WO2007004483A1 - Method for manufacturing laminated coil and laminated coil - Google Patents
Method for manufacturing laminated coil and laminated coil Download PDFInfo
- Publication number
- WO2007004483A1 WO2007004483A1 PCT/JP2006/312872 JP2006312872W WO2007004483A1 WO 2007004483 A1 WO2007004483 A1 WO 2007004483A1 JP 2006312872 W JP2006312872 W JP 2006312872W WO 2007004483 A1 WO2007004483 A1 WO 2007004483A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- sheet
- laminated
- laminated coil
- insulating material
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 62
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 239000011810 insulating material Substances 0.000 claims abstract description 43
- 238000002844 melting Methods 0.000 claims abstract description 39
- 239000002184 metal Substances 0.000 claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 claims abstract description 37
- 230000008018 melting Effects 0.000 claims abstract description 35
- 239000003822 epoxy resin Substances 0.000 claims description 31
- 229920000647 polyepoxide Polymers 0.000 claims description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 21
- 239000003795 chemical substances by application Substances 0.000 claims description 20
- 229920005989 resin Polymers 0.000 claims description 20
- 239000011347 resin Substances 0.000 claims description 20
- 239000000853 adhesive Substances 0.000 claims description 18
- 230000001070 adhesive effect Effects 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 17
- 238000004804 winding Methods 0.000 claims description 11
- 150000008065 acid anhydrides Chemical class 0.000 claims description 9
- 238000004080 punching Methods 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 6
- 150000002460 imidazoles Chemical class 0.000 claims description 6
- 229920001187 thermosetting polymer Polymers 0.000 claims description 6
- 239000004962 Polyamide-imide Substances 0.000 claims description 5
- 229920002312 polyamide-imide Polymers 0.000 claims description 5
- 229920001721 polyimide Polymers 0.000 claims description 5
- 229910000679 solder Inorganic materials 0.000 claims description 5
- 239000012778 molding material Substances 0.000 claims description 4
- 239000009719 polyimide resin Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 description 26
- 239000000463 material Substances 0.000 description 12
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 239000011162 core material Substances 0.000 description 7
- 238000007639 printing Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 230000002500 effect on skin Effects 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 239000011342 resin composition Substances 0.000 description 5
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 229930185605 Bisphenol Natural products 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- 229920000877 Melamine resin Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- KMOUUZVZFBCRAM-OLQVQODUSA-N (3as,7ar)-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C=CC[C@@H]2C(=O)OC(=O)[C@@H]21 KMOUUZVZFBCRAM-OLQVQODUSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- QCBSYPYHCJMQGB-UHFFFAOYSA-N 2-ethyl-1,3,5-triazine Chemical compound CCC1=NC=NC=N1 QCBSYPYHCJMQGB-UHFFFAOYSA-N 0.000 description 1
- SESYNEDUKZDRJL-UHFFFAOYSA-N 3-(2-methylimidazol-1-yl)propanenitrile Chemical compound CC1=NC=CN1CCC#N SESYNEDUKZDRJL-UHFFFAOYSA-N 0.000 description 1
- SSZWWUDQMAHNAQ-UHFFFAOYSA-N 3-chloropropane-1,2-diol Chemical compound OCC(O)CCl SSZWWUDQMAHNAQ-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- QQGYZOYWNCKGEK-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC=2C=C3C(=O)OC(C3=CC=2)=O)=C1 QQGYZOYWNCKGEK-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- GZVHEAJQGPRDLQ-UHFFFAOYSA-N 6-phenyl-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(C=2C=CC=CC=2)=N1 GZVHEAJQGPRDLQ-UHFFFAOYSA-N 0.000 description 1
- 239000004135 Bone phosphate Substances 0.000 description 1
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical compound NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 229910001174 tin-lead alloy Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2847—Sheets; Strips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/04—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
- H01F41/12—Insulating of windings
- H01F41/122—Insulating between turns or between winding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F17/00—Fixed inductances of the signal type
- H01F17/0006—Printed inductances
- H01F17/0013—Printed inductances with stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/323—Insulation between winding turns, between winding layers
Definitions
- the present invention relates to a method for manufacturing a laminated coil used for a choke coil or a transformer for an electric circuit, and a laminated coil.
- a coil for an electric circuit for example, a choke coil
- an electric wire a copper wire such as a magnet wire
- an insulating coating wound around a core material such as a silicon steel plate or a ferrite core at least once.
- a core material such as a silicon steel plate or a ferrite core
- Patent Document 1 discloses a thin coil component and a manufacturing method thereof.
- Patent Document 1 Japanese Patent Laid-Open No. 10-32129
- Patent Document 2 Japanese Patent Laid-Open No. 2003-17328
- the method of winding the plate-like copper wires and winding the copper wires in parallel poses a problem of labor and cost such as the winding processing, terminal processing, and pin binding processing.
- the processing cost and material cost of the printed board are increased.
- the conventional printed circuit board coil has a problem in that it takes a lot of labor and costs such as the embedding of the pins or the processing related to the inner via, and prevents miniaturization.
- the laminated coil described in Patent Document 1 also requires a process of providing a through hole and fixing the conductor to the inner wall of the through hole with a mess, and these efforts and costs are problematic.
- the present invention has been made to solve the above-described problems.
- a manufacturing method of a laminated coil that has a simple manufacturing process and is suitable for mass production, and is excellent in quality at low cost.
- An object is to provide a laminated coil.
- the method for manufacturing a laminated coil according to the present invention is formed as a single turn or a plurality of turns in a spiral shape as shown in FIG.
- the sheet coil is separated on one side or both sides of the sheet coil except for the connection part 8.
- the winding direction is the same when laminated, and when laminating, the insulating material 10 is interposed between the overlapping sheet coils 2, and the connecting portions 8 are opposed to each other.
- the sheet coil 2 is stacked and the stacked sheet coil is stacked. Heating the whole, to melt the low melting point metal 12 attached to the connecting section, it is that the formation of the coil spirally electrically connecting the connecting portion 8 between the sheet coil. At this time, the sheet coils at both ends of the layer of the laminated coil need only be provided with connection portions on one surface.
- the method for manufacturing a laminated coil according to the present invention is such that a thermosetting adhesive 14 is interposed between the stacked sheet coils 2 and the sheet coils are bonded to each other by the heating.
- the method for manufacturing a laminated coil according to the present invention is that the insulating material 10 is an epoxy resin having 2 to 4 oxysilane rings using a 2 to 4 base acid anhydride as a curing agent.
- the method for manufacturing a laminated coil according to the present invention is that the insulating material 10 is an epoxy resin having 2 to 4 oxysilane rings using imidazole as a hardener.
- the method for manufacturing a laminated coil according to the present invention uses, as the insulating material, a 2 to 4 oxysilane ring epoxy resin using a polyimide resin or a polyamideimide resin as a curing agent. .
- the method for manufacturing a laminated coil according to the present invention is that tin, lead, or solder is used as the low melting point metal 12.
- the method for manufacturing a laminated coil according to the present invention is that the sheet coil 2 is formed by punching a copper plate into a rectangular loop shape.
- the laminated sheet coil 2 is coated with a molding material 20 mixed with iron powder.
- the laminated coil according to the present invention is manufactured by any one of the above-described laminated coil manufacturing methods.
- a laminated coil According to the method for manufacturing a laminated coil according to the present invention, at the time of lamination, an insulating material is interposed between the overlapping sheet coils, and the sheet coils are stacked so that the connection portions face each other. The entire laminated sheet coil is heated to melt the low-melting point metal adhering to the connection, and the sheet coil connection is electrically connected to form a spiral coil. Manufacturing by the process is possible, so that mass production can be easily performed and the cost can be reduced, and at the same time, a large current capacity and high quality coil can be easily obtained.
- each sheet coil is bonded to each other by interposing a thermosetting adhesive between the stacked sheet coils. There is an effect that the coils are joined well and the quality of the laminated coil is improved.
- the glass transition is high. Maintains the form and function as an insulating film between the sheet coils without any alteration (for example, the expansion coefficient becomes high) even after cooling, the temperature at which the low melting point metal is melted and after cooling. In addition, since the thermal expansion is small, there is no other adverse effect such as peeling even after cooling.
- the connecting portions are excellently and accurately connected to each other by fusion bonding of the low melting point metal, and large. If it can withstand electric current, it has a positive effect.
- the sheet coil is formed by punching a copper plate into a rectangular loop shape, the manufacturing is easy, the cost can be reduced, and a coil with a large current capacity is obtained. When it is done, it has a positive effect.
- the periphery of the laminated sheet coil is coated with the mold material mixed with iron powder, so that the magnetic flux is induced in the mold material and the efficiency is increased.
- the magnetic field lines can be well connected and the inductance of the coil is increased, there is an effect.
- the laminated coil according to the present invention is manufactured by any one of the manufacturing methods described above, it can be manufactured by a consistent processing process, which facilitates mass production and reduces costs. There is an effect that can be achieved.
- the laminated coil 1 is a coil such as a choke coil for an electric circuit. Used.
- the laminated coil has a structure in which a single-turn sheet-like coil is laminated to form a multi-turn coil, and a multi-turn sheet-like coil is laminated to form a multi-turn coil. There is.
- FIG. 1 shows the above-described one-turn sheet coil 2 for each layer.
- This sheet coil 2 has forms from the first layer to the 15th layer.
- Each coil has an open loop shape in which the winding direction is rectangular, and a predetermined gap 4 (gap) is formed in part.
- a coil terminal portion 6 is formed at one end of each of the sheet coils at the lowermost end (first layer) and the uppermost end (15th layer) so as to protrude from a rectangular frame.
- Each of the other end portions is formed with a connection portion 8 that is electrically connected to another sheet coil.
- the sheet coil 2 from the second layer to the fourteenth layer has other surface portions near one end facing the gap 4 and other back surfaces near the other end.
- a connecting portion 8 to be connected to the sheet coil is formed.
- the sheet coil 2 is stacked, for example, sequentially from the bottom to the first layer, the second layer, and the third layer. At this time, the gap 4 position of each sheet coil 2 is formed so as to be sequentially shifted by one frame (in the range of the size of the connecting portion) in the same peripheral direction. As a result, the connecting portions 8 of the sheet coils 2 that overlap in the vertical direction face each other. If these are electrically connected and made conductive, a coil with 15 turns can be formed.
- a sheet coil is formed by punching a conductive plate material by a press punching process.
- the sheet coil 2 from the first layer to the 15th layer is made by punching a copper plate.
- epoxy resin bisphenol type epichlorohydrin resin
- This epoxy resin is excellent in heat resistance, electrical insulation, adhesive strength, and mechanical strength.
- An acid anhydride methyltetrahydrophthalic anhydride
- methyltetrahydrophthalic anhydride is liquid at room temperature, and is convenient for printing and has good workability.
- a resin composition comprising the above bisphenol type epichlorohydrin resin and the above methyltetrahydrophthalic anhydride as a curing agent has a particularly high glass transition temperature (Tg). It is excellent in heat resistance and effective as the insulating material 10, and the resin composition does not change heat even at the temperature at which the following low melting point metal is melted. It was confirmed by the prototype that there was no. In addition, imidazoles (2-ethyl-4-methylimidazole) were added as a catalyst to the resin composition.
- the following epoxy resins having a 2-oxolan ring to 4-oxylan ring system are excellent in heat resistance and can be used as the insulating material 10.
- the following resins can be used as the insulating material 10 as confirmed by in-house tests.
- the above-mentioned 2-oxylan ring epoxy resins include alicyclic epoxy resins, bisphenol type (A, F type, etc.) monochlorohydrin resins, and bifunctional phenolic type epoxy resins.
- 3-oxysilane ring epoxy resins include phenol novolac resins, heterocyclic epoxy resins, and multifunctional epoxy resins.
- 4-oxosilane epoxy resins include tetrafunctional phenolic epoxy resins. There are resin and tetrafunctional glycidylamine type epoxy resin.
- thermosetting resin such as polyimide or polyamideimide, melamine resin and benzoguanamine resin are also confirmed to be good.
- acid anhydrides of 2 to 4 bases are effective as a curing agent that contributes to heat resistance in combination with the epoxy resin.
- materials and catalysts that have been confirmed by in-house tests and are effective as curing agents for the above epoxy resins include the following.
- Examples of the above two-basic acid anhydrides include methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalate. Trimellitic acid as tribasic acid anhydride, pyromellitic acid, 4,4'-oxydiphthalic anhydride, etc. as 4-basic acid anhydride.
- imidazoles such as 1-cyanoethyl-2-methylimidazole and 2,4-diamino-6- [2'-methylimidazolyl mono (1 ')] ethyl-s-triazine / isocyanuric acid addition salt
- amine-based curing agents diaminodiphenyl ether, and amine-based curing agents such as 4,4-diaminodiphenylmethane are good.
- a resin such as polyimide, polyamide-imide or melamine
- tertiary amines such as 2,4,6-tris (dimethylaminomethyl) phenol, or imidazoles have been confirmed to be excellent in curing acceleration.
- An insulating material using the above-mentioned epoxy resin as the curing agent such as the above acid anhydride or the above imidazoles or amines as the curing agent has an increased glass transition temperature and is excellent in heat resistance. Even when the low melting point metal is melted, the function as an insulating film that does not change heat is not impaired.
- the insulating film made of the insulating material 10 on the surface of the connection portion 8 of each sheet coil 2 is removed by a technique such as etching.
- the insulating film on the surface of the connecting portion 8 is removed by a chemical method such as etching, a mechanical method, or a physical method such as laser beam, high-frequency dielectric heating, or discharge.
- conductive connection portions 8 are formed in the vicinity of the end portions of the front surface portion and the back surface portion of the sheet coil 2, respectively.
- the low melting point metal 12 is deposited (plated) on the conductive connecting portion 8 of the sheet coil from which the insulating film has been removed.
- the low melting point metal 12 is preferably tin, lead, solder (tin-lead alloy) or the like.
- solder is good when the content of tin is high (60% or more) and the melting point is low.
- An alloy in which a small amount of nickel, silver, copper, or the like is mixed with tin can be used.
- the thickness (M) of the low melting point metal 12 layer plated on the connection portion 8 of each sheet coil 2 is the thickness (W) of the insulating film layer formed by the insulating material 10. Slightly thicker, formed to a degree (M> W).
- the thickness of the low melting point metal 12 layer is made thicker than the thickness of the insulating film layer of the insulating material 10. This ensures that the 12 layers of low melting point metal in the sheet coil that face each other are fused and connected.
- the above-mentioned consistent printing process and processing process complete the process such as insulation for each sheet coil.
- the adhesive 14 is applied and applied to one or both sides of the sheet coil 2 leaving the connecting portion 8, and the sheet coils from the first layer to the 15th layer are coated. Are stacked and bonded together.
- a thermosetting adhesive such as epoxy resin is used.
- some of these adhesives melt at low temperatures (60 ° C to 80 ° C).
- high temperatures 120 ° C or higher
- the reaction takes place and the adhesive changes into a thermosetting adhesive.
- the laminated sheet coil is placed in a heating furnace or the like and heated at a predetermined temperature.
- This heating temperature is a temperature near the melting point at which the low melting point metal 12 melts.
- the 12 low-melting point metal layers of the facing connecting portions of the laminated sheet coil 2 are melted, and the facing connecting portions are electrically connected and conducted by the low-melting point metal.
- the adhesive 14 is melted by the heating, and then is thermally cured to bond the sheet coils together.
- the insulating film serving as the insulating material can withstand the melting temperature of the low melting point metal. It was confirmed that the insulating film itself maintained its insulating state well. In addition, this insulating film did not react with the low melting point metal and the low melting point metal flowed out. Furthermore, since this insulating film has little thermal expansion, it is favorable that the form of the sheet coil laminated by heat treatment is not affected.
- the adhesive 14 is cured to bond the sheet coils 2 together, and the connecting portions 8 of the overlapping sheet coils are electrically connected by the low melting point metal 12.
- the sheet coils are spirally connected, and a 15-turn laminated coil 1 is formed as a whole.
- an insulating film is applied around the laminated coil 1 with epoxy resin, insulating tape, or the like.
- a core material 18 such as a magnetic material core is passed through the rectangular hollow portion of the laminated coil 1.
- the core material includes steel, ferrite, cobalt, Kel etc. can be used.
- a resin mold material 20 is coated around the laminated coil 1 and the core material 18 to a predetermined thickness.
- the mold material 20 for example, an epoxy resin or the like mixed with iron powder and carbon powder is used. This iron powder induces magnetic flux as a magnetic material, and can effectively connect magnetic lines of force, increasing the coil inductance. In addition, the efficiency of coil cooling can be improved by the heat conduction effect of iron powder and carbon powder.
- the bulging portion 22 is formed on the outer portion (on the opposite side of the center) of the laminated coil 1. Without this bulging portion, the thickness of the resin mold in the outer portion of the laminated coil 1 becomes narrow, and it is not preferable for the magnetic field lines to go around in the atmosphere.
- the bulging portion 22 described above the passage of the magnetic force lines 23 is widened so that the magnetic flux is guided to the inside of the molding material 20 and the molding material of the bulging portion 22, and the magnetic field lines are efficiently connected to reduce the coil inductance. Enhanced.
- the choke coil 16 using the laminated coil 1 is completed by the above resin mold. As shown in FIG. 6, the choke coil 16 has a coil terminal portion 6 of the first-layer sheet coil and a coil terminal portion 6 of the fifteenth-layer sheet coil projecting upward. Is fixed to the substrate using a fastening tool such as a self-tapping screw.
- This choke coil is particularly useful as a coil for a power factor correction circuit that handles a large current, such as an air conditioner for air conditioning.
- the laminated coil 1 can also be used as a transformer coil.
- the laminated coil according to this embodiment it is possible to manufacture by a consistent processing process such as a punching process, a printing process, a plating process, and a heating process, so that mass production can be easily performed. Cost can be reduced.
- manufacturing without the need for a drilling process can be performed quickly, and the use of copper plates and multilayering are easy, reducing the effect of the skin effect, and a large number of hundreds of amps (amperes). Coils with current capacity can be easily made.
- the sheet coils of the first to fifteenth layers shown in FIG. 1 are arranged on one copper plate, the insulating material 10 is applied to the entire copper plate, and the portion corresponding to the connection portion 8 is then applied. After removing the insulating material, or applying the insulating material 10 while leaving the connection portions 8, and then coating the low melting point metal 12 on each connection portion 8, punch out each sheet coil with a press cage, and then stack the layers.
- a laminated coil may be obtained through a process and an overheating process.
- a plurality of first-layer sheet coils are arranged on the first copper plate, and the entire copper plate is coated with the insulating material 10 and the low-melting point metal 12 is coated as described above.
- a plurality of second-layer sheet coils are arranged on the second copper plate so as to overlap with the first-layer sheet coils, respectively, and the insulating material 10 is applied thereto and the low melting point metal 12 is plated.
- the third to fifteenth sheet coils are formed on the third and subsequent copper plates. Then, apply the adhesive to the first to fifteenth copper plates in the same way as in the laminating process and laminate them (or divide them several times), then punch out all the sheet coils at once. A plurality of laminated coils are obtained. At this time, delete any burrs remaining in the punched area.
- FIG. 7 shows the sheet coil 32 constituting this laminated coil for each layer.
- These sheet coils 32 are composed of six sheets from the first layer to the sixth layer, each of which is a four-turn sheet coil.
- Each of the sheet coils 32 has a rectangular winding direction, a coil is formed spirally toward the inside (or outside) of the sheet, and both end portions are open.
- each of the sheet coil 32 at the lowermost end (first layer) and the uppermost end (sixth layer) is formed with a coil terminal portion 36 in a state of protruding from a rectangular frame.
- the other end is formed with a connecting portion 38 that is electrically connected to another sheet coil.
- the sheet coils 32 from the second layer to the fifth layer are connected to other sheet coils on the surface portion near the end on one end side and on the back surface near the end on the other end side, respectively.
- the connecting portion 3 8 is formed.
- Each sheet coil 32 is formed with a connecting portion 38 so that the connecting portions near one end overlap each other and the winding direction is the same when the connecting portions are made conductive. .
- the material used for the manufacturing process and insulation of the laminated coil of this form is the above laminated coil. This is basically the same as in case of mail 1.
- the sheet coils from the first layer to the sixth layer are manufactured by a stamping process using a press. In this process, each sheet coil is made by punching a copper plate.
- the insulating material 10 is printed on both surfaces of each sheet coil to a predetermined thickness to form an insulating film.
- the insulating film that also serves as the insulating material on the surface of the connecting portion 38 of each sheet coil 32 is removed by the technique such as the etching process.
- the low-melting-point metal 12 is applied to the conductive connection portion 38 of the sheet coil from which the insulating film has been removed by a plating process.
- the adhesive 14 is applied to one or both surfaces of the sheet coil 32, leaving the connection portion 38, and the sheet coils from the first layer to the sixth layer are laminated and bonded together.
- the laminated sheet coil is put in a heating furnace or the like and heated at a predetermined temperature.
- the low melting point metal of each facing connection portion of the laminated sheet coil is melted, and the facing connection portions are electrically connected to each other by the layer of the low melting point metal.
- the adhesive 14 is melted by the heating, and is then thermally cured to bond the sheet coils together. After cooling, the adhesive is cured and the sheet coils are bonded together, and the connecting portions of the overlapping sheet coils are electrically connected by a low melting point metal, thereby forming a 24-turn laminated coil. Is done.
- the periphery of the laminated coil is further coated with an insulating film by epoxy resin, insulating tape, or the like. Then, the core material made of a magnetic material is inserted into the rectangular hollow portion of the laminated coils. Next, the mold material 20 is coated around the coil and the iron core to perform the resin molding. Moreover, in the said resin mold, the bulging part is formed in the outer side (anti-center direction side) part of a coil. With this resin mold, a choke coil using a laminated coil is completed. This choke coil is also useful for power factor correction circuits such as air conditioners for air conditioning.
- the laminated coil can also be used as a transformer coil.
- the laminated coil according to this embodiment can be manufactured by consistent processing processes such as a punching process, a printing process, a plating process, and a heating process, as in the case of the laminated coil. Can be done easily and the cost can be reduced. Also on The sheet coil constituting the laminated coil has a large surface area and can reduce the influence of the skin effect, so that the current capacity can be increased.
- FIG. 1 is a diagram showing sheet coils from the first layer to the fifteenth layer constituting the laminated coil according to the embodiment of the present invention.
- FIG. 2 is a diagram (a partial cross-sectional view taken along line AA in FIG. 1) showing a state where an insulating material is applied to the sheet coil and a low melting point metal is adhered to the sheet coil according to the embodiment.
- FIG. 3 is a view showing a state in which an adhesive is applied to the sheet coils according to the embodiment and the sheet coils are bonded to each other.
- FIG. 4 is a view showing a state in which a resin mold is applied to the laminated coil according to the embodiment.
- FIG. 5 is a view showing a state in which a bulging portion is provided in a resin mold applied to the laminated coil according to the embodiment.
- FIG. 6 is a view showing the laminated coil according to the embodiment, where (a) is a side view and (b) is a plan view.
- FIG. 7 is a diagram showing sheet coils from the first layer to the sixth layer constituting a laminated coil according to another embodiment.
- FIG. 8 is a diagram (partial cross section taken along line BB in FIG. 7) showing a state in which an insulating material is applied to a sheet coil and a low melting point metal or the like is attached to another embodiment.
- FIG. 9 is a view showing a laminated coil according to a conventional example.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Coils Or Transformers For Communication (AREA)
- Coils Of Transformers For General Uses (AREA)
Abstract
A method for manufacturing a laminated coil being employed in a choke coil or a transformer for electric circuits. The method is suitable for mass production because the manufacturing process is simplified and can manufacture a laminated coil of excellent quality at a low cost. A laminated coil is also provided. In the method for manufacturing a laminated coil, a flat conductive sheet coil (2) formed by being wound spirally by a single turn or a plurality of turns and provided with a joint (8) in the vicinity of the end is employed, each sheet coil is coated with a filmlike insulating material (10) excepting the joint (8), and a low melting point metal (12) is applied to the joint (8). The sheet coils (2) are laminated such that the insulating material (10) is interposed between them and the joints (8) oppose each other, and then the entirety of laminated coil is heated to melt the low melting point metal (12) deposited on the joints so that the joints (8) of the sheet coils are connected electrically thus forming a coil spirally.
Description
明 細 書 Specification
積層コイルの製造方法及び積層コイル 技術分野 Manufacturing method of laminated coil and laminated coil technical field
[0001] 本発明は、電気回路用のチョークコイル或いはトランス等に用いられる積層コイル の製造方法及び積層コイルに関する。 The present invention relates to a method for manufacturing a laminated coil used for a choke coil or a transformer for an electric circuit, and a laminated coil.
背景技術 Background art
[0002] 従来、電気回路用のコイル例えばチョークコイルは、絶縁被覆を施した電線 (マグ ネットワイヤ等の銅線)を珪素鋼板、フェライトコア等の芯材に一回以上巻いた物であ り、特に大電流を扱う場合には太 、電線が卷線されたものを用いる。 Conventionally, a coil for an electric circuit, for example, a choke coil, is an electric wire (a copper wire such as a magnet wire) with an insulating coating wound around a core material such as a silicon steel plate or a ferrite core at least once. Especially when dealing with large currents, use thick wires that have been wound.
[0003] また、上記コイルを流れる電流は、周波数が数 kHz以下では一般の銅線を卷線し たものでも問題はないが、電流の周波数が高い場合には表皮効果により電流が導体 の中心部を流れなくなる現象が生じる。この表皮効果を避けるためには、表皮効果が 問題とならな 、細 、銅線を並列に接続して卷線する力 或 、は丸 、銅線でなく板状 の銅線を卷線する方法が採用される。 [0003] Although there is no problem with the current flowing through the coil even when a general copper wire is wound when the frequency is several kHz or less, when the frequency of the current is high, the current flows to the center of the conductor due to the skin effect. A phenomenon that stops flowing through the part occurs. In order to avoid this skin effect, the skin effect is not a problem. The power to wire thin copper wires in parallel or the method of winding plate-like copper wire instead of round or copper wire. Is adopted.
[0004] このため、従来の卷線力 脱却して印刷基板を利用したコイルが開発されて!、る。 [0004] For this reason, a coil using a printed circuit board has been developed to break away from the conventional winding force!
このような印刷基板コイルは、重なる次の層のコイルと接続するために、絶縁層である 基材に穴を開け、その穴に接続するための導電性のピンを埋め込む等の処理が必 要となる。このため、多層状にコイルを形成する場合には、絶縁層を挟んだ層間の接 続穴としてインナービアを形成し、また不必要な接続穴の部分を避けて印刷コイルを 形成する等の処理が必要である。 In order to connect such a printed circuit board coil to the coil of the next layer to be overlapped, a process such as making a hole in the base material which is an insulating layer and embedding a conductive pin for connecting to the hole is required. It becomes. For this reason, when forming a coil in multiple layers, an inner via is formed as a connection hole between layers sandwiching an insulating layer, and a printed coil is formed by avoiding unnecessary connection holes. is required.
[0005] 他の例として、特許文献 1には薄型コイル部品とその製造方法が開示されている。 [0005] As another example, Patent Document 1 discloses a thin coil component and a manufacturing method thereof.
これは図 9に示すように、片面または両面に導体のコイルパターン 52, 53を設けた複 数枚の絶縁材 54を積層し、各コイルパターンの内端部を接続するためのスルーホー ル 56及びパッド 58にもスルーホール 60を設け、これらスルーホールの内壁にメツキ を施して導体を固着し、これにより各内端部同士を電気的に導通させて積層コイルを 構成したものである。また、特許文献 2には、平角線を軸方向に重ねて螺旋巻きにす ることで大電流化を図ったインダクタンス素子に関する記載がある。
[0006] 特許文献 1 :特開平 10— 32129号公報 As shown in FIG. 9, a plurality of insulating materials 54 having conductor coil patterns 52 and 53 provided on one or both sides are laminated, and through holes 56 and 56 for connecting the inner ends of the respective coil patterns. Through-holes 60 are also provided in the pads 58, and the inner walls of these through-holes are squeezed to fix the conductors, whereby the inner ends are electrically connected to form a laminated coil. Patent Document 2 also describes an inductance element in which a large current is achieved by spirally winding a rectangular wire in the axial direction. [0006] Patent Document 1: Japanese Patent Laid-Open No. 10-32129
特許文献 2 :特開 2003— 17328号公報 Patent Document 2: Japanese Patent Laid-Open No. 2003-17328
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0007] しかし、上記板状銅線を卷線し及び銅線を並列に卷線する方法は、卷線処理、末 端処理、及びピン絡げ処理等の手間及びコストが問題になり、また印刷基板を使用 する方法では、印刷基板の加工コスト及び材料コストがかさむという問題がある。 [0007] However, the method of winding the plate-like copper wires and winding the copper wires in parallel poses a problem of labor and cost such as the winding processing, terminal processing, and pin binding processing. In the method using a printed board, there is a problem that the processing cost and material cost of the printed board are increased.
[0008] また、従来の印刷基板コイルは、上記ピンの埋め込み或いはインナービアに係る処 理など多くの手間とコストがかかり、且つ小型化を妨げるという問題があった。特許文 献 1に記載の積層コイルについても、スルーホールを設け、このスルーホールの内壁 にメツキにより導体を固着する処理が必要であり、これらの手間及びコストが問題であ る。 [0008] In addition, the conventional printed circuit board coil has a problem in that it takes a lot of labor and costs such as the embedding of the pins or the processing related to the inner via, and prevents miniaturization. The laminated coil described in Patent Document 1 also requires a process of providing a through hole and fixing the conductor to the inner wall of the through hole with a mess, and these efforts and costs are problematic.
[0009] 本発明は上記問題点を解決するためになされたものであり、製造工程が単純化で きかつ大量生産に好適であるとともに、低コストで品質に優れた積層コイルの製造方 法及び積層コイルを提供することを目的とする。 [0009] The present invention has been made to solve the above-described problems. A manufacturing method of a laminated coil that has a simple manufacturing process and is suitable for mass production, and is excellent in quality at low cost. An object is to provide a laminated coil.
課題を解決するための手段 Means for solving the problem
[0010] 以上の技術的課題を解決するため、本発明に係る積層コイルの製造方法は、図 1 等に示すように、一回巻き又は渦状に複数回巻きに形成され、端部近傍の表面部及 び裏面部、又は一方の面部に接続部 8が設けられた平坦な導電性のシートコイル 2 を用い、上記各シートコイルの片面又は両面に、上記接続部 8を除いて皮膜状に絶 縁材 10を塗布するとともに、上記接続部 8に低融点金属 12を被着し、上記シートコィ ル 2を、重なり合う各シートコイルの上記接続部 8同士が対向し、かつこれら接続部同 士を導通させたときに卷回方向が同じになるように構成し、積層の際には、重なり合う 上記シートコイル 2間に上記絶縁材 10を介在させ、かつ上記接続部 8同士が対向す るように各シートコイル 2を積み重ね、上記積層した上記シートコイルの全体を加熱し 、上記接続部に付着された低融点金属 12を溶融させ、上記シートコイルの接続部 8 同士を電気的に接続して螺旋状にコイルを形成したことである。このとき、積層コイル の層の両端部のシートコイルは、一方の面部のみに接続部を設ければ足りる。
[0011] 本発明に係る積層コイルの製造方法は、上記積み重ねられる各シートコイル 2間に 、熱硬化性の接着剤 14を介在させ、上記加熱により各シートコイル同士を接着させ たことである。 [0010] In order to solve the above technical problem, the method for manufacturing a laminated coil according to the present invention is formed as a single turn or a plurality of turns in a spiral shape as shown in FIG. Using the flat conductive sheet coil 2 provided with the connection part 8 on the part and the back part or on one surface part, the sheet coil is separated on one side or both sides of the sheet coil except for the connection part 8. Apply the edge material 10 and apply the low melting point metal 12 to the connecting part 8 to connect the sheet coil 2 with the connecting parts 8 of the overlapping sheet coils facing each other. The winding direction is the same when laminated, and when laminating, the insulating material 10 is interposed between the overlapping sheet coils 2, and the connecting portions 8 are opposed to each other. The sheet coil 2 is stacked and the stacked sheet coil is stacked. Heating the whole, to melt the low melting point metal 12 attached to the connecting section, it is that the formation of the coil spirally electrically connecting the connecting portion 8 between the sheet coil. At this time, the sheet coils at both ends of the layer of the laminated coil need only be provided with connection portions on one surface. [0011] The method for manufacturing a laminated coil according to the present invention is such that a thermosetting adhesive 14 is interposed between the stacked sheet coils 2 and the sheet coils are bonded to each other by the heating.
[0012] 本発明に係る積層コイルの製造方法は、上記絶縁材 10として、 2乃至 4塩基の酸 無水物を硬化剤とする 2乃至 4ォキシラン環のエポキシ榭脂を用いたことである。 [0012] The method for manufacturing a laminated coil according to the present invention is that the insulating material 10 is an epoxy resin having 2 to 4 oxysilane rings using a 2 to 4 base acid anhydride as a curing agent.
[0013] 本発明に係る積層コイルの製造方法は、上記絶縁材 10として、イミダゾール類を硬 ィ匕剤とする 2乃至 4ォキシラン環のエポキシ榭脂を用いたことである。 [0013] The method for manufacturing a laminated coil according to the present invention is that the insulating material 10 is an epoxy resin having 2 to 4 oxysilane rings using imidazole as a hardener.
[0014] また、本発明に係る積層コイルの製造方法は、上記絶縁材として、ポリイミド榭脂又 はポリアミドイミド榭脂を硬化剤とする 2乃至 4ォキシラン環のエポキシ榭脂を用いたこ とである。 [0014] In addition, the method for manufacturing a laminated coil according to the present invention uses, as the insulating material, a 2 to 4 oxysilane ring epoxy resin using a polyimide resin or a polyamideimide resin as a curing agent. .
[0015] 本発明に係る積層コイルの製造方法は、上記低融点金属 12として錫、鉛、又は半 田を用いたことである。 The method for manufacturing a laminated coil according to the present invention is that tin, lead, or solder is used as the low melting point metal 12.
[0016] 本発明に係る積層コイルの製造方法は、上記シートコイル 2を、銅板を矩形のルー プ状に打ち抜いて形成したことである。また、本発明に係る積層コイルの製造方法は 、上記加熱後、積層した上記シートコイル 2の周囲に、鉄粉を混入したモールド材 20 を被覆させたことである。 The method for manufacturing a laminated coil according to the present invention is that the sheet coil 2 is formed by punching a copper plate into a rectangular loop shape. In the method for manufacturing a laminated coil according to the present invention, after the heating, the laminated sheet coil 2 is coated with a molding material 20 mixed with iron powder.
[0017] また、本発明に係る積層コイルは、上記何れかに記載の積層コイルの製造方法に より製造されたものである。 In addition, the laminated coil according to the present invention is manufactured by any one of the above-described laminated coil manufacturing methods.
発明の効果 The invention's effect
[0018] 本発明に係る積層コイルの製造方法によれば、積層の際には、重なり合うシートコ ィル間に絶縁材を介在させ、かつ接続部同士が対向するように各シートコイルを積み 重ね、積層したシートコイルの全体を加熱し、接続部に付着された低融点金属を溶 融させ、シートコイルの接続部同士を電気的に接続して螺旋状にコイルを形成したか ら、一貫した処理工程による製造が可能であり、このため大量生産が容易に行えコス トダウンが図れ、併せて大電流容量かつ高品質のコイルが容易に得られるという効果 を奏する。 [0018] According to the method for manufacturing a laminated coil according to the present invention, at the time of lamination, an insulating material is interposed between the overlapping sheet coils, and the sheet coils are stacked so that the connection portions face each other. The entire laminated sheet coil is heated to melt the low-melting point metal adhering to the connection, and the sheet coil connection is electrically connected to form a spiral coil. Manufacturing by the process is possible, so that mass production can be easily performed and the cost can be reduced, and at the same time, a large current capacity and high quality coil can be easily obtained.
[0019] 本発明に係る積層コイルの製造方法によれば、積み重ねられる各シートコイル間に 、熱硬化性の接着剤を介在させ、各シートコイル同士を接着させたから、各シートコィ
ル同士が良好に接合され積層コイルの品質が高められるという効果がある。 [0019] According to the method for manufacturing a laminated coil according to the present invention, since each sheet coil is bonded to each other by interposing a thermosetting adhesive between the stacked sheet coils. There is an effect that the coils are joined well and the quality of the laminated coil is improved.
[0020] 本発明に係る積層コイルの製造方法によれば、絶縁材として 2乃至 4塩基の酸無水 物を硬化剤とする 2乃至 4ォキシラン環のエポキシ榭脂を用いたから、高 、ガラス転 移温度が確保され、低融点金属が溶融する温度及び冷却後にお 、ても変質 (例え ば膨張係数が高くなる等)することなく各シートコイル間の絶縁皮膜としての形態、機 能を維持し、また熱膨張が小さ 、ことから冷却後にお 、ても他に剥離などの悪影響を 及ぼすことがな 、と!、う効果がある。 [0020] According to the method for manufacturing a laminated coil according to the present invention, since a 2 to 4 oxysilane ring epoxy resin using a 2 to 4 base acid anhydride as a curing agent is used as an insulating material, the glass transition is high. Maintains the form and function as an insulating film between the sheet coils without any alteration (for example, the expansion coefficient becomes high) even after cooling, the temperature at which the low melting point metal is melted and after cooling. In addition, since the thermal expansion is small, there is no other adverse effect such as peeling even after cooling.
[0021] 本発明に係る積層コイルの製造方法によれば、絶縁材として、イミダゾール類を硬 ィ匕剤とする 2乃至 4ォキシラン環のエポキシ榭脂を用いたから、上記と同様高いガラス 転移温度が確保され低融点金属が溶融する温度にぉ 、ても変質しな 、と 、う効果が あり、また、硬化剤として、ポリイミド榭脂又はポリアミドイミド榭脂を用いた場合にも、 同様の効果が得られる。 [0021] According to the method for manufacturing a laminated coil according to the present invention, since an epoxy resin having 2 to 4 oxysilane rings using imidazoles as a hardener is used as an insulating material, a glass transition temperature as high as the above is used. Even if the temperature at which the low melting point metal is secured is melted, there is an effect that it does not change, and when a polyimide resin or a polyamideimide resin is used as a curing agent, a similar effect is obtained. can get.
[0022] 本発明に係る積層コイルの製造方法によれば、低融点金属として錫、鉛、又は半 田を用いたから、低融点金属の溶融接続により接続部同士が良好かつ的確に導通 しまた大電流にも耐えられると 、う効果がある。 [0022] According to the method for manufacturing a laminated coil according to the present invention, since tin, lead, or a solder is used as the low melting point metal, the connecting portions are excellently and accurately connected to each other by fusion bonding of the low melting point metal, and large. If it can withstand electric current, it has a positive effect.
[0023] 本発明に係る積層コイルの製造方法によれば、シートコイルを、銅板を矩形のルー プ状に打ち抜いて形成したから、製造が容易でコストダウンが図れまた大電流容量 のコイルが得られると 、う効果がある。 [0023] According to the method for manufacturing a laminated coil according to the present invention, since the sheet coil is formed by punching a copper plate into a rectangular loop shape, the manufacturing is easy, the cost can be reduced, and a coil with a large current capacity is obtained. When it is done, it has a positive effect.
[0024] 本発明に係る積層コイルの製造方法によれば、加熱後、積層したシートコイルの周 囲に、鉄粉を混入したモールド材を被覆させたから、磁束がモールド材内に誘導され 、効率よく磁力線を結ぶことができてコイルのインダクタンスが高められると 、う効果が ある。 According to the method for manufacturing a laminated coil according to the present invention, after heating, the periphery of the laminated sheet coil is coated with the mold material mixed with iron powder, so that the magnetic flux is induced in the mold material and the efficiency is increased. When the magnetic field lines can be well connected and the inductance of the coil is increased, there is an effect.
[0025] 本発明に係る積層コイルは、上記何れかに記載の製造方法により製造されたものと したから、一貫した処理工程による製造が可能であり、このため大量生産が容易に行 えコストダウンが図れるという効果を奏する。 発明を実施するための最良の形態 [0025] Since the laminated coil according to the present invention is manufactured by any one of the manufacturing methods described above, it can be manufactured by a consistent processing process, which facilitates mass production and reduces costs. There is an effect that can be achieved. BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明に係る積層コイルの製造方法及び積層コイルの実施の形態を図面に 基づいて説明する。この積層コイル 1は、電気回路用のチョークコイル等のコイルとし
て用いられる。この積層コイルには、一回巻のシート状のコイルを積層して複数回卷 のコイルを形成する構造、及び複数回巻のシート状のコイルを積層して複数回巻き のコイルを形成する構造がある。 Hereinafter, a method for manufacturing a laminated coil and an embodiment of the laminated coil according to the present invention will be described with reference to the drawings. The laminated coil 1 is a coil such as a choke coil for an electric circuit. Used. The laminated coil has a structure in which a single-turn sheet-like coil is laminated to form a multi-turn coil, and a multi-turn sheet-like coil is laminated to form a multi-turn coil. There is.
[0027] 第一の実施の形態として、一回巻のシート状のコイルを積層してコイルを形成する 形態を説明する。図 1は、上記一回巻のシートコイル 2を各層毎に示したもので、この シートコイル 2には 1層目〜 15層目までの形態がある。各コイルは何れも巻き方向が 矩形状であり、一部に所定の間隙 4 (隙間)が形成された開ループ形状である。 [0027] As a first embodiment, an embodiment will be described in which a coil is formed by stacking single-turn sheet-like coils. FIG. 1 shows the above-described one-turn sheet coil 2 for each layer. This sheet coil 2 has forms from the first layer to the 15th layer. Each coil has an open loop shape in which the winding direction is rectangular, and a predetermined gap 4 (gap) is formed in part.
[0028] これらシートコイルの内、最下端(1層目)と最上端(15層目)の各シートコイルの一 端部には、矩形の枠から突出する状態でコイル端子部 6が形成され、他端部にはそ れぞれ他のシートコイルと電気的に接続される接続部 8が形成されている。また、 2層 目から 14層目までのシートコイル 2には、上記間隙 4を隔てて向い合う一方側の端部 近傍の表面部、及び他方側の端部近傍の裏面部にはそれぞれ他のシートコイルと 接続される接続部 8が形成されて 、る。 [0028] Among these sheet coils, a coil terminal portion 6 is formed at one end of each of the sheet coils at the lowermost end (first layer) and the uppermost end (15th layer) so as to protrude from a rectangular frame. Each of the other end portions is formed with a connection portion 8 that is electrically connected to another sheet coil. The sheet coil 2 from the second layer to the fourteenth layer has other surface portions near one end facing the gap 4 and other back surfaces near the other end. A connecting portion 8 to be connected to the sheet coil is formed.
[0029] 上記シートコイル 2は、例えば下から一層目、二層目、三層目と順次積み重ねられ る。このとき各シートコイル 2の間隙 4位置は順次 1コマ(上記接続部の大きさ程度の 範囲)ずつ、同一周囲方向にずれるように形成されている。これにより、上下に重なり 合うシートコイル 2同士の接続部 8が向かい合うので、これらを電気的に接続して導通 させれば 15回巻きのコイルができる。 [0029] The sheet coil 2 is stacked, for example, sequentially from the bottom to the first layer, the second layer, and the third layer. At this time, the gap 4 position of each sheet coil 2 is formed so as to be sequentially shifted by one frame (in the range of the size of the connecting portion) in the same peripheral direction. As a result, the connecting portions 8 of the sheet coils 2 that overlap in the vertical direction face each other. If these are electrically connected and made conductive, a coil with 15 turns can be formed.
[0030] ここで、上記積層コイル 1の製造工程及び絶縁材料等につ!、て説明する。先ず、プ レスによる打ち抜き工程により、導電性の板材を打ち抜いてシートコイルを造る。ここ では、銅板を打ち抜いて上記 1層目から 15層目までのシートコイル 2を造る。 Here, the manufacturing process and insulating material of the laminated coil 1 will be described. First, a sheet coil is formed by punching a conductive plate material by a press punching process. Here, the sheet coil 2 from the first layer to the 15th layer is made by punching a copper plate.
[0031] 次に、印刷工程において、上記各シートコイル 2の両面 (又は片面)に絶縁材 10と してエポキシ榭脂に硬化剤及び触媒を加えた榭脂組成材を、所定の厚さに印刷の 手法により塗布し加熱硬化させて絶縁皮膜を形成する。このとき、上記接続部 8は絶 縁皮膜の対象力も除く必要があるが、これは塗布の際に各接続部 8を外して絶縁材 1 0を塗布する方法、或いは接続部 8を含めてシートコイル全体に絶縁材 10を塗布し、 後から接続部の絶縁皮膜を機械的、化学的な手法で除去する方法がある。上記各 シートコイル 2の片面に絶縁材 10を塗布する形態では、シートコイル 2同士を積層す
る際には、向い合うどちらか一方のシートコイル 2の面に絶縁材 10が塗布された状態 に配置する。 [0031] Next, in the printing step, a resin composition obtained by adding a curing agent and a catalyst to epoxy resin as an insulating material 10 on both surfaces (or one surface) of each sheet coil 2 to a predetermined thickness. It is applied by a printing method and cured by heating to form an insulating film. At this time, it is necessary for the connecting portion 8 to remove the target force of the insulating film. This can be done by removing each connecting portion 8 and applying the insulating material 10 at the time of application, or by applying a sheet including the connecting portion 8. There is a method in which an insulating material 10 is applied to the entire coil, and the insulating film at the connection portion is removed later by a mechanical or chemical method. In the form in which the insulating material 10 is applied to one side of each sheet coil 2 described above, the sheet coils 2 are laminated together. In this case, the insulating material 10 is applied to the surface of one of the facing sheet coils 2.
[0032] この実施の形態では、上記絶縁材 10としてエポキシ榭脂(ビスフエノール型ェピク ロロヒドリン榭脂)を用いた。このエポキシ榭脂は、耐熱性、電気絶縁性、接着力、機 械的強度に優れる。このエポキシ榭脂の硬化剤として、酸無水物 (メチルテトラヒドロ 無水フタル酸)を用いた。ここで、メチルテトラヒドロ無水フタル酸は常温で液体であり 、印刷には便利で作業性が良い。 In this embodiment, epoxy resin (bisphenol type epichlorohydrin resin) is used as the insulating material 10. This epoxy resin is excellent in heat resistance, electrical insulation, adhesive strength, and mechanical strength. An acid anhydride (methyltetrahydrophthalic anhydride) was used as a curing agent for this epoxy resin. Here, methyltetrahydrophthalic anhydride is liquid at room temperature, and is convenient for printing and has good workability.
[0033] 社内での積層コイルの試作により、上記ビスフエノール型ェピクロロヒドリン榭脂に 上記メチルテトラヒドロ無水フタル酸を硬化剤とした榭脂組成材は、特にガラス転移 温度 (Tg)が高められて耐熱性に優れ上記絶縁材 10として有効であること、及び上 記榭脂組成材は下記低融点金属を溶融する温度においても熱変化することがなぐ 絶縁皮膜としての機能が損なわれることがないことが試作品により確認できた。また、 上記榭脂組成材に触媒としてイミダゾール類(2—ェチルー 4ーメチルイミダゾール) を加えた。 [0033] Through trial production of a laminated coil in-house, a resin composition comprising the above bisphenol type epichlorohydrin resin and the above methyltetrahydrophthalic anhydride as a curing agent has a particularly high glass transition temperature (Tg). It is excellent in heat resistance and effective as the insulating material 10, and the resin composition does not change heat even at the temperature at which the following low melting point metal is melted. It was confirmed by the prototype that there was no. In addition, imidazoles (2-ethyl-4-methylimidazole) were added as a catalyst to the resin composition.
[0034] 一般に、 2ォキシラン環〜 4ォキシラン環系の下記のエポキシ榭脂は耐熱性に優れ 、上記絶縁材 10として使用可能である。このうち、上記絶縁材 10として用いることが 可能な榭脂として、社内試験等で確認したものに以下の榭脂がある。上記 2ォキシラ ン環系のエポキシ榭脂としては、脂環式エポキシ榭脂、ビスフエノール型 (A、 F型な ど)一ェピクロロヒドリン榭脂、 2官能フエノーノレ型エポキシ榭脂があり、 3ォキシラン環 系のエポキシ榭脂としては、フエノールノボラック榭脂、異節環状型エポキシ榭脂、多 官能性エポキシ榭脂があり、また 4ォキシラン環系のエポキシ榭脂としては、 4官能フ ェノールエポキシ榭脂、 4官能グリシジルァミン型エポキシ榭脂がある。上記絶縁材と して、他にポリイミド、或いはポリアミドイミド等の熱硬化性榭脂、メラミン榭脂及びベン ゾグアナミン榭脂も良好であることが確認されている。 In general, the following epoxy resins having a 2-oxolan ring to 4-oxylan ring system are excellent in heat resistance and can be used as the insulating material 10. Among these, the following resins can be used as the insulating material 10 as confirmed by in-house tests. Examples of the above-mentioned 2-oxylan ring epoxy resins include alicyclic epoxy resins, bisphenol type (A, F type, etc.) monochlorohydrin resins, and bifunctional phenolic type epoxy resins. Examples of 3-oxysilane ring epoxy resins include phenol novolac resins, heterocyclic epoxy resins, and multifunctional epoxy resins. Also, 4-oxosilane epoxy resins include tetrafunctional phenolic epoxy resins. There are resin and tetrafunctional glycidylamine type epoxy resin. As the insulating material, thermosetting resin such as polyimide or polyamideimide, melamine resin and benzoguanamine resin are also confirmed to be good.
[0035] また、上記エポキシ榭脂と組み合わせて耐熱性に寄与する硬化剤としては 2塩基 〜4塩基の酸無水物が有効である。このうち社内試験等で確認し、上記エポキシ榭 脂の硬化剤として有効な材料及び触媒に以下のものがある。上記 2塩基系の酸無水 物として、メチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、へキサヒドロフタ
ル酸無水物等、 3塩基系の酸無水物としてトリメリット酸、 4塩基系の酸無水物として、 ピロメリット酸、 4,4'—ォキシジフタル酸無水物等がある。また、他の硬化剤として、 1 ーシァノエチルー 2—メチルイミダゾール、及び 2, 4—ジアミノー 6— [2'—メチルイミ ダゾリル一( 1 ' ) ]一ェチル -s—トリァジン ·イソシァヌル酸付加塩等のイミダゾール類 系の硬化剤、ジアミノジフエ-ルエーテル、及び 4, 4—ジアミノジフエ-ルメタン等の ァミン系の硬化剤などが良好であることが確認されている。また、ポリイミド、ポリアミド イミド或いはメラミン等の榭脂は硬化剤としての利用も可能であり、上記エポキシ榭脂 の硬化剤として利用することで、優れた耐熱特性を発揮することが確認されて 、る。 上記触媒としては、 2, 4, 6—トリス (ジメチルアミノメチル)フエノール等の第 3級ァミン 、或 、はイミダゾール類が硬化促進等に良好であることが確認されて 、る。 [0035] Further, as a curing agent that contributes to heat resistance in combination with the epoxy resin, acid anhydrides of 2 to 4 bases are effective. Of these, materials and catalysts that have been confirmed by in-house tests and are effective as curing agents for the above epoxy resins include the following. Examples of the above two-basic acid anhydrides include methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, and hexahydrophthalate. Trimellitic acid as tribasic acid anhydride, pyromellitic acid, 4,4'-oxydiphthalic anhydride, etc. as 4-basic acid anhydride. In addition, as other curing agents, imidazoles such as 1-cyanoethyl-2-methylimidazole and 2,4-diamino-6- [2'-methylimidazolyl mono (1 ')] ethyl-s-triazine / isocyanuric acid addition salt It has been confirmed that amine-based curing agents, diaminodiphenyl ether, and amine-based curing agents such as 4,4-diaminodiphenylmethane are good. In addition, it is possible to use a resin such as polyimide, polyamide-imide or melamine as a curing agent, and it has been confirmed that excellent heat resistance is exhibited by using it as a curing agent for the epoxy resin. . As the above catalyst, tertiary amines such as 2,4,6-tris (dimethylaminomethyl) phenol, or imidazoles have been confirmed to be excellent in curing acceleration.
[0036] 上記エポキシ榭脂に、硬化剤として上記酸無水物又は上記イミダゾール類系、アミ ン系等の硬化剤を用いた絶縁材は、ガラス転移温度が高められて耐熱性に優れ、下 記低融点金属を溶融する温度においても熱変化することがなぐ絶縁皮膜としての機 能が損なわれることがなく良好である。 [0036] An insulating material using the above-mentioned epoxy resin as the curing agent such as the above acid anhydride or the above imidazoles or amines as the curing agent has an increased glass transition temperature and is excellent in heat resistance. Even when the low melting point metal is melted, the function as an insulating film that does not change heat is not impaired.
[0037] 上記絶縁皮膜を施した後、各シートコイル 2の上記接続部 8の表面の絶縁材 10から なる絶縁皮膜を、エッチング処理等の手法により除去する。この絶縁皮膜の除去ェ 程では、接続部 8の表面の絶縁皮膜を例えばエッチング処理等の化学的処理、機械 的手法、或いはレーザービーム、高周波誘電加熱、放電等の物理的手法により除去 する。これにより、上記シートコイル 2の表面部及び裏面部の各端部近傍にはそれぞ れ導電性の接続部 8が形成される。 After applying the insulating film, the insulating film made of the insulating material 10 on the surface of the connection portion 8 of each sheet coil 2 is removed by a technique such as etching. In this process of removing the insulating film, the insulating film on the surface of the connecting portion 8 is removed by a chemical method such as etching, a mechanical method, or a physical method such as laser beam, high-frequency dielectric heating, or discharge. Thereby, conductive connection portions 8 are formed in the vicinity of the end portions of the front surface portion and the back surface portion of the sheet coil 2, respectively.
[0038] さらに次のメツキ工程では、上記絶縁皮膜を除去したシートコイルの導電性の接続 部 8に低融点金属 12を被着 (メツキ)する。この低融点金属 12としては、錫、鉛、半田 (錫と鉛の合金)等が好適である。特に、半田は錫の含有率を高くすると (60%以上) 融点が低くなり良好である。また、錫にニッケル、銀或いは銅などを少量混ぜた合金 を用いることができる。 [0038] Further, in the next plating step, the low melting point metal 12 is deposited (plated) on the conductive connecting portion 8 of the sheet coil from which the insulating film has been removed. The low melting point metal 12 is preferably tin, lead, solder (tin-lead alloy) or the like. In particular, solder is good when the content of tin is high (60% or more) and the melting point is low. An alloy in which a small amount of nickel, silver, copper, or the like is mixed with tin can be used.
[0039] このとき図 2に示すように、各シートコイル 2の接続部 8にメツキされた低融点金属 12 層の厚さ(M)は、絶縁材 10による絶縁皮膜層の厚さ (W)より若干厚!、程度 (M〉W) に形成する。この低融点金属 12層の厚さを絶縁材 10の絶縁皮膜層の厚さより厚くす
ることで、向い合うシートコイルの低融点金属 12層同士が確実に融合導通する。以 上の一貫した印刷工程及び処理工程により、各シートコイル毎の絶縁等の処理が完 成する。 At this time, as shown in FIG. 2, the thickness (M) of the low melting point metal 12 layer plated on the connection portion 8 of each sheet coil 2 is the thickness (W) of the insulating film layer formed by the insulating material 10. Slightly thicker, formed to a degree (M> W). The thickness of the low melting point metal 12 layer is made thicker than the thickness of the insulating film layer of the insulating material 10. This ensures that the 12 layers of low melting point metal in the sheet coil that face each other are fused and connected. The above-mentioned consistent printing process and processing process complete the process such as insulation for each sheet coil.
[0040] 次の積層工程では図 3に示すように、上記接続部 8を残して上記シートコイル 2の片 面又は両面に接着剤 14を付着塗布し、 1層目から 15層面までのシートコイルを積層 して互いを接着する。上記接着剤 14は、例えばエポキシ榭脂等の熱硬化性の接着 剤を用いる。この接着剤には例えば、低温 (60°C〜80°C)で溶融するものがあり、こ の状態で上記積層接着を行い、さらにこの接着剤を高温(120°C以上)〖こさらすと、 反応が生じて熱硬化性の接着剤に変化するので、この特性を利用して接着する。 In the next laminating step, as shown in FIG. 3, the adhesive 14 is applied and applied to one or both sides of the sheet coil 2 leaving the connecting portion 8, and the sheet coils from the first layer to the 15th layer are coated. Are stacked and bonded together. As the adhesive 14, for example, a thermosetting adhesive such as epoxy resin is used. For example, some of these adhesives melt at low temperatures (60 ° C to 80 ° C). When the above-mentioned laminate bonding is performed in this state, and this adhesive is further exposed to high temperatures (120 ° C or higher), The reaction takes place and the adhesive changes into a thermosetting adhesive.
[0041] 最後の加熱工程では、上記積層したシートコイルを、加熱炉等に入れて所定の温 度で加熱する。この加熱温度は、上記低融点金属 12が溶融する融解点を超えた近 傍の温度とする。この加熱により、積層したシートコイル 2の各向い合う接続部の低融 点金属 12層が溶融し、この低融点金属によって向!、合う接続部同士が電気的に接 続導通される。また、上記加熱により上記接着剤 14は溶融し、その後は熱硬化して シートコイル同士を接着する。 [0041] In the final heating step, the laminated sheet coil is placed in a heating furnace or the like and heated at a predetermined temperature. This heating temperature is a temperature near the melting point at which the low melting point metal 12 melts. By this heating, the 12 low-melting point metal layers of the facing connecting portions of the laminated sheet coil 2 are melted, and the facing connecting portions are electrically connected and conducted by the low-melting point metal. Further, the adhesive 14 is melted by the heating, and then is thermally cured to bond the sheet coils together.
[0042] このとき絶縁材 10として、上記エポキシ榭脂に上記硬化剤等を施した榭脂組成材 を用いた場合、この絶縁材カ なる絶縁皮膜は上記低融点金属の溶融温度にも耐 え、絶縁皮膜自体はその絶縁状態が良好に維持されることが確認できた。また、この 絶縁皮膜は低融点金属とも反応せず低融点金属が流出することもな力つた。さらに、 この絶縁皮膜は熱膨張が少な 、ことから、熱処理による積層したシートコイルの形態 に影響がなぐ良好である。 [0042] At this time, when a resin composition obtained by applying the curing agent or the like to the epoxy resin is used as the insulating material 10, the insulating film serving as the insulating material can withstand the melting temperature of the low melting point metal. It was confirmed that the insulating film itself maintained its insulating state well. In addition, this insulating film did not react with the low melting point metal and the low melting point metal flowed out. Furthermore, since this insulating film has little thermal expansion, it is favorable that the form of the sheet coil laminated by heat treatment is not affected.
[0043] 冷却後は、上記接着剤 14は硬化してシートコイル 2同士を接着させ、また重なり合 うシートコイルの接続部 8同士は低融点金属 12により電気的に接続される。これによ り、各シートコイルが螺旋状に接続され、全体では 15回巻きの積層コイル 1が形成さ れる。この積層コイル 1の周囲は、さらにエポキシ榭脂、絶縁テープ等により絶縁皮膜 を施す。 After cooling, the adhesive 14 is cured to bond the sheet coils 2 together, and the connecting portions 8 of the overlapping sheet coils are electrically connected by the low melting point metal 12. As a result, the sheet coils are spirally connected, and a 15-turn laminated coil 1 is formed as a whole. Further, an insulating film is applied around the laminated coil 1 with epoxy resin, insulating tape, or the like.
[0044] そして図 4に示すように、この積層コイル 1の矩形状中空部に磁性材料カゝらなる芯 材 18、例えば鉄芯を揷通させる。この芯材としては、鋼材、フェライト、コバルト、 -ッ
ケル等が利用できる。次に、積層コイル 1及び芯材 18の周囲に、榭脂のモールド材 2 0を所定の厚さに被覆する。このモールド材 20としては、例えばエポキシ榭脂等に、 鉄粉及びカーボン粉末を混入したものを用いる。この鉄粉は磁性材料として磁束を 誘導し、効率良く磁力線を結ぶことができてコイルのインダクタンスが高められる。ま た、鉄粉及びカーボン粉による熱伝導効果により、コイルの冷却の効率ィ匕が図れる。 Then, as shown in FIG. 4, a core material 18 such as a magnetic material core is passed through the rectangular hollow portion of the laminated coil 1. The core material includes steel, ferrite, cobalt, Kel etc. can be used. Next, a resin mold material 20 is coated around the laminated coil 1 and the core material 18 to a predetermined thickness. As the mold material 20, for example, an epoxy resin or the like mixed with iron powder and carbon powder is used. This iron powder induces magnetic flux as a magnetic material, and can effectively connect magnetic lines of force, increasing the coil inductance. In addition, the efficiency of coil cooling can be improved by the heat conduction effect of iron powder and carbon powder.
[0045] また、図 5に示すように、上記榭脂モールドでは、積層コイル 1の外側部分 (反中心 方向側)に膨出部 22を形成する。この膨出部がないと、積層コイル 1の外側部分の榭 脂モールドの厚さが狭くなり、磁力線が大気中を回ることになつて好ましくない。上記 膨出部 22を設けることにより、磁力線 23の通路が広くなつて磁束がモールド材 20及 び膨出部 22のモールド材の内部に誘導され、磁力線が効率よく結ばれてコイルのィ ンダクタンスが高められる。 Further, as shown in FIG. 5, in the above-described resin mold, the bulging portion 22 is formed on the outer portion (on the opposite side of the center) of the laminated coil 1. Without this bulging portion, the thickness of the resin mold in the outer portion of the laminated coil 1 becomes narrow, and it is not preferable for the magnetic field lines to go around in the atmosphere. By providing the bulging portion 22 described above, the passage of the magnetic force lines 23 is widened so that the magnetic flux is guided to the inside of the molding material 20 and the molding material of the bulging portion 22, and the magnetic field lines are efficiently connected to reduce the coil inductance. Enhanced.
[0046] 上記榭脂モールドにより、積層コイル 1を用いたチョークコイル 16が完成する。この チョークコイル 16は、図 6に示すように、上記 1層目のシートコイルのコイル端子部 6 及び 15層目のシートコイルのコイル端子部 6をそれぞれ上部に突出させた状態で、 この底面部をセルフタッピングネジ等の止着具を用いて、基板に固定する。このチヨ ークコイルは、冷暖房用の空調装置など、特に大電流を扱う力率改善回路のコイルと して有用である。また、積層コイル 1は、トランス用のコイルとしても利用可能である。 The choke coil 16 using the laminated coil 1 is completed by the above resin mold. As shown in FIG. 6, the choke coil 16 has a coil terminal portion 6 of the first-layer sheet coil and a coil terminal portion 6 of the fifteenth-layer sheet coil projecting upward. Is fixed to the substrate using a fastening tool such as a self-tapping screw. This choke coil is particularly useful as a coil for a power factor correction circuit that handles a large current, such as an air conditioner for air conditioning. The laminated coil 1 can also be used as a transformer coil.
[0047] したがって、この実施の形態に係る積層コイルによれば、打ち抜き工程、印刷工程 、メツキ工程及び加熱工程など、一貫した処理工程による製造が可能であり、このた め大量生産が容易に行えコストダウンが図れる。また、基材が無いために穴開け工程 の必要がなぐ製造が迅速に行え、併せて銅板の使用及び多層化が容易なことから 、表皮効果の影響も低減でき数百 A (アンペア)の大電流容量のコイルも簡単に造れ る。 [0047] Therefore, according to the laminated coil according to this embodiment, it is possible to manufacture by a consistent processing process such as a punching process, a printing process, a plating process, and a heating process, so that mass production can be easily performed. Cost can be reduced. In addition, since there is no base material, manufacturing without the need for a drilling process can be performed quickly, and the use of copper plates and multilayering are easy, reducing the effect of the skin effect, and a large number of hundreds of amps (amperes). Coils with current capacity can be easily made.
[0048] なお、 1枚の銅板に図 1に示す 1層目〜15層目までのシートコイルを配置し、この銅 板全体に上記絶縁材 10を塗布し後に接続部 8に該当する部位の絶縁材を除去し、 或いは接続部 8を残して絶縁材 10を塗布し、さらに各接続部 8に上記低融点金属 12 をメツキした後、プレスカ卩ェにより各シートコイルを打ち抜き、この後上記積層工程、 過熱工程を経て積層コイルを得るようにしてもよ 、。
[0049] さらに、同時に複数の積層コイルを得る方法がある。これは、一枚目の銅板に 1層 目のシートコイルを複数配置し、この銅板全体に上記と同様絶縁材 10の塗布、低融 点金属 12のメツキをする。同様にして、二枚目の銅板に上記 1層目のシートコイルと それぞれ重なる形態で 2層目のシートコイルを複数配置し、これに絶縁材 10の塗布、 低融点金属 12のメツキをする。同様にして、三枚目以降の銅板に 3層目から 15層目 のシートコイルを形成する。そして、 1枚目から 15枚目の銅板を上記積層工程と同様 に接着剤を塗布し積層し (或いは複数枚ずつ何回かに分けて)、次いでプレスにより 全てのシートコイルを打ち抜いて一度に複数の積層コイルを得る。このとき、打ち抜き の箇所に残ったバリなどは削除しておく。 [0048] It should be noted that the sheet coils of the first to fifteenth layers shown in FIG. 1 are arranged on one copper plate, the insulating material 10 is applied to the entire copper plate, and the portion corresponding to the connection portion 8 is then applied. After removing the insulating material, or applying the insulating material 10 while leaving the connection portions 8, and then coating the low melting point metal 12 on each connection portion 8, punch out each sheet coil with a press cage, and then stack the layers. A laminated coil may be obtained through a process and an overheating process. [0049] Furthermore, there is a method of obtaining a plurality of laminated coils simultaneously. In this method, a plurality of first-layer sheet coils are arranged on the first copper plate, and the entire copper plate is coated with the insulating material 10 and the low-melting point metal 12 is coated as described above. Similarly, a plurality of second-layer sheet coils are arranged on the second copper plate so as to overlap with the first-layer sheet coils, respectively, and the insulating material 10 is applied thereto and the low melting point metal 12 is plated. Similarly, the third to fifteenth sheet coils are formed on the third and subsequent copper plates. Then, apply the adhesive to the first to fifteenth copper plates in the same way as in the laminating process and laminate them (or divide them several times), then punch out all the sheet coils at once. A plurality of laminated coils are obtained. At this time, delete any burrs remaining in the punched area.
[0050] 次に、第二の実施の形態に係り、複数回卷 (ここでは 4回卷)のシート状のコイルを 積層して複数回巻きの積層コイルを形成する形態を説明する。図 7は、この積層コィ ルを構成するシートコイル 32を各層毎に示したものである。これらシートコイル 32は、 1層目から 6層目までの 6枚で構成され、それぞれ 4回巻のシートコイルである。各シ ートコイル 32は何れも巻き方向が矩形状であり、シートの内側(或いは外側)に向け て渦巻状にコイルが形成され、両端部は開放された形態である。 [0050] Next, an embodiment in which a plurality of turns (here, four turns) of sheet-like coils are laminated to form a multi-turn laminated coil according to the second embodiment. FIG. 7 shows the sheet coil 32 constituting this laminated coil for each layer. These sheet coils 32 are composed of six sheets from the first layer to the sixth layer, each of which is a four-turn sheet coil. Each of the sheet coils 32 has a rectangular winding direction, a coil is formed spirally toward the inside (or outside) of the sheet, and both end portions are open.
[0051] 上記シートコイル 32の内、最下端(1層目)と最上端 (6層目)の各シートコイル 32の 一端部は、矩形の枠から突出する状態でコイル端子部 36が形成され、他端部には それぞれ他のシートコイルと電気的に接続される接続部 38が形成されている。また、 2層目から 5層目までのシートコイル 32には、一端部側の端部近傍の表面部、及び 他端部側の端部近傍の裏面部にはそれぞれ他のシートコイルと接続される接続部 3 8が形成されている。そして、各シートコイル 32は、一方の端部近傍の接続部同士が 重なるよう、かつこれら接続部同士を導通させたときに卷回方向が同じになるように接 続部 38が形成されている。 [0051] Of the sheet coil 32, one end of each of the sheet coil 32 at the lowermost end (first layer) and the uppermost end (sixth layer) is formed with a coil terminal portion 36 in a state of protruding from a rectangular frame. The other end is formed with a connecting portion 38 that is electrically connected to another sheet coil. The sheet coils 32 from the second layer to the fifth layer are connected to other sheet coils on the surface portion near the end on one end side and on the back surface near the end on the other end side, respectively. The connecting portion 3 8 is formed. Each sheet coil 32 is formed with a connecting portion 38 so that the connecting portions near one end overlap each other and the winding direction is the same when the connecting portions are made conductive. .
[0052] 上記シートコイル 32は、例えば下から一層目、二層目、三層目と順次積み重ねら れる。このとき、上下に重なり合うシートコイル 32同士の接続部が向かい合うように配 置されており、これらを電気的に接続して導通させれば 24回(=4 X 6)巻きのコイル が得られる。 [0052] The sheet coil 32 is, for example, sequentially stacked from the bottom to the first layer, the second layer, and the third layer. At this time, the connecting portions of the sheet coils 32 overlapping each other are arranged so as to face each other. If these are electrically connected and made conductive, a coil having 24 turns (= 4 × 6) is obtained.
[0053] この形態の積層コイルの製造工程及び絶縁などに用いられる材料は、上記積層コ
ィル 1の場合と基本的には同様である。先ず、プレスによる打ち抜き工程により、上記 1層目から 6層目までのシートコイルを造る。この工程では、銅板を打ち抜いて各シー トコイルを造る。 [0053] The material used for the manufacturing process and insulation of the laminated coil of this form is the above laminated coil. This is basically the same as in case of mail 1. First, the sheet coils from the first layer to the sixth layer are manufactured by a stamping process using a press. In this process, each sheet coil is made by punching a copper plate.
[0054] 図 8に示すように、印刷工程において、上記各シートコイルの両面に上記絶縁材 10 を所定の厚さに印刷して絶縁皮膜を形成する。上記絶縁皮膜を施した後、各シート コイル 32の上記接続部 38の表面の絶縁材カもなる絶縁皮膜を、上記エッチング処 理等の手法により除去する。 As shown in FIG. 8, in the printing process, the insulating material 10 is printed on both surfaces of each sheet coil to a predetermined thickness to form an insulating film. After applying the insulating film, the insulating film that also serves as the insulating material on the surface of the connecting portion 38 of each sheet coil 32 is removed by the technique such as the etching process.
[0055] さらに次のメツキ工程では、上記絶縁皮膜を除去したシートコイルの導電性の接続 部 38に上記低融点金属 12をメツキ処理により被着する。次に、上記接続部 38を残し て、上記シートコイル 32の片面又は両面に上記接着剤 14を塗布し、 1層目から 6層 面までのシートコイルを積層して互 、を接着する。 [0055] In the next plating step, the low-melting-point metal 12 is applied to the conductive connection portion 38 of the sheet coil from which the insulating film has been removed by a plating process. Next, the adhesive 14 is applied to one or both surfaces of the sheet coil 32, leaving the connection portion 38, and the sheet coils from the first layer to the sixth layer are laminated and bonded together.
[0056] 最後に、上記積層したシートコイルを、加熱炉等に入れて所定の温度で加熱する。 [0056] Finally, the laminated sheet coil is put in a heating furnace or the like and heated at a predetermined temperature.
この加熱により、積層したシートコイルの各向い合う接続部の低融点金属が溶解し、 この低融点金属の層によって向い合う接続部同士が電気的に接続導通される。また 、上記加熱により上記接着剤 14は溶融し、その後は熱硬化してシートコイル同士を 接着する。冷却後は、上記接着剤は硬化してシートコイル同士を接着させ、また重な り合うシートコイルの接続部同士は低融点金属により電気的に接続し、これにより 24 回巻きの積層コイルが形成される。 By this heating, the low melting point metal of each facing connection portion of the laminated sheet coil is melted, and the facing connection portions are electrically connected to each other by the layer of the low melting point metal. In addition, the adhesive 14 is melted by the heating, and is then thermally cured to bond the sheet coils together. After cooling, the adhesive is cured and the sheet coils are bonded together, and the connecting portions of the overlapping sheet coils are electrically connected by a low melting point metal, thereby forming a 24-turn laminated coil. Is done.
[0057] この積層コイルの周囲は、さらにエポキシ榭脂、絶縁テープ等により絶縁皮膜を施 す。そして、この積層されたコイルの矩形状中空部に磁性材料カゝらなる上記芯材を 挿通させる。次に、コイル及び鉄芯の周囲に、上記モールド材 20を被覆して榭脂モ 一ルドを行う。また、上記榭脂モールドでは、コイルの外側 (反中心方向側)部分には 膨出部を形成する。この榭脂モールドにより、積層コイルを用いたチョークコイルが完 成する。このチョークコイルについても、冷暖房用の空調装置等の力率改善回路に 有用である。また、この積層コイルは、トランス用のコイルとしても利用可能である。 [0057] The periphery of the laminated coil is further coated with an insulating film by epoxy resin, insulating tape, or the like. Then, the core material made of a magnetic material is inserted into the rectangular hollow portion of the laminated coils. Next, the mold material 20 is coated around the coil and the iron core to perform the resin molding. Moreover, in the said resin mold, the bulging part is formed in the outer side (anti-center direction side) part of a coil. With this resin mold, a choke coil using a laminated coil is completed. This choke coil is also useful for power factor correction circuits such as air conditioners for air conditioning. The laminated coil can also be used as a transformer coil.
[0058] したがって、この実施の形態に係る積層コイルについても上記積層コイルと同様に 、打ち抜き工程、印刷工程、メツキ工程及び加熱工程など、一貫した処理工程による 製造が可能であり、このため大量生産が容易に行えコストダウンが図れる。また、上
記積層コイルを構成するシートコイルは、表面積が大きくて表皮効果の影響が低減 でき、このため電流容量を大きくできる。 [0058] Therefore, the laminated coil according to this embodiment can be manufactured by consistent processing processes such as a punching process, a printing process, a plating process, and a heating process, as in the case of the laminated coil. Can be done easily and the cost can be reduced. Also on The sheet coil constituting the laminated coil has a large surface area and can reduce the influence of the skin effect, so that the current capacity can be increased.
図面の簡単な説明 Brief Description of Drawings
[0059] [図 1]本発明の実施の形態に係り、積層コイルを構成する 1層目から 15層目までのシ ートコイルを示す図である。 [0059] FIG. 1 is a diagram showing sheet coils from the first layer to the fifteenth layer constituting the laminated coil according to the embodiment of the present invention.
[図 2]実施の形態に係り、シートコイルに絶縁材を塗布し及び低融点金属を付着させ た状態を示す図(図 1の A— A線部分断面)である。 FIG. 2 is a diagram (a partial cross-sectional view taken along line AA in FIG. 1) showing a state where an insulating material is applied to the sheet coil and a low melting point metal is adhered to the sheet coil according to the embodiment.
[図 3]実施の形態に係るシートコイルに接着剤を塗布しシートコイル同士を接着させる 状態を示す図である。 FIG. 3 is a view showing a state in which an adhesive is applied to the sheet coils according to the embodiment and the sheet coils are bonded to each other.
[図 4]実施の形態に係る積層コイルに榭脂モールドを施した状態を示す図である。 FIG. 4 is a view showing a state in which a resin mold is applied to the laminated coil according to the embodiment.
[図 5]実施の形態に係る積層コイルに施した榭脂モールドに膨出部を設けた状態を 示す図である。 FIG. 5 is a view showing a state in which a bulging portion is provided in a resin mold applied to the laminated coil according to the embodiment.
[図 6]実施の形態に係る積層コイルを示す図で、(a)は側面を、(b)は平面を示す図 である。 FIG. 6 is a view showing the laminated coil according to the embodiment, where (a) is a side view and (b) is a plan view.
[図 7]他の実施の形態に係り、積層コイルを構成する 1層目から 6層目までのシートコ ィルを示す図である。 FIG. 7 is a diagram showing sheet coils from the first layer to the sixth layer constituting a laminated coil according to another embodiment.
[図 8]他の実施の形態に係り、シートコイルに絶縁材を塗布し及び低融点金属等を付 着させた状態を示す図(図 7の B— B線部分断面)である。 FIG. 8 is a diagram (partial cross section taken along line BB in FIG. 7) showing a state in which an insulating material is applied to a sheet coil and a low melting point metal or the like is attached to another embodiment.
[図 9]従来例に係る積層コイルを示す図である。 FIG. 9 is a view showing a laminated coil according to a conventional example.
符号の説明 Explanation of symbols
[0060] 2 シートコイル [0060] 2 sheet coil
8 接続部 8 Connection
10 絶縁材 10 Insulation material
12 低融点金属
12 Low melting point metal
Claims
[1] 一回巻き又は渦状に複数回巻きに形成され、端部近傍の表面部及び裏面部、又 は一方の面部に接続部が設けられた平坦な導電性のシートコイルを用い、 [1] Using a flat conductive sheet coil that is formed in a single turn or a plurality of turns in a spiral shape, and has a surface portion and a back surface portion in the vicinity of the end portion or a connection portion provided on one surface portion,
上記各シートコイルの片面又は両面に、上記接続部を除 、て皮膜状に絶縁材を塗 布するとともに、上記接続部に低融点金属を被着し、 The sheet coil is coated with an insulating material on one or both sides of each sheet coil, and a low melting point metal is deposited on the connection part.
上記シートコイルを、重なり合う各シートコイルの上記接続部同士が対向し、かっこ れら接続部同士を導通させたときに卷回方向が同じになるように構成し、積層の際に は、重なり合う上記シートコイル間に上記絶縁材を介在させ、かつ上記接続部同士が 対向するように各シートコイルを積み重ね、 The sheet coil is configured so that the connecting portions of the overlapping sheet coils face each other and the winding direction is the same when the connecting portions are electrically connected to each other, and the overlapping is performed at the time of stacking. The sheet coils are stacked so that the insulating material is interposed between the sheet coils and the connecting portions face each other.
上記積層した上記シートコイルの全体を加熱し、上記接続部に付着された低融点 金属を溶融させ、上記シートコイルの接続部同士を電気的に接続して螺旋状にコィ ルを形成したことを特徴とする積層コイルの製造方法。 The entire laminated sheet coil was heated to melt the low melting point metal adhering to the connecting part, and the coiled part was formed by electrically connecting the connecting parts of the sheet coil. A method for producing a laminated coil, which is characterized.
[2] 上記積み重ねられる各シートコイル間に、熱硬化性の接着剤を介在させ、上記カロ 熱により各シートコイル同士を接着させたことを特徴とする請求の範囲第 1項記載の 積層コイルの製造方法。 [2] The laminated coil according to claim 1, wherein a thermosetting adhesive is interposed between the stacked sheet coils, and the sheet coils are bonded to each other by the calo heat. Production method.
[3] 上記絶縁材として、 2乃至 4塩基の酸無水物を硬化剤とする 2乃至 4ォキシラン環の エポキシ榭脂を用いたことを特徴とする請求の範囲第 1項又は第 2項記載の積層コィ ルの製造方法。 [3] The insulating material according to claim 1 or 2, wherein the insulating material is an epoxy resin having a 2 to 4 oxysilane ring with a 2 to 4 base acid anhydride as a curing agent. A manufacturing method of laminated coil.
[4] 上記絶縁材として、イミダゾール類を硬化剤とする 2乃至 4ォキシラン環のエポキシ 榭脂を用いたことを特徴とする請求の範囲第 1項又は第 2項記載の積層コイルの製 造方法。 [4] The method for manufacturing a laminated coil according to claim 1 or 2, wherein an epoxy resin having a 2 to 4 oxysilane ring using imidazoles as a curing agent is used as the insulating material. .
[5] 上記絶縁材として、ポリイミド榭脂又はポリアミドイミド榭脂を硬化剤とする 2乃至 4ォ キシラン環のエポキシ榭脂を用いたことを特徴とする請求の範囲第 1項又は第 2項記 載の積層コイルの製造方法。 [5] The insulating material according to claim 1 or 2, wherein an epoxy resin having 2 to 4 oxysilane rings having a polyimide resin or polyamideimide resin as a curing agent is used as the insulating material. The manufacturing method of the laminated coil of mounting.
[6] 上記低融点金属として錫、鉛、又は半田を用いたことを特徴とする請求の範囲第 1 項乃至第 5項の何れかに記載の積層コイルの製造方法。 6. The method for manufacturing a laminated coil according to any one of claims 1 to 5, wherein tin, lead or solder is used as the low melting point metal.
[7] 上記シートコイルを、銅板を矩形のループ状に打ち抜 、て形成したことを特徴とす る請求の範囲第 1項乃至第 6項の何れかに記載の積層コイルの製造方法。
上記加熱後、積層した上記シートコイルの周囲に、鉄粉を混入したモールド材を被 覆させたことを特徴とする請求の範囲第 7項に記載の積層コイルの製造方法。 請求の範囲第 1項乃至第 8項の何れかに記載の積層コイルの製造方法により製造 されたことを特徴とする積層コイル。
7. The method for manufacturing a laminated coil according to any one of claims 1 to 6, wherein the sheet coil is formed by punching a copper plate into a rectangular loop shape. 8. The method for manufacturing a laminated coil according to claim 7, wherein after the heating, the laminated sheet coil is covered with a molding material mixed with iron powder. A laminated coil produced by the method for producing a laminated coil according to any one of claims 1 to 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005193512A JP2007012969A (en) | 2005-07-01 | 2005-07-01 | Laminated coil and method for manufacturing the same |
JP2005-193512 | 2005-07-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007004483A1 true WO2007004483A1 (en) | 2007-01-11 |
Family
ID=37604352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/312872 WO2007004483A1 (en) | 2005-07-01 | 2006-06-28 | Method for manufacturing laminated coil and laminated coil |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007012969A (en) |
WO (1) | WO2007004483A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009011867A1 (en) | 2009-03-05 | 2010-09-09 | Volkswagen Ag | Inductor for use in e.g. fuel-operated petrol engine, has inductor layers including electrically non-insulated areas that are overlapped with each other, where overlapping areas of inductor layers have offsets |
US8119141B2 (en) | 2000-09-13 | 2012-02-21 | Jiangsu Kanion Pharmaceutical Co. Ltd. | Cinnamomi and poria composition, method to prepare same and uses thereof |
WO2014058016A1 (en) * | 2012-10-11 | 2014-04-17 | 株式会社ケーヒン | Stacked coil and method of manufacturing stacked coil |
JP2014078642A (en) * | 2012-10-11 | 2014-05-01 | Keihin Corp | Laminated coil and manufacturing method of the same |
JP2014078641A (en) * | 2012-10-11 | 2014-05-01 | Keihin Corp | Laminated coil and manufacturing method of the same |
JP2014120762A (en) * | 2012-12-14 | 2014-06-30 | Ghing-Hsin Dien | Coil and manufacturing method thereof |
JP2018011041A (en) * | 2016-07-14 | 2018-01-18 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Coil component and method of manufacturing the same |
WO2019219692A1 (en) * | 2018-05-16 | 2019-11-21 | Valeo Siemens Eautomotive France Sas | Planar coil and method for manufacturing a planar coil |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5191846B2 (en) * | 2008-09-17 | 2013-05-08 | 株式会社日立産機システム | Circular multi-stage coil and winding method thereof |
JP2012054380A (en) * | 2010-09-01 | 2012-03-15 | Hakko Shoji Corp | Method of manufacturing coil combined with core in electromagnetic machine |
CN104425111A (en) * | 2013-09-05 | 2015-03-18 | 重庆美桀电子科技有限公司 | Coil structure and manufacturing method thereof |
CN104425110A (en) * | 2013-09-05 | 2015-03-18 | 重庆美桀电子科技有限公司 | Coil structure and production method thereof |
JP6197233B2 (en) * | 2013-09-13 | 2017-09-20 | 株式会社ケーヒン | Multilayer coil manufacturing apparatus and method |
NL2013278B1 (en) * | 2014-07-30 | 2016-07-22 | Compact Electro-Magnetic Tech And Eco-Logical Entpr B V | Method for manufacturing an electrical device, as well as device obtained with that method. |
KR101686989B1 (en) * | 2014-08-07 | 2016-12-19 | 주식회사 모다이노칩 | Power Inductor |
KR101662206B1 (en) | 2014-08-07 | 2016-10-06 | 주식회사 모다이노칩 | Power inductor |
KR101662208B1 (en) | 2014-09-11 | 2016-10-06 | 주식회사 모다이노칩 | Power inductor and method of manufacturing the same |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59125606A (en) * | 1983-01-07 | 1984-07-20 | Sumitomo Bakelite Co Ltd | Electric core with high heat-resistant insulating coating and manufacture thereof |
JPS61166013A (en) * | 1985-01-17 | 1986-07-26 | Sharp Corp | Coil body |
JPH02265917A (en) * | 1989-04-05 | 1990-10-30 | Cemedine Co Ltd | epoxy resin composition |
JPH04251905A (en) * | 1991-01-09 | 1992-09-08 | Tokyo Electric Co Ltd | Production of transformer |
JP2001167930A (en) * | 1999-12-08 | 2001-06-22 | Fuji Electric Co Ltd | Inductor coil and its manufacturing method |
JP2005005644A (en) * | 2003-06-16 | 2005-01-06 | Tdk Corp | Wire wound electronic component and resin composition |
-
2005
- 2005-07-01 JP JP2005193512A patent/JP2007012969A/en active Pending
-
2006
- 2006-06-28 WO PCT/JP2006/312872 patent/WO2007004483A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59125606A (en) * | 1983-01-07 | 1984-07-20 | Sumitomo Bakelite Co Ltd | Electric core with high heat-resistant insulating coating and manufacture thereof |
JPS61166013A (en) * | 1985-01-17 | 1986-07-26 | Sharp Corp | Coil body |
JPH02265917A (en) * | 1989-04-05 | 1990-10-30 | Cemedine Co Ltd | epoxy resin composition |
JPH04251905A (en) * | 1991-01-09 | 1992-09-08 | Tokyo Electric Co Ltd | Production of transformer |
JP2001167930A (en) * | 1999-12-08 | 2001-06-22 | Fuji Electric Co Ltd | Inductor coil and its manufacturing method |
JP2005005644A (en) * | 2003-06-16 | 2005-01-06 | Tdk Corp | Wire wound electronic component and resin composition |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8119141B2 (en) | 2000-09-13 | 2012-02-21 | Jiangsu Kanion Pharmaceutical Co. Ltd. | Cinnamomi and poria composition, method to prepare same and uses thereof |
DE102009011867A1 (en) | 2009-03-05 | 2010-09-09 | Volkswagen Ag | Inductor for use in e.g. fuel-operated petrol engine, has inductor layers including electrically non-insulated areas that are overlapped with each other, where overlapping areas of inductor layers have offsets |
CN104718586A (en) * | 2012-10-11 | 2015-06-17 | 株式会社京浜 | Stacked coil and method of manufacturing stacked coil |
JP2014078642A (en) * | 2012-10-11 | 2014-05-01 | Keihin Corp | Laminated coil and manufacturing method of the same |
JP2014078641A (en) * | 2012-10-11 | 2014-05-01 | Keihin Corp | Laminated coil and manufacturing method of the same |
WO2014058016A1 (en) * | 2012-10-11 | 2014-04-17 | 株式会社ケーヒン | Stacked coil and method of manufacturing stacked coil |
JP2014120762A (en) * | 2012-12-14 | 2014-06-30 | Ghing-Hsin Dien | Coil and manufacturing method thereof |
JP2018011041A (en) * | 2016-07-14 | 2018-01-18 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | Coil component and method of manufacturing the same |
CN107622857A (en) * | 2016-07-14 | 2018-01-23 | 三星电机株式会社 | Coil block and its manufacture method |
US10515754B2 (en) | 2016-07-14 | 2019-12-24 | Samsung Electro-Mechanics Co., Ltd. | Coil component and method of manufacturing same |
US10566130B2 (en) | 2016-07-14 | 2020-02-18 | Samsung Electro-Mechanics Co., Ltd. | Coil component and method of manufacturing same |
WO2019219692A1 (en) * | 2018-05-16 | 2019-11-21 | Valeo Siemens Eautomotive France Sas | Planar coil and method for manufacturing a planar coil |
FR3081254A1 (en) * | 2018-05-16 | 2019-11-22 | Valeo Siemens Eautomotive France Sas | PLANAR COIL AND METHOD FOR MANUFACTURING A PLANAR COIL |
Also Published As
Publication number | Publication date |
---|---|
JP2007012969A (en) | 2007-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007004483A1 (en) | Method for manufacturing laminated coil and laminated coil | |
US6859130B2 (en) | Low-profile transformer and method of manufacturing the transformer | |
TWI484513B (en) | Laminated electromagnetic component assembly | |
JP5054445B2 (en) | Coil parts | |
JP4566649B2 (en) | Magnetic element | |
TWI427649B (en) | Multilayer inductor | |
KR20000029817A (en) | Planar transformer | |
WO2006070544A1 (en) | Magnetic device | |
JPWO2004019352A1 (en) | Multi-phase magnetic element and manufacturing method thereof | |
JPWO2003060175A1 (en) | Magnetic substrate, laminate of magnetic substrate, and method for producing the same | |
KR20130091642A (en) | Miniature power inductor and methods of manufacture | |
JP4997330B2 (en) | Multiphase transformer and transformer system | |
JP6560398B2 (en) | Inductor | |
JP6388015B2 (en) | Coil parts and coil equipment | |
US20180211775A1 (en) | Multi-layer electromagnet structure and manufacturing process | |
JP2013135232A (en) | Method of manufacturing inductor | |
CN107112111A (en) | Coil component | |
JP2009117676A (en) | Coupled inductor | |
KR100756329B1 (en) | Laminate of magnetic base material and method for production thereof | |
JP2003257744A (en) | Magnetic element, method of manufacturing the same, and power supply module using the same | |
JP2001035731A (en) | Inductor component and manufacturing method thereof | |
CN115692000A (en) | Power inductance element manufacturing method, power inductance element and device | |
CN115424812A (en) | Wound inductor and method of manufacturing the same | |
WO2020110987A1 (en) | Planar coil, and transformer, wireless power transmitter, and electromagnet provided with same | |
JP3570358B2 (en) | Thin mold transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PERSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 09-04-2008 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06767489 Country of ref document: EP Kind code of ref document: A1 |