[go: up one dir, main page]

WO2007015380A1 - Transparent conductive fine particles, method for producing same, and electrooptical device - Google Patents

Transparent conductive fine particles, method for producing same, and electrooptical device Download PDF

Info

Publication number
WO2007015380A1
WO2007015380A1 PCT/JP2006/314535 JP2006314535W WO2007015380A1 WO 2007015380 A1 WO2007015380 A1 WO 2007015380A1 JP 2006314535 W JP2006314535 W JP 2006314535W WO 2007015380 A1 WO2007015380 A1 WO 2007015380A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
transparent conductive
powder
thin film
particles
Prior art date
Application number
PCT/JP2006/314535
Other languages
French (fr)
Japanese (ja)
Inventor
Takayuki Abe
Yuuji Honda
Original Assignee
Youtec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Youtec Co., Ltd. filed Critical Youtec Co., Ltd.
Publication of WO2007015380A1 publication Critical patent/WO2007015380A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates

Definitions

  • the present invention relates to transparent conductive fine particles, a method for producing the same, and an electro-optical device, and in particular, transparent conductive ultrafine particles or transparent conductive thin films having good conductivity and high light transmittance coated with the fine particles.
  • the present invention relates to fine particles and a method for producing the same, and also relates to an electro-optical device using the transparent conductive fine particles.
  • Powder is a very attractive sample for both basic and application, and is currently used in various fields.
  • the fineness of powder is used to make a cosmetic foundation, and fine particles of flylite are used as a magnetic material applied to magnetic tape to form a single magnetic domain.
  • the characteristics of powders include the size of the surface area.
  • the present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to provide transparent conductive ultrafine particles or transparent conductive thin films coated with fine particles with good conductivity and high light transmittance. It is to provide a conductive fine particle, a manufacturing method thereof, and an electro-optical device.
  • the transparent conductive fine particles according to the present invention are characterized in that the surface of the fine particles is covered with transparent conductive ultrafine particles or a transparent conductive thin film having a particle diameter smaller than that of the fine particles.
  • the transparent conductive fine particles according to the present invention agitate or rotate the fine particles in the vacuum vessel by rotating a vacuum vessel having a polygonal cross-sectional shape with a rotation axis in a direction substantially perpendicular to the cross-section.
  • the surface of the fine particles is coated with transparent conductive ultrafine particles or a transparent conductive thin film having a particle diameter smaller than that of the fine particles by performing sputtering while performing the process.
  • the transparent conductive ultra-fine particles or the transparent conductive thin film ITO (indium tin oxide; Indium Tin Oxide) fine particles or IT_ ⁇ thin, S N_ ⁇ 2 ultrafine particles or S N_ ⁇ 2 thin film, the light can pass It is also possible to use metal ultrafine particles that are thin enough or metal thin films that are thin enough to transmit light.
  • the metal used for the metal ultrafine particles or the metal thin film include Au, Pt, Ti, Ag, Al, Cu, and Pd.
  • the fine particle is made of any one of an insulator, a light emitting material and a phosphor.
  • the insulator A 1 2 0 3, S I_ ⁇ 2, T I_ ⁇ 2, Z n O, Z R_ ⁇ 2, it is also possible to have use of any polymer.
  • the electro-optical device includes a powder made of an aggregate of transparent conductive fine particles, a ground potential electrode connected to the powder,
  • the transparent conductive fine particles are obtained by coating the surface of fine particles with transparent conductive ultrafine particles or a transparent conductive thin film having a particle size smaller than that of the fine particles.
  • the fine particles are a luminescent material or a fluorescent material.
  • the electro-optical device includes a powder made of an aggregate of transparent conductive fine particles, a ground potential electrode connected to the powder,
  • the transparent conductive fine particles are sputtered while rotating or rotating the vacuum container having a polygonal cross-sectional shape about a direction substantially perpendicular to the cross-section as the rotation axis.
  • the transparent conductive ultrafine particles having a particle diameter smaller than the fine particles or the transparent conductive material are formed on the surface of the fine particles. It is coated with an electric thin film,
  • the fine particles are a luminescent material or a fluorescent material.
  • the electro-optical device includes a powder made of an aggregate of transparent conductive fine particles, a first electrode connected to the powder,
  • the transparent conductive fine particles are obtained by coating the surface of fine particles with transparent conductive ultrafine particles or a transparent conductive thin film having a particle size smaller than that of the fine particles.
  • the fine particles are a luminescent material or a fluorescent material.
  • the electro-optical device includes a powder made of an aggregate of transparent conductive fine particles, a first electrode connected to the powder,
  • the transparent conductive fine particles are sputtered while rotating or rotating the vacuum container having a polygonal cross-sectional shape about a direction substantially perpendicular to the cross-section as the rotation axis.
  • the surface of the fine particles is coated with transparent conductive ultrafine particles or a transparent conductive thin film having a smaller particle diameter than the fine particles,
  • the fine particles are a luminescent material or a fluorescent material.
  • the method for producing transparent conductive fine particles according to the present invention includes a step of preparing fine particles, a step of containing the fine particles in a vacuum container having a polygonal internal shape of a cross section substantially parallel to the direction of gravity,
  • transparent conductive fine particles in which fine particles are coated with transparent conductive ultrafine particles or a transparent conductive thin film having good conductivity and high light transmittance, a method for producing the same, and an electro-optical device. can do.
  • FIG. 1 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus used when manufacturing transparent conductive fine particles according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an electro-optical device according to Embodiment 2 of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an electro-optical device according to Embodiment 3 of the present invention.
  • Figures 4 (a) and 4 (b) show the XRD pattern of the ITO thin film deposited on the glass substrate.
  • Figure 5 (a) shows the UV-visible absorption spectrum of the ITO thin film with oxygen content of 0, 10 and 20%.
  • Figure 5 (b) shows the UV-visible absorption spectrum of the sample after annealing. It is a figure which shows a spectrum.
  • Figure 6 shows the electrical resistance of ITO thin films with oxygen content of 0, 10 and 20%.
  • Figure 7 is a photograph showing the appearance of the deposited sample.
  • Fig. 8 shows the results of measuring the UV-visible absorption spectrum of transparent conductive particles.
  • FIG. 1 is a configuration diagram showing an outline of a polygonal parel sputtering apparatus used when producing transparent conductive fine particles according to Embodiment 1 of the present invention.
  • the putter device is a device for coating the surface of fine particles (powder) with ultrafine particles having a smaller particle diameter than the fine particles (the ultrafine particles herein are fine particles having a smaller particle size than the fine particles) or a thin film. is there.
  • the polygonal barrel sputtering apparatus has a vacuum vessel 1 for coating fine particles (powder sample) 3 with ultrafine particles or a thin film, and this vacuum vessel 1 has a cylindrical portion 1 a having a diameter of 20 O mm and an inside thereof.
  • the installed cross section has a hexagonal barrel (hexagonal barrel) 1 b.
  • the cross section shown here is a cross section substantially parallel to the direction of gravity. In the present embodiment, the hexagonal barrel 1b is used. However, the present invention is not limited to this, and a polygonal barrel other than the hexagon can be used.
  • the vacuum vessel 1 is provided with a rotating mechanism (not shown). By rotating the hexagonal barrel 1 b as shown by the arrow by the rotating mechanism, fine particles (powder sample) in the hexagonal barrel 1 b are provided. 3) Coating is performed while stirring or rotating 3).
  • a rotation axis when the hexagonal barrel is rotated by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the gravity direction).
  • a sputtering target 2 made of ITO (10 wt% Sn 0 2 ) is arranged on the central axis of the cylinder, and the angle of the target 2 can be changed freely. It is configured.
  • the target 2 can be directed in the direction in which the powder sample 3 is positioned, thereby increasing the sputtering efficiency.
  • One end of a pipe 4 is connected to the vacuum vessel 1, and one side of the first valve 12 is connected to the other end of the pipe 4.
  • One end of the pipe 5 is connected to the other side of the first valve 12, and the other end of the pipe 5 is connected to the intake side of the turbo molecular pump (TMP) 10.
  • the exhaust side of the turbo molecular pump 10 is connected to one end of the pipe 6, and the other end of the pipe 6 is connected to one side of the second valve 13.
  • the other side of the second valve 13 is connected to one end of the pipe 7, and the other end of the pipe 7 is connected to the pump (RP) 11.
  • Pipe 4 is connected to one end of pipe 8, and the other end of pipe 8 is connected to one side of third valve 14
  • the other side of the third valve 14 is connected to one end of the pipe 9, and the other end of the pipe 9 is connected to the pipe 7.
  • This apparatus is provided with a heater 17 for heating the powder sample 3 in the vacuum vessel 1L.
  • this apparatus includes a vibrator 18 for applying vibration to the powder sample 3 in the vacuum vessel 1.
  • the apparatus also includes a pressure gauge 19 that measures the internal pressure of the vacuum vessel 1.
  • the apparatus also includes an oxygen gas introduction mechanism 15 that introduces nitrogen gas into the vacuum vessel 1 and an argon gas introduction mechanism 16 that introduces argon gas into the vacuum vessel 1.
  • this apparatus includes a high-frequency application mechanism (not shown) that applies a high frequency between the target 2 and the hexagonal barrel 1 b.
  • a high vacuum state is created in the hexagonal barrel 1b using the turbo molecular pump 10 and the inside of the hexagonal barrel is heated up to 20 ° C with the heater 17 while 5 X 1 the pressure was reduced to 0- 4 P a.
  • argon is introduced into the hexagonal barrel 1 b by the argon gas supply mechanism 16.
  • the pressure in the hexagonal barrel is about 2 Pa.
  • a mixed gas of argon and oxygen may be introduced into the hexagonal barrel 1b.
  • the hexagonal barrel 1b is rotated at 3.5 rpm at 35 rpm for 18 minutes by the rotation mechanism, thereby rotating and stirring the powder sample 3 in the hexagonal barrel 1b.
  • the target is directed in the direction in which the powder sample is located.
  • target 2 and ITO is sputtered on the surface of the powder sample 3 by applying a high frequency to the hexagonal barrel 1 b. In this way, the surface of the fine particles 3 can be coated with the ITO thin film.
  • the powder itself can be rotated and stirred by rotating the hexagonal barrel itself, and the powder can be periodically dropped by gravity by making the barrel hexagonal. it can.
  • the stirring efficiency can be dramatically improved, and aggregation of the powder due to moisture or electrostatic force, which is often a problem when handling the powder, can be prevented.
  • stirring by rotation and pulverization of the agglomerated powder can be performed simultaneously and effectively. Therefore, it is possible to coat the ITO thin film on fine particles having a very small particle diameter. Specifically, it is possible to coat ultrafine particles or thin films on fine particles having a particle size of 50 ⁇ m or less.
  • the heater 17 is attached to the outside of the vacuum vessel 1, and the hexagonal barrel 1 b can be heated to 200 ° C. by the heater 17. For this reason, when the inside of the vacuum vessel 1 is evacuated, the hexagonal parel is heated by the heater 17, whereby the water in the hexagonal barrel can be vaporized and exhausted. Therefore, since water that is a problem when handling powder #: can be removed from the hexagonal parel, powder agglomeration can be more effectively prevented.
  • a vibrator 18 is attached to the outside of the vacuum vessel 1, and vibration can be applied to the powder 3 in the hexagonal barrel by the vibrator 18. This makes it possible to more effectively prevent agglomeration, which is a problem when handling powder.
  • vibration is applied to the powder 3 in the hexagonal barrel by the vibrator 18, but instead of the vibrator 18 or in addition to the vibrator 18, the hexagonal barrel With the rod-shaped member housed inside, It is also possible to apply vibration to the powder 3 by rotating the reel. This makes it possible to more effectively prevent agglomeration, which is a problem when handling powder.
  • a I TO as a transparent conductive thin film or a transparent conductive ultrafine particles coated onto microparticles
  • S n0 2 thin film or S N_ ⁇ 2 Ultrafine particles metal thin films that are thin enough to transmit light, or metal ultrafine particles that are thin enough to transmit light can also be used.
  • the metal used in the metal thin film or the metal ultrafine particles for example, Au Pt, Ti, Ag, A and Cu, Pd and the like are preferable.
  • examples of the use of the transparent conductive fine particles described above include a conductive spacer of a display typified by liquid crystal.
  • FIG. 2 is a cross-sectional view schematically showing an electro-optical device according to Embodiment 2 of the present invention.
  • This electro-optical device includes a powder 44 made of an aggregate of transparent conductive fine particles 43.
  • the transparent conductive fine particles 43 have fine particles 41 and a transparent conductive thin film 42 covering the fine particles 41, and are produced by the same method as in the first embodiment.
  • the fine particles 41 are made of a light emitter or phosphor such as an inorganic EL element (electroluminescence element; electroluminescence).
  • the fine particles of the inorganic EL element are formed by pulverizing and adding a butter made of an inorganic EL material to form fine particles.
  • the transparent conductive thin film it is possible to use thin metal film to the extent that I TO thin, S N_ ⁇ 2 thin film, the light is Ru transparently.
  • the metal used for the metal thin film include A11, Pt, Ti, Ag, Al, Cu, and Pd.
  • a part of the powder 44 is connected to an electrode 45, and the electrode 45 is connected to a ground potential. Charge may occur in the aggregate of transparent conductive fine particles 43, which may cause aggregation.
  • a part of the powder 44 is connected to the electrode 45 and this electrode 45 is connected to the ground potential, so that the charge can be removed.
  • FIG. 3 is a cross-sectional view schematically showing an electro-optical device according to Embodiment 3 of the present invention.
  • This electro-optical device is provided with a powder 54 consisting of an aggregate of transparent conductive fine particles 53.
  • the transparent conductive fine particles 53 have fine particles 51 and a transparent conductive thin film 52 covering the fine particles 51, and are produced by the same method as in the first embodiment.
  • the fine particles 41 are made of a light emitter or phosphor such as an inorganic EL element.
  • the fine particles of the inorganic EL element are formed by pulverizing and processing a balta made of an inorganic EL material to form fine particles.
  • the transparent conductive thin film is the same as that of the second embodiment, the description thereof is omitted.
  • a part of the powder 54 is connected to the first electrode 55, and another part of the powder 54 is connected to the second electrode 56.
  • a power source 57 for applying a voltage and a switch 58 are disposed between the first electrode 55 and the second electrode 56.
  • the switch 58 When the switch 58 is turned on, a direct current voltage is applied to the powder 54 between the first electrode 55 and the second electrode 56 by the power source 57, and the transparent conductive particles 51 are made of light-emitting material or phosphor. As a result, a fine voltage 51 emits light or fluorescence.
  • Figure 4 shows the XRD pattern of the ITO thin film formed on the glass substrate under the above conditions.
  • Figure 4 (a) shows the XRD pattern of the ITO thin film when the oxygen content is 0%.
  • Fig. 4 (b) shows the XRD pattern of the ITO thin film when the oxygen content is 20%.
  • the observed diffraction peaks can be attributed to I n 2 ⁇ 3 type crystal structure, has almost the same in the three samples for the angle of diffraction peak It was. From this, it was found that the ITO thin film can be formed by reactive sputtering.
  • Figure 5 (a) shows the UV-visible absorption spectrum of the ITO thin film with oxygen content of 0, 10, and 20%, respectively.
  • the ITO thin film 21 with an oxygen content of 0% showed absorption over the entire visible light range, but the ITO thin films 22 and 23 with an oxygen content of 10% and 20% had almost no absorption above 400 nm.
  • the XRD pattern after annealing showed no noticeable changes in the diffraction peak angle and intensity compared to before annealing (for example, the XRD pattern with 0% oxygen content is shown in Fig. 4).
  • the UV-visible absorption spectrum no longer absorbs in the visible light region even with the sample 24 with an oxygen content of 0%, and all samples (ITO thin film 25 with an oxygen content of 10%, It was found that the ITO thin film with an oxygen content of 20% showed a high transmittance for visible light.
  • the resistance value decreases as the oxygen content decreases, and shows about 6 ⁇ at the oxygen content of 0%.
  • Ri simply Do a 5 X 10- 4 Q cm in terms of resistivity, a sufficiently low resistance value is obtained even in comparison to other literature.
  • the tendency of change in resistance value was the same as before annealing, but all showed lower resistance values.
  • the smallest oxygen content of 0% showed about 2 ⁇ .
  • An I ⁇ O thin film was formed on the powder surface by barrel sputtering under the condition of 0% oxygen content.
  • the A 1 2 0 3 powder particle size 80 mu m was introduced into approximately 5 g hexagonal path in barrels at a time, having conducted a 1 for 80 minutes sputtering at a rotation speed of 3. 5 rpm. Other conditions are the same as those described above.
  • the sample after film formation was annealed at 450 ° C for 120 minutes in an Ar atmosphere.
  • Figure 7 is a photograph showing the appearance of the deposited sample.
  • the non-deposited sample (unmodified sample) 27 is white, while the transparent conductive fine particles after sputtering (sputtering only) 28 is light brown.
  • the transparent conductive fine particles were annealed, the annealed transparent conductive fine particles 29 became lighter brown than the transparent conductive fine particles 28 of only sputtering. This is similar to the trend on glass substrates.
  • the ultraviolet-visible absorption spectrum of the transparent conductive fine particles was measured. Measurement The results are shown in FIG. As shown in FIG. 8, A 1 2 0 3 particles 30 serving as a carrier have low absorption over the entire visible light region. On the other hand, the transparent conductive fine particles 31 after annealing showed a high transmittance in the visible light range, although the absorbance was slightly higher than that of the carrier particles 30.
  • the electrical resistance of the transparent conductive fine particles was measured.
  • the measurement was performed by sandwiching about 0.05 g of transparent conductive fine particles between flat plates of metal (A 1), and the electrical resistance between the flat plates was measured by the two-terminal method.
  • the resistance value of the transparent conductive fine particles coated with the ITO thin film was 5 ⁇ , and it was found that the resistance value decreased by annealing as in the case of the flat plate (By the way, unmodified A 1 2 0 3 particles were also measured, It was out of the measuring range of the instrument (100M ⁇ or more).)
  • Metal (P t) modified A 1 2 0 3 particles shows a degree 4 Omega 0. and you measured. The resistance value is about 10 times that of metal, and it can be said that the resistance value is sufficiently small.
  • the transparent conductive fine particles coated with the ITO thin film can be formed by barrel sputtering.
  • the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Transparent conductive ultrafine particles exhibiting high conductivity and light transmittance or transparent conductive fine particles produced by coating fine particles with a transparent conductive thin film, its production process and an electrooptical device. The transparent conductive fine particles are characterized in that the surfaces of fine particles (3) are respectively coated with transparent conductive ultrafine particles having smaller diameters than the fine particles or a transparent conductive thin film by rotating a vacuum container (1) having a polygonal inner cross-section about the axis of rotation substantially perpendicular to the cross-section, thereby performing sputtering while stirring or rotating the fine particles (3) in the vacuum container (1).

Description

明 細 書 透明導電性微粒子及びその製造方法、 電気光学装置 1 . 技術分野  Description: Transparent conductive fine particles and method for producing the same, electro-optical device 1. Technical Field
本発明は、 透明導電性微粒子及びその製造方法、 電気光学装置に係わり、 特に、 導電性が良く、 光透過率の高い透明導電性超微粒子又は透明導電性薄 膜を微粒子に被覆した透明導電性微粒子及びその製造方法に関し、 また前記 透明導電性微粒子を用いた電気光学装置に関する。  The present invention relates to transparent conductive fine particles, a method for producing the same, and an electro-optical device, and in particular, transparent conductive ultrafine particles or transparent conductive thin films having good conductivity and high light transmittance coated with the fine particles. The present invention relates to fine particles and a method for producing the same, and also relates to an electro-optical device using the transparent conductive fine particles.
2 . 背景技術 2. Background art
粉体は基礎的にも応用としても非常に魅力的な試料であり、 現在様々な分 野で利用されている。 例えば粉体のきめの細かさを利用して、 化粧品のファ ンデーシヨンに使われたり、 フヱライ トの微粒子は単一磁区を形成する為に 磁気テープに塗布する磁性体として利用されている。 また粉体の特性にその 表面積の大きさがあるが、 それを利用した微粒子触媒が作られてもいる。  Powder is a very attractive sample for both basic and application, and is currently used in various fields. For example, the fineness of powder is used to make a cosmetic foundation, and fine particles of flylite are used as a magnetic material applied to magnetic tape to form a single magnetic domain. In addition, the characteristics of powders include the size of the surface area.
3 . 発明の開示 3. Disclosure of the Invention
上述したように非常に可能性の大きい材料である為、 更に粉体表面に機能 性材料を修飾させ、 高機能、 新機能を発現させる新材料開発技術が求められ ている。  As described above, since it is a material with great potential, there is a need for new material development technology that further modifies the functional material on the powder surface to express high functionality and new functions.
本発明は上記のような事情を考慮してなされたものであり、 その目的は、 導電性が良く、 光透過率の高い透明導電性超微粒子又は透明導電性薄膜を微 粒子に被覆した透明導電性微粒子及びその製造方法、 電気光学装置を提供す ることにある。  The present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to provide transparent conductive ultrafine particles or transparent conductive thin films coated with fine particles with good conductivity and high light transmittance. It is to provide a conductive fine particle, a manufacturing method thereof, and an electro-optical device.
上記課題を解決するため、 本発明に係る透明導電性微粒子は、 微粒子の表 面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導電性薄膜が被 覆されたことを特徴とする。 本発明に係る透明導電性微粒子は、 内部の断面形状が多角形を有する真空 容器を、前記断面に対して略垂直方向を回転軸として回転させることにより、 該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行う ことで、 該微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又 は透明導電性薄膜が被覆されたことを特徴とする。 In order to solve the above problems, the transparent conductive fine particles according to the present invention are characterized in that the surface of the fine particles is covered with transparent conductive ultrafine particles or a transparent conductive thin film having a particle diameter smaller than that of the fine particles. The transparent conductive fine particles according to the present invention agitate or rotate the fine particles in the vacuum vessel by rotating a vacuum vessel having a polygonal cross-sectional shape with a rotation axis in a direction substantially perpendicular to the cross-section. The surface of the fine particles is coated with transparent conductive ultrafine particles or a transparent conductive thin film having a particle diameter smaller than that of the fine particles by performing sputtering while performing the process.
尚、 前記透明導電性超微粒子又は透明導電性薄膜としては、 I T O (酸化 インジウムスズ; Indium Tin Oxide) 超微粒子又は I T〇薄膜、 S n〇2超 微粒子又は S n〇2薄膜、 光が透過できる程度に薄い金属超微粒子又は光が 透過できる程度に薄い金属薄膜を用いることも可能である。 前記金属超微粒 子又は前記金属薄膜に用いられる金属としては、 例えば A u、 P t、 T i、 A g、 A l、 C u、 P d等が挙げられる。 Incidentally, as the transparent conductive ultra-fine particles or the transparent conductive thin film, ITO (indium tin oxide; Indium Tin Oxide) fine particles or IT_〇 thin, S N_〇 2 ultrafine particles or S N_〇 2 thin film, the light can pass It is also possible to use metal ultrafine particles that are thin enough or metal thin films that are thin enough to transmit light. Examples of the metal used for the metal ultrafine particles or the metal thin film include Au, Pt, Ti, Ag, Al, Cu, and Pd.
また、 本発明に係る透明導電性微粒子において、 前記微粒子が絶縁体、 発 光体'及び蛍光体のいずれかからなることが好ましい。 前記絶縁体としては、 A 1 2 0 3、 S i〇2、 T i〇2、 Z n O、 Z r〇2、 ポリマーのいずれかを用 いることも可能である。 In the transparent conductive fine particle according to the present invention, it is preferable that the fine particle is made of any one of an insulator, a light emitting material and a phosphor. As the insulator, A 1 2 0 3, S I_〇 2, T I_〇 2, Z n O, Z R_〇 2, it is also possible to have use of any polymer.
本発明に係る電気光学装置は、透明導電性微粒子の集合体からなる粉末と、 前記粉末に接続された接地電位電極と、  The electro-optical device according to the present invention includes a powder made of an aggregate of transparent conductive fine particles, a ground potential electrode connected to the powder,
を具備し、 Comprising
前記透明導電性微粒子は、 微粒子の表面に該微粒子より粒径の小さい透明 導電性超微粒子又は透明導電性薄膜が被覆されたものであり、  The transparent conductive fine particles are obtained by coating the surface of fine particles with transparent conductive ultrafine particles or a transparent conductive thin film having a particle size smaller than that of the fine particles.
前記微粒子が発光体又は蛍光体であることを特徴とする。  The fine particles are a luminescent material or a fluorescent material.
本発明に係る電気光学装置は、透明導電性微粒子の集合体からなる粉末と、 前記粉末に接続された接地電位電極と、  The electro-optical device according to the present invention includes a powder made of an aggregate of transparent conductive fine particles, a ground potential electrode connected to the powder,
を具備し、 Comprising
前記透明導電性微粒子は、 内部の断面形状が多角形を有する真空容器を、 前記断面に対して略垂直方向を回転軸として回転させることにより、 該真空 容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、 該微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導 電性薄膜が被覆されたものであり、 The transparent conductive fine particles are sputtered while rotating or rotating the vacuum container having a polygonal cross-sectional shape about a direction substantially perpendicular to the cross-section as the rotation axis. The transparent conductive ultrafine particles having a particle diameter smaller than the fine particles or the transparent conductive material are formed on the surface of the fine particles. It is coated with an electric thin film,
前記微粒子が発光体又は蛍光体であることを特徴とする。  The fine particles are a luminescent material or a fluorescent material.
本発明に係る電気光学装置は、透明導電性微粒子の集合体からなる粉末と、 前記粉末に接続された第 1電極と、  The electro-optical device according to the present invention includes a powder made of an aggregate of transparent conductive fine particles, a first electrode connected to the powder,
前記粉末に接続された第 2電極と、  A second electrode connected to the powder;
前記第 1電極と前記第 2電極との間に電圧を印加する電源と、  A power supply for applying a voltage between the first electrode and the second electrode;
を具備し、 Comprising
前記透明導電性微粒子は、 微粒子の表面に該微粒子より粒径の小さい透明 導電性超微粒子又は透明導電性薄膜が被覆されたものであり、  The transparent conductive fine particles are obtained by coating the surface of fine particles with transparent conductive ultrafine particles or a transparent conductive thin film having a particle size smaller than that of the fine particles.
前記微粒子が発光体又は蛍光体であることを特徴とする。  The fine particles are a luminescent material or a fluorescent material.
本発明に係る電気光学装置は、透明導電性微粒子の集合体からなる粉末と、 前記粉末に接続された第 1電極と、  The electro-optical device according to the present invention includes a powder made of an aggregate of transparent conductive fine particles, a first electrode connected to the powder,
前記粉末に接続された第 2電極と、  A second electrode connected to the powder;
前記第 1電極と前記第 2電極との間に電圧を印加する電源と、  A power supply for applying a voltage between the first electrode and the second electrode;
を具備し、 Comprising
前記透明導電性微粒子は、 内部の断面形状が多角形を有する真空容器を、 前記断面に対して略垂直方向を回転軸として回転させることにより、 該真空 容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、 該微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導 電性薄膜が被覆されたものであり、  The transparent conductive fine particles are sputtered while rotating or rotating the vacuum container having a polygonal cross-sectional shape about a direction substantially perpendicular to the cross-section as the rotation axis. The surface of the fine particles is coated with transparent conductive ultrafine particles or a transparent conductive thin film having a smaller particle diameter than the fine particles,
前記微粒子が発光体又は蛍光体であることを特徴とする。  The fine particles are a luminescent material or a fluorescent material.
本発明に係る透明導電性微粒子の製造方法は、 微粒子を準備する工程と、 重力方向に対して略平行な断面の内部形状が多角形である真空容器内に前 記微粒子を収容する工程と、  The method for producing transparent conductive fine particles according to the present invention includes a step of preparing fine particles, a step of containing the fine particles in a vacuum container having a polygonal internal shape of a cross section substantially parallel to the direction of gravity,
前記断面に対して略垂直方向を回転軸として前記真空容器を回転させるこ とにより、 該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリ ングを行うことで、 該微粒子の表面に該微粒子より粒径の小さい透明導電性 超微粒子又は透明導電性薄膜を被覆する工程と、 を具備することを特徴とする。 By rotating the vacuum vessel about a direction substantially perpendicular to the cross-section, the fine particles in the vacuum vessel are sputtered while stirring or rotating the fine particles in the surface of the fine particles. A step of coating a transparent conductive ultrafine particle having a small diameter or a transparent conductive thin film; It is characterized by comprising.
以上説明したように本発明によれば、 導電性が良く、 光透過率の高い透明 導電性超微粒子又は透明導電性薄膜を微粒子に被覆した透明導電性微粒子及 びその製造方法、 電気光学装置を提供することができる。  As described above, according to the present invention, there are provided transparent conductive fine particles in which fine particles are coated with transparent conductive ultrafine particles or a transparent conductive thin film having good conductivity and high light transmittance, a method for producing the same, and an electro-optical device. can do.
4. 図面の簡単な説明 4. Brief description of the drawings
図 1は、 本発明の実施の形態による透明導電性微粒子を製造する際に用い る多角バレルスパッタ装置の概略を示す構成図である。  FIG. 1 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus used when manufacturing transparent conductive fine particles according to an embodiment of the present invention.
図 2は、 本発明の実施の形態 2による電気光学装置を模式的に示す断面図 である。  FIG. 2 is a cross-sectional view schematically showing an electro-optical device according to Embodiment 2 of the present invention.
図 3は、 本発明の実施の形態 3による電気光学装置を模式的に示す断面図 である。  FIG. 3 is a cross-sectional view schematically showing an electro-optical device according to Embodiment 3 of the present invention.
図 4 (a), (b) は、 ガラス基板上に成膜した I TO薄膜の XRDパター ンを示す図である。  Figures 4 (a) and 4 (b) show the XRD pattern of the ITO thin film deposited on the glass substrate.
図 5 (a) は酸素分量 0, 1 0, 20%それぞれの I TO薄膜の紫外—可 視吸光スペク トルを示す図であり、 図 5 (b) は焼鈍後の試料の紫外一可視 吸光スぺク トルを示す図である。  Figure 5 (a) shows the UV-visible absorption spectrum of the ITO thin film with oxygen content of 0, 10 and 20%. Figure 5 (b) shows the UV-visible absorption spectrum of the sample after annealing. It is a figure which shows a spectrum.
図 6は、 酸素分量 0, 1 0, 20%それぞれの I TO薄膜の電気抵抗を示 す図である。  Figure 6 shows the electrical resistance of ITO thin films with oxygen content of 0, 10 and 20%.
図 7は、 成膜した試料の外観を示す写真である。  Figure 7 is a photograph showing the appearance of the deposited sample.
図 8は、 透明導電性微粒子の紫外可視吸収スぺク トルを測定した結果を示 す図である。  Fig. 8 shows the results of measuring the UV-visible absorption spectrum of transparent conductive particles.
5. 発明を実施するための最良の形態 5. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照して本発明の実施の形態について説明する。  Embodiments of the present invention will be described below with reference to the drawings.
(実施の形態 1 )  (Embodiment 1)
図 1は、 本発明の実施の形態 1による透明導電性微粒子を製造する際に用 いる多角パレルスパッタ装置の概略を示す構成図である。 この多角バレルス パッタ装置は、 微粒子 (粉体) の表面に、 該微粒子より粒径の小さい超微粒 子 (ここでの超微粒子とは微粒子より粒径の小さい微粒子をいう) 又は薄膜 を被覆させるための装置である。 FIG. 1 is a configuration diagram showing an outline of a polygonal parel sputtering apparatus used when producing transparent conductive fine particles according to Embodiment 1 of the present invention. This polygonal barrel The putter device is a device for coating the surface of fine particles (powder) with ultrafine particles having a smaller particle diameter than the fine particles (the ultrafine particles herein are fine particles having a smaller particle size than the fine particles) or a thin film. is there.
多角バレルスパッタ装置は、 微粒子 (粉体試料) 3に超微粒子又は薄膜を 被覆させる真空容器 1を有しており、 この真空容器 1は直径 2 0 O mmの円 筒部 1 aとその内部に設置された断面が六角形のバレル(六角型バレル) 1 b とを備えている。ここで示す断面は、重力方向に対して略平行な断面である。 なお、 本実施の形態では、 六角形のバレル 1 bを用いているが、 これに限定 されるものではなく、 六角形以外の多角形のバレルを用いることも可能であ る。  The polygonal barrel sputtering apparatus has a vacuum vessel 1 for coating fine particles (powder sample) 3 with ultrafine particles or a thin film, and this vacuum vessel 1 has a cylindrical portion 1 a having a diameter of 20 O mm and an inside thereof. The installed cross section has a hexagonal barrel (hexagonal barrel) 1 b. The cross section shown here is a cross section substantially parallel to the direction of gravity. In the present embodiment, the hexagonal barrel 1b is used. However, the present invention is not limited to this, and a polygonal barrel other than the hexagon can be used.
真空容器 1には回転機構 (図示せず) が設けられており、 この回転機構に より六角型バレル 1 bを矢印のように回転させることで該六角型バレル 1 b 内の微粒子 (粉体試料) 3を攪拌あるいは回転させながら被覆処理を行うも のである。 前記回転機構により六角型バレルを回転させる際の回転軸は、 ほ ぼ水平方向 (重力方向に対して垂直方向) に平行な軸である。 また、 真空容 器 1内には円筒の中心軸上に I T O ( 1 0 w t % S n 0 2 ) からなるスパッ タリングターゲット 2が配置されており、 このターゲット 2は角度を自由に 変えられるように構成されている。 これにより、 六角型バレル l bを回転さ せながら被覆処理を行う時、 ターゲット 2を粉体試料 3の位置する方向に向 けることができ、 それによつてスパッタ効率を上げることが可能となる。 真空容器 1には配管 4の一端が接続されており、 この配管 4の他端には第 1バルブ 1 2の一方側が接続されている。 第 1バルブ 1 2の他方側は配管 5の一端が接続されており、 配管 5の他端はターボ分子ポンプ (T M P ) 1 0の吸気側に接続されている。 ターボ分子ポンプ 1 0の排気側は配管 6の 一端に接続されており、 配管 6の他端は第 2バルブ 1 3の一方側に接続され ている。第 2バルブ 1 3の他方側は配管 7の一端に接続されており、配管 7の 他端はポンプ (R P ) 1 1に接続されている。 また、 配管 4は配管 8の一端 に接続されており、 配管 8の他端は第 3バルブ 1 4の一方側に接続されてい る。 第 3バルブ 1 4の他方側は配管 9の一端に接続されており、 配管 9の他 端は配管 7に接続されている。 The vacuum vessel 1 is provided with a rotating mechanism (not shown). By rotating the hexagonal barrel 1 b as shown by the arrow by the rotating mechanism, fine particles (powder sample) in the hexagonal barrel 1 b are provided. 3) Coating is performed while stirring or rotating 3). A rotation axis when the hexagonal barrel is rotated by the rotation mechanism is an axis parallel to a substantially horizontal direction (a direction perpendicular to the gravity direction). Also, in the vacuum container 1, a sputtering target 2 made of ITO (10 wt% Sn 0 2 ) is arranged on the central axis of the cylinder, and the angle of the target 2 can be changed freely. It is configured. As a result, when the coating process is performed while the hexagonal barrel lb is rotated, the target 2 can be directed in the direction in which the powder sample 3 is positioned, thereby increasing the sputtering efficiency. One end of a pipe 4 is connected to the vacuum vessel 1, and one side of the first valve 12 is connected to the other end of the pipe 4. One end of the pipe 5 is connected to the other side of the first valve 12, and the other end of the pipe 5 is connected to the intake side of the turbo molecular pump (TMP) 10. The exhaust side of the turbo molecular pump 10 is connected to one end of the pipe 6, and the other end of the pipe 6 is connected to one side of the second valve 13. The other side of the second valve 13 is connected to one end of the pipe 7, and the other end of the pipe 7 is connected to the pump (RP) 11. Pipe 4 is connected to one end of pipe 8, and the other end of pipe 8 is connected to one side of third valve 14 The The other side of the third valve 14 is connected to one end of the pipe 9, and the other end of the pipe 9 is connected to the pipe 7.
本装置は、 真空容器 1內の粉体試料 3を加熱するためのヒータ 1 7を備え ている。 また、 本装置は、 真空容器 1内の粉体試料 3に振動を加えるための バイブレータ 1 8を備えている。 また、 本装置は、 真空容器 1の内部圧力を 測定する圧力計 1 9を備えている。 また、 本装置は、 真空容器 1内に窒素ガ スを導入する酸素ガス導入機構 1 5を備えていると共に真空容器 1内にアル ゴンガスを導入するアルゴンガス導入機構 1 6を備えている。 また、 本装置 は、 ターゲット 2と六角型バレル 1 b との間に高周波を印加する高周波印加 機構 (図示せず) を備えている。  This apparatus is provided with a heater 17 for heating the powder sample 3 in the vacuum vessel 1L. In addition, this apparatus includes a vibrator 18 for applying vibration to the powder sample 3 in the vacuum vessel 1. The apparatus also includes a pressure gauge 19 that measures the internal pressure of the vacuum vessel 1. The apparatus also includes an oxygen gas introduction mechanism 15 that introduces nitrogen gas into the vacuum vessel 1 and an argon gas introduction mechanism 16 that introduces argon gas into the vacuum vessel 1. In addition, this apparatus includes a high-frequency application mechanism (not shown) that applies a high frequency between the target 2 and the hexagonal barrel 1 b.
次に、 上記多角バレルスパッタ装置を用いて微粒子 3に透明導電性薄膜を 被覆する透明導電性微粒子の製造方法について説明する。  Next, a method for producing transparent conductive fine particles in which the fine particle 3 is coated with a transparent conductive thin film using the polygon barrel sputtering apparatus will be described.
まず、 六角型バレル 1 b內に約 5グラムの粉体試料 3を導入する。 この粉 体試料 3としては粒子径が 8 0 μ mの A 1 2 0 3粉体を用いた。 また、 ター ゲット 2には I T Oを用いた。 なお、 本実施の形態では、 A 1 2 0 3粉体を用 いているが、 これに限定されるものではなく、 他の材料、 例えば A 1 2 0 3、 S i〇2、 T i〇2、 Z n O、 Z r〇2、 ポリマーなどの絶縁体、 発光体、 蛍 光体からなる粉体を用いることも可能である。 本多角バレルスパッタ方法を 用いれば、 幅広い材料粉体に透明導電性薄膜を被覆することが可能である。 次いで、 ターボ分子ポンプ 1 0を用いて六角型バレル 1 b内に高真空状態 を作り、 ヒータ 1 7で六角型パレルを 2 0 0 °Cまで加熱しながら、 六角型パ レル内を 5 X 1 0— 4 P aに減圧した。 その後、 アルゴンガス供給機構 1 6に よりアルゴンを六角型バレル 1 b内に導入する。 この際の六角型バレル内の 圧力は 2 P a程度である。 場合によってはアルゴンと酸素の混合ガスを六角 型バレル 1 b内に導入しても良い。そして、回転機構により六角型バレル 1 b を 5 0 で1 8 0分間、 3 . 5 r p mで回転させることで、六角型バレル 1 b 内の粉体試料 3を回転させ、 攪拌させる。 その際、 ターゲットは粉体試料の 位置する方向に向けられる。 その後、 高周波印加機構によりターゲット 2と 六角型バレル 1 b との間に高周波を印加することで、 粉体試料 3の表面に I T Oをスパッタリングする。 このようにして微粒子 3の表面に I T O薄膜を 被覆することができる。 ' First, about 5 grams of powder sample 3 is introduced into the hexagonal barrel 1b 內. Particle diameter as the powder sample 3 were used A 1 2 0 3 powder 8 0 mu m. For target 2, ITO was used. In this embodiment, A 1 2 0 3 powder is used. However, the present invention is not limited to this, and other materials such as A 1 2 0 3 , S i 0 2 , T i 0 2 are used. , an insulator such as Z n O, Z R_〇 2, polymer light emitter, it is also possible to use a powder comprising a fluorescent body. If this polygonal barrel sputtering method is used, it is possible to cover a wide range of material powders with a transparent conductive thin film. Next, a high vacuum state is created in the hexagonal barrel 1b using the turbo molecular pump 10 and the inside of the hexagonal barrel is heated up to 20 ° C with the heater 17 while 5 X 1 the pressure was reduced to 0- 4 P a. Thereafter, argon is introduced into the hexagonal barrel 1 b by the argon gas supply mechanism 16. At this time, the pressure in the hexagonal barrel is about 2 Pa. In some cases, a mixed gas of argon and oxygen may be introduced into the hexagonal barrel 1b. Then, the hexagonal barrel 1b is rotated at 3.5 rpm at 35 rpm for 18 minutes by the rotation mechanism, thereby rotating and stirring the powder sample 3 in the hexagonal barrel 1b. At that time, the target is directed in the direction in which the powder sample is located. Then, target 2 and ITO is sputtered on the surface of the powder sample 3 by applying a high frequency to the hexagonal barrel 1 b. In this way, the surface of the fine particles 3 can be coated with the ITO thin film. '
上記実施の形態 1によれば、 六角型バレル自体を回転させることで粉体自 体を回転させ攪拌でき、 更にバレルを六角型とすることにより、 粉体を重力 により定期的に落下させることができる。 このため、 攪拌効率を飛躍的に向 上させることができ、 粉体を扱う時にしばしば問題となる水分や静電気力に よる粉体の凝集を防ぐことができる。 つまり回転により攪拌と、 凝集した粉 体の粉砕を同時かつ効果的に行うことができる。 したがって、 粒径の非常に 小さい微粒子に I T O薄膜を被覆することが可能となる。 具体的には、 粒径 が 5 0 μ m以下の微粒子に超微粒子又は薄膜を被覆することが可能となる。 また、 本実施の形態では、 真空容器 1の外側にヒータ 1 7を取り付けてお り、 このヒータ 1 7により六角型バレル 1 bを 2 0 0 °Cまで加熱することが できる。 このため、 真空容器 1の内部を真空にする際、 ヒータ 1 7で六角型 パレルを加熱することにより、 該六角型バレル内の水分を気化させ排気する ことができる。 したがって、 粉 #:を扱う時に問題となる水を六角型パレル内 から除去することができるため、 粉体の凝集をより効果的に防ぐことができ る。  According to the first embodiment, the powder itself can be rotated and stirred by rotating the hexagonal barrel itself, and the powder can be periodically dropped by gravity by making the barrel hexagonal. it can. For this reason, the stirring efficiency can be dramatically improved, and aggregation of the powder due to moisture or electrostatic force, which is often a problem when handling the powder, can be prevented. In other words, stirring by rotation and pulverization of the agglomerated powder can be performed simultaneously and effectively. Therefore, it is possible to coat the ITO thin film on fine particles having a very small particle diameter. Specifically, it is possible to coat ultrafine particles or thin films on fine particles having a particle size of 50 μm or less. In the present embodiment, the heater 17 is attached to the outside of the vacuum vessel 1, and the hexagonal barrel 1 b can be heated to 200 ° C. by the heater 17. For this reason, when the inside of the vacuum vessel 1 is evacuated, the hexagonal parel is heated by the heater 17, whereby the water in the hexagonal barrel can be vaporized and exhausted. Therefore, since water that is a problem when handling powder #: can be removed from the hexagonal parel, powder agglomeration can be more effectively prevented.
また、 本実施の形態では、 真空容器 1の外側にバイブレータ 1 8を取り付 けており、 このバイブレータ 1 8により六角型バレル内の粉体 3に振動を加 えることができる。 これにより、 粉体を扱う時に問題となる凝集をより効果 的に防ぐことが可能となる。  In the present embodiment, a vibrator 18 is attached to the outside of the vacuum vessel 1, and vibration can be applied to the powder 3 in the hexagonal barrel by the vibrator 18. This makes it possible to more effectively prevent agglomeration, which is a problem when handling powder.
また、 本実施の形態では、 多角バレルスパッタ装置により粉体試料 3の表 面に微粒子を被覆しているため、 従来技術のめっき法のように廃液の処理が 必要なく、 環境に対する負荷も小さくできるという利点がある。  In this embodiment, since the surface of the powder sample 3 is coated with the fine particles by the polygonal barrel sputtering apparatus, it is not necessary to treat the waste liquid as in the conventional plating method, and the load on the environment can be reduced. There is an advantage.
尚、 上記実施の形態 1では、 バイブレータ 1 8により六角型バレル内の粉 体 3に振動を加えているが、 バイブレータ 1 8の代わりに、 又は、 バイブレ ータ 1 8に加えて、 六角型バレル内に棒状部材を収容した状態で該六角型パ レルを回転させることにより、 粉体 3に振動を加えることも可能である。 こ れにより、 粉体を扱う時に問題となる凝集をより効果的に防ぐことが可能と なる。 In the first embodiment, vibration is applied to the powder 3 in the hexagonal barrel by the vibrator 18, but instead of the vibrator 18 or in addition to the vibrator 18, the hexagonal barrel With the rod-shaped member housed inside, It is also possible to apply vibration to the powder 3 by rotating the reel. This makes it possible to more effectively prevent agglomeration, which is a problem when handling powder.
また、 上記実施の形態 1では、 微粒子に被覆する透明導電性薄膜又は透明 導電性超微粒子として I TOを用いているが、 これに限定されるものではな く、 S n02薄膜又は S n〇2超微粒子、 光が透過できる程度に薄い金属薄膜 又は光が透過できる程度に薄い金属超微粒子を用いることも可能であり、 前 記金属薄膜又は前記金属超微粒子に用いられる金属としては、 例えば Au、 P t、 T i、 Ag、 Aし Cu、 P d等が好ましい。 Further, in this first embodiment, is used a I TO as a transparent conductive thin film or a transparent conductive ultrafine particles coated onto microparticles, the rather than limited thereto, S n0 2 thin film or S N_〇 2 Ultrafine particles, metal thin films that are thin enough to transmit light, or metal ultrafine particles that are thin enough to transmit light can also be used. As the metal used in the metal thin film or the metal ultrafine particles, for example, Au Pt, Ti, Ag, A and Cu, Pd and the like are preferable.
また、 上述した透明導電性微粒子の用途としては、 例えば液晶に代表され るディスプレーの導電性スぺーサ一が挙げられる。  In addition, examples of the use of the transparent conductive fine particles described above include a conductive spacer of a display typified by liquid crystal.
(実施の形態 2)  (Embodiment 2)
図 2は、 本発明の実施の形態 2による電気光学装置を模式的に示す断面図 である。  FIG. 2 is a cross-sectional view schematically showing an electro-optical device according to Embodiment 2 of the present invention.
この電気光学装置は、 透明導電性微粒子 43の集合体からなる粉末 44を 備えている。この透明導電性微粒子 43は、微粒子 41と、その微粒子 41を 被覆する透明導電性薄膜 42とを有するものであり、 実施の形態 1と同様の 方法により作製される。  This electro-optical device includes a powder 44 made of an aggregate of transparent conductive fine particles 43. The transparent conductive fine particles 43 have fine particles 41 and a transparent conductive thin film 42 covering the fine particles 41, and are produced by the same method as in the first embodiment.
前記微粒子 4 1は、 無機 E L素子 (エレク トロルミネッセンス素子; electroluminescence)などの発光体又は蛍光体からなる。無機 EL素子の微 粒子は、 無機 E L材料からなるバルタを粉砕及び加ェして微粒子を形成した ものである。  The fine particles 41 are made of a light emitter or phosphor such as an inorganic EL element (electroluminescence element; electroluminescence). The fine particles of the inorganic EL element are formed by pulverizing and adding a butter made of an inorganic EL material to form fine particles.
また、 前記透明導電性薄膜は、 I TO薄膜、 S n〇2薄膜、 光が透過でき る程度に薄い金属薄膜を用いることができる。 前記金属薄膜に用いられる金 属としては、 例えば A 11、 P t、 T i、 Ag、 A l、 Cu、 P d等が挙げら れる。 The transparent conductive thin film, it is possible to use thin metal film to the extent that I TO thin, S N_〇 2 thin film, the light is Ru transparently. Examples of the metal used for the metal thin film include A11, Pt, Ti, Ag, Al, Cu, and Pd.
前記粉末 44の一部は電極 45に接続されており、 この電極 45は接地電 位に接続されている。 透明導電性微粒子 4 3の集合体にはチャージが発生することがあり、 それ により凝集が起こることがある。これに対し、本実施の形態では、粉末 4 4の 一部を電極 4 5に接続し、この電極 4 5を接地電位に接続しているため、チヤ ージを除去することができる。 A part of the powder 44 is connected to an electrode 45, and the electrode 45 is connected to a ground potential. Charge may occur in the aggregate of transparent conductive fine particles 43, which may cause aggregation. On the other hand, in the present embodiment, a part of the powder 44 is connected to the electrode 45 and this electrode 45 is connected to the ground potential, so that the charge can be removed.
(実施の形態 3 )  (Embodiment 3)
図 3は、 本発明の実施の形態 3による電気光学装置を模式的に示す断面図 である。  FIG. 3 is a cross-sectional view schematically showing an electro-optical device according to Embodiment 3 of the present invention.
この電気光学装置は、 透明導電性微粒子 5 3の集合体からなる粉末 5 4を 備えている。この透明導電性微粒子 5 3は、微粒子 5 1と、その微粒子 5 1を 被覆する透明導電性薄膜 5 2とを有するものであり、 実施の形態 1と同様の 方法により作製される。  This electro-optical device is provided with a powder 54 consisting of an aggregate of transparent conductive fine particles 53. The transparent conductive fine particles 53 have fine particles 51 and a transparent conductive thin film 52 covering the fine particles 51, and are produced by the same method as in the first embodiment.
前記微粒子 4 1は、 無機 E L素子などの発光体又は蛍光体からなる。 無機 E L素子の微粒子は、 無機 E L材料からなるバルタを粉碎及び加工して微粒 子を形成したものである。  The fine particles 41 are made of a light emitter or phosphor such as an inorganic EL element. The fine particles of the inorganic EL element are formed by pulverizing and processing a balta made of an inorganic EL material to form fine particles.
-また、 前記透明導電性薄膜は、 実施の形態 2と同様であるので、 説明を省 略する。  -Further, since the transparent conductive thin film is the same as that of the second embodiment, the description thereof is omitted.
前記粉末 5 4の一部は第 1電極 5 5に接続されており、 前記粉末 5 4の他 の一部は第 2電極 5 6に接続されている。 第 1電極 5 5と第 2電極 5 6との 間には電圧を印加する電源 5 7及びスイッチ 5 8が配置されている。 スイツ チ 5 8をオンすると電源 5 7によって第 1電極 5 5と第 2電極 5 6との間の 粉末 5 4に直流電圧が印加され、 発光体又は蛍光体からなる微粒子 5 1に透 明導電性薄膜 5 2を介して直流電圧が印加され、 その結果、 微粒子 5 1が光 又は蛍光を発する。  A part of the powder 54 is connected to the first electrode 55, and another part of the powder 54 is connected to the second electrode 56. Between the first electrode 55 and the second electrode 56, a power source 57 for applying a voltage and a switch 58 are disposed. When the switch 58 is turned on, a direct current voltage is applied to the powder 54 between the first electrode 55 and the second electrode 56 by the power source 57, and the transparent conductive particles 51 are made of light-emitting material or phosphor. As a result, a fine voltage 51 emits light or fluorescence.
[実施例]  [Example]
S i 0 2ガラス基板上に I T O薄膜を多角バレルではないスパッタリング 装置により成膜したことについて説明する。 Described that was formed by the sputtering device not S i 0 polygonal barrel an ITO thin film 2 on a glass substrate.
まず、 I T O薄膜の成膜条件を検討するため、酸素分量を全圧に対し 0 %、 1 0 %、 2 0 %と変化させた際の I T O薄膜の構造、 物性変化を調べた。 そ の他は、使用ターゲットは I TO (10 w t 0/oS n〇2)、出力 50W、 スパッ タリング時間 60分、 室温の条件で固定した。 尚、 酸素分量が 0%の場合は アルゴン流量を 20 s c cmとし、 酸素分量が 10%の場合はアルゴン流量 を 18 s c c m、 酸素流量を 2 s c c mとし、 酸素分量が 20 %の場合はァ ルゴン流量を 1 6 s c c m、 酸素流量を 4 s c c mとした。 First, in order to examine the deposition conditions of the ITO thin film, the structure and physical properties of the ITO thin film were examined when the oxygen content was changed to 0%, 10%, and 20% of the total pressure. So Other use target I TO (10 wt 0 / oS N_〇 2), output 50 W, sputtering Taringu time 60 min, and fixed with the conditions of room temperature. When the oxygen content is 0%, the argon flow rate is 20 sccm, when the oxygen content is 10%, the argon flow rate is 18 sccm, the oxygen flow rate is 2 sccm, and when the oxygen content is 20%, the argon flow rate. Was 16 sccm and the oxygen flow rate was 4 sccm.
図 4は、 上記の条件でガラス基板上に成膜した I TO薄膜の XRDパター ンを示すものであり、 図 4 (a) は酸素分量を 0%にした場合の I TO薄膜 の XRDパターンであり、 図 4 (b) は酸素分量を 20%にした場合の I T O薄膜の XRDパターンである。  Figure 4 shows the XRD pattern of the ITO thin film formed on the glass substrate under the above conditions. Figure 4 (a) shows the XRD pattern of the ITO thin film when the oxygen content is 0%. Fig. 4 (b) shows the XRD pattern of the ITO thin film when the oxygen content is 20%.
全ての成膜条件 (酸素分量 0, 10, 20%) において、 観測された回折 ピークは I n23型の結晶構造に帰属でき、 回折ピークの角度についても 3 つの試料でほぼ一致していた。 これより、 反応性スパッタリングによる I T O薄膜の成膜が可能であることがわかった。 In all of the film formation conditions (oxygen quantity 0, 10, 20%), the observed diffraction peaks can be attributed to I n 23 type crystal structure, has almost the same in the three samples for the angle of diffraction peak It was. From this, it was found that the ITO thin film can be formed by reactive sputtering.
図 5 (a) は、 酸素分量 0, 10, 20 %それぞれの I TO薄膜の紫外— 可視吸光スペク トルを示す図である。 酸素分量 0%の I TO薄膜 21では可 視光全域に渡って吸収が認められたが、 酸素分量 10%、 20%の I TO薄 膜 22, 23では 400 nm以上では殆ど吸収はなかった。  Figure 5 (a) shows the UV-visible absorption spectrum of the ITO thin film with oxygen content of 0, 10, and 20%, respectively. The ITO thin film 21 with an oxygen content of 0% showed absorption over the entire visible light range, but the ITO thin films 22 and 23 with an oxygen content of 10% and 20% had almost no absorption above 400 nm.
上記の I T〇薄膜を成膜した後の試料を A r雰囲気において 450°Cで 1 20分間焼鈍した。 この焼鈍後の試料の紫外可視吸光スぺク トルを図 5 (b) に示している。  The sample after depositing the above-mentioned ITO thin film was annealed at 450 ° C for 120 minutes in an Ar atmosphere. Figure 5 (b) shows the UV-visible absorption spectrum of the sample after annealing.
焼鈍後の XRDパターンは焼鈍前と比較して、 回折ピークの角度、 強度共 に目立った変化は見られなかった (例として酸素分量 0%の XRDパターン を図 4に示す)。しかし紫外可視吸光スぺクトノレは、図 5 (b)に示すように、 酸素分量 0%の試料 24でも可視光領域の吸収がなくなり、 全ての試料 (酸 素分量 10%の I TO薄膜 25、 酸素分量 20%の I TO薄膜 26) におい て可視光に対し高透過率を示す事がわかった。  The XRD pattern after annealing showed no noticeable changes in the diffraction peak angle and intensity compared to before annealing (for example, the XRD pattern with 0% oxygen content is shown in Fig. 4). However, as shown in Fig. 5 (b), the UV-visible absorption spectrum no longer absorbs in the visible light region even with the sample 24 with an oxygen content of 0%, and all samples (ITO thin film 25 with an oxygen content of 10%, It was found that the ITO thin film with an oxygen content of 20% showed a high transmittance for visible light.
次に、 I TO薄膜の導電性測定を行った。測定は直流 2端子法により行い、 端子接点として I n金属を用いた。端子間距離は 1 mm、試料幅は 10mm、 膜厚は 80〜 120 nmである。 測定結果を図 6に示す。 図 6は、 酸素分量 0, 10, 20%それぞれの I TO薄膜の電気抵抗を示す図である。 Next, the conductivity of the ITO thin film was measured. The measurement was performed by the DC two-terminal method, and In metal was used as the terminal contact. The distance between terminals is 1 mm, the sample width is 10 mm, The film thickness is 80-120 nm. Figure 6 shows the measurement results. Fig. 6 shows the electrical resistance of ITO thin films with oxygen content of 0, 10, and 20%.
焼鈍前の試料では、 酸素分量が減少するに従って抵抗値が低下し、 酸素分 量 0%では約 6 Ωを示す。,単純に比抵抗に換算すると 5 X 10— 4Q cmとな り、 他の文献と比較しても十分に低い抵抗値が得られた。 焼鈍後の試料の測 定結果では、 抵抗値変化の傾向は焼鈍前と同じであるが、 全てがより低い抵 抗値を示した。 最も小さい酸素分量 0%では約 2 Ωを示した。 In the sample before annealing, the resistance value decreases as the oxygen content decreases, and shows about 6 Ω at the oxygen content of 0%. , Ri simply Do a 5 X 10- 4 Q cm in terms of resistivity, a sufficiently low resistance value is obtained even in comparison to other literature. In the measurement results of the samples after annealing, the tendency of change in resistance value was the same as before annealing, but all showed lower resistance values. The smallest oxygen content of 0% showed about 2 Ω.
以上の結果より、 高光透過率、 良導電性を示す I TO薄膜の成膜には、 酸 素分量 0%において、 成膜後に焼鈍を行うことが望ましいことがわかった。 次に、 粉体微粒子表面に I TO薄膜を成膜して透明導電性微粒子を作製し た。  From the above results, it was found that it is desirable to perform annealing after the film formation at an oxygen content of 0% for the formation of an ITO thin film exhibiting high light transmittance and good conductivity. Next, an ITO thin film was formed on the surface of the fine powder particles to produce transparent conductive fine particles.
酸素分量 0%の条件で、バレルスパッタリング法にて粉体表面への I τ〇薄 膜の成膜を行った。粒子径が 80 μ mの A 1203粉体を一回に約 5 g六角パ レル内に導入し、 回転数 3. 5 r p mにて 1 80分間スパッタリングを行つ た。 その他の条件は上記のものと同様である。 成膜後の試料は Ar雰囲気中 で 450°C、 1 20分間の焼鈍を行った。 An IτO thin film was formed on the powder surface by barrel sputtering under the condition of 0% oxygen content. The A 1 2 0 3 powder particle size 80 mu m was introduced into approximately 5 g hexagonal path in barrels at a time, having conducted a 1 for 80 minutes sputtering at a rotation speed of 3. 5 rpm. Other conditions are the same as those described above. The sample after film formation was annealed at 450 ° C for 120 minutes in an Ar atmosphere.
図 7は、 成膜した試料の外観を示す写真である。 図 7中の成膜していない 試料 (未修飾試料) 27は白色であるのに対し、 スパッタリング後の透明導 電性微粒子 (スパッタリングのみ) 28は薄い茶色を呈している。 この透明 導電性微粒子を焼鈍すると、 焼鈍した透明導電性微粒子 29はスパッタリン グのみの透明導電性微粒子 28に対して茶色が薄くなった。 これはガラス基 板上での傾向と同様である。  Figure 7 is a photograph showing the appearance of the deposited sample. In Fig. 7, the non-deposited sample (unmodified sample) 27 is white, while the transparent conductive fine particles after sputtering (sputtering only) 28 is light brown. When the transparent conductive fine particles were annealed, the annealed transparent conductive fine particles 29 became lighter brown than the transparent conductive fine particles 28 of only sputtering. This is similar to the trend on glass substrates.
透明導電性微粒子の XRD測定を行うと、 A l 203の回折ピークの中に小 さく I n 203に帰属できるピークが見られた。 また、 蛍光 X線分析からは、 I n : S n = 87 : 1 3w t °/0の割合で検出された。 ターゲットの混合割合 は I n : S n = 88 : 1 2 w t %であり、 ターゲットとほぼ同じ組成の I T Oが成膜されていると考えられる。 Doing XRD measurement of the transparent conductive fine particles, a peak attributable to the small fence I n 2 0 3 in the diffraction peaks of A l 2 0 3 was observed. From the X-ray fluorescence analysis, it was detected at a ratio of I n: S n = 87: 1 3 w t ° / 0 . The mixing ratio of the target is I n: S n = 88: 1 2 wt%, and it is thought that ITO with the same composition as the target is formed.
次に、 上記透明導電性微粒子の紫外可視吸収スぺクトルを測定した。 測定 結果を図 8に示す。 図 8に示すように、 担体となる A 1203粒子 30は可視 光全域に渡り吸収が小さい。 一方、 焼鈍後の透明導電性微粒子 31は担体粒 子 30より僅かに吸光度は大きいものの、 可視光領域では高い透過率を示し た。 Next, the ultraviolet-visible absorption spectrum of the transparent conductive fine particles was measured. Measurement The results are shown in FIG. As shown in FIG. 8, A 1 2 0 3 particles 30 serving as a carrier have low absorption over the entire visible light region. On the other hand, the transparent conductive fine particles 31 after annealing showed a high transmittance in the visible light range, although the absorbance was slightly higher than that of the carrier particles 30.
さらに透明導電性微粒子の電気抵抗測定を行った。 測定は金属 (A 1 ) の 平板の間に透明導電性微粒子を約 0. 05 gはさみ、 平板間の電気抵抗を二 端子法にて測定した。 I TO薄膜を被覆した透明導電性微粒子の抵抗値は 5 Ωとなり、 平板と同じく焼鈍により抵抗値が減少するとわかった (ちなみ に、未修飾 A 1203粒子の測定も行ったが、測定機器の測定範囲外(100M Ω以上) であった。)。 金属 (P t) を修飾した A 1203粒子を同様に測定す ると 0. 4 Ω程度を示す。 金属と比較して約 10倍程度の抵抗値であり、 十 分小さい抵抗値を達成していると言える。 Furthermore, the electrical resistance of the transparent conductive fine particles was measured. The measurement was performed by sandwiching about 0.05 g of transparent conductive fine particles between flat plates of metal (A 1), and the electrical resistance between the flat plates was measured by the two-terminal method. The resistance value of the transparent conductive fine particles coated with the ITO thin film was 5 Ω, and it was found that the resistance value decreased by annealing as in the case of the flat plate (By the way, unmodified A 1 2 0 3 particles were also measured, It was out of the measuring range of the instrument (100MΩ or more).) Metal (P t) modified A 1 2 0 3 particles shows a degree 4 Omega 0. and you measured. The resistance value is about 10 times that of metal, and it can be said that the resistance value is sufficiently small.
以上の結果を総合すると、 I TO薄膜を被覆した透明導電性微粒子の成膜 がバレルスパッタリング法により可能であることが確認された。  Overall, it was confirmed that the transparent conductive fine particles coated with the ITO thin film can be formed by barrel sputtering.
尚、 本発明は上記実施の形態及ぴ実施例に限定されず、 本発明の主旨を逸 脱しない範囲内で種々変更して実施することが可能である。 例えば、 微粒子 に I TO薄膜を成膜する成膜条件を適宜変更することも可能である。  The present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention. For example, it is possible to appropriately change the film forming conditions for forming an ITO thin film on fine particles.

Claims

請 求 の 範 囲 The scope of the claims
1 . 微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明 導電性薄膜が被覆されたことを特徴とする透明導電性微粒子。 1. A transparent conductive fine particle, wherein the surface of the fine particle is coated with a transparent conductive ultra fine particle or a transparent conductive thin film having a particle diameter smaller than that of the fine particle.
2 . 内部の断面形状が多角形を有する真空容器を、 前記断面に対して略垂直 方向を回転軸として回転させることにより、 該真空容器内の微粒子を攪拌あ るいは回転させながらスパッタリングを行うことで、 該微粒子の表面に該微 粒子より粒径の小さい透明導電性超微粒子又は透明導電性薄膜が被覆された ことを特徴とする透明導電性微粒子。 2. Sputtering while rotating or rotating the fine particles in the vacuum vessel by rotating a vacuum vessel having an internal cross-sectional shape of a polygon with the direction substantially perpendicular to the cross-section as a rotation axis. A transparent conductive fine particle, wherein the surface of the fine particle is coated with a transparent conductive ultra fine particle or a transparent conductive thin film having a particle diameter smaller than that of the fine particle.
3 . 請求項 1又は 2において、 前記微粒子が絶縁体、 発光体及び蛍光体のい ずれかからなることを特徴とする透明導電性微粒子。 3. The transparent conductive fine particle according to claim 1 or 2, wherein the fine particle comprises any one of an insulator, a light emitter and a phosphor.
4 . 透明導電性微粒子の集合体からなる粉末と、  4. a powder composed of an aggregate of transparent conductive fine particles;
前記粉末に接続された接地電位電極と、  A ground potential electrode connected to the powder;
を具備し、 Comprising
前記透明導電性微粒子は、 微粒子の表面に該微粒子より粒径の小さい透明 導電性超微粒子又は透明導電性薄膜が被覆されたものであり、  The transparent conductive fine particles are obtained by coating the surface of fine particles with transparent conductive ultrafine particles or a transparent conductive thin film having a particle size smaller than that of the fine particles.
前記微粒子が発光体又は蛍光体であることを特徴とする電気光学装置。 An electro-optical device, wherein the fine particles are a luminescent material or a fluorescent material.
5 . 透明導電性微粒子の集合体からなる粉末と、 5. a powder composed of an aggregate of transparent conductive fine particles;
前記粉末に接続された接地電位電極と、  A ground potential electrode connected to the powder;
を具備し、 Comprising
前記透明導電性微粒子は、 内部の断面形状が多角形を有する真空容器を、 前記断面に対して略垂直方向を回転軸として回転させることにより、 該真空 容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、 該微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導 電性薄膜が被覆されたものであり、  The transparent conductive fine particles are sputtered while rotating or rotating the vacuum container having a polygonal cross-sectional shape about a direction substantially perpendicular to the cross-section as the rotation axis. The surface of the fine particles is coated with transparent conductive ultrafine particles or a transparent conductive thin film having a smaller particle diameter than the fine particles,
前記微粒子が発光体又は蛍光体であることを特徴とする電気光学装置。 An electro-optical device, wherein the fine particles are a luminescent material or a fluorescent material.
6 . 透明導電性微粒子の集合体からなる粉末と、 6. a powder composed of an aggregate of transparent conductive fine particles;
前記粉末に接続された第 1電極と、 前記粉末に接続された第 2電極と、 A first electrode connected to the powder; A second electrode connected to the powder;
前記第 1電極と前記第 2電極との間に電圧を印加する電源と、  A power supply for applying a voltage between the first electrode and the second electrode;
を具備し、 Comprising
前記透明導電性微粒子は、 微粒子の表面に該微粒子より粒径の小さい透明 導電性超微粒子又は透明導電性薄膜が被覆されたものであり、  The transparent conductive fine particles are obtained by coating the surface of fine particles with transparent conductive ultrafine particles or a transparent conductive thin film having a particle size smaller than that of the fine particles.
前記微粒子が発光体又は蛍光体であることを特徴とする電気光学装置。 An electro-optical device, wherein the fine particles are a luminescent material or a fluorescent material.
7 . 透明導電性微粒子の集合体からなる粉末と、 7. A powder comprising an aggregate of transparent conductive fine particles;
前記粉末に接続された第 1電極と、  A first electrode connected to the powder;
前記粉末に接続された第 2電極と、  A second electrode connected to the powder;
前記第 1電極と前記第 2電極との間に電圧を印加する電源と、  A power supply for applying a voltage between the first electrode and the second electrode;
を具備し、 Comprising
前記透明導電性微粒子は、 内部の断面形状が多角形を有する真空容器を、 前記断面に対して略垂直方向を回転軸として回転させることにより、 該真空 容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、 該微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導 電性薄膜が被覆されたものであり、  The transparent conductive fine particles are sputtered while rotating or rotating the vacuum container having a polygonal cross-sectional shape about a direction substantially perpendicular to the cross-section as the rotation axis. The surface of the fine particles is coated with transparent conductive ultrafine particles or a transparent conductive thin film having a smaller particle diameter than the fine particles,
前記微粒子が発光体又は蛍光体であることを特徴とする電気光学装置。 An electro-optical device, wherein the fine particles are a luminescent material or a fluorescent material.
8 . 微粒子を準備する工程と、 8. Preparing the fine particles;
重力方向に対して略平行な断面の内部形状が多角形である真空容器内に前 記微粒子を収容する工程と、  Storing the fine particles in a vacuum vessel having a polygonal internal shape in a cross section substantially parallel to the direction of gravity; and
前記断面に対して略垂直方向を回転軸として前記真空容器を回転させるこ とにより、 該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリ ングを行うことで、 該微粒子の表面に該微粒子より粒径の小さい透明導電性 超微粒子又は透明導電性薄膜を被覆する工程と、  By rotating the vacuum vessel about a direction substantially perpendicular to the cross section as a rotation axis, the fine particles in the vacuum vessel are sputtered while being stirred or rotated, so that the fine particles are formed on the surface of the fine particles from the fine particles. A step of coating a transparent conductive ultrafine particle having a small diameter or a transparent conductive thin film;
を具備することを特徴とする透明導電性微粒子の製造方法。 A process for producing transparent conductive fine particles, comprising:
PCT/JP2006/314535 2005-08-03 2006-07-18 Transparent conductive fine particles, method for producing same, and electrooptical device WO2007015380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005225147A JP2007042419A (en) 2005-08-03 2005-08-03 Transparent conductive particles, its manufacturing method and electrophotographic apparatus
JP2005-225147 2005-08-03

Publications (1)

Publication Number Publication Date
WO2007015380A1 true WO2007015380A1 (en) 2007-02-08

Family

ID=37708659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314535 WO2007015380A1 (en) 2005-08-03 2006-07-18 Transparent conductive fine particles, method for producing same, and electrooptical device

Country Status (2)

Country Link
JP (1) JP2007042419A (en)
WO (1) WO2007015380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108618A (en) * 2014-12-05 2016-06-20 国立大学法人豊橋技術科学大学 Raw material powder for film deposition, and ceramic film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4999167B2 (en) * 2007-06-15 2012-08-15 株式会社アルバック Nanoparticle loading method using coaxial vacuum arc deposition source
JP5661965B1 (en) * 2014-06-17 2015-01-28 株式会社ジーエル・マテリアルズホールディングス Material for organic solar cell, organic solar cell using the same, and method for producing the material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121102A (en) * 1996-10-15 1998-05-12 Nisshin Steel Co Ltd White conductive composite powder
JPH11273872A (en) * 1998-01-22 1999-10-08 Kawaguchiko Seimitsu Kk Electroluminescent device
JP2001303036A (en) * 2000-04-19 2001-10-31 Kasei Optonix Co Ltd Phosphor surface treatment method and phosphor film
WO2004059031A1 (en) * 2002-12-25 2004-07-15 Youtec Co.,Ltd. Polygonal barrel spattering device, polygonal barrel spattering method, coated particle formed by the device and method, microcapsule, and method of manufacturing the microcapsule
WO2005004545A1 (en) * 2003-07-02 2005-01-13 Matsushita Electric Industrial Co., Ltd. Light-emitting element and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121102A (en) * 1996-10-15 1998-05-12 Nisshin Steel Co Ltd White conductive composite powder
JPH11273872A (en) * 1998-01-22 1999-10-08 Kawaguchiko Seimitsu Kk Electroluminescent device
JP2001303036A (en) * 2000-04-19 2001-10-31 Kasei Optonix Co Ltd Phosphor surface treatment method and phosphor film
WO2004059031A1 (en) * 2002-12-25 2004-07-15 Youtec Co.,Ltd. Polygonal barrel spattering device, polygonal barrel spattering method, coated particle formed by the device and method, microcapsule, and method of manufacturing the microcapsule
WO2005004545A1 (en) * 2003-07-02 2005-01-13 Matsushita Electric Industrial Co., Ltd. Light-emitting element and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108618A (en) * 2014-12-05 2016-06-20 国立大学法人豊橋技術科学大学 Raw material powder for film deposition, and ceramic film

Also Published As

Publication number Publication date
JP2007042419A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP5510766B2 (en) Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and manufacturing method thereof, gas barrier sheet and manufacturing method thereof
Deignan et al. The dependence of silver nanowire stability on network composition and processing parameters
El Nahrawy et al. Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO: Cu nanocomposites
JP3620842B2 (en) Polygonal barrel sputtering apparatus, polygonal barrel sputtering method, coated fine particles formed thereby, and method for producing coated fine particles
Kannan et al. A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin film
CN101551569A (en) Nonlinear optical material based on metal nanometer cluster array and preparation method thereof
CN1979695A (en) Flexible composite transparent conductive film and mfg. method
CN109890190A (en) A kind of transparent electromagnetic shielding film and preparation method thereof
WO2007015380A1 (en) Transparent conductive fine particles, method for producing same, and electrooptical device
Qi et al. Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device
CN104616833B (en) Large area prepares method and the nano silver wire transparency electrode of nano silver wire transparency electrode
CN106896146A (en) A kind of coating production of zinc ferrite acetone gas sensing layer
Maji et al. Improved resistive switching performance of graphene oxide-based flexible ReRAM with HfO x buffer layer
Awad et al. Optical and electrical performance of transparent conductive TiO2/Cu/TiO2 multilayers prepared by magnetron sputtering
Triyana et al. High-performance silver nanowire film on flexible substrate prepared by meyer-rod coating
Shehata et al. Cu and Ag nanoparticles films deposited on glass substrate using cold cathode ion source
Abdullah et al. Novel encapsulated ITO/arc-ZnO: TiO2 antireflective passivating layer for TCO conducting substrate prepared by simultaneous radio frequency-magnetron sputtering
JP2012089510A (en) Transparent conductive particles, and its manufacturing method
Masuda et al. Site-selective deposition of In2O3 using a self-assembled monolayer
Moreau et al. PVD Synthesis and Transfer into Water‐Based Solutions of Functionalized Gold Nanoparticles
Niu et al. Spreadability of Ag layer on oxides and high performance of AZO/Ag/AZO sandwiched transparent conductive film
TWI429492B (en) Preparation of inorganic nano-particles and application of the preparation of the system
Qin et al. Effect of copper nanoparticle addition on the electrical and optical properties of thin films prepared from silver nanoparticles
CN107805314A (en) A kind of antireflecting coating based on nano silver wire and preparation method thereof
Zhou et al. Conductive ZnO: Zn composites for high-rate sputtering deposition of ZnO thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781457

Country of ref document: EP

Kind code of ref document: A1