JP2012089510A - Transparent conductive particles, and its manufacturing method - Google Patents
Transparent conductive particles, and its manufacturing method Download PDFInfo
- Publication number
- JP2012089510A JP2012089510A JP2011272654A JP2011272654A JP2012089510A JP 2012089510 A JP2012089510 A JP 2012089510A JP 2011272654 A JP2011272654 A JP 2011272654A JP 2011272654 A JP2011272654 A JP 2011272654A JP 2012089510 A JP2012089510 A JP 2012089510A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- transparent conductive
- thin film
- particles
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は、透明導電性微粒子及びその製造方法、電気光学装置に係わり、特に、導電性が良く、光透過率の高い透明導電性超微粒子又は透明導電性薄膜を微粒子に被覆した透明導電性微粒子及びその製造方法に関し、また前記透明導電性微粒子を用いた電気光学装置に関する。 The present invention relates to transparent conductive fine particles, a method for producing the same, and an electro-optical device, and in particular, transparent conductive fine particles in which fine particles are coated with transparent conductive ultrafine particles or a transparent conductive thin film having good conductivity and high light transmittance. Further, the present invention relates to an electro-optical device using the transparent conductive fine particles.
粉体は基礎的にも応用としても非常に魅力的な試料であり、現在様々な分野で利用されている。例えば粉体のきめの細かさを利用して、化粧品のファンデーションに使われたり、フェライトの微粒子は単一磁区を形成する為に磁気テープに塗布する磁性体として利用されている。また粉体の特性にその表面積の大きさがあるが、それを利用した微粒子触媒が作られてもいる。 Powder is a very attractive sample both fundamentally and in application, and is currently used in various fields. For example, the fineness of powder is used for cosmetic foundations, and ferrite fine particles are used as a magnetic material applied to magnetic tape to form a single magnetic domain. In addition, there is a size of the surface area in the characteristics of the powder, and a fine particle catalyst using this is also made.
上述したように非常に可能性の大きい材料である為、更に粉体表面に機能性材料を修飾させ、高機能、新機能を発現させる新材料開発技術が求められている。 As described above, since it is a material with great potential, there is a need for a new material development technology that further modifies a functional material on the powder surface to express high functions and new functions.
本発明は上記のような事情を考慮してなされたものであり、その目的は、導電性が良く、光透過率の高い透明導電性超微粒子又は透明導電性薄膜を微粒子に被覆した透明導電性微粒子及びその製造方法、電気光学装置を提供することにある。 The present invention has been made in consideration of the above-mentioned circumstances, and its purpose is to provide transparent conductive ultrafine particles or transparent conductive thin films coated with fine particles with good conductivity and high light transmittance. An object of the present invention is to provide fine particles, a manufacturing method thereof, and an electro-optical device.
上記課題を解決するため、本発明に係る透明導電性微粒子は、微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導電性薄膜が被覆されたことを特徴とする。 In order to solve the above problems, the transparent conductive fine particles according to the present invention are characterized in that the surfaces of the fine particles are coated with transparent conductive ultrafine particles or a transparent conductive thin film having a particle diameter smaller than that of the fine particles.
本発明に係る透明導電性微粒子は、内部の断面形状が多角形を有する真空容器を、前記断面に対して略垂直方向を回転軸として回転させることにより、該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導電性薄膜が被覆されたことを特徴とする。 The transparent conductive fine particles according to the present invention agitate or rotate the fine particles in the vacuum vessel by rotating a vacuum vessel having an internal cross-sectional shape of a polygon with the substantially vertical direction as a rotation axis. The surface of the fine particles is coated with transparent conductive ultrafine particles or a transparent conductive thin film having a particle diameter smaller than that of the fine particles by performing sputtering while performing the process.
尚、前記透明導電性超微粒子又は透明導電性薄膜としては、ITO(酸化インジウムスズ;Indium Tin Oxide)超微粒子又はITO薄膜、SnO2超微粒子又はSnO2薄膜、光が透過できる程度に薄い金属超微粒子又は光が透過できる程度に薄い金属薄膜を用いることも可能である。前記金属超微粒子又は前記金属薄膜に用いられる金属としては、例えばAu、Pt、Ti、Ag、Al、Cu、Pd等が挙げられる。 Incidentally, as the transparent conductive ultra-fine particles or the transparent conductive thin film, ITO (indium tin oxide; Indium Tin Oxide) fine particles or thin ITO film, thin metal than to the extent that SnO 2 ultrafine particles or SnO 2 thin film, the light can pass It is also possible to use a metal thin film that is thin enough to transmit fine particles or light. Examples of the metal used for the metal ultrafine particles or the metal thin film include Au, Pt, Ti, Ag, Al, Cu, and Pd.
また、本発明に係る透明導電性微粒子において、前記微粒子が絶縁体、発光体及び蛍光体のいずれかからなることが好ましい。前記絶縁体としては、Al2O3、SiO2、TiO2、ZnO、ZrO2、ポリマーのいずれかを用いることも可能である。 In the transparent conductive fine particle according to the present invention, it is preferable that the fine particle is made of any one of an insulator, a light emitter, and a phosphor. As the insulator, any one of Al 2 O 3 , SiO 2 , TiO 2 , ZnO, ZrO 2 , and a polymer can be used.
本発明に係る電気光学装置は、透明導電性微粒子の集合体からなる粉末と、
前記粉末に接続された接地電位電極と、
を具備し、
前記透明導電性微粒子は、微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導電性薄膜が被覆されたものであり、
前記微粒子が発光体又は蛍光体であることを特徴とする。
The electro-optical device according to the present invention includes a powder composed of an aggregate of transparent conductive fine particles,
A ground potential electrode connected to the powder;
Comprising
The transparent conductive fine particles are obtained by coating the surface of the fine particles with transparent conductive ultrafine particles having a smaller particle diameter than the fine particles or a transparent conductive thin film.
The fine particles are a luminescent material or a fluorescent material.
本発明に係る電気光学装置は、透明導電性微粒子の集合体からなる粉末と、
前記粉末に接続された接地電位電極と、
を具備し、
前記透明導電性微粒子は、内部の断面形状が多角形を有する真空容器を、前記断面に対して略垂直方向を回転軸として回転させることにより、該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導電性薄膜が被覆されたものであり、
前記微粒子が発光体又は蛍光体であることを特徴とする。
The electro-optical device according to the present invention includes a powder composed of an aggregate of transparent conductive fine particles,
A ground potential electrode connected to the powder;
Comprising
The transparent conductive fine particles are sputtered while stirring or rotating the fine particles in the vacuum vessel by rotating a vacuum vessel having a polygonal cross-sectional shape about a direction perpendicular to the cross-section as a rotation axis. The surface of the fine particles is coated with transparent conductive ultrafine particles having a smaller particle diameter than the fine particles or a transparent conductive thin film,
The fine particles are a luminescent material or a fluorescent material.
本発明に係る電気光学装置は、透明導電性微粒子の集合体からなる粉末と、
前記粉末に接続された第1電極と、
前記粉末に接続された第2電極と、
前記第1電極と前記第2電極との間に電圧を印加する電源と、
を具備し、
前記透明導電性微粒子は、微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導電性薄膜が被覆されたものであり、
前記微粒子が発光体又は蛍光体であることを特徴とする。
The electro-optical device according to the present invention includes a powder composed of an aggregate of transparent conductive fine particles,
A first electrode connected to the powder;
A second electrode connected to the powder;
A power supply for applying a voltage between the first electrode and the second electrode;
Comprising
The transparent conductive fine particles are obtained by coating the surface of the fine particles with transparent conductive ultrafine particles having a smaller particle diameter than the fine particles or a transparent conductive thin film.
The fine particles are a luminescent material or a fluorescent material.
本発明に係る電気光学装置は、透明導電性微粒子の集合体からなる粉末と、
前記粉末に接続された第1電極と、
前記粉末に接続された第2電極と、
前記第1電極と前記第2電極との間に電圧を印加する電源と、
を具備し、
前記透明導電性微粒子は、内部の断面形状が多角形を有する真空容器を、前記断面に対して略垂直方向を回転軸として回転させることにより、該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導電性薄膜が被覆されたものであり、
前記微粒子が発光体又は蛍光体であることを特徴とする。
The electro-optical device according to the present invention includes a powder composed of an aggregate of transparent conductive fine particles,
A first electrode connected to the powder;
A second electrode connected to the powder;
A power supply for applying a voltage between the first electrode and the second electrode;
Comprising
The transparent conductive fine particles are sputtered while stirring or rotating the fine particles in the vacuum vessel by rotating a vacuum vessel having a polygonal cross-sectional shape about a direction perpendicular to the cross-section as a rotation axis. The surface of the fine particles is coated with transparent conductive ultrafine particles having a smaller particle diameter than the fine particles or a transparent conductive thin film,
The fine particles are a luminescent material or a fluorescent material.
本発明に係る透明導電性微粒子の製造方法は、微粒子を準備する工程と、
重力方向に対して略平行な断面の内部形状が多角形である真空容器内に前記微粒子を収容する工程と、
前記断面に対して略垂直方向を回転軸として前記真空容器を回転させることにより、該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導電性薄膜を被覆する工程と、
を具備することを特徴とする。
The method for producing transparent conductive fine particles according to the present invention comprises a step of preparing fine particles,
Storing the fine particles in a vacuum container having a polygonal internal shape in a cross section substantially parallel to the direction of gravity; and
By rotating the vacuum vessel about a direction substantially perpendicular to the cross section as a rotation axis, sputtering is performed while stirring or rotating the fine particles in the vacuum vessel, so that the surface of the fine particles has a particle size smaller than that of the fine particles. Coating small transparent conductive ultrafine particles or transparent conductive thin film;
It is characterized by comprising.
以上説明したように本発明によれば、導電性が良く、光透過率の高い透明導電性超微粒子又は透明導電性薄膜を微粒子に被覆した透明導電性微粒子及びその製造方法、電気光学装置を提供することができる。 As described above, according to the present invention, there are provided transparent conductive fine particles obtained by coating fine particles with transparent conductive ultrafine particles or transparent conductive thin films having good conductivity and high light transmittance, a method for producing the same, and an electro-optical device. can do.
以下、図面を参照して本発明の実施の形態について説明する。
(実施の形態1)
図1は、本発明の実施の形態1による透明導電性微粒子を製造する際に用いる多角バレルスパッタ装置の概略を示す構成図である。この多角バレルスパッタ装置は、微粒子(粉体)の表面に、該微粒子より粒径の小さい超微粒子(ここでの超微粒子とは微粒子より粒径の小さい微粒子をいう)又は薄膜を被覆させるための装置である。
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1)
FIG. 1 is a configuration diagram showing an outline of a polygonal barrel sputtering apparatus used when producing transparent conductive fine particles according to Embodiment 1 of the present invention. This polygonal barrel sputtering apparatus is used to coat the surface of fine particles (powder) with ultrafine particles having a smaller particle diameter than the fine particles (here, ultrafine particles are particles having a smaller particle diameter than the fine particles) or a thin film. Device.
多角バレルスパッタ装置は、微粒子(粉体試料)3に超微粒子又は薄膜を被覆させる真空容器1を有しており、この真空容器1は直径200mmの円筒部1aとその内部に設置された断面が六角形のバレル(六角型バレル)1bとを備えている。ここで示す断面は、重力方向に対して略平行な断面である。なお、本実施の形態では、六角形のバレル1bを用いているが、これに限定されるものではなく、六角形以外の多角形のバレルを用いることも可能である。 The polygonal barrel sputtering apparatus has a vacuum vessel 1 for coating fine particles (powder sample) 3 with ultrafine particles or a thin film. The vacuum vessel 1 has a cylindrical portion 1a having a diameter of 200 mm and a cross section installed in the inside thereof. And a hexagonal barrel (hexagonal barrel) 1b. The cross section shown here is a cross section substantially parallel to the direction of gravity. In the present embodiment, the hexagonal barrel 1b is used. However, the present invention is not limited to this, and a polygonal barrel other than the hexagon can also be used.
真空容器1には回転機構(図示せず)が設けられており、この回転機構により六角型バレル1bを矢印のように回転させることで該六角型バレル1b内の微粒子(粉体試料)3を攪拌あるいは回転させながら被覆処理を行うものである。前記回転機構により六角型バレルを回転させる際の回転軸は、ほぼ水平方向(重力方向に対して垂直方向)に平行な軸である。また、真空容器1内には円筒の中心軸上にITO(10wt%SnO2)からなるスパッタリングターゲット2が配置されており、このターゲット2は角度を自由に変えられるように構成されている。これにより、六角型バレル1bを回転させながら被覆処理を行う時、ターゲット2を粉体試料3の位置する方向に向けることができ、それによってスパッタ効率を上げることが可能となる。 The vacuum vessel 1 is provided with a rotating mechanism (not shown). By rotating the hexagonal barrel 1b as shown by the arrow by this rotating mechanism, the fine particles (powder sample) 3 in the hexagonal barrel 1b are removed. The coating process is performed while stirring or rotating. A rotation axis when the hexagonal barrel is rotated by the rotation mechanism is an axis substantially parallel to the horizontal direction (perpendicular to the gravity direction). In addition, a sputtering target 2 made of ITO (10 wt% SnO 2 ) is disposed on the central axis of the cylinder in the vacuum vessel 1, and the target 2 is configured so that the angle can be freely changed. Thus, when the coating process is performed while rotating the hexagonal barrel 1b, the target 2 can be directed in the direction in which the powder sample 3 is located, thereby increasing the sputtering efficiency.
真空容器1には配管4の一端が接続されており、この配管4の他端には第1バルブ12の一方側が接続されている。第1バルブ12の他方側は配管5の一端が接続されており、配管5の他端はターボ分子ポンプ(TMP)10の吸気側に接続されている。ターボ分子ポンプ10の排気側は配管6の一端に接続されており、配管6の他端は第2バルブ13の一方側に接続されている。第2バルブ13の他方側は配管7の一端に接続されており、配管7の他端はポンプ(RP)11に接続されている。また、配管4は配管8の一端に接続されており、配管8の他端は第3バルブ14の一方側に接続されている。第3バルブ14の他方側は配管9の一端に接続されており、配管9の他端は配管7に接続されている。 One end of a pipe 4 is connected to the vacuum vessel 1, and one side of the first valve 12 is connected to the other end of the pipe 4. One end of the pipe 5 is connected to the other side of the first valve 12, and the other end of the pipe 5 is connected to the intake side of the turbo molecular pump (TMP) 10. The exhaust side of the turbo molecular pump 10 is connected to one end of the pipe 6, and the other end of the pipe 6 is connected to one side of the second valve 13. The other side of the second valve 13 is connected to one end of the pipe 7, and the other end of the pipe 7 is connected to the pump (RP) 11. The pipe 4 is connected to one end of the pipe 8, and the other end of the pipe 8 is connected to one side of the third valve 14. The other side of the third valve 14 is connected to one end of the pipe 9, and the other end of the pipe 9 is connected to the pipe 7.
本装置は、真空容器1内の粉体試料3を加熱するためのヒータ17を備えている。また、本装置は、真空容器1内の粉体試料3に振動を加えるためのバイブレータ18を備えている。また、本装置は、真空容器1の内部圧力を測定する圧力計19を備えている。また、本装置は、真空容器1内に窒素ガスを導入する酸素ガス導入機構15を備えていると共に真空容器1内にアルゴンガスを導入するアルゴンガス導入機構16を備えている。また、本装置は、ターゲット2と六角型バレル1bとの間に高周波を印加する高周波印加機構(図示せず)を備えている。 This apparatus includes a heater 17 for heating the powder sample 3 in the vacuum vessel 1. In addition, the apparatus includes a vibrator 18 for applying vibration to the powder sample 3 in the vacuum vessel 1. The apparatus also includes a pressure gauge 19 that measures the internal pressure of the vacuum vessel 1. The apparatus also includes an oxygen gas introduction mechanism 15 that introduces nitrogen gas into the vacuum container 1 and an argon gas introduction mechanism 16 that introduces argon gas into the vacuum container 1. In addition, this apparatus includes a high frequency application mechanism (not shown) that applies a high frequency between the target 2 and the hexagonal barrel 1b.
次に、上記多角バレルスパッタ装置を用いて微粒子3に透明導電性薄膜を被覆する透明導電性微粒子の製造方法について説明する。
まず、六角型バレル1b内に約5グラムの粉体試料3を導入する。この粉体試料3としては粒子径が80μmのAl2O3粉体を用いた。また、ターゲット2にはITOを用いた。なお、本実施の形態では、Al2O3粉体を用いているが、これに限定されるものではなく、他の材料、例えばAl2O3、SiO2、TiO2、ZnO、ZrO2、ポリマーなどの絶縁体、発光体、蛍光体からなる粉体を用いることも可能である。本多角バレルスパッタ方法を用いれば、幅広い材料粉体に透明導電性薄膜を被覆することが可能である。
Next, the manufacturing method of the transparent conductive fine particle which coat | covers the transparent conductive thin film on the fine particle 3 using the said polygon barrel sputtering apparatus is demonstrated.
First, about 5 grams of the powder sample 3 is introduced into the hexagonal barrel 1b. As the powder sample 3, Al 2 O 3 powder having a particle diameter of 80 μm was used. Moreover, ITO was used for the target 2. In the present embodiment, Al 2 O 3 powder is used. However, the present invention is not limited to this, and other materials such as Al 2 O 3 , SiO 2 , TiO 2 , ZnO, ZrO 2 , It is also possible to use a powder made of an insulator such as a polymer, a light emitter, and a phosphor. If this polygonal barrel sputtering method is used, it is possible to coat a wide range of material powders with a transparent conductive thin film.
次いで、ターボ分子ポンプ10を用いて六角型バレル1b内に高真空状態を作り、ヒータ17で六角型バレルを200℃まで加熱しながら、六角型バレル内を5×10−4Paに減圧した。その後、アルゴンガス供給機構16によりアルゴンを六角型バレル1b内に導入する。この際の六角型バレル内の圧力は2Pa程度である。場合によってはアルゴンと酸素の混合ガスを六角型バレル1b内に導入しても良い。そして、回転機構により六角型バレル1bを50Wで180分間、3.5rpmで回転させることで、六角型バレル1b内の粉体試料3を回転させ、攪拌させる。その際、ターゲットは粉体試料の位置する方向に向けられる。その後、高周波印加機構によりターゲット2と六角型バレル1bとの間に高周波を印加することで、粉体試料3の表面にITOをスパッタリングする。このようにして微粒子3の表面にITO薄膜を被覆することができる。 Next, a high vacuum state was created in the hexagonal barrel 1 b using the turbo molecular pump 10, and the hexagonal barrel was decompressed to 5 × 10 −4 Pa while heating the hexagonal barrel to 200 ° C. with the heater 17. Thereafter, argon is introduced into the hexagonal barrel 1b by the argon gas supply mechanism 16. The pressure in the hexagonal barrel at this time is about 2 Pa. In some cases, a mixed gas of argon and oxygen may be introduced into the hexagonal barrel 1b. The powder sample 3 in the hexagonal barrel 1b is rotated and agitated by rotating the hexagonal barrel 1b at 50 W for 180 minutes at 3.5 rpm by the rotation mechanism. At that time, the target is directed in the direction in which the powder sample is located. Then, ITO is sputtered on the surface of the powder sample 3 by applying a high frequency between the target 2 and the hexagonal barrel 1b by a high frequency application mechanism. In this way, the surface of the fine particles 3 can be coated with the ITO thin film.
上記実施の形態1によれば、六角型バレル自体を回転させることで粉体自体を回転させ攪拌でき、更にバレルを六角型とすることにより、粉体を重力により定期的に落下させることができる。このため、攪拌効率を飛躍的に向上させることができ、粉体を扱う時にしばしば問題となる水分や静電気力による粉体の凝集を防ぐことができる。つまり回転により攪拌と、凝集した粉体の粉砕を同時かつ効果的に行うことができる。したがって、粒径の非常に小さい微粒子にITO薄膜を被覆することが可能となる。具体的には、粒径が50μm以下の微粒子に超微粒子又は薄膜を被覆することが可能となる。 According to the first embodiment, the powder itself can be rotated and stirred by rotating the hexagonal barrel itself, and the powder can be periodically dropped by gravity by further forming the hexagonal barrel. . For this reason, the stirring efficiency can be dramatically improved, and aggregation of the powder due to moisture or electrostatic force, which is often a problem when handling the powder, can be prevented. That is, stirring by rotation and pulverization of the agglomerated powder can be performed simultaneously and effectively. Therefore, it is possible to coat the ITO thin film on fine particles having a very small particle diameter. Specifically, it is possible to coat ultrafine particles or a thin film on fine particles having a particle size of 50 μm or less.
また、本実施の形態では、真空容器1の外側にヒータ17を取り付けており、このヒータ17により六角型バレル1bを200℃まで加熱することができる。このため、真空容器1の内部を真空にする際、ヒータ17で六角型バレルを加熱することにより、該六角型バレル内の水分を気化させ排気することができる。したがって、粉体を扱う時に問題となる水を六角型バレル内から除去することができるため、粉体の凝集をより効果的に防ぐことができる。 Moreover, in this Embodiment, the heater 17 is attached to the outer side of the vacuum vessel 1, The hexagonal barrel 1b can be heated to 200 degreeC with this heater 17. FIG. For this reason, when the inside of the vacuum vessel 1 is evacuated, by heating the hexagonal barrel with the heater 17, moisture in the hexagonal barrel can be vaporized and exhausted. Therefore, since water which is a problem when handling the powder can be removed from the hexagonal barrel, the aggregation of the powder can be more effectively prevented.
また、本実施の形態では、真空容器1の外側にバイブレータ18を取り付けており、このバイブレータ18により六角型バレル内の粉体3に振動を加えることができる。これにより、粉体を扱う時に問題となる凝集をより効果的に防ぐことが可能となる。 In the present embodiment, a vibrator 18 is attached to the outside of the vacuum vessel 1, and the vibrator 18 can apply vibration to the powder 3 in the hexagonal barrel. This makes it possible to more effectively prevent agglomeration, which is a problem when handling powder.
また、本実施の形態では、多角バレルスパッタ装置により粉体試料3の表面に微粒子を被覆しているため、従来技術のめっき法のように廃液の処理が必要なく、環境に対する負荷も小さくできるという利点がある。 In the present embodiment, since the surface of the powder sample 3 is coated with fine particles by a polygonal barrel sputtering apparatus, it is not necessary to treat waste liquid as in the conventional plating method, and the load on the environment can be reduced. There are advantages.
尚、上記実施の形態1では、バイブレータ18により六角型バレル内の粉体3に振動を加えているが、バイブレータ18の代わりに、又は、バイブレータ18に加えて、六角型バレル内に棒状部材を収容した状態で該六角型バレルを回転させることにより、粉体3に振動を加えることも可能である。これにより、粉体を扱う時に問題となる凝集をより効果的に防ぐことが可能となる。 In the first embodiment, the vibrator 18 vibrates the powder 3 in the hexagonal barrel. However, instead of the vibrator 18 or in addition to the vibrator 18, a rod-shaped member is placed in the hexagonal barrel. It is also possible to apply vibration to the powder 3 by rotating the hexagonal barrel in the accommodated state. This makes it possible to more effectively prevent agglomeration, which is a problem when handling powder.
また、上記実施の形態1では、微粒子に被覆する透明導電性薄膜又は透明導電性超微粒子としてITOを用いているが、これに限定されるものではなく、SnO2薄膜又はSnO2超微粒子、光が透過できる程度に薄い金属薄膜又は光が透過できる程度に薄い金属超微粒子を用いることも可能であり、前記金属薄膜又は前記金属超微粒子に用いられる金属としては、例えばAu、Pt、Ti、Ag、Al、Cu、Pd等が好ましい。 In the first embodiment, ITO is used as the transparent conductive thin film or the transparent conductive ultrafine particle coated on the fine particles. However, the present invention is not limited to this, and the SnO 2 thin film or the SnO 2 ultrafine particle, light It is also possible to use a metal thin film that is thin enough to transmit light or a metal ultrafine particle that is thin enough to transmit light. Examples of the metal used in the metal thin film or metal ultrafine particle include Au, Pt, Ti, and Ag. Al, Cu, Pd, etc. are preferable.
また、上述した透明導電性微粒子の用途としては、例えば液晶に代表されるディスプレーの導電性スペーサーが挙げられる。 Moreover, as an application of the above-mentioned transparent conductive fine particles, for example, a conductive spacer of a display typified by liquid crystal can be mentioned.
(実施の形態2)
図2は、本発明の実施の形態2による電気光学装置を模式的に示す断面図である。
この電気光学装置は、透明導電性微粒子43の集合体からなる粉末44を備えている。この透明導電性微粒子43は、微粒子41と、その微粒子41を被覆する透明導電性薄膜42とを有するものであり、実施の形態1と同様の方法により作製される。
(Embodiment 2)
FIG. 2 is a cross-sectional view schematically showing an electro-optical device according to Embodiment 2 of the present invention.
This electro-optical device includes a powder 44 made of an aggregate of transparent conductive fine particles 43. The transparent conductive fine particles 43 have fine particles 41 and a transparent conductive thin film 42 covering the fine particles 41, and are produced by the same method as in the first embodiment.
前記微粒子41は、無機EL素子(エレクトロルミネッセンス素子;electroluminescence)などの発光体又は蛍光体からなる。無機EL素子の微粒子は、無機EL材料からなるバルクを粉砕及び加工して微粒子を形成したものである。 The fine particles 41 are made of a light-emitting body or phosphor such as an inorganic EL element (electroluminescence element). The fine particles of the inorganic EL element are formed by pulverizing and processing a bulk made of an inorganic EL material.
また、前記透明導電性薄膜は、ITO薄膜、SnO2薄膜、光が透過できる程度に薄い金属薄膜を用いることができる。前記金属薄膜に用いられる金属としては、例えばAu、Pt、Ti、Ag、Al、Cu、Pd等が挙げられる。 The transparent conductive thin film may be an ITO thin film, a SnO 2 thin film, or a metal thin film that is thin enough to transmit light. Examples of the metal used for the metal thin film include Au, Pt, Ti, Ag, Al, Cu, and Pd.
前記粉末44の一部は電極45に接続されており、この電極45は接地電位に接続されている。 A part of the powder 44 is connected to an electrode 45, and this electrode 45 is connected to the ground potential.
透明導電性微粒子43の集合体にはチャージが発生することがあり、それにより凝集が起こることがある。これに対し、本実施の形態では、粉末44の一部を電極45に接続し、この電極45を接地電位に接続しているため、チャージを除去することができる。 Charges may be generated in the aggregate of the transparent conductive fine particles 43, which may cause aggregation. On the other hand, in this embodiment, a part of the powder 44 is connected to the electrode 45, and the electrode 45 is connected to the ground potential, so that the charge can be removed.
(実施の形態3)
図3は、本発明の実施の形態3による電気光学装置を模式的に示す断面図である。
この電気光学装置は、透明導電性微粒子53の集合体からなる粉末54を備えている。この透明導電性微粒子53は、微粒子51と、その微粒子51を被覆する透明導電性薄膜52とを有するものであり、実施の形態1と同様の方法により作製される。
(Embodiment 3)
FIG. 3 is a cross-sectional view schematically showing an electro-optical device according to Embodiment 3 of the present invention.
The electro-optical device includes a powder 54 made of an aggregate of transparent conductive fine particles 53. The transparent conductive fine particles 53 have fine particles 51 and a transparent conductive thin film 52 that covers the fine particles 51, and are produced by the same method as in the first embodiment.
前記微粒子41は、無機EL素子などの発光体又は蛍光体からなる。無機EL素子の微粒子は、無機EL材料からなるバルクを粉砕及び加工して微粒子を形成したものである。 The fine particles 41 are made of a light emitting body such as an inorganic EL element or a phosphor. The fine particles of the inorganic EL element are formed by pulverizing and processing a bulk made of an inorganic EL material.
また、前記透明導電性薄膜は、実施の形態2と同様であるので、説明を省略する。 Moreover, since the said transparent conductive thin film is the same as that of Embodiment 2, description is abbreviate | omitted.
前記粉末54の一部は第1電極55に接続されており、前記粉末54の他の一部は第2電極56に接続されている。第1電極55と第2電極56との間には電圧を印加する電源57及びスイッチ58が配置されている。スイッチ58をオンすると電源57によって第1電極55と第2電極56との間の粉末54に直流電圧が印加され、発光体又は蛍光体からなる微粒子51に透明導電性薄膜52を介して直流電圧が印加され、その結果、微粒子51が光又は蛍光を発する。 A part of the powder 54 is connected to the first electrode 55, and the other part of the powder 54 is connected to the second electrode 56. A power supply 57 and a switch 58 for applying a voltage are disposed between the first electrode 55 and the second electrode 56. When the switch 58 is turned on, a direct current voltage is applied to the powder 54 between the first electrode 55 and the second electrode 56 by the power source 57, and the direct current voltage is applied to the fine particles 51 made of a light emitter or phosphor through the transparent conductive thin film 52. As a result, the fine particles 51 emit light or fluorescence.
SiO2ガラス基板上にITO薄膜を多角バレルではないスパッタリング装置により成膜したことについて説明する。
まず、ITO薄膜の成膜条件を検討するため、酸素分量を全圧に対し0%、10%、20%と変化させた際のITO薄膜の構造、物性変化を調べた。その他は、使用ターゲットはITO(10wt%SnO2)、出力50W、スパッタリング時間60分、室温の条件で固定した。尚、酸素分量が0%の場合はアルゴン流量を20sccmとし、酸素分量が10%の場合はアルゴン流量を18sccm、酸素流量を2sccmとし、酸素分量が20%の場合はアルゴン流量を16sccm、酸素流量を4sccmとした。
An explanation will be given of forming an ITO thin film on a SiO 2 glass substrate by a sputtering apparatus which is not a polygonal barrel.
First, in order to examine the film forming conditions of the ITO thin film, the structure and physical properties of the ITO thin film were examined when the oxygen content was changed to 0%, 10%, and 20% with respect to the total pressure. Other than that, the target used was fixed under the conditions of ITO (10 wt% SnO 2 ), output 50 W, sputtering time 60 minutes, and room temperature. When the oxygen content is 0%, the argon flow rate is 20 sccm. When the oxygen content is 10%, the argon flow rate is 18 sccm and the oxygen flow rate is 2 sccm. When the oxygen content is 20%, the argon flow rate is 16 sccm. Was 4 sccm.
図4は、上記の条件でガラス基板上に成膜したITO薄膜のXRDパターンを示すものであり、図4(a)は酸素分量を0%にした場合のITO薄膜のXRDパターンであり、図4(b)は酸素分量を20%にした場合のITO薄膜のXRDパターンである。 FIG. 4 shows an XRD pattern of an ITO thin film formed on a glass substrate under the above conditions. FIG. 4A shows an XRD pattern of the ITO thin film when the oxygen content is 0%. 4 (b) is an XRD pattern of the ITO thin film when the oxygen content is 20%.
全ての成膜条件(酸素分量0,10,20%)において、観測された回折ピークはIn2O3型の結晶構造に帰属でき、回折ピークの角度についても3つの試料でほぼ一致していた。これより、反応性スパッタリングによるITO薄膜の成膜が可能であることがわかった。 Under all film forming conditions (oxygen content 0, 10, 20%), the observed diffraction peak could be attributed to the In 2 O 3 type crystal structure, and the angles of the diffraction peaks were almost the same for the three samples. . From this, it was found that the ITO thin film can be formed by reactive sputtering.
図5(a)は、酸素分量0,10,20%それぞれのITO薄膜の紫外−可視吸光スペクトルを示す図である。酸素分量0%のITO薄膜21では可視光全域に渡って吸収が認められたが、酸素分量10%、20%のITO薄膜22,23では400nm以上では殆ど吸収はなかった。 Fig.5 (a) is a figure which shows the ultraviolet-visible absorption spectrum of each ITO thin film of oxygen amount 0,10,20%. The ITO thin film 21 having an oxygen content of 0% showed absorption over the entire visible light range, but the ITO thin films 22 and 23 having an oxygen content of 10% and 20% had almost no absorption above 400 nm.
上記のITO薄膜を成膜した後の試料をAr雰囲気において450℃で120分間焼鈍した。この焼鈍後の試料の紫外可視吸光スペクトルを図5(b)に示している。
焼鈍後のXRDパターンは焼鈍前と比較して、回折ピークの角度、強度共に目立った変化は見られなかった(例として酸素分量0%のXRDパターンを図4に示す)。しかし紫外可視吸光スペクトルは、図5(b)に示すように、酸素分量0%の試料24でも可視光領域の吸収がなくなり、全ての試料(酸素分量10%のITO薄膜25、酸素分量20%のITO薄膜26)において可視光に対し高透過率を示す事がわかった。
The sample after forming the ITO thin film was annealed at 450 ° C. for 120 minutes in an Ar atmosphere. The ultraviolet-visible absorption spectrum of the sample after this annealing is shown in FIG.
The XRD pattern after annealing showed no noticeable changes in the angle and intensity of the diffraction peak compared to before annealing (for example, an XRD pattern with an oxygen content of 0% is shown in FIG. 4). However, as shown in FIG. 5B, the UV-visible absorption spectrum shows no absorption in the visible light region even with the sample 24 having an oxygen content of 0%, and all samples (ITO thin film 25 having an oxygen content of 10%, oxygen content 20%). It was found that the ITO thin film 26) exhibited a high transmittance for visible light.
次に、ITO薄膜の導電性測定を行った。測定は直流2端子法により行い、端子接点としてIn金属を用いた。端子間距離は1mm、試料幅は10mm、膜厚は80〜120nmである。測定結果を図6に示す。図6は、酸素分量0,10,20%それぞれのITO薄膜の電気抵抗を示す図である。 Next, the conductivity of the ITO thin film was measured. The measurement was performed by the DC two-terminal method, and In metal was used as a terminal contact. The distance between the terminals is 1 mm, the sample width is 10 mm, and the film thickness is 80 to 120 nm. The measurement results are shown in FIG. FIG. 6 is a diagram showing the electrical resistance of each ITO thin film having an oxygen content of 0, 10, and 20%.
焼鈍前の試料では、酸素分量が減少するに従って抵抗値が低下し、酸素分量0%では約6Ωを示す。単純に比抵抗に換算すると5×10−4Ωcmとなり、他の文献と比較しても十分に低い抵抗値が得られた。焼鈍後の試料の測定結果では、抵抗値変化の傾向は焼鈍前と同じであるが、全てがより低い抵抗値を示した。最も小さい酸素分量0%では約2Ωを示した。 In the sample before annealing, the resistance value decreases as the oxygen content decreases, and shows about 6Ω when the oxygen content is 0%. When simply converted into specific resistance, it was 5 × 10 −4 Ωcm, and a sufficiently low resistance value was obtained even when compared with other documents. In the measurement results of the samples after annealing, the tendency of resistance value change was the same as that before annealing, but all showed lower resistance values. The smallest oxygen content of 0% showed about 2Ω.
以上の結果より、高光透過率、良導電性を示すITO薄膜の成膜には、酸素分量0%において、成膜後に焼鈍を行うことが望ましいことがわかった。 From the above results, it was found that it is desirable to perform annealing after the film formation at an oxygen content of 0% for the film formation of an ITO thin film exhibiting high light transmittance and good conductivity.
次に、粉体微粒子表面にITO薄膜を成膜して透明導電性微粒子を作製した。
酸素分量0%の条件で、バレルスパッタリング法にて粉体表面へのITO薄膜の成膜を行った。粒子径が80μmのAl2O3粉体を一回に約5g六角バレル内に導入し、回転数3.5rpmにて180分間スパッタリングを行った。その他の条件は上記のものと同様である。成膜後の試料はAr雰囲気中で450℃、120分間の焼鈍を行った。
Next, an ITO thin film was formed on the surface of the fine powder particles to produce transparent conductive fine particles.
An ITO thin film was formed on the powder surface by barrel sputtering under the condition of 0% oxygen content. About 5 g of Al 2 O 3 powder having a particle size of 80 μm was introduced into a hexagonal barrel at a time, and sputtering was performed at a rotational speed of 3.5 rpm for 180 minutes. Other conditions are the same as those described above. The sample after film formation was annealed at 450 ° C. for 120 minutes in an Ar atmosphere.
図7は、成膜した試料の外観を示す写真である。図7中の成膜していない試料(未修飾試料)27は白色であるのに対し、スパッタリング後の透明導電性微粒子(スパッタリングのみ)28は薄い茶色を呈している。この透明導電性微粒子を焼鈍すると、焼鈍した透明導電性微粒子29はスパッタリングのみの透明導電性微粒子28に対して茶色が薄くなった。これはガラス基板上での傾向と同様である。 FIG. 7 is a photograph showing the appearance of the deposited sample. In FIG. 7, the non-deposited sample (unmodified sample) 27 is white, while the transparent conductive fine particles (sputtering only) 28 after sputtering has a light brown color. When the transparent conductive fine particles were annealed, the annealed transparent conductive fine particles 29 became lighter brown than the transparent conductive fine particles 28 only by sputtering. This is the same as the tendency on the glass substrate.
透明導電性微粒子のXRD測定を行うと、Al2O3の回折ピークの中に小さくIn2O3に帰属できるピークが見られた。また、蛍光X線分析からは、In:Sn=87:13wt%の割合で検出された。ターゲットの混合割合はIn:Sn=88:12wt%であり、ターゲットとほぼ同じ組成のITOが成膜されていると考えられる。 When XRD measurement of the transparent conductive fine particles was performed, a small peak attributable to In 2 O 3 was observed in the diffraction peak of Al 2 O 3 . Further, from the fluorescent X-ray analysis, it was detected at a ratio of In: Sn = 87: 13 wt%. The mixing ratio of the target is In: Sn = 88: 12 wt%, and it is considered that ITO having the same composition as the target is formed.
次に、上記透明導電性微粒子の紫外可視吸収スペクトルを測定した。測定結果を図8に示す。図8に示すように、担体となるAl2O3粒子30は可視光全域に渡り吸収が小さい。一方、焼鈍後の透明導電性微粒子31は担体粒子30より僅かに吸光度は大きいものの、可視光領域では高い透過率を示した。 Next, the ultraviolet-visible absorption spectrum of the transparent conductive fine particles was measured. The measurement results are shown in FIG. As shown in FIG. 8, the Al 2 O 3 particles 30 serving as a carrier have a small absorption over the entire visible light region. On the other hand, the transparent conductive fine particles 31 after annealing showed a high transmittance in the visible light region although the absorbance was slightly larger than that of the carrier particles 30.
さらに透明導電性微粒子の電気抵抗測定を行った。測定は金属(Al)の平板の間に透明導電性微粒子を約0.05gはさみ、平板間の電気抵抗を二端子法にて測定した。ITO薄膜を被覆した透明導電性微粒子の抵抗値は5Ωとなり、平板と同じく焼鈍により抵抗値が減少するとわかった(ちなみに、未修飾Al2O3粒子の測定も行ったが、測定機器の測定範囲外(100MΩ以上)であった。)。金属(Pt)を修飾したAl2O3粒子を同様に測定すると0.4Ω程度を示す。金属と比較して約10倍程度の抵抗値であり、十分小さい抵抗値を達成していると言える。 Furthermore, the electrical resistance of the transparent conductive fine particles was measured. In the measurement, about 0.05 g of transparent conductive fine particles were sandwiched between metal (Al) flat plates, and the electric resistance between the flat plates was measured by a two-terminal method. The resistance value of the transparent conductive fine particles coated with the ITO thin film was 5Ω, and it was found that the resistance value was decreased by annealing as in the case of the flat plate (By the way, the measurement of unmodified Al 2 O 3 particles was also performed, but the measurement range of the measuring instrument Outside (100 MΩ or more). When Al 2 O 3 particles modified with metal (Pt) are similarly measured, about 0.4Ω is shown. It can be said that the resistance value is about 10 times that of metal and a sufficiently small resistance value is achieved.
以上の結果を総合すると、ITO薄膜を被覆した透明導電性微粒子の成膜がバレルスパッタリング法により可能であることが確認された。 From the above results, it was confirmed that the transparent conductive fine particles coated with the ITO thin film can be formed by the barrel sputtering method.
尚、本発明は上記実施の形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。例えば、微粒子にITO薄膜を成膜する成膜条件を適宜変更することも可能である。 In addition, this invention is not limited to the said embodiment and Example, It can be implemented in various changes within the range which does not deviate from the main point of this invention. For example, it is possible to appropriately change the film forming conditions for forming the ITO thin film on the fine particles.
1…真空容器
1a…円筒部
1b…六角型バレル
2…ターゲット
3…微粒子(粉体試料)
4〜9…配管
10…ターボ分子ポンプ(TMP)
11…ポンプ(RP)
12〜14…第1〜第3バルブ
15…酸素ガス導入機構
16…アルゴンガス導入機構
17…ヒータ
18…バイブレータ
19…圧力計
21…酸素分量0%のITO薄膜
22…酸素分量10%のITO薄膜
23…酸素分量20%のITO薄膜
24…酸素分量0%の試料
25…酸素分量10%の試料
26…酸素分量20%の試料
27…未修飾試料
28…スパッタリングのみの透明導電性微粒子
29…焼鈍した透明導電性微粒子
30…Al2O3粒子
31…焼鈍後の透明導電性微粒子
DESCRIPTION OF SYMBOLS 1 ... Vacuum container 1a ... Cylindrical part 1b ... Hexagonal barrel 2 ... Target 3 ... Fine particle (powder sample)
4-9 ... Piping 10 ... Turbo molecular pump (TMP)
11 ... Pump (RP)
12-14 ... First to third valves 15 ... Oxygen gas introduction mechanism 16 ... Argon gas introduction mechanism 17 ... Heater 18 ... Vibrator 19 ... Pressure gauge 21 ... ITO thin film 22 with 0% oxygen content ... ITO thin film with 10% oxygen content 23 ... ITO thin film with an oxygen content of 20% 24 ... Sample with an oxygen content of 0% 25 ... Sample with an oxygen content of 10% 26 ... Sample with an oxygen content of 20% 27 ... Unmodified sample 28 ... Transparent conductive fine particles 29 only for sputtering ... Annealing Transparent conductive fine particles 30... Al 2 O 3 particles 31. Transparent conductive fine particles after annealing
Claims (3)
重力方向に対して略平行な断面の内部形状が多角形である真空容器内に前記微粒子を収容する工程と、
前記断面に対して略垂直方向を回転軸として前記真空容器を回転させることにより、該真空容器内の微粒子を攪拌あるいは回転させながらスパッタリングを行うことで、該微粒子の表面に該微粒子より粒径の小さい透明導電性超微粒子又は透明導電性薄膜を被覆する工程と、
を具備することを特徴とする透明導電性微粒子の製造方法。 Preparing fine particles comprising any of Al 2 O 3 , SiO 2 , TiO 2 , ZnO, ZrO 2 and a polymer;
Storing the fine particles in a vacuum container having a polygonal internal shape in a cross section substantially parallel to the direction of gravity; and
By rotating the vacuum vessel about a direction substantially perpendicular to the cross section as a rotation axis, sputtering is performed while stirring or rotating the fine particles in the vacuum vessel, so that the surface of the fine particles has a particle size smaller than that of the fine particles. Coating small transparent conductive ultrafine particles or transparent conductive thin film;
A process for producing transparent conductive fine particles, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011272654A JP2012089510A (en) | 2011-12-13 | 2011-12-13 | Transparent conductive particles, and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011272654A JP2012089510A (en) | 2011-12-13 | 2011-12-13 | Transparent conductive particles, and its manufacturing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005225147A Division JP2007042419A (en) | 2005-08-03 | 2005-08-03 | Transparent conductive particles, its manufacturing method and electrophotographic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012089510A true JP2012089510A (en) | 2012-05-10 |
Family
ID=46260867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011272654A Pending JP2012089510A (en) | 2011-12-13 | 2011-12-13 | Transparent conductive particles, and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012089510A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5661965B1 (en) * | 2014-06-17 | 2015-01-28 | 株式会社ジーエル・マテリアルズホールディングス | Material for organic solar cell, organic solar cell using the same, and method for producing the material |
JP2020139194A (en) * | 2019-02-28 | 2020-09-03 | セイコーエプソン株式会社 | Particle coating method and particle coating equipment |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05116930A (en) * | 1991-10-22 | 1993-05-14 | Nippon Chem Ind Co Ltd | Electric conductive white powder |
JPH0927214A (en) * | 1995-07-13 | 1997-01-28 | Sekisui Finechem Co Ltd | Conductive polymer particulate, and manufacture thereof |
JPH10121102A (en) * | 1996-10-15 | 1998-05-12 | Nisshin Steel Co Ltd | White conductive composite powder |
JP2000315426A (en) * | 1999-05-06 | 2000-11-14 | Sekisui Chem Co Ltd | Transparent conductive particulate, transparent anisotropic conductive adhesive, conductive connection structure, and press-input type display device |
JP2002512434A (en) * | 1998-04-22 | 2002-04-23 | ケンブリッジ コンサルタンツ リミテッド | EL device |
JP2003249124A (en) * | 2002-02-26 | 2003-09-05 | Ulvac Japan Ltd | Transparent conductive film with low resistance and method of manufacturing the same |
WO2004059031A1 (en) * | 2002-12-25 | 2004-07-15 | Youtec Co.,Ltd. | Polygonal barrel spattering device, polygonal barrel spattering method, coated particle formed by the device and method, microcapsule, and method of manufacturing the microcapsule |
WO2005004545A1 (en) * | 2003-07-02 | 2005-01-13 | Matsushita Electric Industrial Co., Ltd. | Light-emitting element and display device |
-
2011
- 2011-12-13 JP JP2011272654A patent/JP2012089510A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05116930A (en) * | 1991-10-22 | 1993-05-14 | Nippon Chem Ind Co Ltd | Electric conductive white powder |
JPH0927214A (en) * | 1995-07-13 | 1997-01-28 | Sekisui Finechem Co Ltd | Conductive polymer particulate, and manufacture thereof |
JPH10121102A (en) * | 1996-10-15 | 1998-05-12 | Nisshin Steel Co Ltd | White conductive composite powder |
JP2002512434A (en) * | 1998-04-22 | 2002-04-23 | ケンブリッジ コンサルタンツ リミテッド | EL device |
JP2000315426A (en) * | 1999-05-06 | 2000-11-14 | Sekisui Chem Co Ltd | Transparent conductive particulate, transparent anisotropic conductive adhesive, conductive connection structure, and press-input type display device |
JP2003249124A (en) * | 2002-02-26 | 2003-09-05 | Ulvac Japan Ltd | Transparent conductive film with low resistance and method of manufacturing the same |
WO2004059031A1 (en) * | 2002-12-25 | 2004-07-15 | Youtec Co.,Ltd. | Polygonal barrel spattering device, polygonal barrel spattering method, coated particle formed by the device and method, microcapsule, and method of manufacturing the microcapsule |
WO2005004545A1 (en) * | 2003-07-02 | 2005-01-13 | Matsushita Electric Industrial Co., Ltd. | Light-emitting element and display device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5661965B1 (en) * | 2014-06-17 | 2015-01-28 | 株式会社ジーエル・マテリアルズホールディングス | Material for organic solar cell, organic solar cell using the same, and method for producing the material |
JP2020139194A (en) * | 2019-02-28 | 2020-09-03 | セイコーエプソン株式会社 | Particle coating method and particle coating equipment |
JP7243291B2 (en) | 2019-02-28 | 2023-03-22 | セイコーエプソン株式会社 | Particle coating method and particle coating apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
El Nahrawy et al. | Thermal, dielectric and antimicrobial properties of polystyrene-assisted/ITO: Cu nanocomposites | |
JP3620842B2 (en) | Polygonal barrel sputtering apparatus, polygonal barrel sputtering method, coated fine particles formed thereby, and method for producing coated fine particles | |
Sarma et al. | Role of residual stress and texture of ZnO nanocrystals on electro-optical properties of ZnO/Ag/ZnO multilayer transparent conductors | |
CN100577782C (en) | Electrorheological fluid electrode plate with surface modification | |
TW201212327A (en) | Organic electroluminescence device | |
Qi et al. | Realization of a flexible and mechanically robust Ag mesh transparent electrode and its application in a PDLC device | |
JP2023520825A (en) | SELF-HEATING GAS SENSORS, GAS-SENSITIVE MATERIALS, METHODS OF MANUFACTURING AND USES THEREOF | |
CN109890190A (en) | A kind of transparent electromagnetic shielding film and preparation method thereof | |
JP2012089510A (en) | Transparent conductive particles, and its manufacturing method | |
CN104616833A (en) | Method for preparing silver nanowire transparent electrodes at large scale and silver nanowire transparent electrode | |
WO2007015380A1 (en) | Transparent conductive fine particles, method for producing same, and electrooptical device | |
Al-Masoodi et al. | Efficiency enhancement in blue phosphorescent organic light emitting diode with silver nanoparticles prepared by plasma-assisted hot-filament evaporation as an external light-extraction layer | |
Din et al. | ZnO-CuO nanomaterial based efficient multi-functional sensor for simultaneous detection of humidity and mechanical pressure | |
Hong et al. | ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer | |
Wang et al. | Investigation of the optical and electrical properties of ZnO/Cu/ZnO multilayer structure for transparent conductive electrodes by magnetron sputtering | |
Maestre et al. | Indium tin oxide micro-and nanostructures grown by thermal treatment of InN/SnO2 | |
CN106896146A (en) | A kind of coating production of zinc ferrite acetone gas sensing layer | |
Masuda et al. | Site-selective deposition of In2O3 using a self-assembled monolayer | |
Ma et al. | Improving the thermal stability and oxidation resistance of silver nanowire films via 2-mercaptobenzimidazole modification | |
Choudhury et al. | Study of structural, electrical and optical properties of Ni-doped SnO 2 for device application: experimental and theoretical approach | |
Qin et al. | Effect of copper nanoparticle addition on the electrical and optical properties of thin films prepared from silver nanoparticles | |
CN104835708B (en) | A kind of preparation method of field emission flat panel display device of graphene oxide | |
Zhou et al. | Conductive ZnO: Zn composites for high-rate sputtering deposition of ZnO thin films | |
Poonthong et al. | Performance Analysis of Ti‐Doped In2O3 Thin Films Prepared by Various Doping Concentrations Using RF Magnetron Sputtering for Light‐Emitting Device | |
Yao et al. | Ceramic nano-particle/substrate interface bonding formation derived from dynamic mechanical force at room temperature: HRTEM examination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130910 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140408 |