[go: up one dir, main page]

WO2006134695A1 - 形状検出装置及びその方法 - Google Patents

形状検出装置及びその方法 Download PDF

Info

Publication number
WO2006134695A1
WO2006134695A1 PCT/JP2006/304756 JP2006304756W WO2006134695A1 WO 2006134695 A1 WO2006134695 A1 WO 2006134695A1 JP 2006304756 W JP2006304756 W JP 2006304756W WO 2006134695 A1 WO2006134695 A1 WO 2006134695A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolled material
meandering
reaction force
meandering amount
plate shape
Prior art date
Application number
PCT/JP2006/304756
Other languages
English (en)
French (fr)
Inventor
Kanji Hayashi
Shigeki Sueda
Hideaki Furumoto
Junichi Nishizaki
Yoichiro Tsumura
Nobuyoshi Goshima
Original Assignee
Mitsubishi-Hitachi Metals Machinery, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi-Hitachi Metals Machinery, Inc. filed Critical Mitsubishi-Hitachi Metals Machinery, Inc.
Priority to KR1020077029453A priority Critical patent/KR100927562B1/ko
Priority to CN2006800199019A priority patent/CN101189080B/zh
Priority to US11/919,489 priority patent/US8051692B2/en
Priority to BRPI0612238-8A priority patent/BRPI0612238B1/pt
Publication of WO2006134695A1 publication Critical patent/WO2006134695A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/04Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring thickness, width, diameter or other transverse dimensions of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/04Lateral deviation, meandering, camber of product

Definitions

  • the present invention relates to a shape detection apparatus and method.
  • the shape detection device is installed between the stands of a multi-high rolling mill, and in order to synchronize the rolling speed between the stands, the rolled material is passed through a roll supported rotatably, and the roll is passed through. By swinging in the vertical direction, the rolled material is provided with a loop and a constant tension is applied. Then, the plate shape (plate thickness) of the rolled material is calculated based on the detected tension distribution in the width direction of the rolled material, and by controlling the rolling mill, the shape in the width direction of the rolled material is made constant, and the end elongation and It is intended to prevent middle elongation.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-314821
  • Patent Document 2 Japanese Translation of Special Publication 2003-504211
  • Patent Document 3 Japanese Patent Publication No. 5-86290
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-309142
  • the meandering amount of the rolled material which is only the plate shape, must be considered and controlled at the same time. In other words, even if the plate shape is a predetermined shape, there are cases where the rolled material is meandering, or the plate shape is not the predetermined shape but the rolled material is meandering. Based on this, the rolling machine must be controlled.
  • the present invention solves the above-described problems, and an object thereof is to provide a shape detection apparatus and method that can detect meandering of a strip with high accuracy.
  • a shape detection apparatus for solving the above-mentioned problem is
  • a plurality of split rolls provided in the width direction of the traveling strip,
  • a reaction force detector that individually detects reaction forces acting on both ends of the split roll when the strip comes into contact with the split roll
  • a support arm having one end rotatably supporting the split roll and the other end supported by the fixing member via the reaction force detector;
  • a meandering amount computing unit for computing the meandering amount of the strip based on the reaction force detected by the reaction force detector
  • a plate shape calculation unit that calculates the plate shape of the strip based on the reaction force detected by the reaction force detector and the meandering amount calculated by the meandering amount calculation unit.
  • a rolling mill according to a second invention for solving the above-mentioned problems is
  • a plurality of divided rolls provided in the width direction of the rolled material to travel;
  • a fixing member supported by the table;
  • a reaction force detector that individually detects reaction forces acting on both ends of the split roll when the rolled material comes into contact with the split roll;
  • a support arm having one end rotatably supporting the split roll and the other end supported by the fixing member via the reaction force detector;
  • a meandering amount calculation unit for calculating the meandering amount of the rolled material based on the reaction force detected by the reaction force detector;
  • a plate shape calculation unit for calculating the plate shape of the rolled material based on the reaction force detected by the reaction force detector and the meandering amount calculated by the meandering amount calculation unit;
  • a control actuator for controlling the meandering and shape of the rolled material based on the meandering amount computed by the meandering amount computing unit and the plate shape computed by the plate shape computing unit.
  • a shape detection method according to a third invention for solving the above-mentioned problem is as follows:
  • a plurality of divided rolls provided in the width direction are brought into contact with the traveling strip, and reaction forces acting on both ends of the divided rolls are individually detected for each of the divided rolls, and based on these individually detected reaction forces.
  • the meandering amount of the strip is obtained, and the plate shape of the strip is obtained based on the detected reaction force and the meandering amount!
  • a rolling method according to a fourth invention for solving the above-described problems is as follows.
  • a plurality of split rolls provided in the width direction are brought into contact with the rolling material to be run, and reaction forces acting on both ends of the split rolls are individually detected for each of the split rolls.
  • the meandering amount of the rolled material is obtained, the plate shape of the rolled material is obtained from the detected reaction force and the meandering amount, and the meandering and shape of the rolled material are controlled based on the meandering amount and the plate shape.
  • a rolling method according to a fifth invention for solving the above-mentioned problems is as follows:
  • the plate shape uses the amount of meandering, and a polynomial in the tension distribution in the width direction of the rolling direction. And the meandering and shape of the rolled material are controlled based on the polynomial and the amount of meandering.
  • the shape detection device of the first invention the plurality of split rolls provided in the width direction of the traveling strip, the table that guides the strip and is rotatably supported, A fixing member supported by a table, a reaction force detector that individually detects a reaction force acting on both ends of the split roll when the strip comes into contact with the split roll, and one end of which can rotate the split roll
  • the other end of the belt plate is supported by the fixing member via the reaction force detector, and the meandering amount of the strip is calculated based on the reaction force detected by the reaction force detector.
  • the meandering and plate of the strip It is possible to detect the Jo with high accuracy.
  • a plurality of split rolls provided in the width direction of the rolling material to travel, a table that guides the rolling material and is rotatably supported, and the table
  • a fixing member supported on the surface
  • a reaction force detector that individually detects a reaction force acting on both ends of the split roll when the rolled material comes into contact with the split roll, and one end of which allows the split roll to rotate.
  • a support arm that is supported by the fixing member via the reaction force detector and the other end of the support member, and a meander that calculates a meandering amount of the rolled material based on the reaction force detected by the reaction force detector.
  • An amount calculation unit a plate shape calculation unit that calculates a plate shape of the rolled material based on the reaction force detected by the reaction force detector and the meandering amount calculated by the meandering amount calculation unit; Before being calculated by the meandering amount calculation unit
  • a control actuator that controls the meandering and shape of the rolled material based on the meandering amount and the plate shape calculated by the plate shape calculating unit, the meandering and plate shape of the rolled material can be obtained with high accuracy. Therefore, a throttle accident can be prevented.
  • the traveling strip is provided in the width direction thereof.
  • a plurality of split rolls in contact with each other, and reaction forces acting on both ends of the split rolls are individually detected for each of the split rolls, and the meandering amount of the strip is obtained based on the individually detected reaction forces.
  • the meander and plate shape of the strip can be detected with high accuracy.
  • the rolling method of the fourth invention a plurality of split rolls provided in the width direction are brought into contact with the rolling material to be traveled, and reaction forces acting on both ends of the split rolls are individually divided into the aforementioned splits. Detected for each roll, the meandering amount of the rolled material is obtained from the individually detected reaction force, and the plate shape of the rolled material is obtained from the detected reaction force and the meandering amount, and the meandering amount and the plate shape are obtained. Based on this, the meandering and shape of the rolled material can be controlled, so that the meandering and plate shape of the rolled material can be controlled with high accuracy, so that a drawing accident can be prevented.
  • the plate shape is approximated to a polynomial in a plate width direction tension distribution using the meandering amount.
  • FIG. 1 is a schematic view of a rolling mill according to an embodiment of the present invention.
  • FIG. 2 (a) is a plan view of the shape detection device, and (b) is a side view of FIG.
  • FIG. 3 is an enlarged cross-sectional view of the detector.
  • FIG. 5 is a schematic diagram showing the action at the moment detection.
  • FIG. 6 (a) is a front view showing the cooling structure of the split roll, and (b) is a side view of FIG. 6 (a).
  • FIG. 7 (a) is a front view showing another cooling structure of the split roll, and (b) is a side view of FIG. 7 (a).
  • FIG. 1 is a schematic view of a rolling mill according to an embodiment of the present invention
  • FIG. 2 (a) is a plan view of a shape detection device
  • FIG. 2 (b) is a side view of the same figure (a)
  • FIG. Fig. 4 (a) is a plan view showing the detector mounting structure
  • Fig. 4 (b) is a cross-sectional view taken along the line A-A in Fig. 4 (a)
  • Fig. 5 shows the action during moment detection.
  • Fig. 6 (a) is a front view showing the cooling structure of the split roll
  • Fig. 6 (b) is a side view of Fig. 6 (a)
  • Fig. 7 (a) shows another cooling structure of the split roll.
  • the front view and Fig. 7 (b) are side views of Fig. 7 (a).
  • the arrow in a figure has shown the rolling direction.
  • the rolling mill 1 is composed of a first rolling stand 2, a second rolling stand 3, and a shape detection device 4.
  • the shape detection device 4 includes an outlet side and a rear pressure of the first rolling stand 2. It is provided between the entrance side of the extension stand 3.
  • the former rolling stand 2 is provided with rolling rolls 5a, 5b and rolls 6a, 6b that support the rolling rolls 5a, 5b.
  • the latter rolling stand 3 has rolling rolls 7a, 7b and rolls 8a and 8b for supporting the rolling rolls 7a and 7b are provided.
  • the shape detection device 4 is connected to a meandering amount calculator 41, a plate shape calculator 42, and a rolling controller 43 in order.
  • the rolling controller 43 includes rolling rolls 5a and 5b and rolling rolls 7a and 7b. Is connected to the roll vendor 44 (control actuator). Note that S indicates a rolled material, and an arrow indicates a rolling direction.
  • the rolled material S rolled between the rolling rolls 5a and 5b of the former stage rolling stand 2 is passed over the shape detection device 4 and rolled between the rolling rolls 7a and 7b of the latter stage rolling stand 3. Then, it is transported to a predetermined device.
  • the shape detection device 4 includes a support shaft 12 connected to the drive motor 11 and extending in the width direction of the rolled material S.
  • a table 13 is supported on the shaft 12.
  • the table 13 includes a guide member 14 that guides the rolled material S and a guide support member 15 that supports the guide member 14, and seven detectors 17 are provided on the downstream surface of the guide support member 15 in the rolling direction. Is supported.
  • the support shafts 12 on both sides of the table 13 are provided with bearings 18 that are supported by a frame (not shown).
  • the detector 17 includes a split roll 23 that is rotated when the rolling material S contacts, and a pair of support arms 24a and 24b that support the split roll 23 between one end, A fixing member 25 that supports the other ends of the support arms 24a and 24b and is supported by the guide support member 15 of the table 13 is provided.
  • the split roll 23 is interposed between the support arms 24a and 24b via self-aligning bearings 26a and 26b (or other bearings that can rotate in a spherical shape) provided at one end of the support arms 24a and 24b. It is rotatably supported. Further, a support shaft 27 is passed through the fixing member 25, and one end 27a and the other end 27b of the support shaft 27 are self-aligning bearings 28a, 28b (bearings) provided at the other ends of the support arms 24a, 24b. Others are acceptable).
  • Ring-shaped torque detectors 29a and 29b are interposed between the other ends of the support arms 24a and 24b and the fixing member 25, and a support shaft is provided at the openings of the torque detectors 29a and 29b. 27 is penetrated.
  • the torque detectors 29a and 29b are connected to the meandering amount calculator 41 described above.
  • the detector 17 has a fixing member 25 fitted in a groove 30 formed in the guide support member 15, and is fixed by two fixing bolts 31.
  • a liner 32 is sandwiched between the guide support member 15 and the fixing member 25.
  • a support plate 33 is supported on the bottom surface of the guide support member 15, and a height adjusting bolt 34 is fastened so that the bottom side force of the support plate 33 also penetrates the top surface.
  • the detector 17 can be easily detached by removing the fixing bolt 31 and can be prevented from rattling with the table 13 by being fitted into the groove 30 of the guide support member 15. . Thereby, the division
  • the load acts on the split roll 23 and is transmitted to the torque detectors 29a and 29b.
  • the torque detectors 29a and 29b detect the input load as a moment acting on both ends of the split roll 23 and output it to the meandering amount calculator 41.
  • the meandering amount calculator 41 calculates the position of the plate end of the rolled material S on the split roll 23 from the input moment, and the position force of the rolled end of the rolled material S.
  • the meandering amount of the rolled material S (rolling stand 2, 3), the amount of meandering is output to the rolling controller 43.
  • the rolling controller 43 the rolling cylinder 44 is controlled based on the input meandering amount, and the rolling rolls 7a and 7b are adjusted so as to reduce the meandering amount of the rolling material S, and rolling is performed. And this control is repeated.
  • the calculation process in the meandering amount calculator 41 and the plate shape calculator 42 will be described with reference to FIG.
  • the side on which the drive motor 11 is disposed is indicated as the drive side, and the opposite side is indicated as the operation side.
  • the rolling material S is passed over the split roll 23 in the direction of the arrow.
  • the center of the split roll 23 arranged at the center is denoted by O, while the center position of the sheet width W of the rolled material S is denoted by Y.
  • This center O coincides with the traveling center position in the rolling stands 2 and 3.
  • the meandering amount of the rolled material S is indicated as Yc (the amount of deviation in the plate width direction X between the center O and the center Y).
  • the meandering amount calculator 41 it is determined on which divided roll 23 the drive-side plate end Sd and the operation-side plate end Sw of the rolled material S are arranged. This determination is made based on the plate width W set in advance before rolling and the moments Md, Mw, Md, Mw,... Md, Mw detected by the torque detectors 29a, 29b. The result is shown in Figure 5.
  • the plate end Sd of the rolled material S is disposed on the drive-side split roll 23, and the plate end Sw of the rolled material S is disposed on the operation-side split roll 23. Is determined.
  • the meandering amount Yc of the rolled material S is calculated. First, the load forces applied to the drive-side and operating-side split rolls 23 by contact with the plate ends Sd, Sw are detected as moments Md, Mw and Md, Mw by the torque detectors 29a, 29b. This moment Md,
  • the coordinates (X direction) of the plate edges Sd and Sw are obtained.
  • the meandering amount Yc of the rolled material S is calculated from the coordinates of the plate ends Sd, Sw.
  • the tension distribution in the width direction of the rolled material S is approximated by a quartic equation.
  • the vector tension distribution in the rolling direction based on the coefficients is obtained.
  • the plate shape of the rolled material S is calculated from this tension distribution.
  • the same calculation is performed based on the previously calculated tension distribution.
  • the plate shape of the newly calculated tension distribution force rolling material S is calculated. . That is, the meandering amount calculation unit 41 and the plate shape calculation unit 42 always calculate the meandering amount Yc and the plate shape at predetermined time intervals.
  • the shape detection device 4 is used to reduce the rolling speed between the rolling stands 2 and 3.
  • the support shaft 12 is swung by driving the drive motor 11, and the split roll 23 is brought into contact with the back surface of the rolling material S that passes through the guide member 14 to thereby bring the rolling material S into contact with the rolling material S.
  • a constant tension can be applied by holding a loop.
  • the shape detection device 4 transmits the load of the rolling material S acting on the split roll 23 to the torque detectors 29a and 29b, and the moment Md acting on both ends of the split roll 23 detected by the torque detectors 29a and 29b, Mw
  • the tension distribution force in the width direction of the rolled material S obtained from the positions of the plate ends Sd and Sw of the rolled material S and the meandering amount Yc is calculated.
  • the bender force of the rolling rolls 5a, 5b or the rolling rolls 7a, 7b is controlled, that is, the center Y of the rolling material S coincides with the center O and the rolling material. Control so that the plate shape of S is uniform.
  • meandering of the rolled material S can be suppressed, and a drawing accident at the rolling stand 2 or 3 can be prevented, while the plate shape of the rolled material S can be made uniform. Elongation can be suppressed.
  • the detector 17 is also heated excessively by heat transfer from the rolled material S. Therefore, as shown in FIGS. 6 (a) and (b), blades 35 are provided on both sides of the split roll 23, and cooling water C is sprayed from the cooling device 36 toward the split roll 23 and the blades 35. To do. As a result, the split roll 23 can be cooled, and the split roll 23 can be smoothly rotated by the momentum of the cooling water C, so that slip with the rolling material S can be reduced, and wrinkles and wear can also be reduced.
  • a plurality of grooves 37 extending in the axial direction of the split roll 23 are formed on the surface of the split roll 23, and cooling toward the groove 37 is performed.
  • the cooling water C may be sprayed from the device 36.
  • the split roll 23 can be cooled, and the split roll 23 can be smoothly rotated by the momentum of the cooling water C, so that slip with the rolling material S can be reduced, and wrinkles and wear can also be reduced.
  • the cooling structure shown in FIGS. 6 and 7 may be applied to the roll 20.
  • the torque detectors 29a and 29b may be heated by heat transfer (heat conduction and radiation) from the rolled material S, a cooling passage (not shown) is formed in the fixing member 25, and a cooling medium is used. You may make it circulate. As a result, the torque detectors 29a and 29b are not held at a high temperature, so that damage due to heat can be prevented and highly accurate detection can be performed.
  • a mixture of lubricating oil and air is fed into the self-aligning bearings 26a, 26b, 28a, 28b to prevent oil from running out and dust from entering the self-aligning bearings 26a, 26b, 28a, 28b. You can stop it.
  • torque detectors 29a and 29b are provided between the support arms 24a and 24b and the fixing member 25 via the support shaft 27 and the self-aligning bearings 28a and 28b.
  • a disk-shaped torque detector may be provided without the support shaft 27 and the self-aligning bearings 28a and 28b.
  • a roll bender 44 is provided as a control actuator, but depending on the type of rolling mill, roll cross, roll shift, crown variable May be provided.
  • the plurality of split rolls 23 provided in the width direction of the rolling material S traveling between the rolling stands 2 and 3 and the rolling material S can be guided and rotated.
  • a plate shape calculation unit 50 for calculating the plate shape of the rolled material S, and a roll for controlling the meandering and plate shape of the rolled material S based on the meandering amount Yc and the plate shape By providing the vendor, the meandering of the rolled material S can be controlled and the drawing accident due to meandering can be prevented, while the plate shape of the rolled material S can be made uniform, so that the end elongation and the middle elongation Can be suppressed. Further, since rolling is always performed while correcting the plate shape, the yield is good and the quality is improved. Furthermore, since it is not necessary to provide a new meandering detector, the equipment cost can be reduced.
  • a support shaft 27 that supports the torque detectors 29a and 29b is provided on the fixed member 25, and one end 27a and the other end 27b thereof are provided on the self-aligning bearings 28a and 28b provided on the support arms 24a and 24b.
  • the sheet shape is also approximated to a polynomial in the tension distribution in the sheet width direction of the rolling direction tension using the meandering amount Yc, and the bender force is controlled based on the polynomial and the meandering amount.
  • Material S can be manufactured.
  • the present invention can be applied to a looper device provided between adjacent rolling mills.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Laminated Bodies (AREA)

Abstract

 帯板の蛇行を高精度に検出することができる形状検出装置及びその方法を提供する。そのため、圧延材(S)の幅方向に設けられる複数の分割ロール(23)と、圧延材(S)をガイドすると共に回転可能に支持されるテーブル(13)と、テーブル(13)に支持される固定部材(25)と、圧延材(S)が分割ロール(23)に接触したときに分割ロール(23)の両端に作用する荷重をモーメントとして個別に検出するトルク検出器(29a,29b)と、一端が分割ロール(23)を回転可能に支持すると共に他端がトルク検出器(29a,29b)を介して固定部材(25)に支持される支持アーム(24a,24b)と、トルク検出器(29a,29b)により検出されたモーメントに基づいて圧延材(S)の蛇行量を演算する蛇行量演算器(41)と、モーメントと蛇行量とに基づいて圧延材(S)の板形状を演算する板形状演算器(42)とを備えるようにした。                                                                                     

Description

明 細 書
形状検出装置及びその方法
技術分野
[0001] 本発明は、形状検出装置及びその方法に関する。
背景技術
[0002] 形状検出装置は、多段圧延機のスタンド間に設置され、各スタンド間の圧延速度を 同期させるために、圧延材を回転可能に支持されたロール上に通板させ、このロー ルを上下方向に揺動させることにより、圧延材にループを持たせ一定張力を負荷さ せるものである。そして、検出した圧延材の幅方向の張力分布に基づいて圧延材の 板形状 (板厚)を演算し、圧延機を制御することによって、圧延材の幅方向の形状を 一定にして端伸び及び中伸び等を防止するようにしている。
[0003] このような従来の形状検出装置は、例えば、特許文献 1乃至 4に開示されている。
[0004] 特許文献 1 :特開平 10— 314821号公報
特許文献 2:特表 2003 - 504211号公報
特許文献 3:特公平 5— 86290号公報
特許文献 4:特開 2004— 309142号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、従来の形状検出装置においては、圧延材の板形状を検出するだけ のものであり、圧延材の蛇行量 (圧延機内の走行中心位置に対する圧延材の幅方向 中心位置とのずれ量)についての検出は行われていなかった。圧延においては、板 形状だけでなぐ圧延材の蛇行量も同時に考慮して制御しなくてはならない。つまり、 板形状が所定の形状であっても圧延材が蛇行している場合や板形状が所定の形状 ではなく圧延材が蛇行して 、な 、場合があるので、板形状と蛇行量とに基づ 、て圧 延機を制御しなくてはならない。また、圧延材の蛇行を制御しないと、蛇行した圧延 材の尾端力 Sスタンドから尻抜けするときに、圧延材が圧延機のガイドに接触して折れ 曲がり、次のスタンドの圧延ロールを傷つけるという絞り事故が発生するおそれがある [0006] 即ち、従来の形状検出装置を用いて圧延をする場合には、圧延材の蛇行量を検出 する蛇行検出器等の付帯設備が新たに必要となりコスト増加の問題がある。また、従 来の形状検出装置においては、スタンド間に過度な相対速度偏差が発生するとロー ルが上下動するので、張力検出部に過度な衝撃が加わり形状検出装置の寿命を短 縮させるおそれがある。更には、張力検出部にボルト等の締め付け力が常に掛けら れているので、実際の張力と検出した張力とに差が生じるヒステリシスという問題が発 生し、検出精度が低下するというおそれがある。
[0007] 従って、本発明は上記課題を解決するものであって、帯板の蛇行を高精度に検出 することができる形状検出装置及びその方法を提供することを目的とする。
課題を解決するための手段
[0008] 上記課題を解決する第 1の発明に係る形状検出装置は、
走行する帯板の幅方向に設けられる複数の分割ロールと、
前記帯板をガイドすると共に回転可能に支持されるテーブルと、
前記テーブルに支持される固定部材と、
前記帯板が前記分割ロールに接触したときに前記分割ロールの両端に作用する反 力を個別に検出する反力検出器と、
一端が前記分割ロールを回転可能に支持すると共に他端が前記反力検出器を介 して前記固定部材に支持される支持アームと、
前記反力検出器により検出された反力に基づいて前記帯板の蛇行量を演算する 蛇行量演算部と、
前記反力検出器により検出された反力と前記蛇行量演算部により演算された前記 蛇行量とに基づいて前記帯板の板形状を演算する板形状演算部とを備える ことを特徴とする。
[0009] 上記課題を解決する第 2の発明に係る圧延機は、
走行する圧延材の幅方向に設けられる複数の分割ロールと、
前記圧延材をガイドすると共に回転可能に支持されるテーブルと、
前記テーブルに支持される固定部材と、 前記圧延材が前記分割ロールに接触したときに前記分割ロールの両端に作用する 反力を個別に検出する反力検出器と、
一端が前記分割ロールを回転可能に支持すると共に他端が前記反力検出器を介 して前記固定部材に支持される支持アームと、
前記反力検出器により検出された反力に基づいて前記圧延材の蛇行量を演算す る蛇行量演算部と、
前記反力検出器により検出された反力と前記蛇行量演算部により演算された前記 蛇行量とに基づいて前記圧延材の板形状を演算する板形状演算部と、
前記蛇行量演算部により演算された前記蛇行量と前記板形状演算部により演算さ れた前記板形状とに基づいて前記圧延材の蛇行及び形状を制御する制御ァクチュ エータとを備える
ことを特徴とする。
[0010] 上記課題を解決する第 3の発明に係る形状検出方法は、
走行する帯板にその幅方向に設けられる複数の分割ロールを接触させ、前記分割 ロールの両端に作用する反力を個別に前記分割ロールごとに検出し、これら個別に 検出した反力に基づいて前記帯板の蛇行量を求めると共に、検出した反力及び前 記蛇行量に基づ!/、て前記帯板の板形状を求める
ことを特徴とする。
[0011] 上記課題を解決する第 4の発明に係る圧延方法は、
走行する圧延材にその幅方向に設けられる複数の分割ロールを接触させ、前記分 割ロールの両端に作用する反力を個別に前記分割ロールごとに検出し、これら個別 に検出した反力から前記圧延材の蛇行量を求めると共に、検出した反力及び前記蛇 行量から前記圧延材の板形状を求め、前記蛇行量及び前記板形状に基づいて前記 圧延材の蛇行及び形状を制御する
ことを特徴とする。
[0012] 上記課題を解決する第 5の発明に係る圧延方法は、
第 4の発明に係る圧延方法にお!、て、
前記板形状は前記蛇行量を用 、た圧延方向張力の板幅方向張力分布の多項式 に近似され、該多項式と前記蛇行量に基づ 、て前記圧延材の蛇行及び形状を制御 する
ことを特徴とする。
発明の効果
[0013] 第 1の発明に係る形状検出装置によれば、走行する帯板の幅方向に設けられる複 数の分割ロールと、前記帯板をガイドすると共に回転可能に支持されるテーブルと、 前記テーブルに支持される固定部材と、前記帯板が前記分割ロールに接触したとき に前記分割ロールの両端に作用する反力を個別に検出する反力検出器と、一端が 前記分割ロールを回転可能に支持すると共に他端が前記反力検出器を介して前記 固定部材に支持される支持アームと、前記反力検出器により検出された反力に基づ いて前記帯板の蛇行量を演算する蛇行量演算部と、前記反力検出器により検出され た反力と前記蛇行量演算部により演算された前記蛇行量とに基づいて前記帯板の 板形状を演算する板形状演算部とを備えることにより、前記帯板の蛇行及び板形状 を高精度に検出することができる。
[0014] 第 2の発明に係る圧延機によれば、走行する圧延材の幅方向に設けられる複数の 分割ロールと、前記圧延材をガイドすると共に回転可能に支持されるテーブルと、前 記テーブルに支持される固定部材と、前記圧延材が前記分割ロールに接触したとき に前記分割ロールの両端に作用する反力を個別に検出する反力検出器と、一端が 前記分割ロールを回転可能に支持すると共に他端が前記反力検出器を介して前記 固定部材に支持される支持アームと、前記反力検出器により検出された反力に基づ いて前記圧延材の蛇行量を演算する蛇行量演算部と、前記反力検出器により検出さ れた反力と前記蛇行量演算部により演算された前記蛇行量とに基づいて前記圧延 材の板形状を演算する板形状演算部と、前記蛇行量演算部により演算された前記 蛇行量と前記板形状演算部により演算された前記板形状とに基づいて前記圧延材 の蛇行及び形状を制御する制御ァクチユエ一タとを備えることにより、前記圧延材の 蛇行及び板形状を高精度に制御することができるので、絞り事故を防止することがで きる。
[0015] 第 3の発明に係る形状検出方法によれば、走行する帯板にその幅方向に設けられ る複数の分割ロールを接触させ、前記分割ロールの両端に作用する反力を個別に 前記分割ロールごとに検出し、これら個別に検出した反力に基づいて前記帯板の蛇 行量を求めると共に、検出した反力及び前記蛇行量に基づいて前記帯板の板形状 を求めることにより、前記帯板の蛇行及び板形状を高精度に検出することができる。
[0016] 第 4の発明に係る圧延方法によれば、走行する圧延材にその幅方向に設けられる 複数の分割ロールを接触させ、前記分割ロールの両端に作用する反力を個別に前 記分割ロールごとに検出し、これら個別に検出した反力から前記圧延材の蛇行量を 求めると共に、検出した反力及び前記蛇行量から前記圧延材の板形状を求め、前記 蛇行量及び前記板形状に基づいて前記圧延材の蛇行及び形状を制御することによ り、前記圧延材の蛇行及び板形状を高精度に制御することができるので、絞り事故を 防止することができる。
[0017] 第 5の発明に係る圧延方法によれば、第 4の発明に係る圧延方法において、前記 板形状は前記蛇行量を用 、た圧延方向張力の板幅方向張力分布の多項式に近似 され、該多項式と前記蛇行量に基づ 、て前記圧延材の蛇行及び形状を制御すること により、高精度の圧延材を製造することができる。
図面の簡単な説明
[0018] [図 1]本発明の一実施例に係る圧延機の概略図である。
[図 2] (a)は形状検出装置の平面図、(b)は同図 (a)の側面図である。
[図 3]検出器の拡大断面図である。
圆 4] (a)は検出器の取付構造を示す平面図、 (b)は同図 (a)の A— A矢視断面図で ある。
[図 5]モーメント検出時の作用を示す模式図である。
[図 6] (a)は分割ロールの冷却構造を示す正面図、 (b)は同図(a)の側面図である。
[図 7] (a)は分割ロールの他の冷却構造を示す正面図、(b)は同図(a)の側面図であ る。
符号の説明
[0019] 1 圧延機、 2 前段圧延スタンド、 3 後段圧延スタンド、 4 形状検出装置、 5a, 5b 圧延ロール、 6a, 6b ロール、 7a, 7b 圧延ロール、 8a, 8b ロール、 11 駆動モータ、 12 支持軸、 13 テーブル、 14 ガイド部材、 15 ガイド支 持部材、 17 検出器、 18 軸受け、 23 分割ロール、 24a, 24b 支持アーム 、 25 固定部材、 26a, 26b, 28a, 28b 白動調心ベアリング、 27 支持シャフ 卜、 27a, 27b 端部、 29a, 29b トルク検出器、 30 溝部、 31 固定用ボル卜 、 32 ライナー、 33 支持板、 34 高さ調整用ボルト、 35 羽根、 36 冷却装 置、 37 溝部、 41 蛇行量演算器、 42 板形状演算器、 43 圧延制御器、 4 4 ローノレベンダ
発明を実施するための最良の形態
[0020] 以下、本発明に係る実施形態を図面に基づき詳細に説明する。図 1は本発明の一 実施例に係る圧延機の概略図、図 2 (a)は形状検出装置の平面図、図 2 (b)は同図( a)の側面図、図 3は検出器の拡大断面図、図 4 (a)は検出器の取付構造を示す平面 図、図 4 (b)は同図(a)の A— A矢視断面図、図 5はモーメント検出時の作用を示す 模式図、図 6 (a)は分割ロールの冷却構造を示す正面図、図 6 (b)は同図(a)の側面 図、図 7 (a)は分割ロールの他の冷却構造を示す正面図、図 7 (b)は同図(a)の側面 図である。なお、図中の矢印は圧延方向を示している。
[0021] 図 1に示すように、圧延機 1は前段圧延スタンド 2,後段圧延スタンド 3及び形状検 出装置 4から構成されており、形状検出装置 4は前段圧延スタンド 2の出側と後段圧 延スタンド 3の入側との間に設けられている。そして、前段圧延スタンド 2には圧延口 ール 5a, 5bと、この圧延ロール 5a, 5bを支持するロール 6a, 6bとが設けられており、 同様に、後段圧延スタンド 3には圧延ロール 7a, 7bと、この圧延ロール 7a, 7bを支持 するロール 8a, 8bとが設けられている。また、形状検出装置 4には、蛇行量演算器 4 1,板形状演算器 42及び圧延制御器 43が順に接続されており、圧延制御器 43は圧 延ロール 5a, 5b及び圧延ロール 7a, 7bのロールベンダ 44 (制御ァクチユエータ)に 接続されている。なお、 Sは圧延材を示し、矢印は圧延方向を示している。
[0022] つまり、前段圧延スタンド 2の圧延ロール 5a, 5b間で圧延された圧延材 Sは形状検 出装置 4上を通板され、後段圧延スタンド 3の圧延ロール 7a, 7b間で圧延された後、 所定の装置に搬送される。
[0023] 次に、図 2乃至 7を用いて形状検出装置 4を説明する。 [0024] 図 2 (a) , (b)に示すように、形状検出装置 4は、駆動モータ 11に接続され且つ圧延 材 Sの幅方向に延設する支持軸 12を備えており、この支持軸 12にはテーブル 13が 支持されている。テーブル 13は圧延材 Sをガイドするガイド部材 14と、このガイド部材 14を支持するガイド支持部材 15とから構成され、ガイド支持部材 15の圧延方向下流 側の面には、 7個の検出器 17が支持されている。そして、テーブル 13の両側方の支 持軸 12には、図示しないフレームに支持される軸受け 18が設けられている。
[0025] 図 3に示すように、検出器 17は、圧延材 Sが接触すると連れ回りされる分割ロール 2 3と、この分割ロール 23を一端間に支持する一対の支持アーム 24a, 24bと、この支 持アーム 24a, 24bの他端を支持し且つテーブル 13のガイド支持部材 15に支持され る固定部材 25とを備えている。
[0026] 分割ロール 23は支持アーム 24a, 24bの一端に設けられた自動調心ベアリング 26 a, 26b (球面状に回転可能な軸受けならその他でも可)を介して支持アーム 24a, 2 4b間に回転可能に支持されている。また、固定部材 25には支持シャフト 27が貫通さ れており、この支持シャフト 27の一端 27a及び他端 27bは支持アーム 24a, 24bの他 端に設けられた自動調心ベアリング 28a, 28b (軸受けならその他でも可)に支持され ている。そして、支持アーム 24a, 24bの他端と固定部材 25との間には、リング状のト ルク検出器 29a, 29bが介在されており、このトルク検出器 29a, 29bの開口部に支 持シャフト 27が貫通されている。また、トルク検出器 29a, 29bは上述した蛇行量演 算器 41に接続されている。
[0027] 次に、図 4 (a) , (b)を用いて検出器 17の取付構造について説明する。図 4 (a) , (b )に示すように、検出器 17は、固定部材 25をガイド支持部材 15に形成される溝部 30 に嵌め込まれ、 2本の固定用ボルト 31により固定されており、ガイド支持部材 15と固 定部材 25との間にはライナー 32が挟み込まれている。また、ガイド支持部材 15の底 面には支持板 33が支持され、この支持板 33の底面側力も上面側に貫通するように 高さ調整用ボルト 34が締め付けられている。
[0028] つまり、検出器 17は固定用ボルト 31を取り外すことで容易に脱着可能になっており 、ガイド支持部材 15の溝部 30に嵌め込むことでテーブル 13とのガタつきを防止する ことができる。これにより、分割ロール 23は常に水平に保持することができる。そして、 圧延材 Sの圧延方向の調整はライナー 25を所定の厚さに変更することで可能となつ ており、上下方向の調整は高さ調整用ボルト 27の締め付け量を調整することで可能 となっている。なお、このような、検出器 17の取付構造はロールユニット 16の取付構 造にも適用可能である。
[0029] 従って、分割ロール 23に圧延材 Sが接触すると、その荷重が分割ロール 23に作用 し、トルク検出器 29a, 29bに伝えられる。トルク検出器 29a, 29bでは、入力された荷 重を分割ロール 23の両端に作用するモーメントとして検出して蛇行量演算器 41に出 力する。蛇行量演算器 41では、入力されたモーメントから分割ロール 23上における 圧延材 Sの板端の位置を演算し、この圧延材 Sの板端の位置力 圧延材 Sの蛇行量 (圧延スタンド 2, 3内の走行中心位置に対する圧延材 Sの幅方向中心位置とのずれ 量)を演算した後、この蛇行量を圧延制御器 43に出力する。圧延制御器 43では、入 力された蛇行量に基づ 、て圧下用シリンダ 44を制御して、圧延材 Sの蛇行量を減少 させるように圧延ロール 7a, 7bを調整して圧延を行う。そして、この制御が繰り返し行 われること〖こなる。
[0030] ここで、図 5を用いて蛇行量演算器 41内及び板形状演算部 42内における演算処 理について説明する。なお、図中、駆動モータ 11が配置される側を駆動側と示し、そ の反対側を操作側と示す。
[0031] 図 5に示すように、圧延材 Sが分割ロール 23上を矢印方向に通板されている。なお 、中央に配置される分割ロール 23の中心を Oと示す一方、圧延材 Sの板幅 Wの中心 位置を Yと示す。この中心 Oは圧延スタンド 2, 3内の走行中心位置と一致している。 また、圧延材 Sの蛇行量を Yc (中心 Oと中心 Yとの板幅方向 Xのずれ量)と示す。
[0032] 先ず、蛇行量演算器 41内にお ヽて、圧延材 Sの駆動側の板端 Sd及び操作側の板 端 Swが、どの分割ロール 23上に配置されているかが判別される。この判別は、圧延 前に予め設定される板幅 Wと、各トルク検出器 29a, 29bにより検出されるモーメント Md , Mw、 Md , Mw、 · ··Md , Mwとに基づき行われる。この結果、図 5に示すよ
1 1 2 2 7 7
うに、圧延材 Sの板端 Sdは駆動側の分割ロール 23上に配置されて 、ることが判別さ れ、圧延材 Sの板端 Swは操作側の分割ロール 23上に配置されて 、ることが判別さ れる。 [0033] 次に、圧延材 Sの蛇行量 Ycが演算される。先ず、板端 Sd, Swが接触することによ り駆動側及び操作側の分割ロール 23に加わる荷重力 トルク検出器 29a, 29bにより モーメント Md , Mw及び Md , Mwとして検出される。次いで、このモーメント Md ,
1 1 7 7 1
Mw及び Md , Mwと、各分割ロール 23に加わる荷重位置と力 力の釣り合い式に
1 7 7
より、板端 Sd, Swの座標 (X方向)が求められる。そして、この板端 Sd, Swの座標か ら圧延材 Sの蛇行量 Ycが演算される。
[0034] 次に、板形状演算器 42内において、圧延材 Sの板形状が演算される。先ず、各ト ルク検出器 29a, 29bにより検出されるモーメント Md , Mw、 Md , Mw、 "'Md ,
1 1 2 2 7
Mwと、蛇行量演算気 41から入力された板端 Sd, Swの座標及び蛇行量 Ycとを用
7
いて、圧延材 Sの幅方向の張力分布を 4次式で近似させる。次に、この 4次式の係数 をそれぞれ最小 2乗法を用いて求めた後、その係数による圧延方向のベクトル力 張 力分布が求められる。そして、この張力分布から圧延材 Sの板形状が演算される。更 に、板形状の演算精度を上げるために、先に演算された張力分布に基づいて同様 の計算を行い、この結果、新たに演算された張力分布力 圧延材 Sの板形状が演算 される。即ち、蛇行量演算部 41及び板形状演算部 42では、所定の時間間隔で常に 蛇行量 Yc及び板形状が演算されて ヽる。
[0035] 従って、上述した構成をなすことにより、前段圧延スタンド 2及び後段圧延スタンド 3 で同時に圧延材 Sが圧延される場合、形状検出装置 4は、両圧延スタンド 2, 3間での 圧延速度を同期させるために、駆動モータ 11を駆動して支持軸 12を揺動させ、ガイ ド部材 14上を通板する圧延材 Sの裏面に分割ロール 23を接触させることにより、圧 延材 Sにループを持たせ一定張力を負荷させることができる。また、形状検出装置 4 は、分割ロール 23に作用した圧延材 Sの荷重をトルク検出器 29a, 29bに伝え、トル ク検出器 29a, 29bが検出した分割ロール 23の両端に作用するモーメント Md , Mw
1
、 Md, Mw、 - -Md, Mw力 圧延材 Sの板端 Sd, Swの位置及び蛇行量 Ycを演
1 2 2 7 7
算する共に、圧延材 Sの板端 Sd, Swの位置及び蛇行量 Ycにより求めた圧延材 Sの 幅方向の張力分布力 板形状を演算する。その蛇行量 Yc及び板形状に基づ 、て圧 延ロール 5a, 5bまたは圧延ロール 7a, 7bのベンダー力を制御、即ち、圧延材 Sの中 心 Yが中心 Oと一致するように且つ圧延材 Sの板形状が均一になるように制御する。 これにより、圧延材 Sの蛇行を抑制することができ、圧延スタンド 2または圧延スタンド 3での絞り事故を防止することができる一方、圧延材 Sの板形状を均一にできるので、 端伸び及び中伸びを抑制することができる。
[0036] ここで、圧延材 Sは高温に加熱されて圧延されているので、この圧延材 Sからの伝 熱で検出器 17も過度に加熱される。そこで、図 6 (a) , (b)に示すように、分割ロール 23の両側面に羽根 35を設けて、分割ロール 23及び羽根 35に向けて冷却装置 36か ら冷却水 Cを吹き付けるようにする。これにより、分割ロール 23を冷却させると共に、 冷却水 Cの勢いにより滑らかに分割ロール 23を回転させることができるので、圧延材 Sとのスリップを低減できる一方、疵及び摩耗も減少できる。
[0037] また、図 7 (a) , (b)に示すように、分割ロール 23の表面に分割ロール 23の軸方向 に延設する複数の溝部 37を形成させ、この溝部 37に向けて冷却装置 36から冷却水 Cを吹き付けるようにしても構わない。これにより、分割ロール 23を冷却させると共に、 冷却水 Cの勢いにより滑らかに分割ロール 23を回転させることができるので、圧延材 Sとのスリップを低減できる一方、疵及び摩耗も減少できる。勿論、図 6及び 7に冷却 構造をロール 20に適用しても構わない。
[0038] また、トルク検出器 29a, 29bも圧延材 Sからの伝熱 (熱伝導及びふく射)によって加 熱されるおそれがあるので、固定部材 25に図示しないが冷却通路を形成させ、冷却 媒体を循環させるようにしてもよい。これにより、トルク検出器 29a, 29bが高温に保持 されることがないので、熱による破損を防止することができると共に、高精度な検出を 行うことができる。
[0039] 更に、自動調心ベアリング 26a, 26b, 28a, 28b内に潤滑オイルとエアーを混合し たものを送り、自動調心ベアリング 26a, 26b, 28a, 28bの油切れや粉塵の侵入を防 止するようにしても構わな 、。
[0040] なお、本実施形態では、支持アーム 24a, 24bと固定部材 25との間において、トル ク検出器 29a, 29bを支持シャフト 27及び自動調心ベアリング 28a, 28bを介して設 けているが、支持シャフト 27及び自動調心ベアリング 28a, 28bを介さずに円盤状の トルク検出器を設けても構わない。更に、制御ァクチユエータとしてロールベンダ 44 を設けたが、圧延機の種類によっては、ロールクロス、ロールシフト、クラウン可変ロー ル等を設けても構わない。
[0041] 従って、本発明に係る圧延機によれば、圧延スタンド 2, 3間を走行する圧延材 Sの 幅方向に設けられる複数の分割ロール 23と、圧延材 Sをガイドすると共に回転可能 に支持されるテーブル 13と、テーブル 13に支持される固定部材 25と、圧延材 Sが分 割ロール 23に接触したときに分割ロール 23の両端に作用する圧延材 Sの荷重をモ 一メント Md , Mw、 Md , Mw、 - --Md , Mwとして個別に検出するトルク検出器 29
1 1 2 2 7 7
a, 29bと、一端が分割ロール 23を回転可能に支持すると共に他端がトルク検出器 2 9a, 29bを介して固定部材 25に支持される支持アーム 24a, 24bと、検出されたモー メントモーメント Md , Mw
1 1、 Md , Mw "'M
2 2、 d , Mwに基づいて圧延材 Sの板端 S
7 7
d, Swの位置及び蛇行量 Ycを演算する蛇行量演算器 41と、検出されたモーメントモ 一メント Md , Mw Md , Mw
1 1、 2 2、 - --Md , Mwと圧延材 Sの板端 Sd, Swの位置及び
7 7
蛇行量 Ycとに基づ!/、て圧延材 Sの板形状を演算する板形状演算部 50と、蛇行量 Y cと板形状とに基づいて圧延材 Sの蛇行及び板形状を制御するロールベンダとを備 えることにより、圧延材 Sの蛇行を制御することができ、蛇行による絞り事故を防止す ることができる一方、圧延材 Sの板形状を均一にできるので、端伸び及び中伸びを抑 制することができる。また、常に板形状を補正しながら圧延を行うので、歩留まりがよく 、品質が向上される。更に、新たに蛇行検出器を設ける必要がないので設備費用の 低減を図ることができる。
[0042] また、固定部材 25にトルク検出器 29a, 29bを支持する支持シャフト 27を設け、そ の一端 27a及び他端 27bを支持アーム 24a, 24bに設けられる自動調心ベアリング 2 8a, 28bに支持させることにより、圧延材 Sが分割ロール 23に接触してもトルク検出 器 29a, 29bにせん断力が作用することがないので、精度良く検出することができる。 更に、トルク検出器 29a, 29bへの予荷重がなくなるので、ヒステリシスを防止すること ができる。
[0043] し力も、板形状は蛇行量 Ycを用いた圧延方向張力の板幅方向張力分布の多項式 に近似され、該多項式と蛇行量に基づいてベンダー力を制御するので、高精度の圧 延材 Sを製造することができる。
産業上の利用可能性 [0044] 隣接する圧延機間に設けられるルーパー装置に適用可能である。

Claims

請求の範囲
[1] 走行する帯板の幅方向に設けられる複数の分割ロールと、
前記帯板をガイドすると共に回転可能に支持されるテーブルと、
前記テーブルに支持される固定部材と、
前記帯板が前記分割ロールに接触したときに前記分割ロールの両端に作用する反 力を個別に検出する反力検出器と、
一端が前記分割ロールを回転可能に支持すると共に他端が前記反力検出器を介 して前記固定部材に支持される支持アームと、
前記反力検出器により検出された反力に基づいて前記帯板の蛇行量を演算する 蛇行量演算部と、
前記反力検出器により検出された反力と前記蛇行量演算部により演算された前記 蛇行量とに基づいて前記帯板の板形状を演算する板形状演算部とを備える ことを特徴とする形状検出装置。
[2] 走行する圧延材の幅方向に設けられる複数の分割ロールと、
前記圧延材をガイドすると共に回転可能に支持されるテーブルと、
前記テーブルに支持される固定部材と、
前記圧延材が前記分割ロールに接触したときに前記分割ロールの両端に作用する 反力を個別に検出する反力検出器と、
一端が前記分割ロールを回転可能に支持すると共に他端が前記反力検出器を介 して前記固定部材に支持される支持アームと、
前記反力検出器により検出された反力に基づいて前記圧延材の蛇行量を演算す る蛇行量演算部と、
前記反力検出器により検出された反力と前記蛇行量演算部により演算された前記 蛇行量とに基づいて前記圧延材の板形状を演算する板形状演算部と、
前記蛇行量演算部により演算された前記蛇行量と前記板形状演算部により演算さ れた前記板形状とに基づいて前記圧延材の蛇行及び形状を制御する制御ァクチュ エータとを備える
ことを特徴とする圧延機。
[3] 走行する帯板にその幅方向に設けられる複数の分割ロールを接触させ、前記分割 ロールの両端に作用する反力を個別に前記分割ロールごとに検出し、これら個別に 検出した反力に基づいて前記帯板の蛇行量を求めると共に、検出した反力及び前 記蛇行量に基づ!/、て前記帯板の板形状を求める
ことを特徴とする形状検出方法。
[4] 走行する圧延材にその幅方向に設けられる複数の分割ロールを接触させ、前記分 割ロールの両端に作用する反力を個別に前記分割ロールごとに検出し、これら個別 に検出した反力から前記圧延材の蛇行量を求めると共に、検出した反力及び前記蛇 行量から前記圧延材の板形状を求め、前記蛇行量及び前記板形状に基づいて前記 圧延材の蛇行及び形状を制御する
ことを特徴とする圧延方法。
[5] 請求項 4に記載の圧延方法において、
前記板形状は前記蛇行量を用 、た圧延方向張力の板幅方向張力分布の多項式 に近似され、該多項式と前記蛇行量に基づ 、て前記圧延材の蛇行及び形状を制御 する
ことを特徴とする圧延方法。
PCT/JP2006/304756 2005-06-17 2006-03-10 形状検出装置及びその方法 WO2006134695A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020077029453A KR100927562B1 (ko) 2005-06-17 2006-03-10 형상 검출 장치 및 그 방법
CN2006800199019A CN101189080B (zh) 2005-06-17 2006-03-10 形状检测装置及其方法
US11/919,489 US8051692B2 (en) 2005-06-17 2006-03-10 Shape detection device and shape detection method
BRPI0612238-8A BRPI0612238B1 (pt) 2005-06-17 2006-03-10 Dispositivo de detecção de forma, laminador, e, métodos de detecção de forma e de laminação

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005177221A JP4504874B2 (ja) 2005-06-17 2005-06-17 形状検出装置及びその方法
JP2005-177221 2005-06-17

Publications (1)

Publication Number Publication Date
WO2006134695A1 true WO2006134695A1 (ja) 2006-12-21

Family

ID=37532064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304756 WO2006134695A1 (ja) 2005-06-17 2006-03-10 形状検出装置及びその方法

Country Status (6)

Country Link
US (1) US8051692B2 (ja)
JP (1) JP4504874B2 (ja)
KR (1) KR100927562B1 (ja)
CN (1) CN101189080B (ja)
BR (1) BRPI0612238B1 (ja)
WO (1) WO2006134695A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4957586B2 (ja) * 2008-02-29 2012-06-20 住友金属工業株式会社 熱延鋼板の製造方法、及び製造設備配列
JP4918155B2 (ja) 2010-09-28 2012-04-18 三菱日立製鉄機械株式会社 熱延鋼帯の製造装置及び製造方法
US9211573B2 (en) 2010-12-24 2015-12-15 Primetals Technologies Japan, Ltd. Hot rolling equipment and hot rolling method
TWI551416B (zh) * 2013-11-13 2016-10-01 名南製作所股份有限公司 單板之脫水方法以及脫水裝置
CN107107137B (zh) * 2015-02-02 2018-12-18 东芝三菱电机产业系统株式会社 轧制生产线的蛇行控制装置
DE102019217569A1 (de) * 2019-06-25 2020-12-31 Sms Group Gmbh Planheitsmessvorrichtung zur Messung der Planheit eines metallischen Bandes
JPWO2023037409A1 (ja) * 2021-09-07 2023-03-16
JPWO2023248448A1 (ja) * 2022-06-23 2023-12-28

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215728A (ja) * 1995-02-10 1996-08-27 Nisshin Steel Co Ltd タンデム冷間圧延機における金属帯のエッジドロップ制御方法および装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588458B2 (ja) * 1977-03-30 1983-02-16 株式会社日立製作所 形状検出装置
JPH0586290A (ja) 1991-09-30 1993-04-06 Asahi Chem Ind Co Ltd ポリフエニレンスルフイドよりなる樹脂組成物
JP3335495B2 (ja) * 1995-02-09 2002-10-15 川崎製鉄株式会社 圧延機ロールの水切り装置
JPH10166019A (ja) * 1996-12-05 1998-06-23 Nkk Corp 圧延ラインにおける圧延材の形状制御方法
DE19715523A1 (de) 1997-04-14 1998-10-15 Schloemann Siemag Ag Planheitsmeßrolle
KR20010010085A (ko) * 1999-07-15 2001-02-05 이구택 압연 스탠드간 열연판의 평탄도 검출장치
FR2812082B1 (fr) * 2000-07-20 2002-11-29 Vai Clecim Rouleau de mesure de planeite
DE10224938B4 (de) * 2002-06-04 2010-06-17 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Verfahren und Vorrichtung zur Planheitsmessung von Bändern
JP4296478B2 (ja) * 2003-04-02 2009-07-15 株式会社Ihi 形状検出装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215728A (ja) * 1995-02-10 1996-08-27 Nisshin Steel Co Ltd タンデム冷間圧延機における金属帯のエッジドロップ制御方法および装置

Also Published As

Publication number Publication date
KR100927562B1 (ko) 2009-11-23
BRPI0612238A2 (pt) 2011-01-04
JP2006346714A (ja) 2006-12-28
US8051692B2 (en) 2011-11-08
CN101189080B (zh) 2010-04-21
JP4504874B2 (ja) 2010-07-14
US20080134739A1 (en) 2008-06-12
CN101189080A (zh) 2008-05-28
BRPI0612238B1 (pt) 2019-07-09
KR20080017373A (ko) 2008-02-26

Similar Documents

Publication Publication Date Title
WO2006134695A1 (ja) 形状検出装置及びその方法
KR101574032B1 (ko) 금속 판재의 압연 장치
TWI486219B (zh) Manufacturing apparatus and manufacturing method of hot rolled steel strip
WO2012086043A1 (ja) 熱間圧延設備及び熱間圧延方法
WO2006134696A1 (ja) 蛇行検出装置及びその方法
TWI406718B (zh) 板輥軋機及板輥軋方法
JP4150276B2 (ja) 金属板材の圧延方法および圧延装置
JP5026091B2 (ja) 金属板材の圧延方法及び圧延装置
TWI226267B (en) Method and device for the continuous production of a rolled metal strip from a metal melt
CN100443204C (zh) 轧制装置的控制方法及其控制装置
JP5239728B2 (ja) 金属板材の圧延方法及び圧延装置
JP5905322B2 (ja) 作業ロールシフト機能を具備した圧延機
JP4505550B2 (ja) 金属板材の圧延方法および圧延装置
JP5533754B2 (ja) 金属板材のタンデム圧延設備及び熱間圧延方法
JP4733553B2 (ja) 連続圧延機の張力制御方法
JP2003039108A (ja) 薄帯鋳片の蛇行制御方法
JP4214069B2 (ja) 金属板材の圧延方法および圧延装置
JP3690282B2 (ja) 熱間圧延におけるキャンバおよびウエッジの防止方法
US20070240584A1 (en) Method for operating a calendar machine for plastic melts
CN114761149B (zh) 轧制线
JP3771781B2 (ja) 厚鋼板圧延設備および厚鋼板圧延方法
KR20250001172A (ko) 주름 방지 롤의 위치 제어 시스템 및 방법
JPH0839123A (ja) 熱間圧延における絞り込み防止方法
JP5463888B2 (ja) 熱延鋼板の製造方法および製造装置
JPH11169935A (ja) ストリップの張力制御装置及び方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680019901.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1855/MUMNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020077029453

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11919489

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 15.04.2008

122 Ep: pct application non-entry in european phase

Ref document number: 06715526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0612238

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20071214