[go: up one dir, main page]

WO2007098674A1 - Procédé et dispositif d'obtention d'informations sur la diaphonie - Google Patents

Procédé et dispositif d'obtention d'informations sur la diaphonie Download PDF

Info

Publication number
WO2007098674A1
WO2007098674A1 PCT/CN2007/000397 CN2007000397W WO2007098674A1 WO 2007098674 A1 WO2007098674 A1 WO 2007098674A1 CN 2007000397 W CN2007000397 W CN 2007000397W WO 2007098674 A1 WO2007098674 A1 WO 2007098674A1
Authority
WO
WIPO (PCT)
Prior art keywords
crosstalk
transmission power
coefficient
function
target
Prior art date
Application number
PCT/CN2007/000397
Other languages
English (en)
French (fr)
Inventor
Qingquan Shi
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP07710868A priority Critical patent/EP1995885B1/en
Priority to ES07710868T priority patent/ES2389265T3/es
Publication of WO2007098674A1 publication Critical patent/WO2007098674A1/zh
Priority to US12/203,611 priority patent/US7898975B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/487Testing crosstalk effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/26Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
    • H04M3/34Testing for cross-talk

Definitions

  • the present invention relates to a twisted pair transmission technique, and more particularly to a method and apparatus for obtaining crosstalk information in far end crosstalk. Background of the invention
  • xDSL digital subscriber lines
  • UTP Unshielded Twist Pair
  • x represents various digital subscriber loop technologies.
  • DSL baseband transmission
  • ISDN Integrated Services Digital Network
  • SDDSL Single-pair High-bit-rate Digital Subscriber Line
  • ADSL Asymmetric Digital Subscriber Line
  • POTS traditional telephony services
  • xDSL occupies a high frequency band
  • POTS occupies a baseband portion below 4 kilohertz (KHz)
  • POTS signals and xDSL signals are separated by a splitter.
  • the xDSL for passband transmission uses Discrete Multi-tone Modulation (DMT), and the system that provides multi-channel xDSL access is called DSL Access Multiplexer (DSLAM).
  • DMT Discrete Multi-tone Modulation
  • ADSL technology has evolved from the first generation of ADSL to the second generation of ADSL2, ADSL2+, and the newer second-generation very high-speed digital subscriber loop (VDSL2).
  • the frequency band used by xDSL for passband transmission is also Gradually increasing, the corresponding bandwidth is gradually widening.
  • ADSL and ADSL2 downlinks use a spectrum below 1.1 megahertz (MHz) to provide a maximum downlink rate of 8 megabits per second (Mbps).
  • ADSL2+ extends the downstream bandwidth to 2.2 MHz, providing a maximum downlink rate of 24 Mbps.
  • VDSL2 even uses up to 30MHz of spectrum to provide a maximum uplink and downlink symmetrical 100Mbps rate.
  • a primary object of the present invention is to provide a method of acquiring crosstalk information capable of obtaining crosstalk information in a line.
  • Another object of the present invention is to provide an apparatus for acquiring crosstalk information capable of obtaining crosstalk information in a line.
  • a method for acquiring crosstalk information includes:
  • the crosstalk coefficient at the frequency point at which the dynamic characteristic changes is obtained as the crosstalk information.
  • An apparatus for acquiring crosstalk information comprising: a crosstalk coefficient acquisition module (50) for acquiring a crosstalk coefficient at a frequency point at which a dynamic characteristic changes;
  • the crosstalk coefficient acquisition module 50 receives an externally input crosstalk source transmission power, a crosstalk target transmission power, a crosstalk target noise, and a value of a transmission function of the victim channel at a frequency point at which the dynamic characteristic changes, and the output is obtained according to the obtained The crosstalk coefficient of the information obtained.
  • the transmission power of the crosstalk source is obtained by the method of the present invention.
  • the amount of change and the noise power of the crosstalk target are obtained, and the crosstalk coefficient at the frequency point at which the dynamic characteristic change occurs is obtained according to the obtained variation power of the crosstalk source and the noise power of the crosstalk target, and the obtained crosstalk coefficient is used as the crosstalk information.
  • the method of the present invention may form a crosstalk curve by using a plurality of crosstalk coefficients obtained, and use the crosstalk curve as crosstalk information; or, based on obtaining one or more crosstalk coefficients, according to a remote total crosstalk model, and
  • the parameters of the crosstalk source and the crosstalk target obtain an approximate crosstalk function, and the approximate crosstalk function is recursively updated in sequence or multiple times using the obtained crosstalk coefficients to obtain crosstalk information.
  • the crosstalk source refers to the line that provides crosstalk
  • the crosstalk target refers to the line that is interfered by the crosstalk source.
  • the present invention acquires multiple crosstalk coefficients at different frequency points within a set time interval, and then the obtained crosstalk function can be updated multiple times by using the obtained multiple crosstalk coefficients to ensure the obtained crosstalk information.
  • the real crosstalk information is successively approximated within a certain error range.
  • 1a is a schematic diagram of a near-end crosstalk in the prior art
  • Figure lb is a schematic diagram of a prior art far-end crosstalk
  • FIG. 2 is a schematic diagram of a reference model of a first level of a prior art DSM
  • FIG. 3 is a flow chart of an embodiment of the present invention for acquiring crosstalk information
  • 4a is a schematic diagram showing a comparison between an approximate crosstalk function and an actual crosstalk function in an embodiment of the present invention
  • 4b is a schematic diagram showing a comparison between an approximate crosstalk function and an actual crosstalk function after the first update in the embodiment of the present invention
  • 4c is a schematic diagram showing a comparison between an approximate crosstalk function and an actual crosstalk function after the second update in the embodiment of the present invention
  • FIG. 5 is a schematic diagram of an apparatus for acquiring crosstalk information according to the present invention. Mode for carrying out the invention
  • FIG. 1b is a schematic diagram of the prior art remote string, as shown in FIG. PORT1 in the DSLAM generates far-end crosstalk to the RTU2 connected to the PORT2 at the far end, and PORT1 is subjected to the far-end crosstalk of the RTU2.
  • the PORT2 in the DSLAM generates far-end crosstalk to the RTU1 connected to the PORT1 at the far end.
  • PORT1 is subject to far-end crosstalk from RTU1.
  • the dotted line indicates the near-end crosstalk between ports or between terminals
  • the dotted line in Figure lb indicates the far-end crosstalk between the port and the terminal.
  • PORT1 and PORT2 respectively correspond to different RTUs, which may result in low line rate, unstable performance, or even unreachable due to far-end crosstalk.
  • xDSL service so as to reduce the outgoing rate of DSLAM.
  • DSM dynamic spectrum management
  • DSM technology can be divided into two levels from the perspective of dealing with crosstalk.
  • the first level is to regard crosstalk as noise.
  • crosstalk information refers to crosstalk. Amplitude-frequency characteristic; another level is through the receiving end Or the signal processing at the transmitting end, the crosstalk is regarded as a useful signal, for example, the crosstalk generated by a certain pair of lines to other lines is collected and synthesized and restored at the receiving end, and used to enhance the original signal, for which, not only crosstalk is required.
  • the far-end crosstalk has a much greater impact on the transmission performance of the line than the near-end crosstalk. The following describes only the far-end crosstalk.
  • DSM can only be studied if the amplitude-frequency characteristics/phase-frequency characteristics of far-end crosstalk are obtained. Therefore, before the DSM optimization technique is solved, the measurement and estimation of the far-end crosstalk characteristics must be solved.
  • FIG 2 is a schematic diagram of the reference model of the first level of the prior art DSM.
  • the reference model of the first level of the DSM includes a spectrum controller (SMC, which is used to centrally control all the lines.
  • the Spectrum Maintenance Center and three control interfaces are the DSM-S interface, the DSM-C interface, and the DSM-D interface.
  • the SMC reads parameters such as the working status of the DSL line from the DSL line side (DSL-LT) through the DSM-D interface, and performs information exchange with the associated SMC through the DSM-S interface. After the SMC obtains sufficient information, the obtained information is obtained. The information is optimized for calculation to obtain crosstalk information, and finally the control parameters are sent to the DSL-LT through the DSM-C interface, so that the line works in an optimal state.
  • DSL-LT DSL line side
  • the core idea embodied in the embodiment of the present invention is: acquiring the transmission power variation of the crosstalk source and the noise power of the crosstalk target, and obtaining the frequency of the dynamic characteristic change according to the obtained transmission power variation of the crosstalk source and the noise power of the crosstalk target.
  • the crosstalk coefficient at the point is used as crosstalk information.
  • Step 300 Obtain an approximate crosstalk function according to a remote total crosstalk model, and line parameters of a crosstalk source and a crosstalk target; and obtain a transmit power of the crosstalk source.
  • the amount of change and the noise power of the crosstalk target, and the crosstalk coefficient at the frequency point at which the dynamic characteristic changes is obtained according to the obtained transmission power variation amount of the crosstalk source and the noise power of the crosstalk target.
  • is the transfer function of the disturbed channel
  • k is the coupling constant equal to 8 x 10- 2 ° ⁇
  • is the line that generates crosstalk with each other
  • f is the frequency of the coupled signal.
  • H £taache e (/) “can be obtained from the linear channel insertion loss function Hlin(f) reported by xDSL and the channel insertion loss function Hlog (obtained)
  • Hlin(f) or Hlog(f) is a sequence of values, each value representing the average of the sub-carrier spacing of the subcarriers, which is a known amount.
  • the frequency of the coupled signal / (1, 2...N5C- l) x AE
  • NSC is the number of subcarriers, which is the bandwidth of the subcarrier.
  • the approximate crosstalk function H(f) can be calculated. .
  • the approximate crosstalk function H(f) obtained from the far-end total crosstalk model provided in G.996.1 is the result of a 1% worst case.
  • the approximate crosstalk function H(f) is 99% larger than the actually measured crosstalk function.
  • FIG. 4a is a schematic diagram of the comparison between the approximate crosstalk function and the actual crosstalk function in the embodiment of the present invention, as shown in FIG. 4a, only through G.
  • the approximate crosstalk function 401 obtained by the far-end total crosstalk model provided in 996.1 is far from the actually measured crosstalk function 402. In order to approximate the obtained crosstalk function to the actually measured crosstalk function, it is necessary to continue the following steps of the method of the present invention to update the obtained approximate crosstalk function.
  • the transmission power ⁇ 2 ( ⁇ ) of the line 2 and the signal-to-noise ratio parameter V?, (? ⁇ ⁇ ) of the line 1 are acquired in units of subcarriers, where ⁇ denotes a different acquisition point.
  • the acquisition belongs to the prior art.
  • the xDSL transceiver After receiving the upper layer command, the xDSL transceiver reports the parameters specified in the G.997.1 standard, and how to collect is independent of the method of the present invention, and will not be described in detail herein.
  • the line 2 has a far-end crosstalk to the line 1.
  • the noise power of the line 1 also changes accordingly.
  • the overall noise power variation of line 1 is not only related to the transmission power of line 2, but also related to the transmission power of other crosstalk sources.
  • the noise power variation of line 1 includes the line. 2 and the transmission power change information of other lines, that is, H 2 i(f.) ' P d JnT) + ⁇ ⁇ . + Hjf.
  • H ml (f 0 ) denotes the approximate crosstalk coefficient produced by line m on line 1 at a specific frequency point f 0 , also referred to as estimation at frequency point f 0
  • P delm (nT) represents the amount of change in the transmission power of the line m.
  • the transmission power of the line 2 is not related to the transmission power of other lines that cause crosstalk to the line, when the collected transmission power information is sufficient, it can be considered that the power variation of the line 2 and the power variation of the other line are equal to zero, that is,
  • multiple crosstalk coefficients can be obtained.
  • the determination of the number of frequency points depends on the actual situation. Generally, the more frequency points, the more uniformly the distribution is. The better the approximation effect on the approximate crosstalk function, the closer the crosstalk information obtained is to the actually measured crosstalk information.
  • Step 301 Update the approximate crosstalk function by using the obtained crosstalk coefficient to obtain a crosstalk signal. Interest.
  • the frequency point / 0 in the step 300 and the crosstalk coefficient ⁇ corresponding to the frequency point / 0 are substituted into the formula (1) to calculate k 0 , at this time, k Q - kx l ',
  • the convergence coefficient ⁇ is used to indicate the successive convergence speed of the crosstalk function, and the larger ⁇ is, the slower the convergence speed is; the smaller the ⁇ is, the faster the convergence speed is.
  • FIG. 4b is a schematic diagram of comparing the approximate crosstalk function with the actual crosstalk function after the first update in the embodiment of the present invention, as shown in FIG. 4b.
  • the approximate crosstalk function 403 after the first update is closer to the actually measured crosstalk approximation function 402.
  • the crosstalk coefficients such as the crosstalk coefficient 404, the crosstalk coefficient 407, and the approximate crosstalk function may be cyclically updated to obtain the crosstalk function to obtain crosstalk.
  • Information such that the updated approximate crosstalk function becomes closer to the actual measured crosstalk function as time increases, and FIG. 4c is the approximate crosstalk function and the actual crosstalk function after the second update in the embodiment of the present invention.
  • the comparison diagram as shown in Figure 4c, the second updated approximate crosstalk function 406 is closer to the actual measured crosstalk approximation function 402 than the first updated approximate crosstalk function 403. When the test of the crosstalk coefficient traverses all frequency points, the final output becomes the measured value.
  • the method of the embodiment of the present invention does not require additional testing.
  • the actual crosstalk function is estimated by the reporting parameters and the crosstalk model function.
  • the method of the embodiment of the invention is simple to implement, and no additional functions or equipment need to be added.
  • the required crosstalk information is only the corresponding crosstalk information at each frequency point, then only the step of obtaining the crosstalk coefficient in step 300 is required to achieve the object of the present invention.
  • the apparatus for acquiring crosstalk information of the present invention includes a crosstalk coefficient obtaining module 50,
  • the crosstalk coefficient acquisition module 50 is configured to acquire a crosstalk coefficient at a frequency point at which a dynamic characteristic changes, and receive an externally input crosstalk source transmission power, a crosstalk target transmission power, a crosstalk target noise, and a logarithmic representation.
  • the value of the transmission function of the scramble channel at the frequency point at which the dynamic characteristic changes, and the crosstalk coefficient obtained based on the obtained information is output. It is composed of the following units:
  • the averaging unit 500 receives the externally input crosstalk source transmission power, calculates an average value of all the received transmission powers within a fixed time interval T, and outputs the obtained average value of the transmission power to the transmission power variation amount acquisition unit 501. ;
  • the transmission power change amount acquisition unit 501 receives the average value of the transmission power from the averaging unit 500, receives the externally input crosstalk source transmission power, and calculates the transmission power of each crosstalk source obtained by setting the fixed time interval T in advance using the formula (2). The amount of change, and the obtained transmission power variation of the crosstalk source is output to the crosstalk coefficient acquisition unit 503;
  • the noise power acquisition unit 502 receives the transmission power of the externally input crosstalk target, the noise of the crosstalk target, and the value of the transmission function of the victim channel expressed in logarithm at the frequency point at which the dynamic characteristic changes, using the formula ( 3) Calculate the noise power of the crosstalk target at the frequency point where the dynamic characteristics change, and output the obtained noise power to the crosstalk coefficient Obtaining unit 503;
  • the crosstalk coefficient acquisition unit 503 receives the transmission power variation amount of the crosstalk source from the transmission power variation amount acquisition unit 501, and the noise power from the frequency point at which the crosstalk target of the noise power acquisition unit 502 changes in dynamic characteristics, and uses the formula (4) Calculating a crosstalk coefficient of the crosstalk source at a frequency point at which the dynamic characteristic changes, and outputting the crosstalk coefficient as crosstalk information.
  • the apparatus of the embodiment of the present invention further includes: a crosstalk curve generating module 53 configured to collect crosstalk coefficients at frequency points from which the plurality of dynamic characteristics of the crosstalk coefficient acquiring unit 503 in the crosstalk coefficient obtaining module 50 change, and The crosstalk coefficient is synthesized as a crosstalk curve and output.
  • the implementation of the curve generation module is not limited, and the invention is not limited thereto and is well known to those skilled in the art.
  • the apparatus for obtaining crosstalk information in the embodiment of the present invention may further include: a crosstalk approximation function acquisition block 51, configured to output an approximate crosstalk function corresponding to the far-end total crosstalk model provided in G.996.1, and output the crosstalk information to the crosstalk information.
  • the string information obtaining module 52 receives the approximate crosstalk function from the crosstalk approximation function acquiring module 51, and receives the crosstalk coefficient at the frequency point from which the dynamic characteristic of the crosstalk coefficient obtaining unit 503 in the crosstalk coefficient obtaining block 50 changes, by using the receiving The approximate crosstalk model and crosstalk coefficient are obtained, and a new approximate crosstalk function is obtained by recursive method by formula (5), which is output as crosstalk information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

一种获取串扰信息的方法及装置 技术领域
本发明涉及双绞线传输技术, 尤指一种在远端串扰中, 获取串扰信 息的方法及装置。 发明背景
各种数字用户线 (xDSL ) 是一种在电话双绞线即无屏蔽双绞线 ( UTP, Unshielded Twist Pair ) 上传输的高速数据传输技术, 其中 x 代表各种数字用户环路技术。 xDSL 中除了基于综合业务数字网 ( ISDN ) 的用户数字线 ( IDSL, ISDN Digital Subscriber Line ) 和单 线对高速数字用户线 ( SHDSL, Single-pair High-bit-rate Digital Subscriber Line ) 等基带传输的 DSL外, 通带传输的 xDSL如非对称 数字用户线 (ADSL ) 利用频分复用技术, 使得 xDSL与传统电话业 务(POTS )共存于同一对双绞线上。 其中, xDSL占用高频段, POTS 占用 4千赫兹 (KHz ) 以下基带部分, POTS信号与 xDSL信号通过 分离器分离。 通带传输的 xDSL采用离散多音频调制 ( DMT ), 提供 多路 xDSL接入的系统称为 DSL接入复用器 ( DSLAM )。
ADSL技术经过多年的发展, 已经从第一代的 ADSL发展到了第 二代的 ADSL2、 ADSL2+, 以及更新的第二代甚高速数字用户环路 ( VDSL2 ), 通带传输的 xDSL使用的频带也在逐渐增加, 相应的带 宽也在逐渐加宽。比如, ADSL和 ADSL2下行使用 1.1兆赫兹(MHz ) 以下的频谱,能够提供最大 8兆比特每秒( Mbps )的下行速率, ADSL2+ 将下行带宽扩展到 2.2MHz, 能够提供最大 24Mbps的下行速率, 而 VDSL2 甚至使用高达 30MHz 的频谱, 能够提供最高上下行对称 100Mbps的速率。
随着 xDSL技术使用的频带的提高, 位于同一根 UTP上的各 xDSL 业务端口之间的串扰(crosstalk ), 尤其是高频段的串扰问题表现得日益 突出。 由于 xDSL上下行信道采用频分复用, 近端串扰(NEXT )对系 统的性能一般不会产生太大的危害, 但远端串扰(FEXT )会严重影响 线路的传输性能。 发明内容
本发明的主要目的在于提供一种获取串扰信息的方法, 能够获得 线路中的串扰信息。
本发明的另一目的在于提供一种获取串扰信息的装置, 能够获得 线路中的串扰信息。
为达到上述目的, 本发明的技术方案具体是这样实现的: 一种获取串扰信息的方法, 该方法包括:
A . 获取串扰源的发送功率变化量及串扰目标的噪声功率;
B. 根据获得的串扰源的发送功率变化量及串扰目标的噪声, 获 取动态特性发生变化的频率点上的串扰系数, 作为串扰信息。
一种获取串扰信息的装置, 该装置包括: 用于获取动态特性发生 变化的频率点上的串扰系数的串扰系数获取模块 ( 50 );
所述串扰系数获取模块 50, 接收外部输入的串扰源发送功率、 串扰目标的发送功率、 串扰目标的噪声, 以及受扰信道的传输函数在 动态特性发生变化的频率点上的值,输出根据获得的信息获取的串扰 系数。
由上述技术方案可见, 利用本发明的方法获取串扰源的发送功率 变化量及串扰目标的噪声功率,并根据获得的串扰源的发送功率变化 量及串扰目标的噪声功率,获取发生了动态特性变化的频率点上的串 扰系数, 以获得的串扰系数作为串扰信息。 进一步地, 本发明方法可 以通过获得的多个串扰系数, 组成一串扰曲线, 以该串扰曲线作为串 扰信息; 或者, 在获得一个或多个串扰系数的基础上, 根据远端总串 扰模型, 以及串扰源和串扰目标的参数获取近似串扰函数, 利用获得 的串扰系数依次或多次递归地更新近似串扰函数, 以获得串扰信息。 其中, 串扰源是指提供串扰的线路, 串扰目标是指受到串扰源干扰的 线路。较佳的, 本发明在设定时间间隔内获取不同频率点上的多个串 扰系数, 那么可以利用获得的多个串扰系数, 多次对获得的近似串扰 函数进行更新,保证了获得的串扰信息在满足一定误差范围内逐次逼 近真实串扰信息。 附图简要说明
图 1 a是现有技术近端串扰示意图;
图 lb是现有技术远端串扰示意图;
图 2是现有技术 DSM第一层面的参考模型示意图;
图 3是本发明获取串扰信息的实施例的流程图;
图 4a是本发明实施例中近似串扰函数与实际串扰函数的对比示意 图;
图 4b是本发明实施例中经过第一次更新后的近似串扰函数与实际 串扰函数的对比示意图;
图 4c是本发明实施例中经过第二次更新后的近似串扰函数与实际 串扰函数的对比示意图;
图 5是本发明获取串扰信息的装置示意图。 实施本发明的方式
图 la是现有技术近端串扰示意图, 如图 la 所示, 在近端, 位于 DSLAM中的端口 1 ( PORT1 )与端口 2 ( PORT2 )之间存在近端串扰, 在远端, 分别与 PORT1和 PORT2相连的远端数据采集终端 1 ( RTU1 ) 和远端数据釆集终端 2 ( RTU2 )之间存在近端串扰; 图 lb是现有技术 远端串^ ^示意图, 如图 lb所示, 位于 DSLAM中的 PORT1对位于远端 与 PORT2相连的 RTU2产生远端串扰, 同时 PORT1受到 RTU2的远端 串扰,同样,位于 DSLAM中的 PORT2对位于远端与 PORT1相连的 RTU1 产生远端串扰, 同时 PORT1受到 RTU1的远端串扰。 图 la中, 虚线表 示端口间或终端间的近端串扰, 图 lb 中虚线表示端口与终端间的远端 串扰。
当一捆电缆内有多路用户都要求开通 xDSL业务, 如图 la和图 lb 中的 PORT1和 PORT2分别对应不同的 RTU时,会因为远端串扰使线路 速率低、 性能不稳定、 甚至不能开通 xDSL业务, 以至于降低 DSLAM 的出线率等。
针对上述由于远端串扰引起的问题,很多运营商各自制定了频谱 应用管理规范, 用于规范各种应用情况下的频谱规划, 以避免由于各 种位置的设备之间互相干扰, 而导致的性能严重下降的问题。 目前, 在技术研究上, 通过动态频谱管理(DSM )课题来研究如何减小、 规 避上述由于串扰所带来的影响, 比如迭代注水、 最优功率谱控制、 多 输入多输出 (MIMO ) 等方案。
DSM技术从处理串扰的角度上来说,可以分成两个层面。 第一层 面是将串扰看作噪声, 此时, 为了获得如何优化 xDSL收发器的频谱, 使同一梱电线中所有 xDSL收发器的整体性能最高, 需要预先获得串 扰信息, 本文中串扰信息指串扰的幅频特性; 另一层面是通过接收端 或是发送端的信号处理, 将串扰看作有用的信号, 比如在接收端将某 对线对其他线路产生的串扰收集起来并合成、 恢复, 用于增强原来的 信号,为此, 不但要获得串扰的幅频特性,还要获得串扰的相频特性。 由于在上下行频分复用的 xDSL传输系统中, 远端串扰对线路的传输 性能的影响远远大于近端串扰, 下文仅针对远端串扰进行描述。
综上, 只有获得远端串扰的幅频特性 /相频特性, 才能对 DSM进 行研究。 因此, 在解决 DSM优化技术之前, 必须解决远端串扰特性的 测量、 估计。
DSM技术还没有商用, 图 2是现有技术 DSM第一层面的参考模型 示意图, 如图 2所示, DSM第一层面的参考模型包括一个用于集中控 制所有的线路的频谱控制器( SMC , Spectrum Maintenance Center ) 和三个控制接口, 分别为 DSM-S接口、 DSM-C接口和 DSM-D接口。 SMC通过 DSM-D接口从 DSL线路侧 ( DSL-LT ) 读取 DSL线路的工作 状态等参数, 通过 DSM-S接口与其相关联的 SMC进行信息交互, 当 SMC获得足够的信息后, 对获得的信息作优化计算而获得串扰信息, 最后通过 DSM-C接口向 DSL-LT下发控制参数, 使线路工作在最佳的 状态。
目前, 对图 2所示的 DSM参考模型只是作出一个功能化描述, 没有 具体的实现方案。
本发明实施例体现的核心思想是: 获取串扰源的发送功率变化量及 串扰目标的噪声功率, 并根据获得的串扰源的发送功率变化量及串扰目 标的噪声功率, 获取动态特性发生变化的频率点上的串扰系数作为串扰 信息。
为使本发明的目的、 技术方案及优点更加清楚明白, 以下参照附图 并举较佳实施例, 对本发明进一步详细说明。 图 3是本发明获取串扰信息的实施例的流程图,具体包括以下步驟: 步骤 300: 根据远端总串扰模型, 以及串扰源和串扰目标的线路参 数获取近似串扰函数; 获取串扰源的发送功率变化量及串扰目标的噪声 功率, 并根据获得的串扰源的发送功率变化量及串扰目标的噪声功率, 获取动态特性发生变化的频率点上的串扰系数。
本步骤中, 近似串扰函数的获得属于本领域公知技术。 在 G.996.1 中提供的远端总串扰模型如公式( 1 )所示:
Figure imgf000008_0001
其中, 、 是受扰信道的传输函数; k是耦合常数, 等于 8 x 10- 2° χ , 其中, η是互相产生串扰的线
Figure imgf000008_0002
对数;
1是輛合路径的长度;
f是耦合信号的频率。
按照 G997.1中的相关定义, 受扰信道的传输函数 |H£tae, (/)「可以 从 xDSL上报的线性信道插入损耗函数 Hlin(f)和对信道插入损耗函数 Hlog( 中获得, 实际上 Hlin(f)或 Hlog(f)是一个数值序列, 每一个值代 表子载波的频带宽度 (sub- carrier spacing)内的平均值,是一个已知量。
以图 2为例, 假设线路 2是串扰源, 线路 1是串扰目标, 获取线路 2 对线路 1的近似串扰函数包括:
1 )从 DSM-D接口分别获取线路 1和线路 2的 Hlin(f)、 Hlog(f)数据。 如何获取 Hlin(f)和 Hlog(f)数据属于本领域公知技术, 可参见相关协议 规定, 这里不再详述。
2 ) 按照 G.993.2中的相关定义, 根据获得的线路 1和线路 2的 Hlin(f)、 Hlog(f)数据, 分别估算出线路 1和线路 2的电气长度 L1和 L2, 然后取 LI和 L2中的最小值作为公式( 1 ) 中的耦合路径长度 1。 另夕卜, 线路电气长度 L 1和 L2也可以直接从配置参数中获得。
3 )由于本实施例中互相产生串扰的线对数为 1对即 n = 1 , 因此取 。
Figure imgf000009_0001
4 )根据现有的标准, 使耦合信号的频率 / = (1,2...N5C- l) x AE , 其 中, NSC为子载波数目, 为子载波的频带宽度。 子载波数目 NSC 根据不同的 DSL标准取不同的值, 比如对于 ADSL, 子载波数目 NSC 的取值为: NSC = 256; AE = 4.3125KHz。
将上述得到的受扰信道的传输函数 / Μ/(/)|2、 耦合路径长度 ι、 耦合常数 k, 以及耦合信号的频率 f代入公式 ( 1 ) , 可以计算出近似 串扰函数 H(f)。
通常, 根据 G.996.1中提供的远端总串扰模型获得的近似串扰函 数 H(f), 是一个 1%最坏的情况下的结果。 该近似串扰函数 H(f)比实际 测量的串扰函数大的情况占 99%, 图 4a是本发明实施例中近似串扰函 数与实际串扰函数的对比示意图, 如图 4a所示, 仅仅通过 G.996.1中提 供的远端总串扰模型获得的近似串扰函数 401 , 远远偏离实际测量的 串扰函数 402。为了使获得的近似串扰函数接近实际测量的串扰函数, 需要继续执行本发明方法的以下步骤,对获得的近似串扰函数进行更 新。
为了更新上述获得的近似串扰函数, 本步骤中还需要根据 xDSL 收发器参数获取某一个或某些频率点的串扰系数, 还是以图 2为例, 假设线路 2是串扰源, 线路 1是串扰目标, 获取串扰系数具体实现包括 以下步骤:
1 )预先设置固定时间间隔 T, 如设置一定时时长为 T的定时器, 在该固定时间间隔 T内 , 以每个子载波为单位采集线路 2的发送功率 Ρ2(ηΓ)和线路 1的信噪比参数 V?, (? τΓ), 其中 η表示不同的采集点。 采集 属于现有技术, xDSL收发器在接收到上层指令后, 上报 G.997.1标准 中规定的参数, 如何采集与本发明方法无关, 这里不再详述。
在实际运行的过程中存在很多的动态信息, 如上线, 下线, 以及 执行比特交换 ( Bit Swapping ) 、 无缝速率调整( SRA ) 、 动态速率 重配 (DRR) 等功能时。 这些动态特性都伴随着发送功率谱的变化。 如表 1所示, 假设 n= 10, 共采集了某个动态特性发生变化的频率点 /0 上的 10个发送功率信息, 表 1是十个采集点上的线路 2的发送功率。
Figure imgf000010_0001
表 1
2) 计算发送功率变化量 Ρώ,2(ηΓ)。
将各发送功率减去所有发送功率的平均值, 如公式 (2) 所示:
Pdel2{nT) = P2(nT)-E[P2{nT)] (2) 其中,运算符号 Ε表示作平均计算,属于本领域公知常识。 Ρ 2( Τ") 的计算结果如表 2所示, 表 2是十个采集点上的线路 2的发送功率变化 量。
Figure imgf000010_0002
表 2
3 ) 计算线路 1在上述频率点 /ο上的噪声功率 Ν^ηΤ), 如公式 (3 ) 所示:
N, (nT) = SNR, {ηΤ)-{Ρ {nf)-H,ogX ( 0 )) ( 3 ) 其中, Ρ ηΤ)是线路 1的发送功率, Hlogl(fo)是在频率点/ 0上的以 对数的形式表示的受扰信道的传输函数的值。
本实施例中, 线路 2对线路 1存在远端串扰, 当线路 2的发送功率 谱发生变化时, 线路 1的噪声功率也发生相应的变化。 当然, 在线路 1 存在多个串扰源时, 线路 1的总体噪声功率变化规律不仅仅与线路 2 的发送功率有关, 还与其它的串扰源的发送功率相关, 线路 1的噪声 功率变化包含了线路 2及其它线路的发送功率变化信息, 即 H2i(f。) ' PdJnT)+ · · .+ Hjf。)' PdJnT) , 其中, m表示其它线路; Hml(f0) 表示在特定频率点 f0上, 线路 m对线路 1产生的近似串扰系数, 也称为 在频率点 f0上估计的串扰系数; Pdelm(nT)表示线路 m的发送功率变化 量。
由于线路 2与其它对线路产生串扰的线路的发送功率变化不相 关, 因此在采集的发送功率信息足够多时, 可以认为线路 2的功率变 化 量 与 其 它 线 路 的 功 率 变 化 量 内 积 约 等 于 零 , 即
T), Pde» 0,m≠ 2。 那么, 线路 2在特定频率点 /Q上对线 路 1的串扰系数 λ通过下面的公式(4 ) 计算获得:
Figure imgf000011_0001
其中,运算符〈·〉表示内积,属于本领域公知常识,这里不再赘述。 根据公式(4 ) , 对应不同的频率点 , 可以获得不同的串扰系数 λ t
需要说明的是, 如果在设定时间间隔内获取多个频率点, 那么可 以获得多个串扰系数, 频率点个数的确定取决于实际情况, 通常, 频 率点越多, 分布越均勾, 则对近似串扰函数的逼近效果越好, 获得的 串扰信息越接近实际测量的串扰信息。
步骤 301 : 利用获得的串扰系数更新近似串扰函数, 以获得串扰信 息。
本步驟中, 首先, 将步骤 300中的频率点 /0及该频率点/ 0对应的串 扰系数 λ , 代入公式 (1 ) 计算出 k0 , 此时, kQ - kx l ',
. 然后, 使用 A。代替 , 代入公式(1 )计算出整个频段的近似串 扰函数 Hnew(f);
最后, 利用计算得到的 H(f)、 Hnew(f)通过迭代计算获取经过更新的 近似串扰函数 H'(/), 如公式(5 )所示:
Figure imgf000012_0001
其中, 收敛系数 α用于表示串扰函数的逐次的收敛速度, α越大收 敛的速度越慢; α越小收敛的速度越快, 一般, 0< α <1 , 比如可取《 = 。
4 至此, 利用本发明方法对近似串扰函数进行了第一次更新, 图 4b 是本发明实施例中经过第一次更新后的近似串扰函数与实际串扰函数 的对比示意图, 如图 4b所示, 第一次更新后的近似串扰函数 403更加 接近实际测量的串扰近似函数 402。
需要说明的是, 为了让更新后的近似串扰函数更加逼近实际测量的 近似串扰函数, 可以循环执行获取串扰系数如串扰系数 404、 串扰系数 407和利用获得的串扰系数更新近似串扰函数, 以获得串扰信息, 这样, 随着时间的增加经过更新后的近似串扰函数越来越逼近实际测量的真 实的串扰函数,图 4c是本发明实施例中经过第二次更新后的近似串扰函 数与实际串扰函数的对比示意图,如图 4c所示, 第二次更新后的近似串 扰函数 406, 比第一次更新后的近似串扰函数 403更加接近实际测量的 串扰近似函数 402。 当对串扰系数的测试遍历了所有频率点时, 最终的 输出结果便变成了测量值。
从上述本发明实施例描述可见, 本发明实施例的方法在无需额外测 试的情况下, 通过上报参数和串扰模型函数, 对真实的串扰函数进行估 计。 本发明实施例方法实现简单, 不需要增加额外的功能或设备。
需要说明的是,如果需要的串扰信息仅仅是各频率点上对应的串 扰信息, 那么, 只需要执行步骤 300中的获取串扰系数的步骤即可达 到本发明目的。 另外, 也可以仅通过步骤 300中的获取串扰系数的步 驟获得的多个串扰系数, 组成一串扰曲线, 以该串扰曲线作为串扰信 息, 也可达到本发明目的。
图 5是本发明获取串扰信息的装置示意图, 如图 5所示, 如果需要 的串扰信息仅仅是各频率点上对应的串扰信息, 那么, 本发明获取串扰 信息的装置包括串扰系数获取模块 50, 该串扰系数获取模块 50用于获 取动态特性发生变化的频率点上的串扰系数, 接收外部输入的串扰源发 送功率、 串扰目标的发送功率、 串扰目标的噪声, 以及以对数的形式表 示的受扰信道的传输函数在动态特性发生变化的频率点上的值, 输出根 据获得的信息获取的串扰系数。 具体由以下单元组成:
平均单元 500, 接收外部输入的串扰源发送功率, 计算预先设置固 定时间间隔 T内, 所有接收到的发送功率的平均值, 并将获得的发送功 率的平均值输出给发送功率变化量获取单元 501 ;
发送功率变化量获取单元 501 , 接收来自平均单元 500的发送功率 的平均值, 接收外部输入的串扰源发送功率, 利用公式 (2 )计算预先 设置固定时间间隔 T内获得的各串扰源的发送功率的变化量, 并将获得 的串扰源的发送功率变化量输出给串扰系数获取单元 503;
噪声功率获取单元 502, 接收外部输入的串扰目标的发送功率、 串 扰目标的噪声, 以及以对数的形式表示的受扰信道的传输函数在动态特 性发生变化的频率点上的值, 利用公式(3 )计算串扰目标在动态特性 发生变化的频率点上的噪声功率, 并将获得的噪声功率输出给串扰系数 获取单元 503;
串扰系数获取单元 503 , 接收来自发送功率变化量获取单元 501的 串扰源的发送功率变化量, 以及来自噪声功率获取单元 502的串扰目标 在动态特性发生变化的频率点上的噪声功率, 并利用公式(4 )计算串 扰源在动态特性发生变化的频率点上的串扰系数, 将该串扰系数作为串 扰信息输出。
进一步地, 本发明实施例装置还包括: 串扰曲线生成模块 53 , 用于 收集来自串扰系数获取模块 50中串扰系数获取单元 503 的多个动态特 性发生变化的频率点上的串扰系数, 并将各串扰系数合成为一串扰曲线 后输出。 曲线生成模块的实现方式 4艮多, 本发明不做限制, 属于本领域 技术人员公知技术。
进一步地, 本发明实施例获取串扰信息的装置还可以包括: 串扰近似函数获料莫块 51 , 用于输出 G.996.1中提供的远端总串扰 模型对应的近似串扰函数, 并输出给串扰信息获取模块 52;
串尤信息获取模块 52, 接收来自串扰近似函数获取模块 51的近似 串扰函数, 接收来自串扰系数获 莫块 50中串扰系数获取单元 503的 动态特性发生变化的频率点上的串扰系数, 利用利用接收到的近似串扰 模型和串扰系数, 通过公式(5 )采用递归方法获取新的近似串扰函数, 作为串扰信息输出。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的 保护范围, 凡在本发明的精神和原则之内所做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1.一种获取串扰信息的方法, 其特征在于, 该方法包括:
A, 获取串扰源的发送功率变化量及串扰目标的噪声功率;
B.根据获得的串扰源的发送功率变化量及串扰目标的噪声,获取动 态特性发生变化的频率点上的串扰系数, 作为串扰信息。
2. 根据权利要求 1 所述的方法, 其特征在于, 所述动态特性发生 变化的频率点为一个以上, 该方法还包括: 将所述各动态特性发生变化 的频率点上对应的串扰系数合成串扰曲线, 作为串 4尤信息。
3. 居权利要求 1所述的方法, 其特征在于, 所述步骤 B之前, 该方法还包括:
根据远端总串扰模型 , 及串扰源和串扰目标的线路参数获取近似串 扰函数; 利用所述串扰系数更新获得的近似串扰函数, 并对更新后的串 扰函数进行递归运算后获得串扰信息。
4. 根据权利要求 1、 2或 3所述的方法, 其特征在于, 该方法进一 步包括: 设置并启动定时时长为 T的定时器;
步驟 A中所述获取串扰源的发送功率变化量的方法为:
在所述定时时长 T内,以每个子载波为单位采集串扰源的发送功率, 计算采集到的串 4无源的所有发送功率的平均值; 将采集到的各串扰源的 发送功率减去计算得到的平均值, 获取串扰源的各发送功率的变化量。
5. 根据权利要求 4所述的方法, 其特征在于, 步骤 A中所述获取 串扰目标的噪声的方法为:
在所述定时时长 T内, 以每个子载波为单位采集串扰目标的信噪比 参数、 以及串扰目标的发送功率, 各采集点上的串扰目标的信噪比参数 和串扰目标的发送功率——对应; 对应各采集点, 分别计算串扰目标的发送功率, 与在所述动态特性 发生变化的频率点上的已知受扰信道的传输函数的值之差; 再利用采集 到的串扰目标的各信噪比参数减去各采集点上所得差值后, 获得串扰目 标的各噪声功率。
6. 根据权利要求 5所述的方法, 其特征在于, 步骤 B中所述获取 串扰系数的方法为:
计算各采集点上, 所述串扰源的发送功率的变化量与串扰目标的噪 声功率之间的内积获得第一内积值、 所述串扰源的发送功率的变化量与 自身的内积获得第二内积值; 计算所述第一内积值与第二内积值之商, 获得所述动态特性发生变化的频率点上的串扰系数。
7. 根据权利要求 3所述的方法, 其特征在于, 所述获取近似串扰 函数的方法为: 按照所述已有远端总串扰模型, 计算已知的受扰信道的 传输函数、 耦合常数、 耦合路径的长度、 和耦合信号的频率的平方之积 的值。
8. 根据权利要求 Ί所述的方法, 其特征在于, 所述更新近似串扰 函数的方法为:
按照所述已有远端总串扰模型, 将所述动态特性发生变化的频率点 作为所述耦合信号的频率, 该频率点上的串扰系数作为所述近似串扰函 数在所迷动态特性发生变化的频率点上的值, 以及已知的受扰信道的传 输函数, 计算耦合常数与耦合路径的长度之积的值;
将获得的耦合常数与耦合路径的长度之积的值, 利用所述已有远端 总串扰模型, 获得更新后的所述近似串扰函数。
9. 根据权利要求 8所述的方法, 其特征在于, 该方法还包括: 设 置收敛系数; 所述获取串扰信息的方法为:
计算所述近似串扰函数与所述收敛系数之积的值; 计算常数 1与所 述收敛系数之差的差值, 再计算该差值与所述更新后的近似函数之积; 计算所得两个积值之和获得所述串扰信息。
10. 根据权利要求 1 所述的方法, 其特征在于, 所述串扰信息为 远端串扰的幅频特性。
11. 一种获取串扰信息的装置, 其特征在于, 该装置包括: 用于 获取动态特性发生变化的频率点上的串扰系数的串扰系数获取模块
( 50 );
所述串扰系数获取模块(50 ), 接收外部输入的串扰源发送功率、 串扰目标的发送功率、 串扰目标的噪声, 以及受扰信道的传输函数在动 态特性发生变化的频率点上的值, 输出根据获得的信息获取的串扰系 数。
12. 根据权利要求 11所述的装置, 其特征在于, 所述动态特性发 生变化的频率点为一个以上,所述装置还包括: 串扰曲线生成模块(53 ); 所述串扰曲线生成模块( 53 )用于收集来自串扰系数获取模块( 50 ) 的各动态特性发生变化的频率点上的串扰系数, 将各串扰系数合成为一 串扰曲线, 并作为串扰信息输出。
13. 根据权利要求 11所述的装置,其特征在于,所述装置还包括: 串扰近似函数获取模块(51 ), 用于向所述串扰信息获取模块(52 ) 输出已有远端总串扰模型;
串扰信息获取模块(52 ), 接收来自串扰近似函数获取模块 (51 ) 的近似串扰函数, 接收来自串扰系数获取模块(50 ) 的动态特性发生变 化的频率点上的串扰系数; 利用接收到的近似串扰模型和串扰系数, 采 用递归方法获取新的近似串扰函数, 作为串扰信息输出。
14. 根据权利要求 11、 12或 13所述的装置, 其特征在于, 所述 串扰系数获取模块 ( 50 ) 包括: 平均单元(500 ), 接收外部输入的串扰源发送功率, 计算预先设置 固定时间间隔 T内, 所有接收到的发送功率的平均值, 并将获得的发送 功率的平均值输出给发送功率变化量获取单元(501 );
发送功率变化量获取单元 (501 ), 接收来自平均单元(500 ) 的发 送功率的平均值, 接收外部输入的串尤源发送功率, 计算预先设置固定 时间间隔 T内获得的串扰源的各发送功率的变化量, 并将获得的串扰源 的各发送功率变化量输出给串扰系数获取单元( 503 );
噪声功率获取单元(502 ), 接收外部输入的串扰目标的发送功率、 串扰目标的噪声, 以及受扰信道的传输函数在动态特性发生变化的频率 点上的值, 计算串扰目标在动态特性发生变化的频率点上的噪声功率, 并将获得的噪声功率输出给串扰系数获取单元( 503 );
串扰系数获取单元( 503 ),接收来自发送功率变化量获取单元( 501 ) 的串扰源的发送功率变化量, 以及来自噪声功率获取单元( 502 ) 的串 扰目标在动态特性发生变化的频率点上的噪声功率, 并计算串扰源在动 态特性发生变化的频率点上的串扰系数, 将获得的串扰系数作为串扰信 息输出。
PCT/CN2007/000397 2006-03-03 2007-02-06 Procédé et dispositif d'obtention d'informations sur la diaphonie WO2007098674A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07710868A EP1995885B1 (en) 2006-03-03 2007-02-06 Method and device for obtaining crosstalk information
ES07710868T ES2389265T3 (es) 2006-03-03 2007-02-06 Método y dispositivo de obtención de información sobre la diafonía
US12/203,611 US7898975B2 (en) 2006-03-03 2008-09-03 Method and device for obtaining crosstalk information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610058355.1A CN101030997B (zh) 2006-03-03 2006-03-03 一种获取串扰信息的方法及装置
CN200610058355.1 2006-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/203,611 Continuation US7898975B2 (en) 2006-03-03 2008-09-03 Method and device for obtaining crosstalk information

Publications (1)

Publication Number Publication Date
WO2007098674A1 true WO2007098674A1 (fr) 2007-09-07

Family

ID=38458651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000397 WO2007098674A1 (fr) 2006-03-03 2007-02-06 Procédé et dispositif d'obtention d'informations sur la diaphonie

Country Status (5)

Country Link
US (1) US7898975B2 (zh)
EP (1) EP1995885B1 (zh)
CN (1) CN101030997B (zh)
ES (1) ES2389265T3 (zh)
WO (1) WO2007098674A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420334B (zh) * 2007-10-26 2011-04-13 华为技术有限公司 信号串扰的处理方法与装置、频谱管理系统
US8300726B2 (en) * 2007-11-02 2012-10-30 Alcatel Lucent Interpolation method and apparatus for increasing efficiency of crosstalk estimation
CN101431346B (zh) * 2007-11-07 2012-10-03 华为技术有限公司 一种获取串扰信息的方法及装置
CN101651471B (zh) * 2008-08-12 2013-08-07 华为技术有限公司 一种数字用户线系统中估计串扰系数的方法和装置
EP2271021B1 (en) * 2009-06-24 2012-01-04 Alcatel Lucent Joint signal processing across a plurarity of line termination cards
EP2494700B1 (en) * 2009-10-30 2015-10-21 Telefonaktiebolaget L M Ericsson (PUBL) Single ended estimation of far-end crosstalk in a digital subscriber line
US20130121435A1 (en) * 2011-11-14 2013-05-16 Metanoia Communications Inc. Crosstalk Management For OFDM Communication System In Power Efficient Transmission Mode
US9148199B2 (en) * 2013-04-01 2015-09-29 Fluke Corporation Prequalification of vectoring before implementation
US9312914B2 (en) * 2013-04-22 2016-04-12 Fujitsu Limited Crosstalk reduction in optical networks using variable subcarrier power levels
US9654223B2 (en) 2015-04-23 2017-05-16 Fujitsu Limited Superchannel power pre-emphasis based on transmission criteria
US9768878B2 (en) * 2015-05-18 2017-09-19 Fujitsu Limited Methods and systems for superchannel power pre-emphasis
US10545182B2 (en) * 2016-03-17 2020-01-28 Texas Instruments Incorporated Crosstalk calibration for multi-channel systems
CN107426044B (zh) * 2016-05-23 2022-06-07 中兴通讯股份有限公司 一种串线检测方法、装置及操作维护服务器
CN107979390B (zh) * 2016-10-25 2021-10-12 中兴通讯股份有限公司 一种矢量化系统识别外部串入端口的方法及装置
US11889434B2 (en) * 2019-09-23 2024-01-30 Mediatek Inc. Wireless communication system using one or more throughput enhancement techniques
CN111970612B (zh) * 2020-08-18 2021-09-10 广州大学 一种骨传导耳机的串声消除方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030152141A1 (en) * 2001-08-02 2003-08-14 International Business Machines Corporation Data Communications
KR20050073850A (ko) * 2004-01-12 2005-07-18 주식회사 케이티 브이디에스엘(vdsl) 시스템에서의 전력 밀도 조정장치 및 그 방법
CN1655470A (zh) * 2004-02-12 2005-08-17 中兴通讯股份有限公司 一种解决数字用户线路远端串扰的方法
CN1716989A (zh) * 2004-06-07 2006-01-04 美国博通公司 降低上行信号功率的系统和方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3943305B2 (ja) * 2000-01-19 2007-07-11 三菱電機株式会社 スペクトル拡散受信装置、およびスペクトル拡散受信方法
US7106833B2 (en) * 2002-11-19 2006-09-12 Telcordia Technologies, Inc. Automated system and method for management of digital subscriber lines
DE102004026071A1 (de) * 2004-05-25 2005-12-22 Micronas Gmbh Verfahren und Vorrichtung zum Verarbeiten empfangener Daten einer Funkschnittstelle
EP1630968A1 (en) * 2004-08-23 2006-03-01 Alcatel Crosstalk manager for access network nodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030152141A1 (en) * 2001-08-02 2003-08-14 International Business Machines Corporation Data Communications
KR20050073850A (ko) * 2004-01-12 2005-07-18 주식회사 케이티 브이디에스엘(vdsl) 시스템에서의 전력 밀도 조정장치 및 그 방법
CN1655470A (zh) * 2004-02-12 2005-08-17 中兴通讯股份有限公司 一种解决数字用户线路远端串扰的方法
CN1716989A (zh) * 2004-06-07 2006-01-04 美国博通公司 降低上行信号功率的系统和方法

Also Published As

Publication number Publication date
US20080316937A1 (en) 2008-12-25
EP1995885B1 (en) 2012-07-18
CN101030997A (zh) 2007-09-05
ES2389265T3 (es) 2012-10-24
EP1995885A4 (en) 2009-07-29
US7898975B2 (en) 2011-03-01
CN101030997B (zh) 2011-01-12
EP1995885A1 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
WO2007098674A1 (fr) Procédé et dispositif d&#39;obtention d&#39;informations sur la diaphonie
US8619843B2 (en) Alien interference removal in vectored DSL
KR101755971B1 (ko) 연결-준비 그룹을 사용하는 벡터화된 시스템에서의 복수의 회선의 트레이닝 최적화
US8767521B2 (en) Method and apparatus for crosstalk cancellation during SELT testing
CN101174855B (zh) 频谱管理方法和装置
Oksman et al. The ITU-T's new G. vector standard proliferates 100 Mb/s DSL
KR101600332B1 (ko) 이산 멀티-톤(dmt) 누화 제거를 위한 방법 및 장치
CN103004099B (zh) 一种降低数字用户线路干扰的方法、装置和系统
CN101908909B (zh) 估计远端串扰信道的方法和装置
WO2002013405A2 (en) Systems and methods for characterizing transmission lines in a multi-carrier dsl environment
WO2016061254A1 (en) Crosstalk cancellation over multiple mediums
CN101047459B (zh) 用于动态管理xDSL频谱的方法及其装置
WO2012119382A1 (zh) 用于分析线路的串扰的方法及装置
WO2011088896A1 (en) Method and device for data processing in a digital subscriber line environment
US8654866B2 (en) Method and apparatus for optimizing dynamic range in DMT modems
CN101997796B (zh) 一种消除多载波调制系统中混叠噪声的方法、装置和系统
CN116418918A (zh) 最佳化可达速率的系统及适于数字用户线通信系统的方法
WO2008017274A1 (fr) Procédé et dispositif pour contrôler la qualité de communication en ligne
CN102318208B (zh) 降低数字用户线业务传输中线间串扰的方法、装置及系统
CN101610103B (zh) 一种信道估计方法、装置和系统
EP2146496A1 (en) Method and device for data processing and communication system comprising such device
CN1996773A (zh) 避免数字用户线近端假激活的方法、装置及通信系统
CN101610103A (zh) 一种信道估计方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007710868

Country of ref document: EP