[go: up one dir, main page]

WO2007102214A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2007102214A1
WO2007102214A1 PCT/JP2006/304503 JP2006304503W WO2007102214A1 WO 2007102214 A1 WO2007102214 A1 WO 2007102214A1 JP 2006304503 W JP2006304503 W JP 2006304503W WO 2007102214 A1 WO2007102214 A1 WO 2007102214A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
semiconductor device
insulating film
conductor
capacitor
Prior art date
Application number
PCT/JP2006/304503
Other languages
English (en)
French (fr)
Inventor
Takahiro Yamagata
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2006/304503 priority Critical patent/WO2007102214A1/ja
Priority to JP2008503710A priority patent/JP5141550B2/ja
Publication of WO2007102214A1 publication Critical patent/WO2007102214A1/ja
Priority to US12/205,495 priority patent/US8148798B2/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D88/00Three-dimensional [3D] integrated devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76828Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76832Multiple layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/40Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • H10D1/682Capacitors having no potential barriers having dielectrics comprising perovskite structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D88/00Three-dimensional [3D] integrated devices
    • H10D88/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05085Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
    • H01L2224/05089Disposition of the additional element
    • H01L2224/05093Disposition of the additional element of a plurality of vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/114Manufacturing methods by blanket deposition of the material of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/116Manufacturing methods by patterning a pre-deposited material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/050414th Group
    • H01L2924/05042Si3N4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device having a capacitor using a ferroelectric or high dielectric as a dielectric film and a method for manufacturing the same.
  • Ferroelectric random access memory FeRAM
  • FeRAM Ferroelectric random access memory
  • Powerful ferroelectric memory is a non-volatile memory that has features such as high-speed operation, low power consumption, excellent writing Z-reading durability, and further development is expected in the future. ing.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-214389
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-31575
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-324797
  • Patent Document 4 Japanese Patent Laid-Open No. 9-191084
  • FIG. 49 is a cross-sectional view showing an electrode pad portion of a proposed semiconductor device.
  • an electrode 201 is formed on an interlayer insulating film (not shown).
  • An interlayer insulating film 202 is formed on the interlayer insulating film on which the electrode 201 is formed so as to cover the electrode 201.
  • a plurality of conductive plugs 204 connected to the electrode 201 are embedded in the interlayer insulating film 202.
  • An electrode 206 is formed on the interlayer insulating film 202 in which the conductor plug 204 is embedded.
  • An interlayer insulating film 208 is formed on the interlayer insulating film 204 on which the electrode 206 is formed so as to cover the electrode 206.
  • a plurality of conductor plugs 210 connected to the electrode 206 are embedded in the interlayer insulating film 208.
  • An electrode pad 212 connected to the conductor plug 210 is formed on the interlayer insulating film 208 in which the conductor plug 210 is embedded.
  • a protective film 214 made of a silicon oxide film and a protective film 216 made of a silicon nitride film are formed on the interlayer insulating film 208 on which the electrode pads 212 are formed.
  • a protective film 218 made of polyimide is formed on the protective film 216.
  • the proposed semiconductor device has a structure in which a plurality of conductor plugs 204, 210 are embedded in the interlayer insulating films 202, 208 immediately below the electrode pad 212, and the probe needle 222 is embedded in the electrode pad 212.
  • the electrode pad 212 When performing a test or the like by bringing the electrode into contact with each other, the electrode pad 212 may be damaged or deformed. When applied, cracks may have occurred up to the interlayer insulating films 208 and 202 existing under the electrode pads 212. In such a case, hydrogen or moisture may enter the inside of the semiconductor device from the electrode pad portion 212, and as a result, the hydrogen or moisture may reach the dielectric film of the capacitor. When hydrogen or moisture reaches the dielectric film of the capacitor, the metal oxide used as the dielectric film is reduced by hydrogen and the electrical characteristics of the capacitor are degraded.
  • An object of the present invention is to provide a semiconductor device and a method for manufacturing the same that can more reliably prevent deterioration of a dielectric film due to hydrogen or moisture. Means for solving the problem
  • a lower electrode formed on a semiconductor substrate; a dielectric film formed on the lower electrode; and an upper electrode formed on the dielectric film A capacitor, a first insulating film formed above the capacitor, a first wiring formed on the first insulating film, the first insulating film, and the first wiring
  • a semiconductor device comprising: a conductor embedded through at least a part of the first insulating film through the second insulating film.
  • a semiconductor substrate includes a lower electrode; a dielectric film formed on the lower electrode; and an upper electrode formed on the dielectric film.
  • the electrode since there is a strong conductor directly under the electrode pad, the electrode can be used even when the probe needle is brought into contact with the electrode pad with a certain amount of force in a test or the like. It is possible to prevent the pad from being damaged or deformed. Even if the electrode pad is damaged or deformed, the conductor that exists directly under the electrode pad is formed very firmly, so that the conductor does not crack to reach the interlayer insulating film. Therefore, according to the present invention, it is possible to prevent hydrogen and moisture from reaching the dielectric film of the capacitor through the interlayer insulating film and the like, and the ferroelectric constituting the dielectric film is reduced by hydrogen. Can be prevented. As described above, according to the present invention, it is possible to reliably prevent the dielectric film of the capacitor from being deteriorated by hydrogen or moisture, have good electrical characteristics, and have a long life. A semiconductor device having a long-life capacitor can be provided.
  • FIG. 1 is a cross-sectional view showing a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 3 is a process cross-sectional view (part 1) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 4 is a process cross-sectional view (part 2) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
  • FIG. 5 is a process cross-sectional view (part 3) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention
  • FIG. 6 is a process cross-sectional view (part 4) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention
  • FIG. 7 is a process cross-sectional view (No. 5) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 8 is a process cross-sectional view (No. 6) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 9 is a process cross-sectional view (No. 7) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 10 is a process cross-sectional view (No. 8) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 11 is a process cross-sectional view (No. 9) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 12 is a process cross-sectional view (No. 10) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 13 is a process sectional view (No. 11) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 14 is a process sectional view (No. 12) showing the method for manufacturing a semiconductor device according to the first embodiment of the invention.
  • FIG. 15 is a process sectional view (No. 13) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 16 is a process cross-sectional view (No. 14) showing the method for manufacturing a semiconductor device according to the first embodiment of the present invention
  • FIG. 17 is a process sectional view (No. 15) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 18 is a process cross-sectional view (No. 16) showing the method for manufacturing a semiconductor device according to the first embodiment of the present invention
  • FIG. 19 is a process sectional view (No. 17) showing the method for manufacturing the semiconductor device according to the first embodiment of the invention.
  • FIG. 20 is a cross-sectional view showing a modification of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing a semiconductor device according to a second embodiment of the present invention.
  • FIG. 22 is a process cross-sectional view (part 1) showing the method for manufacturing a semiconductor device according to the second embodiment of the present invention
  • FIG. 23 is a process cross-sectional view (part 2) illustrating the method for manufacturing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 24 is a process cross-sectional view (part 3) illustrating the method for manufacturing the semiconductor device according to the second embodiment of the present invention.
  • FIG. 25 is a process cross-sectional view (part 4) showing the method for manufacturing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 26 is a process cross-sectional view (part 5) showing the method for manufacturing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 27 is a process cross-sectional view (No. 6) showing the method for manufacturing a semiconductor device according to the second embodiment of the invention.
  • FIG. 28 is a process cross-sectional view (part 7) illustrating the method for manufacturing a semiconductor device according to the second embodiment of the present invention.
  • FIG. 29 is a process cross-sectional view illustrating the method for manufacturing the semiconductor device according to the second embodiment of the invention. It is a surface view (part 8).
  • FIG. 30 is a process sectional view (No. 9) showing the method for manufacturing the semiconductor device according to the second embodiment of the invention.
  • FIG. 31 is a process cross-sectional view (No. 10) showing the method for manufacturing the semiconductor device according to the second embodiment of the invention.
  • FIG. 32 is a process sectional view (No. 11) showing the method for manufacturing the semiconductor device according to the second embodiment of the invention.
  • FIG. 33 is a cross-sectional view showing a modification of the semiconductor device according to the second embodiment of the present invention.
  • FIG. 34 is a sectional view showing a semiconductor device according to a third embodiment of the present invention.
  • FIG. 35 is a process cross-sectional view (part 1) illustrating the method for manufacturing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 36 is a process cross-sectional view (part 2) illustrating the method for manufacturing the semiconductor device according to the third embodiment of the present invention.
  • FIG. 37 is a process cross-sectional view (part 3) showing the method for manufacturing the semiconductor device according to the third embodiment of the present invention.
  • FIG. 38 is a process cross-sectional view (part 4) showing the method for manufacturing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 39 is a process sectional view (No. 5) showing the method for manufacturing the semiconductor device according to the third embodiment of the invention.
  • FIG. 40 is a process sectional view (No. 6) showing the method for manufacturing the semiconductor device according to the third embodiment of the invention.
  • FIG. 41 is a process cross-sectional view (No. 7) showing the method for manufacturing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 42 is a process sectional view (No. 8) showing the method for manufacturing the semiconductor device according to the third embodiment of the invention.
  • FIG. 43 is a process sectional view (No. 9) showing the method for manufacturing the semiconductor device according to the third embodiment of the invention.
  • FIG. 44 is a process cross-sectional view (No. 10) showing the method for manufacturing the semiconductor device according to the third embodiment of the invention.
  • FIG. 45 is a process cross-sectional view (No. 11) showing the method for manufacturing a semiconductor device according to the third embodiment of the invention.
  • FIG. 46 is a process cross-sectional view (No. 12) showing the method for manufacturing a semiconductor device according to the third embodiment of the present invention.
  • FIG. 47 is a process sectional view (No. 13) showing the method for manufacturing the semiconductor device according to the third embodiment of the invention.
  • FIG. 48 is a process sectional view (No. 14) showing the method for manufacturing the semiconductor device according to the third embodiment of the invention.
  • FIG. 49 is a cross-sectional view showing a proposed semiconductor device.
  • Insulating Paria film ... Insulating Paria film ... Interlayer insulating film
  • FIG. 1 is a sectional view of the semiconductor device according to the present embodiment.
  • the left side of the page shows the logic part (peripheral circuit area) 2
  • the right side of the logic part 2 shows the FeRAM cell part (memory cell area) 4
  • the right side of the FeRAM cell part 4 shows the right side of the page.
  • the electrode pad portion 6 is shown
  • the scribe region 8 is shown on the right side of the electrode pad portion 6 in the drawing.
  • a one-dot chain line in FIG. 1 indicates a cutting position when the semiconductor wafer 10 is cut in the scribe region 8.
  • FIG. 2 is a plan view of the semiconductor device according to the present embodiment.
  • the A—A 'line in FIG. 2 corresponds to the A— line in FIG.
  • an element isolation region 12 that defines an element region is formed on a semiconductor substrate 10 made of, for example, silicon.
  • a tool 14 is formed in the semiconductor substrate 10 in which the element isolation region 12 is formed.
  • a gate electrode (gate wiring) made of, for example, polysilicon is provided on the semiconductor substrate 10 on which the well 14 is formed via a gate insulating film 16 made of, for example, a 6 to 7 nm thick silicon oxide film. 18 is formed.
  • the gate length is set to 0.36 m, for example.
  • a silicon oxide film is formed on the gate electrode 18.
  • a sidewall insulating film 20 made of a silicon oxide film is formed on the side wall portion of the gate electrode 18.
  • a source / drain diffusion layer 22 is formed on both sides of the gate electrode 18 on which the sidewall insulating film 20 is formed.
  • the transistor 24 having the gate electrode 18 and the source / drain diffusion layer 22 is formed.
  • the transistor 24 is also formed on the semiconductor substrate 10 in the FeRAM region 4, but is not shown in FIG.
  • the transistor 24 formed on the semiconductor substrate 10 in the FeRAM region 4 is electrically connected to the lower electrode 30 or the upper electrode 34 of the capacitor 36, for example.
  • a silicon oxynitride film (not shown), a silicon oxide film (not shown), and a silicon oxide film (not shown) are formed.
  • An interlayer insulating film 26 is formed. The surface of the interlayer insulating film 26 is flat.
  • an insulating barrier film 28 for preventing diffusion of hydrogen and moisture is formed.
  • the film thickness of the insulating barrier film 28 is, eg, about 20 nm.
  • the reason why the insulating barrier film 28 is formed on the interlayer insulating film 26 is as follows. That is, when hydrogen or moisture reaches the dielectric film 32 of the capacitor 36 described later, the metal oxide constituting the dielectric film 32 is reduced by hydrogen, and the electrical characteristics of the dielectric film 32 are deteriorated.
  • the insulating barrier film 28 By forming the insulating barrier film 28 on the interlayer insulating film 26, it is possible to prevent hydrogen and moisture from reaching the dielectric film 32 from the interlayer insulating film 26. It is possible to prevent the deterioration of the material.
  • a lower electrode 30 of the capacitor 36 is formed on the insulating barrier film 28.
  • the lower electrode 30 is made of, for example, a Pt film having a film thickness of 155 nm.
  • a dielectric film 32 of the capacitor 36 is formed on the lower electrode 30.
  • the dielectric film 32 is made of a ferroelectric film having a thickness of 150 to 200 nm, for example.
  • a ferroelectric film for example, a PbZrTiO film (PZT film) is used.
  • the upper electrode 34 of the capacitor 36 is formed on the dielectric film 32.
  • the upper electrode 34 includes an IrO film (not shown) having a thickness of 50 nm and another IrO film (not shown) having a thickness of 200 nm.
  • the capacitor 36 including the lower electrode 30, the dielectric film 32, and the upper electrode 34 is configured.
  • An insulating barrier film 38 is formed on the dielectric film 32 and the upper electrode 34 so as to cover the upper surface and side surfaces of the dielectric film 32 and the upper electrode 34.
  • the strong insulating barrier film 38 for example, aluminum oxide (Al 2 O 3) having a thickness of about 50 nm is used. Insulating bar
  • the rear film 38 is for preventing diffusion of hydrogen and moisture.
  • the metal oxide constituting the dielectric film 32 is reduced by hydrogen, and the electrical characteristics of the capacitor 36 are deteriorated.
  • the insulating barrier film 38 so as to cover the upper surface and the side surfaces of the dielectric film 32 and the upper electrode 34, it is possible to prevent hydrogen and moisture from reaching the dielectric film 32. It is possible to prevent deterioration of the mechanical characteristics.
  • another insulating barrier film 40 is formed so as to cover the insulating barrier film 38 and the capacitor 36.
  • the strong insulating barrier film 40 for example, an aluminum oxide film having a thickness of about 20 nm is used.
  • the insulating barrier film 40 is for preventing the diffusion of hydrogen and moisture, like the insulating barrier film 38 described above.
  • an interlayer insulating film 42 made of a silicon oxide film is formed on the insulating barrier film 40.
  • the surface of the interlayer insulating film 42 is planarized.
  • a contact hole 44 reaching the source / drain diffusion layer 22 is formed in the interlayer insulating film 42, the insulating barrier film 40, the insulating barrier film 28, and the interlayer insulating film 26.
  • the diameter of the contact hole 44 is, for example, about 0.45 ⁇ m.
  • an opening 46a for embedding the metal layer 50a is formed in the interlayer insulating film 42, the insulating barrier film 40, the insulating barrier film 28, and the interlayer insulating film 26.
  • the metal layer 50a constitutes a part of the inner seal ring (moisture-resistant ring) 75a.
  • the seal ring 75a is, together with the seal ring 75b, for blocking moisture and the like from entering an external force after cutting the semiconductor substrate 10 in the scribe region 8.
  • an opening 46b for embedding the metal layer 50b is formed in the interlayer insulating film 42, the insulating barrier film 40, the insulating barrier film 28, and the interlayer insulating film 26.
  • the metal layer 50b constitutes a part of the outer seal ring (moisture-resistant ring) 75b.
  • the seal ring 75b, together with the inner seal ring 75a, serves to block moisture and the like from entering the external force after cutting the semiconductor substrate 10 in the scribe region 8.
  • the opening 46b is formed in a frame shape as a whole inside the scribe region 8.
  • a Ti film (not shown) having a film thickness of 20 nm is formed.
  • a 50 nm-thick TiN film is formed in the contact hole 44 in which the Ti film is formed and in the openings 46a and 46b.
  • These Ti film and TiN film constitute a barrier metal film (not shown).
  • a conductor plug 48 made of tungsten is embedded in the contact hole 44 in which the rare metal film is formed.
  • metal layers 50a and 50b made of tungsten are embedded in the openings 46a and 46b in which the noria metal film is formed.
  • a contact hole 52 a reaching the upper electrode 34 is formed on the interlayer insulating film 42 and the insulating barrier films 38 and 40.
  • a contact hole 52 b reaching the lower electrode 30 is formed in the interlayer insulating film 42 and the insulating barrier films 38 and 40.
  • the diameters of the contact holes 52a and 52b are, for example, about 0.5 / zm.
  • a conductor plug 54a and a wiring (first metal wiring layer) 56a are formed in a single body in the contact hole 52a and on the interlayer insulating film 42.
  • a conductor plug 54b and a wiring (first metal wiring layer) 56b are formed in a single body in the contact hole 52b and on the interlayer insulating film 42.
  • a plurality of wirings (first metal wiring layers) 56c and 56d are formed on the interlayer insulating film 42.
  • an electrode 56e is formed on the interlayer insulating film 42.
  • the electrode 56e is formed in the same planar shape as an electrode pad 102 described later.
  • the electrode 56e is connected to a wiring (not shown).
  • the wirings 56c and 56d are connected to the conductor plug 48, for example.
  • a metal layer 56g made of the same film as the wirings 56a to 56e is formed on the metal layer 50a.
  • a metal layer 56f made of the same film as the wirings 56a to 56d is formed on the metal layer 50b.
  • the metal layer 56f constitutes a part of the outer seal ring 75b.
  • the metal layer 56g constitutes a part of the outer seal ring 75a.
  • the wirings 56a and 56b and the conductor plugs 54a and 54b are, for example, a TiN film having a thickness of 150 nm, an A1-Cu alloy film having a thickness of 550 nm, a Ti film having a thickness of 5 nm, and a TiN film having a thickness of 150 nm. It is composed of a laminated film that is laminated.
  • the wirings 56a to 56d, the electrodes 56e, and the metal layers 56f and 56g are covered on the interlayer insulating film 42 on which the wirings 56a to 56d, the electrodes 56e, the metal layers 56f and 56g, and the conductor plugs 54a and 54b are formed.
  • an insulating barrier film 58 is formed.
  • the strong insulating barrier film 58 is for preventing the diffusion of hydrogen and moisture in the same manner as the insulating barrier films 38 and 40 described above.
  • As the insulating barrier film 58 for example, an aluminum oxide film having a thickness of 20 nm is used.
  • an interlayer insulating film 60 made of, for example, a silicon oxide film having a thickness of lOOnm is formed.
  • contact holes 62a reaching the wirings 56a to 56d are formed in the interlayer insulating film 60 and the insulating barrier film 58.
  • the diameter of the contact hole 62a is 0.5 m, for example. Degree.
  • an opening 62c reaching the metal layer 56f is formed in the interlayer insulating film 60 and the insulating barrier film 58.
  • the interlayer insulating film 60 and the insulating barrier film 58 are formed with an opening 62b reaching the metal layer 56g.
  • a TiN film (not shown) having a film thickness of 50 nm, for example, is formed in the contact hole 62a and the openings 62b and 62c.
  • a metal layer 64b made of tungsten is embedded in the opening 62b where the TiN film is formed.
  • a metal layer 64c made of tungsten is embedded in the opening 62c where the TiN film is formed.
  • the metal layer 64b constitutes a part of the inner seal ring 75a.
  • the metal layer 64c constitutes a part of the outer seal ring 75b.
  • (Second metal wiring layer) 66a is formed.
  • a metal layer 66b made of the same conductive film as the wiring 66a is formed on the metal layer 64b.
  • the metal layer 66b constitutes a part of the inner seal ring 75a.
  • a metal layer 66c made of the same conductive film as the wiring 66a is formed on the metal layer 64c.
  • the metal layer 66c constitutes a part of the seal ring 75b.
  • the wiring 66a, the electrode 66b, and the metal layer 66c are configured by, for example, a laminated film in which an Al—Cu alloy film having a thickness of 550 nm, a Ti film having a thickness of 5 nm, and a TiN film having a thickness of 150 nm are sequentially laminated. ing.
  • an interlayer insulating film 68 made of, for example, a silicon oxide film having a film thickness of lOOnm is formed on the interlayer insulating film 60 on which the wiring 66a, the electrode 66b, and the metal layer 66c are formed.
  • the surface of the interlayer insulating film 68 is flat.
  • a contact hole 70a reaching the wiring 66a is formed in the interlayer insulating film 68.
  • the diameter of the contact hole 70a is, for example, about 0.5 / zm.
  • an opening 70b reaching the metal layer 66b is formed in the interlayer insulating film 68.
  • an opening 70c reaching the metal layer 66c is formed in the interlayer insulating film 68.
  • the metal layer 70b constitutes a part of the inner seal ring 75a.
  • the metal layer 70c forms part of the outer seal ring 75b. It is to be formed.
  • a barrier metal film made of a TiN film having a thickness of 50 nm is formed in the contact hole 70a and the openings 70b and 70c.
  • a conductor plug 72a made of tungsten is embedded in the contact hole 70a in which the noria metal film is formed.
  • a metal layer 72b made of tungsten is formed in the opening 70b in which the rare metal film is formed.
  • a metal layer 72c made of tungsten is formed in the opening 70c in which the rare metal film is formed.
  • (Third metal wiring layer) 88a is formed.
  • a metal layer 88b made of the same conductive film as the wiring 88a is formed on the metal layer 72b.
  • the metal layer 88b constitutes a part of the inner seal ring 75a.
  • a metal layer 88c made of the same conductive film as the wiring 88a is formed on the metal layer 72c.
  • the metal layer 88c constitutes a part of the outer seal ring 75b.
  • an interlayer insulating film 90 made of, for example, a 100 nm-thickness silicon oxide film is formed.
  • the surface of the interlayer insulating film 90 is flat.
  • a flat insulating barrier film 92 made of, for example, an aluminum oxide film having a thickness of 20 to 80 nm is formed.
  • the film thickness of the aluminum oxide film constituting the insulating barrier film 92 is, for example, 50 nm. Since the insulating barrier film 92 is formed on the flattened interlayer insulating film 90, it is flat. Since the flat insulating barrier film 92 has good coverage, it is possible to sufficiently prevent diffusion of hydrogen and moisture.
  • a silicon oxide film 94 having a thickness of lOOnm is formed on the insulating barrier film 92.
  • the silicon oxide film 94 is for preventing the insulating barrier film 92 from being etched during patterning when forming the electrode pads 102 and the like.
  • an opening 96 reaching the electrode 56e is formed.
  • a rare metal film 98 is formed on the inner surface of the opening 96.
  • NORIA METAL FILM 98 As a material, for example, a Ti—A1—N alloy film having a thickness of 150 nm is used.
  • (Embedded object) 100 is embedded. Since the conductor 100 is embedded over the plurality of interlayer insulating films 60, 68, 90, the thickness of the conductor 100 is formed to be very thick, for example, 2. Further, the diameter of the opening 96 in which the conductor 100 is embedded is formed to be relatively large as 50 m. The diameter of the conductor 100 is connected to the wirings 56a to 56c, 66a, 88a, etc.! / Insert! The slippery plugs 48, 54a, 54b, 64a, 72a are further reduced. Specifically, the diameter of the conductor 100 is set to 100 times the diameter of the conductor plugs 48, 54a, 54b, 64a, 72a. Thus, the conductor 100 is formed extremely firmly.
  • the material of the rare metal film 98 is not limited to the Ti-Al-N alloy. Absent .
  • TiN, Ti, Ta, or the like may be used as the material of the barrier metal film 98.
  • a composite of Ti—A1—N alloy and Ta may be used as the material for the barrier metal film 98 !.
  • the material of the force conductor 100 described by taking the case of using Cu as the material of the conductor 100 is not limited to Cu.
  • A1 may be used as the material of the conductor 100.
  • A1 is a material with higher hardness than Cu. Therefore, when A1 is used as the material of the conductor 100, it is possible to obtain the conductor 100 having higher strength than when Cu is used as the material of the conductor 100.
  • TiN, TiW, or the like can be used as the material of the barrier metal film 98.
  • Au may be used as the material of the conductor 100!
  • Au is a material with high AU hardness! Therefore, when Au is used as the material of the conductor 100, it is possible to obtain the conductor 100 having higher strength than when A1 is used as the material of the conductor 100.
  • TiN, TiW or the like can be used as the material of the barrier metal film 98, for example.
  • an Al—Cu alloy may be used as the material of the conductor 100.
  • an electrode pad 102 is provided on the laminated film 60, 68, 90, 92, 94 in which the conductor 100 is embedded. Is formed.
  • the material of electrode pad 102 is A1 (aluminum) or Al—Cu (aluminum)
  • the outer periphery of the electrode pad 102 is set larger than the outer periphery of the conductor 100. Electrode pad
  • the outer periphery of the electrode 56e is set larger than the outer periphery of the conductor 100. The reason why the outer periphery of the electrode 56e is set larger than the outer periphery of the conductor 100 is to secure a sufficient alignment margin.
  • This embodiment is mainly characterized in that a strong conductor 100 is buried immediately below the electrode pad 102. More specifically, the conductor 100 is embedded not only in the interlayer insulating film 90 but also in the interlayer insulating film 68, and further embedded in a part of the interlayer insulating film 60.
  • the proposed semiconductor device has a structure in which a plurality of conductor plugs are embedded in an interlayer insulating film immediately below the electrode pad.
  • the electrode pad was damaged or deformed.
  • the interlayer insulating film existing under the electrode pad may be cracked.
  • hydrogen or moisture may enter the inside of the semiconductor device from the electrode pad portion and eventually reach the dielectric film of the capacitor.
  • the metal oxide used as the dielectric film is reduced by hydrogen, and the electrical characteristics of the capacitor deteriorate.
  • the probe needle since the strong conductor 100 exists immediately below the electrode pad 102, the probe needle is brought into contact with the electrode pad 102 with a certain amount of force in a test or the like. Even if it exists, it becomes possible to prevent the electrode pad 102 from being damaged or deformed. Even if the electrode pad 102 is damaged or deformed, the conductor 100 existing immediately below the electrode pad 102 is formed extremely firmly, so that hydrogen and moisture are transferred from the electrode pad portion 6 to the inside of the semiconductor device. Intrusion can be reliably prevented by the conductor 100. Therefore, according to the present embodiment, hydrogen and moisture can be prevented from reaching the dielectric film 32 of the capacitor 36 via the interlayer insulating films 60, 68, 90, etc.
  • the dielectric film 32 of the capacitor 36 can be reliably prevented from being deteriorated by hydrogen or moisture, and the capacitor 36 having good electrical characteristics and a long lifetime is provided.
  • a semiconductor device can be provided.
  • the metal layer 50a, the metal layer 56g, the metal layer 64b, the metal layer 66b, the metal layer 72b, and the metal layer 88b constitute an inner seal ring (internal moisture-resistant ring) 75a.
  • the inner seal ring 75a is used to block moisture and the like from entering the outer seal ring 75b after cutting the semiconductor wafer 10 in the scribe region 8 as described above. It is.
  • the metal layer 50b, the metal layer 56f, the metal layer 64c, the metal layer 66c, the metal layer 72c and the metal layer 88c constitute an outer seal ring (external moisture-resistant ring) 75b.
  • the outer seal ring 75b is for blocking moisture and the like from entering after the semiconductor wafer 10 is cut in the scribe region 8 as described above.
  • a protective film 104 made of, for example, a silicon oxide film having a film thickness of lOOnm is formed.
  • a protective film 106 made of, for example, a silicon nitride film with a thickness of 350 nm is formed on the protective film 104.
  • the silicon nitride film 106 is for blocking moisture and the like released from a protective film 108 made of polyimide, which will be described later.
  • a protective film 108 made of, for example, polyimide is formed on the protective film 106.
  • the opening 11 reaching the electrode pad 102 is provided.
  • the semiconductor device according to the present embodiment is configured.
  • the semiconductor device according to the present embodiment is mainly characterized in that a strong conductor 100 is formed immediately below the electrode pad 102!
  • the electrode pad is damaged when a test is performed by bringing a probe needle into contact with the electrode pad. Or deformation may occur. In some cases, cracking may occur even in the interlayer insulating film existing under the electrode pad. In such a case In the case of the electrode pad force, hydrogen and moisture penetrate into the semiconductor device, and as a result, hydrogen and moisture may reach the dielectric film of the capacitor. When hydrogen or moisture reaches the dielectric film of the capacitor, the metal oxide used as the dielectric film is reduced by hydrogen and the electrical characteristics of the capacitor deteriorate.
  • the probe needle since the strong conductor 100 exists immediately below the electrode pad 102, the probe needle is brought into contact with the electrode pad 102 with a certain force in a test or the like. Even if it exists, it becomes possible to prevent the electrode pad 102 from being damaged or deformed. Even if the electrode pad 102 is damaged or deformed, the conductor 100 existing immediately below the electrode pad 102 is formed extremely firmly, so that cracks reaching the interlayer insulating films 60, 68, 90 can occur. It does not occur in the conductor 100.
  • the dielectric film 32 of the capacitor 36 can be reliably prevented from being deteriorated by hydrogen or moisture, and the capacitor 36 having good electrical characteristics and a long lifetime is provided.
  • a semiconductor device can be provided.
  • FIGS. 3 to 19 are process cross-sectional views illustrating the method for fabricating the semiconductor device according to the present embodiment.
  • an element isolation region 12 that defines an element region is formed on a semiconductor substrate 10 made of, for example, silicon by a LOCOS (L OCal Oxidation of Silicon) method.
  • LOCOS L OCal Oxidation of Silicon
  • the well 14 is formed by introducing dopant impurities by ion implantation.
  • a gate insulating film 16 made of a silicon oxide film having a thickness of 6 to 7 nm is formed on the element region by, eg, thermal oxidation.
  • a 120 nm-thickness polysilicon film 18 is formed by, eg, CVD. Polysilico The silicon film 18 becomes a gate electrode or the like.
  • the polysilicon film 18 is patterned using a photolithography technique.
  • the gate electrode 18 made of the polysilicon film is formed.
  • the gate length is, for example, 0.36 / z m.
  • dopant impurities are introduced into the semiconductor substrate 10 on both sides of the gate electrode 18 by ion implantation using the gate electrode 18 as a mask.
  • an extension region (not shown) constituting the shallow region of the extension source Z drain is formed.
  • a 150 nm thick silicon oxide film 20 is formed on the entire surface by, eg, CVD.
  • the silicon oxide film 20 is anisotropically etched.
  • a sidewall insulating film 20 made of a silicon oxide film is formed on the side wall portion of the gate electrode 18.
  • dopant impurities are introduced into the semiconductor substrate 10 on both sides of the gate electrode 18 by ion implantation using the gate electrode 18 with the sidewall insulating film 20 formed thereon as a mask. Thereby, an impurity diffusion layer (not shown) that forms a deep region of the extension source Z drain is formed.
  • the extension region and the deep impurity diffusion layer constitute a source Z drain diffusion layer 22.
  • the transistor 24 having the gate electrode 18 and the source Z drain diffusion layer 22.
  • SiON film silicon nitride oxide film (SiON film) (not shown) having a thickness of, eg, 200 nm is formed on the entire surface by, eg, plasma CVD.
  • a 600 nm-thickness silicon oxide film (not shown) is formed on the entire surface by, eg, plasma TEOSCVD.
  • the surface of the silicon oxide film is polished about 200 nm by, eg, CMP, to flatten the surface of the silicon oxide film.
  • a silicon oxide film (not shown) having a thickness of lOOnm is formed on the entire surface by, eg, plasma TEOSCVD.
  • the interlayer insulating film 26 made of the silicon nitride oxide film, the silicon oxide film, and the silicon oxide film is formed.
  • moisture is removed from the interlayer insulating film 26 by performing a dehydration process.
  • Dehydration process The conditions are as follows, for example.
  • the temperature during the dehydration process is, for example, 650 ° C.
  • the atmosphere during the dehydration process is a nitrogen atmosphere.
  • the dehydration time is, for example, 30 minutes.
  • a PVD (Physical Vapor Deposition) method for example, a sputtering method, for example, a 20 nm-thick oxide-aluminum-
  • An insulating barrier film 28 made of a rubber film is formed.
  • the insulating barrier film 28 is for preventing hydrogen and moisture from reaching the capacitor 36 from the interlayer insulating film 26.
  • heat treatment is performed in an oxygen atmosphere, for example, at 650 ° C. for 60 seconds using, for example, an RTA (Rapid Thermal Annealing) method.
  • This heat treatment is for improving the film quality of the insulating barrier film 28.
  • By performing this heat treatment it is possible to form the conductive film 30 with good orientation when forming the conductive film 30 on the insulating barrier film 28 in a later step.
  • a conductive film 30 made of a Pt film having a thickness of 155 nm is formed on the entire surface by, eg, PVD.
  • the conductive film 30 becomes a lower electrode of the capacitor 36.
  • the dielectric film 32 is formed on the entire surface by, eg, PVD method.
  • the dielectric film 32 becomes a dielectric film of the capacitor.
  • a ferroelectric film is formed.
  • a PZT film having a film thickness of about 150 to 200 nm is formed.
  • heat treatment is performed, for example, at 585 ° C. for 90 seconds in an oxygen atmosphere by, eg, RTA.
  • the flow rate of oxygen gas introduced into the chamber during the heat treatment is, for example, 0.025 liters Z.
  • the intense heat treatment is for improving the film quality of the dielectric film 32.
  • an IrO film (not shown) having a thickness of, for example, 50 nm is formed by, eg, PVD.
  • heat treatment is performed in an oxygen atmosphere, for example, at 725 ° C for 20 seconds by, for example, the RTA method.
  • This heat treatment is intended to prevent the surface of the upper electrode 36 from becoming abnormal.
  • the flow rate of oxygen gas introduced into the chamber during the heat treatment is, for example, 0.025 liters Z.
  • an IrO film (not shown) having a thickness of 200 nm is formed by, for example, the PVD method. This way
  • a laminated film 34 formed by laminating two layers of IrO films is formed.
  • the laminated film 34 has a capacity. This is the upper electrode of the Sita 36.
  • a photoresist film (not shown) is formed on the entire surface by spin coating.
  • the photoresist film is patterned into a planar shape of the upper electrode 34 of the capacitor 36 using a photolithography technique.
  • the laminated film 34 is etched using the photoresist film as a mask.
  • the upper electrode 34 made of a laminated film is formed.
  • the photoresist film is peeled off.
  • heat treatment is performed in an oxygen atmosphere, for example, at 650 ° C. for 60 minutes.
  • This heat treatment is for supplying oxygen to the dielectric film and restoring the film quality of the dielectric film 32.
  • the flow rate of oxygen gas introduced into the chamber during heat treatment is, for example, 20 liters Z.
  • a vertical electric furnace annealing device is used.
  • a photoresist film is formed on the entire surface by spin coating.
  • the photoresist film is patterned into a planar shape of the dielectric film 32 of the capacitor.
  • the dielectric film 32 is etched using the photoresist film as a mask. Thereafter, the photoresist film is peeled off.
  • heat treatment is performed in an oxygen atmosphere, for example, at 350 ° C. for 60 minutes.
  • This heat treatment is for supplying oxygen to the dielectric film 32 and recovering the film quality of the dielectric film 32.
  • the flow rate of oxygen gas introduced into the chamber during heat treatment is, for example, 20 liters Z.
  • a vertical electric furnace annealing device is used.
  • an insulating barrier film (not shown) made of an aluminum oxide film having a thickness of 50 nm is formed on the entire surface by, eg, PVD.
  • the insulating barrier film 38 is for preventing the diffusion of hydrogen and moisture.
  • heat treatment is performed in an oxygen atmosphere, for example, at 550 ° C for 60 minutes.
  • This heat treatment is for improving the film quality of the insulating barrier film and supplying oxygen to the dielectric film 32 to restore the film quality of the dielectric film 32.
  • the flow rate of oxygen gas introduced into the chamber during heat treatment is, for example, 20 liters Z.
  • a vertical electric furnace annealing apparatus is used.
  • a photoresist film is formed on the entire surface by spin coating. Next, using a photolithography technique, the photoresist film is patterned into a planar shape of the lower electrode 30 of the capacitor.
  • the insulating barrier film 38 and the conductive film 30 are etched using the photoresist film as a mask.
  • the lower electrode 30 made of the conductive film is formed.
  • the insulating barrier film 38 remains so as to cover the upper electrode 34 and the dielectric film 32. Thereafter, the photoresist film is peeled off.
  • heat treatment is performed in an oxygen atmosphere, for example, at 650 ° C. for 60 minutes.
  • This heat treatment is for supplying oxygen to the dielectric film and restoring the quality of the dielectric film.
  • the flow rate of oxygen gas introduced into the chamber during heat treatment is, for example, 20 liters Z.
  • a vertical electric furnace annealing apparatus is used.
  • an insulating barrier film 40 made of an aluminum oxide film having a thickness of 20 nm is formed on the entire surface by, eg, PVD.
  • the insulating barrier film 40 is for preventing diffusion of hydrogen and moisture.
  • heat treatment is performed in an oxygen atmosphere, for example, at 550 ° C. for 60 minutes.
  • This heat treatment is for improving the film quality of the insulating barrier film 40 and supplying oxygen to the dielectric film 32 to restore the film quality of the dielectric film 32.
  • the flow rate of the oxygen gas introduced into the chamber during the heat treatment is, for example, 20 liters Z.
  • a vertical electric furnace annealing device is used.
  • an interlayer insulating film 42 made of, for example, a silicon oxide film having a thickness of 1500 nm is formed on the entire surface by plasma TEOSCVD.
  • the surface of the interlayer insulating film 42 is planarized by, eg, CMP.
  • the plasma annealing is for removing moisture present in the interlayer insulating film 42 and nitriding the surface of the interlayer insulating film 42.
  • Plasma annealing can be performed using, for example, a CVD apparatus.
  • the plasma annealing conditions are, for example, 350 ° C. and 2 minutes.
  • a photoresist film is formed on the entire surface by spin coating.
  • an opening is formed in the photoresist film using a photolithography technique.
  • Such opening is for forming a contact hole in the interlayer insulating film.
  • the interlayer insulating film 42, the insulating barrier film 40, the insulating barrier film 28, and the interlayer insulating film 26 are etched using the photoresist film as a mask to contact holes reaching the source / drain diffusion layer 22 44 and openings 46a and 46b reaching the semiconductor substrate 10 are formed (see FIG. 4A).
  • a 20 nm-thick Ti film (not shown) and a 50 nm-thick TiN film (not shown) are sequentially formed on the entire surface by, eg, PVD.
  • a barrier metal film (not shown) composed of the Ti film and the TiN film is formed in the contact hole 44 and in the openings 46a and 46b.
  • a 500 nm-thickness tungsten film is formed on the entire surface by, eg, CVD.
  • the tungsten film and the barrier metal film are polished by, for example, CMP until the surface of the interlayer insulating film 42 is exposed.
  • the conductor plug 48 made of tungsten is embedded in the contact hole 44.
  • metal layers 50a and 50b made of tungsten are embedded in the openings 46a and 46b.
  • the metal layers 50a and 50b are part of the seal ring.
  • the plasma annealing is for removing moisture present in the interlayer insulating film 42 and nitriding the surface of the interlayer insulating film 42.
  • Plasma annealing can be performed using, for example, a CVD apparatus.
  • the plasma annealing conditions are, for example, 350 ° C. and 2 minutes.
  • a silicon nitride film 86 of, eg, a lOOnm-thickness is formed on the entire surface by, eg, plasma CVD.
  • the silicon nitride film 86 is for preventing the surface of the conductor plug 48 from being damaged.
  • the contact hole 52a reaching the upper electrode 34 and the contact hole 52b reaching the lower electrode 30 are formed by using the photolithography technique, the interlayer insulating film 42 and the silicon nitride. A film 86 is formed.
  • heat treatment is performed in an oxygen atmosphere, for example, at 500 ° C. for 60 minutes.
  • This heat treatment is for supplying oxygen to the dielectric film 32 of the capacitor 36 to restore the film quality of the dielectric film 32.
  • the flow rate of oxygen gas introduced into the chamber during heat treatment is, for example, 20 liters. Le z minutes.
  • a vertical electric furnace annealing apparatus is used.
  • the silicon oxynitride film 86 existing on the interlayer insulating film 42 is removed by, for example, the entire surface etch back.
  • a TiN film having a thickness of 150 nm, an A1-Cu alloy film having a thickness of 550 nm, a Ti film having a thickness of 5 nm, and a TiN film having a thickness of 150 nm are sequentially formed on the entire surface by, eg, PVD. .
  • a laminated film composed of a TiN film, an Al—Cu alloy film, a Ti film, and a TiN film is formed.
  • the laminated film is patterned using a photolithography technique.
  • conductor plugs 54a and wirings 56a made of laminated films are formed in a single body in the contact holes 52a and on the interlayer insulating film 42.
  • a conductor plug 54b and a wiring 56b made of a laminated film are formed in a single body in the contact hole 52b and on the interlayer insulating film 42.
  • wirings 56c to 56d made of a laminated film are formed on the interlayer insulating film 42.
  • An electrode 56e is formed on the interlayer insulating film 42.
  • a metal layer 56f made of a laminated film is formed on the metal layer 50b.
  • a metal layer 56g made of a laminated film is formed on the metal layer 50a.
  • the metal layer 56g is a part of the inner seal ring 75a.
  • the metal layer 56f is a part of the outer seal ring 75b (see FIG. 5 (b)).
  • heat treatment is performed in a nitrogen atmosphere, for example, at 350 ° C. for 30 minutes.
  • the flow rate of nitrogen gas introduced into the chamber during heat treatment is, for example, 20 liters Z.
  • a vertical electric furnace annealing apparatus is used.
  • an insulating barrier film 58 made of, for example, a 20 nm-thick aluminum oxide film is formed on the entire surface by, eg, PVD.
  • the strong insulating barrier film 58 is for preventing hydrogen and moisture from reaching the dielectric film 32 of the capacitor 36.
  • a 2600 nm thick silicon oxide film (not shown) is formed on the entire surface by, eg, plasma TEOSCVD.
  • the surface of the silicon oxide film is planarized by, eg, CMP.
  • Plasma annealing removes moisture present in the silicon oxide film. Moreover, it is for nitriding the surface of the silicon oxide film. Plasma annealing can be performed using, for example, a CVD apparatus. The plasma annealing conditions are, for example, 350 ° C and 4 minutes.
  • a silicon oxide film (not shown) having a film thickness of lOOnm is formed on the entire surface by, eg, plasma TEOSCVD.
  • the plasma annealing is for removing moisture present in the silicon oxide film and nitriding the surface of the silicon oxide film.
  • Plasma annealing can be performed using, for example, a CVD apparatus.
  • the plasma annealing conditions are, for example, 350 ° C and 2 minutes.
  • the interlayer insulating film 60 composed of the silicon oxide film and the silicon oxide film is formed.
  • the surface of the interlayer insulating film 60 is flat.
  • contact holes 62a reaching the wirings 56a to 56d are formed using photolithography technology.
  • a barrier metal film made of a TiN film with a thickness of 50 nm is formed on the entire surface by, eg, PVD (not shown).
  • a 650 nm-thickness tungsten film is formed on the entire surface by, eg, CVD.
  • the tungsten film and the barrier metal film are etched back until the surface of the interlayer insulating film 60 is exposed.
  • the conductor plug 64a made of tungsten is buried in the contact hole 62a.
  • metal layers 64b and 64c made of tungsten are embedded in the openings 62b and 62c.
  • the conductor plugs 64a and 64 and the metal layer 64c may be formed by polishing the tungsten film and the barrier metal film by CMP until the surface of the interlayer insulating film 60 is exposed.
  • an Al—Cu alloy film having a thickness of 550 nm, a Ti film having a thickness of 5 nm, and a TiN film having a thickness of 150 nm are sequentially formed on the entire surface by, eg, PVD.
  • a laminated film composed of an Al—Cu alloy film, a Ti film and a TiN film is formed.
  • the laminated film is patterned using a photolithography technique.
  • the laminated film An interconnect 66a and metal layers 66b and 66c are formed.
  • a 2200 nm-thick silicon oxide film (not shown) is formed on the entire surface by, eg, plasma TEOSCVD.
  • the surface of the silicon oxide film is planarized by, eg, CMP.
  • the plasma annealing is for removing moisture present in the silicon oxide film and nitriding the surface of the silicon oxide film.
  • Plasma annealing can be performed using, for example, a CVD apparatus.
  • the plasma annealing conditions are, for example, 350 ° C and 4 minutes.
  • a silicon oxide film (not shown) having a thickness of lOOnm is formed on the entire surface by, eg, plasma TEOSCVD.
  • the plasma annealing is for removing moisture present in the silicon oxide film and nitriding the surface of the silicon oxide film.
  • Plasma annealing can be performed using, for example, a CVD apparatus.
  • the plasma annealing conditions are, for example, 350 ° C and 2 minutes.
  • an interlayer insulating film 68 made of a silicon oxide film and a silicon oxide film is formed (see FIG. 7).
  • a contact hole 70a reaching the wiring 66a, an opening 70b reaching the metal layer 66b, and an opening 70c reaching the metal layer 66c are formed in the interlayer insulating film 68 by using a photolithography technique.
  • a barrier metal film (not shown) made of a TiN film with a thickness of 50 nm is formed on the entire surface by, eg, PVD.
  • a 650 nm-thickness tungsten film is formed on the entire surface by, eg, CVD.
  • the tungsten film and the barrier metal film are etched back until the surface of the interlayer insulating film is exposed.
  • the conductor plug 72a made of tungsten is embedded in the contact hole 70a.
  • a metal layer 72b made of tungsten is embedded in the opening 70b.
  • a metal layer 72c made of tungsten is embedded in the opening 70c.
  • the tungsten film and the buffer are exposed by CMP until the surface of the interlayer insulating film 86 is exposed.
  • the conductor plug 72a and the metal layers 72b and 72c should be formed by polishing the rear metal film.
  • an Al—Cu alloy film with a thickness of 550 nm is formed on the entire surface by, eg, PVD,
  • a Ti film and a TiN film with a thickness of 150 nm are sequentially formed.
  • a laminated film composed of an Al—Cu alloy film, a Ti film and a TiN film is formed.
  • the laminated film is patterned using a photolithography technique.
  • the wiring 88a and the metal layers 88b and 88c made of the laminated film are formed.
  • metal layer 50a, the metal layer 56g, the metal layer 64b, the metal layer 66c, the metal layer 72b, and the metal layer 88b constitute an inner seal ring 75a.
  • the outer seal ring 75b is constituted by the metal layer 66c, the metal layer 72c, and the metal layer 88c. Thereafter, the photoresist film is peeled off.
  • a silicon oxide film (not shown) having a thickness of 2200 nm is formed on the entire surface by, eg, plasma TEOSCVD.
  • the surface of the silicon oxide film is planarized by, eg, CMP.
  • the plasma annealing is for removing moisture present in the silicon oxide film and nitriding the surface of the silicon oxide film.
  • Plasma annealing can be performed using, for example, a CVD apparatus.
  • the plasma annealing conditions are, for example, 350 ° C and 4 minutes.
  • a silicon oxide film (not shown) having a thickness of lOOnm is formed on the entire surface by, eg, plasma TEOSCVD.
  • the plasma annealing is for removing moisture present in the silicon oxide film and nitriding the surface of the silicon oxide film.
  • Plasma annealing can be performed using, for example, a CVD apparatus.
  • the plasma annealing conditions are, for example, 350 ° C and 2 minutes. In this way, an interlayer insulating film 90 made of a silicon oxide film and a silicon oxide film is formed (see FIG. 8).
  • a film thickness is formed on the interlayer insulating film 90 whose surface is flattened by, eg, PVD method.
  • a flat insulating barrier film 92 made of an aluminum oxide film having a thickness of 20 to 80 nm is formed.
  • the film thickness of the aluminum oxide film constituting the insulating barrier film 92 is, for example, 50 nm. Since the insulating barrier film 92 is formed on the flattened interlayer insulating film 90, the insulating barrier film 92 is flat. Since the flat insulating barrier film 92 has good coverage, it is possible to sufficiently prevent diffusion of hydrogen and moisture.
  • a silicon oxide film 94 having a thickness of lOOnm is formed on the insulating barrier film 92 by, eg, plasma TEOSCVD.
  • the silicon oxide film 94 is for preventing the insulating barrier film 92 from being etched during the patterning when forming the electrode pads 102 and the like (see FIG. 9).
  • a photoresist film 112 is formed on the entire surface by, eg, spin coating.
  • an opening 114 is formed in the photoresist film 112 using a photolithography technique.
  • the opening 114 is for forming the opening 96.
  • the silicon oxide film 94, the insulating barrier film 92, the interlayer insulating film 90, the interlayer insulating film 68, the interlayer insulating film 60, and the insulating film An opening 96 reaching the electrode 56e is formed in the barrier film 58 (see FIG. 11).
  • a barrier metal film 98 made of, for example, a Ti—Al—N alloy with a film thickness of 150 nm is formed in the opening 96 and on the silicon oxide film 94.
  • the noria metal film 98 prevents the material constituting the conductor 100 from diffusing into the interlayer insulating films 60, 68, 90, etc., and also functions as a seed layer when the conductor 100 is formed by the electroplating method. Is.
  • the method for forming the conductive layer 100 is not limited to the electric plating method.
  • the conductor layer 100 can be formed by a coating method.
  • a coating-type conductive film is formed on the entire surface, and the coating-type conductive film is polished by CMP until the surface of the silicon oxide film 94 is exposed.
  • Embedded conductor 100 consisting of Is possible.
  • the material of the rare metal film 98 is not limited to the Ti—Al—N alloy. Absent .
  • TiN, Ti, Ta, or the like may be used as the material of the barrier metal film 98.
  • a composite of Ti—A1—N alloy and Ta may be used as the material for the barrier metal film 98 !.
  • the force conductor layer 100 is not limited to Cu as an example of the case where Cu is used as the material of the conductor layer 100! /.
  • A1 may be used as the material of the conductor layer 100.
  • A1 is a material with higher hardness than Cu. Therefore, when A1 is used as the material of the conductor layer 100, it is possible to obtain a conductor 100 having higher strength than when Cu is used as the material of the conductor layer 100.
  • TiN, TiW, or the like can be used as the material of the barrier metal film 98.
  • Au may be used as a material for the conductor layer 100.
  • Au is a material with high AU hardness. Therefore, when Au is used as the material of the conductor layer 100, it is possible to obtain a conductor 100 having higher strength than when A1 is used as the material of the conductor layer 100.
  • TiN, TiW, or the like can be used as the material of the barrier metal film 98, for example.
  • the barrier metal film 98 and the conductive layer 100 are polished by CMP until the surface of the silicon oxide film 94 is exposed. As a result, the conductor 100 made of the conductor layer is embedded in the opening 96 (see FIG. 13).
  • a conductive film 102 having a thickness of 0.5 ⁇ m is formed on the entire surface by, eg, PVD.
  • the conductive film 102 becomes an electrode pad.
  • A1 (aluminum), Al—Cu (aluminum-copper) alloy, or the like is used as a material of the conductive film 102.
  • the conductive film 102 is patterned using a photolithography technique. Thereby, an electrode pad 102 made of a conductive film is formed (see FIG. 15).
  • a protective film 104 made of a silicon oxide film having a film thickness of, for example, lOOnm is formed on the entire surface by, eg, plasma TEOSCVD.
  • a silicon film having a thickness of, for example, 350 nm is formed on the entire surface by, eg, plasma TEOSCVD.
  • a protective film 106 made of a nitride film is formed.
  • a photoresist film 116 is formed on the entire surface by spin coating.
  • an opening 118 is formed in the photoresist film 116 using a photolithography technique (see FIG. 16).
  • the opening 118 to be applied is for forming a contact hole 110a (see FIG. 17) in the protective films 104 and 106.
  • the protective film 104, 106 is etched using the photoresist film 116 as a mask to form an opening 110a reaching the electrode pad 102 (see FIG. 17).
  • a protective film 80 made of, for example, photosensitive polyimide is formed on the entire surface by spin coating.
  • the thickness of the protective film 80 is, for example, about 3 m.
  • heat treatment is performed in a nitrogen atmosphere, for example, at 310 ° C. for 40 minutes.
  • This heat treatment is for curing the protective film 80 made of polyimide.
  • the flow rate of nitrogen gas introduced into the chamber during heat treatment is, for example, 100 liters Z.
  • a vertical electric furnace annealing apparatus is used.
  • the probe needle 120 of the semiconductor test apparatus is brought into contact with the electrode pad 102, and a predetermined test or the like is performed on the semiconductor device according to the present embodiment.
  • the electrode since the strong conductor 100 exists directly under the electrode pad 102, even if the probe needle is brought into contact with the electrode pad 102 with a certain force in a test or the like, the electrode It is possible to prevent the pad 102 from being damaged or deformed. Even if the electrode pad 102 is damaged or deformed, the conductor 100 that exists immediately below the electrode pad 102 is formed so firmly that cracks that reach the interlayer insulating films 60, 68, and 90 become conductive. It does not occur in the body 100. Therefore, according to the present embodiment, the conductor 100 can reliably prevent hydrogen and moisture from entering the semiconductor device from the electrode pad portion 6.
  • a one-dot chain line in FIG. 19 indicates a location where the semiconductor wafer 10 is cut.
  • the semiconductor device according to the present embodiment is manufactured.
  • the strong conductor 100 exists directly under the electrode pad 102. Therefore, even when the probe needle is brought into contact with the electrode pad 102 with a certain force in a test or the like, it is possible to prevent the electrode pad 102 from being damaged or deformed. Even if the electrode pad 102 is damaged or deformed, the conductor 100 existing immediately below the electrode pad 102 is formed so firmly that cracks reaching the interlayer insulating films 60, 68, 90 occur. It does not occur in the conductor 100. Therefore, according to the present embodiment, hydrogen and moisture can be prevented from reaching the dielectric film 32 of the capacitor 36 via the interlayer insulating films 60, 68, 90, etc., and the dielectric film 32 is configured.
  • the dielectric film 32 of the capacitor 36 can be reliably prevented from being deteriorated by hydrogen or moisture, the electrical characteristics are good, the life is long, and the capacitor 36 is It is possible to provide a semiconductor device having the same.
  • FIG. 20 is a cross-sectional view showing a semiconductor device according to this modification.
  • the same components as those of the semiconductor device and the manufacturing method thereof according to the first embodiment shown in FIGS. 1 to 19 are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the semiconductor device according to this modification is mainly characterized in that flat insulating barrier films 122, 126, and 94 are appropriately formed.
  • a flat insulating barrier film 122 made of, for example, an aluminum oxide film having a thickness of 20 to 80 nm is formed on the interlayer insulating film 60 whose surface is flattened. Yes.
  • the film thickness of the aluminum oxide film constituting the insulating barrier film 122 is, for example, 50 nm. Since the insulating barrier film 122 is formed on the planarized interlayer insulating film 60, it is flat. Since the flat insulating barrier film 122 has good coverage, diffusion of hydrogen and moisture can be sufficiently prevented.
  • a silicon oxide film 124 having a film thickness of lOOnm is formed on the insulating barrier film 122.
  • the silicon oxide film 124 is for preventing the insulating barrier film 122 from being etched during patterning when the wirings 66a to 66d and the metal layers 66f and 66g are formed.
  • the interlayer insulating film 68 having a flat surface for example, an oxide film having a thickness of 20 to 80 nm is formed.
  • a flat insulating barrier film 126 made of an aluminum film is formed.
  • the film thickness of the aluminum oxide film constituting the insulating barrier film 126 is, for example, 50 nm.
  • the insulating noria film 126 is flat because it is formed on the flattened interlayer insulating film 68. Since the flat insulating barrier film 126 has good coverage, diffusion of hydrogen and moisture can be sufficiently prevented.
  • a silicon oxide film 128 having a film thickness of lOOnm is formed on the insulating barrier film 126.
  • the silicon oxide film 128 is for preventing the insulating barrier film 126 from being etched in the patterning when the wiring 88a and the metal layers 88b and 88c are formed.
  • a flat insulating barrier film 92 made of, for example, an aluminum oxide film having a thickness of 20 to 80 nm is formed.
  • the film thickness of the aluminum oxide film constituting the insulating barrier film 92 is, for example, 50 nm. Since the insulating noria film 92 is formed on the flattened interlayer insulating film 90, it is flat. Since the flat insulating barrier film 92 has good coverage, diffusion of hydrogen and moisture can be sufficiently prevented.
  • a silicon oxide film 94 having a film thickness of lOOnm is formed on the insulating barrier film 92.
  • the silicon oxide film 94 is for preventing the insulating barrier film 92 from being etched during patterning when forming the electrode pads 102 and the like.
  • FIG. 21 is a sectional view of the semiconductor device according to the present embodiment.
  • the same components as those of the semiconductor device and the manufacturing method thereof according to the first embodiment shown in FIGS. 1 to 20 are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the semiconductor device according to the present embodiment is formed of the same conductive film as the upper electrode 34 of the capacitor 36.
  • the main feature is that the opening 96a is formed so as to reach the conductive film 34a, and the conductor 100a is embedded in the opening 96 that is strong.
  • a conductive film 30 a made of the same conductive film as the lower electrode 30 of the capacitor 36 is formed below the electrode pad 102.
  • an dielectric film 32a made of the same dielectric film as the dielectric film 32 of the capacitor 36 is formed on the conductive film 30a.
  • a conductive film 34 a made of the same conductive film as the upper electrode 34 of the capacitor 36 is formed on the dielectric film 32 a.
  • the barrier film 38 has an opening 96a reaching the conductive film 34a.
  • a noria metal film 98 is formed in the opening 96a.
  • a conductor 100a is buried in the opening 96a in which the noria metal film 98 is formed.
  • a conductor plug 123 is embedded in the contact hole 121.
  • a wiring 102a connected to 123 is formed.
  • the electrode pad 102 is electrically connected to one of the plurality of formed wirings 102a.
  • the semiconductor device has the opening 96a formed so as to reach the conductive film 34a made of the same conductive film as the upper electrode 34 of the capacitor 36.
  • the main feature is that the conductor 100a is embedded in the opening 96.
  • the conductor 100a can be formed more firmly.
  • the probe needle since such a very strong conductor 100a exists directly under the electrode pad 102, the probe needle is brought into contact with the electrode pad 102 with a certain force in a test or the like. This also prevents the electrode pad 102 from being damaged or deformed. You can.
  • the dielectric film 32 of the capacitor 36 can be reliably prevented from being deteriorated by hydrogen or moisture, and the semiconductor having the capacitor 36 having good electrical characteristics and a long lifetime.
  • a device can be provided.
  • FIGS. 22 to 32 are process cross-sectional views illustrating the method for fabricating the semiconductor device according to the present embodiment.
  • a conductive film 30 made of a Pt film having a thickness of 155 nm is formed on the entire surface by, eg, PVD method.
  • the conductive film 30 serves as a lower electrode of the capacitor 36 and serves as a conductive film 36 a in the electrode pad portion 6.
  • a dielectric film 32 is formed on the entire surface by, eg, PVD, in the same manner as in the semiconductor device manufacturing method according to the first embodiment.
  • the dielectric film 32 to be covered becomes a dielectric film of the capacitor, and becomes the dielectric film 32a in the electrode pad portion 6.
  • a ferroelectric film is formed.
  • a PZT film having a thickness of about 150 to 200 nm is formed.
  • heat treatment is performed in an oxygen atmosphere, for example, at 585 ° C for 90 seconds, for example, by an RTA method.
  • an IrO film (not shown) with a film thickness of, eg, 50 nm is formed by, eg, PVD, in the same manner as in the semiconductor device manufacturing method according to the first embodiment.
  • an RTA method is performed in an oxygen atmosphere, for example, at 725 ° C for 20 seconds.
  • an IrO film (not shown) having a film thickness of 200 nm is formed by, eg, PVD, in the same manner as in the method for manufacturing the semiconductor device according to the first embodiment. In this way, two layers of IrO film
  • a laminated film 34 is formed.
  • the laminated film 34 becomes an upper electrode of the capacitor 36 and also becomes the conductive film 34a in the electrode pad portion 6.
  • a photoresist film (not shown) is formed on the entire surface by spin coating as in the semiconductor device manufacturing method according to the first embodiment.
  • the photoresist film is formed into a planar shape of the upper electrode 34 of the capacitor 36 and the conductive film 3 by using the photolithography technique.
  • the laminated film 34 is etched using the photoresist film as a mask in the same manner as the semiconductor device manufacturing method according to the first embodiment.
  • the upper electrode 34 made of a laminated film is formed.
  • a conductive film 34 a made of the same conductive film as the upper electrode 34 is formed on the electrode pad portion 6. Thereafter, the photoresist film is peeled off.
  • heat treatment is performed in an oxygen atmosphere, for example, at 650 ° C. for 60 minutes.
  • a photoresist film is formed on the entire surface by a spin coat method in the same manner as in the semiconductor device manufacturing method according to the first embodiment.
  • the photoresist film is patterned into the planar shape of the dielectric film 32 of the capacitor using the photolithography technique.
  • the dielectric film 32 is etched using the photoresist film as a mask in the same manner as in the method for manufacturing the semiconductor device according to the first embodiment. At this time, a dielectric film 32a made of the same dielectric film as the dielectric film 32 is formed. Thereafter, the photoresist film is peeled off.
  • an insulating barrier film (not shown) made of a 50 nm-thick aluminum oxide film is formed on the entire surface by, eg, PVD method. Form.
  • heat treatment is performed in an oxygen atmosphere, for example, at 550 ° C. for 60 minutes.
  • a photoresist film is formed on the entire surface by a spin coat method in the same manner as in the semiconductor device manufacturing method according to the first embodiment.
  • the photoresist film is patterned into the planar shape of the lower electrode 30 of the capacitor and the planar shape of the conductive film 30a using photolithography technology. To do.
  • the insulating barrier film 38 and the conductive film 30 are etched using the photoresist film as a mask.
  • the lower electrode 30 made of the conductive film is formed.
  • a conductive film 30 a made of the same conductive film as the lower electrode 30 is formed on the electrode pad 6.
  • the insulating barrier film 38 remains so as to cover the upper electrode 34 and the dielectric film 32. Thereafter, the photoresist film is peeled off.
  • heat treatment is performed in an oxygen atmosphere, for example, at 650 ° C. for 60 minutes.
  • An insulating barrier film 40 made of an aluminum oxide film having a thickness of 20 nm is formed by the VD method.
  • heat treatment is performed in an oxygen atmosphere, for example, at 550 ° C. for 60 minutes.
  • FIGS. 22B to 24A the process from the step of forming the interlayer insulating film 42 on the entire surface to the removal of the silicon nitride oxide film 86 existing on the interlayer insulating film 42 is shown in FIGS. Since this is the same as the method of manufacturing the semiconductor device according to the first embodiment described above using a), the description thereof is omitted (see FIGS. 22B to 24A).
  • a 150 nm thick TiN film, a 550 nm thick Al—Cu alloy film, a 5 nm thick Ti film, and a 150 nm thick TiN film are sequentially formed.
  • a laminated film composed of a TiN film, an Al—Cu alloy film, a Ti film, and a TiN film is formed.
  • the laminated film is patterned using a photolithography technique.
  • conductor plugs 54a and wirings 56a made of laminated films are formed in a single body in the contact holes 52a and on the interlayer insulating film 42.
  • a conductor plug 54b and a wiring 56b made of a laminated film are formed in a single body in the contact hole 52b and on the interlayer insulating film 42.
  • wirings 56c to 56d made of a laminated film are formed on the interlayer insulating film 42.
  • a metal layer 56f made of a laminated film is formed on the metal layer 50b.
  • a metal layer 56g made of a laminated film is formed on the metal layer 50a.
  • the metal layer 56g becomes a part of the inner seal ring 75a.
  • the metal layer 56f becomes a part of the outer seal ring 75b (see FIG. 24 (b)).
  • heat treatment is performed in a nitrogen atmosphere, for example, at 350 ° C for 30 minutes.
  • a barrier metal made of, for example, a 150 nm thick Ti—Al—N alloy is formed in the opening 96a and on the silicon oxide film 94.
  • a film 98 is formed.
  • the CMP method is used to The barrier metal film 98 and the conductive layer 100 are polished until the surface of the reconic acid film 94 is exposed. As a result, the conductor 100a made of a conductor layer is embedded in the opening 96a (see FIG. 29).
  • a contact hole 121 reaching the wiring 88 a is formed in the silicon oxide film 92, the insulating barrier film 94, and the interlayer insulating film 90.
  • a barrier metal film (not shown) made of a TiN film with a thickness of 50 nm is formed on the entire surface by, eg, PVD.
  • a 650 nm-thickness tungsten film is formed on the entire surface by, eg, CVD.
  • the tungsten film and the barrier metal film are etched back until the surface of the interlayer insulating film is exposed.
  • the conductor plug 12 made of tungsten is placed in the contact hole 121.
  • a 1 ⁇ m-thick conductive film is formed on the entire surface by, eg, PVD method.
  • the conductive film becomes the electrode pad 102.
  • the conductive film becomes the wiring 102a.
  • A1 (Aluminum) or A1-Cu (Aluminum-Copper) alloy is used as the material of the conductive film.
  • the conductive film is patterned using a photolithography technique. Thereby, an electrode pad 102 and a wiring 102a made of a conductive film are formed. Any of the plurality of formed wirings 102a is electrically connected to the electrode pad 102 (see FIG. 30).
  • the subsequent manufacturing method of the semiconductor device is the same as the manufacturing method of the semiconductor device according to the first embodiment described above with reference to FIGS. 16 to 19, and thus the description thereof is omitted (FIGS. 31 and 3). 2).
  • the semiconductor device according to the present embodiment is manufactured.
  • the conductor 100a is formed so as to be extremely deep immediately below the electrode pad 102, so that the conductor 100a can be formed more firmly.
  • the probe needle is brought into contact with the electrode pad 102 with a certain force in a test or the like.
  • the existing conductor 100a is formed very firmly, the conductor 100a is not cracked to reach the interlayer insulating films 42, 60, 68, and 90. Therefore, according to the present embodiment, it is possible to prevent hydrogen or moisture from reaching the dielectric film 32 of the capacitor 36 via the interlayer insulating films 42, 60, 68, 90, etc. It is possible to prevent the constituent ferroelectric material from being reduced by hydrogen.
  • FIG. 33 is a cross-sectional view showing a semiconductor device according to this modification.
  • the opening 96b is formed so as to reach the conductive film 30a made of the same conductive film as the lower electrode 30 of the capacitor 36, and the conductor 100b is formed in the powerful opening 96b.
  • the main feature is that is embedded.
  • a barrier metal film 98 is formed in the opening 96b.
  • the conductor 100b is embedded in the opening 96b in which the noria metal film 98 is formed.
  • a contact hole 121 reaching the wiring 88a is formed in the silicon oxide film 94, the insulating barrier film 92, and the interlayer insulating film 90.
  • a wiring 102a connected to 123 is formed.
  • the electrode pad 102 is electrically connected to any one of the plurality of formed wirings 102a.
  • the semiconductor device according to the present modification has the opening 96b formed so as to reach the conductive film 30a made of the same conductive film as the lower electrode 30 of the capacitor 36.
  • the main feature is that the conductor 100b is embedded in the opening 96b. Therefore, also in the present modification, the conductor 100b is formed as in the semiconductor device according to the second embodiment. It is possible to form more firmly. According to this modification, such a very strong conductor 100b exists directly under the electrode pad 102. Therefore, in a test or the like, the probe needle is brought into contact with the electrode pad 102 with a certain amount of force. In addition, the electrode pad 102 can be prevented from being damaged or deformed.
  • FIG. 34 is a sectional view of the semiconductor device according to the present embodiment.
  • the same components as those in the semiconductor device and the manufacturing method thereof according to the first or second embodiment shown in FIGS. 1 to 33 are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the opening 96b is formed on the semiconductor substrate 10 so as to reach the conductive film 125 formed through the element isolation region 12, and the forceful opening 96b is formed in the opening 96b.
  • the main feature is that the conductor 100b is embedded.
  • a conductive film 125 is formed on the semiconductor substrate 10 below the electrode pad 102 via the element isolation region 12. The reason why the conductive film 125 is not directly formed on the semiconductor substrate 10 is to ensure the insulation between the conductive film 125 and the semiconductor substrate 10 and, in turn, the insulation between the conductor 100b and the semiconductor substrate 10.
  • a noria metal film 98 is formed in the opening 96b.
  • a conductor 100b is embedded in the opening 96b in which the noria metal film 98 is formed. [0273] On the silicon oxide film 94, an electrode pad 102 connected to the conductor 100a and a conductor plug
  • a wiring 102a connected to 123 is formed.
  • the electrode pad 102 is electrically connected to any one of the plurality of formed wirings 102a.
  • the opening 96b is formed so as to reach the conductive film 125 formed on the semiconductor substrate 10 via the element isolation region 12, as described above.
  • the main feature is that the conductor 100b is embedded in the powerful opening 96b. For this reason, according to the present embodiment, the conductor 100b can be formed more firmly. According to the present embodiment, since such a very strong conductor 100b exists directly under the electrode pad 102, the probe needle is brought into contact with the electrode pad 102 with a certain force in a test or the like. In addition, the electrode pad 102 can be prevented from being damaged or deformed.
  • the dielectric film 32 of the capacitor 36 can be reliably prevented from being deteriorated by hydrogen or moisture, and the capacitor 36 having good electrical characteristics and a long lifetime is provided.
  • a semiconductor device can be provided.
  • FIGS. 35 to 48 are process cross-sectional views illustrating the method for fabricating the semiconductor device according to the present embodiment.
  • a 120 nm-thickness polysilicon film 18 is formed by, eg, CVD. Polysilico The silicon film 18 becomes a gate electrode or the like. Further, the polysilicon film 18 becomes a conductive film 125 formed below the electrode pad portion 6.
  • the polysilicon film 18 is patterned using a photolithography technique.
  • the gate electrode 18 made of the polysilicon film is formed.
  • the gate length is, for example, 0.36 / z m.
  • a conductive film 125 made of a polysilicon film is formed on the element isolation region 12 (see FIG. 35 (a)).
  • dopant impurities are introduced into the semiconductor substrate 10 on both sides of the gate electrode 18 by ion implantation using the gate electrode 18 as a mask. This makes the extension source
  • An extension region (not shown) constituting the region is formed shallow in the Z drain.
  • a 150 nm-thickness silicon oxide film 20 is formed on the entire surface by, eg, CVD.
  • the silicon oxide film 20 is anisotropically etched.
  • a sidewall insulating film 20 made of a silicon oxide film is formed on the side wall portion of the gate electrode 18.
  • dopant impurities are introduced into the semiconductor substrate 10 on both sides of the gate electrode 18 by ion implantation using the gate electrode 18 on which the sidewall insulating film 20 is formed as a mask. Thereby, an impurity diffusion layer (not shown) that forms a deep region of the extension source Z drain is formed.
  • the extension region and the deep impurity diffusion layer constitute a source Z drain diffusion layer 22.
  • the transistor 24 having the gate electrode 18 and the source Z drain diffusion layer 22 is provided.
  • the semiconductor device according to the present embodiment is manufactured.
  • the opening 96b is formed on the semiconductor substrate 10 so as to reach the conductive film 125 formed via the element isolation region 12, and the opening
  • the main feature is that the conductor 100b is embedded in the 96b.
  • the probe needle is brought into contact with the electrode pad 102 with a certain force in a test or the like. Even if it exists, it is possible to prevent the electrode pad 102 from being damaged or deformed. Even if the electrode pad 102 is damaged or deformed, the conductor 100b that exists immediately below the electrode pad 102 is formed so firmly that it reaches the interlayer insulating films 26, 42, 60, 68, 90.
  • Such a crack does not occur in the conductor 100a.
  • hydrogen and moisture can be prevented from reaching the dielectric film 32 of the capacitor 36 via the interlayer insulating films 26, 42, 60, 68, 90, etc. It is possible to prevent the ferroelectric constituting the body film 32 from being reduced by hydrogen.
  • the dielectric film 32 of the capacitor 36 can be reliably prevented from being deteriorated by hydrogen or moisture, and the semiconductor having the capacitor 36 having good electrical characteristics and a long lifetime.
  • a device can be provided.
  • flat insulating barrier films 122 and 126 may be further formed. That is, a flat insulating barrier film 122 is further formed between the first metal wiring layer 56 and the second metal wiring layer 66, and between the second metal wiring layer 66 and the third metal wiring layer 88. A flat insulating barrier film 126 may be further formed.
  • the ferroelectric film constituting the dielectric film 32 of the capacitor 36 is used.
  • the body film is not limited to PZT film, but any other ferroelectric film can be used as appropriate.
  • a ferroelectric film constituting the dielectric film 32 of the capacitor 36 a Pb La Zr Ti O film (PLZT film), a SrBi (Ta Nb) O film, a Bi Ti O film, etc. can be used.
  • L -XX 1 -YY 3 2 X 1 - ⁇ 2 9 4 2 12 May be used.
  • the dielectric film 32 of the capacitor 36 has been described as an example.
  • the dielectric film 32 is not limited to the ferroelectric film.
  • a high dielectric film may be used as the dielectric film 32.
  • the high dielectric film constituting the dielectric film 32 for example, (BaSr) TiO film (BST film),
  • STO film An SrTiO film (STO film), a Ta 2 O film or the like can be used.
  • the high dielectric film is a ratio of
  • a dielectric film having a dielectric constant higher than that of silicon dioxide having a dielectric constant higher than that of silicon dioxide.
  • the insulating barrier films 28, 38, 40, 58, 92, 122, 126 are not limited to aluminum oxide films. It is possible to appropriately use a film having a function of preventing hydrogen and moisture diffusion as the insulating barrier films 28, 38, 40, 58, 92, 122, 126.
  • a film made of a metal oxide can be used as appropriate.
  • Insulated noble films 28, 38, 40, 58, 92, 122, 126 made of metal oxides, such as tantanoleic acid oxide and titanic acid oxide (acidic titanium), etc. Can be used. Further, the insulating barrier films 28, 38, 40, 58, 92, 122, 126 are not limited to films made of metal oxides. For example, a silicon nitride film (SiN film), a silicon nitride oxide film (SiON film) or the like is used as an insulating barrier film.
  • the semiconductor device and the manufacturing method thereof according to the present invention are useful for providing a semiconductor device having a capacitor with good electrical characteristics and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

 半導体基板10上に形成され、下部電極30と誘電体膜32と上部電極34とを有するキャパシタ36と、キャパシタ36の上方に形成された第1の絶縁膜68と、第1の絶縁膜68上に形成された第1の配線88aと、第1の絶縁膜68上及び第1の配線88a上に形成された第2の絶縁膜90と、第2の絶縁膜90上に形成された電極パッド102と、電極パッド102の直下における第2の絶縁膜90に埋め込まれた単一の導電体100であって、第2の絶縁膜90を貫いて、少なくとも第1の絶縁層68の一部にまで埋め込まれた導電体100とを有している。電極パッド102の直下に強固な導電体100が形成されているため、第1の絶縁膜68等に達するような亀裂が導電体100に生じることがなく、キャパシタ36の誘電体膜32が水素や水分により劣化するのを確実に防止することができる。

Description

明 細 書
半導体装置及びその製造方法
技術分野
[0001] 本発明は、半導体装置及びその製造方法に係り、特に誘電体膜として強誘電体又 は高誘電体を用いたキャパシタを有する半導体装置及びその製造方法に関する。 背景技術
[0002] 近時、誘電体膜として強誘電体や高誘電体を用いたキャパシタを有する半導体装 置が提案されている。キャパシタの誘電体膜として強誘電体を用いた半導体装置とし ては、強誘電体メモリ(FeRAM : Ferroelectric Random Access Memory)が大きな注 目を集めている。力かる強誘電体メモリは、高速動作が可能である、低消費電力であ る、書き込み Z読み出し耐久性に優れている等の特徴を有する不揮発性メモリであり 、今後の更なる発展が見込まれている。
[0003] し力しながら、誘電体膜として強誘電体や高誘電体を用いた場合には、誘電体膜 を形成した後の工程にぉ 、て、水素や水分がキャパシタの誘電体膜に達してしまう 場合があった。水素や水分がキャパシタの誘電体膜に達すると、誘電体膜を構成す る金属酸ィ匕物が水素により還元されてしまい、キャパシタの電気的特性の劣化を招 いてしまうこととなる。
[0004] 水素や水分による誘電体膜の劣化を防止する技術として、キャパシタを覆うように 酸ィ匕アルミニウム膜を形成する技術や、キャパシタ上に形成された層間絶縁膜上に 酸ィ匕アルミニウム膜を形成する技術が提案されている。酸ィ匕アルミニウム膜は、水素 及び水分の拡散を防止する機能を有している。このため、提案されている技術によれ ば、水素や水分が誘電体膜に達するのを防止することができ、水素や水分による誘 電体膜の劣化を防止することが可能となる。
[0005] なお、本願発明の背景技術としては以下のようなものがある。
特許文献 1:特開平 11— 214389号公報
特許文献 2:特開 2003— 31575号公報
特許文献 3:特開 2002— 324797号公報 特許文献 4:特開平 9 - 191084号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、提案されている半導体装置では、電極パッド部 200が図 49のように 構成されていた。図 49は、提案されている半導体装置の電極パッド部を示す断面図 である。図 49に示すように、図示しない層間絶縁膜上には、電極 201が形成されて いる。電極 201が形成された層間絶縁膜上には、電極 201を覆うように層間絶縁膜 2 02が形成されている。層間絶縁膜 202には、電極 201に接続された複数の導体ブラ グ 204が埋め込まれている。導体プラグ 204が埋め込まれた層間絶縁膜 202上には 、電極 206が形成されている。電極 206が形成された層間絶縁膜 204上には、電極 206を覆うように層間絶縁膜 208が形成されている。層間絶縁膜 208には、電極 206 に接続された複数の導体プラグ 210が埋め込まれている。導体プラグ 210が埋め込 まれた層間絶縁膜 208上には、導体プラグ 210に接続された電極パッド 212が形成 されている。電極パッド 212が形成された層間絶縁膜 208上には、シリコン酸ィ匕膜より 成る保護膜 214及びシリコン窒化膜より成る保護膜 216が形成されている。保護膜 2 16上には、ポリイミドより成る保護膜 218が形成されている。保護膜 218には、電極パ ッド 210に達する開口部 220が形成されている。このように、提案されている半導体 装置では、電極パッド 212の直下における層間絶縁膜 202, 208に複数の導体ブラ グ 204, 210が埋め込まれた構成となっており、電極パッド 212にプローブ針 222を 接触させて試験等を行う際に、電極パッド 212の破損や変形が生じてしまう場合があ つた。力かる場合には、電極パッド 212の下に存在する層間絶縁膜 208、 202〖こまで 亀裂が生じてしまう場合もあった。このような場合には、電極パッド部 212から水素や 水分が半導体装置の内部に浸入し、ひいてはキャパシタの誘電体膜にまで水素や 水分が達してしまう場合があった。水素や水分がキャパシタの誘電体膜に達すると、 誘電体膜として用いられている金属酸化物が水素により還元され、キャパシタの電気 的特性が劣化してしまうこととなる。
[0007] 本発明の目的は、水素や水分による誘電体膜の劣化をより確実に防止し得る半導 体装置及びその製造方法を提供することにある。 課題を解決するための手段
[0008] 本発明の一観点によれば、半導体基板上に形成され、下部電極と;前記下部電極 上に形成された誘電体膜と;前記誘電体膜上に形成された上部電極とを有するキヤ パシタと、前記キャパシタの上方に形成された第 1の絶縁膜と、前記第 1の絶縁膜上 に形成された第 1の配線と、前記第 1の絶縁膜上及び前記第 1の配線上に形成され た第 2の絶縁膜と、前記 2の絶縁膜上に形成された電極パッドと、前記電極パッドの 直下における前記第 2の絶縁膜に埋め込まれた単一の導電体であって、前記第 2の 絶縁膜を貫いて、少なくとも前記第 1の絶縁膜の一部にまで埋め込まれた導電体とを 有することを特徴とする半導体装置が提供される。
[0009] 本発明の他の観点によれば、半導体基板上に、下部電極と;前記下部電極上に形 成された誘電体膜と;前記誘電体膜上に形成された上部電極とを有するキャパシタ を形成する工程と、前記キャパシタの上方に第 1の絶縁膜を形成する工程と、前記第 1の絶縁膜上に第 1の配線を形成する工程と、前記第 1の絶縁膜上及び前記第 1の 配線上に第 2の絶縁膜を形成する工程と、前記第 2の絶縁膜及び前記第 1の絶縁膜 に、少なくとも前記第 1の絶縁層の表面より深くまで開口部を形成する工程と、前記 開口部内に導電体を埋め込む工程と、前記導電体上及び前記第 2の絶縁膜上に電 極パッドを形成する工程とを有することを特徴とする半導体装置の製造方法が提供さ れる。
発明の効果
[0010] 本発明では、電極パッドの直下に強固な導電体が存在しているため、試験等にお V、てプローブ針をある程度の力で電極パッドに接触させた場合であっても、電極パッ ドの破損や変形が生じるのを防止することが可能となる。たとえ電極パッドに破損や 変形が生じたとしても、電極パッドの直下に存在する導電体が極めて強固に形成さ れているため、層間絶縁膜に達するような亀裂が導電体に生じることはない。従って 、本発明によれば、水素や水分が層間絶縁膜等を介してキャパシタの誘電体膜に達 するのを防止することができ、誘電体膜を構成する強誘電体が水素により還元される のを防止することができる。このように、本発明によれば、キャパシタの誘電体膜が水 素や水分により劣化するのを確実に防止することができ、電気的特性が良好で、寿 命の長いキャパシタを有する半導体装置を提供することが可能となる。
図面の簡単な説明
[図 1]図 1は、本発明の第 1実施形態による半導体装置を示す断面図である。
[図 2]図 2は、本発明の第 1実施形態による半導体装置を示す平面図である。
[図 3]図 3は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 1)である。
[図 4]図 4は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 2)である。
[図 5]図 5は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 3)である。
[図 6]図 6は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 4)である。
[図 7]図 7は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 5)である。
[図 8]図 8は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 6)である。
[図 9]図 9は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断面 図(その 7)である。
[図 10]図 10は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 8)である。
[図 11]図 11は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 9)である。
[図 12]図 12は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 10)である。
[図 13]図 13は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 11)である。
[図 14]図 14は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 12)である。 [図 15]図 15は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 13)である。
[図 16]図 16は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 14)である。
[図 17]図 17は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 15)である。
[図 18]図 18は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 16)である。
[図 19]図 19は、本発明の第 1実施形態による半導体装置の製造方法を示す工程断 面図(その 17)である。
[図 20]図 20は、本発明の第 1実施形態による半導体装置の変形例を示す断面図で ある。
[図 21]図 21は、本発明の第 2実施形態による半導体装置を示す断面図である。
[図 22]図 22は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 1)である。
[図 23]図 23は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 2)である。
[図 24]図 24は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 3)である。
[図 25]図 25は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 4)である。
[図 26]図 26は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 5)である。
[図 27]図 27は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 6)である。
[図 28]図 28は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 7)である。
[図 29]図 29は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 8)である。
[図 30]図 30は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 9)である。
[図 31]図 31は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 10)である。
[図 32]図 32は、本発明の第 2実施形態による半導体装置の製造方法を示す工程断 面図(その 11)である。
[図 33]図 33は、本発明の第 2実施形態による半導体装置の変形例を示す断面図で ある。
[図 34]図 34は、本発明の第 3実施形態による半導体装置を示す断面図である。
[図 35]図 35は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 1)である。
[図 36]図 36は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 2)である。
[図 37]図 37は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 3)である。
[図 38]図 38は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 4)である。
[図 39]図 39は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 5)である。
[図 40]図 40は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 6)である。
[図 41]図 41は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 7)である。
[図 42]図 42は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 8)である。
[図 43]図 43は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 9)である。 [図 44]図 44は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 10)である。
[図 45]図 45は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 11)である。
[図 46]図 46は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 12)である。
[図 47]図 47は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 13)である。
[図 48]図 48は、本発明の第 3実施形態による半導体装置の製造方法を示す工程断 面図(その 14)である。
[図 49]提案されている半導体装置を示す断面図である。
符号の説明
2· ··ロジック部、周辺回路領域
4"'FeRAMセル部、メモリセル領域
6· ·· '電極パッド部
8· ·· 'スクライブ領域
10- …半導体基板
12- …素子分離領域
14- ··ゥェル
16- "ゲート絶縁膜
18- …ゲート電極
20- …サイドウォール絶縁膜
22- …ソース zドレイン拡散層
24- …トランジスタ
26- …層間絶縁膜
28- …絶縁性バリア膜
30- …下部電極
32- …誘電体膜 ···上部電極
···キャパシタ
…絶縁性パリア膜 …絶縁性パリア膜 …層間絶縁膜
···コンタクトホールa、 46b…開口部 …導体プラグ
a、 50b…金属層a, 52b…コンタク卜ホールa, 54b…導体プラグa〜56d'"gii線e…電極
f、 56g…金属層 …絶縁性バリア膜 …層間絶縁膜a…コンタクトホーノレb、 62c…開口部a…導体プラグb、 64c…金属層a…酉己
b, 66c…金属層 …層間絶縁膜a…コンタクトホールb、 70c…開口部a…導体プラグb、 72c…金属層a- · ·内側のシーノレリング 75b…外側のシーノレリング
88a…配線
88b、 88c…金属層
90…層間絶縁膜
92…絶縁性/くリア膜
94…シリコン酸ィ匕膜
96、 96a, 96b…開 PI部
100、 100a, 100b…導体体
102· · ·電極パッド
104
106
108
110 110a…開口部
112 ' ·フォトレジスト膜
114 ··開口部
116 ' ·フォトレジスト膜
118 ,·開口部
120 '.プローブ針
121 'コンタクトホーノレ
122 -絶縁性バリア膜
123 -導体プラグ
124· -シリコン酸ィ匕膜
125·
126…絶縁性バリア膜
128· · ·シリコン酸ィ匕膜
発明を実施するための最良の形態
[第 1実施形態]
本発明の第 1実施形態による半導体装置及びその製造方法を図 1乃至図 19を用 いて説明する。
[0014] (半導体装置)
まず、本実施形態による半導体装置を図 1を用いて説明する。図 1は、本実施形態 による半導体装置を示す断面図である。図 1において、紙面左側はロジック部 (周辺 回路領域) 2を示しており、ロジック部 2の紙面右側は FeRAMセル部 (メモリセル領 域) 4を示しており、 FeRAMセル部 4の紙面右側は電極パッド部 6を示しており、電 極パッド部 6の紙面右側はスクライブ領域 8を示している。図 1における一点鎖線は、 スクライブ領域 8において半導体ウェハ 10を切断する際の切断箇所を示している。図 2は、本実施形態による半導体装置を示す平面図である。図 2における A— A' 線は 、図 1における A— 線に対応している。
[0015] 図 1に示すように、例えばシリコンより成る半導体基板 10上には、素子領域を画定 する素子分離領域 12が形成されている。素子分離領域 12が形成された半導体基板 10内には、ゥヱル 14が形成されている。
[0016] ゥエル 14が形成された半導体基板 10上には、例えば膜厚 6〜7nmのシリコン酸ィ匕 膜より成るゲート絶縁膜 16を介して、例えばポリシリコンより成るゲート電極 (ゲート配 線) 18が形成されている。ゲート長は、例えば 0. 36 mに設定されている。ゲート電 極 18上には、シリコン酸ィ匕膜が形成されている。ゲート電極 18の側壁部分には、シリ コン酸ィ匕膜より成るサイドウォール絶縁膜 20が形成されている。
[0017] サイドウォール絶縁膜 20が形成されたゲート電極 18の両側には、ソース/ドレイン 拡散層 22が形成されている。こうして、ゲート電極 18とソース/ドレイン拡散層 22と を有するトランジスタ 24が構成されて 、る。
[0018] なお、トランジスタ 24は、 FeRAM領域 4内における半導体基板 10上にも形成され ているが、図 1においては図示されていない。 FeRAM領域 4内における半導体基板 10上に形成されたトランジスタ 24は、例えば、キャパシタ 36の下部電極 30又は上部 電極 34に電気的に接続されて!、る。
[0019] トランジスタ 24が形成された半導体基板 10上には、シリコン窒化酸化膜 (図示せず )とシリコン酸ィ匕膜 (図示せず)とシリコン酸ィ匕膜 (図示せず)とから成る層間絶縁膜 26 が形成されて 、る。層間絶縁膜 26の表面は平坦になって 、る。 [0020] 層間絶縁膜 26上には、水素及び水分の拡散を防止する絶縁性バリア膜 28が形成 されている。絶縁性バリア膜 28の材料としては、例えば酸ィ匕アルミニウム (アルミナ、 Al O )が用いられている。絶縁性バリア膜 28の膜厚は、例えば 20nm程度とする。
2 3
[0021] 層間絶縁膜 26上に絶縁性バリア膜 28を形成しているのは、以下のような理由によ るものである。即ち、後述するキャパシタ 36の誘電体膜 32に水素や水分が達すると 、誘電体膜 32を構成する金属酸化物が水素により還元されてしまい、誘電体膜 32の 電気特性が劣化してしまう。層間絶縁膜 26上に絶縁性バリア膜 28を形成すること〖こ より、層間絶縁膜 26から誘電体膜 32に水素や水分が達するのを防止することができ るため、キャパシタ 36の電気的特性の劣化を防止することが可能となる。
[0022] 絶縁性バリア膜 28上には、キャパシタ 36の下部電極 30が形成されている。下部電 極 30は、例えば、膜厚 155nmの Pt膜により構成されている。
[0023] 下部電極 30上には、キャパシタ 36の誘電体膜 32が形成されている。誘電体膜 32 は、例えば膜厚 150〜200nmの強誘電体膜により構成されている。かかる強誘電体 膜としては、例えば PbZr Ti O膜 (PZT膜)が用いられている。
1 -Χ X 3
[0024] 誘電体膜 32上には、キャパシタ 36の上部電極 34が形成されている。上部電極 34 は、例えば、膜厚 50nmの IrO膜(図示せず)と膜厚 200nmの他の IrO膜(図示せ
2 2 ず)とを順次積層して成る積層膜により構成されている。
[0025] こうして、下部電極 30と誘電体膜 32と上部電極 34と力 成るキャパシタ 36が構成 されている。
[0026] 誘電体膜 32上及び上部電極 34上には、誘電体膜 32及び上部電極 34の上面及 び側面を覆うように絶縁性バリア膜 38が形成されている。力かる絶縁性バリア膜 38と しては、例えば 50nm程度の酸ィ匕アルミニウム (Al O )が用いられている。絶縁性バ
2 3
リア膜 38は、水素及び水分の拡散を防止するためのものである。キャパシタ 36の誘 電体膜 32に水素や水分が達すると、上述したように、誘電体膜 32を構成する金属酸 化物が水素により還元されてしまい、キャパシタ 36の電気特性が劣化してしまう。誘 電体膜 32及び上部電極 34の上面及び側面を覆うように絶縁性バリア膜 38を形成す ることにより、誘電体膜 32に水素や水分が達するのが防止されるため、キャパシタ 36 の電気的特性の劣化を防止することが可能となる。 [0027] 上面に絶縁性バリア膜 38が形成されたキャパシタ上には、絶縁性バリア膜 38及び キャパシタ 36を覆うように他の絶縁性バリア膜 40が形成されて 、る。力かる絶縁性バ リア膜 40としては、例えば 20nm程度の酸ィ匕アルミニウム膜が用いられている。絶縁 性バリア膜 40は、上述した絶縁性バリア膜 38と同様に、水素及び水分の拡散を防止 するためのものである。
[0028] 絶縁性バリア膜 40上には、シリコン酸ィ匕膜より成る層間絶縁膜 42が形成されている 。層間絶縁膜 42の表面は平坦化されている。
[0029] 層間絶縁膜 42、絶縁性バリア膜 40、絶縁性バリア膜 28及び層間絶縁膜 26には、 ソース/ドレイン拡散層 22に達するコンタクトホール 44が形成されている。コンタクト ホール 44の径は、例えば 0. 45 μ m程度である。
[0030] また、層間絶縁膜 42、絶縁性バリア膜 40、絶縁性バリア膜 28及び層間絶縁膜 26 には、金属層 50aを埋め込むための開口部 46aが形成されている。金属層 50aは、 内側のシールリング(耐湿リング) 75aの一部を構成するものである。シールリング 75a は、シールリング 75bと相俟って、スクライブ領域 8において半導体基板 10を切断し た後に、水分等が外部力も浸入するのを遮断するためのものである。
[0031] また、層間絶縁膜 42、絶縁性バリア膜 40、絶縁性バリア膜 28及び層間絶縁膜 26 には、金属層 50bを埋め込むための開口部 46bが形成されている。金属層 50bは、 外側のシールリング (耐湿リング) 75bの一部を構成するものである。シールリング 75 bは、内側のシールリング 75aと相俟って、スクライブ領域 8において半導体基板 10を 切断した後に、水分等が外部力も浸入するのを遮断するためのものである。開口部 4 6bは、スクライブ領域 8の内側に、全体として枠状に形成されている。
[0032] コンタクトホール 44内及び開口部 46a、 46b内には、例えば膜厚 20nmの Ti膜(図 示せず)が形成されている。 Ti膜が形成されたコンタクトホール 44内及び開口部 46a 、 46b内〖こは、例えば膜厚 50nmの TiN膜(図示せず)が形成されている。これら Ti 膜及び TiN膜によりバリアメタル膜 (図示せず)が構成されている。
[0033] ノ リアメタル膜が形成されたコンタクトホール 44内には、タングステンより成る導体プ ラグ 48が埋め込まれている。また、ノ リアメタル膜が形成された開口部 46a、 46b内 には、タングステンより成る金属層 50a、 50bが埋め込まれている。 [0034] 層間絶縁膜 42、絶縁性バリア膜 38、 40には、上部電極 34に達するコンタクトホー ル 52aが形成されている。また、層間絶縁膜 42、絶縁性バリア膜 38、 40には、下部 電極 30に達するコンタクトホール 52bが形成されている。コンタクトホール 52a、 52b の径は、例えば 0. 5 /z m程度である。
[0035] コンタクトホール 52a内及び層間絶縁膜 42上には、導体プラグ 54a及び配線 (第 1 金属配線層) 56aがー体に形成されている。また、コンタクトホール 52b内及び層間 絶縁膜 42上には、導体プラグ 54b及び配線 (第 1金属配線層) 56bがー体に形成さ れている。また、層間絶縁膜 42上には、複数の配線 (第 1金属配線層) 56c、 56dが 形成されている。また、層間絶縁膜 42上には、電極 56eが形成されている。電極 56e は、後述する電極パッド 102と同様の平面形状に形成されている。電極 56eは、図示 しない配線に接続されている。配線 56c、 56dは、例えば導体プラグ 48に接続されて いる。また、金属層 50a上には、配線 56a〜56eと同一の膜より成る金属層 56gが形 成されている。金属層 50b上には、配線 56a〜56dと同一の膜より成る金属層 56fが 形成されている。金属層 56fは、外側のシールリング 75bの一部を構成するものであ る。金属層 56gは、外側のシールリング 75aの一部を構成するものである。配線 56a、 56b及び導体プラグ 54a、 54bは、例えば膜厚 150nmの TiN膜と、膜厚 550nmの A 1— Cu合金膜と、膜厚 5nmの Ti膜と、膜厚 150nmの TiN膜とを順次積層して成る積 層膜により構成されている。
[0036] 配線 56a〜56d、電極 56e、金属層 56f、 56g及び導体プラグ 54a、 54b等が形成 された層間絶縁膜 42上には、配線 56a〜56d、電極 56e、金属層 56f、 56gを覆うよ うに絶縁性バリア膜 58が形成されている。力かる絶縁性バリア膜 58は、上述した絶 縁性バリア膜 38、 40と同様に、水素及び水分の拡散を防止するためのものである。 絶縁性バリア膜 58としては、例えば膜厚 20nmの酸ィ匕アルミニウムが用いられている
[0037] 絶縁性バリア膜 58上には、例えば膜厚 lOOnmのシリコン酸ィ匕膜より成る層間絶縁 膜 60が形成されている。
[0038] 層間絶縁膜 60及び絶縁性バリア膜 58には、配線 56a〜56dにそれぞれ達するコ ンタクトホール 62aが形成されている。コンタクトホール 62aの径は、例えば 0. 5 m 程度である。また、層間絶縁膜 60及び絶縁性バリア膜 58には、金属層 56fに達する 開口部 62cが形成されている。また、層間絶縁膜 60及び絶縁性バリア膜 58には、金 属層 56gに達する開口部 62bが形成されている。
[0039] コンタクトホール 62a内及び開口部 62b、 62c内には、例えば膜厚 50nmの TiN膜( 図示せず)が形成されて!ヽる。
[0040] TiN膜が形成されたコンタクトホール 62a内には、タングステンより成る導体プラグ 6
4aが埋め込まれている。また、 TiN膜が形成された開口部 62b内には、タングステン より成る金属層 64bが埋め込まれている。また、 TiN膜が形成された開口部 62c内に は、タングステンより成る金属層 64cが埋め込まれている。金属層 64bは、内側のシ ールリング 75aの一部を構成するものである。金属層 64cは、外側のシールリング 75 bの一部を構成するものである。
[0041] 導体プラグ 64a及び金属層 64b、 64cが埋め込まれた層間絶縁膜 60上には、配線
(第 2金属配線層) 66aが形成されて 、る。
[0042] また、金属層 64b上には、配線 66aと同一導電膜より成る金属層 66bが形成されて いる。金属層 66bは、内側のシールリング 75aの一部を構成するものである。
[0043] また、金属層 64c上には、配線 66aと同一導電膜より成る金属層 66cが形成されて いる。金属層 66cは、シールリング 75bの一部を構成するものである。
[0044] 配線 66a、電極 66b及び金属層 66cは、例えば、膜厚 550nmの Al— Cu合金膜、 膜厚 5nmの Ti膜、膜厚 150nmの TiN膜を順次積層して成る積層膜により構成され ている。
[0045] 配線 66a、電極 66b及び金属層 66cが形成された層間絶縁膜 60上には、例えば 膜厚 lOOnmのシリコン酸ィ匕膜より成る層間絶縁膜 68が形成されている。層間絶縁膜 68の表面は、平坦になっている。
[0046] 層間絶縁膜 68には、配線 66aに達するコンタクトホール 70aが形成されている。コ ンタクトホール 70aの径は、例えば 0. 5 /z m程度である。また、層間絶縁膜 68には、 金属層 66bに達する開口部 70bが形成されている。また、層間絶縁膜 68には、金属 層 66cに達する開口部 70cが形成されている。金属層 70bは、内側のシールリング 7 5aの一部を構成するものである。金属層 70cは、外側のシールリング 75bの一部を構 成するものである。
[0047] コンタクトホーノレ 70a内及び開口部 70b、 70c内には、例えば、膜厚 50nmの TiN 膜より成るバリアメタル膜が形成されている。
[0048] ノ リアメタル膜が形成されたコンタクトホール 70a内には、タングステンより成る導体 プラグ 72aが埋め込まれている。また、ノ リアメタル膜が形成された開口部 70b内に は、タングステンより成る金属層 72bが形成されている。また、ノ リアメタル膜が形成さ れた開口部 70c内には、タングステンより成る金属層 72cが形成されている。
[0049] 導体プラグ 72a及び金属層 72b、 72cが埋め込まれた層間絶縁膜 68上には、配線
(第 3金属配線層) 88aが形成されている。また、金属層 72b上には、配線 88aと同一 導電膜より成る金属層 88bが形成されている。金属層 88bは、内側のシールリング 75 aの一部を構成するものである。また、金属層 72c上には、配線 88aと同一導電膜より 成る金属層 88cが形成されている。金属層 88cは、外側のシールリング 75bの一部を 構成するものである。
[0050] 配線 88a、金属層 88b、 88cが形成された層間絶縁膜 68上には、例えば膜厚 100 nmのシリコン酸ィ匕膜より成る層間絶縁膜 90が形成されている。層間絶縁膜 90の表 面は、平坦になっている。
[0051] 表面が平坦な層間絶縁膜 90上には、例えば膜厚 20〜80nmの酸ィ匕アルミニウム 膜より成る平坦な絶縁性バリア膜 92が形成されている。ここでは、絶縁性バリア膜 92 を構成する酸ィ匕アルミニウム膜の膜厚を例えば 50nmとする。絶縁性バリア膜 92は、 平坦ィ匕された層間絶縁膜 90上に形成されているため、平坦になっている。平坦な絶 縁性バリア膜 92は被覆性が良好であるため、水素や水分の拡散を十分に防止する ことが可能である。
[0052] 絶縁性バリア膜 92上には、例えば膜厚 lOOnmのシリコン酸ィ匕膜 94が形成されて いる。シリコン酸ィ匕膜 94は、電極パッド 102等を形成する際のパターユングにおいて 絶縁性バリア膜 92がエッチングされるのを防止するためのものである。
[0053] シリコン酸ィ匕膜 94、絶縁性バリア膜 92、層間絶縁膜 90、層間絶縁膜 68及び層間 絶縁膜 60には、電極 56eに達する開口部 96が形成されている。
[0054] 開口部 96内の内面には、ノ リアメタル膜 98が形成されている。ノ リアメタル膜 98の 材料としては、例えば膜厚 150nmの Ti— A1— N合金膜が用 、られて 、る。
[0055] バリアメタル膜 98が形成された開口部 96内には、例えば Cuより成る単一の導電体
(埋設物) 100が埋め込まれている。導電体 100は複数の層間絶縁膜 60、 68、 90に 亘つて埋め込まれているため、導電体 100の厚さは例えば 2. と非常に厚く形 成されている。また、導電体 100が埋め込まれている開口部 96の径は 50 mと比較 的大きく形成されている。導電体 100の径は、配線 56a〜56c、 66a、 88a等に接続 されて!/ヽる!ヽずれの ί本プラグ 48、 54a、 54b、 64a、 72aの よりぁ さく され て ヽる。具体的【こ【ま、導電体 100の径 ίま、導体プラグ 48、 54a, 54b, 64a, 72aの径 の 100倍以上に設定されている。このように、導電体 100は極めて強固に形成されて いる。
[0056] なお、ここではバリアメタル膜 98の材料として Ti—Al—N合金を用いる場合を例に 説明したが、ノ リアメタル膜 98の材料は、 Ti— Al— N合金に限定されるものではない 。例えば、 TiN、 Ti、 Ta等をバリアメタル膜 98の材料として用いてもよい。また、 Ti— A1—N合金と Taとの複合物をバリアメタル膜 98の材料として用いてもよ!、。
[0057] また、ここでは、導電体 100の材料として Cuを用いる場合を例に説明した力 導電 体 100の材料は Cuに限定されるものではない。
[0058] 例えば、 A1を導電体 100の材料として用いてもょ 、。 A1は Cuより硬度が高 、材料 である。従って、導電体 100の材料として A1を用いれば、導電体 100の材料として C uを用いた場合と比較して、より強度の高い導電体 100を得ることが可能となる。導電 体 100の材料として A1を用いる場合、バリアメタル膜 98の材料として、 TiN、 TiW等 を用いることが可能である。
[0059] また、 Auを導電体 100の材料として用いてもよ!、。 Auは、 AUり硬度が高!、材料で ある。従って、導電体 100の材料として Auを用いれば、導電体 100の材料として A1 を用いた場合と比較して、より強度の高い導電体 100を得ることが可能となる。導電 体 100の材料として Auを用いる場合、バリアメタル膜 98の材料としては例えば TiN、 TiW等を用いることが可能である。
[0060] また、 Al—Cu合金を導電体 100の材料として用いてもよい。
[0061] 導電体 100が埋め込まれた積層膜 60、 68、 90、 92、 94上には、電極パッド 102が 形成されている。電極パッド 102の材料としては、 A1 (アルミニウム)や Al—Cu (アルミ
-ゥム—銅)合金等が用いられて!/、る。
[0062] 電極パッド 102の外周は、導電体 100の外周より大きく設定されている。電極パッド
102の外周を導電体 100の外周より大きく設定しているのは、位置合わせ余裕を十 分に確保するためである。
[0063] また、電極 56eの外周は、導電体 100の外周より大きく設定されている。電極 56eの 外周を導電体 100の外周より大きく設定しているのも、位置合わせ余裕を十分に確 保するためである。
[0064] 本実施形態では、電極パッド 102の直下に強固な導電体 100が埋め込まれている ことに主な特徴がある。より具体的には、導電体 100は、層間絶縁膜 90のみならず、 層間絶縁膜 68にも埋め込まれており、更に、層間絶縁膜 60の一部にも埋め込まれ ている。
[0065] 提案されている半導体装置では、電極パッドの直下における層間絶縁膜に複数の 導体プラグが埋め込まれた構成となっており、電極パッドにプローブ針を接触させて 試験等を行う際に、電極パッドの破損や変形が生じてしまう場合があった。かかる場 合には、電極パッドの下に存在する層間絶縁膜にまで亀裂が生じてしまう場合もあつ た。このような場合には、電極パッド部から水素や水分が半導体装置の内部に浸入し 、ひいてはキャパシタの誘電体膜にまで水素や水分が達してしまう場合があった。水 素や水分がキャパシタの誘電体膜に達すると、誘電体膜として用いられている金属 酸化物が水素により還元され、キャパシタの電気的特性が劣化してしまうこととなる。
[0066] これに対し、本実施形態では、電極パッド 102の直下に強固な導電体 100が存在 しているため、試験等においてプローブ針をある程度の力で電極パッド 102に接触さ せた場合であっても、電極パッド 102の破損や変形が生じるのを防止することが可能 となる。たとえ電極パッド 102に破損や変形が生じたとしても、電極パッド 102の直下 に存在する導電体 100が極めて強固に形成されているため、電極パッド部 6から水 素や水分が半導体装置の内部に浸入するのを、導電体 100により確実に防止するこ とができる。従って、本実施形態によれば、水素や水分が層間絶縁膜 60、 68、 90等 を介してキャパシタ 36の誘電体膜 32に達するのを防止することができ、誘電体膜 32 を構成する強誘電体が水素により還元されるのを防止することができる。このように、 本実施形態によれば、キャパシタ 36の誘電体膜 32が水素や水分により劣化するの を確実に防止することができ、電気的特性が良好で、寿命の長いキャパシタ 36を有 する半導体装置を提供することが可能となる。
[0067] 金属層 50a、金属層 56g、金属層 64b、金属層 66b、金属層 72b及び金属層 88b により、内側のシールリング(内部耐湿リング) 75aが構成されている。内側のシールリ ング 75aは、上述したようにスクライブ領域 8において半導体ウェハ 10を切断した後 に、外側のシールリング 75bと相俟って、水分等が外部から浸入するのを遮断するた めのものである。
[0068] 金属層 50b、金属層 56f、金属層 64c、金属層 66c、金属層 72c及び金属層 88cに より、外側のシールリング (外部耐湿リング) 75bが構成されている。外側のシールリン グ 75bは、上述したようにスクライブ領域 8において半導体ウェハ 10を切断した後に、 水分等が外部力 浸入するのを遮断するためのものである。
[0069] 電極パッド 102が形成されたシリコン酸ィ匕膜 94上には、例えば膜厚 lOOnmのシリ コン酸ィ匕膜より成る保護膜 104が形成されている。
[0070] 保護膜 104上には、例えば膜厚 350nmのシリコン窒化膜より成る保護膜 106が形 成されている。シリコン窒化膜 106は、後述するポリイミドより成る保護膜 108から放出 される水分等を遮断するためのものである。
[0071] 保護膜 106上には、例えばポリイミドより成る保護膜 108が形成されている。
[0072] 保護膜 104、保護膜 106及び保護膜 108には、電極パッド 102に達する開口部 11
0が形成されている。
[0073] こうして本実施形態による半導体装置が構成されて!ヽる。
[0074] 本実施形態による半導体装置は、電極パッド 102の直下に強固な導電体 100が形 成されて!/ヽることに主な特徴がある。
[0075] 上述したように、電極パッドの直下における層間絶縁膜に複数の導体プラグを単に 埋め込んだ場合には、電極パッドにプローブ針を接触させて試験等を行う際に、電 極パッドの破損や変形が生じてしまう場合があった。カゝかる場合には、電極パッドの 下に存在する層間絶縁膜にまで亀裂が生じてしまう場合もあった。このような場合に は、電極パッド部力も水素や水分が半導体装置の内部に浸入し、ひいてはキャパシ タの誘電体膜にまで水素や水分が達してしまう場合があった。水素や水分がキャパ シタの誘電体膜に達すると、誘電体膜として用いられている金属酸化物が水素により 還元され、キャパシタの電気的特性が劣化してしまうこととなる。
[0076] これに対し、本実施形態では、電極パッド 102の直下に強固な導電体 100が存在 しているため、試験等においてプローブ針をある程度の力で電極パッド 102に接触さ せた場合であっても、電極パッド 102の破損や変形が生じるのを防止することが可能 となる。たとえ電極パッド 102に破損や変形が生じたとしても、電極パッド 102の直下 に存在する導電体 100が極めて強固に形成されているため、層間絶縁膜 60、 68、 9 0に達するような亀裂が導電体 100に生じることはない。従って、本実施形態によれ ば、水素や水分が層間絶縁膜 60、 68、 90等を介してキャパシタ 36の誘電体膜 32に 達するのを防止することができ、誘電体膜 32を構成する強誘電体が水素により還元 されるのを防止することができる。このように、本実施形態によれば、キャパシタ 36の 誘電体膜 32が水素や水分により劣化するのを確実に防止することができ、電気的特 性が良好で、寿命の長いキャパシタ 36を有する半導体装置を提供することが可能と なる。
[0077] (半導体装置の製造方法)
次に、本実施形態による半導体装置の製造方法を図 3乃至図 19を用いて説明す る。図 3乃至図 19は、本実施形態による半導体装置の製造方法を示す工程断面図 である。
[0078] まず、図 3 (a)に示すように、例えばシリコンより成る半導体基板 10に、 LOCOS (L OCal Oxidation of Silicon)法により、素子領域を画定する素子分離領域 12を形成す る。
[0079] 次に、イオン注入法により、ドーパント不純物を導入することにより、ゥエル 14を形成 する。
[0080] 次に、例えば熱酸化法により、素子領域上に膜厚 6〜7nmのシリコン酸ィ匕膜より成 るゲート絶縁膜 16を形成する。
[0081] 次に、例えば CVD法により、膜厚 120nmのポリシリコン膜 18を形成する。ポリシリコ ン膜 18は、ゲート電極等となるものである。
[0082] 次に、フォトリソグラフィ技術を用い、ポリシリコン膜 18をパターユングする。こうして、 ポリシリコン膜より成るゲート電極 18が形成される。ゲート長は、例えば 0. 36 /z mと する。
[0083] 次に、ゲート電極 18をマスクとし、イオン注入法により、ゲート電極 18の両側の半導 体基板 10内にドーパント不純物を導入する。これにより、エクステンションソース Zド レインの浅 ヽ領域を構成するエクステンション領域(図示せず)が形成される。
[0084] 次に、全面に、例えば CVD法により、膜厚 150nmのシリコン酸ィ匕膜 20を形成する
[0085] 次に、シリコン酸ィ匕膜 20を異方性エッチングする。こうして、ゲート電極 18の側壁部 分に、シリコン酸ィ匕膜より成るサイドウォール絶縁膜 20が形成される。
[0086] 次に、サイドウォール絶縁膜 20が形成されたゲート電極 18をマスクとし、イオン注 入法により、ゲート電極 18の両側の半導体基板 10内にドーパント不純物を導入する 。これにより、エクステンションソース Zドレインの深い領域を構成する不純物拡散層( 図示せず)が形成される。エクステンション領域と深い不純物拡散層とによりソース Z ドレイン拡散層 22が構成される。
[0087] こうして、ゲート電極 18とソース Zドレイン拡散層 22とを有するトランジスタ 24
が形成される。
[0088] 次に、全面に、例えばプラズマ CVD法により、例えば膜厚 200nmのシリコン窒化 酸化膜 (SiON膜)(図示せず)を形成する。
[0089] 次に、全面に、例えばプラズマ TEOSCVD法により、膜厚 600nmのシリコン酸化 膜 (図示せず)を形成する。
[0090] 次に、例えば CMP法により、シリコン酸ィ匕膜の表層部を 200nm程度研磨すること により、シリコン酸ィ匕膜の表面を平坦ィ匕する。
[0091] 次に、全面に、例えばプラズマ TEOSCVD法により、膜厚 lOOnmのシリコン酸化 膜 (図示せず)を形成する。こうして、シリコン窒化酸ィ匕膜、シリコン酸ィ匕膜及びシリコ ン酸ィ匕膜より成る層間絶縁膜 26が形成される。
[0092] 次に、脱水処理を行うことにより、層間絶縁膜 26中から水分を除去する。脱水処理 の条件は、例えば以下の通りとする。脱水処理の際の温度は、例えば 650°Cとする。 脱水処理を行う際の雰囲気は、窒素雰囲気とする。脱水処理の時間は、例えば 30分 とする。
[0093] 次に、図 3 (b)に示すように、例えば PVD (Physical Vapor Deposition,物理的気相 成長)法、より具体的にはスパッタリング法により、例えば膜厚 20nmの酸ィ匕アルミ- ゥム膜より成る絶縁性バリア膜 28を形成する。絶縁性バリア膜 28は、層間絶縁膜 26 中からキャパシタ 36に水素や水分が達するのを防止するためのものである。
[0094] 次に、例えば RTA (Rapid Thermal Annealing)法〖こより、酸素雰囲気にて、例えば 6 50°C、 60秒の熱処理を行う。この熱処理は、絶縁性バリア膜 28の膜質を向上させる ためのものである。この熱処理を行うことにより、後工程において絶縁性バリア膜 28 上に導電膜 30を形成する際に、配向性の良好な導電膜 30を形成することが可能と なる。
[0095] 次に、全面に、例えば PVD法により、膜厚 155nmの Pt膜より成る導電膜 30を形成 する。導電膜 30は、キャパシタ 36の下部電極となるものである。
[0096] 次に、全面に、例えば PVD法により、誘電体膜 32を形成する。かかる誘電体膜 32 は、キャパシタの誘電体膜となるものである。誘電体膜 32としては、例えば強誘電体 膜を形成する。より具体的には、誘電体膜 32として、例えば膜厚 150〜200nm程度 の PZT膜を形成する。
[0097] 次に、例えば RTA法により、酸素雰囲気中にて、例えば 585°C、 90秒の熱処理を 行う。熱処理の際にチャンバ内に導入する酸素ガスの流量は、例えば 0. 025リットル Z分とする。力かる熱処理は、誘電体膜 32の膜質を向上させるためのものである。
[0098] 次に、例えば PVD法により、例えば膜厚 50nmの IrO膜(図示せず)を形成する。
2
[0099] 次に、例えば RTA法により、酸素雰囲気中にて、例えば 725°C、 20秒の熱処理を 行う。この熱処理は、上部電極 36の表面に異常が生ずるのを防止するためのもので ある。熱処理の際にチャンバ内に導入する酸素ガスの流量は、例えば 0. 025リットル Z分とする。
[0100] 次に、例えば PVD法により、膜厚 200nmの IrO膜(図示せず)を形成する。こうし
2
て、 IrO膜を 2層積層して成る積層膜 34が形成される。かかる積層膜 34は、キャパ シタ 36の上部電極となるものである。
[0101] 次に、全面に、スピンコート法により、フォトレジスト膜(図示せず)を形成する。
[0102] 次に、フォトリソグラフィ技術を用い、フォトレジスト膜をキャパシタ 36の上部電極 34 の平面形状にパターニングする。
[0103] 次に、フォトレジスト膜をマスクとして、積層膜 34をエッチングする。こうして、積層膜 より成る上部電極 34が形成される。この後、フォトレジスト膜を剥離する。
[0104] 次に、酸素雰囲気中にて、例えば 650°C、 60分の熱処理を行う。この熱処理は、誘 電体膜に酸素を供給し、誘電体膜 32の膜質を回復させるためのものである。熱処理 の際にチャンバ内に導入する酸素ガスの流量は、例えば 20リットル Z分とする。熱処 理を行う際には、例えば縦型電気炉ァニール装置を用いる。
[0105] 次に、全面に、スピンコート法により、フォトレジスト膜を形成する。
[0106] 次に、フォトリソグラフィ技術を用い、フォトレジスト膜をキャパシタの誘電体膜 32の 平面形状にパターニングする。
[0107] 次に、フォトレジスト膜をマスクとして、誘電体膜 32をエッチングする。この後、フォト レジスト膜を剥離する。
[0108] 次に、酸素雰囲気中にて、例えば 350°C、 60分の熱処理を行う。この熱処理は、誘 電体膜 32に酸素を供給し、誘電体膜 32の膜質を回復させるためのものである。熱処 理の際にチャンバ内に導入する酸素ガスの流量は、例えば 20リットル Z分とする。熱 処理を行う際には、例えば縦型電気炉ァニール装置を用いる。
[0109] 次に、全面に、例えば PVD法により、膜厚 50nmの酸ィ匕アルミニウム膜より成る絶 縁性バリア膜 (図示せず)を形成する。絶縁性バリア膜 38は、水素や水分の拡散を防 止するためのものである。
[0110] 次に、酸素雰囲気中にて、例えば 550°C、 60分の熱処理を行う。この熱処理は、絶 縁性バリア膜の膜質を向上させるとともに、誘電体膜 32に酸素を供給し、誘電体膜 3 2の膜質を回復させるためのものである。熱処理の際にチャンバ内に導入する酸素ガ スの流量は、例えば 20リットル Z分とする。熱処理を行う際には、例えば縦型電気炉 ァニール装置を用いる。
[0111] 次に、全面に、スピンコート法により、フォトレジスト膜を形成する。 [0112] 次に、フォトリソグラフィ技術を用い、フォトレジスト膜をキャパシタの下部電極 30の 平面形状にパターニングする。
[0113] 次に、フォトレジスト膜をマスクとして、絶縁性バリア膜 38及び導電膜 30をエツチン グする。こうして、導電膜より成る下部電極 30が形成される。また、絶縁性バリア膜 38 力 上部電極 34及び誘電体膜 32を覆うように残存する。この後、フォトレジスト膜を 剥離する。
[0114] 次に、酸素雰囲気中にて、例えば 650°C、 60分の熱処理を行う。この熱処理は、誘 電体膜に酸素を供給し、誘電体膜の膜質を回復させるためのものである。熱処理の 際にチャンバ内に導入する酸素ガスの流量は、例えば 20リットル Z分とする。熱処理 を行う際には、例えば縦型電気炉ァニール装置を用いる。
[0115] 次に、全面に、例えば PVD法により、膜厚 20nmの酸ィ匕アルミニウム膜より成る絶 縁性バリア膜 40を形成する。絶縁性バリア膜 40は、水素や水分の拡散を防止するた めのものである。
[0116] 次に、酸素雰囲気中にて、例えば 550°C、 60分の熱処理を行う。この熱処理は、絶 縁性バリア膜 40の膜質を向上させるとともに、誘電体膜 32に酸素を供給し、誘電体 膜 32の膜質を回復させるためのものである。熱処理の際にチャンバ内に導入する酸 素ガスの流量は、例えば 20リットル Z分とする。熱処理を行う際には、例えば縦型電 気炉ァニール装置を用いる。
[0117] 次に、全面に、プラズマ TEOSCVD法により、例えば膜厚 1500nmのシリコン酸化 膜より成る層間絶縁膜 42を形成する。
[0118] 次に、例えば CMP法により、層間絶縁膜 42の表面を平坦ィ匕する。
[0119] 次に、 N Oガスを用いて発生させたプラズマ雰囲気にて、熱処理を行う(プラズマァ
2
ニール)。プラズマァニールは、層間絶縁膜 42の内部に存在する水分を除去すると ともに、層間絶縁膜 42の表面を窒化するためのものである。プラズマァニールは、例 えば CVD装置を用いて行うことができる。プラズマァニールの条件は、例えば 350°C 、 2分とする。
[0120] 次に、全面に、スピンコート法により、フォトレジスト膜を形成する。
[0121] 次に、フォトリソグラフィ技術を用い、フォトレジスト膜に開口部を形成する。かかる開 口部は、層間絶縁膜にコンタクトホールを形成するためのものである。
[0122] 次に、フォトレジスト膜をマスクとして層間絶縁膜 42、絶縁性バリア膜 40、絶縁性バ リア膜 28及び層間絶縁膜 26をエッチングすることにより、ソース/ドレイン拡散層 22 に達するコンタクトホール 44と、半導体基板 10に達する開口部 46a、 46bとを形成す る(図 4 (a)参照)。
[0123] 次に、全面に、例えば PVD法により、膜厚 20nmの Ti膜(図示せず)と膜厚 50nm の TiN膜 (図示せず)とを順次成膜する。こうして、 Ti膜と TiN膜とから成るバリアメタ ル膜(図示せず)がコンタクトホール 44内及び開口部 46a、 46b内に形成される。
[0124] 次に、全面に、例えば CVD法により、膜厚 500nmのタングステン膜を形成する。
[0125] 次に、例えば CMP法により、層間絶縁膜 42の表面が露出するまで、タングステン 膜及びバリアメタル膜を研磨する。こうして、コンタクトホール 44内に、タングステンよ り成る導体プラグ 48が埋め込まれる。また、開口部 46a、 46b内に、タングステンより 成る金属層 50a、 50bが埋め込まれる。金属層 50a、 50bは、シールリングの一部とな るものである。
[0126] 次に、 N Oガスを用いて発生させたプラズマ雰囲気にて、熱処理を行う(プラズマァ
2
ニール)。プラズマァニールは、層間絶縁膜 42の内部に存在する水分を除去すると ともに、層間絶縁膜 42の表面を窒化するためのものである。プラズマァニールは、例 えば CVD装置を用いて行うことができる。プラズマァニールの条件は、例えば 350°C 、 2分とする。
[0127] 次に、全面に、例えばプラズマ CVD法により、例えば膜厚 lOOnmのシリコン窒化 膜 86を形成する。シリコン窒化膜 86は、導体プラグ 48の表面にダメージが生じるの を防止するためのものである。
[0128] 次に、図 4 (b)に示すように、フォトリソグラフィ技術を用い、上部電極 34に達するコ ンタクトホール 52aと下部電極 30に達するコンタクトホール 52bとを、層間絶縁膜 42 及びシリコン窒化膜 86に形成する。
[0129] 次に、酸素雰囲気中にて、例えば 500°C、 60分の熱処理を行う。この熱処理は、キ ャパシタ 36の誘電体膜 32に酸素を供給し、誘電体膜 32の膜質を回復させるための ものである。熱処理の際にチャンバ内に導入する酸素ガスの流量は、例えば 20リット ル z分とする。熱処理を行う際には、例えば縦型電気炉ァニール装置を用いる。
[0130] 次に、図 5 (a)に示すように、例えば全面エッチバックにより、層間絶縁膜 42上に存 在するシリコン窒化酸化膜 86を除去する。
[0131] 次に、全面に、例えば PVD法により、膜厚 150nmの TiN膜、膜厚 550nmの A1— Cu合金膜、膜厚 5nmの Ti膜、及び膜厚 150nmの TiN膜を順次成膜する。こうして、 TiN膜、 Al— Cu合金膜、 Ti膜及び TiN膜より成る積層膜が形成される。
[0132] 次に、フォトリソグラフィ技術を用い、積層膜をパターユングする。こうして、コンタクト ホール 52a内及び層間絶縁膜 42上に、積層膜より成る導体プラグ 54a及び配線 56a がー体に形成される。また、コンタクトホール 52b内及び層間絶縁膜 42上に、積層膜 より成る導体プラグ 54b及び配線 56bがー体に形成される。また、層間絶縁膜 42上 に、積層膜より成る配線 56c〜56dが形成される。また、層間絶縁膜 42上に電極 56e が形成される。また、金属層 50b上に、積層膜より成る金属層 56fが形成される。また 、金属層 50a上に、積層膜より成る金属層 56gが形成される。金属層 56gは、内側の シールリング 75aの一部となるものである。金属層 56fは、外側のシールリング 75bの 一部となるものである(図 5 (b)参照)。
[0133] 次に、窒素雰囲気中にて、例えば 350°C、 30分の熱処理を行う。この熱処理を行う ことにより、後工程において絶縁性バリア膜 58を形成する際に、絶縁性バリア膜 58の 下地に対する密着性を向上させることが可能となる。熱処理の際にチャンバ内に導 入する窒素ガスの流量は、例えば 20リットル Z分とする。熱処理を行う際には、例え ば縦型電気炉ァニール装置を用いる。
[0134] 次に、図 6に示すように、全面に、例えば PVD法により、例えば膜厚 20nmの酸ィ匕 アルミニウム膜より成る絶縁性バリア膜 58を形成する。力かる絶縁性バリア膜 58は、 キャパシタ 36の誘電体膜 32に水素や水分が達するのを防止するためのものである。
[0135] 次に、全面に、例えばプラズマ TEOSCVD法により、膜厚 2600nmのシリコン酸ィ匕 膜 (図示せず)を形成する。
[0136] 次に、例えば CMP法により、シリコン酸化膜の表面を平坦化する。
[0137] 次に、 N Oガスを用いて発生させたプラズマ雰囲気にて、熱処理を行う(プラズマァ
2
ニール)。プラズマァニールは、シリコン酸化膜の内部に存在する水分を除去するとと もに、シリコン酸ィ匕膜の表面を窒化するためのものである。プラズマァニールは、例え ば CVD装置を用いて行うことができる。プラズマァニールの条件は、例えば 350°C、 4分とする。
[0138] 次に、全面に、例えばプラズマ TEOSCVD法により、膜厚 lOOnmのシリコン酸化 膜 (図示せず)を形成する。
[0139] 次に、 N Oガスを用いて発生させたプラズマ雰囲気にて、熱処理を行う(プラズマァ
2
ニール)。プラズマァニールは、シリコン酸化膜の内部に存在する水分を除去するとと もに、シリコン酸ィ匕膜の表面を窒化するためのものである。プラズマァニールは、例え ば CVD装置を用いて行うことができる。プラズマァニールの条件は、例えば 350°C、 2分とする。
[0140] こうして、シリコン酸ィ匕膜及びシリコン酸ィ匕膜より成る層間絶縁膜 60が形成される。
層間絶縁膜 60の表面は平坦になっている。
[0141] 次に、フォトリソグラフィ技術を用い、配線 56a〜56dに達するコンタクトホール 62aと
、金属層 56gに達する開口部 62bと、金属層 56fに達する開口部 62cとを形成する。
[0142] 次に、全面に、例えば PVD法により、膜厚 50nmの TiN膜より成るバリアメタル膜を 形成する(図示せず)。
[0143] 次に、全面に、例えば CVD法により、膜厚 650nmのタングステン膜を形成する。
[0144] 次に、層間絶縁膜 60の表面が露出するまで、タングステン膜及びバリアメタル膜を エッチバックする。なお、こうして、コンタクトホール 62a内に、タングステンより成る導 体プラグ 64aが埋め込まれる。また、開口部 62b、 62c内に、タングステンより成る金 属層 64b、 64cが埋め込まれる。
[0145] なお、 CMP法により、層間絶縁膜 60の表面が露出するまでタングステン膜及びバ リアメタル膜を研磨することにより、導体プラグ 64a、 64及び金属層 64cを形成するよ うにしてもよい。
[0146] 次に、全面に、例えば PVD法により、膜厚 550nmの Al— Cu合金膜、膜厚 5nmの Ti膜、及び膜厚 150nmの TiN膜を順次成膜する。こうして、 Al— Cu合金膜、 Ti膜 及び TiN膜より成る積層膜が形成される。
[0147] 次に、フォトリソグラフィ技術を用い、積層膜をパターユングする。こうして、積層膜よ り成る配線 66a、及び金属層 66b、 66cが形成される。
[0148] 次に、全面に、例えばプラズマ TEOSCVD法により、膜厚 2200nmのシリコン酸ィ匕 膜 (図示せず)を形成する。
[0149] 次に、例えば CMP法により、シリコン酸化膜の表面を平坦化する。
[0150] 次に、 N Oガスを用いて発生させたプラズマ雰囲気にて、熱処理を行う(プラズマァ
2
ニール)。プラズマァニールは、シリコン酸化膜の内部に存在する水分を除去するとと もに、シリコン酸ィ匕膜の表面を窒化するためのものである。プラズマァニールは、例え ば CVD装置を用いて行うことができる。プラズマァニールの条件は、例えば 350°C、 4分とする。
[0151] 次に、全面に、例えばプラズマ TEOSCVD法により、膜厚 lOOnmのシリコン酸化 膜 (図示せず)を形成する。
[0152] 次に、 N Oガスを用いて発生させたプラズマ雰囲気にて、熱処理を行う(プラズマァ
2
ニール)。プラズマァニールは、シリコン酸化膜の内部に存在する水分を除去するとと もに、シリコン酸ィ匕膜の表面を窒化するためのものである。プラズマァニールは、例え ば CVD装置を用いて行うことができる。プラズマァニールの条件は、例えば 350°C、 2分とする。こうして、シリコン酸ィ匕膜及びシリコン酸ィ匕膜より成る層間絶縁膜 68が形 成される(図 7参照)。
[0153] 次に、フォトリソグラフィ技術を用い、配線 66aに達するコンタクトホール 70a、金属 層 66bに達する開口部 70b、及び、金属層 66cに達する開口部 70cを、層間絶縁膜 68に形成する。
[0154] 次に、全面に、例えば PVD法により、膜厚 50nmの TiN膜より成るバリアメタル膜( 図示せず)を形成する。
[0155] 次に、全面に、例えば CVD法により、膜厚 650nmのタングステン膜を形成する。
[0156] 次に、層間絶縁膜の表面が露出するまで、タングステン膜及びバリアメタル膜をエツ チバックする。こうして、コンタクトホール 70a内に、タングステンより成る導体プラグ 72 aが埋め込まれる。また、開口部 70b内に、タングステンより成る金属層 72bが埋め込 まれる。また、開口部 70c内に、タングステンより成る金属層 72cが埋め込まれる。
[0157] なお、 CMP法により、層間絶縁膜 86の表面が露出するまでタングステン膜及びバ リアメタル膜を研磨するようことにより、導体プラグ 72a及び金属層 72b、 72cを形成す るようにしてちょい。
[0158] 次に、全面に、例えば PVD法により、膜厚 550nmの Al— Cu合金膜、膜厚 5nmの
Ti膜、及び膜厚 150nmの TiN膜を順次成膜する。こうして、 Al— Cu合金膜、 Ti膜 及び TiN膜より成る積層膜が形成される。
[0159] 次に、フォトリソグラフィ技術を用い、積層膜をパターユングする。こうして、積層膜よ り成る配線 88a及び金属層 88b、 88cが形成される。
[0160] 金属層 50a、金属層 56g、金属層 64b、金属層 66c、金属層 72b及び金属層 88b により、内側のシールリング 75aが構成される。金属層 50b、金属層 56f、金属層 64c
、金属層 66c、金属層 72c及び金属層 88cにより、外側のシールリング 75bが構成さ れる。この後、フォトレジスト膜を剥離する。
[0161] 次に、全面に、例えばプラズマ TEOSCVD法により、膜厚 2200nmのシリコン酸ィ匕 膜 (図示せず)を形成する。
[0162] 次に、例えば CMP法により、シリコン酸化膜の表面を平坦化する。
[0163] 次に、 N Oガスを用いて発生させたプラズマ雰囲気にて、熱処理を行う(プラズマァ
2
ニール)。プラズマァニールは、シリコン酸化膜の内部に存在する水分を除去するとと もに、シリコン酸ィ匕膜の表面を窒化するためのものである。プラズマァニールは、例え ば CVD装置を用いて行うことができる。プラズマァニールの条件は、例えば 350°C、 4分とする。
[0164] 次に、全面に、例えばプラズマ TEOSCVD法により、膜厚 lOOnmのシリコン酸化 膜 (図示せず)を形成する。
[0165] 次に、 N Oガスを用いて発生させたプラズマ雰囲気にて、熱処理を行う(プラズマァ
2
ニール)。プラズマァニールは、シリコン酸化膜の内部に存在する水分を除去するとと もに、シリコン酸ィ匕膜の表面を窒化するためのものである。プラズマァニールは、例え ば CVD装置を用いて行うことができる。プラズマァニールの条件は、例えば 350°C、 2分とする。こうして、シリコン酸ィ匕膜及びシリコン酸ィ匕膜より成る層間絶縁膜 90が形 成される(図 8参照)。
[0166] 次に、表面が平坦ィ匕された層間絶縁膜 90上に、例えば例えば PVD法により、膜厚 20〜80nmの酸ィ匕アルミニウム膜より成る平坦な絶縁性バリア膜 92を形成する。絶 縁性バリア膜 92を構成する酸ィ匕アルミニウム膜の膜厚は、例えば 50nmとする。平坦 ィ匕された層間絶縁膜 90上に絶縁性バリア膜 92を形成するため、絶縁性バリア膜 92 は平坦になっている。平坦な絶縁性バリア膜 92は被覆性が良好であるため、水素や 水分の拡散を十分に防止することが可能である。
[0167] 次に、絶縁性バリア膜 92上に、例えばプラズマ TEOSCVD法により、膜厚 lOOnm のシリコン酸ィ匕膜 94を形成する。シリコン酸ィ匕膜 94は、電極パッド 102等を形成する 際のパター-ングにおいて絶縁性バリア膜 92がエッチングされるのを防止するため のものである(図 9参照)。
[0168] 次に、全面に、例えばスピンコート法により、フォトレジスト膜 112を形成する。
[0169] 次に、フォトリソグラフィ技術を用い、フォトレジスト膜 112に開口部 114を形成する。
開口部 114は、開口部 96を形成するためのものである。
[0170] 次に、フォトレジスト膜 112をマスクとし、電極 56eをエッチングストッパとして、シリコ ン酸化膜 94、絶縁性バリア膜 92、層間絶縁膜 90、層間絶縁膜 68、層間絶縁膜 60 及び絶縁性バリア膜 58に、電極 56eに達する開口部 96を形成する(図 11参照)。
[0171] 次に、開口部 96内及びシリコン酸化膜 94上に、例えば膜厚 150nmの Ti— Al— N 合金より成るバリアメタル膜 98を形成する。ノリアメタル膜 98は、導電体 100を構成 する材料が層間絶縁膜 60、 68、 90中等に拡散するのを防止するとともに、導電体 1 00を電気めつき法により形成する際にシード層として機能するものである。
[0172] 次に、電気めつき法により、例えば膜厚 3 mの Cuより成る導電層 100を形成する( 図 12参照)。
[0173] なお、ここでは、電気めつき法により導電層 100を形成する場合を例に説明したが、 導体層 100の形成方法は電気めつき法に限定されるものではない。例えば、塗布法 により導体層 100を形成することも可能である。例えば、塗布形導電膜を全面に形成 し、かかる塗布形導電膜をエッチバックすることにより、塗布型導電膜より成る導電体 100を開口部 96内に埋め込むことが可能である。また、塗布形導電膜を全面に形成 し、 CMP法により、シリコン酸化膜 94の表面が露出するまで塗布型導電膜を研磨す ることによつても、開口部 96内に塗布型導電膜より成る導電体 100を埋め込むことが 可能である。
[0174] なお、ここではノ リアメタル膜 98の材料として Ti—Al—N合金を用いる場合を例に 説明したが、ノ リアメタル膜 98の材料は、 Ti— Al— N合金に限定されるものではない 。例えば、 TiN、 Ti、 Ta等をバリアメタル膜 98の材料として用いてもよい。また、 Ti— A1—N合金と Taとの複合物をバリアメタル膜 98の材料として用いてもよ!、。
[0175] また、ここでは、導体層 100の材料として Cuを用いる場合を例に説明した力 導体 層 100の材料は Cuに限定されるものではな!/、。
[0176] 例えば、 A1を導体層 100の材料として用いてもょ 、。 A1は Cuより硬度が高 、材料 である。従って、導体層 100の材料として A1を用いれば、導体層 100の材料として C uを用いた場合と比較して、より強度の高い導電体 100を得ることが可能となる。導体 層 100の材料として A1を用いる場合、バリアメタル膜 98の材料として、 TiN、 TiW等 を用いることが可能である。
[0177] また、 Auを導体層 100の材料として用いてもょ 、。 Auは、 AUり硬度が高 、材料で ある。従って、導体層 100の材料として Auを用いれば、導体層 100の材料として A1 を用いた場合と比較して、より強度の高い導電体 100を得ることが可能となる。導体 層 100の材料として Auを用いる場合、バリアメタル膜 98の材料としては例えば TiN、 TiW等を用いることが可能である。
[0178] 次に、 CMP法により、シリコン酸ィ匕膜 94の表面が露出するまでバリアメタル膜 98及 び導電層 100を研磨する。これにより、開口部 96内に、導体層より成る導電体 100が 埋め込まれる(図 13参照)。
[0179] 次に、全面に、例えば PVD法により、膜厚 0. 5 μ mの導電膜 102を形成する。導 電膜 102は、電極パッドとなるものである。導電膜 102の材料としては、 A1 (アルミ-ゥ ム)や Al—Cu (アルミニウム—銅)合金等を用いる。
[0180] 次に、フォトリソグラフィ技術を用い、導電膜 102をパターユングする。これにより、導 電膜より成る電極パッド 102が形成される(図 15参照)。
[0181] 次に、図 16に示すように、全面に、例えばプラズマ TEOSCVD法により、例えば膜 厚 lOOnmのシリコン酸ィ匕膜より成る保護膜 104を形成する。
[0182] 次に、全面に、例えばプラズマ TEOSCVD法により、例えば膜厚 350nmのシリコ ン窒化膜より成る保護膜 106を形成する。
[0183] 次に、全面に、スピンコート法により、フォトレジスト膜 116を形成する。
[0184] 次に、フォトリソグラフィ技術を用い、フォトレジスト膜 116に開口部 118を形成する( 図 16参照)。力かる開口部 118は、保護膜 104、 106にコンタクトホール 110a (図 17 参照)を形成するためのものである。
[0185] 次に、フォトレジスト膜 116をマスクとして保護膜 104、 106をエッチングすることによ り、電極パッド 102に達する開口部 110aを形成する(図 17参照)。
[0186] 次に、全面に、スピンコート法により、例えば感光性のポリイミドより成る保護膜 80を 形成する。保護膜 80の膜厚は、例えば 3 m程度とする。
[0187] 次に、フォトリソグラフィ技術を用い、保護膜 80に電極パッド 102に達する開口部 1
10を形成する。
[0188] 次に、窒素雰囲気中にて、例えば 310°C、 40分の熱処理を行う。この熱処理は、ポ リイミドより成る保護膜 80を硬化させるためのものである。熱処理の際にチャンバ内に 導入する窒素ガスの流量は、例えば 100リットル Z分とする。熱処理を行う際には、 例えば縦型電気炉ァニール装置を用いる。
[0189] 次に、半導体試験装置のプローブ針 120を電極パッド 102に接触させ、本実施形 態による半導体装置に対して所定の試験等を行う。本実施形態では、電極パッド 10 2の直下に強固な導電体 100が存在しているため、試験等においてプローブ針をあ る程度の力で電極パッド 102に接触させた場合であっても、電極パッド 102の破損や 変形が生じるのを防止することができる。たとえ電極パッド 102に破損や変形が生じ たとしても、電極パッド 102の直下に存在する導電体 100が極めて強固に形成されて いるため、層間絶縁膜 60、 68、 90に達するような亀裂が導電体 100に生じることは ない。このため、本実施形態によれば、電極パッド部 6から水素や水分が半導体装置 の内部に浸入するのを、導電体 100により確実に防止することができる。
[0190] この後、半導体ウェハ 10をスクライブ領域 8において切断する。図 19における一点 鎖線は、半導体ウェハ 10を切断する箇所を示している。
[0191] こうして本実施形態による半導体装置が製造される。
[0192] 本実施形態によれば、電極パッド 102の直下に強固な導電体 100が存在している ため、試験等においてプローブ針をある程度の力で電極パッド 102に接触させた場 合であっても、電極パッド 102の破損や変形が生じるのを防止することができる。たと え電極パッド 102に破損や変形が生じたとしても、電極パッド 102の直下に存在する 導電体 100が極めて強固に形成されているため、層間絶縁膜 60、 68、 90に達する ような亀裂が導電体 100に生じることはない。このため、本実施形態によれば、水素 や水分が層間絶縁膜 60、 68、 90等を介してキャパシタ 36の誘電体膜 32に達する のを防止することができ、誘電体膜 32を構成する強誘電体が水素により還元される のを防止することができる。このように、本実施形態によれば、キャパシタ 36の誘電体 膜 32が水素や水分により劣化するのを確実に防止することができ、電気的特性が良 好で、寿命の長 、キャパシタ 36を有する半導体装置を提供することが可能となる。
[0193] (変形例)
次に、本発明の第 1実施形態による半導体装置の変形例を図 20を用いて説明する 。図 20は、本変形例による半導体装置を示す断面図である。図 1乃至図 19に示す 第 1実施形態による半導体装置及びその製造方法と同一の構成要素には、同一の 符号を付して説明を省略または簡潔にする。
[0194] 本変形例による半導体装置は、平坦な絶縁性バリア膜 122、 126、 94が適宜形成 されて 、ることに主な特徴がある。
[0195] 図 20に示すように、表面が平坦ィ匕された層間絶縁膜 60上には、例えば膜厚 20〜 80nmの酸ィ匕アルミニウム膜より成る平坦な絶縁性バリア膜 122が形成されている。こ こでは、絶縁性バリア膜 122を構成する酸ィ匕アルミニウム膜の膜厚を例えば 50nmと する。絶縁性バリア膜 122は、平坦化された層間絶縁膜 60上に形成されているため 、平坦になっている。平坦な絶縁性バリア膜 122は被覆性が良好であるため、水素 や水分の拡散を十分に防止することが可能である。
[0196] 絶縁性バリア膜 122上には、例えば膜厚 lOOnmのシリコン酸ィ匕膜 124が形成され ている。シリコン酸ィ匕膜 124は、配線 66a〜66d、金属層 66f、 66gを形成する際のパ ターニングにおいて絶縁性バリア膜 122がエッチングされるのを防止するためのもの である。
[0197] また、表面が平坦ィ匕された層間絶縁膜 68上には、例えば膜厚 20〜80nmの酸ィ匕 アルミニウム膜より成る平坦な絶縁性バリア膜 126が形成されている。ここでは、絶縁 性バリア膜 126を構成する酸ィ匕アルミニウム膜の膜厚を例えば 50nmとする。絶縁性 ノリア膜 126は、平坦ィ匕された層間絶縁膜 68上に形成されているため、平坦になつ ている。平坦な絶縁性バリア膜 126は被覆性が良好であるため、水素や水分の拡散 を十分に防止することが可能である。
[0198] 絶縁性バリア膜 126上には、例えば膜厚 lOOnmのシリコン酸ィ匕膜 128が形成され ている。シリコン酸ィ匕膜 128は、配線 88a及び金属層 88b、 88cを形成する際のパタ 一ユングにおいて絶縁性バリア膜 126がエッチングされるのを防止するためのもので ある。
[0199] また、表面が平坦ィ匕された層間絶縁膜 90上には、例えば膜厚 20〜80nmの酸ィ匕 アルミニウム膜より成る平坦な絶縁性バリア膜 92が形成されている。ここでは、絶縁 性バリア膜 92を構成する酸ィ匕アルミニウム膜の膜厚を例えば 50nmとする。絶縁性 ノリア膜 92は、平坦ィ匕された層間絶縁膜 90上に形成されているため、平坦になって いる。平坦な絶縁性バリア膜 92は被覆性が良好であるため、水素や水分の拡散を十 分に防止することが可能である。
[0200] 絶縁性バリア膜 92上には、例えば膜厚 lOOnmのシリコン酸ィ匕膜 94が形成されて いる。シリコン酸ィ匕膜 94は、上述したように、電極パッド 102等を形成する際のパター ユングにおいて絶縁性バリア膜 92がエッチングされるのを防止するためのものである
[0201] このように本変形例によれば、平坦化な絶縁性バリア膜 122、 126、 92が適宜形成 されているため、キャパシタ 36の誘電体膜 32に水素や水分が達するのをより確実に 防止することができる。
[0202] [第 2実施形態]
本発明の第 2実施形態による半導体装置を図 21乃至図 32を用いて説明する。図 2 1は、本実施形態による半導体装置を示す断面図である。図 1乃至図 20に示す第 1 実施形態による半導体装置及びその製造方法と同一の構成要素には、同一の符号 を付して説明を省略または簡潔にする。
[0203] 本実施形態による半導体装置は、キャパシタ 36の上部電極 34と同一導電膜より成 る導電膜 34aに達するように開口部 96aが形成されており、力かる開口部 96内に導 電体 100aが埋め込まれていることに主な特徴がある。
[0204] 図 21に示すように、電極パッド 102の下方には、キャパシタ 36の下部電極 30と同 一導電膜より成る導電膜 30aが形成されている。
[0205] また、導電膜 30a上には、キャパシタ 36の誘電体膜 32と同一誘電体膜より成る誘 電体膜 32aが形成されて ヽる。
[0206] 誘電体膜 32a上には、キャパシタ 36の上部電極 34と同一導電膜より成る導電膜 34 aが形成されている。
[0207] シリコン酸ィ匕膜 94、絶縁性バリア膜 92、層間絶縁膜 90、層間絶縁膜 68、層間絶縁 膜 60、絶縁性バリア膜 58、層間絶縁膜 42、絶縁性バリア膜 40及び絶縁性バリア膜 38〖こは、導電膜 34aに達する開口部 96aが形成されている。
[0208] 開口部 96a内には、ノリアメタル膜 98が形成されている。
[0209] ノリアメタル膜 98が形成された開口部 96a内には、導電体 100aが埋め込まれてい る。
[0210] シリコン酸ィ匕膜 94、絶縁性バリア膜 92及び層間絶縁膜 90には、配線 88aに達する コンタクトホール 121が形成されている。
[0211] コンタクトホール 121内には、導体プラグ 123が埋め込まれている。
[0212] シリコン酸ィ匕膜 94上には、導電体 100aに接続された電極パッド 102と、導体プラグ
123に接続された配線 102aとが形成されている。
[0213] 電極パッド 102は、複数形成された配線 102aのうちのいずれかに電気的に接続さ れている。
[0214] このように本実施形態による半導体装置は、上述したように、キャパシタ 36の上部 電極 34と同一導電膜より成る導電膜 34aに達するように開口部 96aが形成されてお り、力かる開口部 96内に導電体 100aが埋め込まれていることに主な特徴がある。こ のため、本実施形態によれば、導電体 100aをより強固に形成することが可能である。 本実施形態によれば、電極パッド 102の直下にこのような極めて強固な導電体 100a が存在しているため、試験等においてプローブ針をある程度の力で電極パッド 102 に接触させた場合であっても、電極パッド 102の破損や変形が生じるのを防止するこ とができる。たとえ電極パッド 102に破損や変形が生じたとしても、電極パッド 102の 直下に存在する導電体 100aが極めて強固に形成されているため、層間絶縁膜 42、 60、 68、 90に達するような亀裂が導電体 100aに生じることはない。このため、本実 施形態によれば、水素や水分が層間絶縁膜 42、 60、 68、 90等を介してキャパシタ 3 6の誘電体膜 32に達するのを防止することができ、誘電体膜 32を構成する強誘電体 が水素により還元されるのを防止することができる。このように、本実施形態によれば 、キャパシタ 36の誘電体膜 32が水素や水分により劣化するのを確実に防止すること ができ、電気的特性が良好で、寿命の長いキャパシタ 36を有する半導体装置を提供 することが可能となる。
[0215] (半導体装置の製造方法)
次に、本実施形態による半導体装置の製造方法を図 22乃至図 32を用いて説明す る。図 22乃至図 32は、本実施形態による半導体装置の製造方法を示す工程断面図 である。
[0216] まず、例えばシリコンより成る半導体基板 10に素子領域を画定する素子分離領域 1 2を形成する工程から、層間絶縁膜 26上に絶縁性バリア膜 28を形成する工程までは 、図 3 (a)乃至図 3 (b)を用いて上述した第 1実施形態による半導体装置の製造方法 と同様であるので説明を省略する。
[0217] 次に、第 1実施形態による半導体装置の製造方法と同様にして、全面に、例えば P VD法により、膜厚 155nmの Pt膜より成る導電膜 30を形成する。導電膜 30は、キヤ パシタ 36の下部電極となり、また、電極パッド部 6における導電膜 36aとなるものであ る。
[0218] 次に、第 1実施形態による半導体装置の製造方法と同様にして、全面に、例えば P VD法により、誘電体膜 32を形成する。カゝかる誘電体膜 32は、キャパシタの誘電体 膜となり、また、電極パッド部 6における誘電体膜 32aとなるものである。誘電体膜 32 としては、例えば強誘電体膜を形成する。より具体的には、誘電体膜 32として、例え ば膜厚 150〜200nm程度の PZT膜を形成する。
[0219] 次に、第 1実施形態による半導体装置の製造方法と同様にして、例えば RTA法に より、酸素雰囲気中にて、例えば 585°C、 90秒の熱処理を行う。 [0220] 次に、第 1実施形態による半導体装置の製造方法と同様にして、例えば PVD法に より、例えば膜厚 50nmの IrO膜 (図示せず)を形成する。
2
[0221] 次に、第 1実施形態による半導体装置の製造方法と同様にして、例えば RTA法に より、酸素雰囲気中にて、例えば 725°C、 20秒の熱処理を行う。
[0222] 次に、第 1実施形態による半導体装置の製造方法と同様にして、例えば PVD法に より、膜厚 200nmの IrO膜 (図示せず)を形成する。こうして、 IrO膜を 2層積層して
2 2
成る積層膜 34が形成される。かかる積層膜 34は、キャパシタ 36の上部電極となり、 また、電極パッド部 6における導電膜 34aとなるものである。
[0223] 次に、第 1実施形態による半導体装置の製造方法と同様にして、全面に、スピンコ ート法により、フォトレジスト膜 (図示せず)を形成する。
[0224] 次に、第 1実施形態による半導体装置の製造方法と同様にして、フォトリソグラフィ 技術を用い、フォトレジスト膜をキャパシタ 36の上部電極 34の平面形状と、導電膜 3
4aの平面形状とにパターユングする。
[0225] 次に、第 1実施形態による半導体装置の製造方法と同様にして、フォトレジスト膜を マスクとして、積層膜 34をエッチングする。こうして、積層膜より成る上部電極 34が形 成される。また、電極パッド部 6に、上部電極 34と同一導電膜より成る導電膜 34aが 形成される。この後、フォトレジスト膜を剥離する。
[0226] 次に、第 1実施形態による半導体装置の製造方法と同様にして、酸素雰囲気中に て、例えば 650°C、 60分の熱処理を行う。
[0227] 次に、第 1実施形態による半導体装置の製造方法と同様にして、全面に、スピンコ ート法により、フォトレジスト膜を形成する。
[0228] 次に、第 1実施形態による半導体装置の製造方法と同様にして、フォトリソグラフィ 技術を用い、フォトレジスト膜をキャパシタの誘電体膜 32の平面形状にパターユング する。
[0229] 次に、第 1実施形態による半導体装置の製造方法と同様にして、フォトレジスト膜を マスクとして、誘電体膜 32をエッチングする。この際、誘電体膜 32と同一誘電体膜よ り成る誘電体膜 32aが形成される。この後、フォトレジスト膜を剥離する。
[0230] 次に、第 1実施形態による半導体装置の製造方法と同様にして、酸素雰囲気中に て、例えば 350°C、 60分の熱処理を行う。
[0231] 次に、第 1実施形態による半導体装置の製造方法と同様にして、全面に、例えば P VD法により、膜厚 50nmの酸ィ匕アルミニウム膜より成る絶縁性バリア膜 (図示せず)を 形成する。
[0232] 次に、第 1実施形態による半導体装置の製造方法と同様にして、酸素雰囲気中に て、例えば 550°C、 60分の熱処理を行う。
[0233] 次に、第 1実施形態による半導体装置の製造方法と同様にして、全面に、スピンコ ート法により、フォトレジスト膜を形成する。
[0234] 次に、第 1実施形態による半導体装置の製造方法と同様にして、フォトリソグラフィ 技術を用い、フォトレジスト膜をキャパシタの下部電極 30の平面形状と、導電膜 30a の平面形状とにパターニングする。
[0235] 次に、第 1実施形態による半導体装置の製造方法と同様にして、フォトレジスト膜を マスクとして、絶縁性バリア膜 38及び導電膜 30をエッチングする。こうして、導電膜よ り成る下部電極 30が形成される。また、電極パッド部 6に下部電極 30と同一導電膜よ り成る導電膜 30aが形成される。また、絶縁性バリア膜 38が、上部電極 34及び誘電 体膜 32を覆うように残存する。この後、フォトレジスト膜を剥離する。
[0236] 次に、第 1実施形態による半導体装置の製造方法と同様にして、酸素雰囲気中に て、例えば 650°C、 60分の熱処理を行う。
[0237] 次に、第 1実施形態による半導体装置の製造方法と同様にして、全面に、例えば P
VD法により、膜厚 20nmの酸ィ匕アルミニウム膜より成る絶縁性バリア膜 40を形成する
[0238] 次に、第 1実施形態による半導体装置の製造方法と同様にして、酸素雰囲気中に て、例えば 550°C、 60分の熱処理を行う。
[0239] この後、全面に層間絶縁膜 42を形成する工程から、層間絶縁膜 42上に存在する シリコン窒化酸ィ匕膜 86を除去するまでの工程は、図 3 (b)乃至図 5 (a)を用いて上述 した第 1実施形態による半導体装置の製造方法と同様であるので説明を省略する( 図 22 (b)乃至図 24 (a)参照)。
[0240] 次に、第 1実施形態による半導体装置の製造方法と同様にして、全面に、例えば P VD法により、膜厚 150nmの TiN膜、膜厚 550nmの Al— Cu合金膜、膜厚 5nmの Ti 膜、及び膜厚 150nmの TiN膜を順次成膜する。こうして、 TiN膜、 Al— Cu合金膜、 Ti膜及び TiN膜より成る積層膜が形成される。
[0241] 次に、フォトリソグラフィ技術を用い、積層膜をパターユングする。こうして、コンタクト ホール 52a内及び層間絶縁膜 42上に、積層膜より成る導体プラグ 54a及び配線 56a がー体に形成される。また、コンタクトホール 52b内及び層間絶縁膜 42上に、積層膜 より成る導体プラグ 54b及び配線 56bがー体に形成される。また、層間絶縁膜 42上 に、積層膜より成る配線 56c〜56dが形成される。また、金属層 50b上に、積層膜より 成る金属層 56fが形成される。また、金属層 50a上に、積層膜より成る金属層 56gが 形成される。金属層 56gは、内側のシールリング 75aの一部となるものである。金属層 56fは、外側のシールリング 75bの一部となるものである(図 24 (b)参照)。
[0242] 次に、第 1実施形態による半導体装置の製造方法と同様にして、窒素雰囲気中に て、例えば 350°C、 30分の熱処理を行う。
[0243] 次に、全面に絶縁性バリア膜 58を形成する工程から、フォトレジスト膜 112に開口 部 114を形成する工程までは、図 6乃至図 10を用いて上述した第 1実施形態による 半導体装置の製造方法と同様であるので説明を省略する(図 25及び図 26参照)。
[0244] 次に、フォトレジスト膜 112 (図 26参照)をマスクとし、導電膜 34をエッチングストッパ として、シリコン酸ィ匕膜 94、絶縁性バリア膜 92、層間絶縁膜 90、層間絶縁膜 68、層 間絶縁膜 60及び絶縁性バリア膜 58、層間絶縁膜 42、絶縁性バリア膜 40及び絶縁 性バリア膜 38に、導電膜 34に達する開口部 96aを形成する。
[0245] 次に、第 1実施形態による半導体装置の製造方法と同様にして、開口部 96a内及 びシリコン酸ィ匕膜 94上に、例えば膜厚 150nmの Ti— Al— N合金より成るバリアメタ ル膜 98を形成する。
[0246] 次に、第 1実施形態による半導体装置の製造方法と同様にして、電気めつき法によ り、例えば膜厚 3 /z mの Cuより成る導電層 100を形成する(図 12参照)。なお、導体 層 100のうちの開口部 96内に埋め込まれた部分は、導電体 100a (図 29参照)となる ものである。
[0247] 次に、第 1実施形態による半導体装置の製造方法と同様にして、 CMP法により、シ リコン酸ィ匕膜 94の表面が露出するまでバリアメタル膜 98及び導電層 100を研磨する 。これにより、開口部 96a内に、導体層より成る導電体 100aが埋め込まれる(図 29参 照)。
[0248] 次に、シリコン酸ィ匕膜 92、絶縁性バリア膜 94及び層間絶縁膜 90に、配線 88aに達 するコンタクトホール 121を形成する。
[0249] 次に、全面に、例えば PVD法により、膜厚 50nmの TiN膜より成るバリアメタル膜( 図示せず)を形成する。
[0250] 次に、全面に、例えば CVD法により、膜厚 650nmのタングステン膜を形成する。
[0251] 次に、層間絶縁膜の表面が露出するまで、タングステン膜及びバリアメタル膜をエツ チバックする。こうして、コンタクトホール 121内に、タングステンより成る導体プラグ 12
3が埋め込まれる。
[0252] 次に、第 1実施形態による半導体装置の製造方法と同様にして、全面に、例えば P VD法により、膜厚 1 μ mの導電膜を形成する。導電膜は、電極パッド 102となるもの である。また、導電膜は、配線 102aとなるものである。導電膜の材料としては、 A1 (ァ ルミ-ゥム)や A1 - Cu (アルミニウム―銅)合金等を用 、る。
[0253] 次に、フォトリソグラフィ技術を用い、導電膜をパターユングする。これにより、導電 膜より成る電極パッド 102及び配線 102aが形成される。複数形成された配線 102a のいずれかは、電極パッド 102に電気的に接続される(図 30参照)。
[0254] この後の半導体装置の製造方法は、図 16乃至図 19を用いて上述した第 1実施形 態による半導体装置の製造方法と同様であるので、説明を省略する(図 31及び図 3 2参照)。
[0255] こうして、本実施形態による半導体装置が製造される。
[0256] このように本実施形態では、電極パッド 102の直下に導電体 100aが極めて深くま で形成されているため、導電体 100aをより強固に形成することが可能となる。本実施 形態によれば、電極パッド 102の直下にこのような極めて強固な導電体 100aが存在 しているため、試験等においてプローブ針をある程度の力で電極パッド 102に接触さ せた場合であっても、電極パッド 102の破損や変形が生じるのを防止することができ る。たとえ電極パッド 102に破損や変形が生じたとしても、電極パッド 102の直下に存 在する導電体 100aが極めて強固に形成されているため、層間絶縁膜 42、 60、 68、 90に達するような亀裂が導電体 100aに生じることはない。このため、本実施形態に よれば、水素や水分が層間絶縁膜 42、 60、 68、 90等を介してキャパシタ 36の誘電 体膜 32に達するのを防止することができ、誘電体膜 32を構成する強誘電体が水素 により還元されるのを防止することができる。
[0257] (変形例)
次に、本実施形態による半導体装置の変形例を図 33を用いて説明する。図 33は、 本変形例による半導体装置を示す断面図である。
[0258] 本変形例による半導体装置は、キャパシタ 36の下部電極 30と同一導電膜より成る 導電膜 30aに達するように開口部 96bが形成されており、力かる開口部 96b内に導 電体 100bが埋め込まれていることに主な特徴がある。
[0259] 図 33に示すように、シリコン酸ィ匕膜 94、絶縁性バリア膜 92、層間絶縁膜 90、層間 絶縁膜 68、層間絶縁膜 60、絶縁性バリア膜 58、層間絶縁膜 42、絶縁性バリア膜 40 及び絶縁性バリア膜 38には、導電膜 30aに達する開口部 96bが形成されている。
[0260] 開口部 96b内には、バリアメタル膜 98が形成されている。
[0261] ノリアメタル膜 98が形成された開口部 96b内には、導電体 100bが埋め込まれてい る。
[0262] シリコン酸ィ匕膜 94、絶縁性バリア膜 92及び層間絶縁膜 90には、配線 88aに達する コンタクトホール 121が形成されている。
[0263] コンタクトホール 121内には、導体プラグ 123が埋め込まれている。
[0264] シリコン酸ィ匕膜 94上には、導電体 100aに接続された電極パッド 102と、導体プラグ
123に接続された配線 102aとが形成されている。
[0265] 電極パッド 102は、複数形成された配線 102aのうちのいずれかに電気的に接続さ れている。
[0266] このように本変形例による半導体装置は、上述したように、キャパシタ 36の下部電 極 30と同一導電膜より成る導電膜 30aに達するように開口部 96bが形成されており、 力かる開口部 96b内に導電体 100bが埋め込まれていることに主な特徴がある。従つ て、本変形例によっても、第 2実施形態による半導体装置と同様に、導電体 100bを より強固に形成することが可能である。本変形例によれば、電極パッド 102の直下に このような極めて強固な導電体 100bが存在しているため、試験等においてプローブ 針をある程度の力で電極パッド 102に接触させた場合であっても、電極パッド 102の 破損や変形が生じるのを防止することができる。たとえ電極パッド 102に破損や変形 が生じたとしても、電極パッド 102の直下に存在する導電体 100bが極めて強固に形 成されているため、層間絶縁膜 42、 60、 68、 90に達するような亀裂が導電体 100b に生じることはない。このため、本変形例によっても、水素や水分が層間絶縁膜 42、 60、 68、 90等を介してキャパシタ 36の誘電体膜 32に達するのを防止することができ 、誘電体膜 32を構成する強誘電体が水素により還元されるのを防止することができる
[0267] [第 3実施形態]
本発明の第 2実施形態による半導体装置を図 34乃至図 48を用いて説明する。図 3 4は、本実施形態による半導体装置を示す断面図である。図 1乃至図 33に示す第 1 又は第 2実施形態による半導体装置及びその製造方法と同一の構成要素には、同 一の符号を付して説明を省略または簡潔にする。
[0268] 本実施形態による半導体装置は、半導体基板 10上に素子分離領域 12を介して形 成された導電膜 125に達するように開口部 96bが形成されており、力かる開口部 96b 内に導電体 100bが埋め込まれていることに主な特徴がある。
[0269] 図 34に示すように、電極パッド 102の下方における半導体基板 10上には、素子分 離領域 12を介して導電膜 125が形成されている。導電膜 125を半導体基板 10上に 直接形成しないのは、導電膜 125と半導体基板 10との絶縁性を確保し、ひいては、 導電体 100bと半導体基板 10との絶縁性を確保するためである。
[0270] シリコン酸ィ匕膜 94、絶縁性バリア膜 92、層間絶縁膜 90、層間絶縁膜 68、層間絶縁 膜 60、絶縁性バリア膜 58、層間絶縁膜 42、絶縁性バリア膜 40、絶縁性バリア膜 28 及び層間絶縁膜 26には、導電膜 125に達する開口部 96bが形成されている。
[0271] 開口部 96b内には、ノリアメタル膜 98が形成されている。
[0272] ノリアメタル膜 98が形成された開口部 96b内には、導電体 100bが埋め込まれてい る。 [0273] シリコン酸ィ匕膜 94上には、導電体 100aに接続された電極パッド 102と、導体プラグ
123に接続された配線 102aとが形成されている。
[0274] 電極パッド 102は、複数形成された配線 102aのうちのいずれかに電気的に接続さ れている。
[0275] このように本実施形態による半導体装置は、上述したように、半導体基板 10上に素 子分離領域 12を介して形成された導電膜 125に達するように開口部 96bが形成され ており、力かる開口部 96b内に導電体 100bが埋め込まれていることに主な特徴があ る。このため、本実施形態によれば、導電体 100bをより強固に形成することが可能で ある。本実施形態によれば、電極パッド 102の直下にこのような極めて強固な導電体 100bが存在しているため、試験等においてプローブ針をある程度の力で電極パッド 102に接触させた場合であっても、電極パッド 102の破損や変形が生じるのを防止 することができる。たとえ電極パッド 102に破損や変形が生じたとしても、電極パッド 1 02の直下に存在する導電体 100bが極めて強固に形成されているため、層間絶縁 膜 26、 42、 60、 68、 90に達するような亀裂力 ^導電体 100aに生じることはな!/、。この ため、本実施形態によれば、水素や水分が層間絶縁膜 26、 42、 60、 68、 90等を介 してキャパシタ 36の誘電体膜 32に達するのを防止することができ、誘電体膜 32を構 成する強誘電体が水素により還元されるのを防止することができる。このように、本実 施形態によれば、キャパシタ 36の誘電体膜 32が水素や水分により劣化するのを確 実に防止することができ、電気的特性が良好で、寿命の長いキャパシタ 36を有する 半導体装置を提供することが可能となる。
[0276] (半導体装置の製造方法)
次に、本実施形態による半導体装置の製造方法を図 35乃至図 48を用いて説明す る。図 35乃至図 48は、本実施形態による半導体装置の製造方法を示す工程断面図 である。
[0277] まず、例えば半導体基板 10に素子領域を画定する素子分離領域 12を形成するェ 程から、ゲート絶縁膜 16を形成する工程までは、図 3 (a)を用いて上述した第 1実施 形態による半導体装置の製造方法と同様であるので説明を省略する。
[0278] 次に、例えば CVD法により、膜厚 120nmのポリシリコン膜 18を形成する。ポリシリコ ン膜 18は、ゲート電極等となるものである。また、ポリシリコン膜 18は、電極パッド部 6 の下方に形成される導電膜 125となるものである。
[0279] 次に、フォトリソグラフィ技術を用い、ポリシリコン膜 18をパターユングする。こうして、 ポリシリコン膜より成るゲート電極 18が形成される。ゲート長は、例えば 0. 36 /z mと する。また、電極パッド部 6においては、素子分離領域 12上に、ポリシリコン膜より成 る導電膜 125が形成される(図 35 (a)参照)。
[0280] この後、ゲート電極 18をマスクとして、イオン注入法により、ゲート電極 18の両側の 半導体基板 10内にドーパント不純物を導入する。これにより、エクステンションソース
Zドレインの浅 、領域を構成するエクステンション領域(図示せず)が形成される。
[0281] 次に、全面に、例えば CVD法により、膜厚 150nmのシリコン酸ィ匕膜 20を形成する
[0282] 次に、シリコン酸ィ匕膜 20を異方性エッチングする。こうして、ゲート電極 18の側壁部 分に、シリコン酸ィ匕膜より成るサイドウォール絶縁膜 20が形成される。
[0283] 次に、サイドウォール絶縁膜 20が形成されたゲート電極 18をマスクとし、イオン注 入法により、ゲート電極 18の両側の半導体基板 10内にドーパント不純物を導入する 。これにより、エクステンションソース Zドレインの深い領域を構成する不純物拡散層( 図示せず)が形成される。エクステンション領域と深い不純物拡散層とによりソース Z ドレイン拡散層 22が構成される。
[0284] こうして、ゲート電極 18とソース Zドレイン拡散層 22とを有するトランジスタ 24
が形成される。
[0285] この後、層間絶縁膜 26を形成する工程から、フォトレジスト膜 112に開口部 114を 形成する工程までは、図 3 (b)乃至図 10を用いて上述した第 1実施形態による半導 体装置の製造方法と同様であるので説明を省略する(図 35 (b)乃至図 39参照)。
[0286] 次に、フォトレジスト膜 112 (図 39参照)をマスクとし、導電膜 125をエッチングストツ パとして、シリコン酸ィ匕膜 94、絶縁性バリア膜 92、層間絶縁膜 90、層間絶縁膜 68、 層間絶縁膜 60、絶縁性バリア膜 58、層間絶縁膜 42、絶縁性バリア膜 40、絶縁性バ リア膜 28、及び層間絶縁膜 26に、導電膜 125に達する開口部 96aを形成する(図 4 0参照)。 [0287] この後の半導体装置の製造方法は、図 28乃至図 33を用いて上述した第 2実施形 態による半導体装置の製造方法と同様であるので説明を省略する(図 41乃至図 48 参照)。
[0288] こうして本実施形態による半導体装置が製造される。
[0289] このように本実施形態では、上述したように、半導体基板 10上に素子分離領域 12 を介して形成された導電膜 125に達するように開口部 96bが形成されており、かかる 開口部 96b内に導電体 100bが埋め込まれていることに主な特徴がある。本実施形 態によれば、電極パッド 102の直下にこのような極めて強固な導電体 100bが存在し ているため、試験等においてプローブ針をある程度の力で電極パッド 102に接触さ せた場合であっても、電極パッド 102の破損や変形が生じるのを防止することができ る。たとえ電極パッド 102に破損や変形が生じたとしても、電極パッド 102の直下に存 在する導電体 100bが極めて強固に形成されているため、層間絶縁膜 26、 42、 60、 68、 90に達するような亀裂が導電体 100aに生じることはない。このため、本実施形 態によれば、水素や水分が層間絶縁膜 26、 42、 60、 68、 90等を介してキャパシタ 3 6の誘電体膜 32に達するのを防止することができ、誘電体膜 32を構成する強誘電体 が水素により還元されるのを防止することができる。このように、本実施形態によれば 、キャパシタ 36の誘電体膜 32が水素や水分により劣化するのを確実に防止すること ができ、電気的特性が良好で、寿命の長いキャパシタ 36を有する半導体装置を提供 することが可能となる。
[0290] [変形実施形態]
本発明は上記実施形態に限らず種々の変形が可能である。
[0291] 例えば、第 2又は第 3実施形態において、平坦な絶縁性バリア膜 122、 126 (図 20 参照)を更に形成するようにしてもよい。即ち、第 1金属配線層 56と第 2金属配線層 6 6との間に平坦な絶縁性バリア膜 122を更に形成し、第 2金属配線層 66と第 3金属配 線層 88との間に平坦な絶縁性バリア膜 126を更に形成するようにしてもよい。
[0292] また、上記実施形態では、キャパシタ 36の誘電体膜 32を構成する強誘電体膜とし て PZT膜を用いる場合を例に説明したが、キャパシタ 36の誘電体膜 32を構成する 強誘電体膜は PZT膜に限定されるものではなぐ他のあらゆる強誘電体膜を適宜用 いることができる。例えば、キャパシタ 36の誘電体膜 32を構成する強誘電体膜として 、 Pb La Zr Ti O膜(PLZT膜)、 SrBi (Ta Nb ) O膜、 Bi Ti O 膜等を l -X X 1 -Y Y 3 2 X 1 -Χ 2 9 4 2 12 用いてもよい。
[0293] また、上記実施形態では、キャパシタ 36の誘電体膜 32として強誘電体膜を用いる 場合を例に説明したが、誘電体膜 32は強誘電体膜に限定されるものではない。例え ば、 DRAM等を構成する場合には、誘電体膜 32として高誘電体膜を用いればよい 。誘電体膜 32を構成する高誘電体膜としては、例えば、(BaSr)TiO膜 (BST膜)、
3
SrTiO膜 (STO膜)、 Ta O膜等を用いることができる。なお、高誘電体膜とは、比
3 2 5
誘電率が二酸化シリコンより高い誘電体膜のことである。
[0294] また、上記実施形態では、絶縁性バリア膜 28、 38、 40、 58、 92、 122、 126として 酸ィ匕アルミニウム膜を用いる場合を例に説明したが、絶縁性バリア膜 28、 38、 40、 5 8、 92、 122、 126は酸ィ匕アルミニウム膜に限定されるものではない。水素や水分拡 散を防止する機能を有する膜を、絶縁性バリア膜 28、 38、 40、 58、 92、 122、 126と して適宜用 ヽること力 Sできる。絶縁'性ノ リア膜 28、 38、 40、 58、 92、 122、 126として は、例えば金属酸ィ匕物より成る膜を適宜用いることができる。金属酸化物より成る絶 縁'性ノ リア膜 28、 38、 40、 58、 92、 122、 126としては、 f列えば、タンタノレ酸ィ匕物や チタン酸ィ匕物(酸ィ匕チタン)等を用いることができる。また、絶縁性バリア膜 28、 38、 4 0、 58、 92、 122、 126は、金属酸ィ匕物より成る膜に限定されるものではない。例えば 、シリコン窒化膜 (Si N膜)やシリコン窒化酸ィ匕膜 (SiON膜)等を絶縁性バリア膜 28
3 4
、 38、 40、 58、 92、 122、 126として用いることもできる。但し、金属酸化物より成る膜 は緻密であるため、比較的薄く形成した場合であっても、水素や水分の拡散を確実 に防止することが可能である。従って、微細化の観点からは絶縁性バリア膜 28、 38、 40、 58、 92、 122、 126として金属酸ィ匕物より成る膜を用いることが有利である。 産業上の利用可能性
[0295] 本発明による半導体装置及びその製造方法は、電気的特性の良好なキャパシタを 有する半導体装置及びその製造方法を提供するのに有用である。

Claims

請求の範囲
[1] 半導体基板上に形成され、下部電極と;前記下部電極上に形成された誘電体膜と
;前記誘電体膜上に形成された上部電極とを有するキャパシタと、
前記キャパシタの上方に形成された第 1の絶縁膜と、
前記第 1の絶縁膜上に形成された第 1の配線と、
前記第 1の絶縁膜上及び前記第 1の配線上に形成された第 2の絶縁膜と、 前記 2の絶縁膜上に形成された電極パッドと、
前記電極パッドの直下における前記第 2の絶縁膜に埋め込まれた単一の導電体で あって、前記第 2の絶縁膜を貫いて、少なくとも前記第 1の絶縁膜の一部にまで埋め 込まれた導電体と
を有することを特徴とする半導体装置。
[2] 請求の範囲第 1項記載の半導体装置において、
前記導電体の径は、前記第 1の配線に接続された導体プラグの径より大きい ことを特徴とする半導体装置。
[3] 請求の範囲第 1項又は第 2項記載の半導体装置において、
前記半導体基板上に、前記キャパシタを埋め込むように形成された第 3の絶縁膜と 前記第 3の絶縁膜上に形成された第 2の配線及び導電膜を更に有し、 前記電極パッドは、前記第 2の絶縁膜及び前記第 1の絶縁膜を貫いて、前記導電 膜に接続されている
ことを特徴とする半導体装置。
[4] 請求の範囲第 1項又は第 2項記載の半導体装置において、
前記電極パッドの下方に形成され、前記キャパシタの前記上部電極又は前記下部 電極と同一導電膜より成る導電膜を更に有し、
前記電極パッドは、前記第 2の絶縁膜及び前記第 1の絶縁膜を貫いて、前記導電 膜に接続されている
ことを特徴とする半導体装置。
[5] 請求の範囲第 1項又は第 2項記載の半導体装置において、 前記電極パッドの下方における前記半導体基板上に形成された絶縁層と、 前記絶縁層上に形成された導電膜を更に有し、
前記電極パッドは、前記第 2の絶縁膜、前記第 1の絶縁膜を貫いて、前記導電膜に 接続されている
ことを特徴とする半導体装置。
[6] 請求の範囲第 1項乃至第 5項のいずれかに記載の半導体装置において、
前記導電体は、 Cu、 Au、 Al、 Al— Cu合金より成る
ことを特徴とする半導体装置。
[7] 請求の範囲第 1項乃至第 6項のいずれかに記載の半導体装置において、
前記キャパシタの上方に形成され、水素又は水分の拡散を防止するバリア膜を更 に有する
ことを特徴とする半導体装置。
[8] 請求の範囲第 7項記載の半導体装置において、
前記ノリア膜は平坦に形成されて ヽる
ことを特徴とする半導体装置。
[9] 請求の範囲第 7項又は第 8項記載の半導体装置において、
前記ノリア膜は、酸ィ匕アルミニウム又は酸ィ匕チタンより成る
ことを特徴とする半導体装置。
[10] 請求の範囲第 1項乃至第 9項のいずれ力 1項に記載の半導体装置において、 前記キャパシタの前記誘電体膜は、強誘電体又は高誘電体より成る
ことを特徴とする半導体装置。
[11] 請求の範囲第 10項記載の半導体装置において、
前記キャパシタの前記誘電体膜は、 PbZr Ti O膜、 Pb La Zr Ti O膜、
1 -X X 3 1 -X X 1 -Y Y 3
SrBi (Ta Nb ) O膜又は Bi Ti O 膜である
2 X 1 -X 2 9 4 2 12
ことを特徴とする半導体装置。
[12] 半導体基板上に、下部電極と;前記下部電極上に形成された誘電体膜と;前記誘 電体膜上に形成された上部電極とを有するキャパシタを形成する工程と、
前記キャパシタの上方に第 1の絶縁膜を形成する工程と、 前記第 1の絶縁膜上に第 1の配線を形成する工程と、
前記第 1の絶縁膜上及び前記第 1の配線上に第 2の絶縁膜を形成する工程と、 前記第 2の絶縁膜及び前記第 1の絶縁膜に、少なくとも前記第 1の絶縁層の表面よ り深くまで開口部を形成する工程と、
前記開口部内に導電体を埋め込む工程と、
前記導電体上及び前記第 2の絶縁膜上に電極パッドを形成する工程と を有することを特徴とする半導体装置の製造方法。
[13] 請求の範囲第 12項記載の半導体装置の製造方法において、
前記キャパシタを形成する工程の後、前記第 1の絶縁膜を形成する工程の前に、 前記半導体基板上に、前記キャパシタを埋め込むように第 3の絶縁膜を形成するェ 程と;前記第 3の絶縁膜上に、第 2の配線及び導電膜を形成する工程とを更に有し、 前記開口部を形成する工程では、前記第 2の絶縁膜及び前記第 1の絶縁膜を貫い て、前記導電膜に達する開口部を形成する
ことを特徴とする半導体装置の製造方法。
[14] 請求の範囲第 12項記載の半導体装置の製造方法において、
前記キャパシタを形成する工程では、前記電極パッドが形成される予定の領域の 下方に、前記キャパシタの前記上部電極又は前記下部電極と同一導電膜より成る導 電膜を更に形成し、
前記開口部を形成する工程では、前記第 2の絶縁膜及び前記第 1の絶縁膜を貫い て、前記導電膜に達する開口部を形成する
ことを特徴とする半導体装置の製造方法。
[15] 請求の範囲第 12項記載の半導体装置の製造方法において、
前記キャパシタを形成する工程の前に、電極パッドが形成される予定の領域の下 方における前記半導体基板上に絶縁層を形成する工程と;前記絶縁層上に導電膜 を形成する工程とを更に有し、
前記開口部を形成する工程では、前記第 2の絶縁膜、前記第 1の絶縁膜を貫いて 、前記導電膜に達する開口部を形成する
ことを特徴とする半導体装置の製造方法。
[16] 請求の範囲第 12項乃至第 15項のいずれか 1項に記載の半導体装置の製造方法 において、
前記導電体を埋め込む工程では、電気めつき法により前記導電体を形成する ことを特徴とする半導体装置の製造方法。
[17] 請求の範囲第 12項乃至第 15項のいずれか 1項に記載の半導体装置の製造方法 において、
前記導電体を埋め込む工程では、塗布法により前記導電体を形成する ことを特徴とする半導体装置の製造方法。
[18] 請求の範囲第 12項乃至第 17項のいずれか 1項に記載の半導体装置の製造方法 において、
前記電極パッドを形成する工程の後に、前記電極パッドに試験装置のプローブ針 を接触させ、試験を行う工程を更に有する
ことを特徴とする半導体装置の製造方法。
[19] 請求の範囲第 12項乃至第 18項のいずれか 1項に記載の半導体装置の製造方法 において、
前記電極パッドを形成する工程では、前記電極パッドの外周が前記導電体の外周 より大き ヽ前記電極パッドを形成する
ことを特徴とする半導体装置の製造方法。
PCT/JP2006/304503 2006-03-08 2006-03-08 半導体装置及びその製造方法 WO2007102214A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2006/304503 WO2007102214A1 (ja) 2006-03-08 2006-03-08 半導体装置及びその製造方法
JP2008503710A JP5141550B2 (ja) 2006-03-08 2006-03-08 半導体装置及びその製造方法
US12/205,495 US8148798B2 (en) 2006-03-08 2008-09-05 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304503 WO2007102214A1 (ja) 2006-03-08 2006-03-08 半導体装置及びその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/205,495 Continuation US8148798B2 (en) 2006-03-08 2008-09-05 Semiconductor device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2007102214A1 true WO2007102214A1 (ja) 2007-09-13

Family

ID=38474663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304503 WO2007102214A1 (ja) 2006-03-08 2006-03-08 半導体装置及びその製造方法

Country Status (3)

Country Link
US (1) US8148798B2 (ja)
JP (1) JP5141550B2 (ja)
WO (1) WO2007102214A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212299A (ja) * 2008-03-04 2009-09-17 Fujitsu Ltd 半導体装置及びその製造方法
WO2010013286A1 (ja) * 2008-07-28 2010-02-04 株式会社アドバンテスト 半導体装置および製造方法
JP2010225763A (ja) * 2009-03-23 2010-10-07 Toshiba Corp 半導体装置
JP2011258762A (ja) * 2010-06-09 2011-12-22 Toshiba Corp 半導体装置及びその製造方法
JP2015185792A (ja) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 配線構造及びその製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI245402B (en) * 2002-01-07 2005-12-11 Megic Corp Rod soldering structure and manufacturing process thereof
JP5065695B2 (ja) * 2007-02-01 2012-11-07 ルネサスエレクトロニクス株式会社 半導体装置
KR100995558B1 (ko) * 2007-03-22 2010-11-22 후지쯔 세미컨덕터 가부시키가이샤 반도체 장치 및 반도체 장치의 제조 방법
US8432923B2 (en) * 2008-12-18 2013-04-30 At&T Intellectual Property I, L.P. Methods, systems, and computer program products for providing inter-carrier IP-based connections using a common telephone number mapping architecture
US8440508B2 (en) * 2009-03-06 2013-05-14 Texas Instruments Incorporated Hydrogen barrier for ferroelectric capacitors
TWI409929B (zh) * 2009-06-22 2013-09-21 Sitronix Technology Corp 具mim電容之ic封環構造
JP2012178496A (ja) * 2011-02-28 2012-09-13 Sony Corp 固体撮像装置、電子機器、半導体装置、固体撮像装置の製造方法
US9449927B2 (en) * 2012-11-29 2016-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Seal ring structure with metal-insulator-metal capacitor
US8884400B2 (en) 2012-12-27 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitor in Post-Passivation structures and methods of forming the same
JP2015133392A (ja) * 2014-01-10 2015-07-23 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP6692439B2 (ja) * 2015-10-13 2020-05-13 アモルフィックス・インコーポレイテッド アモルファス金属薄膜非線形抵抗
US9893028B2 (en) 2015-12-28 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Bond structures and the methods of forming the same
US11211388B2 (en) 2017-11-14 2021-12-28 Taiwan Semiconductor Manufacturing Company, Ltd. Array boundfary structure to reduce dishing
US11756977B2 (en) * 2018-06-21 2023-09-12 Semiconductor Components Industries, Llc Backside illumination image sensors
JP7099158B2 (ja) * 2018-08-09 2022-07-12 富士電機株式会社 模擬素子及び抵抗素子の不良検査方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737929A (ja) * 1993-07-23 1995-02-07 Nec Corp 半導体集積回路装置
JPH09246479A (ja) * 1996-03-11 1997-09-19 Hitachi Ltd 半導体集積回路装置およびその製造方法
JPH11340319A (ja) * 1998-05-26 1999-12-10 Nec Corp 多層配線構造及びそれを有する半導体装置並びにそれらの製造方法
JP2000150599A (ja) * 1998-11-17 2000-05-30 Nec Corp 半導体装置の配線構造
JP2002110731A (ja) * 2000-09-29 2002-04-12 Nec Corp 半導体装置とその製造方法
JP2004349424A (ja) * 2003-05-21 2004-12-09 Renesas Technology Corp 半導体装置
JP2004349474A (ja) * 2003-05-22 2004-12-09 Toshiba Corp 半導体装置とその製造方法
JP2005175204A (ja) * 2003-12-11 2005-06-30 Fujitsu Ltd 半導体装置およびその製造方法
JP2006084191A (ja) * 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd 半導体装置及びその検査方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191084A (ja) * 1996-01-10 1997-07-22 Nec Corp 半導体装置及びその製造方法
JPH11214389A (ja) 1998-01-23 1999-08-06 Toshiba Corp 半導体装置の製造方法
JPH11238855A (ja) * 1998-02-19 1999-08-31 Fujitsu Ltd 半導体装置およびその製造方法
JP2000340653A (ja) * 1999-05-31 2000-12-08 Fujitsu Ltd 半導体装置
JP2001267323A (ja) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2002190578A (ja) * 2000-12-21 2002-07-05 Toshiba Corp 半導体装置およびその製造方法
JP2002324797A (ja) 2001-04-24 2002-11-08 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2003031575A (ja) * 2001-07-17 2003-01-31 Nec Corp 半導体装置及びその製造方法
JP2003142485A (ja) * 2001-11-01 2003-05-16 Mitsubishi Electric Corp 半導体装置及びその製造方法
KR100400047B1 (ko) * 2001-11-19 2003-09-29 삼성전자주식회사 반도체 소자의 본딩패드 구조 및 그 형성방법
US6611449B1 (en) * 2002-09-24 2003-08-26 Infineon Technologies Aktiengesellschaft Contact for memory cells
US20050212020A1 (en) * 2003-04-24 2005-09-29 Fujitsu Limited Semiconductor device and manufacturing method thereof
US7112507B2 (en) * 2003-11-24 2006-09-26 Infineon Technologies Ag MIM capacitor structure and method of fabrication
JP4578471B2 (ja) * 2004-05-27 2010-11-10 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP4803995B2 (ja) * 2004-06-28 2011-10-26 富士通セミコンダクター株式会社 半導体装置及びその製造方法
WO2007060745A1 (ja) * 2005-11-28 2007-05-31 Fujitsu Limited 半導体装置及びその製造方法
KR100970156B1 (ko) * 2005-12-08 2010-07-14 후지쯔 세미컨덕터 가부시키가이샤 반도체 장치
WO2007074529A1 (ja) * 2005-12-27 2007-07-05 Fujitsu Limited 半導体装置
CN101351880B (zh) * 2005-12-28 2012-05-16 富士通半导体股份有限公司 半导体器件及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737929A (ja) * 1993-07-23 1995-02-07 Nec Corp 半導体集積回路装置
JPH09246479A (ja) * 1996-03-11 1997-09-19 Hitachi Ltd 半導体集積回路装置およびその製造方法
JPH11340319A (ja) * 1998-05-26 1999-12-10 Nec Corp 多層配線構造及びそれを有する半導体装置並びにそれらの製造方法
JP2000150599A (ja) * 1998-11-17 2000-05-30 Nec Corp 半導体装置の配線構造
JP2002110731A (ja) * 2000-09-29 2002-04-12 Nec Corp 半導体装置とその製造方法
JP2004349424A (ja) * 2003-05-21 2004-12-09 Renesas Technology Corp 半導体装置
JP2004349474A (ja) * 2003-05-22 2004-12-09 Toshiba Corp 半導体装置とその製造方法
JP2005175204A (ja) * 2003-12-11 2005-06-30 Fujitsu Ltd 半導体装置およびその製造方法
JP2006084191A (ja) * 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd 半導体装置及びその検査方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212299A (ja) * 2008-03-04 2009-09-17 Fujitsu Ltd 半導体装置及びその製造方法
WO2010013286A1 (ja) * 2008-07-28 2010-02-04 株式会社アドバンテスト 半導体装置および製造方法
JP5351164B2 (ja) * 2008-07-28 2013-11-27 株式会社アドバンテスト 半導体装置、プローブウエハおよび製造方法
JP2010225763A (ja) * 2009-03-23 2010-10-07 Toshiba Corp 半導体装置
JP2011258762A (ja) * 2010-06-09 2011-12-22 Toshiba Corp 半導体装置及びその製造方法
JP2015185792A (ja) * 2014-03-26 2015-10-22 セイコーエプソン株式会社 配線構造及びその製造方法

Also Published As

Publication number Publication date
US20090001515A1 (en) 2009-01-01
JPWO2007102214A1 (ja) 2009-07-23
US8148798B2 (en) 2012-04-03
JP5141550B2 (ja) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5141550B2 (ja) 半導体装置及びその製造方法
JP4803995B2 (ja) 半導体装置及びその製造方法
US8956881B2 (en) Method of manufacturing a FeRAM device
US7750485B2 (en) Semiconductor device and method for manufacturing the same
US9831255B2 (en) Semiconductor device including an electrode lower layer and an electrode upper layer and method of manufacturing semiconductor device
US20070187735A1 (en) Method of manufacturing semiconductor device, and semiconductor device
JP4690234B2 (ja) 半導体装置及びその製造方法
JP5381688B2 (ja) 半導体装置及びその製造方法
KR101026170B1 (ko) 반도체 장치의 제조 방법
JP4578471B2 (ja) 半導体装置及びその製造方法
JP4854675B2 (ja) 半導体装置及びその製造方法
WO2007116501A1 (ja) 半導体装置及びその製造方法
CN100429744C (zh) 半导体器件及其制造方法
JP2004134692A (ja) 半導体メモリ装置およびその製造方法
JP4894843B2 (ja) 半導体装置及びその製造方法
CN1993828B (zh) 半导体装置
KR100604668B1 (ko) 콘케이브형 캐패시터를 포함하는 반도체소자 및 그 제조방법
JP5309988B2 (ja) 半導体装置の製造方法
JP4787152B2 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008503710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06728772

Country of ref document: EP

Kind code of ref document: A1