid crystal domain.
  • a contact hole provided in an insulating layer that constitutes at least a part of the central light-shielding part that selectively shields at least a part of the drain lead wiring 117 and the sub-pixel electrode 11 la is formed. It is preferable that the central light shielding portion be formed on the liquid crystal layer side.
  • the extended portion 113E of the auxiliary capacitor wiring 113 and the extended portion 117E of the drain lead wiring 117 have two or more rectangular portions that overlap with each other and extend in different directions. This rectangular portion constitutes an auxiliary capacitor and a central light shielding portion.
  • the contact hole (contact portion 119) is preferably formed at the intersection of the rectangular portions.
  • the extended portion 113E of the auxiliary capacitance wiring 113 and the drain lead are formed so that the contact hole is formed at the center of the cross-shaped boundary region formed by the four liquid crystal domains arranged in a matrix of 2 rows and 2 columns. It is preferable to provide the rectangular portion of the extension 117E of the wiring 117.
  • a desired alignment state can be obtained by providing an area where the alignment of the liquid crystal molecules is disturbed by the contact hole step at the center of the cross-shaped boundary. In addition, it is possible to suppress an increase in the area where no light is obtained, and to effectively shield light by the intersection of the central light shielding portions, thereby suppressing deterioration in display quality.
  • the pixel structure shown in FIG. 25 may be employed to improve the aperture ratio.
  • the extended portion 113 ⁇ of the auxiliary capacitance wiring 113 and the extended portion 117E of the drain lead wiring 117 have only rectangular portions that overlap with each other and extend in the column direction.
  • the central light shielding portion includes a rectangular portion extending in the column direction, and the contact hole is formed on the liquid crystal layer side of the rectangular portion extending in the column direction. That is, since the rectangular portion extending in the row direction in FIG. 23 is not provided, the aperture ratio is high accordingly.
  • the area capacity of the auxiliary capacitor is smaller than that of the pixel in Fig. 23.
  • the contact hole is preferably formed at the center of a cross-shaped boundary region formed by four liquid crystal domains arranged in a matrix of 2 rows and 2 columns.
  • the liquid crystal display device according to the present invention is suitably used for applications that require high-quality display such as television receivers.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

 画素領域は、電圧が印加されたときのチルト方向が予め決められた第1方向である第1液晶ドメインと、第2方向である第2液晶ドメインと、第3方向である第3液晶ドメインと、第4方向である第4液晶ドメインとを有し、第1、第2、第3および第4方向は、任意の2つの方向の差が90°の整数倍に略等しい4つの方向であり、かつ、第1、第2、第3および第4液晶ドメインは、それぞれ他の液晶ドメインと隣接し、かつ、2行2列のマトリクス状に配置されており、補助容量配線の延設部が、第1、第2、第3および第4液晶ドメインのそれぞれが他の液晶ドメインと隣接する境界領域の少なくとも一部を選択的に遮光する中央遮光部の少なくとも一部を構成しており、ドレイン引出し配線と第1電極とのコンタクト部が形成される絶縁層に設けられたコンタクトホールが中央遮光部の液晶層側に形成されている。

Description

液晶表示装置
技術分野
[0001] 本発明は液晶表示装置に関し、特に広視野角特性を有する液晶表示装置に関す る。
背景技術
[0002] 液晶表示装置の表示特性が改善され、テレビジョン受像機などへの利用が進んで いる。液晶表示装置の視野角特性は向上したものの更なる改善が望まれている。特 に、垂直配向型の液晶層を用いた液晶表示装置 (VAモード液晶表示装置と呼ばれ ることもある。)の視野角特性を改善する要求は強い。
[0003] 現在、テレビ等の大型表示装置に用いられている VAモード液晶表示装置には、 視野角特性を改善するために、 1つの画素領域に複数の液晶ドメインを形成する配 向分割構造が採用されている。配向分割構造を形成する方法としては、 MVAモード が主流である。 MVAモードは、垂直配向型液晶層を挟んで対向する一対の基板の 液晶層側に、配向規制構造を設けることによって、配向方向(チルト方向)が異なる 複数のドメイン (典型的には配向方向は 4種類)を形成している。配向規制構造として は、電極に設けたスリット(開口部)あるいはリブ (突起構造)が用いられ、液晶層の両 側から配向規制力を発揮する。
[0004] し力しながら、スリットやリブを用いると、従来の TNで用いられていた配向膜によつ てプレチルト方向を規定した場合と異なり、スリットやリブが線状であることから、液晶 分子に対する配向規制力が画素領域内で不均一となるため、例えば、応答速度に 分布が生じるという問題がある。また、スリットやリブを設けた領域の光の透過率が低 下するので、表示輝度が低下するという問題もある。
特許文献 1:特開平 11— 133429号公報
特許文献 2:特開平 11― 352486号公報
発明の開示
発明が解決しょうとする課題 [0005] 上述の問題を回避するためには、 VAモード液晶表示装置についても、配向膜によ つてプレチルト方向を規定することによって配向分割構造を形成することが好ましい。 そこで、本発明者は、種々の検討を行ったところ、 VAモード液晶表示装置に特有の 配向乱れが発生し、表示品位に悪影響を及ぼすことを見出した。
[0006] 従来の配向膜を用いた配向分割構造を形成した液晶表示装置においても、配向 乱れによる表示特性の低下を抑制するために、遮光部を設け、配向乱れが発生した 領域を透過した光を遮蔽する技術が知られている (例えば、特許文献 1)。
[0007] し力しながら、従来の配向分割構造において遮光部を設ける目的は、 TNモードの 液晶表示装置におけるリバースチルトのような配向乱れによって、正面視において、 光の透過率が所定の値よりも高くなる領域、すなわち液晶分子が正常に配向した領 域よりも明るく見える領域を隠すことであつたのに対し、 VAモードの液晶表示装置に おいては、正面視において正常配向領域よりも明るく見える領域を遮光するだけで は表示品位を十分に改善できない場合があることを見出した。
[0008] 本発明は、上記諸点に鑑みてなされたものであり、その目的は、表示品位に優れた VAモードの液晶表示装置を提供することを目的とする。
課題を解決するための手段
[0009] 本発明の液晶表示装置は、垂直配向型の液晶層と、前記液晶層を介して互いに 対向する第 1基板および第 2基板と、前記第 1基板の前記液晶層側に設けられた第 1 電極および前記第 2基板の前記液晶層側に設けられた第 2電極と、前記液晶層に接 するように設けられた少なくとも 1つの配向膜とを有し、画素領域は、前記第 1電極と 前記第 2電極との間に電圧が印加されたときの前記液晶層の層面内および厚さ方向 における中央付近の液晶分子のチルト方向が予め決められた第 1方向である第 1液 晶ドメインと、第 2方向である第 2液晶ドメインと、第 3方向である第 3液晶ドメインと、第 4方向である第 4液晶ドメインとを有し、前記第 1方向、第 2方向、第 3方向および第 4 方向は、任意の 2つの方向の差が 90° の整数倍に略等しい 4つの方向であり、かつ 、前記第 1液晶ドメイン、第 2液晶ドメイン、第 3液晶ドメインおよび第 4液晶ドメインは 、それぞれ他の液晶ドメインと隣接し、かつ、 2行 2列のマトリクス状に配置されており 、前記第 1基板は、 TFT、ゲートバスライン、ソースバスライン、ドレイン引出し配線、 補助容量配線、および前記ドレイン引出し配線と前記第 1電極との間に設けられた絶 縁層をさらに有し、前記補助容量配線の延設部が、前記第 1液晶ドメイン、第 2液晶ド メイン、第 3液晶ドメインおよび第 4液晶ドメインのそれぞれが他の液晶ドメインと隣接 する境界領域を選択的に遮光する中央遮光部の少なくとも一部を構成しており、前 記ドレイン引出し配線と前記第 1電極とのコンタクト部が形成される前記絶縁層に設 けられたコンタクトホールが、前記中央遮光部の前記液晶層側に形成されていること を特徴とする。
[0010] ある実施形態にお!ヽて、前記補助容量配線の前記延設部および前記ドレイン引出 し配線の延設部は、互いに重なり、且つ、互いに異なる方向に延びる 2以上の矩形 部分を有し、前記中央遮光部は、前記互いに異なる方向に延びる 2以上の矩形部分 を含み、前記コンタクトホールは、前記 2以上の矩形部分の交差部の前記液晶層側 に形成されている。
[0011] ある実施形態において、前記補助容量配線の前記延設部および前記ドレイン引出 し配線の延設部は、互いに重なり、且つ、列方向に延びる矩形部分だけを有し、前 記中央遮光部は、前記列方向に延びる矩形部分を含み、前記コンタクトホールは、 前記列方向に延びる矩形部分の前記液晶層側に形成されている。
[0012] ある実施形態において、前記コンタクト部は、前記 2行 2列のマトリクス状に配置され た前記第 1液晶ドメイン、第 2液晶ドメイン、第 3液晶ドメインおよび第 4液晶ドメインが 形成する十字状の境界領域の中心に形成されている。
[0013] ある実施形態において、前記中央遮光部を構成する前記補助容量配線の前記延 設部の前記液晶層側には、ゲート絶縁層および半導体層が形成されており、前記コ ンタクト部は前記半導体層の前記液晶層側に形成されている。
[0014] ある実施形態にぉ ヽて、前記画素領域は、それぞれが対応する TFTを介して前記 ソースバスラインカ 供給されるある信号電圧に対して、前記液晶層に互いに異なる 電圧が印加される 2つの副画素領域を含み、前記 2つの副画素領域のそれぞれが、 前記第 1液晶ドメイン、第 2液晶ドメイン、第 3液晶ドメイン、第 4液晶ドメインおよび前 記中央遮光部を有し、前記 2つの副画素領域のそれぞれに対応して、前記第 1電極 、前記 TFT、前記ドレイン電極引出し配線および補助容量配線が設けられており、 且つ、前記ドレイン電極引き出し配線の延設部と、前記補助容量配線の延設部と、こ れらの間に設けられた絶縁層および半導体層とを備える補助容量が設けられており 、前記補助容量の前記半導体層は、前記 TFTの半導体層と同じ層から形成されて いる。
[0015] ある実施形態にお!、て、前記画素領域における前記第 1液晶ドメイン、第 2液晶ドメ イン、第 3液晶ドメインおよび第 4液晶ドメインの面積は互いに略等 、。
[0016] 本発明の他の液晶表示装置は、垂直配向型の液晶層と、前記液晶層を介して互 いに対向する第 1基板および第 2基板と、前記第 1基板の前記液晶層側に設けられ た第 1電極および前記第 2基板の前記液晶層側に設けられた第 2電極と、前記液晶 層に接するように設けられた少なくとも 1つの配向膜とを有し、画素領域は、ある中間 調を表示するときに、正面視において、前記第 1電極のエッジ部よりも内側に前記ェ ッジ部に略平行に当該中間調よりも喑 ヽ領域を形成する少なくとも 1つの液晶ドメイン を有し、前記第 1基板または前記第 2基板は遮光部材を有し、前記遮光部材は、前 記暗い領域を選択的に遮光する少なくとも 1つの遮光部を含むことを特徴とする。
[0017] 本発明の他の液晶表示装置は、垂直配向型の液晶層と、前記液晶層を介して互 いに対向する第 1基板および第 2基板と、前記第 1基板の前記液晶層側に設けられ た第 1電極および前記第 2基板の前記液晶層側に設けられた第 2電極と、前記液晶 層に接するように設けられた少なくとも 1つの配向膜とを有し、画素領域は、電圧が印 カロされたときの前記液晶層の層面内および厚さ方向における中央付近の液晶分子 のチルト方向が予め決められた第 1方向である第 1液晶ドメインを有し、前記第 1液晶 ドメインは前記第 1電極のエッジの少なくとも一部と近接し、前記少なくとも一部は、そ れに直交し前記第 1電極の内側に向力う方位角方向が前記第 1方向と 90° 超の角 をなす第 1エッジ部を含み、前記第 1基板または前記第 2基板は遮光部材を有し、前 記遮光部材は、前記第 1エッジ部を選択的に遮光する第 1遮光部を含むことを特徴と する。
[0018] ある実施形態において、前記画素領域は、電圧が印加されたときの前記液晶層の 層面内および厚さ方向における中央付近の液晶分子のチルト方向が、第 2方向であ る第 2液晶ドメインと、第 3方向である第 3液晶ドメインと、第 4方向である第 4液晶ドメ インとを更に有し、前記第 1方向、第 2方向、第 3方向および第 4方向は、任意の 2つ の方向の差が 90° の整数倍に略等しい 4つの方向であり、前記第 2液晶ドメインは 前記第 1電極のエッジの少なくとも一部と近接し、前記少なくとも一部は、それに直交 し前記第 1電極の内側に向力う方位角方向が前記第 2方向と 90° 超の角をなす第 2 エッジ部を含み、前記第 3液晶ドメインは前記第 1電極のエッジの少なくとも一部と近 接し、前記少なくとも一部は、それに直交し前記第 1電極の内側に向力 方位角方向 が前記第 3方向と 90° 超の角をなす第 3エッジ部を含み、前記第 4液晶ドメインは前 記第 1電極のエッジの少なくとも一部と近接し、前記少なくとも一部は、それに直交し 前記第 1電極の内側に向かう方位角方向が前記第 4方向と 90° 超の角をなす第 4ェ ッジ部を含み、前記遮光部材は、前記第 2エッジ部を選択的に遮光する第 2遮光部、 前記第 3エッジ部を選択的に遮光する第 3遮光部、および前記第 4エッジ部を選択的 に遮光する第 4遮光部をさらに含む。
[0019] ある実施形態にぉ 、て、前記第 1液晶ドメイン、第 2液晶ドメイン、第 3液晶ドメイン および第 4液晶ドメインは、前記チルト方向が、隣接する液晶ドメイン間で約 90° 異 なるように配置されている。
[0020] ある実施形態において、表示面における水平方向の方位角を 0° とするとき、前記 第 1方向は約 225° 、前記第 2方向は約 315° 、前記第 3方向は約 45° 、前記第 4 方向は約 135° 方向であって、前記第 1エッジ部および前記第 3エッジ部は垂直方 向に平行であって、前記第 2エッジ部および前記第 4エッジ部は水平方向に平行で ある。
[0021] ある実施形態において、表示面における水平方向の方位角を 0° とするとき、前記 第 1方向は約 225° 、前記第 2方向は約 315° 、前記第 3方向は約 45° 、前記第 4 方向は約 135° 方向であって、前記第 1エッジ部および前記第 3エッジ部は水平方 向に平行であり、前記第 2エッジ部および前記第 4エッジ部は垂直方向に平行である
[0022] ある実施形態において、表示面における水平方向の方位角を 0° とするとき、前記 第 1方向は約 225° 、前記第 2方向は約 315° 、前記第 3方向は約 45° 、前記第 4 方向は約 135° 方向であって、前記第 1エッジ部、前記第 2エッジ部、前記第 3エツ ジ部および前記第 4エッジ部は、それぞれ、水平方向に平行な第 1部分と垂直方向 に平行な第 2部分を含む。
[0023] ある実施形態において、前記画素領域は、電圧が印加されたときの前記液晶層の 層面内および厚さ方向における中央付近の液晶分子のチルト方向が、第 2方向であ る第 2液晶ドメインと、第 3方向である第 3液晶ドメインと、第 4方向である第 4液晶ドメ インとを更に有し、前記第 1方向、第 2方向、第 3方向および第 4方向は、任意の 2つ の方向の差が 90° の整数倍に略等しい 4つの方向であり、前記第 1方向と前記第 2 方向とは約 180° の角をなし、前記第 2液晶ドメインは前記第 1電極のエッジの少なく とも一部と近接し、前記少なくとも一部は、それに直交し前記第 1電極の内側に向力う 方位角方向が前記第 2方向と 90° 超の角をなす第 2エッジ部を含み、前記第 1エツ ジ部および第 2エッジ部は、それぞれ、水平方向に平行な第 1部分と垂直方向に平 行な第 2部分を含み、前記遮光部材は、第 2エッジ部の少なくとも一部を選択的に遮 光する第 2遮光部をさらに含む。
[0024] ある実施形態において、表示面における水平方向の方位角を 0° とするとき、前記 第 1方向は約 135° または約 225° である。
[0025] ある実施形態において、表示面における水平方向の方位角を 0° とするとき、前記 第 1方向は約 90° 、前記第 2方向は約 180° 、前記第 3方向は約 0° 、前記第 4方 向は約 270° 方向であって、前記第 1エッジ部および前記第 4エッジ部は水平方向 に平行であり、前記第 2エッジ部および前記第 3エッジ部は垂直方向に平行である。
[0026] ある実施形態において、表示面における水平方向の方位角を 0° とするとき、前記 第 1方向は約 225° 、前記第 2方向は約 315° 、前記第 3方向は約 45° 、前記第 4 方向は約 135° 方向であって、前記第 1エッジ部、第 2エッジ部、第 3エッジ部および 第 4エッジ部は 、ずれも垂直方向に平行である。
[0027] ある実施形態にお!、て、前記遮光部材は、前記第 1液晶ドメイン、第 2液晶ドメイン 、第 3液晶ドメインおよび第 4液晶ドメインのそれぞれが他の液晶ドメインと隣接する境 界領域の少なくとも一部を選択的に遮光する中央遮光部を含む。
[0028] ある実施形態にお!、て、前記遮光部材は、前記第 1液晶ドメイン、第 2液晶ドメイン 、第 3液晶ドメインおよび第 4液晶ドメインのそれぞれが他の液晶ドメインと隣接する境 界領域が、前記第 1エッジ部、第 2エッジ部、第 3エッジ部および第 4エッジ部のいず れカと交わる領域を遮光する更なる遮光部を含む。
[0029] ある実施形態において、前記第 1基板は、 TFT、ゲートバスライン、ソースバスライ ン、ドレイン引出し配線および補助容量配線をさらに有し、前記第 1遮光部、前記第 2 遮光部、前記第 3遮光部、前記第 4遮光部、前記中央遮光部または前記更なる遮光 部は、前記ゲートバスライン、前記ソースバスライン、前記ドレイン引出し配線および 前記補助容量配線カゝらなる群カゝら選択される少なくとも 1つの配線の少なくとも一部 を含む。
[0030] ある実施形態において、前記少なくとも 1つの配線は、その長手方向に交差する方 向に屈曲した部分または幅が広くなつた部分を有し、前記少なくとも 1つの配線の前 記少なくとも一部は、前記屈曲部または前記幅広部の少なくとも一部を含む。
[0031] ある実施形態において、前記第 2基板は、ブラックマトリクス層をさらに有し、前記第 1遮光部、前記第 2遮光部、前記第 3遮光部、前記第 4遮光部、前記中央遮光部また は前記更なる遮光部は、前記ブラックマトリクス層の一部によって形成されている。
[0032] ある実施形態において、前記液晶層を介して互いに対向し、透過軸が互いに直交 するように配置された一対の偏光板を更に有し、前記第 1方向、第 2方向、第 3方向 および第 4方向は、前記一対の偏光板の前記透過軸と約 45° の角をなす。
[0033] ある実施形態において、前記垂直配向型液晶層は、誘電異方性が負の液晶材料 を含み、前記少なくとも 1つの配向膜は、前記液晶層の両側に設けられた一対の配 向膜であって、一方の配向膜が規定するプレチルト方向と、他方の配向膜が規定す るプレチルト方向は互いに略 90° 異なる。
[0034] ある実施形態において、前記少なくとも 1つの配向膜は前記液晶層の両側に設けら れた一対の配向膜であって、前記一方の配向膜が規定するプレチルト角と、前記他 方の配向膜が規定するプレチルト角とは互いに略等 、。
[0035] ある実施形態において前記少なくとも 1つの配向膜は、光配向膜から形成されてい る。
[0036] 本発明のさらに他の液晶表示装置は、垂直配向型の液晶層と、前記液晶層を介し て互いに対向する第 1基板および第 2基板と、前記第 1基板の前記液晶層側に設け られた第 1電極および前記第 2基板の前記液晶層側に設けられた第 2電極と、前記 液晶層に接するように設けられた少なくとも 1つの配向膜とを有し、画素領域は、電圧 が印加されたときの前記液晶層の層面内および厚さ方向における中央付近の液晶 分子のチルト方向が、第 1方向である第 1液晶ドメインと、第 2方向である第 2液晶ドメ インと、第 3方向である第 3液晶ドメインと、第 4方向である第 4液晶ドメインとを更に有 し、前記第 1方向、第 2方向、第 3方向および第 4方向は、任意の 2つの方向の差が 9 0° の整数倍に略等しい 4つの方向であり、前記第 1液晶ドメイン、第 2液晶ドメイン、 第 3液晶ドメインおよび第 4液晶ドメインはそれぞれ他の液晶ドメインと隣接しており、 前記遮光部材は、前記第 1液晶ドメイン、第 2液晶ドメイン、第 3液晶ドメインおよび第 4液晶ドメインのそれぞれが他の液晶ドメインと隣接する境界領域の少なくとも一部を 選択的に遮光する中央遮光部を含む。
[0037] ある実施形態において、前記第 1液晶ドメインは前記第 1電極のエッジの少なくとも 一部と近接し、前記少なくとも一部は、それに直交し前記第 1電極の内側に向力う方 位角方向が前記第 1方向と 90° 超の角をなす第 1エッジ部を含み、前記第 2液晶ドメ インは前記第 1電極のエッジの少なくとも一部と近接し、前記少なくとも一部は、それ に直交し前記第 1電極の内側に向かう方位角方向が前記第 2方向と 90° 超の角を なす第 2エッジ部を含み、前記第 3液晶ドメインは前記第 1電極のエッジの少なくとも 一部と近接し、前記少なくとも一部は、それに直交し前記第 1電極の内側に向力う方 位角方向が前記第 3方向と 90° 超の角をなす第 3エッジ部を含み、前記第 4液晶ドメ インは前記第 1電極のエッジの少なくとも一部と近接し、前記少なくとも一部は、それ に直交し前記第 1電極の内側に向かう方位角方向が前記第 4方向と 90° 超の角を なす第 4エッジ部を含む。
[0038] ある実施形態にお!、て、前記第 1液晶ドメイン、第 2液晶ドメイン、第 3液晶ドメイン および第 4液晶ドメインは、 2行 2列のマトリクス状に配置されて 、る。
[0039] ある実施形態にお!、て、前記第 1液晶ドメイン、第 2液晶ドメイン、第 3液晶ドメイン および第 4液晶ドメインは、所定の方向に一列に配置されて!、る。
[0040] ある実施形態にぉ 、て、前記第 1基板は、 TFT、ゲートバスライン、ソースバスライ ン、ドレイン引出し配線および補助容量配線をさらに有し、前記中央遮光部は、前記 ゲートバスライン、前記ソースバスライン、前記ドレイン引出し配線および前記補助容 量配線カゝらなる群カゝら選択される少なくとも 1つの配線の少なくとも一部を含む。
[0041] ある実施形態において、前記少なくとも 1つの配線は、その長手方向に交差する方 向に屈曲した部分または幅が広くなつた部分を有し、前記少なくとも 1つの配線の前 記少なくとも一部は、前記屈曲部または前記幅広部の少なくとも一部を含む。
[0042] ある実施形態において、前記第 2基板は、ブラックマトリクス層をさらに有し、前記中 央遮光部は、前記ブラックマトリクス層の一部によって形成されている。
[0043] ある実施形態において、前記液晶層を介して互いに対向し、透過軸が互いに直交 するように配置された一対の偏光板を更に有し、前記第 1方向、第 2方向、第 3方向 および第 4方向は、前記一対の偏光板の前記透過軸と約 45° の角をなす。
[0044] ある実施形態にぉ 、て、前記垂直配向型液晶層は、誘電異方性が負の液晶材料 を含み、前記少なくとも 1つの配向膜は、前記液晶層の両側に設けられた一対の配 向膜であって、一方の配向膜が規定するプレチルト方向と、他方の配向膜が規定す るプレチルト方向は互いに略 90° 異なる。
[0045] ある実施形態において、前記少なくとも 1つの配向膜は前記液晶層の両側に設けら れた一対の配向膜であって、前記一方の配向膜が規定するプレチルト角と、前記他 方の配向膜が規定するプレチルト角とは互いに略等 、。
[0046] ある実施形態において、前記少なくとも 1つの配向膜は光配向膜から形成されてい る。
[0047] 本発明のさらに他の液晶表示装置は、垂直配向型の液晶層と、前記液晶層を介し て互いに対向する第 1基板および第 2基板と、前記第 1基板の前記液晶層側に設け られた第 1電極および前記第 2基板の前記液晶層側に設けられた第 2電極と、前記 液晶層に接するように設けられた少なくとも 1つの配向膜とを有し、画素領域は、電圧 が印加されたときの前記液晶層の層面内および厚さ方向における中央付近の液晶 分子のチルト方向が、第 1方向である第 1液晶ドメインと、第 2方向である第 2液晶ドメ インと、第 3方向である第 3液晶ドメインと、第 4方向である第 4液晶ドメインとを更に有 し、前記第 1方向、第 2方向、第 3方向および第 4方向は、任意の 2つの方向の差が 9 0° の整数倍に略等しい 4つの方向であり、前記第 1液晶ドメインは前記第 1電極の エッジの少なくとも一部と近接し、前記少なくとも一部は、それに直交し前記第 1電極 の内側に向力う方位角方向が前記第 1方向と 90° 超の角をなす第 1エッジ部を含み
、前記第 2液晶ドメインは前記第 1電極のエッジの少なくとも一部と近接し、前記少な くとも一部は、それに直交し前記第 1電極の内側に向力う方位角方向が前記第 2方 向と 90° 超の角をなす第 2エッジ部を含み、前記第 3液晶ドメインは前記第 1電極の エッジの少なくとも一部と近接し、前記少なくとも一部は、それに直交し前記第 1電極 の内側に向力う方位角方向が前記第 3方向と 90° 超の角をなす第 3エッジ部を含み 、前記第 4液晶ドメインは前記第 1電極のエッジの少なくとも一部と近接し、前記少な くとも一部は、それに直交し前記第 1電極の内側に向力う方位角方向が前記第 4方 向と 90° 超の角をなす第 4エッジ部を含み、前記第 1液晶ドメイン、第 2液晶ドメイン 、第 3液晶ドメインおよび第 4液晶ドメインはそれぞれ他の液晶ドメインと隣接しており 、前記第 1基板または前記第 2基板は遮光部材を有し、前記遮光部材は、前記第 1 液晶ドメイン、第 2液晶ドメイン、第 3液晶ドメインおよび第 4液晶ドメインのそれぞれが 他の液晶ドメインと隣接する境界領域が、前記第 1エッジ部、第 2エッジ部、第 3エツ ジ部および第 4エッジ部のいずれかと交わる領域を遮光する遮光部を含む。
[0048] ある実施形態にぉ 、て、前記第 1液晶ドメイン、第 2液晶ドメイン、第 3液晶ドメイン および第 4液晶ドメインは、前記チルト方向が、隣接する液晶ドメイン間で略 90° 異 なるように配置されている。
[0049] ある実施形態において、表示面における水平方向の方位角を 0° とするとき、前記 第 1方向は約 225° 、前記第 2方向は約 315° 、前記第 3方向は約 45° 、前記第 4 方向は約 135° 方向であって、前記第 1エッジ部および前記第 3エッジ部は垂直方 向に平行であって、前記第 2エッジ部および前記第 4エッジ部は水平方向に平行で ある。
[0050] ある実施形態において、表示面における水平方向の方位角を 0° とするとき、前記 第 1方向は約 225° 、前記第 2方向は約 315° 、前記第 3方向は約 45° 、前記第 4 方向は約 135° 方向であって、前記第 1エッジ部および前記第 3エッジ部は水平方 向に平行であり、前記第 2エッジ部および前記第 4エッジ部は垂直方向に平行である [0051] ある実施形態において、表示面における水平方向の方位角を 0° とするとき、前記 第 1方向は約 90° 、前記第 2方向は約 180° 、前記第 3方向は約 0° 、前記第 4方 向は約 270° 方向であって、前記第 1エッジ部および前記第 4エッジ部は水平方向 であり、前記第 2エッジ部および前記第 3エッジ部は垂直方向に平行である。
[0052] ある実施形態において、表示面における水平方向の方位角を 0° とするとき、前記 第 1方向は約 225° 、前記第 2方向は約 315° 、前記第 3方向は約 45° 、前記第 4 方向は約 135° 方向であって、前記第 1エッジ部、第 2エッジ部、第 3エッジ部および 第 4エッジ部は 、ずれも垂直方向に平行である。
[0053] ある実施形態において、前記遮光部は略三角形を有している。
[0054] ある実施形態にお!、て、前記遮光部材は、前記第 1液晶ドメイン、第 2液晶ドメイン 、第 3液晶ドメインおよび第 4液晶ドメインのそれぞれが他の液晶ドメインと隣接する境 界領域の少なくとも一部を選択的に遮光する中央遮光部を含む。
[0055] ある実施形態において、前記第 1基板は、 TFT、ゲートバスライン、ソースバスライ ン、ドレイン引出し配線および補助容量配線をさらに有し、前記遮光部または前記中 央遮光部は、前記ゲートバスライン、前記ソースバスライン、前記ドレイン引出し配線 および前記補助容量配線力 なる群力 選択される少なくとも 1つの配線の少なくとも 一部を含む。
[0056] ある実施形態において、前記第 2基板は、ブラックマトリクス層をさらに有し、前記遮 光部または前記中央遮光部は前記ブラックマトリクス層の一部によって形成されてい る。
[0057] ある実施形態において、前記液晶層を介して互いに対向し、透過軸が互いに直交 するように配置された一対の偏光板を更に有し、前記第 1方向、第 2方向、第 3方向 および第 4方向は、前記一対の偏光板の前記透過軸と約 45° の角をなす。
[0058] ある実施形態において、前記垂直配向型液晶層は、誘電異方性が負の液晶材料 を含み、前記少なくとも 1つの配向膜は、前記液晶層の両側に設けられた一対の配 向膜であって、一方の配向膜が規定するプレチルト方向と、他方の配向膜が規定す るプレチルト方向は互いに略 90° 異なる。
[0059] ある実施形態において、前記少なくとも 1つの配向膜は前記液晶層の両側に設けら れた一対の配向膜であって、前記一方の配向膜が規定するプレチルト角と、前記他 方の配向膜が規定するプレチルト角とは互いに略等 、。
[0060] ある実施形態において、前記少なくとも 1つの配向膜は光配向膜から形成されてい る。
発明の効果
[0061] 本発明によると VAモードの液晶表示装置の表示品位、特に視角依存性を向上さ せることができる。また、本発明は、特に、配向膜を用いて配向分割構造を形成した 液晶表示装置の表示品位を向上させることができる。
図面の簡単な説明
[0062] [図 1]本発明による VAモードの液晶表示装置における配向分割構造を有する画素 領域の例を示す図である。
[図 2] (a)および (b)は、本発明による VAモードの液晶表示装置における配向分割 構造を有する画素領域の例を示す図である。
[図 3] (a)および (b)は、本発明による VAモードの液晶表示装置における配向分割 構造を有する画素領域の他の例を示す図である。
[図 4] (a)および (b)は、本発明による VAモードの液晶表示装置における配向分割 構造を有する画素領域のさらに他の例を示す図である。
[図 5] (a)および (b)は、本発明による VAモードの液晶表示装置における配向分割 構造を有する画素領域のさらに他の例を示す図である。
[図 6]本発明による VAモードの液晶表示装置の画素領域の断面図であり、液晶層中 に形成される電界の等電位線、液晶分子の配向方向および透過率をシミュレーショ ンで求めた結果を示す図である。
[図 7]本発明による VAモードの液晶表示装置の画素領域の断面図であり、液晶層中 に形成される電界の等電位線、液晶分子の配向方向および透過率をシミュレーショ ンで求めた結果を示す図である。
[図 8]本発明による VAモードの液晶表示装置の画素領域の断面図であり、液晶層中 に形成される電界の等電位線、液晶分子の配向方向および透過率をシミュレーショ ンで求めた結果を示す図である。 [図 9]本発明による VAモードの液晶表示装置の画素領域の断面図であり、液晶層中 に形成される電界の等電位線、液晶分子の配向方向および透過率をシミュレーショ ンで求めた結果を示す図である。
[図 10]図 2 (a)に示した画素領域を方位角 45° 方向から観察したときの透過強度の 分布を示すグラフである。
[図 11]本発明による液晶表示装置の画素構造の例を示す模式図である。
[図 12]本発明による液晶表示装置の画素構造の他の例を示す模式図である。
[図 13]本発明による液晶表示装置の画素構造の更に他の例を示す模式図である。
[図 14]本発明による液晶表示装置の画素構造の更に他の例を示す模式図である。
[図 15]図 14に示した画素構造の断面図を示す模式図である。
[図 16]本発明による液晶表示装置の画素構造の更に他の例を示す模式図である。
[図 17]図 16に示した画素構造の断面図を示す模式図である。
[図 18]本発明による液晶表示装置の画素構造の更に他の例を示す模式図である。
[図 19]本発明による液晶表示装置の画素構造の更に他の例を示す模式図である。
[図 20]本発明による VAモードの液晶表示装置における配向分割構造を有する画素 領域における配向不良が発生する他の領域の例を示す模式図である。
[図 21]本発明による液晶表示装置の画素構造の更に他の例を示す模式図である。
[図 22]本発明による液晶表示装置の画素構造の更に他の例を示す模式図である。
[図 23]本発明による液晶表示装置の画素構造の更に他の例を示す模式図である。
[図 24]図 23の 24A— 24A,線に沿った模式的な断面図である。
[図 25]本発明による液晶表示装置の画素構造の更に他の例を示す模式図である。 符号の説明
1 TFT基板
la、 2a 透明基板
2 CF基板
3 液晶層
3a 液晶分子
10 画素領域 11 画素電極
12 対向電極
111 画素電極
111a 畐 ij画素電極
111E 画素電極幅広部または副画素電極幅広部
112 ゲートバスライン
113 CSバスライン (補助容量配線)
113E CSバスライン延設部
114 ソースノ スライン
116、 116a, 116b TFT
117 ドレイン引出し配線
117E ドレイン引出し配線の延設部
SD1〜SD4 画素電極エッジ
EG1〜EG4 画素電極エッジ部
A〜D 液晶ドメイン
tl〜t4 チルト方向(基準配向方向)
el〜e4 画素電極のエッジに直交し、画素電極の内側に向力う方位角方向 発明を実施するための最良の形態
[0064] 以下、図面を参照しながら、本発明による実施形態の液晶表示装置の構成を説明 するが、本発明は以下の実施形態に限定されるものではない。本発明は、少なくとも 1つの配向膜を用いてプレチルト方向が規制された垂直配向型の液晶層を備える液 晶表示装置において、配向不良が発生する場所に遮光膜を設けることによって、表 示品位を向上させる。
[0065] 配向不良が発生する場所によって、表示品位への影響が異なるので、要求される 表示特性に応じて、遮光部を設けて隠す配向不良が異なる。以下では、画素領域内 の 3つの場所 (電極エッジ部、中央部および交差領域)に発生する配向不良に分け て説明する。 3つの場所を独立に遮光してもよいし、任意の 2以上の場所を遮光して も良ぐ全てを遮光してもよい。 本明細書において、「垂直配向型液晶層」とは、垂直配向膜の表面に対して、液晶 分子軸(「軸方位」ともいう。)が約 85° 以上の角度で配向した液晶層をいう。液晶分 子は負の誘電異方性を有し、クロス-コル配置された偏光板と組み合わせて、ノーマ リーブラックモードで表示を行う。なお、配向膜は少なくとも一方に設ければ良いが、 配向の安定性の観点から両側に設けることが好ましい。以下の実施形態では、両側 に垂直配向膜を設けた例を説明する。また、電極エッジ部に形成される配向不良以 外は、配向分割構造において発生するので、特に視野角特性に優れる 4分割構造を 例に説明する。なお、本明細書において「画素」とは、表示において特定の階調を表 現する最小の単位を指し、カラー表示においては、例えば、 R、 Gおよび Bのそれぞ れの階調を表現する単位に対応し、ドットとも呼ばれる。 R画素、 G画素および B画素 の組み合わせが、 1つのカラー表示画素を構成する。「画素領域」は、表示の「画素」 に対応する液晶表示装置の領域を指す。「プレチルト方向」は、配向膜によって規制 される液晶分子の配向方向であって、表示面内の方位角方向を指す。また、このとき 液晶分子が配向膜の表面となす角をプレチルト角と呼ぶ。プレチルト方向は、配向 膜に、ラビング処理または光配向処理を行うことによって規定されることになる。液晶 層を介して対向する一対の配向膜のプレチルト方向の組み合わせを変えることによ つて 4分割構造を形成することができる。 4分割された画素領域は、 4つの液晶ドメイ ン(単に「ドメイン」ということもある。)を有する。それぞれの液晶ドメインは、液晶層に 電圧が印加されたときの液晶層の層面内および厚さ方向における中央付近の液晶 分子のチルト方向(「基準配向方向」ということもある。)に特徴付けられ、このチルト方 向(基準配向方向)が各ドメインの視角依存性に支配的な影響を与える。チルト方向 も方位角方向である。方位角方向の基準は、表示の水平方向とし、左回りに正をとる (表示面を時計の文字盤に例えると 3時方向を方位角 0° として、反時計回りを正と する)。 4つの液晶ドメインのチルト方向力 任意の 2つの方向の差が 90° の整数倍 に略等しい 4つの方向(例えば、 12時方向、 9時方向、 6時方向、 3時方向)となるよう に設定することによって、視野角特性が平均化され、良好な表示を得ることができる。 また、視野角特性の均一さの観点からは、 4つの液晶ドメインの画素領域内に占める 面積は互いに略等しくすることが好ましい。具体的には、 4つの液晶ドメインの内の最 大の液晶ドメインの面積と最小の液晶ドメインの面積との差力 最大の面積の 25%以 下であることが好ましい。
[0067] 以下の実施形態で例示する垂直配向型液晶層は、誘電異方性が負のネマチック 液晶材料を含み、液晶層の両側に設けられた一対の配向膜の一方の配向膜が規定 するプレチルト方向と、他方の配向膜が規定するプレチルト方向は互いに略 90° 異 なっており、これら 2つのプレチルト方向の中間の方向にチルト角(基準配向方向)が 規定されている。カイラル剤は添加しておらず、液晶層に電圧を印加したときには、 配向膜の近傍の液晶分子は配向膜の配向規制力に従ってツイスト配向をとる。必要 に応じてカイラル剤を添加しても良い。このように、一対の配向膜によって規定される プレチルト方向(配向処理方向)が互いに直交する垂直配向膜を用いることにより、 液晶分子がツイスト配向となる VAモードは、 VATN (Vertical Alignment Twist ed Nematic)モードと呼ばれることもある(例えば特許文献 2)。
[0068] VATNモードにおいては、本出願人が特願 2005— 141846号に記載しているよう に、一対の配向膜のそれぞれによって規定されるプレチルト角は互いに略等 、こと が好ましい。プレチルト角が略等しい配向膜を用いることによって、表示輝度特性を 向上させることができるという利点が得られる。特に、一対の配向膜によって規定され るプレチルト角の差を 1° 以内にすることによって、液晶層の中央付近の液晶分子の チルト方向(基準配向方向)を安定に制御することが可能となり、表示輝度特性を向 上させることができる。これは、上記プレチルト角の差が 1° 超になると、チルト方向が 液晶層内の位置によってばらつき、その結果、透過率がばらつく(すなわち所望の透 過率よりも低い透過率となる領域が形成される)ためと考えられる。
[0069] 液晶分子のプレチルト方向を配向膜に規定させる方法としては、ラビング処理を行 う方法、光配向処理を行う方法、配向膜の下地に微細な構造を予め形成しておきそ の微細構造を配向膜の表面に反映させる方法、あるいは、 SiOなどの無機物質を斜 め蒸着することによって表面に微細な構造を有する配向膜を形成する方法などが知 られている力 量産性の観点からは、ラビング処理または光配向処理が好ましい。特 に、光配向処理は、非接触で処理できるので、ラビング処理のように摩擦による静電 気の発生が無ぐ歩留まりを向上させることが出来る。さらに、上記特願 2005— 141 846号に記載されているように、感光性基を含む光配向膜を用いることによって、プ レチルト角のばらつきを 1° 以下に制御することができる。感光性基としては、特に、 4 —カルコン基、 4'—カルコン基、クマリン基、及び、シンナモイル基カもなる群より選 ばれる少なくとも一つの感光性基を含むことが好ま 、。
[0070] 以下の実施形態では、典型的な例として、 TFT型の液晶表示装置を示すが、本発 明は他の駆動方式の液晶表示装置に適用できることも言うまでもない。
[0071] (エッジ部および中央部)
まず、電極エッジ部に発生する配向不良について説明する。
[0072] 本発明者は、配向膜を用いてプレチルト方向が規制された垂直配向型液晶層を備 えた液晶表示装置において、ある中間調を表示するための電圧が印加されたとき、 正面視において、画素電極のエッジ部よりも内側にエッジ部に略平行に、表示すベ き中間調よりも暗い領域が形成されることを見出した。配向分割した場合には、液晶 ドメインが近接する画素電極のエッジの内で、それに直交し画素電極の内側に向力う 方位角方向が液晶ドメインのチルト方向(基準配向方向)と 90° 超の角をなすエッジ 部が存在すると、このエッジ部よりも内側にエッジ部に略平行に、表示すべき中間調 よりも暗い領域が形成される。これは、液晶ドメインのチルト方向と画素電極のエッジ に生成される斜め電界による配向規制力の方向が互いに対向する成分を有すること になるために、この部分で液晶分子の配向が乱れると考えられる。
[0073] ここで、「中間調」とは、黒 (最低階調)および白(最高階調)を除く任意の階調を指 す。上記暗い領域が形成されるという現象は、原理的には、黒以外の階調(白を含む )を表示するときに発生するが、暗い領域の視認のされ易さは比較的高い階調で起こ る。また、本明細書において、特に視角方向を示さない場合、正面視 (表示面法線方 向から観察した場合)における表示状態を表すことにする。
[0074] 図 1に示した 4分割構造の画素領域 10について説明する。図 1には、簡単のために 、略正方形の画素電極に対応して形成された画素領域 10を示しているが、本発明 は画素領域の形状に制限されるものではない。
[0075] 画素領域 10は、 4つの液晶ドメイン A、 B、 Cおよび Dを有しており、それぞれのチル ト方向(基準配向方向)を tl、 t2、 t3および t4とすると、これは、任意の 2つの方向の 差が 90° の整数倍に略等しい 4つの方向である。液晶ドメイン A、 B、 Cおよび Dの面 積も互いに等しぐ視角特性上最も好ましい 4分割構造の例である。 4つの液晶ドメイ ンは、 2行 2列のマトリクス状に配列されて 、る。
[0076] 画素電極は、 4つのエッジ(辺) SD1、 SD2、 SD3および SD4を有しており、電圧印 加時に生成する斜め電界はそれぞれの辺に直交し、画素電極の内側に向かう方向( 方位角方向)の成分を有する配向規制力を生成する。図 1では、 4つのエッジ SD1、 SD2、 SD3および SD4〖こ直交し、画素電極の内側に向力う方位角方向を el、 e2、 e 3および e4で示して!/、る。
[0077] 4つの液晶ドメインのそれぞれは、画素電極の 4つのエッジの内の 2つと近接してお り、電圧印加時には、それぞれのエッジに生成される斜め電界による配向規制力を 受ける。
[0078] 液晶ドメイン Aが近接する画素電極のエッジの内のエッジ部 EG1は、それに直交し 画素電極の内側に向力う方位角方向 elが液晶ドメインのチルト方向 tlと 90° 超の 角をなし、この領域に配向乱れが発生する。その結果、液晶ドメイン Aは、電圧印加 時に、このエッジ部 EG1に平行に他の領域よりも暗い領域 (ドメインライン DL1)を生 じる。なお、ここで、液晶層を介して互いに対向するように配置される一対の偏光板の 透過軸 (偏光軸)は、互いに直交するように配置されており、一方が水平方向、他方 が垂直方向に配置されている。以下、特に示さない限り、偏光板の透過軸の配置は これと同じである。
[0079] 同様に、液晶ドメイン Bが近接する画素電極のエッジの内エッジ部 EG2は、それに 直交し画素電極の内側に向力う方位角方向 e2が液晶ドメインのチルト方向 t2と 90° 超の角をなし、この領域に配向乱れが発生する。その結果、液晶ドメイン Bは、電圧 印加時に、このエッジ部 EG2に平行に他の領域よりも暗い領域 (ドメインライン DL2) を生じることがある。
[0080] 同様に、液晶ドメイン Cが近接する画素電極のエッジの内エッジ部 EG3は、それに 直交し画素電極の内側に向力う方位角方向 e3が液晶ドメインのチルト方向 t3と 90° 超の角をなし、この領域に配向乱れが発生する。その結果、液晶ドメイン Cは、電圧 印加時に、このエッジ部 EG3に平行に他の領域よりも暗い領域 (ドメインライン DL3) を生じることがある。
[0081] 同様に、液晶ドメイン Dが近接する画素電極のエッジの内エッジ部 EG4は、それに 直交し画素電極の内側に向力う方位角方向 e4が液晶ドメインのチルト方向 t4と 90° 超の角をなし、この領域に配向乱れが発生する。その結果、液晶ドメイン Dは、電圧 印加時に、このエッジ部 EG4に平行に他の領域よりも喑 、領域 (ドメインライン DL4) を生じることがある。
[0082] 表示面における水平方向の方位角(3時方向)を 0° とすると、チルト方向 tlは約 2 25° (液晶ドメィン八)、 2は約315° (液晶ドメイン B)、t3は約 45° (液晶ドメイン C )、 t4は約 135° 方向(液晶ドメイン D)であって、液晶ドメイン A、 B、 Cおよび Dは、そ れぞれのチルト方向力 隣接する液晶ドメイン間で約 90° 異なるように配置されてい る。液晶ドメイン A、 B、 Cおよび Dのチルト方向 tl、 t2、 t3および t4のそれぞれ力 近 接するエッジ部 EG1、 EG2、 EG3および EG4に生成される斜め電界による配向規 制力の方位角成分 el、 e2、 e3および e4となす角は、いずれも約 135° である。
[0083] このようにエッジ部 EG1、 EG2、 EG3および EG4に平行に画素領域 10内に形成さ れる暗い領域 (ドメインライン DL1〜4)は、後述するように視野角特性を低下させる ので、エッジ部 EG1、 EG2、 EG3および EG4の少なくとも一部を選択的に遮光する 遮光部を設けることにより、視野角特性の低下を抑制することが出来る。
[0084] ここで、「エッジ部を遮光する」とは、エッジ部 EG1、 EG2、 EG3および EG4だけで なぐエッジ部の近傍の画素領域内に形成される暗い領域 (ドメインライン DL1〜4) を遮光することを意味する。ドメインラインが形成される位置 (画素電極のエッジ部か らの距離は、画素電極の大きさなどに依存する力 典型的には、画素電極のエッジ 部から 10 μ mから 20 μ m程度の範囲までを遮光するように遮光部を配置すればよ!ヽ 。また、「ある領域を選択的に遮光する遮光部」とは、もっぱら当該領域だけを遮光す るために設けられた遮光部であることを意味する。但し、ある領域を選択的に遮光す る遮光部が他の遮光部と分離独立して形成される必要は無い。なお、視野角特性の 低下を抑制するという観点力 は、ドメインラインの全てを遮光するように遮光部を設 けることが好ましいが、遮光部を設けると光の利用効率 (画素の有効開口率)が低下 する。エッジ部 (その近傍に形成されるドメインラインを含む)の少なくとも一部を遮光 する遮光部を設ければ、少なくともその分だけ視野角特性の低下を抑制できるので、 液晶表示装置に要求される特性に応じて、光の利用効率とのバランスを考慮して、 遮光する部分を設定すれば良 、。
[0085] なお、典型的には、エッジ部およびエッジ部の近傍の画素領域内に形成されるドメ インラインを遮光するように遮光部が設けられるが、画素開口率と視野角特性とのバ ランスを考慮して、画素開口率を優先する場合には、遮光部の面積を小さくするため に、エッジ部は遮光せず、ドメインラインの全部または一部だけを遮光する構成として もよい。以下では、エッジ部およびドメインラインの全部を遮光する実施形態を主に例 示するが、いずれの実施形態においても、少なくともドメインラインの一部を選択的に 遮光する遮光部を設けることによって、視野角特性を向上させることができる。
[0086] 上述した 4つの液晶ドメイン A〜Dに配向分割する方法 (液晶ドメインの画素領域内 の配置)は図 1の例に限られない。図 2〜図 5を参照しながら、配向分割方法 (液晶ド メインの配置)を説明する。
[0087] 図 2 (a)は図 1に示した画素領域 10の分割方法を説明するための図である。 TFT 側基板(下側基板)の配向膜のプレチルト方向 PA1および PA2、カラーフィルタ (CF )基板 (上側基板)の配向膜のプレチルト方向 PB1および PB2と、液晶層に電圧を印 カロしたときのチルト方向および配向乱れによって暗く見える領域 (ドメインライン) DL1 〜DL4を示している。この領域はいわゆるディスクリネーシヨンラインではない。これら の図は、観察者側力 見たときの液晶分子の配向方向を模式的に示しており、円柱 状に示した液晶分子の端部 (楕円形部分)が描かれている方が観察者に近づくよう に、液晶分子がチルトしていることを示している。
[0088] 図 2 (a)に示すように配向処理を行うことによって画素領域 10を形成することが出来 る。 TFT基板側の画素領域を 2つに分割し、垂直配向膜に反平行なプレチルト方向 PA1および PA2を付与するように配向処理する。ここでは、矢印で示した方向から紫 外線を斜め照射することによって光配向処理を行う。 CF基板側の画素領域を 2つに 分割し、垂直配向膜に反平行なプレチルト方向 PB1および PB2を付与するように配 向処理する。これらの基板を貼り合せることによって、画素領域 10の配向分割構造を 得ることができる。なお、光配向処理における光照射の方向は上記の例に限られず、 例えば CF基板側を縦方向(列方向)に傾斜した方向から照射し、 TFT基板側を横 方向(行方向)に傾斜した方向から照射しても良い。
[0089] 図 1を参照しながら説明したように、液晶ドメイン Aにはエッジ部 EG1に平行にドメイ ンライン DL1が生じ、液晶ドメイン Bにはエッジ部 EG2に平行にドメインライン DL2が 形成され、液晶ドメイン Cにはエッジ部 EG3に平行にドメインライン DL3が形成され、 液晶ドメイン Dにはエッジ部 EG4に平行にドメインライン DL4が形成される。 4つのド メインライン DL1〜DL4の長さの合計は、画素電極のエッジの全長の約 2分の 1にな る。エッジ部 EG1 (ドメインライン DL1)およびエッジ部 EG3 (ドメインライン DL3)は垂 直方向に平行であって、エッジ部 EG2 (ドメインライン DL2)およびエッジ部 EG4 (ドメ インライン DL4)は水平方向に平行である。
[0090] また、図 2 (a)に示されて 、るように、液晶ドメイン A〜Dのそれぞれが他の液晶ドメ インと隣接する境界領域に、破線 CL1で示す位置に暗いラインが観察される。後に 示すように、画素領域の中央部に形成される十字状の暗!ヽラインは必ずしも配向不 良では無ぐ積極的に遮光する必要は無いが、画素領域内に遮光性の部材を配置 する必要がある場合には、この暗いラインに重なるように配置すると、画素の有効開 口率 (光の利用効率)を向上させることができる。
[0091] また、図 2 (b)に示すように配向処理した TFT基板と CF基板とを貼り合せることによ つて、画素領域 20の配向分割構造を得ることができる。この画素領域 20も 4つの液 晶ドメイン A〜Dを有する。液晶ドメイン A〜Dのそれぞれのチルト方向は、図 1に示し た画素領域 10の液晶ドメインと同じである。
[0092] 液晶ドメイン Aにはエッジ部 EG1に平行にドメインライン DL1が生じ、液晶ドメイン B にはエッジ部 EG2に平行にドメインライン DL2が形成され、液晶ドメイン Cにはエッジ 部 EG3に平行にドメインライン DL3が形成され、液晶ドメイン Dにはエッジ部 EG4に 平行にドメインライン DL4が形成される。 4つのドメインライン DL1〜DL4の長さの合 計は、画素電極のエッジの全長の約 2分の 1になる。エッジ部 EG 1 (ドメインライン DL 1)およびエッジ部 EG3 (ドメインライン DL3)は水平方向に平行であって、エッジ部 E G2 (ドメインライン DL2)およびエッジ部 EG4 (ドメインライン DL4)は垂直方向に平行 である。また、図 2 (b)に示されているように、液晶ドメイン A〜Dのそれぞれが他の液 晶ドメインと隣接する境界領域に破線 CL1で示す位置に喑 、ラインが観察される。こ の喑 、ラインは画素領域の中央部に十字状に形成される。
[0093] また、図 3 (a)に示すように配向処理した TFT基板と CF基板とを貼り合せることによ つて、画素領域 30の配向分割構造を得ることができる。この画素領域 30も 4つの液 晶ドメイン A〜Dを有する。液晶ドメイン A〜Dのそれぞれのチルト方向は、図 1に示し た画素領域 10の液晶ドメインと同じである。
[0094] 液晶ドメイン Aおよび Cは、これらのチルト方向 tlおよび t3が画素電極のエッジ部の 方に向いていないため、これらの液晶ドメインにはドメインラインは形成されない。一 方、液晶ドメイン Bおよび Dは、これらのチルト方向 t2および t4力 画素電極のエッジ 部の方に向いており、且つ、エッジ部に直交し、画素電極の内側に向力う方位角方 向に対して 90° 超の角をなすので、ドメインライン DL2および DL4を生成する。ドメ インライン DL2および DL4は、それぞれ、水平方向に平行な部分 (H)と垂直方向に 平行な部分 (V)を含む。すなわち、チルト方向 t2および t4は、水平なエッジに対して も、垂直なエッジに対しても、エッジ部に直交し画素電極の内側に向力う方位角方向 に対して 90° 超の角を形成するので、両方向にドメインラインを生じるのである。また 、図 3 (a)に示されているように、液晶ドメイン A〜Dのそれぞれが他の液晶ドメインと 隣接する境界領域に破線 CL1で示す位置に喑 、ラインが観察される。この喑 、ライ ンは画素領域の中央部に十字状に形成される。
[0095] また、図 3 (b)に示すように配向処理した TFT基板と CF基板とを貼り合せることによ つて、画素領域 40の配向分割構造を得ることができる。この画素領域 40も 4つの液 晶ドメイン A〜Dを有する。液晶ドメイン A〜Dのそれぞれのチルト方向は、図 1に示し た画素領域 10の液晶ドメインと同じである。
[0096] 液晶ドメイン Aおよび Cでは、これらのチルト方向 tlおよび t3は、画素電極のエッジ 部の方に向いており、且つ、エッジ部に直交し、画素電極の内側に向力う方位角方 向に対して 90° 超の角をなすので、ドメインライン DL1および DL3を生成する。ドメ インライン DL1および DL3は、それぞれ、水平方向に平行な部分 DL1 (H)、 DL3 ( H)と垂直方向に平行な部分 DL1 (V)、 DL3 (V)を含む。チルト方向 tlおよび t3は、 画素電極の水平なエッジに対しても、垂直なエッジに対しても、それに直交し画素電 極の内側に向かう方位角方向に対して 90° 超の角を形成するので、両方向にドメイ ンラインを生じるのである。一方、液晶ドメイン Bおよび Dは、これらのチルト方向 t2お よび t4力 画素電極のエッジ部の方に向いていないため、これらの液晶ドメインには ドメインラインは形成されない。また、図 3 (b)に示されているように、液晶ドメイン A〜 Dのそれぞれが他の液晶ドメインと隣接する境界領域に破線 CL1で示す位置に暗い ラインが観察される。この暗いラインは画素領域の中央部に十字状に形成される。
[0097] また、図 4 (a)に示すように配向処理した TFT基板と CF基板とを貼り合せることによ つて、画素領域 50の配向分割構造を得ることができる。この画素領域 50も 4つの液 晶ドメイン A〜Dを有する。液晶ドメイン A〜Dのそれぞれのチルト方向は、図 1に示し た画素領域 10の液晶ドメインと同じである。
[0098] 液晶ドメイン A〜Dは、これらのチルト方向 tl〜t4のすべてが、画素電極のエッジ 部の方に向いており、且つ、エッジ部に直交し、画素電極の内側に向力う方位角方 向に対して 90° 超の角をなすので、ドメインライン DL1〜DL4を生成する。ドメインラ イン DL1〜DL4は、それぞれ、水平方向に平行な部分 DLl (H)、 DL2 (H)、 DL3 ( H)、 DL4 (H)と垂直方向に平行な部分 DLl (V)、 DL2 (V)、 DL3 (V)、 DL4 (V)を 含む。チルト方向 tl〜t4はいずれも画素電極の水平なエッジに対しても、垂直なェ ッジに対しても、それに直交し画素電極の内側に向力う方位角方向に対して 90° 超 の角を形成するので、両方向にドメインラインを生じるのである。また、図 4 (a)に示さ れて 、るように、液晶ドメイン A〜Dのそれぞれが他の液晶ドメインと隣接する境界領 域に破線 CL 1で示す位置に喑 、ラインが観察される。この喑 、ラインは画素領域の 中央部に十字状に形成される。
[0099] なお、図 4 (b)に示すように配向処理した TFT基板と CF基板とを貼り合せることによ つて、画素領域 60の配向分割構造を得ることができる。この画素領域 60も 4つの液 晶ドメイン A〜Dを有する。液晶ドメイン A〜Dのそれぞれのチルト方向は、図 1に示し た画素領域 10の液晶ドメインと同じである。
[0100] 液晶ドメイン A〜Dは、これらのチルト方向 tl〜t4のすべてが、画素電極のエッジ 部の方に向いていないので、ドメインラインは形成されない。一方、液晶ドメイン A〜 Dのそれぞれが他の液晶ドメインと隣接する境界領域に破線 CL1で示す位置に暗い ラインが観察される。この暗いラインは画素領域の中央部に十字状に形成される。
[0101] 上記の 4分割構造は、 4つの液晶ドメインを 2行 2列のマトリクス状に配列した例であ つたがこれに限られず、図 5 (a)および (b)に示すように、所定の方向に一列に配列し てもよ 、。ここでは列方向に一列に配列した例を示して 、る。
[0102] 図 5 (a)に示す画素領域 70も、 4つの液晶ドメイン A〜Dを有する。液晶ドメイン A〜 Dのそれぞれのチルト方向は、図 1に示した画素領域 10の液晶ドメインと同じである。 液晶ドメイン A〜Dは、これらのチルト方向 tl〜t4力 画素電極のエッジ部の方に向 いており、且つ、エッジ部に直交し、画素電極の内側に向かう方位角方向に対して 9 0° 超の角をなすので、ドメインライン DL1〜DL4を生成する。ドメインライン DL1〜 DL4はいずれも垂直方向(すなわち、液晶ドメインの配列方向)に平行である。また、 液晶ドメイン A〜Dのそれぞれが他の液晶ドメインと隣接する境界領域に暗いライン が観察される。この暗いラインは画素領域の中央部に水平方向(すなわち液晶ドメイ ンの配列方向に直交する方向に)に形成される。
[0103] また、図 5 (b)に示す画素領域 80は、 4つの液晶ドメイン A'〜D 'のそれぞれのチ ルト方向は図示したように、 90° 、 180° 、0° 、 270° であって、液晶ドメイン A,お よび D'のドメインライン DL1 'および DL4'は水平方向に平行であり、ドメインライン D L2'およびドメインライン DL3'は垂直方向に平行である。また、液晶ドメイン A,〜D' のそれぞれが他の液晶ドメインと隣接する境界領域に喑 、ラインが観察される。この 暗いラインは画素領域の中央部に水平方向(すなわち液晶ドメインの配列方向に直 交する方向に)に形成される。なお、このようにチルト方向を設定した場合は、偏光板 の透過軸は、水平方向に対して ±45° 方向に配置することが好ましい。
[0104] 次に、図 6〜9を参照して、画素電極のエッジ部の近傍のドメインラインおよび画素 領域の中央の暗いライン (例えば図 2中の十字)が形成される現象を説明する。図 6 〜9は、液晶表示装置の画素領域の断面図であり、液晶層 3中に形成される電界の 等電位線、液晶分子 3aの配向方向および相対透過率 (正面)をシミュレーションで求 めた結果を示している。
[0105] この液晶表示装置は、透明基板 (例えばガラス基板) laと透明基板 la上に形成さ れた画素電極 11を備える TFT基板 1と、透明基板 (例えばガラス基板) 2aと透明基 板 2a上に形成された対向電極 12を備える CF基板 2と、 TFT基板 1と CF基板 2との 間に設けられた垂直配向型液晶層 3とを有している。 TFT基板 1および CF基板 2の 液晶層 3側の表面には垂直配向膜 (不図示)が設けられており、それぞれ図中に矢 印、矢先および矢尻の記号で示すようにプレチルト方向を規制するように配向処理さ れている。
[0106] まず、図 6を参照する。図 6は、例えば図 2 (b)の液晶ドメイン Dのドメインライン DL4 が形成されるエッジ部を含む左側半分の方位角が 0° の線に沿った断面図に対応 する。図 6に示した画素電極 11のエッジ部において、液晶ドメインの中央付近 (層面 内および厚さ方向における中央付近)の液晶分子 3a (チルト方向 135° )が、画素電 極 11のエッジ部に生成される斜め電界による配向規制力(方位角方向が 0° )によつ て、画素電極のエッジ部に近づくにつれて捩れている様子が分かる。この捩れ角はこ こでは 135° であり、 90° を超えているので、この捩れの領域における液晶層のリタ デーシヨン変化に起因して、図示したように相対透過率が複雑に変化し、画素領域 内に(画素電極のエッジよりも内側に)相対透過率が極小値をとるドメインラインが形 成される。図 6中の点線で囲んだ領域に見られる透過率が極小値をとる部分力 例え ば、図 2 (b)中の液晶ドメイン D中のドメインライン DL4に対応する。
[0107] これに対し、図 7に示すようにドメインラインが形成されない画素電極エッジ部にお ける液晶分子の捩れ角(液晶ドメインの中央付近の液晶分子と画素電極 11のエッジ 部に生成される斜め電界によって配向規制された液晶分子のチルト方向の差)は 90 ° 以下であり、画素領域の中央部から端部に向かうにつれて相対透過率は単調に 減少し、画素領域内で相対透過率が極小値をとることなく画素領域外で極小となる( 図 7の左端)。図 7は、例えば図 2 (b)の液晶ドメイン Dのドメインライン DL4が形成さ れな 、エッジ部を含む下側半分の方位角が 90° の線に沿った断面図に対応する。
[0108] また、図 8および図 9に示すように、画素領域内で液晶ドメインが隣接する境界領域 においても液晶分子の捩れ角は 90° 以下なので、相対透過率の変化は単純で、一 つの極小値をとる。図 8は、例えば、図 2 (b)における液晶ドメイン Dと Aとの境界領域 の方位角が 0° の線に沿った断面図に対応し、図 9は、例えば、図 4 (b)における液 晶ドメイン Bと Aとの境界領域の方位角が 0° の線に沿った断面図に対応する。 [0109] 図 10に、画素領域 10を方位角 45° 方向から観察したときの透過強度の分布を示 す。図 10に示す 4つの透過強度分布を示すグラフは、それぞれ、図中 I〜IVで示し た線に沿った透過強度分布を示している。また、それぞれのグラフにおいて、極角が 0° (正面)、 45° 、60° の 3つの視角方向における結果を示している。
[0110] グラフ Iの左端、グラフ IIの右端、グラフ IIIの右端、グラフ IVの左端に現れるドメイン ラインでは、極角によって、透過強度の振る舞いが大きく異なっていることがわかる( 特にグラフ ΠΙにおいて顕著)。すなわち、透過強度が最小となる位置が極角によって 異なっており、例えば、正面 (極角 0° )で極小になっているにも関わらず、極角 45° や 60° においては極大になっている。このように、極角によって透過強度が異なると 、視角特性が低下する。特に、「白浮き」と呼ばれる γ特性の視角依存性が低下する
[0111] 上述した画素電極のエッジ部に形成されるドメインラインの少なくとも一部を選択的 に遮光する遮光部を設けることによって、視角特性の低下を抑制することができる。ま た、このエッジ部に形成されるドメインラインは、液晶層の中央付近の液晶分子のチ ルト方向が電極エッジに対して上述の配置関係にある場合に生成されるので、配向 分割構造を有しない、通常の画素領域においても生成され得る。従って、画素電極 のエッジ部に形成されるドメインラインに起因する視角特性の低下を抑制するために は、配向分割構造の有無に関わらず、ドメインラインの少なくとも一部を選択的に遮 光する遮光部を設けることが好まし 、。
[0112] 一方、画素領域の中央部に形成される暗いライン (たとえば十字状のライン CL1) は必ずしも配向不良では無ぐ積極的に遮光する必要は無いが、画素領域内に遮光 性の部材を配置する必要がある場合には、この暗いラインに重なるように配置すると 、画素の有効開口率 (光の利用効率)を向上させることができる。
[0113] 以下に、遮光部の好ましい形態を具体的に説明する。以下に説明する遮光部は、 それぞれ単独で、また、他の遮光部と組み合わせて用いることができる。
[0114] TFT型液晶表示装置は、遮光性部材を備えて 、る。例えば、 TFT基板は、ゲート ノ スライン、ソースバスライン、ドレイン引出し配線および補助容量配線 (以下、「CS バスライン」という。)を有している。また、 CF基板は、画素領域に対応して設けられる カラーフィルタの周辺を遮光するためのブラックマトリクスを有して 、る。これらの遮光 部材を用いて、上述したドメインラインの少なくとも一部を選択的に遮光する遮光部を 形成すればよい。また、画素領域内に配置する遮光部材による光の利用効率の低減 を抑制するために、隣接する液晶ドメイン間に形成される喑 ヽ領域に遮光部材を配 置することが好ましい。
[0115] 以下に、本発明による液晶表示装置の画素構造の例を示す。以下の図においては 、実質的に同じ機能を有する部材は同じ参照符号で示し、重複する説明を省略する 。また、行および列を有するマトリクス状に配列された複数の画素の内、 m行 n列目の 画素の構造を説明する。なお、行はゲートバスライン (走査線)に沿った画素の配列 に対応し、列はソースバスライン (信号線)に沿った画素の配列に対応する。典型的 には、行は表示面の水平方向であり、列は表示面の垂直方向である。
[0116] 例えば、図 11に示すように、ソースバスライン 114、 CSノ スライン 113、ドレイン引 出し配線 117、ゲートバスライン 112の少なくとも一部を用いて遮光部を構成すること ができる。以下、 m本目のゲートバスライン 112をゲートバスライン 112 (m)と表記し、 n本目のソースバスライン 114をソースバスライン 114 (n)と表記することにする。
[0117] 図 11に示した画素領域は、特開 2004-62146号公報に記載されている画素分割 構造の 1つの副画素を示している。以下では、上下の 2つの副画素領域の内、副画 素電極 11 laを備える上側の副画素領域の構造を主に説明する。
[0118] 副画素電極 111aは、 TFT116aのドレイン電極 116Dに接続されており、榭脂層か らなる層間絶縁膜 (不図示)を介して、ソースバスライン 114、ゲートバスライン 112お よび CSバスライン 113と一部が重なるように、配置されている。また、副画素電極 11 laの中央部には、ドレイン引出し配線 117の延設部 117Eと CSバスライン 113の延 設部 113Eとこれらの間の絶縁層(例えばゲート絶縁層)によって構成される補助容 量 (CS)が形成されている。
[0119] ここに例示する画素分割構造の特徴は、以下の点にある。
[0120] 従来の画素電極が 2つの副画素電極に分割されており、それぞれの副画素電極は 、対応する TFT116aおよび 116b (合計 2つの TFT)を介して共通のソースバスライ ン 114に接続されて!、る。 2つの TFT116aおよび 116bは共通のゲートバスライン 11 2で ONZOFF制御される。 2つの TFT116aおよび 116bは、半導体層 116m、ソー ス電極 116S、ゲート電極(ゲートバスライン 112)を共有しており、各 TFTのドレイン 電極 116Dはそれぞれ対応する副画素電極に電気的に接続されて ヽる。 TFT116a のドレイン電極 116Dと副画素電極 11 laとの電気的な接続は、ドレイン電極 116Dか ら延設されているドレイン引出し配線 117と副画素電極 11 laとを層間絶縁膜 (図 11 中不図示、例えば図 15の参照符号 118a参照)に形成されたコンタクトホール 119内 で接続することによって行われる。
[0121] 各副画素電極 (上側副画素電極 11 la、下側副画素電極は省略)は、液晶層と、液 晶層を介してこれらに対向する対向電極 (共通電極)とで液晶容量を構成している。 各副画素領域に対応する液晶容量に電気的に並列にそれぞれ補助容量 (CS)が形 成されている。上側副画素についてみると、補助容量を構成する一方の電極 (補助 容量電極)は、副画素電極 11 laと同じ TFT116aのドレイン 116Dに接続されたドレ イン引出し配線 117の延設部 117Eで構成され、他方の電極 (補助容量対向電極) は、上側副画素に対して設けられた CSバスライン 113の延設部 113Eによって構成 されている。下側副画素についても同様に、補助容量を構成する一方の電極 (補助 容量電極)は、下側の副画素電極 (不図示)と同じ TFT116bのドレイン (不図示)に 接続されたドレイン引出し配線 (不図示)の延設部 (不図示)で構成され、他方の電極 (補助容量対向電極)は、下側副画素に対して設けられた CSバスライン (不図示)の 延設部(不図示)によって構成されて!ヽる。
[0122] CSバスライン 113は、 2つの副画素に対して、互いに電気的に独立に設けられて V、る。一方の副画素に属する補助容量に CSバスライン 113から供給される補助容量 対向電圧が、例えば、 TFT116aがオフにされた後上昇する場合、他方の副画素に 属する補助容量に CSバスライン 113から供給される補助容量対向電圧は、 TFT11 6bがオフにされた後下降する。このように、 TFTがオフにされた後に各副画素に属 する補助容量の補助容量対向電圧の変化を異ならせる(変化の大きさおよび変化の 方向の少なくとも一方を異ならせる)ことによって、 2つの副画素の液晶層に印加され る実効電圧が異なり、それによつて、 2つの副画素は、ソースバスライン 114から供給 された表示信号電圧に対して、 2つの異なる輝度(一方は高輝度、他方は低輝度)を 呈し、 γ特性の視角依存性を改善することができる。
[0123] ここに示した副画素領域は、先の画素領域 10と同様の配向分割構造を有し、副画 素電極のエッジ部 EG1〜EG4の近傍にドメインラインが形成されるとともに、副画素 領域の中央に十字状の喑 、ラインが形成される。
[0124] エッジ部 EG1および EG3の近傍に形成されているドメインラインの少なくとも一部を 選択的に遮光する遮光部は、ソースバスライン 114をその長手方向(垂直方向)に交 差する方向(副画素電極側)に屈曲し、屈曲した部分を用いて形成されている。ソー スバスライン 114の幅を部分的に太くしても良いが、浮遊容量が増大する場合がある ので、屈曲させることが好ましい。
[0125] また、エッジ部 EG2に形成されるドメインラインは、副画素電極 11 laまたはゲートバ スライン 112の幅を部分的に大きくする(例えば、図 11中の副画素電極 11 laの幅広 部 111Eを設ける)、あるいは、ゲートバスライン 112をその長手方向(水平方向)に交 差する方向に屈曲させることによって、副画素電極 11 laのエッジ部とゲートバスライ ン 112との重なり幅を大きくし、遮光する。
[0126] また、エッジ部 EG4に形成されるドメインラインは、副画素電極 11 laまたは CSバス ライン 113の幅を部分的に大きくする(例えば、図 11中の CSバスライン 113の幅広 部 113Aを設ける)、あるいは、 CSバスライン 113をその長手方向(水平方向)に交差 する方向に屈曲させることによって、副画素電極 11 laのエッジ部と CSバスライン 11 3との重なり幅を大きくし、遮光する。
[0127] 液晶ドメインの境界領域に形成される喑 、領域の少なくとも一部を選択的に遮光す る遮光部は、 CSバスライン 113の延設部 113eおよび 113E、ならびに、ドレイン引出 し配線 117およびその延設部 117Eによって形成されている。このように、画素内に 設ける補助容量 (CS)を遮光部として用いることにより、光の利用効率の余分な低下 が抑制される。
[0128] さらに、図 12に示すように、 CSバスライン 113の延設部 113eおよび 113Eで画素 領域の中央に形成される十字の喑 、ラインを遮光するとともに、 CSバスライン 113の 延設部 113E1および 113E2をさらに設け、それぞれエッジ部 EG 1およびエッジ部 E G2に形成されるドメインラインを遮光しても良 、。 [0129] また、上述した副画素領域に、図 3 (a)に示したような画素領域 30と同様の配向分 割構造を形成した場合には、例えば、図 13に示す構成を採用することが出来る。
[0130] エッジ部 EG4の水平部分に形成されるドメインライン(図 3 (a)中の DL4 (H) )は、副 画素電極 11 laの幅を部分的に大きくすることによって延設部 111E1を形成し、 CS バスライン 113と副画素電極 11 laとの重なり幅を大きくして遮光する。エッジ部 EG2 の水平部分に形成されるドメインライン(図 3 (a)中の DL2 (H) )は、副画素電極 11 la の幅を部分的に大きくすることによって延設部 111E2を形成し、ゲートバスライン 11 2と副画素電極 11 laとの重なり幅を大きくして遮光する。エッジ部 EG2およびエッジ 部 EG4の垂直部分(図 3 (a)中の DL2 (V)および DL4 (V) )は、先の例と同様にソー スバスライン 114の屈曲部によって遮光する。
[0131] また、画素領域 10と同様の配向分割構造を有する場合、液晶ドメインの境界領域 に形成される暗い領域を遮光する遮光部を、図 14に示すように、ドレイン引出し配線 117の延設部117Eぉょび117E'によって形成しても良い。なお、延設部 117Eは C Sバスライン 113と対向し、補助容量を形成している。
[0132] 図 15に図 14中の 15A—15A'線に沿った断面図を示すように、ドレイン引出し配 線 117はゲートバスライン 112との間にゲート絶縁膜 115を介しており、別層なので、 ドレイン引出し配線 117とゲートバスライン 112との間のリークが発生しにくいという利 点がある。ここでは、画素分割構造を有しない通常の画素を例示したが、画素分割構 造に適用した場合、例えば図 14中の上側のゲートバスライン 112に代わって CSバス ライン 113が配置されて 、る場合にも、図示したようにドレイン引出し配線 117の延設 部 117Eおよび 117E'によって中央の十字のラインに対応する遮光部を形成しても よい。 CSバスライン 113は、ゲートバスライン 112と同じ導電層(典型的には金属層) で形成されるので、ドレイン引出し酉己線 117と CSバスライン 113との間のリーク不良 は発生しにくい。すなわち、十字の遮光部を構成する垂直方向の遮光部を水平方向 のエッジ部を遮光するための遮光部と別層で形成することが好まし 、。このような構 成を採用すると、特許文献 1の図 60に記載されている構成よりもリーク不良の発生を 抑帘 Uすることができる。
[0133] 図 15に示した画素構造においては、画素電極 111とソースバスライン 114との間に 感光性榭脂などから形成される比較的厚 ヽ層間絶縁膜 118aが形成されて ヽる。従 つて、図 14に示したように画素電極 111 (または副画素電極 111a)とソースバスライ ン 114 (およびゲートバスライン 112)とを重ねても、画素電極 111とソースバスライン 1 14との間に形成される容量を十分に小さくできるので、画素電極 111の電圧がこの 容量を介してソースバスライン 114の電圧 (信号電圧)の影響を受けて変動することが ない。すなわち、図 15に示した画素構造を採用することによって、画素電極 111をソ ースバスライン 114と重ねることによって、画素開口率を増大させることが可能となる。
[0134] また、図 16および図 17に示すように、 CSノ スライン 113の延設部 113eによって、 エッジ部に形成されるドメインラインおよび画素中央部に形成される十字の暗いライ ンを遮光してもよい。なお、例示した構成は、画素電極 111とソースノ スライン 114と の間に設けられる層間絶縁膜 118bとして SiNなど力も形成される比較的薄い無機 絶縁膜を用いている。この構成では、画素電極 111の電圧がソースバスライン 114の 電圧 (信号電圧)の影響を受けて変動することを抑制するために、画素電極 111とバ スライン 114とは重ならないように配置されている。この構成は、画素開口率の観点か らは不利であるが、層間絶縁膜 118bとして比較的薄い無機絶縁膜を用いることが出 来るので、製造プロセスを簡略ィ匕できるメリットがある。
[0135] さらに、図 18に示すように、ドレイン引出し配線 117を延設することによって、エッジ 部に形成されるドメインラインおよび画素中央部に形成される十字の暗いラインを遮 光してもよい。上述したように、ドレイン引出し配線 117は、ゲートバスライン 112およ び CSバスライン 113とは別の層で形成されるので、これらとの間のリーク不良が発生 しにくい。ここでは画素分割構造の副画素領域を例示した力 通常の画素領域につ いても同様に適用できる。
[0136] 上記では、 Vヽずれも TFT基板に設けられた遮光部材を用いて遮光部を形成した例 を示した力 必要に応じて、遮光部の一部または全部を CF基板側に遮光部を設け ても良い。例えば、図 19に示すように、垂直方向に平行なエッジ部に形成されるドメ インラインを遮光する遮光部や、画素の中央部に形成される十字の暗いラインを遮光 する遮光部など、比較的幅の広い遮光部は CF基板のブラックマトリクス層 132を用 いて形成しても良い。ここでは、画素の中央部に形成される十字の暗いラインの横方 向に延びる部分の全てをブラックマトリクス層 132の延設部 132Eで遮光した例を示 しているが、その一部をブラックマトリクス層 132で遮光し、他の部分をドレイン引出し 配線 117で遮光してもよ 、し、他の上述した遮光構造と適宜組み合わせることができ る。
[0137] また、光配向処理のための光照射 (典型的には UV照射)は、少なくとも上記遮光 部を設ける基板に行うことが好ましい。上記遮光部は配向分割構造における配向乱 れが生じる領域に設けられるので、配向分割構造を規定するための光照射を行った 基板と反対側の基板に遮光部を設けると、基板を貼り合わせるときのァライメント誤差 を考慮する必要が生じ、大きな遮光部を形成する必要が生じるので好ましくない。ま た、光照射は、基板上の凹凸の影響を受けない方向から行うことが好ましい。例えば 、 CF基板に光照射を行う場合には、列方向から光照射を行えば、行間に配置されて V、るブラックマトリクスによって影となる領域が形成されな!、。
[0138] (交差領域)
図 20に示すように、上述したエッジ部に形成されるドメインラインと、隣接する液晶 領域の境界領域とが交差する領域 ODは、特に、液晶分子の配向が不安定で、応答 速度が遅いという問題があることを見出した。従って、動画表示特性を重視する用途 などでは、この交差領域 ODにおいて液晶分子の配向が乱れる領域を遮光すること が好ましい。
[0139] 例えば、図 21に示すように、上述したエッジ部に形成されるドメインラインおよび隣 接する液晶領域の境界領域を遮光するための遮光部から突き出た延設部 TR1、 TR 2、 TR3および TR4を設けることによって、交差領域 ODを遮光することが好ましい。 延設部 TR1および TR3は CSバスライン延設部 113Eから、延設部 TR2はゲートバス ライン 112から、延設部 TR4は CSバスライン 113から延設されている。もちろん、必 要に応じて、交差領域 ODだけを選択的に遮光するようにしてもよい。ここでは、略三 角形の延設部 TR1〜TR4を例示した力 延設部の形状はこれに限られない。但し、 光の利用効率(開口率)を必要以上に低下させないような形状が好ましぐ例示した 略三角形が好ましい。
[0140] (部分的な遮光) 上述した実施形態の液晶表示装置にぉ ヽては、ドメインラインが形成されるエッジ 部のほぼ全てを遮光する遮光部を設けた例を示した力 これに限られない。視野角 特性の低下を抑制するという観点からは、例示したように、ドメインラインの全てを遮 光するように遮光部を設けることが好ま 、が、遮光部を設けると光の利用効率 (画 素の有効開口率)が低下するので、視野角特性と光の利用効率とのバランスを考慮 して、遮光するエッジ部の一部を遮光すれば良い。
[0141] 特に、基板法線方向から見たときに画素電極とソースバスラインとが重ならない構 成 (例えば図 17の断面図参照)を採用すると、画素開口率が小さくなるので、画素開 口率の観点からは、遮光する領域はできるだけ小さくすることが好ましい。図 15に例 示したように、画素電極 111とソースバスライン 114との間に感光性榭脂など力も形成 される比較的厚い層間絶縁膜 118aを設けると、図 14、図 18、図 19および図 21に示 したように画素電極 111 (または副画素電極 11 la)とソースバスライン 114 (およびゲ ートバスライン 112)とを重ねても、画素電極 111 (または副画素電極 11 la)とソース バスライン 114 (およびゲートバスライン 112)との間に形成される容量を十分に小さく できるので、画素電極 111 (または副画素電極 11 la)の電圧がこの容量を介してソー スバスライン 114の電圧 (信号電圧)の影響を受けて変動することがない。従って、画 素電極 111 (または副画素電極 11 la)をソースバスライン 114 (およびゲートバスライ ン 112)と重ねることによって、画素開口率を増大させることが可能となる。
[0142] 一方、図 17に断面図を示したように、画素電極 111がソースバスライン 114 (および ゲートバスライン 112)と重ならない構成を採用すると、層間絶縁膜 118bとして SiN などカゝら形成される比較的薄 、無機絶縁膜を用いることが出来るので、製造プロセス を簡略ィ匕できるメリットがある。但し、このように画素電極 111がソースノ スライン 114と 重ならない構成を採用すると、画素開口率が小さくなるので、表示輝度の観点からは 、遮光部を出来るだけ小さくすることが好ましい。
[0143] 上述したように、また、視野角特性の均一さの観点からは、 4つの液晶ドメインの画 素領域内に占める面積は互いに略等しくすることが好ましい。また、上述したような画 素分割を採用する場合には、例えば、図 11〜図 14、図 16、図 18、図 19および図 2 1に示すように、副画素領域ごとに 4つの液晶ドメインの面積を略同一にすることが好 ましい。
[0144] ここで、図 22〜図 25を参照しながら、画素分割構造を有する場合の画素構造の好 ましい例を説明する。
[0145] 図 19に示した画素構造(図は副画素のみを示している)では、 4つの液晶ドメインが ほぼ同じ面積となっている力 CSバスライン 113によって遮光される領域が大きぐ 光の利用効率(開口率:表示に利用される面積の比率)が小さい。以下に、 4つの液 晶ドメインの面積を互いにほぼ等しくできる画素構造の例を説明する。
[0146] 図 22は、本発明による液晶表示装置の画素構造の更に他の例を示す模式図であ り、図 23は、本発明による液晶表示装置の画素構造の更に他の例を示す模式図で あり、図 24は、図 23の 24A—24A,線に沿った模式的な断面図であり、コンタクト部 の断面構造を示す図である。図 25は本発明による液晶表示装置の画素構造の更に 他の例を示す模式図である。なお、図 22および図 25に示す画素構造におけるコン タクト部の断面構造は、図 24に示す断面構造と同じである。
[0147] 図 22に示すように、補助容量を形成していない部分の CSバスライン 113の幅を狭 くする、言い換えると、補助容量を形成する部分の CSバスライン 113の幅を選択的 に広くした CSバスライン延設部 113Eを設けることによって、開口率を増大することが 出来る。し力しながら、図 22に示す画素構造を採用すると、 4つの液晶ドメインの面 積を同じにすることが難しくなる。
[0148] また、図 22に示す補助容量は、図 24に示す断面構造と同じ断面構造を有しており 、下層から (すなわち、ガラス基板側から)、 CSバスラインの延設部 113E (補助容量 対向電極として機能する)、ゲート絶縁膜 115、半導体層(i層 116mと n+層 116ηとの 積層構造)、ドレイン引出し配線 117の延設部 117E (補助容量電極として機能する) で構成されており、この上に形成されているパッシベーシヨン膜 118cおよび層間絶 縁膜 118dに形成されたコンタクトホールにおいて、ドレイン引出し配線 117と副画素 電極 11 laとのコンタクト部 119が形成されている。ここで、半導体層(i層 116mZn+ 層 116η)は、 TFTl 16aおよび 116bを構成する半導体層と同じ層で形成されており 、同じプロセスでパターユングされる。なお、図 22では TFTl 16aおよび 116bを構成 する半導体層として i層 116mを図示して!/、るが、ソース電極 116Sと接触するソース 領域およびドレイン電極 116Dと接触するドレイン領域には n+層 116ηが形成されて いることは言うまでもない。
[0149] 補助容量対向電極 (CSバスライン延設部 113E)と補助容量電極 (ドレイン引出し 配線延設部 117Ε)との間に上記半導体層 116mおよび 116ηを設ける構成を採用 すると、図 24からわ力るように、半導体層の厚さ分だけコンタクトホールが浅くなるの で、副画素電極 (ΙΤΟなどの透明導電層) 11 laが段差によって切断される不良の発 生を低減することができる。
[0150] し力しながら、図 22に示す構成を採用すると、ソースバスライン 114に沿って上下 方向(列方向)に隣接する 2つの画素に属する副画素の補助容量 (上方の画素内の 下側の副画素の補助容量と下方の画素内の上側の副画素の補助容量)が互いに近 接するので、半導体層のパターユング不良がおきて、 n+層 116ηが短絡すると、ノー マリーブラックモードの液晶表示装置においては輝点欠陥となる。
[0151] この問題を回避するためには、図 23に示す画素構造のように、補助容量配線 113 の延設部 113Eが、 4つの液晶ドメインのそれぞれが他の液晶ドメインと隣接する境界 領域の少なくとも一部を選択的に遮光する中央遮光部の少なくとも一部を構成し、ド レイン引出し配線 117と副画素電極 11 laとのコンタクト部 119が形成される絶縁層に 設けられたコンタクトホールが、中央遮光部の液晶層側に形成される構成とすること が好ましい。より具体的には、補助容量配線 113の延設部 113Eおよびドレイン引出 し配線 117の延設部 117Eは、互いに重なり、且つ、互いに異なる方向に延びる 2以 上の矩形部分を有しており、この矩形分は補助容量を構成するとともに、中央遮光部 を構成している。
[0152] 特に、中央遮光部が、例示するように、互いに異なる方向に延びる 2以上の矩形部 分を有する場合、コンタクトホール (コンタクト部 119)は矩形部分の交差部に形成す ることが好ましい。また、コンタクトホールが 2行 2列のマトリクス状に配置された 4つの 液晶ドメインが形成する十字状の境界領域の中心に形成されるように、補助容量配 線 113の延設部 113Eおよびドレイン引出し配線 117の延設部 117Eの矩形部分を 設けることが好ま 、。コンタクトホールの段差の影響を受けて液晶分子の配向に乱 れが生じる領域を、十字状の境界線の中心に設けることによって、所望の配向状態 が得られない領域の増加を抑制することができるとともに、中央遮光部の交差部によ つて効果的に遮光できるので、表示品位の低下を抑制できる。
[0153] 図 23に示す様な構成を採用すると、図 22との比較力も明らかなように、列方向に隣 接する異なる画素に属する 2つの副画素の補助容量に設けられたコンタクトホールの 間隔が広くなるので、補助容量に半導体層(116mおよび 116η)を残した構成を採 用しても、これらの半導体層の η+層 116ηの短絡の発生を防止することが出来る。ま た、 4つの液晶ドメインの面積を比較的同じにし易い。
[0154] なお、開口率を向上させるために、図 25に示す画素構造を採用することもできる。
図 25に示す画素にお 、ては、補助容量配線 113の延設部 113Εおよびドレイン引 出し配線 117の延設部 117Eは、互いに重なり、且つ、列方向に延びる矩形部分だ けを有し、中央遮光部は、列方向に延びる矩形部分を含み、コンタクトホールは、列 方向に延びる矩形部分の液晶層側に形成されている。すなわち、図 23における行 方向に延びる矩形部分を有していないので、その分だけ開口率が高い。なお、図 23 の画素に比べて補助容量の面積力 、さくなる点に留意する必要がある。図 25の構 成を採用する場合においても、コンタクトホールは 2行 2列のマトリクス状に配置される 4つの液晶ドメインが形成する十字状の境界領域の中心に形成することが好ましい。 産業上の利用可能性
[0155] 本発明による液晶表示装置は、テレビジョン受像機などの高品位の表示が求めら れる用途に好適に用いられる。

Claims

請求の範囲
[1] 垂直配向型の液晶層と、
前記液晶層を介して互いに対向する第 1基板および第 2基板と、
前記第 1基板の前記液晶層側に設けられた第 1電極および前記第 2基板の前記液 晶層側に設けられた第 2電極と、
前記液晶層に接するように設けられた少なくとも 1つの配向膜とを有し、 画素領域は、前記第 1電極と前記第 2電極との間に電圧が印加されたときの前記液 晶層の層面内および厚さ方向における中央付近の液晶分子のチルト方向が予め決 められた第 1方向である第 1液晶ドメインと、第 2方向である第 2液晶ドメインと、第 3方 向である第 3液晶ドメインと、第 4方向である第 4液晶ドメインとを有し、前記第 1方向、 第 2方向、第 3方向および第 4方向は、任意の 2つの方向の差が 90° の整数倍に略 等しい 4つの方向であり、かつ、前記第 1液晶ドメイン、第 2液晶ドメイン、第 3液晶ドメ インおよび第 4液晶ドメインは、それぞれ他の液晶ドメインと隣接し、かつ、 2行 2列の マトリクス状に配置されており、
前記第 1基板は、 TFT、ゲートバスライン、ソースバスライン、ドレイン引出し配線、 補助容量配線、および前記ドレイン引出し配線と前記第 1電極との間に設けられた絶 縁層をさらに有し、
前記補助容量配線の延設部が、前記第 1液晶ドメイン、第 2液晶ドメイン、第 3液晶 ドメインおよび第 4液晶ドメインのそれぞれが他の液晶ドメインと隣接する境界領域の 少なくとも一部を選択的に遮光する中央遮光部の少なくとも一部を構成しており、 前記ドレイン引出し配線と前記第 1電極とのコンタクト部が形成される前記絶縁層に 設けられたコンタクトホールが、前記中央遮光部の前記液晶層側に形成されている、 液晶表示装置。
[2] 前記補助容量配線の前記延設部および前記ドレイン引出し配線の延設部は、互い に重なり、且つ、互いに異なる方向に延びる 2以上の矩形部分を有し、前記中央遮 光部は、前記互いに異なる方向に延びる 2以上の矩形部分を含み、前記コンタクトホ ールは、前記 2以上の矩形部分の交差部の前記液晶層側に形成されている、請求 項 1に記載の液晶表示装置。
[3] 前記補助容量配線の前記延設部および前記ドレイン引出し配線の延設部は、互い に重なり、且つ、列方向に延びる矩形部分だけを有し、前記中央遮光部は、前記列 方向に延びる矩形部分を含み、前記コンタクトホールは、前記列方向に延びる矩形 部分の前記液晶層側に形成されている、請求項 1に記載の液晶表示装置。
[4] 前記コンタクト部は、前記 2行 2列のマトリクス状に配置された前記第 1液晶ドメイン、 第 2液晶ドメイン、第 3液晶ドメインおよび第 4液晶ドメインが形成する十字状の境界 領域の中心に形成されている、請求項 1から 3のいずれかに記載の液晶表示装置。
[5] 前記中央遮光部を構成する前記補助容量配線の前記延設部の前記液晶層側に は、ゲート絶縁層および半導体層が形成されており、前記コンタクト部は前記半導体 層の前記液晶層側に形成されている、請求項 1から 4のいずれかに記載の液晶表示 装置。
[6] 前記画素領域は、それぞれが対応する TFTを介して前記ソースバスラインカ 供 給されるある信号電圧に対して、前記液晶層に互いに異なる電圧が印加される 2つ の副画素領域を含み、
前記 2つの副画素領域のそれぞれが、前記第 1液晶ドメイン、第 2液晶ドメイン、第 3 液晶ドメイン、第 4液晶ドメインおよび前記中央遮光部を有し、
前記 2つの副画素領域のそれぞれに対応して、前記第 1電極、前記 TFT、前記ドレ イン電極引出し配線および補助容量配線が設けられており、且つ、前記ドレイン電極 引き出し配線の延設部と、前記補助容量配線の延設部と、これらの間に設けられた 絶縁層および半導体層とを備える補助容量 (CS)が設けられており、
前記補助容量の前記半導体層は、前記 TFTの半導体層と同じ層から形成されて V、る、請求項 1から 5の 、ずれかに記載の液晶表示装置。
[7] 前記画素領域における前記第 1液晶ドメイン、第 2液晶ドメイン、第 3液晶ドメインお よび第 4液晶ドメインの面積は互いに略等し 、、請求項 1から 6の 、ずれかに記載の 液晶表示装置。
PCT/JP2007/057577 2006-04-04 2007-04-04 液晶表示装置 WO2007114471A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800118139A CN101416105B (zh) 2006-04-04 2007-04-04 液晶显示装置
US12/295,672 US8334954B2 (en) 2006-04-04 2007-04-04 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006103222 2006-04-04
JP2006-103222 2006-04-04

Publications (1)

Publication Number Publication Date
WO2007114471A1 true WO2007114471A1 (ja) 2007-10-11

Family

ID=38563732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057577 WO2007114471A1 (ja) 2006-04-04 2007-04-04 液晶表示装置

Country Status (3)

Country Link
US (1) US8334954B2 (ja)
CN (5) CN102116964B (ja)
WO (1) WO2007114471A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181121A (ja) * 2008-01-29 2009-08-13 Samsung Electronics Co Ltd 液晶表示装置
EP2363744A1 (en) * 2006-04-24 2011-09-07 Sharp Kabushiki Kaisha Liquid crystal display device
CN105892175A (zh) * 2016-07-01 2016-08-24 上海中航光电子有限公司 显示面板和显示装置
US10895791B2 (en) 2018-03-29 2021-01-19 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device
JP2021009407A (ja) * 2007-07-06 2021-01-28 株式会社半導体エネルギー研究所 液晶表示装置
US20220107537A1 (en) * 2019-04-30 2022-04-07 Samsung Display Co., Ltd. Display device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7995177B2 (en) 2005-06-09 2011-08-09 Sharp Kabushiki Kaisha Liquid crystal display device
JP4651677B2 (ja) * 2005-09-30 2011-03-16 シャープ株式会社 液晶表示装置
JP5036354B2 (ja) * 2006-04-04 2012-09-26 東京エレクトロン株式会社 成膜装置の排気系構造、成膜装置、および排ガスの処理方法
CN102116964B (zh) 2006-04-04 2015-07-29 夏普株式会社 液晶显示装置
CN101490609B (zh) * 2006-07-14 2011-04-06 夏普株式会社 液晶显示装置
US8319926B2 (en) * 2006-12-05 2012-11-27 Sharp Kabushiki Kaisha Liquid crystal display device
JPWO2011062165A1 (ja) * 2009-11-19 2013-04-04 シャープ株式会社 液晶表示装置およびその製造方法
JP5173038B2 (ja) * 2009-12-16 2013-03-27 シャープ株式会社 液晶表示装置
JP5906043B2 (ja) * 2011-09-01 2016-04-20 株式会社ジャパンディスプレイ 液晶表示装置
JP5906138B2 (ja) * 2012-05-29 2016-04-20 株式会社ジャパンディスプレイ 液晶表示装置
US20140268273A1 (en) * 2013-03-15 2014-09-18 Pixtronix, Inc. Integrated elevated aperture layer and display apparatus
JP6698289B2 (ja) * 2014-07-31 2020-05-27 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 液晶表示装置
CN105158983B (zh) * 2015-09-29 2017-06-13 南京中电熊猫液晶显示科技有限公司 一种液晶uv2a模式的配向方法
CN106125408A (zh) * 2016-08-31 2016-11-16 京东方科技集团股份有限公司 阵列基板、显示装置和显示装置的驱动方法
CN107272265A (zh) * 2017-06-26 2017-10-20 南京中电熊猫平板显示科技有限公司 液晶显示装置
CN207408720U (zh) 2017-11-01 2018-05-25 京东方科技集团股份有限公司 一种阵列基板和显示装置
JP6522182B1 (ja) * 2018-02-21 2019-05-29 シャープ株式会社 液晶表示装置
CN112041738A (zh) * 2018-03-30 2020-12-04 堺显示器制品株式会社 液晶显示面板
US11221522B2 (en) * 2018-08-24 2022-01-11 Sharp Kabushiki Kaisha Liquid crystal panel
WO2020142877A1 (zh) * 2019-01-07 2020-07-16 深圳市柔宇科技有限公司 Oled显示结构及电子设备
JP6944476B2 (ja) * 2019-02-26 2021-10-06 シャープ株式会社 表示装置
US11256142B2 (en) * 2019-05-29 2022-02-22 Sakai Display Products Corporation Liquid crystal display apparatus
CN110196518A (zh) * 2019-06-10 2019-09-03 成都中电熊猫显示科技有限公司 液晶面板的配向方法、液晶面板及显示装置
US11994775B2 (en) * 2019-08-23 2024-05-28 Jsr Corporation Liquid crystal display device
CN113934032B (zh) * 2020-06-29 2023-01-17 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN112748614B (zh) * 2021-01-04 2022-11-29 成都中电熊猫显示科技有限公司 显示面板和液晶显示器
CN115343872A (zh) * 2021-05-12 2022-11-15 瀚宇彩晶股份有限公司 显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133429A (ja) * 1997-02-27 1999-05-21 Fujitsu Ltd 液晶表示装置
JP2000002889A (ja) * 1998-06-16 2000-01-07 Mitsubishi Electric Corp 液晶表示装置
JP2001194671A (ja) * 1998-11-27 2001-07-19 Sanyo Electric Co Ltd 液晶表示装置
JP2004004460A (ja) * 2002-04-15 2004-01-08 Fujitsu Display Technologies Corp 液晶表示装置用基板及びそれを備えた液晶表示装置
JP2004062146A (ja) * 2002-06-06 2004-02-26 Sharp Corp 液晶表示装置
JP2004318086A (ja) * 2003-03-31 2004-11-11 Fujitsu Display Technologies Corp 薄膜トランジスタ基板およびそのリペア方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US193625A (en) * 1877-07-31 Improvement in hydraulic railroad-signals
US227429A (en) * 1880-05-11 Last-block fastener
US38948A (en) * 1863-06-23 Improvement in cleaning, hulling, and grinding grain
US222419A (en) * 1879-12-09 Improvement in harvesters
US5610739A (en) 1994-05-31 1997-03-11 Matsushita Electric Industrial Co., Ltd. Liquid crystal display unit with a plurality of subpixels
JPH08160454A (ja) 1994-12-09 1996-06-21 Sanyo Electric Co Ltd 液晶表示装置
JPH08179341A (ja) 1994-12-22 1996-07-12 Matsushita Electric Ind Co Ltd 液晶表示装置およびその駆動方法
JPH09281497A (ja) 1996-04-11 1997-10-31 Toshiba Corp 液晶表示装置
JPH10161102A (ja) 1996-11-29 1998-06-19 Casio Comput Co Ltd 液晶表示装置
US6067140A (en) * 1997-03-03 2000-05-23 Lg Electronics Inc. Liquid crystal display device and method of manufacturing same
JPH10301112A (ja) 1997-04-24 1998-11-13 Sanyo Electric Co Ltd 反射型液晶表示装置
JPH1184421A (ja) 1997-09-10 1999-03-26 Sharp Corp アクティブマトリクス基板及びそれを用いた液晶パネル
KR100354904B1 (ko) 1998-05-19 2002-12-26 삼성전자 주식회사 광시야각액정표시장치
KR100283511B1 (ko) 1998-05-20 2001-03-02 윤종용 광시야각 액정 표시장치
US6335776B1 (en) 1998-05-30 2002-01-01 Lg. Philips Lcd Co., Ltd. Multi-domain liquid crystal display device having an auxiliary electrode formed on the same layer as the pixel electrode
JP3850002B2 (ja) 1998-06-08 2006-11-29 シャープ株式会社 液晶電気光学装置
US6879364B1 (en) * 1998-09-18 2005-04-12 Fujitsu Display Technologies Corporation Liquid crystal display apparatus having alignment control for brightness and response
JP2000250436A (ja) 1999-02-26 2000-09-14 Nec Corp 薄膜トランジスタアレイ及びその製造方法
JP4344062B2 (ja) * 2000-03-06 2009-10-14 シャープ株式会社 液晶表示装置
ATE443279T1 (de) 2000-07-05 2009-10-15 Rolic Ag Elektrooptisches element und vorrichtung, welche nematische flüssigkristalle verwenden
JP2003107526A (ja) 2001-10-02 2003-04-09 Matsushita Electric Ind Co Ltd 液晶表示パネル
TW588171B (en) 2001-10-12 2004-05-21 Fujitsu Display Tech Liquid crystal display device
JP4551049B2 (ja) 2002-03-19 2010-09-22 三菱電機株式会社 表示装置
JP4248306B2 (ja) * 2002-06-17 2009-04-02 シャープ株式会社 液晶表示装置
KR20040012303A (ko) * 2002-08-02 2004-02-11 삼성전자주식회사 액정 표시 장치용 기판과 이를 포함하는 액정 표시 장치및 그 제조 방법
JP2005538421A (ja) * 2002-09-12 2005-12-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ フリッカが低減された半透過型ディスプレイ
TWI307425B (en) * 2003-05-16 2009-03-11 Sharp Kk Liquid crystal display device
JP4407178B2 (ja) 2003-07-02 2010-02-03 セイコーエプソン株式会社 液晶装置、電子機器、及びプロジェクタ
JP4156476B2 (ja) * 2003-09-04 2008-09-24 株式会社 日立ディスプレイズ 液晶表示装置
KR101026810B1 (ko) 2003-12-30 2011-04-04 삼성전자주식회사 다중 도메인 액정 표시 장치
TWI282541B (en) * 2004-03-11 2007-06-11 Au Optronics Corp Liquid crystal array and liquid crystal panel
JP4041821B2 (ja) * 2004-04-23 2008-02-06 シャープ株式会社 液晶表示装置
JP4394512B2 (ja) * 2004-04-30 2010-01-06 富士通株式会社 視角特性を改善した液晶表示装置
TW200620675A (en) 2004-08-04 2006-06-16 Samsung Electronics Co Ltd Thin film transistor array panel and liquid crystal display
JP2006078789A (ja) * 2004-09-09 2006-03-23 Sharp Corp 半透過型液晶表示装置
CN101587274B (zh) 2004-10-06 2012-01-11 夏普株式会社 液晶显示器
US7486943B2 (en) * 2004-12-15 2009-02-03 Mlb Advanced Media, L.P. System and method for verifying access based on a determined geographic location of a subscriber of a service provided via a computer network
WO2006081006A2 (en) 2004-12-21 2006-08-03 Corning Incorporated Light polarizing products and method of making same
JP4829501B2 (ja) 2005-01-06 2011-12-07 シャープ株式会社 液晶表示装置
WO2006121220A1 (en) 2005-05-13 2006-11-16 Sharp Kabushiki Kaisha Liquid crystal display device
US7995177B2 (en) 2005-06-09 2011-08-09 Sharp Kabushiki Kaisha Liquid crystal display device
CN102116964B (zh) 2006-04-04 2015-07-29 夏普株式会社 液晶显示装置
WO2007123244A1 (ja) * 2006-04-24 2007-11-01 Sharp Kabushiki Kaisha 液晶表示装置
CN101490609B (zh) 2006-07-14 2011-04-06 夏普株式会社 液晶显示装置
US8319926B2 (en) 2006-12-05 2012-11-27 Sharp Kabushiki Kaisha Liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133429A (ja) * 1997-02-27 1999-05-21 Fujitsu Ltd 液晶表示装置
JP2000002889A (ja) * 1998-06-16 2000-01-07 Mitsubishi Electric Corp 液晶表示装置
JP2001194671A (ja) * 1998-11-27 2001-07-19 Sanyo Electric Co Ltd 液晶表示装置
JP2004004460A (ja) * 2002-04-15 2004-01-08 Fujitsu Display Technologies Corp 液晶表示装置用基板及びそれを備えた液晶表示装置
JP2004062146A (ja) * 2002-06-06 2004-02-26 Sharp Corp 液晶表示装置
JP2004318086A (ja) * 2003-03-31 2004-11-11 Fujitsu Display Technologies Corp 薄膜トランジスタ基板およびそのリペア方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363744A1 (en) * 2006-04-24 2011-09-07 Sharp Kabushiki Kaisha Liquid crystal display device
JP2021009407A (ja) * 2007-07-06 2021-01-28 株式会社半導体エネルギー研究所 液晶表示装置
US11194207B2 (en) 2007-07-06 2021-12-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US11726378B2 (en) 2007-07-06 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US12066730B2 (en) 2007-07-06 2024-08-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2009181121A (ja) * 2008-01-29 2009-08-13 Samsung Electronics Co Ltd 液晶表示装置
US8514270B2 (en) 2008-01-29 2013-08-20 Samsung Display Co., Ltd. Liquid crystal display
KR101448001B1 (ko) * 2008-01-29 2014-10-13 삼성디스플레이 주식회사 액정 표시 장치
CN105892175A (zh) * 2016-07-01 2016-08-24 上海中航光电子有限公司 显示面板和显示装置
US10895791B2 (en) 2018-03-29 2021-01-19 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device
US20220107537A1 (en) * 2019-04-30 2022-04-07 Samsung Display Co., Ltd. Display device
US11762251B2 (en) * 2019-04-30 2023-09-19 Samsung Display Co., Ltd. Display device

Also Published As

Publication number Publication date
US20090225246A1 (en) 2009-09-10
CN101943821B (zh) 2013-11-20
CN101943834A (zh) 2011-01-12
CN102116965A (zh) 2011-07-06
CN102116964A (zh) 2011-07-06
CN102116965B (zh) 2014-12-17
CN101943834B (zh) 2013-04-10
CN102116964B (zh) 2015-07-29
CN101416105A (zh) 2009-04-22
CN101943821A (zh) 2011-01-12
CN101416105B (zh) 2011-04-13
US8334954B2 (en) 2012-12-18

Similar Documents

Publication Publication Date Title
WO2007114471A1 (ja) 液晶表示装置
JP4979701B2 (ja) 液晶表示装置
JP5184618B2 (ja) 液晶表示装置
JP4820866B2 (ja) 液晶表示装置
JP5203601B2 (ja) 液晶表示装置およびその製造法
US8319926B2 (en) Liquid crystal display device
US9158169B2 (en) Liquid crystal display to increase side view visibility
WO2009130908A1 (ja) 液晶表示装置
US20120223931A1 (en) Liquid crystal display device
JP2009109767A (ja) 液晶表示装置
JP2019128429A (ja) 液晶表示装置
WO2012093621A1 (ja) 液晶表示装置
KR20130023973A (ko) 액정 표시 장치
WO2012118069A1 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741013

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780011813.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12295672

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 07741013

Country of ref document: EP

Kind code of ref document: A1