[go: up one dir, main page]

WO2006018094A1 - Pigmente auf der basis von zylindern oder prismen - Google Patents

Pigmente auf der basis von zylindern oder prismen Download PDF

Info

Publication number
WO2006018094A1
WO2006018094A1 PCT/EP2005/007944 EP2005007944W WO2006018094A1 WO 2006018094 A1 WO2006018094 A1 WO 2006018094A1 EP 2005007944 W EP2005007944 W EP 2005007944W WO 2006018094 A1 WO2006018094 A1 WO 2006018094A1
Authority
WO
WIPO (PCT)
Prior art keywords
prisms
pigments
metal
tubes
rods
Prior art date
Application number
PCT/EP2005/007944
Other languages
English (en)
French (fr)
Inventor
Holger Winkler
Volker Hilarius
Michael Weiden
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Publication of WO2006018094A1 publication Critical patent/WO2006018094A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/005Manufacture of flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/16Cutting or severing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/40Particle morphology extending in three dimensions prism-like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to pigments based on cylinders or prisms, wherein the height of the cylinders or prisms is 100 nm to 500 ⁇ m and the diameter of the base area of the cylinders or the shortest diagonal of the prism base is 100 nm to 500 ⁇ m and the cylinders or prisms of juxtaposed and lying in the direction of the height axis of the cylinder or the prisms tubes and / or rods.
  • the present invention relates to processes for the preparation of these pigments and their use in paints, coatings, printing inks, plastics, films, cosmetic or pharmaceutical formulations, ceramic materials, glasses, paper, for laser marking, in safety materials, in thermal protection, for seed coloring, food coloring , in drug coatings, in dry preparations, in pigment preparations, for analytical purposes, as a switch or as a tracer.
  • pigments are an important source of colorants that can be used to color materials and objects.
  • the pigments are inorganic pigments, e.g. White, colored or effect pigments. Especially the latter are increasingly gaining economic importance, e.g. in automotive coatings, powder coatings, printing or cosmetics.
  • the present invention therefore an object of the invention to provide novel pigments that can be displayed in a simple manner.
  • pigments according to the present invention fulfill this requirement profile.
  • the present invention accordingly provides pigments based on cylinders or prisms, wherein the height of the cylinders or prisms is 100 nm to 500 ⁇ m, and that the diameter of the base area of the cylinders or the shortest diagonal of the base area of the prisms is 100 nm to 500 ⁇ m and the cylinders or prisms consist of juxtaposed tubes and / or rods lying in the direction of the height axis of the cylinders or of the prisms.
  • the present invention furthermore relates to processes for the preparation of pigments based on cylinders or prisms and to the use of the pigments of the invention in paints, coatings, printing inks, plastics, films, cosmetic or pharmaceutical formulations, ceramic materials, glasses, paper, for laser marking. in safety materials, in thermal protection, for seed coloring, for coloring food, in drug coatings, in dry preparations, in pigment preparations, for analytical purposes, as a switch or as a tracer.
  • the pigments of the invention are novel alternatives to the previously known pigments and can be used in many ways. Due to the great variability of the microstructure of the pigments and the materials used in the pigments, the pigments can be adapted for the respective application with regard to their optical properties become. Thus, by suitable choice of the size dimensions of the tubes and / or rods in relation to the size dimensions of the pigments, suitable pigments can be provided for each wavelength range of the light. For example, by interacting with visible light, the pigments can show color effects that are suitable for use in
  • the pigments of the invention show opalescence, which gives the articles a particularly visually appealing appearance.
  • interaction with non-visible radiation e.g. UV radiation or infrared radiation, occur. This interaction can be used as a security feature, since the presence of the pigments of the invention can be detected by irradiation with light of appropriate wavelength.
  • pigments are toxicologically and ecologically harmless and accessible in the simplest case by methods established in the art.
  • the pigments can be obtained by the established in the art top-down approach, that is, the structures are very easy to produce macroscopically, for example, by bundling tubes or rods with diameters in the cm range in the desired, arbitrary form. By thermal drawing processes, these systems can then be accurately and reproducibly reduced to structures in the nanometer range. Due to this "mechanical nanotechnology", the adjustment, planning and reproducibility is much better than in the case of the ordered nanostructures produced according to previously customary methods.
  • the pigments of the invention are based on cylinders or prisms.
  • the cylinders or prisms may be straight or oblique, preferably straight. If the pigments are those based on prisms, they may have a base area in the form of a polygon V n with n as the number of corners of the polygon V n and n> 3. Preferably n is equal to 3, 4, 5, 6, 7, 8, 9 or 10.
  • the Edge lengths of the polygons V n can be the same size or unequal size, that is, the prisms can be regular or irregular. Preferably, the edge lengths of the polygons V n are the same size, so that they are pigments based on regular prisms.
  • the height of the prisms or cylinders and thus the length of the pigments can be 100 nm to 500 ⁇ m, preferably in the range of 5 to 300 ⁇ m and very particularly preferably in the range of 0.5 ⁇ m to 50 ⁇ m.
  • the diameter of the base area of the cylinders or the shortest diagonal of the base area of the prisms can be 100 nm to 500 ⁇ m, preferably 2 ⁇ m to 200 ⁇ m and very particularly preferably 0.5 ⁇ m to 70 ⁇ m.
  • the diagonal of the base of the prisms means the straight line passing through two opposite corners of the prism
  • Polygon V n runs.
  • the diagonal is the line that intersects two opposite edges of the polygon V n at right angles.
  • the prisms or cylinders consist of tubes and / or rods, the prisms or cylinders consisting of an array of at least two tubes and / or rods.
  • the prisms and / or cylinders are made of tubes.
  • the tubes can also have the shape of a cylinder or any prism, in the simplest case are cylindrical tubes.
  • the geometries of the cylinder or prism outer walls of the tubes and the corresponding inner walls are independent of each other.
  • a tube in the form of a prism having a hexagonal geometry with respect to the outside of the prism wall may have a round geometry with respect to the prism inner wall and vice versa.
  • the tubes are prisms with trigonal, tetragonal, hexagonal, octagonal or decagonal, in particular with hexagonal geometry of the base surface for the outside and with round geometry for the inside.
  • Tubes of the preferred geometry provide in a particularly simple manner pigments of the invention based on prisms with a hexagonal base.
  • the surface of the tubes and / or rods or the prisms or cylinders can also be structured.
  • the structuring can be based, for example, on regularly arranged grooves, spheres or pyramids. Due to the regular structuring, additional diffractive effects can be produced, as are known in the case of pigments, for example from WO 03/053674 and WO 03/102084, the disclosure content of which is hereby included by reference.
  • the tubes and / or rods may be in the form of a densest packing, preferably a hexagonal closest packing.
  • a hexagonal closest packing is most easily achieved by packing hexagonal tube prisms or cylindrical tubes. But it can also be targeted flaws are generated, that is, individual tubes and / or rods may be missing in the arrangement. Defects of this kind can be caused by diffraction or
  • the tubes and / or rods are preferably fixedly connected to one another, the connection taking place in particular by adhesion or by a fusion of the outer walls of the tubes and / or rods to one another. In this way, bundles of tubes and / or rods are obtained, which dictate the shape of the prisms or cylinders.
  • the tubes and / or rods of the cylinders or prisms can be made of glass, SiO 2 , B 2 O 3 , Al 2 O 3 , metals, plastics or mixtures of these materials.
  • the cylinders or prisms as well as tubes and / or rods may contain these materials, any combination of materials being conceivable.
  • tubes and / or rods of glass or SiO 2 may be combined with tubes and / or rods of metals.
  • the tubes and / or rods are preferably made of glass, SiO 2 or metals.
  • the outer diameters of the tubes and / or rods in the pigments according to the invention can vary between 20 nm and 250 ⁇ m, preferably between 70 nm and 2 ⁇ m and in particular between 90 nm and 800 nm.
  • the diameters of the tube walls can be enclosed pores are 1 nm to 2 microns, in particular 20 nm to 1 micron.
  • the distances of the pore centers are in the range of 1.5 nm to 2.5 ⁇ m.
  • the diameters of the tubes and / or rods or the pores in the pigments enclosed by the tube walls can be the same size or not the same size. In this way, the variety of achievable effects can be extended. Due to interference or diffraction effects, pigments of this type can show an interesting play of colors that is similar in appearance to that of opals.
  • any glass known to those skilled in the art eg E glass, A glass, E CR glass, C glass, D glass, R glass or S glass, is suitable as the glass. Glasses of these types are known and described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, under Fibers, Synthetic Inorganic, Glass Fibers.
  • SiO 2 is also a preferred material. Both the glasses and SiO 2 may be doped with elements, eg germanium, gold, silver, platinum, lead, boron, silicon,
  • the plastics may preferably be selected from the group of
  • Polyacrylates polycarbonates, polystyrenes, siloxanes, fluoropolymers, polyesters and / or mixtures thereof.
  • Suitable fluoropolymers are, for example, fluoroacrylates, fluoroacrylate esters, fluorinated polyimides, polytetrafluoroethylene or fluorosilicones.
  • the plastics can be doped with elements in order to vary the optical properties of the plastics in particular.
  • Suitable metals for the tubes and / or rods of the cylinders or prisms are, for example, germanium, gold, platinum, silver, lead or silicon.
  • the cylinders or prisms include tubes and / or rods of glass and metals.
  • the tubes and / or rods of metals may be statistically distributed or ordered over the prisms or cylinders. With both variants, additional effects can be achieved, which are based on the reflection of the light at the tubes and / or rods made of metals.
  • any type of arrangement is included in the present invention.
  • the tubes and / or rods may be made of metals along one or more diagonals of the base of the cylinders or prisms, the diagonals not having to pass through the base center.
  • the diagonal of the base of the prisms means the straight line passing through two opposite corners of the polygon V n .
  • the diagonal is the line that intersects two opposite edges of the polygon V n at right angles.
  • the diagonals can be parallel and not parallel to each other - S -
  • Alignment of the pigment can be achieved in the application medium.
  • the tubes and / or rods or the resulting bundles thereof can be coated with one or more transparent, semitransparent and / or opaque layers comprising metal oxides, metal oxide hydrates, metal suboxides, metals, metal fluorides, metal nitrides, metal oxynitrides or mixtures of these materials.
  • the metal oxide, metal oxide hydrate, metal suboxide, metal, metal fluoride, metal nitride, metal oxynitride layers or mixtures thereof may be low (refractive index ⁇ 1.8) or high refractive index (refractive index> 1.8).
  • Suitable metal oxides and metal oxide hydrates are all metal oxides or metal oxide hydrates known to the person skilled in the art, such as, for example, Alumina, alumina hydrate, silica, silica oxide, iron oxide, tin oxide, ceria, zinc oxide, zirconia, chromia, titania, especially titania, titania hydrate and mixtures thereof, e.g. Ilmenite or pseudobrookite.
  • metal suboxides for example, the titanium suboxides can be used.
  • Suitable metals are e.g. Chromium, aluminum, nickel, silver, gold, platinum, lead, germanium, titanium, copper or alloys, for example, magnesium fluoride is suitable as the metal fluoride.
  • metal nitrides or metal oxynitrides for example, the nitrides or oxynitrides of the metals titanium, zirconium and / or tantalum can be used. Preference is given to applying metal oxide, metal, metal fluoride and / or metal oxide hydrate layers and very particularly preferably metal oxide and / or metal oxide hydrate layers to the tubes and / or rods. You can also continue
  • Multilayer structures of high and low refractive index metal oxide, metal oxide hydrate, metal or metal fluoride layers are present, wherein preferably alternate high and low refractive layers.
  • Particularly preferred are layer packages of a high and a low-refractive layer, wherein one or more of these layer packages can be applied to the tubes and / or rods.
  • the order of the high and low refractive layers can be adapted to the material of the tubes and / or rods, to include the tubes and / or rods in the multi-layer structure.
  • the metal oxide, metal oxide hydrate, metal suboxide, metal, metal fluoride, metal nitride, metal oxynitride layers or mixtures thereof may be mixed or doped with colorants and / or other elements.
  • Suitable colorants or other elements are, for example, organic or inorganic color pigments such as colored metal oxides, eg magnetite, chromium oxide or color pigments such as Berlin blue, ultramarine, bismuth vanadate, thenard blue, or organic color pigments such as indigo, azo pigments, phthalocyanines or else
  • Carmine or elements such as e.g. Yttrium or antimony.
  • Tubular and / or rod-based pigments containing these layers exhibit a high color diversity with respect to their body color and, in many cases, can show an angle-dependent change of color (color flop) due to interference.
  • the outer layer on the tubes and / or rods in a preferred embodiment is a high refractive index metal oxide.
  • This outer layer may additionally be part of a layer package on the abovementioned layer packages or, for high-index carriers, for example of TiO 2 , titanium suboxides, Fe 2 O 3 , SnO 2 , ZnO, ZrO 2 , Ce 2 O 3 , CoO, Co 3 O 4 , V 2 O 5 , Cr 2 O 3 and / or mixtures thereof, such as ilmenite or pseudobrookite exist.
  • TiO 2 is particularly preferred.
  • these can be attached to the prism or
  • Cylinder base surfaces closed or open, preferably closed so that solvents or other compounds when incorporated into Formulations or applications can not penetrate into the tubes. In this way, a change in the refractive index differences between the tube materials and the component enclosed in the tubes, eg air, is prevented. This ensures an unchanged color and collegiategestallung when incorporated into the corresponding
  • the cavities between the rods and / or tubes or in the tubes can also be filled with any substances, the degree of filling need not be complete.
  • the infiltration or impregnation of the cavities with substances can be carried out from the gas phase or in solution or dispersion.
  • the cavities may be infiltrated, for example, from the gas phase with vapors of metals or gaseous precursors for metals, semiconductors (eg III-V semiconductors such as GaN, AlN, InN or mixed crystals thereof, GaAs, InAs, InP) or insulators.
  • the cavities can be filled by means of solution impregnation by utilizing capillary effects, for example with dispersed nanoparticles or soluble precursors for metals, semiconductors or insulators.
  • a filling of the cavities with phosphors is also conceivable, for example, with Eu 3+ : Y 2 ⁇ 3 , wherein the absorption and
  • Emission properties of the phosphors can be influenced by the modulated difference in the refractive index of the arrangement of the tubes and / or rods.
  • the cavities can be loaded with dyes, for example with laser-active dyes for the construction of microlasers. Suitable dyes are known in the art and can be used in the context of the present invention.
  • the cavities can be loaded with liquid crystalline mixtures.
  • the optical properties can be influenced by external influences, such as by changing the temperature or by the influence of electrical or magnetic fields. For example, it is possible to realize pigments for switchable coatings in which the influence of external electric fields, the wavelength of the reflection colors shifted or the transparency can be changed.
  • the pigments may additionally be coated with one or more transparent, semi-transparent and / or opaque layers comprising metal oxides, metal oxide hydrates, metal suboxides, metals, metal fluorides, metal nitrides, metal oxynitrides or mixtures of these materials, the one or more transparent ones , semi-transparent and / or opaque layers containing metal oxides, metal oxide hydrates,
  • Metal suboxides, metals, metal fluorides, metal nitrides, metal oxynitrides and / or mixtures of these materials may be doped with colorants and / or elements. Examples and possible arrangements for the above-mentioned materials are already mentioned in advance.
  • the pigments according to the invention can be provided with a secondary coating.
  • Suitable materials for the post-coating are, for example, organosilanes and / or polymers, wherein the said materials may be present mixed in one layer or separately in several layers.
  • Suitable organosilanes are, for example, silanes of the general formula
  • R alkyl, phenyl or hydrogen
  • B organic, at least bifunctional group (alkylene, alkyleneoxyalkylene)
  • Y alkyl, amino, substituted amino, hydroxy, hydroxyalkyl, siloxane, acetoxy, isocyanate, vinyl, acryloyl, epoxy, epoxypropyloxy, imidazole or ureido group
  • n, m 0.1, 2,3 with n + m ⁇ 3 exist.
  • the organosilanes consist of an anchor group (X 4 .. n . M Z), which can bind, for example, to the surface of the pigment, at least one hydrophobic group (R 1 B) and one or more alkyl or functional groups (Y).
  • the anchor group consists of alkoxysilanes, which can be converted by hydrolytic reaction conditions into corresponding hydroxyl groups.
  • the organosilane can be adapted to the requirements.
  • additional bonds between the pigment and the medium can be generated via the organosilane by reaction of the functional groups with corresponding functionalities in the application media.
  • the surface of the particles according to the invention is modified with a combination of organic functionalities adapted to the feed medium.
  • the use of mixtures of different organosilanes is also suitable.
  • the hydrophobicity of the particle surface can also be adjusted by integration of alkyl-containing coupling reagents, such as alkyl silanes.
  • organosilanes In addition to the organosilanes, it is also preferable to use their hydrolyzates and their homogeneous and heterogeneous oligomers and / or polymers which can likewise be used alone or in combination with the silanes already described. Particular preference is given to mixtures of different organosilanes, in particular with mutually different functional groups Y, the use of which ensures a particular range of application.
  • organosilanes are propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, n-octyltrimethoxysilane, i-octyltrimethoxysilane, n-octyltriethoxysilane, n-decyltrimelhoxysilane, dodecyltrimethoxysilane, hexadecyltrimetrioxysilane, vinyltrimethoxysilane, octadecyltrimethoxysilane, preferably vinyltrimethoxysilane.
  • oligomerere non-alcoholic alcoholic solvent, octyltrimethoxysilane, preferably ethylene oxidesilane.
  • Organosilane are, among others, those sold under the trade name "Dynasylan ®" by the company. Sivento products, such. As Dynasylan HS 2926, Dynasylan HS 2909, Dynasylan HS2907, Dynasylan HS 2781, Dynasylan HS 2776, Dynasylan HS 2627. In addition, oligomeric vinylsilane and aminosilane hydrolyzate are suitable as organic coatings Functionalized organosilanes are, for example, 3-aminopropyltrimethoxysilane.
  • Methacryloxytrimethoxysilane 3-glycidyloxypropyltrimethoxysilane, beta- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, gamma-isocyanatopropyltrimethoxysilane, 1,3-bis (3-glycidoxypropyl) -1,3,3,3-tetramethyldisiloxane,
  • Ureidopropyltriethoxysilane preferred are 3-aminopropyltrimethoxysilane, 3-methacryloxytrimethoxysilane, 3-glycidyloxypropyltrimethoxysilane, beta- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, gamma-isocyanatopropyltrimethoxysilane.
  • Examples of polymeric silane systems are described in WO 98/13426 and are described, for. B. sold by the company. Sivento under the trademark Hydrosil ® .
  • the polymers may be selected, for example, from the group of polyethers, polyesters, polyacrylates, polyvinylcaprolactams, cellulose, polystyrenes, polyvinyl alcohols, polyvinyl acetates, polysiloxanes, derivatives of the polymers mentioned or from mixtures thereof.
  • the polymers are preferably crosslinked melamine-formaldehyde resins, LCST and / or UCST polymers or polymers with solvolyzable groups.
  • the crosslinked melamine-formaldehyde resins are prepared by precipitating crosslinking melamine-formaldehyde resins on the pigments and then curing or crosslinking the melamine-formaldehyde resins. Resins formed. Further examples and embodiments of this process can be found in WO 03/074614.
  • LCST polymers or UCST polymers are polymers that are soluble in low or high temperatures in a solvent and in
  • Suitable LCST polymers for the present invention are, for example, those described in WO 01/60926 and WO 03/014229.
  • Particularly suitable LCST polymers are polyalkylene oxide derivatives, preferably polyethylene oxide (PEO) derivatives, polypropylene oxide (PPO) derivatives, olefinically modified PPO-PEO block copolymers, with acrylate-modified PEO-PPO-PEO triblock copolymers, and US Pat Polymers or their derivatives from the class of polymethyl vinyl ethers, poly-N-vinylcaprolactams, ethyl (hydroxyethyl) - celluloses, poly (N-isopropylacrylamide) and polysiloxanes.
  • Particularly preferred LCST polymers are siloxane polymers or polyethers modified with olefinic or silanolic groups.
  • Suitable UCST polymers are in particular polystyrene, polystyrene copolymers and polyethylene oxide copolymers.
  • LCST or UCST polymers with solvolyzable or functional groups which can undergo strong interactions and / or chemical bonds with the substrate or the application medium, for example the lacquer matrix.
  • All known to the expert functional groups are suitable, especially silanol, amino, hydroxyl, olefin, hydroxyl, epoxy, acid anhydride and acid groups.
  • the LCST or UCST polymers preferably have molar masses in the range from 300 to 500,000 g / mol, in particular from 500 to 20,000 g / mol.
  • the post-coatings may additionally contain additives which additionally increase or decrease the chemical and / or mechanical stability of the pigments or impart UV-filtering properties or a coloring effect to the pigments.
  • Suitable additives are e.g. Nanoparticles of all kinds, plasticizers, antioxidants, radical scavengers, UV filters, dyes, microtitanium or mixtures thereof.
  • the additives are preferably admixed to the solution of the polymer as a dispersion, preferably using the same solvent as that of the polymer solution.
  • the properties of the pigments can be adapted to the individual needs of the user, or it can be several functionalities, such as. Coloring and UV filters, combined with each other in a variety of pigment.
  • the pigments of the invention are accessible in a simple manner. Thus, processes for the preparation of the pigments of the invention are also the subject of the present invention.
  • An embodiment of the method according to the invention comprises the following method steps: a) arranging tubes and / or rods in the form of cylinders or prisms, b) thermally drawing the cylinders or prisms obtained in a) so that the diameter of the base surface of the cylinders or the shortest Diagonal of the base of the prisms is 100 nm to 500 microns and c) reduce the cylinder or prisms obtained in b), so that the height of the cylinders or prisms is 100 nm to 500 ⁇ m
  • the cylinders or prisms obtained in process steps a) and b) may in the simplest case be so-called photonic crystals
  • Fibers act. Materials of this kind are known and methods of making photonic crystal fibers have been widely described, e.g. in WO 00/49436, EP 1 234 806, WO 03/012500, WO 02/101430, WO 03/086738, US 2002/0031319 or US 2003/0056550, the disclosure contents of which are hereby incorporated by reference in this application.
  • the process variants mentioned in the individual disclosures, e.g. for the thermal drawing of the cylinders or prisms, are also used in the inventive method.
  • cylinder or prisms containing tubes and / or rods made of glass and metal are produced according to method step a) and processed according to the abovementioned method steps b) and c).
  • the tubes and / or rods of metal may be randomly distributed or distributed over the cylinders or prisms, preferably they are arranged along one or more diagonals of the base of the cylinder or prisms.
  • the tubes and / or rods or the bundles resulting therefrom are provided in advance with one or more transparent, semitransparent and / or opaque layers comprising metal oxides, metal oxide hydrates, metal suboxides, metals, metal fluorides, metal nitrides, metal oxynitrides or mixtures thereof Coated materials.
  • metal oxides metal oxide hydrates, metal suboxides, metals, metal fluorides, metal nitrides, metal oxynitrides or mixtures thereof Coated materials.
  • Corresponding materials are already in the description of the pigments according to the invention called.
  • the coating can be carried out by all methods known to those skilled in the art, for example wet-chemically, by hydrolytic decomposition of suitable precursors or by CVD or PVD.
  • the pigments can be coated with one or more transparent, semitransparent and / or opaque layers comprising metal oxides, metal oxide hydrates, metal suboxides, metals, metal fluorides, metal nitrides, metal oxynitrides or mixtures of these materials. Suitable materials and processes for their preparation are already mentioned in advance.
  • the pigments can be provided with a post-coating in a further embodiment of the inventive method. Suitable postcoats are already mentioned in the description of the pigments according to the invention.
  • the application of the post-coating can be carried out by all methods known to the person skilled in the art, e.g. by precipitation in solution, by application in the melt, by solvolysis processes or by surface polymerizations.
  • the comminution mentioned in process step c) can likewise be carried out by customary methods, for example by milling, cutting and / or chopping.
  • Process variants of this type and suitable apparatuses are known, for example, from US 4,319,506, US 2003/0231845, WO 02/42814, EP 0 229 500, EP 0 640 570, EP 0 563 687 or WO 03/097543.
  • the crushing is done by a hot cleaver, which splits the prisms or cylinders by melting.
  • the crushing can also be done with a laser cutting beam.
  • the tubes can be closed at the prism or cylinder bases.
  • the tubes can be closed by melting, capping, grafting and / or by polymerization reactions.
  • the closure is carried out by melting the tube ends, which can be done simultaneously in the process step of crushing or separately in a separate step.
  • Other process variants include the capping, the grafting or filling of the tubes at the ends, for example with polymerizable compounds, which at the tube ends by polymerization a solid bond with the
  • the cavities between the rods and / or tubes or in the tubes can be filled with substances. This can be done by subsequent infiltration or impregnation via the gas phase or by solution or dispersion loading. Examples of suitable substances are already mentioned in advance.
  • the pigments according to the invention are suitable for a wide range of applications because of their advantageous properties.
  • the invention therefore also relates to the use of the pigments according to the invention in paints, lacquers, printing inks, plastics, films, cosmetic or pharmaceutical formulations, ceramic materials, glasses, paper, for laser marking, in security materials, in thermal protection, for seed coloring, for food coloring Drug coatings, in dry preparations, in pigment preparations, for analytical purposes, as a switch or as a tracer.
  • the pigments of the invention are particularly suitable for products and formulations of decorative cosmetics, such as nail polishes, coloring powders, lipsticks or eye shadows, soaps, toothpastes, etc.
  • the pigments of the invention in the formulations with any type of cosmetic raw - And excipients are combined. These include oils, fats, waxes, film formers, preservatives and general performance properties determining adjuvants, such as thickeners and rheological additives such as bentonites, hectorites, silica, Ca silicates, gelatin, high molecular weight carbohydrates and / or surface-active aids, etc.
  • the formulations containing pigments according to the invention may belong to the lipophilic, hydrophilic or hydrophobic type.
  • the pigments according to the invention may each contain only one of the two phases or may also be distributed over both phases.
  • the pH values of the formulations may be between 1 and 14, preferably between 2 and 11 and more preferably between 5 and 8.
  • concentrations of the interference pigments according to the invention in the formulation can range from 0.001 (rinse-off products, eg shower gels) to 99% (eg glossy effect items for special applications).
  • the pigments according to the invention can furthermore also be combined with cosmetic active ingredients.
  • Suitable active ingredients are, for example, insect repellents, UVA / BC protective filters (eg OMC, B3, MBC), anti-aging active ingredients, vitamins and their derivatives (eg vitamin A, C, E, etc.), self-tanning agents (eg DHA, eryolose and others) such as bisabolol, LPO, ectoine, emblica, allantoin, bioflavanoids and their derivatives.
  • self-tanning agents eg DHA, eryolose and others
  • all applications known to the person skilled in the art are possible, for example powder coatings, automotive coatings, printing inks for gravure, offset, screen or flexographic printing and for coatings in outdoor applications.
  • For the production of printing inks is a variety of binders, especially water-soluble
  • Types suitable e.g. based on acrylates, methacrylates, polyesters, polyurethanes, nitrocellulose, ethylcellulose, polyamide, polyvinyl butyrate, phenolic resins, maleic resins, starch or polyvinyl alcohol.
  • the paints may be water- or solvent-based paints, the selection of the paint components is subject to the general knowledge of the skilled person. If, for example, they contain liquid-crystalline substances in their cavities, the pigments can be used for switchable lacquers, e.g. used for automotive applications. In the simplest case, an electric field is built up, with the sheet metal body as an electrode and a conductive coating, e.g. an ITO particle-containing layer as a counter electrode. Alternatively, the control of the liquid-crystalline substances can also be effected by the ambient temperature.
  • Pigmentation of films and plastics are used, such as for agricultural films, infrared-reflective films and discs, gift wrap, plastic containers and moldings for all known in the art applications.
  • Suitable plastics are all common plastics for the incorporation of the moldings of the invention, for example thermosets or thermoplastics.
  • the description of the possible applications and the usable plastics, processing methods and additives can be found, for example, in RD 472005 or in R. Glausch, M. Kieser, R. Maisch, G. Pfaff, J. Weitzel, pearlescent pigments, Curt R. Vincentz Verlag, 1996 , 83 ff., The disclosure of which is included here.
  • body or Lumines ⁇ en ⁇ color pigments of the invention are also suitable for use in security applications, such as ⁇ .B. in security printing and in security-relevant features for eg counterfeit-proof cards and
  • ID cards such as Tickets, identity cards, banknotes, checks and check cards, as well as other forgery-proof documents.
  • the pigments can be used to color seed and other raw materials, and in the food industry to pigment
  • the pigments of the invention are also useful, e.g. in DE 198 31 869 or US 6,627,212.
  • the pigments according to the invention are suitable for use in switchable systems, in particular when the voids between the rods and / or in the tubes are filled with substances, e.g. liquid crystalline substances are filled.
  • substances e.g. liquid crystalline substances are filled.
  • the pigments obtained according to the present invention are suitable for analytical purposes, for example in microanalysis or sensor systems.
  • the specific analyte changes the refractive index contrast by entering the pores. This leads to a change in the optical properties which can be detected.
  • SiO 2 is selected as the pigment material
  • the pigments of the invention are also suitable for use in blends with organic and / or inorganic colorants, for example organic or inorganic dyes and / or pigments, such as transparent and opaque white, colored and black pigments and with platelet-shaped iron oxides, organic
  • the pigments according to the invention can be mixed in any ratio with commercial pigments and fillers.
  • fillers are e.g. natural and synthetic mica, nylon powder, pure or filled melanin resins, talc, glasses, kaolin, oxides or hydroxides of aluminum, magnesium, calcium, zinc, BiOCl, barium sulfate, calcium sulfate, calcium carbonate, magnesium carbonate, carbon, and physical or chemical combinations of these substances to call.
  • particle shape of the filler It can meet the requirements according to e.g. be platy, spherical or needle-shaped.
  • the pigments according to the invention are furthermore suitable for the preparation of flowable pigment preparations and dry preparations comprising one or more pigments according to the invention, binders and optionally one or more additives.
  • Dry preparations are also to be understood as preparations which contain 0 to 8% by weight, preferably 2 to 8% by weight, in particular 3 to 6% by weight, of water and / or of a solvent or solvent mixture.
  • the dry preparations are preferably in the form of pellets, granules, chips, sausages or briquettes and have particle sizes of 0.2-80 mm.
  • the dry preparations are used in particular in the production of printing inks and in cosmetic formulations.
  • a particular application of the pigments of the invention consists in their use as tracers in mixtures with other organic and / or inorganic colorants. Tracers are widely used as a means of identification in modern products. With their
  • tracers are based on fluorescent, radioactive or luminescent substances which are added to the product to be protected as a powder, suspension or liquid. These substances are often toxicologically and environmentally questionable or require for their traceability special equipment and devices.
  • the pigments of the invention may be added to the colorants to be labeled or products made therefrom, e.g. Varnishes, powders, paints or suspensions may be added using all methods known to those skilled in the art.
  • the proportion of the tracer in the product to be labeled is usually ⁇ 5 wt .-%, based on the labeled product and preferably ⁇ 2 wt .-% and most preferably 0.1-1 wt .-%.
  • the tracer in the mixtures can be detected very easily by means of a microscope or with the scanning electron microscope. Chemically and toxicologically, these tracers behave like effect pigments and are thus chemically inert and toxicologically harmless.
  • the pigments of the invention can be mixed in very small doses, so that the coloristics in the application is not significantly affected. Since the pigments of the invention specially adapted to the customer's requirements for this application are not commercially available, sufficient copy protection of the mixture to be marked is ensured. Because of the stability and the chemically inert character, the pigments according to the invention can be used simply and without problems and processed in the abovementioned applications or formulations. Paints, lacquers, printing inks, plastics, films, cosmetic or pharmaceutical formulations, ceramic materials, glasses, paper,
  • Safety materials, seeds, food, pharmaceuticals, analysis systems, switches, dry preparations or pigment preparations containing the pigments according to the invention are accordingly also the subject of this invention.
  • Wt% Al 2 O 3 , 13 wt% Na 2 O, 3 wt% K 2 O, 5 wt% CaO, 3 wt% MgO, 2 wt% BaO) with outside diameters of 1.7 mm and inner diameters of 1,204 mm are arranged hexagonally so that the overall diameter of the assembly is about 4 mm.
  • the hexagonal arrangement is introduced at a feed rate of 1.5 mm / min in a 3-zone oven (zone height 10 mm) with a temperature of 700 0 C.
  • the drawing speed during drawing is 400 mm / min.
  • the stretching is repeated until fibers with a diameter of 100 ⁇ m are obtained. After comminution of the resulting fibers cylindrical pigments are obtained, which have viewing angle-dependent color play from red to yellow to green when viewed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Cosmetics (AREA)

Abstract

Die vorliegende Erfindung betrifft Pigmente auf der Basis von Zylindern oder Prismen, wobei die Höhe der Zylinder oder Prismen 100 nm bis 500 µm beträgt und der Durchmesser der Grundfläche der Zylinder oder die kürzeste Diagonale der Grundfläche der Prismen 100 nm bis 500 µm beträgt und die Zylinder oder Prismen aus nebeneinander angeordneten und in Richtung der Höhenachse der Zylinder oder der Prismen liegenden Röhren und/oder Stäben bestehen. Weiterhin betrifft die vorliegende Erfindung Verfahren zur Herstellung dieser Pigmente sowie deren Verwendung in Farben, Lacken, Druckfarben, Kunststoffen, Folien, kosmetischen oder pharmazeutischen Formulierungen, keramischen Materialien, Gläsern, Papier, zur Lasermarkierung, in Sicherheitsmaterialien, im Wärmeschutz, zur Saatguteinfärbung, zur Lebensmitteleinfärbung, in Arzneimittelüberzügen, in Trockenpräparaten, in Pigmentpräparationen, für analytische Zwecke, als Schalter oder als Tracer.

Description

Pigmente auf der Basis von Zylindern oder Prismen
Die vorliegende Erfindung betrifft Pigmente auf der Basis von Zylindern oder Prismen, wobei die Höhe der Zylinder oder Prismen 100 nm bis 500 μm beträgt und der Durchmesser der Grundfläche der Zylinder oder die kürzeste Diagonale der Grundfläche der Prismen 100 nm bis 500 μm beträgt und die Zylinder oder Prismen aus nebeneinander angeordneten und in Richtung der Höhenachse der Zylinder oder der Prismen liegenden Röhren und/oder Stäben bestehen. Weiterhin betrifft die vorliegende Erfindung Verfahren zur Herstellung dieser Pigmente sowie deren Verwendung in Farben, Lacken, Druckfarben, Kunststoffen, Folien, kosmetischen oder pharmazeutischen Formulierungen, keramischen Materialien, Gläsern, Papier, zur Lasermarkierung, in Sicherheitsmaterialien, im Wärmeschutz, zur Saatguteinfärbung, zur Lebensmitteleinfärbung, in Arzneimittelüberzügen, in Trockenpräparaten, in Pigmentpräparationen, für analytische Zwecke, als Schalter oder als Tracer.
Die farbliche Gestaltung alltäglicher Gegenstände hat seit jeher eine große Bedeutung. Pigmente sind neben den Farbstoffen eine wichtige Kasse der Farbmittel, die zur Einfärbung von Materialien und Gegenständen eingesetzt werden können. Vielfach handelt es sich bei den Pigmenten um anorganische Pigmente, z.B. Weiß-, Bunt- oder Effektpigmente. Besonders letztere erlangen zunehmend wirtschaftliche Bedeutung, so z.B. in Automobillacken, Pulverlacken, im Druckbereich oder in der Kosmetik.
Neben der Eigenfarbe der Effektpigmente spielen auch zusätzliche Effekte wie z.B. Glanz, Interferenzphänomene oder Beugungsphänomene bei der Wahl der Pigmente eine Rolle.
Um den Anforderungen der Hersteller in den oben genannten Bereichen zu genügen und stets neue Farbkreationen zu ermöglichen, besteht ein andauernder Bedarf an neuen Pigmenten. Diese neuen Pigmente sollten auf einfache Weise herstellbar, stabil, ökologisch und toxikologisch unbedenklich bzw. chemisch inert sein und sollten in den genannten Anwendungen besondere Farben und Effekte ermöglichen.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, neuartige Pigmente, die auf einfache Weise darstellbar sind, bereitzustellen.
Überraschenderweise wurde gefunden, dass Pigmente gemäß der vorliegenden Erfindung dieses Anforderungsprofil erfüllen. Gegenstand der vorliegenden Erfindung sind demgemäss Pigmente auf der Basis von Zylindern oder Prismen, wobei die Höhe der Zylinder oder Prismen 100 nm bis 500 μm beträgt und dass der Durchmesser der Grundfläche der Zylinder oder die kürzeste Diagonale der Grundfläche der Prismen 100 nm bis 500 μm beträgt und die Zylinder oder Prismen aus nebeneinander angeordneten und in Richtung der Höhenachse der Zylinder oder der Prismen liegenden Röhren und/oder Stäben bestehen. Weiterhin sind Gegenstand der vorliegenden Erfindung Verfahren zur Herstellung der Pigmente auf der Basis von Zylindern oder Prismen sowie die Verwendung der erfindungsgemäßen Pigmente in Farben, Lacken, Druckfarben, Kunststoffen, Folien, kosmetischen oder pharmazeutischen Formulierungen, keramischen Materialien, Gläsern, Papier, zur Lasermarkierung, in Sicherheitsmaterialien, im Wärmeschutz, zur Saatguteinfärbung, zur Lebensmitteleinfärbung, in Arzneimittelüberzügen, in Trockenpräparaten, in Pigmentpräparationen, für analytische Zwecke, als Schalter oder als Tracer.
Die erfindungsgemäßen Pigmente stellen neuartige Alternativen zu den bisher bekannten Pigmenten dar und lassen sich vielseitig einsetzen. Durch die große Variabilität der Mikrostruktur der Pigmente und der in den Pigmenten eingesetzten Materialien können die Pigmente für die jeweilige Anwendung in bezug auf ihre optischen Eigenschaften hin angepasst werden. So lassen sich durch die geeignete Wahl der Größendimensionen der Röhren und/oder Stäbe in Relation zu den Größendimensionen der Pigmente, für jeden Wellenlängenbereich des Lichtes geeignete Pigmente bereitstellen. Beispielsweise können die Pigmente durch Wechselwirkung mit sichtbarem Licht, Farbeffekte zeigen, die für die Anwendung in
Gegenständen des alltäglichen Gebrauchs vorteilhaft eingesetzt werden können. Vielfach zeigen die erfindungsgemäßen Pigmente Opaleszenz, die den Gegenständen ein besonders optisch ansprechendes Aussehen verleiht. Darüber hinaus kann bei entsprechend angepassten Pigmenten eine Wechselwirkung mit nicht sichtbarer Strahlung, z.B. UV-Strahlung oder Infrarot-Strahlung, auftreten. Diese Wechselwirkung lässt sich als Sicherheitsmerkmal einsetzen, da die Anwesenheit der erfindungsgemäßen Pigmente durch Bestrahlung mit Licht entsprechender Wellenlänge nachgewiesen werden kann. Darüber hinaus sind Pigmente toxikologisch und ökologisch unbedenklich und im einfachsten Falle durch in der Technik etablierte Verfahren zugänglich. So können die Pigmente durch den in der Technik etablierten Top-Down-Approach erhalten werden, das heißt die Strukturen sind sehr leicht makroskopisch herstellbar, indem beispielsweise Röhren oder Stäbe mit Durchmessern im cm-Bereich in gewünschter, beliebiger Form gebündelt werden können. Durch thermische Ziehprozesse können diese Systeme dann genau und reproduzierbar zu Strukturen im Nanometerbereich verkleinert werden. Durch diese „mechanische Nanotechnologie" ist die Einstell-, Plan- und Reproduzierbarkeit viel besser als bei den nach bislang üblichen Verfahren hergestellten, geordneten Nanostrukturen.
Die erfindungsgemäßen Pigmente basieren auf Zylindern oder Prismen. Die Zylinder oder Prismen können gerade oder schief sein, vorzugsweise sind sie gerade. Handelt es sich bei den Pigmenten um solche auf der Basis von Prismen so können diese eine Grundfläche in Form eines Vielecks Vn mit n als der Anzahl der Ecken des Vielecks Vn und n > 3 aufweisen. Vorzugsweise ist n gleich 3, 4, 5, 6, 7, 8, 9 oder 10. Die Kantenlängen der Vielecke Vn können gleich groß oder ungleich groß sein, das heißt die Prismen können regelmäßig oder unregelmäßig sein. Vorzugsweise sind die Kantenlängen der Vielecke Vn gleich groß, so dass es sich um Pigmente auf der Basis von regelmäßigen Prismen handelt.
Die Höhe der Prismen oder Zylinder und damit die Länge der Pigmente kann 100 nm bis 500 μm betragen, vorzugsweise liegt sie im Bereich von 5 bis 300 μm und ganz besonders bevorzugt im Bereich von 0.5 μm bis 50 μm.
Der Durchmesser der Grundfläche der Zylinder oder die kürzeste Diagonale der Grundfläche der Prismen kann 100 nm bis 500 μm, vorzugsweise 2 μm bis 200 μm und ganz besonders bevorzugt 0.5 μm bis 70 μm betragen. Idealerweise meint die Diagonale der Grundfläche der Prismen die Gerade, die durch zwei gegenüberliegende Ecken des
Vielecks Vn verläuft. Daneben ist es auch möglich dass die Diagonale die Gerade ist, die zwei gegenüberliegende Kanten des Vielecks Vn im rechten Winkel schneidet.
Die Prismen oder Zylinder bestehen aus Röhren und/oder Stäben, wobei die Prismen oder Zylinder aus einer Anordnung von mindestens zwei Röhren und/oder Stäben bestehen. Vorzugsweise handelt es sich um mehrere Röhren und/oder Stäbe, wobei die obere Grenze der Anzahl per se nicht begrenzt ist. Vorzugsweise bestehen die Prismen und/oder Zylinder aus Röhren. Die Röhren können dabei ebenfalls die Form eines Zylinders oder eines beliebigen Prismas haben, im einfachsten Falle handelt es sich um zylindrische Röhren. Dabei sind die Geometrien der Zylinder- bzw. Prismenaußenwände der Röhren und der entsprechenden Innenwände voneinander unabhängig. Beispielsweise kann eine Röhre in Form eines Prismas mit einer hexagonalen Geometrie in bezug auf die Außenseite der Prismenwand eine runde Geometrie in bezug auf die Prismeninnenwand aufweisen und umgekehrt. Bezüglich der einzelnen Geometrien bzw. der einzelnen Kombinationen gibt es keine Beschränkungen. Vorzugsweise handelt es sich bei den Röhren um Prismen mit trigonaler, tetragonaler, hexagonaler, octagonaler oder decagonaler, insbesondere mit hexagonaler Geometrie der Grundfläche für die Außenseite und mit runder Geometrie für die Innenseite. Röhren der bevorzugten Geometrie ergeben auf besonders einfache Weise erfindungsgemäße Pigmente auf der Basis von Prismen mit hexagonaler Grundfläche. Die Oberfläche der Röhren und/oder Stäbe bzw. der Prismen oder Zylinder kann ebenfalls strukturiert sein. Die Strukturierung kann dabei beispielsweise auf regelmäßig angeordneten Rillen, Kugeln oder Pyramiden basieren. Durch die regelmäßige Strukturierung lassen sich zusätzliche diffraktive Effekte erzeugen, wie sie bei Pigmenten z.B. aus der WO 03/053674 und der WO 03/102084 bekannt sind, deren Offenbarungsgehalt hiermit unter Bezugnahme mit eingeschlossen ist.
Der Unterschied der Brechzahlen zwischen dem Wandmaterial der Röhren und dem Röhreninneren, vorzugsweise Luft, führt zu den bevorzugten optischen Effekten der resultierenden Pigmente. Die Röhren und/oder Stäbe können in Form einer dichtesten Packung, vorzugsweise einer hexagonal dichtesten Packung, vorliegen. Eine hexagonal dichteste Packung lässt sich am einfachsten durch entsprechendes Packen hexagonaler Röhrenprismen oder zylindrischer Röhren erreichen. Es können aber auch zielgerichtet Fehlstellen erzeugt werden, das heißt einzelne Röhren und/oder Stäbe können in der Anordnung fehlen. Fehlstellen dieser Art können durch Beugungs- oder
Interferenzphänomene besondere Farbeffekte hervorrufen. Die Röhren und/oder Stäbe sind vorzugsweise fest miteinander verbunden, wobei die Verbindung insbesondere durch eine Anhaftung oder durch eine Verschmelzung der Außenwände der Röhren und/oder Stäbe untereinander erfolgt. Auf diese Weise werden Bündel an Röhren und/oder Stäben erhalten, die die Form der Prismen oder Zylinder vorgeben. Die Röhren und/oder Stäbe der Zylinder oder Prismen können aus Glas, SiO2, B2O3, AI2O3, Metallen, Kunststoffen oder aus Mischungen dieser Materialien bestehen. Alternativ können die Zylinder oder Prismen sowie Röhren und/oder Stäbe diese Materialien enthalten, wobei jegliche Kombination an Materialien denkbar ist. Beispielsweise können Röhren und/oder Stäbe aus Glas oder SiO2 mit Röhren und/oder Stäben aus Metallen kombiniert werden. Die Röhren und/oder Stäbe bestehen vorzugsweise aus Glas, SiO2 oder Metallen.
Die Außendurchmesser der Röhren und/oder Stäbe in den erfindungsgemäßen Pigmenten können zwischen 20 nm und 250 μm variieren, vorzugsweise liegen sie zwischen 70 nm und 2 μm und insbesondere zwischen 90 nm und 800 nm. Im Falle von Röhren können die Durchmesser der von den Röhrenwänden umschlossenen Poren 1 nm bis 2 μm betragen, insbesondere 20 nm bis 1 μm. Die Abstände der Porenmittelpunkte liegen im Bereich von 1.5 nm bis 2.5 μm. Darüber hinaus können die Durchmesser der Röhren und/oder Stäbe bzw. der von den Röhrenwänden umschlossenen Poren in den Pigmenten gleich groß oder ungleich groß sein. Auf diese Weise kann die Vielfalt der erzielbaren Effekte erweitert werden. Pigmente dieser Art können durch Interferenz¬ bzw. Beugungseffekte ein interessantes Farbenspiel zeigen, dass dem Aussehen nach demjenigen von Opalen nahe kommt.
Als Glas eignet sich jedes dem Fachmann bekannte Glas, z.B. E-Glas, A- Glas, E-CR-Glas, C-Glas, D-Glas, R-Glas oder S-Glas. Gläser dieser Typen sind bekannt und beispielsweise in Ullmanns Encyclopedia of Industrial Chemistry, unter Fibers, Synthetic Inorganic, Glass Fibers beschrieben. Neben den Gläsern ist SiO2 ebenfalls ein bevorzugtes Material. Sowohl die Gläser als auch SiO2 können mit Elementen dotiert sein, z.B. mit Germanium, Gold, Silber, Platin, Blei, Bor, Silicium,
Lanthaniden, Actiniden, dreiwertigen Kationen der Seltenerdmetalle, wie z.B. Eu3+, Fluor und/oder Phosphor, wobei bezüglich der Dotierung keine - J -
Beschränkungen existieren. Durch die Dotierung des Glases bzw. von SiO2 können die Brechungseigenschaften der Materialien variiert und den Bedürfnissen angepasst werden.
Die Kunststoffe können vorzugsweise ausgewählt sein aus der Gruppe der
Polyacrylate, Polycarbonate, Poylstyrene, Siloxane, Fluorpolymeren, Polyester und/oder Mischungen hieraus. Geeignete Fluorpolymere sind beispielsweise Fluoracrylate, Fluoracrylatester, fluorierte Polyimide, Polytetrafluorethylen oder Fluorsilicone. Wie auch die Gläser können die Kunststoffe mit Elementen dotiert sein, um vor allem die optischen Eigenschaften der Kunststoffe entsprechend zu variieren.
Als Metalle für die Röhren und/oder Stäbe der Zylinder oder Prismen eignen sich beispielsweise Germanium, Gold, Platin, Silber, Blei oder Silicium.
In einer Ausführungsform der vorliegenden Erfindung enthalten die Zylinder oder Prismen Röhren und/oder Stäbe aus Glas und Metallen. Die Röhren und/oder Stäbe aus Metallen können über die Prismen oder Zylinder statistisch verteilt oder geordnet vorliegen. Mit beiden Varianten können zusätzliche Effekte erzielt werden, die auf der Reflexion des Lichtes an den Röhren und/oder Stäben aus Metallen beruhen. Im Falle einer definierten Anordnung der Röhren und/oder Stäbe aus Metallen ist jegliche Art der Anordnung in der vorliegenden Erfindung mit umfasst. Beispielsweise können die Röhren und/oder Stäbe aus Metallen längs einer oder mehrerer Diagonalen der Grundfläche der Zylinder oder Prismen angeordnet liegen, wobei die Diagonalen nicht durch den Grundflächenmittelpunkt verlaufen müssen. Idealerweise meint die Diagonale der Grundfläche der Prismen die Gerade, die durch zwei gegenüberliegende Ecken des Vielecks Vn verläuft. Daneben ist es auch möglich dass die Diagonale die Gerade ist, die zwei gegenüberliegende Kanten des Vielecks Vn im rechten Winkel schneidet. Die Diagonalen können parallel und nicht parallel zueinander - S -
angeordnet sein. Durch den Einbau von Röhren und/oder Stäben aus Metall längs einer oder mehrerer Diagonalen werden zusätzliche als Spiegel wirkende Ebenen erzeugt, die den Glanz und die Vielfalt der Effekte weiter erhöhen können. Durch eine entsprechende Anordnung mehrerer Diagonalen kann der gewünschte Effekt unabhängig von der
Ausrichtung des Pigmentes im Anwendungsmedium erzielt werden.
In einer weiteren Ausführungsform können die Röhren und/oder Stäbe bzw. die resultierenden Bündel daraus mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metalifluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichtet sein. Die Metalloxid-, Metalloxidhydrat-, Metallsuboxid-, Metall-, Metallfluorid-, Metallnitrid-, Metalloxynitridschichten oder die Mischungen hieraus können niedrig- (Brechzahl < 1.8) oder hochbrechend (Brechzahl > 1.8) sein. Als Metalloxide und Metalloxidhydrate eignen sich alle dem Fachmann bekannten Metalloxide oder Metalloxidhydrate, wie z. B. Aluminiumoxid, Aluminiumoxidhydrat, Siliziumoxid, Siliziumoxidhydrat, Eisenoxid, Zinnoxid, Ceroxid, Zinkoxid, Zirkoniumoxid, Chromoxid, Titanoxid, insbesondere Titandioxid, Titanoxidhydrat sowie Mischungen hieraus, wie z.B. Ilmenit oder Pseudobrookit. Als Metallsuboxide können beispielsweise die Titansuboxide eingesetzt werden. Als Metalle eignen sich z.B. Chrom, Aluminium, Nickel, Silber, Gold, Platin, Blei, Germanium, Titan, Kupfer oder Legierungen, als Metallfluorid eignet sich beispielsweise Magnesiumfluorid. Als Metallnitride oder Metalloxynitride können beispielsweise die Nitride oder Oxynitride der Metalle Titan, Zirkonium und/oder Tantal eingesetzt werden. Bevorzugt werden Metalloxid-, Metall-, Metallfluorid und/oder Metalloxidhydratschichten und ganz besonders bevorzugt Metalloxid- und/oder Metalloxidhydratschichten auf den Röhren und/oder Stäben aufgebracht. Weiterhin können auch
Mehrschichtaufbauten aus hoch- und niedrigbrechenden Metalloxid-, Metalloxidhydrat-, Metall- oder Metallfluoridschichten vorliegen, wobei sich vorzugsweise hoch- und niedrigbrechende Schichten abwechseln. Insbesondere bevorzugt sind Schichtpakete aus einer hoch- und einer niedrigbrechenden Schicht, wobei auf den Röhren und/oder Stäben eines oder mehrere dieser Schichtpakete aufgebracht sein können. Die Reihenfolge der hoch- und niedrigbrechenden Schichten kann dabei an das Material der Röhren und/oder Stäbe angepasst werden, um die Röhren und/oder Stäbe in den Mehrschichtaufbau mit einzubeziehen. In einer weiteren Ausführungsform können die Metalloxid-, Metalloxidhydrat-, Metallsuboxid-, Metall-, Metallfluorid-, Metallnitrid-, Metalloxynitridschichten bzw. Mischungen hieraus mit Farbmitteln und/oder anderen Elementen versetzt oder dotiert sein. Als Farbmittel oder andere Elemente eignen sich beispielsweise organische oder anorganische Farbpigmente wie farbige Metalloxide, z.B. Magnetit, Chromoxid oder Farbpigmente wie z.B. Berliner Blau, Ultramarin, Bismutvanadat, Thenards Blau, oder aber organische Farbpigmente wie z.B. Indigo, Azopigmente, Phthalocyanine oder auch
Karminrot oder Elemente wie z.B. Yttrium oder Antimon. Pigmente auf der Basis von Röhren und/oder Stäben enthaltend diese Schichten zeigen eine hohe Farbenvielfalt in bezug auf ihre Körperfarbe und können in vielen Fällen eine winkelabhängige Änderung der Farbe (Farbflop) durch Interferenz zeigen.
Die äußere Schicht auf den Röhren und/oder Stäben ist in einer bevorzugten Ausführungsform ein hochbrechendes Metalloxid. Diese äußere Schicht kann zusätzlich auf den oben genannten Schichtpaketen oder bei hochbrechenden Trägern Teil eines Schichtpaketes sein und z.B. aus TiO2, Titansuboxiden, Fe2O3, SnO2, ZnO, ZrO2, Ce2O3, CoO, Co3O4, V2O5, Cr2O3 und/oder Mischungen davon, wie zum Beispiel Ilmenit oder Pseudobrookit, bestehen. TiO2 ist besonders bevorzugt.
Im Falle von Röhren können diese an den Prismen- oder
Zylindergrundflächen geschlossen oder offen, vorzugsweise geschlossen sein, so dass Lösemittel oder andere Verbindungen bei Einarbeitung in Formulierungen oder Applikationen nicht in die Röhren eindringen können. Auf diese Weise wird eine Veränderung der Brechzahlunterschiede zwischen den Röhrenmaterialien und der in den Röhren eingeschlossenen Komponente, z.B. Luft, verhindert. Dies gewährleistet eine unveränderte Färb- und Effektgestallung bei Einarbeitung in die entsprechenden
Applikationssysteme.
Die Hohlräume zwischen den Stäben und/oder Röhren bzw. in den Röhren können aber auch mit beliebigen Substanzen befüllt werden, wobei der Füllgrad nicht vollständig sein muss. Die Infiltrierung bzw. Imprägnierung der Hohlräume mit Substanzen kann hierbei aus der Gasphase oder in Lösung bzw. Dispersion erfolgen. Die Hohlräume können beispielsweise aus der Gasphase mit Dämpfen von Metallen oder gasförmigen Precursoren für Metalle, Halbleiter (z.B. Ill-V-Halbleiter, wie z.B. GaN, AIN, InN oder Mischkristalle davon, GaAs, InAs, InP) oder Isolatoren infiltriert werden. Des weiteren können die Hohlräume mittels Lösungsimprägnierung unter Ausnutzung kapillarer Effekte befüllt werden, z.B. mit dispergierten Nanoteilchen oder löslichen Precursoren für Metalle, Halbleiter oder Isolatoren. Eine Füllung der Hohlräume mit Leuchtstoffen ist ebenfalls denkbar, z.B. mit Eu3+:Y2θ3, wobei die Absorptions- und
Emissionseigenschaften der Leuchtstoffe durch die modulierte Differenz des Brechungsindex der Anordnung der Röhren und/oder Stäbe beeinflussbar wird. Außerdem können die Hohlräume mit Farbstoffen beladen werden, z.B. mit laseraktiven Farbstoffen zum Aufbau von Mikrolasern. Geeignete Farbstoffe sind dem Fachmann bekannt und können im Sinne der vorliegenden Erfindung eingesetzt werden. Zudem können die Hohlräume mit flüssigkristallinen Mischungen beladen werden. Dadurch sind die optischen Eigenschaften durch äußere Einflüsse beeinflussbar, wie z.B. durch die Änderung der Temperatur oder durch Einfluss elektrischer bzw. magnetischer Felder. Beispielsweise lassen sich so Pigmente für schaltbare Lacke realisieren, bei denen durch den Einfluss äußerer elektrischer Felder die Wellenlänge der Reflektionsfarben verschoben oder die Transparenz verändert werden kann.
In einer weiteren Ausführungsform der vorliegenden Erfindung können die Pigmente zusätzlich mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichtet sein, wobei die ein oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate,
Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride und/oder Mischungen dieser Materialien mit Farbmitteln und/oder Elementen dotiert sein können. Beispiele und Anordnungsmöglichkeiten für die oben genannten Materialien sind bereits vorab genannt.
Weiterhin können die erfindungsgemäßen Pigmente mit einer Nachbeschichtung versehen sein. Als Material für die Nachbeschichtung eignen sich beispielsweise Organosilane und/oder Polymere wobei die genannten Materialien gemischt in einer Schicht oder getrennt in mehreren Schichten vorliegen können.
Als Organosilane eignen sich beispielsweise Silane der allgemeinen Formel
X4-n-mZ-Rn(-B-Y)rn
mit X = OH, Halogen, Alkoxy, Aryloxy Z = Si
R = Alkyl, Phenyl oder Wasserstoff B = organische, zumindest bifunktionelle Gruppe (Alkylen, Alkylenoxyalkylen) Y = Alkyl-, Amino-, substituierte Amino-, Hydroxy-, Hydroxyalkyl-, Siloxan-, Acetoxy, Isocyanat-, Vinyl-, Acryloyl-, Epoxy-, Epoxypropyloxy-, Imidazol- oder Ureidogruppe n, m = 0,1 ,2,3 mit n+m < 3 bestehen.
Die Organosilane bestehen aus einer Ankergruppe (X4..n.mZ), die z.B. an die Oberfläche des Pigmentes binden kann, wenigstens einer hydrophoben Gruppe (R1B) sowie einer oder mehrerer Alkyl- bzw. funktioneller Gruppen (Y). Bevorzugt besteht die Ankergruppe aus Alkoxysilanen, die durch hydrolytische Reaktionsbedingungen in entsprechende Hydroxygruppen überführt werden können.
Durch die Wahl geeigneter funktioneller Gruppen kann das Organosilan den Anforderungen angepasst werden. Darüber hinaus können, je nach Beschichtungsreihenfolge, durch Reaktion der funktionellen Gruppen mit entsprechenden Funktionalitäten in den Applikationsmedien zusätzliche Bindungen zwischen Pigment und Medium über das Organosilan erzeugt werden. In einer besonderen Ausführungsform wird die Oberfläche der erfindungsgemäßen Partikel mit einer dem Einsatzmedium angepassten Kombination von organischen Funktionalitäten modifiziert. Hierzu eignet sich auch der Einsatz von Mischungen verschiedener Organosilane. Die Hydrophobie der Partikeloberfläche kann durch Integration von alkylhaltigen Kupplungsreagenzien, wie z.B. Alkylsilanen, ebenfalls angepasst werden. Neben den Organosilanen ist auch der Einsatz ihrer Hydrolysate sowie ihrer homogenen und heterogenen Oligomere und/oder Polymere bevorzugt, die ebenfalls alleinig oder in Kombination mit den bereits beschriebenen Silanen eingesetzt werden können. Im besonderen bevorzugt sind Mischungen verschiedener Organosilane, insbesondere mit voneinander unterschiedlichen funktionellen Gruppen Y, deren Einsatz eine besondere Anwendungsbreite gewährleistet. Beispiele für Organosilane sind Propyltrimethoxysilan, Propyltriethoxysilan, Isobutyltrimethoxysilan, n-Octyltrimethoxysilan, i-Octyltrimethoxysilan, n- Octyltriethoxysilan, n-Decyltrimelhoxysilan, Dodecyltrimethoxysilan, Hexadecyltrimetrioxysilan, Vinyltrimethoxysilan, Octadecyltrimethoxysilan vorzugsweise Vinyltrimethoxysilan. Als oligornere, alkoholfreie
Organosilanhydrolysate eignen sich unter anderem die unter dem Handelsnamen „Dynasylan®" von der Fa. Sivento vertriebenen Produkte, wie z. B. Dynasylan HS 2926, Dynasylan HS 2909, Dynasylan HS2907, Dynasylan HS 2781 , Dynasylan HS 2776, Dynasylan HS 2627. Darüber hinaus eignet sich oligomeres Vinylsilan als auch Aminosilanhydrolysat als organische Beschichtung. Funktionalisierte Organosilane sind beispielsweise 3-Aminopropyltrimethoxysilan, 3-
Methacryloxytrimethoxysilan, 3-Glycidyloxypropyltrimethoxysilan, beta-(3,4- Epoxycyclohexyl)-ethyltrimethoxysilan, gamma-lsocyanatopropyltri- methoxysilan, 1 ,3-bis(3-glycidoxypropyl)-1 ,1 ,3,3,-tetramethyIdisiloxan,
Ureidopropyltriethoxysilan, bevorzugt sind 3-Aminopropyltrimethoxysilan, 3- Methacryloxytrimethoxysilan, 3-Glycidyloxypropyltrimethoxysilan, beta-(3,4- Epoxycyclohexyl)-ethyltrimethoxysilan, gamma-lsocyanatopropyltri- methoxysilan. Beispiele für polymere Silansysteme sind in WO 98/13426 beschrieben und werden z. B. von der Fa. Sivento unter dem Warenzeichen Hydrosil® vertrieben.
Die Polymere können z.B. ausgewählt sein aus der Gruppe der Polyether, Polyester, Polyacrylate, Polyvinylcaprolactame, Cellulose, Polystyrole, Polyvinylalkohole, Polyvinylacetate, Polysiloxane, Derivaten der genannten Polymere oder aus Mischungen hieraus. Vorzugsweise handelt es sich bei den Polymeren um vernetzte Melamin-Formaldehyd-Harze, LCST- und/oder UCST-Polymere oder um Polymere mit solvolysierbaren Gruppen. Die vernetzten Melamin-Formaldehyd-Harze werden durch Abscheiden vernetzender Melamin-Formaldehyd-Harze auf den Pigmenten und anschließendes Aushärten bzw. Vernetzen der Melamin-Formaldehyd- Harze gebildet. Weitere Beispiele und Ausführungsformen dieses Verfahrens finden sich in der WO 03/074614.
LCST-Polymere bzw. UCST-Polymere sind Polymere, die bei niedrigen bzw. hohen Temperaturen in einem Lösemittel löslich sind und bei
Erhöhung bzw. Erniedrigung der Temperatur und Erreichen der sogenannten LCST bzw. UCST (lower bzw. upper critical Solution temperature) aus der Lösung als gesonderte Phase abgeschieden werden. Derartige Polymere werden z.B. in der Literatur in „Polymere", H. G. Elias, Hüthig und Wepf-Verlag, Zug, 1996 auf den Seiten 183 ff. beschrieben. Bei den Polymeren mit solvolysierbaren Gruppen werden diese bei der Solvolyse abgespalten, wobei das Polymer auf dem Substrat ausfällt.
Geeignete LCST-Polymere für die vorliegende Erfindung sind beispielsweise solche, wie sie in der WO 01/60926 und WO 03/014229 beschrieben werden. Besonders geeignete LCST-Polymere sind Polyalkylenoxid-Derivate, vorzugsweise Polyethylenoxid (PEO)-Derivatet, Polypropylenoxid (PPO)-Derivate, olefinisch modifizierte PPO-PEO-Block- Copopolymere, mit Acrylat-modifiziβrtβ PEO-PPO-PEO-Dreiblock- Copolymere, sowie Polymere bzw. deren Derivate aus der Klasse der Polymethylvinylether, Poly-N-vinylcaprolactame, Ethyl-(hydroxyethyl)- cellulosen, Poly-(N-isopropylacrylamid) sowie Polysiloxane. Besonders bevorzugte LCST-Polymere sind mit olefinischen oder silanolischen Gruppen modifizierte Siloxan-Polymere oder Polyether.
Geeignete UCST-Polymere sind insbesondere Polystyrol, Polystyrol- Copolymere und Polyethylenoxid-Copolymere.
Bevorzugt werden LCST- bzw. UCST-Polymere mit solvolysierbaren bzw. funktionellen Gruppen verwendet, die starke Wechselwirkungen und/oder chemische Bindungen mit dem Substrat oder dem Anwendungsmedium, wie z.B. der Lackmatrix, eingehen können. Alle dem Fachmann bekannten funktionellen Gruppen sind geeignet, insbesondere Silanoi-, Amino-, Hydroxyl-, Olefin-, Hydroxyl-, Epoxy-, Säureanhydrid- und Säuregruppen.
Die LCST- bzw. UCST-Polymere besitzen vorzugsweise Molrnassen irn Bereich von 300 bis 500000 g/mol, insbesondere von 500 bis 20000 g/nnol.
Die Nachbeschichtungen können zusätzlich auch Additive enthalten, die die chemische und/oder mechanische Stabilität der Pigmente zusätzlich erhöhen oder erniedrigen bzw. den Pigmenten UV-filtemde Eigenschaften oder eine farbgebende Wirkung verleihen. Geeignete Additive sind z.B. Nanopartikel aller Art, Weichmacher, Antioxidantien, Radikalfänger, UV- Filter, Farbstoffe, Mikrotitan oder deren Gemische. Die Additive werden der Lösung des Polymeren vorzugsweise als Dispersion zugemischt, wobei bevorzugt dasselbe Lösemittel wie das der Polymerlösung zum Einsatz kommt. Durch den Einschluss von Fremdstoffen, wie z.B. Nanopartikeln, Weichmachern oder Farbstoffen können die Eigenschaften der Pigmente den individuellen Bedürfnissen des Anwenders angepasst werden, bzw. es können mehrere Funktionalitäten, wie z.B. Farbgebung und UV-Filter, miteinander in einer Sorte Pigment kombiniert werden.
Die erfindungsgemäßen Pigmente sind auf einfache Weise zugänglich. Somit sind Verfahren zur Herstellung der erfindungsgemäßen Pigmente ebenfalls Gegenstand der vorliegenden Erfindung.
Eine Ausführungsform der erfindungsgemäßen Verfahren umfasst die folgenden Verfahrensschritte: a) Anordnen von Röhren und/oder Stäben in Form von Zylindern oder Prismen, b) Thermisches Ziehen der in a) erhaltenen Zylinder oder Prismen, so dass der Durchmesser der Grundfläche der Zylinder oder die kürzeste Diagonale der Grundfläche der Prismen 100 nm bis 500 μm beträgt und c) verkleinern der in b) erhaltenen Zylinder oder Prismen, so dass die Höhe der Zylinder oder Prismen 100 nm bis 500 μm beträgt
Bei den in den Verfahrensschritten a) und b) erhaltenen Zylindern oder Prismen kann es sich im einfachsten Falle um sogenannte Photonic Crystal
Fibers handeln. Materialien dieser Art sind bekannt und Verfahren zur Herstellung von Photonic Crystal Fibers sind vielfach beschrieben, z.B. in WO 00/49436, EP 1 234 806, WO 03/012500, WO 02/101430, WO 03/086738, US 2002/0031319 oder US 2003/0056550, deren Offenbarungsgehalte hiermit unter Bezugnahme in dieser Anmeldung mit eingeschlossen sind. Die in den einzelnen Offenbarungen genannten Verfahrensvarianten, z.B. für das thermische Ziehen der Zylinder oder Prismen, sind in den erfindungsgemäßen Verfahren ebenfalls einsetzbar.
In einer weiteren Ausführungsform der erfindungsgemäßen Verfahren werden gemäß Verfahrensschritt a) Zylinder oder Prismen enthaltend Röhren und/oder Stäbe aus Glas und Metall hergestellt und gemäß den oben genannten Verfahrensschritten b) und c) prozessiert. Hierbei können die Röhren und/oder Stäbe aus Metall statistisch verteilt oder geordnet über die Zylinder oder Prismen verteilt werden, vorzugsweise werden sie längs einer oder mehrerer Diagonalen der Grundfläche der Zylinder oder Prismen angeordnet. Durch die Prozessierungsschritte b) und c) werden diese Strukturmuster entsprechend verkleinert und finden sich in den so hergestellten Pigmenten wieder.
In einer weiteren Ausführungsform der erfindungsgemäßen Verfahren werden die Röhren und/oder Stäbe bzw. die daraus resultierenden Bündel vorab mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichtet. Entsprechende Materialien sind bereits bei der Beschreibung der erfindungsgemäßen Pigmente genannt. Die Beschichiung kann nach allen dem Fachmann bekannten Verfahren, z.B. nasschemisch, durch hydrolytische Zersetzung geeigneter Vorstufen oder durch CVD bzw. PVD erfolgen.
Darüber hinaus können in einer weiteren Ausführungsform der erfindungsgemäßen Verfahren die Pigmente mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichtet werden. Geeignete Materialien sowie Verfahren zu ihrer Herstellung sind bereits vorab genannt.
Weiterhin können die Pigmente in einer weiteren Ausführungsform der erfindungsgemäßen Verfahren mit einer Nachbeschichtung versehen werden. Geeignete Nachbeschichtungen sind bereits bei der Beschreibung der erfindungsgemäßen Pigmente genannt. Die Aufbringung der Nachbeschichtung kann nach allen dem Fachmann bekannten Verfahren erfolgen, z.B. durch Auffällung in Lösung, durch Aufbringung in der Schmelze, durch Solvolyseverfahren oder durch Polymerisationen an der Oberfläche.
Die in Verfahrensschritt c) genannte Zerkleinerung kann ebenfalls mit gängigen Verfahren erfolgen, z.B. durch Mahlen, Schneiden und/oder Hacken. Verfahrensvarianten dieser Art sowie dazu geeignete Apparaturen sind beispielsweise aus US 4,319,506, US 2003/0231845, WO 02/42814, EP 0 229 500, EP 0 640 570, EP 0 563 687 oder WO 03/097543 bekannt. Im einfachsten Falle erfolgt die Zerkleinerung durch ein heißes Hackmesser, das die Prismen oder Zylinder durch Schmelzen zerteilt. Weiterhin kann die Zerkleinerung auch mit einem Laserschneidstrahl erfolgen. Weiterhin können die Röhren an den Prismen- oder Zylindergrundflächen verschlossen werden. Das Verschließen der Röhren kann durch Schmelzen, Verkappen, Verpfropfen und/oder durch Polymerisationsreaktionen erfolgen. Im einfachsten Falle erfolgt das Verschließen durch Zuschmelzen der Röhrenenden, wobei dies gleichzeitig im Verfahrensschritt des Zerkleinerns oder getrennt davon in einem separaten Arbeitsschritt erfolgen kann. Weitere Verfahrensvarianten umfassen die Verkappung, die Verpfropfung oder Füllung der Röhren an den Enden, z.B. mit polymerisierbaren Verbindungen, die an den Röhrenenden durch Polymerisation einen festen Verbund mit den
Röhrenenden eingehen. Beispiele hierfür finden sich unter anderem in der US 2003/0068150, deren Offenbarung hiermit unter Bezugnahme mit eingeschlossen ist.
In einer weiteren Ausführungsform der erfindungsgemäßen Verfahren können die Hohlräume zwischen den Stäben und/oder Röhren bzw. in den Röhren mit Substanzen gefüllt werden. Diese kann durch nachträgliches Infiltrieren oder Imprägnieren über die Gasphase oder durch Lösungs- bzw. Dispersions-Beladung erfolgen. Beispiele für geeignete Substanzen sind bereits vorab genannt.
Die erfindungsgemäßen Pigmente eignen sich aufgrund ihrer vorteilhaften Eigenschaften für eine große Bandbreite von Anwendungen. Gegenstand der Erfindung ist daher auch die Verwendung der erfindungsgemäßen Pigmente in Farben, Lacken, Druckfarben, Kunststoffen, Folien, kosmetischen oder pharmazeutischen Formulierungen, keramischen Materialien, Gläsern, Papier, zur Lasermarkierung, in Sicherheitsmaterialien, im Wärmeschutz, zur Saatguteinfärbung, zur Lebensmitteleinfärbung, in Arzneimittelüberzügen, in Trockenpräparaten, in Pigmentpräparationen, für analytische Zwecke, als Schalter oder als Tracer. Im Falle von kosmetischen Formulierungen eignen sich die erfindungsgemäßen Pigmente besonders für Produkte und Formulierungen der dekorativen Kosmetik, wie z.B. Nagellacke, farbgebende Puder, Lippenstifte oder Lidschatten, Seifen, Zahnpasten etc. Selbstverständlich können die erfindungsgemäßen Pigmente in den Formulierungen auch mit jeder Art von kosmetischen Roh- und Hilfsstoffen kombiniert werden. Dazu gehören u.a. Öle, Fette, Wachse, Filmbildner, Konservierungsmittel und allgemein anwendungstechnische Eigenschaften bestimmende Hilfsstoffe, wie z.B. Verdicker und Theologische Zusatzstoffe wie etwa Bentonite, Hektorite, Siliziumdioxid, Ca-Silikate, Gelatine, hochmolekulare Kohlenhydrate und/oder oberflächenaktive Hilfsmittel, etc. Die erfindungsgemäße Pigmente enthaltenden Formulierungen können dem lipophilen, hydrophilen oder hydrophoben Typ angehören. Bei heterogenen Formulierungen mit diskreten wässrigen und nicht-wässrigen Phasen können die erfindungsgemäßen Pigmente in jeweils nur einer der beiden Phasen enthalten oder auch über beide Phasen verteilt sein.
Die pH-Werte der Formulierungen können zwischen 1 und 14, bevorzugt zwischen 2 und 11 und besonders bevorzugt zwischen 5 und 8 liegen. Den Konzentrationen der erfindungsgemäßen Interferenzpigmente in der Formulierung sind keine Grenzen gesetzt. Sie können - je nach Anwendungsfall - zwischen 0,001 (rinse-off-Produkte, z.B. Duschgele) - 99 % (z.B. Glanzeffekt-Artikel für besondere Anwendungen) liegen. Die erfindungsgemäßen Pigmente können weiterhin auch mit kosmetischen Wirkstoffen kombiniert werden. Geeignete Wirkstoffe sind z.B. Insect Repellents, UV A/BC-Schutzfilter (z.B. OMC, B3, MBC), Anti-Ageing- Wirkstoffe, Vitamine und deren Derivate (z.B. Vitamin A, C, E etc.), Selbstbräuner (z.B. DHA, Erytrolose u.a.) sowie weitere kosmetische Wirkstoffe wie z.B. Bisabolol, LPO, Ectoin, Emblica, Allantoin, Bioflavanoide und deren Derivate. Bei Einsatz der Pigmente in Lacken und Farben sind alle dem Fachmann bekannten Anwendungsbereiche möglich, wie z.B. Pulverlacke, Automobillacke, Druckfarben für den Tief-, Offset-, Sieb- oder Flexodruck sowie für Lacke in Außenanwendungen. Für die Herstellung der Druckfarben ist eine Vielzahl von Bindern, insbesondere wasserlösliche
Typen, geeignet, z.B. auf der Basis von Acrylaten, Methacrylaten, Polyestem, Polyurethanen, Nitrocellulose, Ethylcβllulose, Polyamid, Polyvinylbutyrat, Phenolharzen, Maleinharzen, Stärke oder Polyvinylalkohol. Bei den Lacken kann es sich um wasser- oder lösemittelbasierte Lacke handeln, wobei die Auswahl der Lackbestandteile dem Allgemeinwissen des Fachmanns unterliegt. Die Pigmente können, falls sie beispielsweise flüssigkristalline Substanzen in deren Hohlräumen enthalten, für schaltbare Lacke, z.B. für Automotive Anwendungen eingesetzt werden. Dabei wird im einfachsten Falle ein elektrisches Feld aufgebaut, mit der Blechkarosserie als eine Elektrode und einer leitfähigen Beschichtung, z.B. eine ITO-Partikel enthaltende Schicht als Gegenelektrode. Alternativ kann die Ansteuerung der flüssigkristallinen Substanzen auch durch die Umgebungstemperatur erfolgen.
Darüber hinaus können die erfindungsgemäßen Pigmente zur
Pigmentierung von Folien und Kunststoffen verwendet werden, so z.B. für Agrarfolien, infrarotreflektierende Folien und Scheiben, Geschenkfolien, Kunststoffbehältnisse und Formkörper für alle dem Fachmann bekannten Anwendungen. Als Kunststoffe eignen sich alle gängigen Kunststoffe für die Einarbeitung der erfindungsgemäßen Formkörper, z.B. Duromere oder thermoplastische Kunststoffe. Die Beschreibung der Anwendungsmöglichkeiten und der einsetzbaren Kunststoffe, Verarbeitungsverfahren und Additive finden sich z.B. in der RD 472005 oder in R. Glausch, M. Kieser, R. Maisch, G. Pfaff, J. Weitzel, Perlglanzpigmente, Curt R. Vincentz Verlag, 1996, 83 ff., deren Offenbarungsgehalt hier mit umfasst ist. Wegen der besonderen winkelabhängigen Farbeffekte in Kombination mit der Hintergrund-, Körper- bzw. Lumines∑en∑farbe eignen sich die erfindungsgemäßen Pigmente auch für den Einsatz in Sicherheitsanwendungen, wie ∑.B. im Sicherheitsdruck und in sicherheitsrelevanten Merkmalen für z.B. fälschungssichere Karten und
Ausweise, wie z.B. Eintrittskarten, Personalausweise, Geldscheine, Schecks und Scheckkarten sowie für andere fälschungssichere Dokumente. Im Bereich der Landwirtschaft können die Pigmente zur Einfärbung von Saatgut und anderen Äusgangsgütern verwendet werden, darüber hinaus im Lebensmittelbereich zur Pigmentierung von
Lebensmitteln. Zur Pigmentierung von Überzügen in Arzneimitteln wie z.B. Tabletten oder Dragees sind die erfindungsgemäßen Pigmente ebenfalls einsetzbar, wie z.B. in DE 198 31 869 oder US 6,627,212 beschrieben.
Weiterhin eignen sich die erfindungsgemäßen Pigmente zur Verwendung in schaltbaren Systemen, insbesondere dann, wenn die Hohlräume zwischen des Stäben und/oder in den Röhren mit Substanzen, z.B. flüssigkristallinen Substanzen gefüllt sind. Durch Einwirkung äußerer Einflüsse, z.B. elektrischer Felder lässt sich auf diese Weise die Transparenz und/oder die Reflektivität steuern.
Darüber hinaus sind die gemäß der vorliegenden Erfindung erhaltenen Pigmente für analytische Zwecke geeignet, z.B. in Mikroanalysen- oder Sensorensystemen. So ist denkbar, dass der spezifische Analyt durch Eintritt in die Poren den Brechungsindexkontrast verändert. Dies führt zu einer Änderung der optischen Eigenschaften, welche detektiert werden können. Hierbei ist, z.B. bei Auswahl von SiO2 als Pigmentmaterial, auch eine Andockung spezieller funktioneller Gruppen auf der Silanolgruppen- haltigen Oberfläche in den Hohlräumen denkbar, was eine spezifische Detektion möglich macht. Die erfindungsgemäßen Pigmente eignen sich ebenso zur Verwendung in Abmischungen mit organischen und/oder anorganischen Farbmitteln, beispielsweise organischen oder anorganischen Farbstoffen und/oder Pigmenten, wie z.B. transparenten und deckenden Weiß-, Bunt- und Schwarzpigmenten sowie mit plättchenförmigen Eisenoxiden, organischen
Pigmenten, holographischen Pigmenten, LCPs (Liquid Crystal Polymers) und herkömmlichen transparenten, bunten und schwarzen Glanzpigmenten auf der Basis von metalloxidbeschichteten Plättchen auf Basis von Glimmer, Metall, Glas, AI2O3, Fe2θa, Siθ2, etc. Die erfindungsgemäßen Pigmente können in jedem Verhältnis mit handelsüblichen Pigmenten und Füllern gemischt werden.
Als Füllstoffe sind z.B. natürlicher und synthetischer Glimmer, Nylon Powder, reine oder gefüllte Melaninharze, Talcum, Gläser, Kaolin, Oxide oder Hydroxide von Aluminium, Magnesium, Calcium, Zink, BiOCI, Bariumsulfat, Calciumsulfat, Calciumcarbonat, Magnesiumcarbonat, Kohlenstoff, sowie physikalische oder chemische Kombinationen dieser Stoffe zu nennen. Bezüglich der Partikelform des Füllstoffes gibt es keine Einschränkungen. Sie kann den Anforderungen gemäß z.B. plättchenförmig, sphärisch oder nadeiförmig sein.
Die erfindungsgemäßen Pigmente sind weiterhin geeignet zur Herstellung von fließfähigen Pigmentpräparationen und Trockenpräparaten enthaltend ein oder mehrere erfindungsgemäße Pigmente, Bindemittel und optional ein oder mehrere Additive. Unter Trockenpräparate sind auch Präparate zu verstehen, die 0 bis 8 Gew.-%, vorzugsweise 2 bis 8 Gew.-%, insbesondere 3 bis 6 Gew.-%, an Wasser und/oder eines Lösemittels oder Lösemittelgemisches enthalten. Die Trockenpräparate liegen vorzugsweise als Pellets, Granulate, Chips, Würstchen oder Briketts vor und weisen Teilchengrößen von 0,2-80 mm auf. Die Trockenpräparate finden insbesondere Anwendung bei der Herstellung von Druckfarben und in kosmetischen Formulierungen. Eine besondere Anwendungsmöglichkeit der erfindungsgemäßen Pigmente besteht in ihrem Einsatz als Tracer in Mischungen mit weiteren organischen und/oder anorganischen Farbmitteln. Tracer werden in modernen Produkten vielfach als Identifizierungsmittel eingesetzt. Mit ihrer
Hilfe soll die Echtheit eines Produktes nachgewiesen bzw. die Herkunft eines Produktes rekonstruiert werden. Gängige Tracer basieren auf fluoreszierenden, radioaktiven oder lumineszierenden Stoffen, die dem zu schützenden Produkt als Pulver, Suspension oder Flüssigkeit zugesetzt werden. Diese Stoffe sind vielfach toxikologisch und umwelttechnisch bedenklich bzw. benötigen zu ihrer Nachweisbarkeit spezielle Apparaturen und Geräte.
Die erfindungsgemäßen Pigmente können den zu markierenden Farbmitteln oder daraus hergestellten Produkten, wie z.B. Lacken, Pulvern, Farben oder Suspensionen unter Anwendung aller dem Fachmann bekannten Methoden zugegeben werden. Der Anteil des Tracers in dem zu markierenden Produkt beträgt üblicherweise < 5 Gew.-%, bezogen auf das markierte Produkt und vorzugsweise < 2 Gew.-% und ganz besonders bevorzugt 0.1-1 Gew.-%.
Je nach der Größe der erfindungsgemäßen Pigmente kann der Tracer in den Mischungen sehr einfach mittels eines Mikroskops oder mit dem Rasterelektronenmikroskop detektiert werden. Chemisch und toxikologisch verhalten sich diese Tracer wie z.B. Effektpigmente und sind somit chemisch inert und toxikologisch unbedenklich. Die erfindungsgemäßen Pigmente können in sehr geringer Dosierung beigemischt werden, so dass die Koloristik in der Anwendung damit nicht merklich beeinflusst wird. Da die für diese Anwendung auf die Kundenwünsche speziell abgestimmten erfindungsgemäßen Pigmente kommerziell nicht verfügbar sind, wird ein ausreichender Kopierschutz der zu markierenden Mischung gewährleistet. Die erfindungsgemäßen Pigmente lassen sich wegen der Stabilität und des chemisch inerten Charakters einfach und problemlos einsetzen und in den oben genannten Anwendungen oder Formulierungen verarbeiten. Farben, Lacke, Druckfarben, Kunststoffe, Folien, kosmetische oder pharmazeutische Formulierungen, keramische Materialien, Gläser, Papier,
Sicherheitsmaterialien, Saatgut, Lebensmittel, Arzneimittel, Analysensysteme, Schalter, Trockenpräparate oder Pigmentpräparationen enthaltend die erfindungsgemäßen Pigmente sind demgemäss ebenfalls Gegenstand dieser Erfindung.
Die nachfolgenden Beispiele sollen die Erfindung näher erläutern, ohne sie jedoch zu begrenzen. Weitere Beispiele sind in analoger Weise zugänglich.
Beispiel: AR-Glasrohre (Zusammensetzung: 69 Gew.-% SiO2, 1 Gew.-% B2O3, 4
Gew.-% AI2O3, 13 Gew.-% Na2O, 3 Gew.-% K2O, 5 Gew.-% CaO, 3 Gew.- % MgO, 2 Gew.-% BaO) mit Außendurchmessern von 1.7 mm und Innendurchmessern von 1.204 mm werden hexagonal so angeordnet, dass der Gesamtdurchmesser der Anordnung ungefähr 4 mm beträgt. Die hexagonale Anordnung wird mit einer Vorschubgeschwindigkeit von 1.5 mm/min in einen 3-Zonen-Ofen (Zonenhöhe 10 mm) mit einer Temperatur von 7000C eingebracht. Die Abzuggeschwindigkeit bei der Verstreckung beträgt 400 mm/min. Die Verstreckung wird so lange wiederholt bis Fasern mit einem Durchmesser von 100 μm erhalten werden. Nach Zerkleinerung der erhaltenen Fasern werden zylinderförmige Pigmente erhalten, die bei Betrachtung Blickwinkel-abhängige Farbspiele von Rot über Gelb bis Grün aufweisen.

Claims

Patentansprüche
1. Pigmente auf der Basis von Zylindern oder Prismen, dadurch gekennzeichnet, dass die Höhe der Zylinder oder Prismen 100 nm bis 500 μm beträgt und dass der Durchmesser der Grundfläche der
Zylinder oder die kürzeste Diagonale der Grundfläche der Prismen 100 nm bis 500 μm beträgt und die Zylinder oder Prismen aus nebeneinander angeordneten und in Richtung der Höhenachse der Zylinder oder der Prismen liegenden Röhren und/oder Stäben bestehen.
2. Pigmente gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Prismen eine Grundfläche in Form eines Vielecks Vn mit n als der Anzahl der Ecken des Vielecks Vn und n > 3 aufweisen.
3. Pigmente gemäß Anspruch 2, dadurch gekennzeichnet, dass n = 3, 4, 5, 6, 7, 8, 9 oder 10 ist.
4. Pigmente gemäß einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass die Kantenlängen der Vielecke Vn gleich oder ungleich groß sind.
5. Pigmente gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Zylinder oder Prismen gerade oder schiefe Zylinder oder Prismen sind.
6. Pigmente gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Oberfläche der Röhren und/oder Stäbe bzw. der Prismen oder Zylinder strukturiert ist.
7. Pigmente gernäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Röhren und/oder Stäbe der Zylinder oder Prismen aus Glas, SiO2, B2O3, AI2O3, Metallen, Kunststoffen oder aus Mischungen dieser Materialien bestehen oder dass die Zylinder oder Prismen sowie Röhren und/oder Stäbe diese Materialien enthalten.
8. Pigmente gemäß Anspruch 7, dadurch gekennzeichnet, dass die Zylinder oder Prismen Röhren und/oder Stäbe aus Glas und Metallen enthalten.
9. Pigmente nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das Metall Germanium, Gold, Platin, Silber, Blei oder Silicium ist.
10. Pigmente gemäß Anspruch 8, dadurch gekennzeichnet, dass die Röhren und/oder Stäbe aus Metallen längs einer oder mehrerer
Diagonalen der Grundfläche der Zylinder oder Prismen liegen.
11. Pigmente gemäß einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Röhren und/oder Stäbe bzw. die daraus resultierenden Bündel mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichtet sind.
12. Pigmente gemäß Anspruch 11 , dadurch gekennzeichnet, dass die ein oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride und/oder Mischungen dieser Materialien mit Farbmitteln und/oder Elementen dotiert sind.
13. Pigmente gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Röhren und/oder Stäbe Außendurchmesser von 40 nm und 250 μm aufweisen.
14. Pigmente gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Durchmesser der Röhren und/oder Stäbe bzw. der von den Röhrenwänden umschlossenen Poren in den Pigmenten gleich groß oder ungleich groß sind.
15. Pigmente gemäß einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Pigmente zusätzlich mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichtet sind.
16. Pigmente gemäß Anspruch 15, dadurch gekennzeichnet, dass die ein oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride und/oder
Mischungen dieser Materialien mit Farbmitteln und/oder Elementen dotiert sind.
17. Pigmente gemäß einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Röhren an den Prismen- oder
Zylindergrundflächen geschlossen sind.
18. Pigmente gemäß einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Hohlräume zwischen den Stäben und/oder Röhren bzw. in den Röhren mit Substanzen gefüllt sind.
19. Pigmente gemäß einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Pigmente mit einer Nachbeschichtung versehen sind.
20. Pigmente gemäß Anspruch 19, dadurch gekennzeichnet, dass die
Nachbeschichtung aus Organosilanen und/oder Polymeren besteht.
21.Verfahren zur Herstellung von Pigmenten gemäß Anspruch 1 , umfassend die Verfahrensschritte a) Anordnen von Röhren und/oder Stäben in Form von Zylindern oder Prismen, b) Thermisches Ziehen der in a) erhaltenen Zylinder oder Prismen, so dass der Durchmesser der Grundfläche der Zylinder oder die kürzeste Diagonale der Grundfläche der Prismen 100 nm bis 500 μm beträgt und c) Zerkleinern der in b) erhaltenen Zylinder oder Prismen, so dass die Höhe der Zylinder oder Prismen 100 nm bis 500 μm beträgt.
22. Verfahren gemäß Anspruch 21 , dadurch gekennzeichnet, dass es sich bei den in den Verfahrensschritten a) und b) erhaltenen Zylindern oder
Prismen um Photonic Crystal Fibers handelt.
23. Verfahren gemäß Anspruch 21, dadurch gekennzeichnet, dass die Röhren und/oder Stäbe der Zylinder oder Prismen aus Glas, SiO2, B2O3, AI2O3, Metallen, Kunststoffen oder aus Mischungen dieser
Materialien bestehen oder dass die Zylinder oder Prismen Röhren und/oder Stäbe dieser Materialien enthalten.
24. Verfahren gemäß Anspruch 23, dadurch gekennzeichnet, dass die Zylinder oder Prismen Röhren und/oder Stäbe aus Glas und Metallen enthalten.
25. Verfahren gemäß Anspruch 24, dadurch gekennzeichnet, dass die Röhren und/oder Stäbe aus Metallen längs einer oder mehrerer Diagonalen der Grundfläche der Zylinder oder Prismen angeordnet werden.
26. Verfahren gemäß einem der Ansprüche 21 bis 25, dadurch gekennzeichnet, dass die Röhren und/oder Stäbe bzw. die daraus resultierenden Bündel vorab mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxidhydrate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride,
Metalloxynitride oder Mischungen dieser Materialien beschichtet werden.
27. Verfahren gemäß einem der Ansprüche 21 bis 26, dadurch gekennzeichnet, dass die Pigmente zusätzlich mit einer oder mehreren transparenten, semitransparenten und/oder opaken Schichten enthaltend Metalloxide, Metalloxid hyd rate, Metallsuboxide, Metalle, Metallfluoride, Metallnitride, Metalloxynitride oder Mischungen dieser Materialien beschichtet werden.
28. Verfahren gemäß einem der Ansprüche 21 bis 27, dadurch gekennzeichnet, dass die Pigmente mit einer Nachbeschichtung versehen werden.
29. Verfahren gemäß einem der Ansprüche 21 bis 28, dadurch gekennzeichnet, dass das Zerkleinern durch Mahlen, Schneiden und/oder Hacken erfolgt.
30. Verfahren gemäß einem der Ansprüche 21 bis 29, dadurch gekennzeichnet, dass die Röhren an den Prismen- oder
Zylindergrundflächen verschlossen werden. - 3ö -
31. Verfahren gemäß Anspruch 30, dadurch gekennzeichnet, dass das Verschließen durch Schmelzen, Verkappen, Verpfropfen und/oder durch Polymerisationsreaktionen erfolgt.
32. Verfahren gemäß einem der Ansprüche 21 bis 31 , dadurch gekennzeichnet, dass die Hohlräume zwischen den Stäben und/oder Röhren bzw. in den Röhren mit Substanzen gefüllt werden.
33. Verwendung von Pigmenten gemäß Anspruch 1 in Farben, Lacken, Druckfarben, Kunststoffen, Folien, kosmetischen oder pharmazeutischen Formulierungen, keramischen Materialien, Gläsern, Papier, zur Lasermarkierung, in Sicherheitsmaterialien, im Wärmeschutz, zur Saatguteinfärbung, zur Lebensmitteleinfärbung, in Arzneimittelüberzügen, in Trockenpräparaten, in Pigmentpräparationen, für analytische Zwecke, als Schalter oder als Tracer.
34. Verwendung gemäß Anspruch 33, dadurch gekennzeichnet, dass die Pigmente mit organischen und/oder anorganischen Farbmitteln gemischt sind.
35. Farben, Lacke, Druckfarben, Kunststoffe, Folien, kosmetische oder pharmazeutische Formulierungen, keramische Materialien, Gläser, Papier, Sicherheitsmaterialien, Saatgut, Lebensmittel, Arzneimittel, Analysensysteme, Schalter, Trockenpräparate oder Pigmentpräparationen enthaltend ein oder mehrere Pigmente gemäß
Anspruch 1.
PCT/EP2005/007944 2004-08-17 2005-07-21 Pigmente auf der basis von zylindern oder prismen WO2006018094A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004039754.6 2004-08-17
DE102004039754A DE102004039754A1 (de) 2004-08-17 2004-08-17 Pigmente auf der Basis von Zylindern oder Prismen

Publications (1)

Publication Number Publication Date
WO2006018094A1 true WO2006018094A1 (de) 2006-02-23

Family

ID=35064755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/007944 WO2006018094A1 (de) 2004-08-17 2005-07-21 Pigmente auf der basis von zylindern oder prismen

Country Status (2)

Country Link
DE (1) DE102004039754A1 (de)
WO (1) WO2006018094A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008017869A1 (en) * 2006-08-10 2008-02-14 De La Rue International Limited Photonic crystal security device
WO2008017864A1 (en) * 2006-08-10 2008-02-14 De La Rue International Limited Photonic crystal security device
WO2009050448A1 (en) * 2007-10-19 2009-04-23 De La Rue International Limited Photonic crystal security device and method
CN109437546A (zh) * 2018-12-03 2019-03-08 长飞光纤光缆股份有限公司 光纤预制棒加热炉及其加热掺杂方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012042A1 (de) 2007-03-13 2008-09-18 Giesecke & Devrient Gmbh Sicherheitselement

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363889A (en) * 1979-12-19 1982-12-14 Dai Nippon Toryo Co., Ltd. Anti-corrosive coating composition and process for formation of anti-corrosive coatings
US4842848A (en) * 1985-07-11 1989-06-27 Sumitomo Chemical Company, Limited Make-up cosmetics
GB2252559A (en) * 1991-02-09 1992-08-12 Tioxide Group Services Ltd Method of coating inorganic particles
JPH0710591A (ja) * 1993-06-24 1995-01-13 Nitto Boseki Co Ltd 扁平な断面形状を有するガラス繊維の粉末及びその製 造方法
JPH07315859A (ja) * 1994-05-31 1995-12-05 Nippon Sheet Glass Co Ltd 金属酸化物微粒子分散フレーク状ガラスおよびその製造方法
JPH09110452A (ja) * 1995-10-17 1997-04-28 Nippon Sheet Glass Co Ltd フレーク状ガラス、その製造方法、及びそれを配合した化粧料
WO1999054261A1 (en) * 1998-04-20 1999-10-28 Vera Vasilyevna Efanova Mineral flaky filler for composites
US6168100B1 (en) * 1997-10-23 2001-01-02 Toyota Jidosha Kabushiki Kaisha Method for producing embossed metallic flakelets
JP2002138018A (ja) * 2000-10-30 2002-05-14 Kose Corp 固形棒状化粧料
US20030056546A1 (en) * 2001-09-18 2003-03-27 Claus Richard O. Photonic crystal materials and devices
US20030213409A1 (en) * 2002-05-14 2003-11-20 Deluca Carmine V. Optically variable interference pigments

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363889A (en) * 1979-12-19 1982-12-14 Dai Nippon Toryo Co., Ltd. Anti-corrosive coating composition and process for formation of anti-corrosive coatings
US4842848A (en) * 1985-07-11 1989-06-27 Sumitomo Chemical Company, Limited Make-up cosmetics
GB2252559A (en) * 1991-02-09 1992-08-12 Tioxide Group Services Ltd Method of coating inorganic particles
JPH0710591A (ja) * 1993-06-24 1995-01-13 Nitto Boseki Co Ltd 扁平な断面形状を有するガラス繊維の粉末及びその製 造方法
JPH07315859A (ja) * 1994-05-31 1995-12-05 Nippon Sheet Glass Co Ltd 金属酸化物微粒子分散フレーク状ガラスおよびその製造方法
JPH09110452A (ja) * 1995-10-17 1997-04-28 Nippon Sheet Glass Co Ltd フレーク状ガラス、その製造方法、及びそれを配合した化粧料
US6168100B1 (en) * 1997-10-23 2001-01-02 Toyota Jidosha Kabushiki Kaisha Method for producing embossed metallic flakelets
WO1999054261A1 (en) * 1998-04-20 1999-10-28 Vera Vasilyevna Efanova Mineral flaky filler for composites
JP2002138018A (ja) * 2000-10-30 2002-05-14 Kose Corp 固形棒状化粧料
US20030056546A1 (en) * 2001-09-18 2003-03-27 Claus Richard O. Photonic crystal materials and devices
US20030213409A1 (en) * 2002-05-14 2003-11-20 Deluca Carmine V. Optically variable interference pigments

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 04 31 May 1995 (1995-05-31) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 04 30 April 1996 (1996-04-30) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 08 29 August 1997 (1997-08-29) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 09 4 September 2002 (2002-09-04) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883273B2 (en) 2006-08-10 2014-11-11 De La Rue International Limited Photonic crystal security device
CN101522437B (zh) * 2006-08-10 2012-07-04 德拉鲁国际有限公司 光子晶体安全装置
US8927072B2 (en) 2006-08-10 2015-01-06 De La Rue International Limited Photonic crystal security device
EA014745B1 (ru) * 2006-08-10 2011-02-28 Де Ля Рю Интернэшнл Лимитед Фотоннокристаллическое защитное устройство
EA015041B1 (ru) * 2006-08-10 2011-04-29 Де Ля Рю Интернэшнл Лимитед Фотонно-кристаллический элемент защиты
AU2007283198B2 (en) * 2006-08-10 2011-10-06 De La Rue International Limited Photonic crystal security device
AU2007283286B2 (en) * 2006-08-10 2011-12-08 De La Rue International Limited Photonic crystal security device
CN101522436B (zh) * 2006-08-10 2012-03-21 德拉鲁国际有限公司 光子晶体安全装置
WO2008017864A1 (en) * 2006-08-10 2008-02-14 De La Rue International Limited Photonic crystal security device
WO2008017869A1 (en) * 2006-08-10 2008-02-14 De La Rue International Limited Photonic crystal security device
AU2007283286C1 (en) * 2006-08-10 2014-04-03 De La Rue International Limited Photonic crystal security device
EA016620B1 (ru) * 2007-10-19 2012-06-29 Де Ля Рю Интернэшнл Лимитед Защитное устройство на основе фотонного кристалла и способ формирования такого устройства
CN101896363B (zh) * 2007-10-19 2014-04-02 德拉鲁国际有限公司 光学可变安全装置,其形成方法,及安全文件
WO2009050448A1 (en) * 2007-10-19 2009-04-23 De La Rue International Limited Photonic crystal security device and method
EP2212121B1 (de) 2007-10-19 2015-12-23 De La Rue International Limited Sicherheitsvorrichtung mit photonischem kristall und verfahren
US9272564B2 (en) 2007-10-19 2016-03-01 De La Rue International Limited Photonic crystal security device and method
CN109437546A (zh) * 2018-12-03 2019-03-08 长飞光纤光缆股份有限公司 光纤预制棒加热炉及其加热掺杂方法

Also Published As

Publication number Publication date
DE102004039754A1 (de) 2006-02-23

Similar Documents

Publication Publication Date Title
EP1572812B1 (de) Silberweisse interferenzpigmente mit hohem glanz auf der basis von transparenten substratplättchen
EP1230308B1 (de) Farbstarke interferenzpigmente
KR101312172B1 (ko) 강한 색채의 적색 효과 안료
EP1587881B2 (de) Multischichteffektpigment dessen äusserste schicht eine grössere schichtdicke aufweist
EP1029900B1 (de) Farbstarke Interferenzpigmente
KR101266923B1 (ko) 자성 안료 및 자성을 향상시키는 방법
EP2346949B1 (de) Hochglänzende mehrschichtperlglanzpigmente mit nichtsilberner interferenzfarbe und enger grössenverteilung und verfahren zu deren herstellung
KR101290386B1 (ko) 투명한 고니오크로마틱 다층 효과 안료
DE102004032799A1 (de) Effektpigmente mit einheitlicher Form und Grösse
DE10313978A1 (de) Silberpigment
EP1520883A1 (de) Glänzende schwarze Interferenzpigmente
EP1711562A2 (de) Partikel mit funktionellem multilayeraufbau
KR20070104268A (ko) 안료
US20070060668A1 (en) Photostabilised effect pigments
EP1621585A2 (de) Mehrschichtige Interferenzpigmente
EP1672035A2 (de) Effektpigmente auf Basis dünner SiO2-Plättchen
EP1683839B1 (de) Effektpigmente mit starkem Farbflop
DE102004023075A1 (de) Stabilisierte BiOCI-Pigmente
WO2006018094A1 (de) Pigmente auf der basis von zylindern oder prismen
DE10259301A1 (de) Interferenzpigmente
DE102006027134A1 (de) Verfahren zur Herstellung von strukturierten Pigmenten
EP1847571B1 (de) Pigment comprising a plate-shaped substrate
EP2350207A2 (de) Pigmente
DE10302589A1 (de) Interferenzpigmente
DE102005060018A1 (de) Retroreflektive Pigmente

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase